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A B S T R A C T   

Due to its endocrine disruptive activity, the plastic additive Bisphenol A (BPA) is classified as substance of very 
high concern (EU ECHA 2017). A correlation between environmental exposure to BPA and congenital defects has 
been described in humans and in experimental species including the amphibian Xenopus laevis, where severe 
branchial defects were associated to lethality. The exposure of X. laevis embryos to the BPA analogue bisphenol B 
(BPB) was recently linked to similar teratogenic effects, with BPB having relative potency about 3 times higher 
than BPA. The combined BPA-BPB exposure is realistic as both BPA and BPB are detected in human samples and 
environment. Limited experimental data are available on the combined developmental toxicity of BPA and BPB. 
The aim of the present work is to evaluate the effects of BPA and BPB mixture in the X. laevis development model, 
using R-FETAX procedure. The exposure was limited to the first day of development (corresponding to the 
phylotypic developmental period, common to all vertebrates). Samples were monitored for lethal effects during 
the full six-day test period and the external morphology was evaluated at the end of the test. Mixture effects were 
described by modelling, using the PROAST software package. Overall data modelling showed that dose-addiction 
could not be rejected, suggesting a health concern for co-exposure.   

1. Introduction 

Bisphenol A (BPA) is a plastic additive used in the production of 
polycarbonate plastics, epoxy resins used to line metal cans, and many 
plastic consumer products including toys, water pipes, drinking con
tainers, eyeglass lenses, sports safety equipment, dental monomers, 
medical equipment, consumer electronics and, as a colour developer, in 
thermal paper [1]. Humans are directly or indirectly exposed to BPA 
through ingestion, inhalation and dermal contact; vertical 
maternal-to-embryofoetal exposure has also been demonstrated [2]. 

BPA is currently classified as endocrine-disrupting chemical (EDC) in 

the European Union (EU) [3], because it shows oestrogen receptor 
binding and anti-androgenic activity, although with low affinity 
compared to natural ligands [4]. This classification has prompted reg
ulatory restrictions in production and use in several countries [5,6]. 
Consequently, one of the urgent issues is finding a safe replacement for 
BPA and the safety of BPA analogues is under debate. 

Among BPA analogues, bisphenol B (BPB) is used as BPA alternative 
in plastic production in different non-EU countries, including the USA. A 
direct or indirect release of BPA and BPB into the environment has been 
demonstrated at any level of the plastic product life cycle (production, 
consumption, disposal) [2,7]. Even if BPB is not manufactured or used as 
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a chemical in European Union, it is detectable in the European market in 
several food products, such as canned foods and commercial milk 
samples or drinking water [8–11]. Notably, BPB has become one of most 
frequently detected bisphenols, with reported increasing concentrations 
in environment matrices, food and beverages [12,13] In 2021 it has been 
included by ECHA in the list of substances of very high concern [14]. 
Detectable levels of BPB were found in plasma or urine in both non-EU 
[15–17] and EU population [18,19]. In a small Italian cohort (Naples), 
BPA and BPB were found alone or in mixture in blood sera of patients 
with endometriosis (with maximum concentrations of BPA at 0.03 μM 
and BPB at 0.05 μM) while they were not detectable in healthy women 
[18]. BPA concentrations of similar magnitude (0.01 μM) were reported 
in pregnant women in China [20]. 

An association between blood/urine levels of bisphenols and adverse 
pregnancy outcomes, including congenital defects, has been described in 
humans [21–24]. In different vertebrate developmental models 
(including mouse, chick, zebrafish and Xenopus laevis), lethality, devel
opmental delays, oedema, multiple malformations and neural, cardiac 
and craniofacial malformations were described [25–36]. 

Recently, our research group characterized teratogenic and neuro- 
behavioural effects of BPA and BPB in the amphibian Xenopus laevis 
developmental model (using R-FETAX methodology) [37]. In this work, 
a windowed exposure protocol was applied: when exposure covered the 
embryogenetic period, common to all vertebrates from both morpho
logical and molecular point of view (phylotypic period) [38–40], both 
BPA and BPB were teratogenic. Cranio-facial and branchial abnormal
ities were reported and severe branchial defects were related to 
time-specific lethality. A 3.42 times higher relative potency factor (RPF) 
of BPB versus BPA was derived by modelling [37]. 

Recent papers on mixtures of BPA with some analogues indicate a 
possible combined effect on estrogenic activity [41,42] and on preg
nancy outcomes [43]. In a zebrafish developmental toxicity model, ad
ditive lethal and cardiotoxic effects of binary mixture of BPA and its 
analogues BPF, BPAF and BPB were reported [44], suggesting the need 
for further evaluation of the environmental impact of bisphenol com
bined exposure. 

The aim of the present work is to evaluate the effects of BPA and BPB 
mixtures in the amphibian X. laevis developmental model, using R- 
FETAX and data modelling procedures. 

2. Materials and methods 

2.1. R-FETAX 

The R-FETAX methodology is a refined method with marked differ
ences from standard FETAX. R-FETAX was applied according to Battis
toni et al., [45]. Briefly, adult amphibians X. laevis (Nasco, USA) were 
maintained under controlled conditions in an automatic breeding sys
tem (TecnoPlus, Techniplast, Italy), designed to hold X. laevis in a 
constantly controlled environment, following the Guidance on the 
housing and care of the African clawed frog X. laevis [46]. During 
recirculation, water was cleaned by both mechanical and active carbon 
filters, sterilized by UV lamp and automatically re-equilibrated with salt 
mixes (Instant Ocean ®, Aquarium System, Italy) and sodium bicar
bonate (Sigma). Water parameters are set at T=20.5+1, pH= 7.5+1, 
conductivity= 1150+250 µS. Adults (3 different couples were used) 
were naturally mated overnight; the following morning, embryos were 
collected and cleaned by gentle swirling in a 2.25 % L-cysteine solution 
with an arranged pH of 8.0 and rinsed several times in FETAX solution 
(625 mg/L NaCl, 96 mg/L NaHCO3, 30 mg/L KCl, 15 mg/L CaCl2, 
60 mg/L CaSO4 ⋅ 2 H2O, and 70 mg/L MgSO4). Normally cleaved em
bryos at the mid-blastula stage (stage 8, according to Nieuwkoop and 
Faber [NF] stadiation [47]) were selected and maintained at 23◦C 
during the entire testing period (6 days, corresponding in our laboratory 
conditions to final NF stage 46, reached in historical unexposed tad
poles). Unlike the classical FETAX protocol described in the guidelines 

[48], natural mating used in R-FETAX implies later egg deposition, 
consequently stage 10 (referred by Nieuwkoop and Faber to occur 
9 hours post fertilization) is reached in our laboratory in the 
mid/late-afternoon (day 0.5); furthermore, fine developmental staging 
in our laboratory conditions indicated that stages up to NF 43 develop at 
a similar rate compared to Nieuwkoop and Faber staging (1956), while 
more time is needed to reach stage 46 [49]. The absence of codified 
X. laevis strains, at Nieuwkoop and Faber age until now, does not allow 
for a strict definition of a match between NF stages and developing 
hours/days for X. laevis. Therefore, we referred to NF stages rather than 
ASTM codified timing. Exposure (5 embryos/ replicate; at least 3 rep
licates/group) (Fig. 1) covered the phylotypic developmental window 
(teratogenicity window, NF stages 10–26), corresponding to the devel
opmental stages common to all vertebrate embryos (gastrula-early 
morphogenesis, representing the window for species-agnostic terato
genesis purposes). Stage identification was performed referring to 
Nieuwkoop and Faber and Zhan staging tables (www.xenbase.com). 

Test chemicals (Sigma, Italy) were dissolved in DMSO (Sigma, Italy) 
and diluted to obtain stock solutions 

stored at − 20◦C. Final dilutions in DMSO were prepared fresh each 
time before treatment and added to the FETAX medium (4 μL/mL, as 
used in our previous paper on BPA and BPB [37] were no effects related 
to solvent exposure were observed) to reach the final concentrations of 
BPA (0–12.5–25–30–35 μM), BPB (0–3.25–6.5–8–9.5 μM) or mixtures 
(MIX). Dose 0 was exposed to DMSO alone (4 μL/mL). An additional 
group, maintained in pure FETAX solution, was used as an 
intra-laboratory control. BPA and BPB concentrations were selected 
based on literature on X.laevis BPA and BPB teratogenicity [25,30,37]. 
BPA concentrations were 10 times higher than BPA concentrations 
detected in surface water [50–52]. Mixture concentrations were selected 
on the basis of modelling of previous published data [37] (Fig. 2) from 
which a RPF of 3.42 was calculated for BPB. 

Specifically, BPA and BPB concentrations close to the values derived 
as BenchMarkDoses for BenchMarkResponse 25 % (BMD25) were 
selected for the mixture (BPA 25 μM and BPB 6.5 μM). BPA 12.5 μM and 
BPB 3.25 μM were used as low-dose levels. The groups are listed in  
Table 1, where the corresponding concentrations in BPA equivalents are 
also shown. 

To assess lethal effects, samples (at list triplicates of 5 embryos/ 
group) were monitored throughout the entire six-day test period using a 
cold-light stereomicroscope (Zeiss). At the end of the test (day 6), the 
functional deglutition test was applied according to Battistoni et al., 
2022b. Larvae were maintained for 2 h at 23 ± 0.5 ◦C in FETAX solution 
containing 25 μg/mL red polystyrene microparticles (1 μm diameter, 
Sigma).Tadpoles were anesthetized with MS-222 (Sigma, Italy; 0.01 % 
in FETAX solution) and evaluated for gross morphology and the pres
ence or absence of red staining in the intestine (deglutition test positive/ 
negative) under a camera-equipped cold-light illuminated dissecting 
microscope (Leica). At the end of the evaluation, samples were photo
graphed, euthanized by anaesthetic overdose (MS-222 0.1 % in FETAX 

Fig. 1. R-FETAX protocol: coloured boxes represent BPA, BPB or mixture (MIX) 
exposure window (phylotypic stages); white boxes indicate the maintenance in 
FETAX solution. Arrow indicates the timing of previously observed BPA- and 
BPB-related lethality, according to Metruccio et al., (2024). 
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solution at 4◦C), fixed in ethanol 50 % (Sigma, Italy) and conserved in 
ethanol 70 %. 

2.2. Mathematical modelling (PROAST) 

The software package PROAST (70.3 version) developed by the 
Dutch National Institute for Public Health and the Environment (RIVM) 
(www. proast.nl) for the statistical analysis of dose-response toxicolog
ical data, was used for modelling. In order to derive exposure concen
trations used in the present work, the benchmark dose (BMD) approach 
was applied on BPA and BPB previously published datasets [37]: BPA 
and BPB single dose-response curves were characterized, setting BMD at 
25 % benchmark response (BMD25) to derive the Relative Potency 
Factor (RPF). 

Original data obtained in the present work were modelled using the 
dose-addition option in PROAST. The dose-addition hypothesis was 
verified and overall BMDs at 10–25–50 % benchmark responses (BMD10 
BMD25 BMD50) were obtained. 

2.3. Statistical analysis 

Quantal data were analysed using the Chi- square for trend. The level 
of significance was set at p < 0.05. 

3. Results 

Dose-related lethal and teratogenic effects were evident in groups 
exposed to BPA, BPB or mixtures (Table 2). In contrast, the vehicle group 
(dose 0, exposed to DMSO alone) developed similarly to the experi
mental controls maintained in pure FETAX solutions. Both the vehicle 
and unexposed controls consisted of seven replicates, which yielded 
comparable results. Data obtained in controls without solvent were not 
included in Table 2 because they can’t be included in modelling. 

Teratogenic effects detected in living tadpoles were classified as 
anterior defects (shortened craniofacial region, small gill basket), only in 
few cases associated to ventral oedema and/or bent tail (Table 2; Fig. 3 
B-D’). Specifically, the shortened anterior region was correlated with 
abnormal flexion of the encephalic region (Fig. 3 D). The anterior re
gion, therefore, resulted the main common target for BPA, BPB and their 
mixture. Deglutition test was positive for all tadpoles, showing no dif
ferences among groups and indicating functionally normal facial artic
ulation. As previously reported, exposure-related lethality typically 
occurred two days after the end of exposure (approximatively NF 42–44, 
the last tailbud stages), consistent with previously reported data linking 
lethality to severe branchial defects [37]. 

B-D’) BPA 30 μM (B), BPB 6.5 μM (C) and MIX (BPA 12.5+ BPB 
6.5 μM) (D-D’)-exposed tadpoles showing abnormal phenotypes char
acterized by flexed encephalic region (D: yellow dotted line) leading to 
shortening craniofacial structures (B, C, D’: black lines) and small 
branchial basket (B, C, D’: black dotted line). Normal sized and coiling 
intestine (X) and positive deglutition test (red microplastics in the in
testine) are visible in any group. Magnification: B, C, D’ 20X; D 32X. 

3.1. Data modelling 

To test the dose-addiction hypothesis, data were analysed using dose 
addiction exponential models. As the plotted responses of each group 
scattered around the fitted curve, the hypothesis that the mixture effect 
is additive could not be rejected (Fig. 4). Overall BMD values for 
BenchMarkResponse 10 %, 25 % and 50 % (BMD10 BMD25 BMD50) were 
derived, resulting (in BPA equivalents): BMD10 [17.6–20.8]; BMD25 
[22.2–25.5]; BMD50 [26.4–29.8]; RPF BPB vs BPA was 3.7, with Con
fidence Interval [3.4–3.9] which confirmed the results of the previous 
experiment (Fig. 4). 

Fig. 2. Dose-response characterization by modelling BPA and BPB previously published datasets (Metruccio et al., 2024) to derive: A) BPA BMD25 (22.9 μM; CI 
20.1–25.4 μM) and B) BPB BMD25(6.7 μM, CI 6.2–7.3 μM). The obtained values were used to set concentration levels in mixtures. BMD25= BenchMarkDose for 
BenchMarkResponse 25 %. CI= Confidence Intervals. 

Table 1 
Experimental groups. Concentrations in BPA equivalents were calculated on the 
basis of the relative potency factor (RPF= 3.42) derived by modelling in the 
previous published work (Metruccio et al., 2024). In grey, the mixture groups.  

BPA (μM) BPB (μM) Concentration in BPA equivalents (μM)  

0  0  0  
0  3.25  11.1  
0  6.5  22.2  
0  8  27.4  
0  9.5  32.5  
12.5  0  12.5  
25  0  25  
30  0  30  
35  0  35  
12.5  3.25  23.6  
12.5  6.5  34.7  
25  3.25  36.1  
25  6.5  47.2  
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4. Discussion 

Due to regulations on endocrine active substances and public con
cerns regarding the potential estrogenic and anti-androgenic activity of 
BPA and its effects on human health [4,53–56], the use of BPA has been 
banned or restricted in the EU [5,6]. Consequently, alternative bisphe
nols, such as BPB, have been introduced in plastic production processes 
in several non-EU countries. Despite EU restrictions, BPB is detected in 
products marketed in the EU. The widespread use of BPA and alternative 
bisphenols has resulted in their simultaneous detection in the environ
ment [13], human urine/blood samples [15,17,57–60] and aquatic or
ganisms [61–65]. BPA and BPB (Fig. 5) share a strong structural 
similarity, as they belong to the group of chemicals with two hydrox
yphenyl functional groups. Consistent with their structural similarity, 
BPB shares the endocrine activity with BPA, albeit with stronger estro
genic and anti-androgenic potency than BPA itself, albeit still orders of 
magnitude lower than natural ligands [66]. The effects of combined 
exposure to BPA and BPB need to be considered for both humans and 
aquatic wild species. 

An association between bisphenols levels in blood/urine during 
pregnancy and congenital birth defects (including neural abnormalities) 
has been described in humans [21–24]. Relatively high doses of 
bisphenols in different experimental vertebrate models, including 
zebrafish and X. laevis, have been shown to caused similar defects, 
particularly head defects [25,26,28,35]. 

In human pregnancy, the simultaneous detection of different 
bisphenols in urine has been associated with reduced birth weight, 
suggesting combined effects [43]. In a zebrafish developmental toxicity 
model, lethal and cardiotoxic effects were reported in embryos exposed 
to a binary mixture of BPA and its analogues BPF, BPAF or BPB [44]. 

The aim of the present work was to evaluate the teratogenic effects of 
the BPA-BPB binary mixture in the amphibian X. laevis developmental 
model. The X. laevis embryo model is widely used in embryotoxicity 
research fields [67–70], and has been also selected to test EDCs [71]. 
The R-FETAX procedure was applied, with the exposure covering NF 
stage 10–26, considered in X. laevis as the phylotypic period, common to 
all vertebrates at both morphological and molecular levels [38–40]. Our 
results confirm that both BPA and BPB are teratogenic, BPB being more 
than 3 times more potent than BPA (RPF= 3.7, CI 3.4–3.9). Moreover, 
co-exposure to BPA-BPB resulted in dose-additivity, a hypothesis that 
was not rejected by data modelling, as expected by molecules sharing 

the same molecular targets [72]. 
In a small Italian cohort [18] of patients with endometriosis, BPA and 

BPB human blood serum concentrations were up to 0.03 μM BPA and 
0.05 μM BPB (equal to 0.15 μM BPA equivalents, considering BPB 
RPF=3), resulting in a cumulative BPA_BPB dose of 0.18 μM BPA 
equivalents. The BMDL10 (the CI lower value referred to 10 % extra risk) 
is used as the point of departure in current risk assessment [73]. The 
point of departure is intended to be the values from which to derive 
exposure limits by applying uncertainty factors to account for inter and 
intraspecies differences. The value of these uncertainty factors is 10 for 
both differences. Applying the total uncertainty factor of 100 to BMDL10 
derived from our modelling, the exposure limit for concentration in 
human embryos of BPA-equivalents would be 0.17 μM (considering 
BMDL10 / 100), falling within the range of theoretical human exposure 
[18]. The similarity of effects reported in human literature (neural de
fects) with our results (flexed encephalic region) suggests R-FETAX as an 
alternative predictive model. 

The use of X.laevis model has application in ecotoxicological risk 
assessment of the presence of bisphenols in water. Concentrations of 
BPA up to 29920 ng/L (0.13 μM) in surface water and 16929 ng/L (0.07 
μM) in seawater have been found in Turkey; in China, BPB levels 
reached 46 ng/L (0.0002 μM) in surface waters [74–76]. In Europe 
(Poland), BPB concentrations were found to be around 60 ng/L (0.0003 
μM) in raw wastewaters and about 30 ng/L (0.0001 μM) [77], con
firming that, despite a series of treatment processes, bisphenols can still 
be detected in the effluent, which could allow them to enter natural 
waters [50,51]. Concerning wild species exposure, the simultaneous 
detection of several bisphenols, including BPA and BPB, has been 
described in several fish samples [52,78], in concentration ranges 
providing insights into the bioaccumulation of this molecules in ani
mals. Additionally, the possibility of BPA accumulation in fish eggs was 
experimentally demonstrated and correlates with endocrine deregula
tion during development [79,80]. Considering all these pieces of evi
dence, a complex picture emerges, indicating the necessity for a more 
comprehensive evaluation in the context of assessing the risks of 
bisphenol co-exposure to wild species as well. Although wild species 
extinction increased awareness of the need for conservation, there are 
still many gaps in research on the effects of bisphenols on wild am
phibians. Considering that embryos and larvae are the most sensitive 
[81], our data on bisphenol-induced lethality during development stress 
the need for severe legislations limiting bisphenol direct or indirect 

Table 2 
Main test: dead, abnormal and total affected (dead + abnormal) (%), observed in groups exposed to BPA, BPB or mixtures. Statistics (Chi-square for trend, calculated on 
frequencies) are shown.  

COMPOUND DOSE 
BPA 
(μM) 

DOSE 
BPB 
(μM) 

DOSE (BPA 
equivalents) 
(μM) 

N Total 
affected (%) 

Dead (%) Total 
abnormal 
(%) 

Head 
defects (%) 

Gill basket 
defects (%) 

Bent tail 
(%) 

Oedema 
(%) 

BPA  0  0  0 32  12.5  9.4  3.4  3.4  0.0  0.0  0.0 
BPA  12.5  0  12.5 24  29.2  25.0  5.6  5.6  0.0  0.0  0.0 
BPA  25  0  25 23  43.5  21.7  27.8  27.8  0.0  0.0  0.0 
BPA  30  0  30 25  72.0  52.0  41.7  33.3  16.7  0.0  0.0 
BPA  35  0  35 15  100.0  100.0                  

p 
value  

<0.0000001  0.000000179  0.001001  0.003065  0.051260     

BPB  0  0  0 32  12.5  9.4  3.4  3.4  0.0  0.0  0.0 
BPB  0  3.25  11.1 20  30.0  15.0  17.6  11.8  5.9  5.9  5.9 
BPB  0  6.5  22.2 39  33.3  17.9  18.8  15.6  0.0  3.1  0.0 
BPB  0  8  27.4 14  64.3  42.9  37.5  37.5  12.5  0.0  0.0 
BPB  0  9.5  32.5 30  96.7  96.7                  

p 
value  

<0.0000001  <0.0000001  0.01740  0.02965  0.46360  0.7019  0.7271 

MIX  0  0  0 32  6.4  3.0  3.4  3.4  0.0  0.0  0.0 
MIX  12.5  3.25  23.6 22  27.3  18.2  11.1  11.1  0.0  0.0  0.0 
MIX  12.5  6.5  34.7 22  100.0  90.9  100.0  50.0  100.0  50.0  0.0 
MIX  25  3.25  36.1 22  100.0  95.5  100.0  100.0  100.0  0.0  100.0 
MIX  25  6.5  47.2 12  100.0  100.0                  

p 
value  

<0.0000001  <0.0000001  0.00274  0.01818  0.0007068  0.06399  0.04974  
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release into aquatic ecosystems. 
In summary, our findings suggest that BPB is unlikely to be a superior 

substitute for BPA [82], highlighting the importance of re-evaluating the 
impacts of bisphenols when co-exposure occurs, both for human and 
environmental health. Moreover, our study demonstrates that the 
R-FETAX methodology resulted sensitive in detecting teratogenic 
mixture effects associated with EDC exposure. We propose R-FETAX as a 
rapid, cost-effective, and sensitive method of choice for screening mix
tures that may be harmful to aquatic and terrestrial ecosystems, as well 
as human development. 
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grant Linea2_2018 and Linea2_2019. 

CRediT authorship contribution statement 

E. Menegola: Writing – review & editing, Writing – original draft, 
Supervision, Project administration, Methodology, Funding acquisition, 
Data curation, Conceptualization. A. Moretto: Writing – review & 
editing, Funding acquisition, Conceptualization. R. Bacchetta: Writing 
– review & editing, Methodology, Conceptualization. F. Metruccio: 
Writing – review & editing, Software, Data curation, Conceptualization. 
Francesca Di Renzo: Writing – review & editing, Resources, Method
ology, Data curation, Conceptualization. M. Battistoni: Writing – re
view & editing, Methodology, Data curation, Conceptualization. 

Fig. 3. Phenotypes observed at the end of R-FETAX in groups exposed to BPA, BPB or mixtures. A) Tadpoles with normal phenotype (1–4 lateral view; 5 dorsal view). 
Note the anterior region (→), the tail (@), the coiled intestine (X, index of NF 46 developmental stage reached). Magnification 8X; A’) dorsal view of tadpole normal 
anterior region. Note the linear encephalon (white dotted line), the eyes (*) representing the limit border (white line) between the anterior craniofacial region (black 
line) and the branchial region (black dotted line). (#) open mouth; X coiled intestine. Magnification 20X. 
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