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Abstract

We study the Bellman equation in the Wasserstein space arising in the study of mean
field control problems, namely stochastic optimal control problems for McKean-Vlasov
diffusion processes. Using the standard notion of viscosity solution & la Crandall-Lions
extended to our Wasserstein setting, we prove a comparison result under general con-
ditions on the drift and reward coefficients, which coupled with the dynamic program-
ming principle, implies that the value function is the unique viscosity solution of the
Master Bellman equation. This is the first uniqueness result in such a second-order
context. The classical arguments used in the standard cases of equations in finite-
dimensional spaces or in infinite-dimensional separable Hilbert spaces do not extend
to the present framework, due to the awkward nature of the underlying Wasserstein
space. The adopted strategy is based on finite-dimensional approximations of the value
function obtained in terms of the related cooperative n-player game, and on the con-
struction of a smooth gauge-type function, built starting from a regularization of a
sharp estimate of the Wasserstein metric; such a gauge-type function is used to gener-
ate maxima/minima through a suitable extension of the Borwein-Preiss generalization
of Ekeland’s variational principle on the Wasserstein space.
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1 Introduction

The main goal of this paper is to develop a viscosity theory for second-order partial differ-
ential equations on the Wasserstein space related to the so-called mean field (or McKean-
Vlasov) control problems, namely stochastic optimal control problems for McKean-Vlasov
diffusion processes. Such partial differential equations are also known as Master Bellman
equations or Bellman equations in the Wasserstein space, see for instance [0, 14, 18]. The
topic of mean field optimal control is a very recent area of research, on which there are how-
ever already many papers and the two monographs [5, 11], to which we refer for a thorough
introduction. Mean field control problems are strictly related to mean field games, developed
by Lasry and Lions in [33, 34, 35] (see also Lions’ lectures at Collége de France [35]) and by
Huang, Caines, Malhamé [29]. Both mean field control problems and mean field games can
be interpreted as searches for equilibria of stochastic differential games with a continuum of
players, symmetrically interacting each other through the empirical distribution of the entire
population. These two problems differ because of the notion of equilibrium adopted. Mean
field games arise when the concept of Nash’s non-cooperative equilibrium is employed, while
mean field control problems are related to Pareto optimality where players can be identified
with a single “representative agent”, see for instance [14, Section 6.2, pages 514-515]. In the
latter case the stochastic differential game can be thought as an optimization problem of a
central planner, who is looking for a common strategy in order to optimize some collective
objective functional.

The state space of mean field control problems is the set of probability measures, and
usually the Wasserstein space Py(R?) of probability measures having finite second moment
is adopted. Various notions of differentiability for maps defined on spaces of probability
measures are available, and some of them are particularly relevant in the theory of optimal
transportation, see |3, 17| for a detailed presentation of these geometric approaches. The
Master Bellman equation (see equation (3.3) below) adopts instead the notion of differen-
tiability introduced by Lions [38] (see also [12, 13, 14], and Section 3), whose nature is more
functional analytic than geometric. Such a definition seems to be the natural choice in the
study of second-order Bellman equations in the Wasserstein space and related stochastic op-
timal control problems. In fact, it gave rise to a stochastic calculus on the space of probability
measures, and in particular to an It6 formula (chain rule) for maps defined on the Wasser-
stein space (we recall it in our Theorem 3.3), which allows to relate the value function of the
control problem to the Bellman equation (we recall it in our Theorem 3.8). Regarding the
relation between partial differential equations adopting the derivatives introduced by Lions
(as in the present paper) and equations using notions of differentiability as those adopted in
optimal transport theory, we mention results in this direction in the first-order case in 28]
and in a second-order semi-linear case in [24] (see also Remark 3.6).

The theory of partial differential equations in the Wasserstein space is an emerging re-
search topic, whose rigorous investigation is still at an early stage. There are already well-
posedness results in the first-order case, see [2, 25, 1, 26, 27, 28], even for equations adopting
different notions of derivative with respect to the measure. They however do not admit an
extension to the second-order case, which is notoriously a different and more challenging



problem. Concerning second-order equations, papers [12, 13, 1 17, 16] focus on the ex-
istence of viscosity solutions, proving that the value function solves in the viscosity sense
the Master Bellman equation. All those articles adopt the notion of viscosity solution a la
Crandall-Lions, properly adapted to the Wasserstein space, as we do in the present paper
(see Definition 3.5). Notice that, even if these papers dealt with the uniqueness property,
they established it only for the so-called lifted Bellman equation, which is formulated on the
Hilbert space of corresponding random variables so that standard results apply. We also
recall that the relation between such a lifted equation and the original Bellman equation in
the Wasserstein space is not rigorously clarified, and in particular whether the lifted value
function is a viscosity solution to the lifted equation. Actually, it is not yet clear under
which conditions test functions in the lifting Hilbert space are related to test functions in
the Wasserstein space, see discussion in Remark 3.6.

Uniqueness for second-order equations in the Wasserstein space is only addressed in
the two papers [18] and [11]. In [18], a new notion of viscosity-type solution is adopted,
which differs from the Crandall-Lions definition since the maximum/minimum condition is
formulated on compact subsets of the Wasserstein space. This modification makes easier to
prove uniqueness, which is completely established in some specific cases. On the other hand,
[11] studies viscosity solutions & la Crandall-Lions for a class of integro-differential Bellman
equations of particular type. More precisely, the coefficients of the McKean-Vlasov stochastic
differential equations, as well as the coefficients of the reward functional, do not depend on
the state process itself, but only on its probability distribution. This allows to consider only
deterministic functions of time as control processes in the mean field control problem, so that
the Master Bellman equation has a particular form. Moreover, in [11] the Master Bellman
equation is formulated on the subset of the Wasserstein space of probability measures having
finite exponential moments, equipped with the topology of weak convergence, which makes
such a space o-compact and allows establishing uniqueness in this context.

In the present paper we prove, under general conditions on the drift and reward coeffi-
cients, existence and uniqueness of viscosity solutions for Master Bellman equations arising
in the study of mean field optimal control problems. This is the first uniqueness result for
such class of equations in the present context. Classical arguments based on Ishii’s lemma
used in the standard cases of equations in finite-dimensional spaces or in infinite-dimensional
separable Hilbert spaces seem hard to extend to the present framework, due to the awkward
nature of the underlying Wasserstein space. The adopted strategy is instead based on re-
finements of early ideas from the theory of viscosity solutions [37] and relies on the existence
of a candidate solution to the equation, which in our case is the value function v of the
mean field control problem. In particular, we prove (see Theorem 5.1) that any viscosity
subsolution u; (resp. supersolution us) is smaller (resp. greater) than the candidate solution
v. In [37], the arguments for proving u; < v (or, similarly, v < uy) are as follows: one
performs a smoothing v,, of v through its control representation, take a maximum of u; — v,
(relying on the local compactness of the finite-dimensional space), and exploit the viscosity
subsolution property of u; with v, as test function. In [39] such a methodology is extended to
the infinite-dimensional case, relying on Ekeland’s variational principle in order to generate



maxima/minima.

In the context of equations in the Wasserstein space, the above arguments require the
following adjustments. Firstly, the smoothing of v is based on a propagation of chaos re-
sult [32], namely on a finite-dimensional approximation of the value function through value
functions of non-degenerate cooperative n-player games. Secondly, in order to generate max-
ima/minima the idea is to perturb u; — v, (or us — v,) relying on a suitable extension of
the Borwein-Preiss generalization of Ekeland’s principle, see 9, Theorem 2.5.2|. According
to the latter, u; — v, can be perturbed using a so-called gauge-type function (see Definition
4.1). For the proof of the comparison theorem, such a perturbation has to be smooth. In an
infinite-dimensional Hilbert space setting, an example of smooth gauge-type function is the
square of the norm. In the present context, the main issue is to construct a smooth gauge-type
function. This is achieved in Section 4, starting from a sharp estimate of the square of the
Wasserstein metric (see (4.4)) and performing a smoothing of such a quantity (see Lemma
4.4). Due to the complexity of the techniques employed, our results are formulated under
boundedness assumptions on the coefficients. The extension to more general cases covering
path dependent cases (like in [16, 15, 15]) and/or applications like the ones mentioned in [20,
Introduction| seems possible and will be the object of future research. Similarly refinements
of the results showing that viscosity solutions can have a certain degree of regularity (on the
line of what is done e.g. in [1(]) seems possible and will be studied in further research.

The rest of the paper is organized as follows. In Section 2 we formulate the mean field
optimal control problem and state the assumptions that are used throughout the paper; in
such a section we also prove some properties of the value function v and state the dynamic
programming principle. In Section 3 we recall the notion of differentiability introduced
by Lions, we state the Itd6 formula, we introduce the Master Bellman equation, and we
give the definition of viscosity solution. Section 4 is devoted to the construction of the
smooth gauge-type function, from which we derive the smooth variational principle on [0, T'] x
P, (R?), namely Theorem 4.5. In Section 5 we prove the comparison theorem (Theorem 5.1),
from which we deduce the uniqueness result (Corollary 5.2). Finally, in Appendix A we
perform the smooth finite-dimensional approximation of the value function; in particular, in
subsection A.1 we approximate the mean field control problem with non-degenerate control
problems; then, in subsection A.2 we introduce the related cooperative n-player game and
state the propagation of chaos result.

2 Mean field optimal control problem

Wasserstein spaces of probability measures. Given a Polish space (S, ds), we denote
by P(S) the set of all probability measures on (S, B(S)). We also define, for every ¢ > 1,

P,(S) = {u € P(S): for some (and hence for all) zy € S, /ds(xo,x)q pu(dr) < +oo} :
S



The set P,(S) is endowed with the g-Wasserstein distance defined as

W,(p, 1) == inf {/S Sds(x,y)q m(dx,dy): m € P(S x S) (2.1)

1
q

such that 7(- x S) = p and 7(S X -) :;/} , q>1,

for every p, 1’ € Py(S). The space (Pq(S), W,) is a Polish space, see for instance |17, Theorem
6.18).

Probabilistic setting and control processes. We fix a complete probability space
(Q, F,P) on which a m-dimensional Brownian motion B = (B;);>¢ is defined. We de-
note by F? = (FP);>¢ the P-completion of the filtration generated by B, which is also
right-continuous, so that it satisfies the usual conditions. We assume that there exists a
sub-o-algebra G of F satisfying the following properties.

i) G and FZ are independent.
ii) G is “rich enough”, namely P(R?) = {P¢ such that {: Q — R? with £ being G-
measurable and E|£|? < oo}. Recall from [16, Lemma 2.1] that such a requirement

is equivalent to the existence of a G-measurable random variable U: {2 — R having
uniform distribution on [0, 1].

We denote by F = (F;):>o the filtration defined as
Fi=GVFP, t>0.

We observe that F satisfies the usual conditions of P-completeness and right-continuity.
Finally, we fix a finite time horizon 7" > 0 and a Polish space A. We then denote by A
the set of control processes, namely the family of all F-progressively measurable processes
a: [0,T] x Q — A.

Assumptions and state equation. We consider the functions b: [0, 7] x R? x Py(R%) x
A—=TREo: [0, T]xREX A — R™ [0, T] x REXx Py(RY) x A — R, g: REx Py(RY) — R
on which we impose the following assumptions (notice that o does not depend on ).

Assumption (A).
(i) The functions b, o, f,g are continuous.
(ii) There exists a constant K > 0 such that
b(t, 2, 1,0) — b{t, 7', 1, @) + [0, 3,0) — ot 7', 0)] < K (|2 — 2'| + Wil 1),
b(t, z, u,a)| + |o(t,z,a)] K,

for all (t,a) € [0,T] x A, (z, 1), (z', 1) € R x Po(RY), |z — 2’| denoting the Euclidean
norm of v —x' inRY, (-,-) denoting the scalar product, |o(t,z,a)| := (tr(co™)(t, z,a))'/?
= (D i, |0i.(t,z,a)|*)Y/? denoting the Frobenius norm of the matriz o(t,z,a).

<
<
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(iii) There exists a constant K > 0 such that
[f(t e, p,a) = f(E 2, 15 a)l + g (e, p) — g(a', 1)
[f(t, 2, s a)| + [g(x, 1)
for all (t,a) € [0,T] x A, (z,u), (', 1) € R% x Py(R?).
Assumption (B).  There exist constants K > 0 and B € (0, 1] such that
b(t, z, pu,a) — b(s,x, pu,a)| + |o(t,z,a) —o(s,z,a)|
+|f(tx,ma) = fls,2,m0)] < Kt —s|,
for all t,s € [0,T), (z, u,a) € R x Py(RY) x A.
Assumption (C). The Polish space A is a compact subset of a Fuclidean space.

Assumption (D). For any a € A, the function o(-,-,a) belongs to C*2([0,T] x R?). More-
over, there exists some constant K > 0 such that

< (|x—$|+W2(M 1)),
< K

|8tat:ca|+|8atxa]+|w o(t,z,a)| < K,
for all (t,x,a) € [0,T] x R x A and any i,j =1,...,d.

Remark 2.1. Assumptions (B) and (D) are required in the proof of Theorem A.7 in or-
der to exploit reqularity results for uniformly parabolic Bellman equations. In particular,
Assumption (D) is taken from [31, Section 7 of Chapter 4] in order to get suitable bounds
on the second derivatives (see [71, Theorem 4.7.4]). On the other hand, Assumptions (A)
and (C) are required in the propagation of chaos result, that is Theorem A.6. All these
assumptions are therefore required in Theorem 5.1 and Corollary 5.2. Finally, notice that
the results of the present section are stated under Assumption (A), however they hold under
weaker assumptions, see [10].

For every t € [0,T], £ € L*(Q, F,,P;R?), a € A, the state process evolves according to the
following controlled McKean-Vlasov stochastic differential equation:

= 5—1—/ b(r,Xr,IP’XT,aT) dr+/ o(r, X, a,) dB,, s € [t,T]. (2.2)
t t

Proposition 2.2. Suppose that Assumption (A) holds. For everyt € [0,T], & € L*(Q, F;, P;RY),
a € A, there exists a unique (up to P-indistinguishability) continuous F-progressively mea-
surable process X1 = (X54%) solution to equation (2.2) satisfying

2l s leef]" < a1 E(er™)

for some constant C, independent of t,&, a.
Moreover, for every £ € L*(Q, F,,P;R?) it holds that

, 1/2
E| sup [xi6e - x| < GE[lg- ¢, (2.3)
s€(t,T]
for some constant Cy, independent of t,£, &', a.

Proof. See |16, Proposition 2.8|. O



Reward functional and lifted value function. We consider the reward functional J,
given by

T
J(t, €6 ) = IE[ / F 5, X0 Py, ) ds + g (X35, Pyrca) | (2.4)
t

and the function V', to which we refer as the lifted value function, defined as

V(t,&) = sup J(t,¢&, ), Y (t,€) €[0,T] x L*(Q, F,,P;RY).
acA

Proposition 2.3. Suppose that Assumption (A) holds. The function V satisfies the follow-
1ng properties.

1) V is bounded.

2) V is jointly continuous, namely: for every {(tn,&:)}n, (t,€), with t,,t € [0,T] and &, €
LA, F,, PR € € L2(Q, Fi, P;RY), such that |t, — t| + E|&, — €] — 0, it holds that
V(tn, &) — V(1,€).

3) There exists a constant L > 0 (depending only on T, K, Cs in (2.3)) such that
’ / 2
V(©8 - V(5,€) < LE[g—¢1)", (2.5)
for allt € [0,T], &,& € L2(Q, F;, P;RY).

Proof. Item 1) is a direct consequence of the boundedness of f and g, while item 2) follows
from [16, Proposition 3.3|. Concerning item 3), we begin noticing that

|V(t7£) - V(t7£/)| < Slelﬁ |J(t>€7 Oé) - J(taéla a)'

Then, the Lipschitz continuity of V' follows from the Lipschitz continuity of J. To this regard,
we have

T
|J(t7 £> Oé) - J(ta 6/7 a)| < / E [|f(87 X;,ﬁ,a’ PX;‘E’O" as) B f(S, Xﬁ’ﬁ’ﬂ’ IPXé’ﬁ/’a’ as) H ds
t
+E[g(X55 Pyren) =g (X5 Pyrea) |

By the Lipschitz continuity of f and g, together with inequality Wy (X586, X1€e) < E[| X156~
X212 e obtain estimate (2.5). =

Law invariance property and dynamic programming principle. We recall from [16]
that V satisfies the fundamental law invariance property.

Theorem 2.4. Suppose that Assumption (A) holds. Then, the map V satisfies the law
invariance property: for every t € [0,T] and &,&" € L*(Q, F;, P;RY), with Pe = Pg, it holds
that

V(t,§) = V().
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Proof. See |16, Theorem 3.5]. O

As a consequence of Theorem 2.4, if Assumption (A) holds, we can define the value function
v: [0,7] x Po(RY) — R as

o(tn) = V(LE), V() € [0,T] x Po(RY, (2.6)
for any & € L2(Q, F;,P; RY). By Proposition 2.5 we immediately deduce the following result.

Proposition 2.5. Suppose that Assumption (A) holds. The function v satisfies the following
properties.

1) v is bounded.
2) v is jointly continuous on [0, T] x Pa(RY).
3) For allt € [0,T], p, ' € Po(R?),
[o(t, p) —o(t, 1) < LWa(p, 1),
with L as in (2.5).

Proof. The claim follows directly from Proposition 2.3, we only report the proof of item 3).
By (2.5) and (2.6), we have

1/2

o(t, p) —o(t, i) < V(€ -V(HE)| < LE[|E-¢P]",
for any &,&' € L*(Q, F, P;R?), with P = p and P = p/. Hence

[o(t, 1) — v(t, )] < Linf {E[|€ — €7]"*: £,¢ € LXQ, F,, RY), with Pe = i and Py = 4 |
= LWs(p, 1)

Finally, we state the dynamic programming principle for v.

Theorem 2.6. Suppose that Assumption (A) holds. Then, v satisfies the dynamic program-
ming principle: for all t,s € [0,T], witht < s, u € Po(R%), it holds that

v(t, ) = sup {E[/ f(r, X085 Pyrca, ay) dr] +v(s,lP’X;,g,a)},
t

acA
for any € € L*(Q, F;,P;RY) with Pe = pu.
Proof. See |16, Corollary 3.8|. O



3 Master Bellman equation

L-derivatives and It6’s formula along a flow of probability measures. We refer to
[14, Section 5.2] for the definitions of the L-derivatives of first and second-order of a map
w: [0, 7] x P2(R?) — R with respect to y, which are given by d,u: [0, 7] x Pa(R?) x RY — R?
and 9,0,u: [0,T] x Pa(RY) x RY — R We recall that such definitions are based on the
notion of lifting of a map u: [0, T|x Py(R?) — R, which is amap U: [0, T]x L?(Q2, F,P; RY) —
R satisfying

Ut,€) = ult,Pe), (3.1)

for every t € [0,T], ¢ € L?(Q, F,P;R?) (here, to alleviate notation, we have defined the
lifting on the same probability space (€2, F,P) on which the mean field control problem was
defined; however, any other probability space supporting a random variable with uniform
distribution on [0, 1] can be used). We observe that derivatives in the present context can be
defined in different ways: the so-called “flat” derivative or the intrinsic notion of differential
in the Wasserstein space. We refer for instance to |14, Chapter 5| for a survey and some
equivalence results.

Definition 3.1. C12([0, T x Py(R%)) is the set of continuous functions u: [0, T] x Pa(RY) —
R such that:

1) the lifting U of u admits a continuous Fréchet derivative DU : [0, T) x L*(Q, F,P; R?) —
L*(Q, F,P;RY), in which case there exists, for any (t,u) € [0,T] x P2(RY), a mea-
surable function dyu(t,p) : R* — R such that DeU(t,&) = du(t, u)(€), for any € €
L*(Q, F,P;RY) with law p.

2) The map (t,x,pu) € [0,T] x R x Py(R?) — d,ult,pn)(z) € R? is jointly continuous;

3) Oyu and 0,0,u exist and the maps (t, 1) € [0,T] x Po(RY) — Opu(t,pn) € R, (t,z,u) €
[0, 7] x RY x Py(R?) +— 9,0,u(t, p)(z) € R>? are continuous.

Definition 3.2. Cy([0,T] x Po(R%)) is the subset of CV2([0,T] x Po(R%)) of functions
u: [0,T] x Py(R?) — R satisfying, for some constant C > 0,

|Ouult, p) ()] + 0p0ult, p) (x)] < C(1+ |z[?),
for all (t,u,x) € [0,T] x Py(R?) x R

Theorem 3.3 (Ito’s formula). Let u € Cy”([0,T] x Po(R%), t € [0,T), & € L*(, F;, P;RY).
Let also 3:[0,T] x Q — R% and 9: [0,T] x Q — R>™ be bounded and F-progressively
measurable processes. Consider the d-dimensional Ité process

X, = §+/ Brdr—l—/ 9, dB,, Vselt,T).
t t

Then, it holds that
u(s,Px,) = ’LL(t,]P)g)-I-/ Gtu(r,IP’Xr)dr-l—/ E[<ﬁr,auu(T,PXr)(Xr)>]dT
t t

9



+ % /t s E[tr (ﬁrﬁ;axaﬂu(r, lP’xr)(Xr))}

forall s € [t,T].

Proof. The claim follows from [, Proposition 5.102] (see also [16, Theorem 4.15 and
Remark 4.16]). O

Viscosity solutions. Now, consider the second-order partial differential equation on [0, 7] x
Py (RY):

Ouu(t, ) = F (t, p, ult, p), uu(t, 1) (-), 0aOpu(t, p) (), (¢, 1) € [0,T) x Pa(RY),

(3.2)
T = [ gl wutdo) b€ PyRY)
with F: [0, 7] x Po(R?) x R x L*(R% B(RY), pu; RY) x LAH(R?, B(R?), p; R¥>*?) — R, where
B(R?) are the Borel subsets of R?, and L?(R?, B(RY), u; R?) is the set of B(RY)-measurable
functions that are square-integrable with respect to .

Definition 3.4. A function u: [0,T] x Py(R?) — R is a classical solution to equation (3.2)
if u e Cy2([0,T] x Po(RY)) and satisfies (3.2).

Definition 3.5. A continuous function u: [0,T] x Po(R?) — R is a viscosity subsolution
(resp. supersolution) to equation (3.2) if:

o u(T,p) < (resp. >) fRd g(z, w)u(dz), for every p € Py(RY);

o for every (t, 1) € [0,T) x Po(R%) and any ¢ € Cy%([0,T] x Po(R?)) such that u— ¢ has
a mazximum at (t,p) (with value 0), then (3.2) is satisfied with the inequality > (resp.
<) instead of the equality and with ¢ in place of u.

Finally, u is a viscosity solution of (3.2) if it is both a viscosity subsolution and a viscosity
supersolution.

Remark 3.6. The above definition of viscosity solution is exactly in the spirit of the def-
inition of Crandall and Lions for second-order equations (see for instance [15]) in finite
dimension. In [18] it is proved that this definition is equivalent to the one using second-order
semidifferentials (jets), while here such equivalence is not obvious.

We say that our definition is an “intrinsic” definition to distinguish it from the definition,
adopted first in [/2], which exploits the lifted equation (in the sense that a function is a
viscosity solution if its lifting along (3.1) satisfies equation (3.2) with F substituted by its
lifting F ) and which, for this reason, we call “lifted” definition.

The relationship between these two definitions is not obvious. Indeed, as shown in Fxam-
ple 2.1 in [10], the lifted function of a smooth function on the Wasserstein space may not
be smooth on the lifted Hilbert space, and so a viscosity solution in the intrinsic sense may

10



not be a viscosity solution in the lifted sense. In the first-order case a kind of equivalence
result between two related definitions is provided in [25, Theorem 4.4]. In the second-order
semi-linear case some results in this direction are provided in [2/, Section 5]. We are not
aware of any results on the fully non-linear second-order case.

As we recalled in the introduction an intrinsic notion of viscosity solution is employed
also in the papers [/5] and [11]. The definition introduced in []S, Definition 4.4/, differs
from our definition since test functions must satisfy the mazximum/minimum condition on
suitable compact subsets of the Wasserstein space, denoted by Pr. Using this modification
the authors prove first a comparison result among reqular sub/supersolutions (“partial com-
parison”) and then a general comparison result with the assumption that the supremum of
classical subsolutions and the infimum of classical supersolutions coincide. On the other
hand, [11] studies viscosity solutions a la Crandall-Lions for a class of integro-differential
Bellman equations of particular type. More precisely, the coefficients of the McKean-Vlasov
stochastic differential equations, as well as the coefficients of the reward functional, do not
depend on the state process itself, but only on its probability distribution. This allows to
consider only deterministic functions of time as control processes in the mean field control
problem, so that the Master Bellman equation has a particular form. Moreover, in [11] the
Master Bellman equation is formulated on the subset of the Wasserstein space of probability
measures having finite exponential moments, equipped with the topology of weak convergence,
which makes such a space o-compact and allows establishing uniqueness in this context.

Now, we consider the Master Bellman equation, namely equation (3.2) with

Flt (). M0) = - [ Sup{f(t,x,u,a)+<b(t,$,u,a),p(w)>

d acA

+ %tr[(aaT)(t, z,a)M(z)] },u(dx).

Therefore, equation (3.2) becomes

(Ot + [ sup {0, 0.0) + (00,2 0). Ot 00
§ + %tr[(JUT)(t,x,a)amaﬂu(t, 1) ()] },u(da:) =0, (t,p) € 0,T) x Po(RY), (3.3)
| () = /Rd 9(@, p)p(dz), p € Py(RY).

Remark 3.7. As described in [10, Section 5.2/, to which we refer for more details, equa-
tion (3.3) can be written in various alternative forms. In particular, (3.3) corresponds to
[10, equation (5.17)], the only difference being the presence of sup,c 4 which in [10, equation
(5.17)] is replaced by esssup,e 4. However, as described in [10, Remark 5.8, under assump-
tion (A), esssup,c can be replaced by sup,c4-

Finally, we mention that an alternative form of equation (3.3) is the following (corresponding
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to equation [10, equation (5.16)]):

'&u(t,u) +§£j€({ flt,x, p,al(x))p(de) + / (b(t, z, p, a(x)), Ou(t, p)(z))u(dz)
+ % /Rd tr[(oo™)(t, z,a(x))0.0,ul(t, ,u)(x)},u(d:z:)} =0, (t, 1) € [0,T) x Pa(RY),
o) = [ sl (), € PR,

where M is the set of Borel-measurable maps a: RY — A.

Theorem 3.8. Let Assumptions (A) and (B) hold. Then, the value function v, given by
(2.6), is a viscosity solution of equation (3.3).

Proof. See |16, Theorem 5.5|. Notice that in [16] a different definition of viscosity solution
is adopted, with ¢ € C}([0,T] x Pa(RY)), i.e. ¢ € C2([0,T] x P2(R?)) and has bounded
derivatives, rather than ¢ € Cy?([0,T] x Po(R?)), but the arguments remain the same. []

Remark 3.9. From [106, Theorem 5.5] we have that Theorem 3.8 still holds if we replace
(B) with the following weaker assumption: the functions b, o, f are uniformly continuous in
the time variable t, uniformly with respect to (z,u,a). Similarly, Assumption (A) can be
weakened, see [10].

4 Smooth variational principle

As described in the introduction, the comparison theorem (Theorem 5.1) relies on a smooth
variational principle on [0, T'] x Py(R%), to which the present section is devoted. Such a result
is obtained from an extension of the Borwein-Preiss variational principle, for which we refer
to [3] and, in particular, for its general form, to |9, Theorem 2.5.2]. An essential tool of |9,
Theorem 2.5.2| is the concept of gauge-type function, whose definition is given below.

Definition 4.1. Let dy be a metric on Py(RY) such that (Po(R%), ds) is complete. Consider
the set [0, T] x Po(R?) endowed with the metric ((t, pn), (s,v)) = [t — s| + da(p,v). A map
p: ([0,T] x P2(R9))? — [0, +00) is said to be a gauge-type function if the following holds.

a) p((t, 1), (t, 1)) =0, for every (t, p) € [0, T] x Po(RY).
b) p is continuous on ([0, T] x Py(R))?.

¢) For all € > 0, there exists n > 0 such that, for all (t,p), (s,v) € [0,T] x Po(R?), the
inequality p((t, 1), (s,v)) < n implies |t — s| + da(p,v) < €

In the sequel we construct a gauge-type function on [0,7] x Pa(RY), taking a particular
metric dy on Py(R?), namely the so-called Gaussian-smooothed 2-Wasserstein distance, see
[11]. To this regard, we denote by N, := N(0, ¢*I,), for every o > 0, the d-dimensional
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multivariate normal distribution with zero mean and covariance matrix o?I;, with I; being
the identity matrix of order d. Then, for every p > 0, the Gaussian-smoothed 2-Wasserstein
distance is defined as

WQ(Q)('M’V) = W2('LL*NQ7V*NQ)7 VM7V€P2<Rd)7
where * denotes the convolution of probability measures.

Lemma 4.2. For every o > 0, WQ(Q) is a metric on Po(R?), inducing the same topology as
Ws. Moreover, (Py(R?), WQ(Q)) is a complete metric space.

Proof. The first part follows from [11, Proposition 1]. It remains to prove that the metric
space (P(R%), WA?) is complete. Let {jn}n C P2(R?) be a Cauchy sequence with respect
to W Then, {p, * N} is a Cauchy sequence with respect to W. Since (Po(R?), W) is
complete, there exists some 7 € Py(RY) such that Wy(pu, x Ny, 7) — 0 as n — oo. It follows
(see for instance [3, Proposition 7.1.5]) that {u, * N,}, has uniformly integrable second
moments, namely

im sup ||y (< A dy) = 0. (4.1
ly|>k

k—oo o

Now notice that, given a,b,c € Ry, h € N, if a < b+c then alyg>pny < 2b13p>n/2) +2¢lic>n/2}-
Hence, by the elementary inequality |x|? < 2|z + z|? + 2|z/?, valid for every z, 2 € RY, we get

|| Lipsviy < 4z + z|? 1{|z+z|2\/h—/2} + 4]z)? 1{|Z|2\/%}’ Vr,z € R, heN.  (4.2)

Integrating the above inequality on RYxR? with respect to the product measure p,, (dz)N,(dz),
we obtain (setting k := v/h, to simplify notation)

[ el utan) <4 ff o+ 2P nldn)Ny(d2) 4 [ PN
lz|>k |z+2|>k/v2 |z|>k/V/2

oy T A R B WAL
ly|>k/V2 |2|>k/V2

Then, by (4.1), we deduce that {u, }, has uniformly integrable second moments. This implies

that {p,}n is tight, so that we can apply |3, Proposition 7.1.5|, from which we deduce the

existence of a subsequence {1, } converging to some v € Py(R?) with respect to W,. Notice
that (we denote by ¢, the characteristic function of the probability measure 7 € P(R?))

— 121412 k—oo 1,212

(punk*Ng(u) = (punk(u)e 307 [ul i) |ul

Then, by Lévy’s continuity theorem it follows that Wy(p,, *N,, v+ N,) — 0 as k — oo. This

implies that v * N, = v. By a standard argument, the entire sequence {u, * N,}, converges

to v x N, with respect to W,. This shows that WQ(Q) (ttn,v) = 0 as n — oo and concludes
the proof. 0
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Our aim is to find a gauge-type function p = p((t, i), (to, jt0)) smooth with respect to (¢, i),
for every fixed (g, f10), on [0, T] x Py(R?) endowed with the metric ((¢, i), (s,v)) — [t — s| +
WZ@ (u,v). The construction of our smooth gauge-type function (whose definition is given
in Lemma 4.4 below) relies on a sharp upper bound of W, obtained in [19, 22| (see also
[14, Section 5.1.2]), which is valid in any dimension d and is reported in Lemma 4.3. Notice
however that, in the particular case d = 1, ad hoc gauge-type functions may be constructed
in easier ways, as for instance relying on the following inequality (see |7, Proposition 7.14]):

“+00

Walp 1) < 4/ 2] |[Fu(2) — Fy(2)| dz,  Yp.v e Py(R), (4.3)

where F, and F, are the cumulative distribution functions of y1 and v, respectively. When
d € N, the upper bound of Lemma 4.3 can be viewed as a d-dimensional analogue of (4.3).

Lemma 4.3. For every integer { > 0, let &, denote the partition of (—1,1]? into 2%
translations of (—27%,27%%.  Moreover, let By := (—1,1]¢ and, for every integer n > 1,
B, = (=27, 2"\ (=21 2" 4. Then, for every p,v € Py(R?), the following inequality
holds:

Walp,v))* < ead 223 27 3" |u((2"B)N B,) — v((2"B) N By)|, (4.4)

n>0 >0 BeP,
where 2"B := {2"x € R%: x € B} and ¢y > 0 is a constant depending only on d.

Proof. Inequality (4.4) follows from [22, Lemma 5 and Lemma 6] (or, equivalently, [14,
Lemma 5.11 and Lemma 5.12]). O

Next lemma provides the claimed smooth gauge-type function and it is the main result of the
present section. Notice that such a gauge-type function is obtained performing a smoothing
of the right-hand side of (4.4), proceeding as follows.

a) Firstly, the absolute value of the difference u((2"B) N B,,) — v((2"B) N B,) appear-
ing in (4.4) is replaced by \/ 1((27B) N B,) — v((2°B) (1 B,)|? + 62, — 8,0, with 8,0 =

2~ (n+2d0) T other words, we replace | - | by the smooth function /- + 02— Opnyg. The

particular choice of d,, will be used to obtain the convergence of a certain series (see
(4.15)).

b) Secondly, as already mentioned, our function will be of gauge-type on [0, T] x Py(R%),
with [0,7] x P2(R?) endowed with the metric ((¢, i), (s,v)) — |t — s| + Wg(g)(u, v). As
a consequence, we consider (4.4) for WQ(Q) (,v) = Wa(p x N,, v« N,). This implies that
pn((2"B) N B,) and v((2"B) N B,,) are replaced respectively by (u*N,)((2"B) N B,) and
(v xN,)((2"B) N By,).
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Lemma 4.4. We adopt the same notations as in Lemma 4.3. Let o > 0 and py,: ([0,T] x
Py(R))2 — [0, +00) be defined as

p2,g((t7 :u)> (S’ V)) - |t - S|2 +
tegy 2y 2y (\/|(ﬂ «N,)((2°B) N B,) — (v+N,)((2"B) N B,,) | + 62, — 5n,g).

n>0 £>0 BeZy

with 8, ¢ := 27Un+24)  Then_ the following holds.

1) p2, is a gauge-type function on [0,T] x Po(R?), with [0,T] x Po(R?) endowed with the
metric ((t, 1), (s,0)) = [t = 5| + W2 (1, v);

2) for every fized (to, o) € [0,T] x Po(R?), the map (t, 1) — pao((t, 1), (to, o)) is in
CH2([0,T] x Pa(RY));

3) there exists a constant Cy (depending only on the dimension d) such that
|0up2.0((t, 1), (to, 10))| < 27, (4.5)
C,

upal(t (o) @) < S [ WP twan+laf [ WGoar).  @o

G [P (VAc? + e ) Gidy @)
R
FleP [ (VAo 4P Gy ),
R
for all (t, ), (to, o) € [0,T] x Po(R?), x € R, where
1 1l

Gly) = (277)—”[/20‘18 2 Vy e R’ (4.8)

IN

|axapp2,g ((t7 FL)7 (t07 MO)) (ZE)|

Proof. We split the proof into four steps.

Step 1. Uniform convergence of the series in py,. We prove a preliminary result concerning
the series in pa,. Let M be a subset of Py(R?) such that {u * N,},cap has uniformly
integrable second moments. Our aim is to prove that the series appearing in the definition of
p2,o converges uniformly with respect to p, v € M. More precisely, we prove that for every
e > 0 there exists N = N(g) € N such that

sup 2D 27 N (N ((2"B) N B,) — (v Np)((2"B) N B,)| < e (49)

PVEM SN >0 Be#,

Then, the claim follows from the elementary inequality ,/a? + 572175 —0ne < |al, valid for every
a € R. Let us prove (4.9). First of all, notice that

Son 2 N (ux N)((2"B)N B,) — (v N,) (2" B) N By

n>0 >0 BeZ,
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< D22 (N ((2"B) N By) + Y 27 27 Y T (v N,)((2"B) N By).

n>0 £>0 Be2y n>0 £>0 BeZ,

Observe also that Y- 5. 5 (13 N,) (2" B)NBy) = (u+N,)(By), therefore 37,00 272 37 o, (pk
N)((2"B)N B,,) = (4/3)(1+N,)(Bn), since 3,272 = 4/3. So, in particular, (4.9) follows
if we prove that for every ¢ > 0 there exists N = N(g) € N such that

sup Z 27" (1 x No)(By) < e
HEM n>N

Recalling that B, = (—2",2"]9\(—2""1,2""1¢ we obtain 22" < 4|x|?/d, Vo € B,. Hence,
for every N € N,

4
>N B) < 5 [ of? o N ).
Rd\(_QN—l,QN—l]d

n>N

Since the family {p * N,},enm has uniformly integrable second moments, the claim follows.
Step II. ps, is a gauge-type function on [0, T)x Po(R?) with respect to the metric ((t, p), (s,v)) +
|t —s|+ WQ(Q) (p,v). It is clear that ps , satisfies item a) of Definition 4.1. Concerning items
b) and c¢), we split the rest of the proof of Step II into two substeps.

p2.o Satisfies item b) of Definition 4.1. Our aim is to prove that, given {(¢x, px) }r, {(sk, vi) b C
[0,7] x Po(RY) and (t, 1), (s,v) € [0,T] x Pa(RY), if [ty — t| + W (o, 1) + |sx — s| +
W (1, v) — 0 then 02.0((tks pir), (Sks Vi) — pao((t, i), (s,v)). In particular, we have to
prove that, if WQ(Q) (g, 1) + WQ(Q)(I/k, v) — 0, then

S Y2 S (e N — e N (@B B+ 5 )

n>0 £>0 BeZ,
2 S0 S (V[ (e M) — (e M) (@B) 0 B[ 02, — b0).
n>0 >0 BeZ,

Since WA? (ju, 1) = Wh (i * Ny, p1x N,,) and WS (v, v) = Wh(v x N, v % N,,), we have that
Wa (g x Ny, 1% Niy) + Wa(vk, x Ny, v % N,) = 0. Now, recall from |3, Proposition 7.1.5] that
this implies that {p * N,}r (resp. {vk * N,}i) weakly converges to p* N, (resp. v * N,)
and has uniformly integrable second moments. Since both p * N, and v x N, are absolutely
continuous with respect to the Lebesgue measure on R?, by the weak convergence (and, in
particular, by the portmanteau theorem) we deduce that

hm(,uk*/\/)(( B)NB,) = (uxN,)((2"B)N B,).
Similarly (v * N,)((2"B) N B,) — (v * N,)((2"B) N B,,). In addition, since {p * N, }x and

{vk * N} have uniformly integrable second moments, from Step I we can interchange the
limit with the series, so that the claim follows.
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p2.o satisfies item c) of Definition 4.1. Our aim is to prove the following: for every ¢ > 0, there
exists 1. > 0 such that, for all (¢, i), (s, v) € [0, T]|x P2(R?), the inequality ps ,((t, 1), (s, 7)) <
1. implies

2

<. (4.10)

[t—sP+cq »_ 22 272 N " | (uxN) ((2"B)NB,,) — (vxN,) (2"B)NB,)| < 5

n>0 >0 BeZ,

As a matter of fact, recalling that Wi (11, v) = Wa(uu x N,, v+ N,), from inequality (4.4) we
conclude that

|t —s| + WQ(Q)(,u, v) < \/2 [t — s|? + QWQ(Q)(M, v)?2 < e
Let us prove that (4.10) holds with 7. given by

- (m—\/s_cdf. (4.11)

To this end, denote by ds ,((t, 1), (s,v)) the left-hand side of (4.10), namely
dQ:Q((tnu)a(Sal/)) |t_8‘ +Cd222n22 2 Z | H*N V*N))((Z”B)ﬂBn)}

n>0 >0 BeZy

Moreover, for every n >0, £ > 0, B € Z;, u,v € P2(RY), denote

ano(p, v, B) = (\/} ((pxNy) — (v N)) ((2"B) N By) |2 +07, — (Smg),
bl B) = (012 (N (B B2
Notice that

p2.0((t, 1), (s,v)) = |t —s| +cdz22”22 2 Z ano(p,v, B), (4.12)

n>0 >0 BeZ,
d?,g((tvll’):(‘s)V)) = |t_8|2+cd222n22_2£ Z bn,@(lu’a V7B)' (413)
n>0 >0 Be,

Now, consider (¢, i), (s,v) € [0,T] x Po(R?) such that py,((¢, 1), (s,v)) < n., with 7. given
by (4.11). Then
cq 2209 ane(p, v, B) < pay((tp), (s,v) < .. (4.14)

Since a, (@, v, B) = \/\bn’g(u, v, B)|> + 02 , — 0p ¢, we obtain

bue(p, v, B) = \/|an,g(,u, v,B)|2+26uane(p, v, B) < ani(p,v,B)+ \/2 Ot Qn o, v, B),

where we have used the elementary inequality /z +y < \/z + /y, valid for every x,y > 0.
Therefore, by (4.14) we get

/2 / /2
bn,f(/“"? v, B) < a’n,f(:ua v, B) + — e 671! 272(n=0) = an,e(/J/, v, B) + — T 2—(3n+(d—1)£)
Cd Cd
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where the last equality follows from the fact that 6, , = 27(4"*24) Hence, from (4.12) and
(4.13) we obtain

2
dao((t, 1), (5,0)) < pa((t, ), (s,v)) +Cd\/_778222n2272€ Z o—(3n+(d-1)0)
€ >0 >0 Bew,

Recalling that ps ,((t, 1), (s,)) < 1. and also that &2, contains 2% sets (see the statement
of Lemma 4.3), we get

oo (), (5,0)) < Mot /2came y Y 2°m 272 2d g (=00 (4.15)
n>0 £>0
2
= 1N+ \/205[7752227”276 = 1N)e +4\/26d778 = %,
n>0 £>0

where the last equality follows from the definition of 7..

Step III. The map (t,p) — p2,((t, 1), (to, o)) is in CH2([0,T] x Pa(R?)). Recall from
(4.8) that ¢,: RY — R denotes the density function of the multivariate normal distribution
N, =N (0, ¢*I;). Then, the map p,, can be written as

p279((t7 :u)a <t07 ,UO)) == ‘t - t0|2 +

+eay 2y 27 Z@ (\/‘ /Rd cb,’f(y)u(dy)—/w 65 (y) Ho(dy)

2
+ 5275 - 5n,€) )

n>0 >0
where

op(z) = / oz — ) dz, Vo e RY
(27 B)NB,,

We split the rest of the proof of Step III into two substeps.

First-order derivatives. By direct calculation, we have 0o ,((t, 1), (to, o)) = 2(t — to).
Moreover, we claim that 0,p2,,((¢, ), (to, t0))(z) is given by

. Jpa 05 () (1 — po)(dy)
T IE LD PE ) y—— 0,05 ()
= = beroy| J 0B W) (- po) ()] + 2,

Yoy 3 e No)(2'5) 0 ) —0.0(x),  (4.16)
n>0  £>0 BeZ, \/|(,u « Ny — 1o x No)((2"B) N By)|” + 02,

where 9,02 denotes the gradient of ¢Z. In order to prove (4.16), we denote, for every
n, >0, Mo € PQ(Rd), B e &y,

B7
u, (1) = \/

2

+ (57%’5 — (Smg, Yue Pz(Rd).

[ opwntan) ~ [ 080 wldy
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Let us determine 0, uB 7% To this end, let us consider the lifting Uf Ho L2(Q;RY) — R of
u, g , given by U ({) = ufje”‘ (), for every & € L%*(Q;R?) having distribution pu. Recall

from the deﬁmtlon of 0, uB 1 that, for every {ny}, C L*(Q;RY) such that |n|r2@qre) — 0,
it holds that

UB#O + _ UB#LO a uB #0 7
k—oo |77k|L2(Q;]Rd)
where € € L*(Q;R?) has distribution g. Then, we have
B — d
8;1“2’4#0 (W)(z) = fRd G (y) (1 — po)(dy) &cgbf(ﬂf), (4.18)

\/| fRd ¢7B;(y) (,U — :U’O)(dy)|2 N (SZ,Z

for every (u,z) € Po(R?) x RY. Now, by (4.17) we see that (4.16) follows if we prove that
the series

ey 222n22 2/ Z {UnBZu §+7]k UnBiéuO |:<8 uBHO )(g)’nkﬂl (419)

n>0  £>0 Be#, [ |L2(Q?Rd)

converges uniformly with respect to k. To this end, denote
h(N) = Ut (E+Am), 0<A<L

Since h(1) = h(0) + fol h'(N)dA, we get

1
UBo(e + ) = UBF(e) + /O E[(0,21 (o) (€ + M), i) dA

where g, is the distribution of £ + An. Then, (4.19) is bounded from above by

Cd222n22 2 Z / | [(Bputt 8" (o) (€ + M) e/ || 2y )] [ AN (4.20)

n>0 >0 Be2,
“dZQQ"Z? # Z |]E (O, “B“O &)s e/ || 2 QRd)>”
n>0 >0 Be?,

Notice that {nx }ren has uniformly integrable second moments (see for instance |30, Theorem
4.12]), so that {& + Ak renaepo,] also has uniformly integrable second moments. Therefore,
the two series in (4.20) converge uniformly if we prove that (v denotes the distribution of )

Cd222n22 20 Z |a uBuo )(n)H

n>0 >0 BeZ,y

converges uniformly with respect to v, whenever v belongs to a subset M of P,(R?) with
uniformly integrable second moments, namely

lim sup |z|*v(dz) = 0. (4.21)

M—)OOVGM \x|2M
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Then, the claim follows if we prove that for every € > 0, there exists N = N(e, M) € N such
that, for every v € M, it holds that

cg Y 22"y 2 N E[|gun i (v)(n)]] < e (4.22)

n>N >0 BeZy

with n € L2(Q; R?) having distribution v. Firstly, from (4.18) notice that |, uB 7o) (x)] <
10,062 ()|, Vo € RY. Moreover 9,07 (x) = gl f(QnB)mBn( x) (2 — x)dz. Therefore, the
series (4.22) is bounded from above by

2n 20 _ —
prTr ], e
4 ¢
3

n>N >0 BeZy

- Ay ey | [ alce-nd) -

n>N >0

—Z: {/n|z—n|§g(z—n)d2]-

Recalling that B, = (—2",2"]%\(=2""1,2"71]¢ we obtain 22" < 4|z2|?/d, V z € B,, so that

4 Cq 2 / 16 Cq / 2
-« 2N — —n)dz| < — S E — —-n)d
3572 [ =il =) } 30 8 B Lo s avs 711G =

n>N

S——]E/ 212z — | Co(z — dz}

3d o2 { |z\22N*1| | | 77| g( 77)

T 3d @ Jau (/R Lipzzan-1y |2 [z — 2] G2 — @) dZ)V(dx)
= // 1{|y+w|>2N nly + 2| |y G(y) dy v(dz).

Applying the elementary inequality (4.2) (with x,z 4 2, z, V/h replaced respectively by y +
z,y,x,2V 1), we obtain

16 ¢
3d Qd // 1{|3/+:E|>2N 1}|y +:c| ly| C,(y) dy v(de)

64 c
< - // Ly san-s/2y|y* + 1{|a:|22N*3/2}|$|2) 1yl Co(y) dy v(dx)
3d Q R4 x

64 c 64 c
- o PG dr+ 5 % ( [ maman)( [ ki),
3d Q ly|>2N —3/2 |z|>2N —3/2

Then, (4.22) follows from (4.21).
Second-order derivatives. We claim that 0,0,p2,((t, 1), (to, to))(x) is equal to

ca Z 22n Z 2724 Z fRd ¢n (y) (:U’ - :U’O)(dy) agz()bf (IL’)

n>0 >0 Be, \/‘ Jra 88 () (1 — po)(dy) ‘2 + 07,
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_ cdz22n22—2€ Z (U*NQ—No*Ng)((QnB)ﬂBn) a§z¢5(x)7 (423)
n>0  £>0 BeZ, \/|(M*Ng—u0 *./\/'g)((Z"B)ﬂBn)f—i-(Si’Z

where 92 ¢Z denotes the Hessian matrix of ¢Z. Proceeding as in the previous substep, we

see that this follows if we prove that the series (|02,¢2(z)| stands for the Frobenius norm of
the d x d matrix 9%,¢5(x))

e Z 92n Z 92 Z | fRd ng (y) (:u - NO)(dy)l |8a2:x¢f($)|

n>0 >0 Be#, \/| Joa @8 () (1 = Mo)(dy)|2 + 07,

converges uniformly with respect to 2, whenever x belongs to a bounded subset of R?. More
precisely, we prove that for all ¢ > 0 and M € N, there exists N = N(g, M) € N such that,
for every x € R, with |z| < M, it holds that

wy oy oy MO @ ey <o o

n>N  £>0 Be2, \/\ Joa 88 () (0 — /Lo)(dy)‘2 +05,

We begin noting that the latter series is bounded from above by

DI D DR PR RAC] (4.25)

n>N >0 Be,
We also observe that
1 1
% 0P (x) = —QId/ Colz—x)dz — P (z—2)®(2—1x) (2 —x)dz, (4.26)
0 (2" B)NB,, (2nB)NB,

where I; denotes the identity matrix of order d, while (z — z) ® (2 — x) is the d X d matrix
with (7, j)-component equal to (z; — 2;)(2; — x;). Then, (4.25) is bounded from above by
(notice that the Frobenius norms |I;| and |(z — z) @ (z — x)| are given respectively by /d
and |z — z|?, where |z — x| denotes the Euclidean norm of z — x)

cd222” 2 2 Z / (Vdo?+ |z —zPo™) (2 — x)dz
>0 2

n>N BeZ, B)NBn

:cdz22"22 26/ \fg + |z —zP07) ((z — 2) dz
n>N (>0

- —cdzz%/ (VAo + |z —afe™) ¢(z — o) d=.
n>N

Recalling that 22" < 4|z|2/d, V 2 € B,,, we find

—cd222n/ \/_Q + |z —zP07) ((z — 2) dz

n>N
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16
< —cd/ 12 (Vdo™® + |2 — z|?0™*) ¢(2 — 2) dz. (4.27)
3d ]Rd\( 9N — 12N 1

Since |z| < M, from the right-hand side of (4.27) we see that (4.24) follows.

Step 1V. Bounds. The bound (4.5) for the time derivative follows directly from the definition
of pa,. Let us now investigate the derivatives with respect to the measure. Recalling that

Oupa,o((t, 1), (to, to))(x) is given by (4.16), we obtain (notice that 0,08 (x) = g% f(2"B)ﬁBn (z—
x)((2 — x)dz2)

Dupacl(t. ). (o) @) < G323 27 Y / 2 — 2| G, — 2) dz

n>0 >0 Bew, Y (2"B)NBx
4 Cd

= 22"/ z—x|((z—x)dz.
Since 22" < 4|z|*/d, V z € B,, we get

6 6
om0, (o) @] < 3% [ 1Pl = alGue =) ds = 2% [y al ol G dy

32 Cd 3 3 Cd 2/
)d
308 / lyl” Coly y+3d — |7 [y Co(y) dy,
which gives (4.6).

From similar calculations, by (4.23) and (4.26), we deduce that 0,0,p2,((t, 1), (to, tto))(x) is
bounded by

IN

09,20l (i)t i) @)] < e [ (VA + 12 = 2P ) e —a)
- —cd/ jy+af (Vg™ +ly?e) Gulo) dy
< grea [ P (VAo + e ) ) dy + Gpealal [ (Vi + luPe) Gl do

We conclude that (4.7) holds. O
We are in a position to state the smooth variational principle on [0, 7] x Py(R9).

Theorem 4.5. Fiz § > 0 and let G: [0,T] x Po(RY) — R be upper semicontinuous and
bounded from above. Given X\ > 0, let (to, o) € [0,T] x Pa(RY) be such that

supG — A < Glto, po)-

Then, there exist (t, 1) € [0,T] x P2(R?) and a sequence {(ty, pix) }r>1 C [0, T] x Po(RY) such
that:

() poass((E, 1), (trs i) < 5853, for every k > 0;
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(H) G(to,ﬂo) < G(Ev ﬁ) - 52@6(: [1’)7 with Ps: [OvT] X PQ(Rd) - [07 +OO) given by

—+00

@6(@/‘) = Z%pll/é((taﬂ)’ (tknuk))’ V(t,}t) S [O’T] X PQ(Rd);

k=0

(iii) G(t,p) =0 @s(t, ) < G(t, 1) — 0% 5(t, [t), for every (¢, 1) € ([0, T] x Po(R)N\{(Z, 1)}
Furthermore, the function s satisfies the following properties.

1) g5 € C12([0,T] x Py(RA);

2) its time derivative is bounded by AT ;

3) its measure derivative is bounded by

|0ups(t, ) (z)| = 2Cd52</Rd y[® Ci/s(y) dy+|:v|2/Rd ly| C1y5(y) dy>7 (4.28)

with the same constant Cq as in (4.6) and Cy/5 given by (4.8) with o = 1/4;

4) its second-order measure derivative is bounded by
‘Oxaugog(t, u)(x)| = QCdéz(/d |y|2 (\/g + |y|252) Ciys(y) dy (4.29)
R

#lal? [ (VTP Gt ).

with the same constant Cy as in (4.7) and (i/5 given by (4.8) with o = 1/4.

Proof. Ttems (i)-(ii)-(iii) follow directly from the Borwein-Preiss variational principle |9,
Theorem 2.5.2] applied on [0, 7] x Po(R?) with gauge-type function p,;/s5 (we only remark
that, concerning the sequence {0;};>o appearing in the statement of [9, Theorem 2.5.2], here
we take §; = 0%/2°, i > 0). Finally, items 2)-3)-4) follow respectively from (4.5)-(4.6)-
(4.7). O

5 Comparison theorem and uniqueness
Theorem 5.1 (Comparison). Let Assumptions (A), (B), (C), (D) hold. Consider bounded
and continuous functions uy : [0, T] x Po(R?) — R and ug: [0, T]x Po(R%) — R, with uy (resp.

ug) being a viscosity subsolution (resp. supersolution) to equation (3.3). Then, it holds that
up < ug on [0,T] x Py(RY).
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Proof. Let vg be the map defined by (A.1) with € = 0 (see also Remark A.1). Our aim is
to prove that u; < vy and vy < uy on [0, 7] x Py(R?), from which the claim follows.

STEP 1. Proof of u; < vy. By contradiction, we suppose that there exists (to, fig) € [0, 7] X
P, (RY) such that
(Ul — ’Uo)(to,ﬂo) > 0.

Since both u; and vy are continuous, we can find ¢ > 2 and y € P,(R?) such that

(Ul —Uo)(t(),,u,()) > 0. (51)

As a matter of fact, let £ € L*(Q, F,P;R?) be such that P¢ = fig. For every k € N, let
1 € Po(R?) be the distribution of &, := & 1yjg<ky. We see that uf € Py(R?), for any ¢ > 1.
Moreover, it holds that

Wa(ug, fin)® < E[|&G — €] = /| | 2] fio(dz) =552 0,
z|>k

from which we deduce that (5.1) holds with pg := pk for some k large enough.
We split the rest of the proof of STEP I into four substeps.

SUBSTEP I-A. For every ¢ > 0 and n,m € N, let v.,,,,, be the map given by (A.8). Now, we

define 1, (t, p) := e'fouy(t, u), for every (t,p) € [0,T] x Po(R?), and similarly v, m, f2
eTfto

f from Venms frms [ respectively. We also define g(z, ) = g(z,p) and g, . (z, p) ==
el~togl . (z, ), for every (z, ) € R x Py(R?). We observe that i is a viscosity subsolution
of the followmg equation:

fatal(t, W) + /Rd ilelg {f(t, T, [, a) + %tr[(acﬂ)(t, ,a) 0,0, (t, p) ()]
+(b(t, 2, 1, a),awl(t,ﬂ)(x))}u(dx) = (t, ), (t,p) €[0,T) x Po(RY),  (5.2)
o) = [ il (), € Pa(RY).

Moreover, by Theorem A.7 we deduce that v, ,,, solves the following equation:

n

Ve (b 11) = Ve (t, 1) + / > sup {(b;,m(t,xl,...,mn,ai),ami{;&n,m(t, 7))

Rdn i=1 a;€EA

;

1 .
+ 5t [((UUT)(t, 20, 05) + £2) 2, Do, :z)}

1 ..
+ - o (E 1, T, ai)}u(dxl) @@ pu(dr,) =0, (t,u) €[0,T) x Py(RY),

vmmw):—z [, @ ntin) & o pir) i € Po(RY),
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where U, (t, ) == €0, , (¢, T), for every (t,7) € [0,T] x R™ 7 = (zy,...,z,), with
Ue n.m being the same function appearing in Theorem A.7.

Finally, notice that, by Assumption (A)-(iii), v. ., is bounded by a constant independent
of €,n, m. Since also u; is bounded, there exists A > 0, independent of €, n, m, satisfying

Sup(’al - ba,n,m) S (ﬂl - bs,n,m)(tm MO) + A (54)

SUBSTEP I-B. Since @ — 0. m is bounded and continuous, by (5.4) and Theorem 4.5 with
G = Uy — Ve pm, we obtain that for every & > 0 there exist {(tx, px) }x>1 C [0, 7] X Pa(RY),
converging to some (£, i) € [0,T] x Po(RY), and @5 such that items (i)-(ii)-(iii) and 1)-2)-3)
of Theorem 4.5 hold.

Now, recall from the proof of Lemma 4.4, and in particular from (4.10)-(4.11), that for all
(t, 1), (s,v) € [0,T] x Po(R?) satisfying pa1/s((t, p), (s,v)) < ne, with 7, as in (4.11), namely

no= (Vo @2 Ve

it holds that Wél/é) (1, v) < e. Since by item (i) of Theorem 4.5 we have pa 1 /5((%, fi), (to, pt0)) <

A\/6%, we get
1
WD (1, o) < 5\/2)\+85\/2ch.

Finally, by [11, Lemma 1| we obtain

2 1
Walji, 1) < WEYD (i, o) + g\/d +2 < < (\/2>\ + 85/2c4\ + 2Vd + 2). (5.5)

SUBSTEP I-C. Let us prove that £ < T. If t = T, from item (ii) of Theorem 4.5 we have
(u1 = Vean) (to, o) = (1 —Teinm)(to; o) < (U —=Vemm—0620s) (T, 1) < (it — Ve m) (T 1),
where the last inequality follows from ¢s > 0. Hence

(u1 = Venm) (to, po)

T—to N\~ el & i ~ ~
< e g(l‘,ﬂ) :u(dgj) - Z . gn,m(xla"wxn) ,u(dxl) ®®,U,(d$n)
X Rdn

- 7; : /Rd (9(xi, 1) = gnm (@1, - - T0) ) fi(d2y) ® -+ @ fil(dan)
= - 7; : Z/Rd (9(zs, ) — gz, 7)) fi(dzr) @ - @ f(d,)
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where is given by

for every n € N, 7 = (xq,...,7,) € R and zy,...,2, € R% Then, from the Lipschitz
property of g we obtain

(w1 = Vo) (to, o) < €% ) KW, (fi, i) i(day) @ - - - @ fi(day,) (5.6)
R
el—to _
+ n Z /d (g(x“ﬁn’x) — 9n m(xla 7xn)) ﬂ(del) (%9 X ,U/(d‘fn),
R

From [22, Theorem 1| we have that

Wa(fi, i"7) fi(dzy) @ -+ @ fi(dzy)

Rdn

l/q % + n(q,ll)/q, lfd: 1 and q §£ 2,
< Cd</Rd ]x|qﬂ(dx)) %log(l +n) + —in, if d=2and ¢ # 2,
7 + 27 itd>2and g # 74,

with ¢ € (1,2] and for some constant ¢4 > 0, depending only on d. So, in particular, there
exists some ¢ € (1,2) such that

1/q
Wa(i, i) f(dry) @ -+ - @ fi(dxy,) < Cd(/Rd |z|? [L(d;t)) Iy (5.7)

Rdn

for some sequence {h,}, satisfying lim,,_, ., h, = 0.
Hence, plugging (5.7) and (A.6) into (5.6), we get
1/q
(ur = Vemm)(to, o) < cale' ™" (/ |$|qﬂ(dfc)) ho,
R4
2 n n
+ Kel—tomnd (— Z \yl|) H O (my;)dy;.
Rdn n i—1 j:l
Now, recalling that ¢ € (1,2), we get (denoting by dy the Dirac measure centered at zero)

([eeaan)” < ([ atam) = wis)

1
S WQ([L, Mo) + WQ(M(), 60) S g <\/2)\ + 8(5\/ 2Cd)\ + 2v d+ 2) + WQ(M(), 60), (58)

where the last inequality follows from (5.5). Hence
(’U,1 - Us,n,m)(t07 H'O)
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< CdKeT—to (% <\/2)\ + 85\/2Cd)\ + 2\/d + 2) + Wg(uo, 50)) hy,

. N 2 n n
+ KeT tOm d » (E Z |yz|> H@(my])dy]
" i=1 j=1

Sending m — +o00, then n — +o00, and finally ¢ — 0%, we end up, using Theorem A.6 and
Lemma A.2, with

(ul - ,UO)(t07/’LO) < 07
which gives a contradiction to (5.1).

SUBSTEP I-D. From item (iii) of Theorem 4.5 and the fact that 1, is a viscosity subsolution
of (5.2), we find

- 8t(?}€,n,m + 52905)(57 [I’) /R sSup {<b t T M? )7 9 (,D&n,m + 52906)(57 [I’) ($)>

d acA

IN
o

+ %tr[(JUT)(ﬂ 2, @) 00Oy (Ve m + 0% 05) (L, 1) (37)] + (i, a )} (dx) + (L, f2)

Then

Uy (Ea /1) < (52 815906({7 ﬂ’) + 52 / sup {<b({{7 Z, /la CL), a,uﬂoé(g’ ﬂ)(l’)>

Rd acA

+ %tr[(acﬂ)(f, x, a)@zaﬂcp(g(f, ﬂ)(x)] }ﬂ(daz) + /R sup {<b(f, T, [, a), QJ}E,n,m(f, ﬂ)($)>

d g€ A

+ %tr[(aaT)(f,x,a)azﬁuﬁe,n,m(t i)(z)] + f(t ., i, a)}/l(dx) + OV (t, 1)

Using that the 0., , satisfies equation (5.3), the above implies

(Ial - {)E,n,m)(fv ﬂ) S 52 at@ﬁ(i /1) (59)
#8 [ sup{ (e 2,70, st ) @) + 518 [(007) . 0. 0y05(0 ()] i)

+ /]Rd (Szlelg {(b(f, T, i, @), Op0e (T, 1) (2)) + %tr[(aaT)(t, 2, )50, Ve pm (t, 1) (2)]

t FEa i )}de) [ {%fnmma» (b 1), Oy e 7, 7)

1 - . -
+ §tr[(007)(t, 20, 05) + £2) 2, Do nmF, az)] } fidzy) @ -+ @ fi(dzy),

with Z = (21,...,7,) € R™. Now, recalling item (ii) of Theorem 4.5 and that ¢; > 0, we
find, using (5.9),

(ul - Us,n,m)(tO? NO) = (’111 - f)s,n,m)(tm NO) S (ﬁl - 'Ds,n,m)( nu) - 62905(£a ﬁ)
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S ('Elll - ,Da,n,m)(gv /]) S (52 at(pé(t: ﬁ)

+8 [ sup {<b<f, v, fi.0). yups(E, i) () + 5tx[(00")(F, 2, )0, 0,005 (F. 1) ()] }ﬁ(dw)

d acA

+ /R sup {(b(f, T, i, @), Oy 0e (T, 1) (2)) 4+ =tr[(007)(t, 2, @) 030, 0e i (t, 1) (2)]

d aeA

o " 1. S 3 .
+ f(t,z, i, a)} fi(dz) — / > sup {ﬁ fi @2, a:) + (U, (8,7, 43), O Ve (E, 7))
]Rdn i

—1 a;EA
1 - . -
+5tr [((aaT)(t, 20, 05) + €2) 02, D m(F, :z)] } fi(dey) ® -+ ® ji(da,).

Now, recalling that b and ¢ are bounded, by item 2) and estimates (4.28)-(4.29) of Theorem
4.5, we deduce that

Ougalt. ) + [ sup { (e 2,7, Buest 1) (@) + 518 [(007) o, 0.Dy5(E ()] i)

d acA
< AT + A2 ( /d (Jy]> + |yI* + [y[*6*) Ciys(y)dy + Wa(fi, 50)2/d (1+ |y + |y|252)C1/a(y)dy>,
R R

for some constant A > 0, independent of £, n,m,d, where §y is the Dirac measure centered
at zero, so that Wh(f1,00)* = [pa [2|*f(dz). Hence

('LL1 — vs,n,m)(t07 MO) < 452T (510)
+ A§* ( /d (ly]> + lyI* + [y]*6%) Ciys(y)dy + Wa(, 50)2/d (14 |yl + Iylzéz)cl/s(y)dy>
R R

—F/]R sup {<b (t,x, i, a), (%T)Em,m(f, /])(x)> + %tr[(oaT)(f,x,a)@xauﬁg,mm(f, ,&)(x)]

d acA

. - 1. . S 5 .
+ f(ta z, ﬂ? a)},&(d:z:) - / Z sup {_ ;m(ta j) ai) + <b;m(t7 '7_77 ai)a axiﬁe,n,m(ta 'T)>
Rdn . n v ’

-1 aiGA

+ 20 (00" 0 + )02

il
I
S—
—
H,_/
=
ISH
S
—
SN—
&®
&®
=
—~
ISH
8
3
S—

By formulae (A.32) and (A.33), we have

/R sup {<b(f, T, i, @), Ople (T, 1) (2)) + %tr[(mﬁ)(f, , @) 030, Ve (L, 1) (2)]

d agcA

+ FEa, ) i)
sup{/Rd<n 1)2{(5153; 5, @), Doy Temm(by Ty ooy oty @ Tig1s o s )

Rd a€A

+ 2tr[( o")(t,2,a)0% , Ve (B, @1, ..o, B0, T, T, Ty
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+ L, )}ﬂ(dfvl) e f{deis) i daig) - -ﬂ(dwn)}ﬁ(dx)

IN

/ / Sup{<b(£x>ﬂ7a’)vaxiqus,n,m(taxlv"'7xi—17x>xi+17'"7xn)>
R4 JRA(n— 1)

acA

- tr[( NVt 2,a)07 , Ve (B 1, T, T, T, -, T)]

f(f >}ﬁ<dx1> e ildrs) fidssn) - - dn) (o)

i—1 a;€A

+
1 2 ~ —
— sup <b (t, 24, f1, @3), O, Ve (t, T >+ 2tr[(oaT)(t xl,az)axixiveynym(t,w)]
+

f(t x;, [, az)},&(dazl) - fu(day,). (5.11)
Plugging (5.11) into (5.10), we obtain

(Ufl - ve,n,m)(tO, /J‘O) S 452T

+ MG ( /Rd (Iy* + lyl” + |y1"6%) s (w)dy + Wa(i, 50)2/Rd (L+ Iyl + |y|252)41/6(y)dy)

+ /Rdn Z sup {<b(t,xiyﬂ> a;) — by, (t, 7, ;), O, Ve pm (t, T))

—1 a; €A

b F o) = 0,500 biden) @ 8 il d,)

n

1 . N
- 552 /Rdn Ztr (02 o Ve (£, T) | i(d21) ® -+ - @ fu(dy,)

=1

#0044 0+ ) s + Wl (1l + 56t

+ / Z sup {|b (t, i, i, a;) — bﬁ%m(f, z, ai)| |8xi5€,n,m(t, f)}}ﬂ(dwl) ® - @ p(dxy,)

Rdn i—1 a;€EA

/Rd Zsup | f(E, @i, fi, a;) — i,m(f,f,ai)\}[b(dwl)®---®ﬁ(dwn)

i—1 aleA

_ Ll / S 2020 o)) @ - © fldiz,)

+ A ( /Rd (lyl* +1y® + y[*6*) s (y)dy + Wa i, 50)2/Rd (L+1yl+ |y|252)§1/5(y)dy>
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Ck ; - L
4+ Etto /Rdn ZX: sup {|b(t, T, fi,a) = by, (8, 7, a)|}ﬂ(dz1) ® - ® a(dry,)

—1 acA
1 - ;o 7 5o Vi i
+ —et_to /d ZSUE {|f(t7xla M?a) - f;,m(t’xva)l}u(d‘xl) ®-® M(dmn)
Rdn i—1 ac

n

1 - ~ - -
- 562 /Rdn ;tr (02 o Ve (£, 2) | i(d21) ® - - - @ fu(dazy,),

where the last inequality follows from estimate (A.12). Recalling the left estimate in (A.13),
we obtain

1 -
('LL1 - v€,n,m)(t07 /’LO) S 552 nd Cn,m etito + 452T

+ Aa4( / (P + 1yl + 191°6) Guyaw)dy + Wl 60)° / (Ll |yl2<52)<1/6<y>dy>

Ok it Y ;o R P .
+ - © 0 /Rdn ;31615 {|b(t,xz,p, a) — bn,m(t,x,a)|}u(d:v1) ® - ® a(dry,)

+ lef—to /Rdn iZSUp {|f(£7 i, ﬂ?a) - ff;’m(f,f,aﬂ}ﬂ(dxl) Q- ﬂ(d$n)

n
1 a€A

1 -
< 552 ndCyp,e ™+ 48°T

+ A8 ( /Rd (191” + [y + [91*6°) C1/s(y)dy + Wa(i, 50)2/Rd (1 + 1yl + |y|252)51/5(y)dy>

Cr > N S N _
+ —Ket_to /Rdn izsup {|b(t> Ti, [l a) - b(t7xiaun7w7a’)|} (dxl) Q- ® ,u(dxn)

n
1 a€A

C - - o & . ~ - ~
+ Kbt / Z sup {|b(t, zi, 1, a) = b, (8,2, 0)| pi(dey) @ -+ - @ f(day,)
Rdn i

1 acA

_ a€A

1 - - - -
4 —elto /Rd ZSUP{U(t,wi,ﬂ,a)—f(t,rvi,ﬁ"’“”’aﬂ}ﬂ(dxl)®"'®ﬂ(dx")
"i=1

1 - oz (7 ; 1
+—ett0/ S sup {|f(Ewi i, 0) = fi,u(E7,0)| filde) @ - @ f(da)
Rdn i

i—1 a€A

< %52ndC’n,m el 4 48°T
+A54</ (Iyl2+|y|3+|y|452)C1/a(y)dy+Wz(ﬂ,5o)2/ (1+ |yl + |y|252)C1/5(y)dy>
R4 R4
Ck i—t - ~ SN T\ ~ ~
O O/IW;KWQ(MN ) ilde:) ® - ® fi(de)
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C . .
+ Kbt /Rdn Zsup {|b (t, 2, 0™, ) — bpm(t, 7, a)|}ﬁ(dm1) ® - @ fi(dxy)

n i—1 acA
1; - ;

b [ S KW ) ) @ - ()
n Rdn —1

I lef—to /Rdn Zsup {|f (t, 2, 0™, a) — fum(t, 7, a)|}ﬂ(da:1) ® - @ fi(dxy,),

n i—] a€A

where the last inequality follows from the Lipschitz property of b and f. Recalling (5.7) and
(5.8) we find

1 -
(U,l — ’Us’n’m)(to,,ug) S §£2nan,m et_to + 4(52T (512)
+A54(/ (ly” + y[® + |y]*6%) C1ys(y)dy + Wa(fi, 6o) / (1+ |yl + |y|252)61/5(y)dy>
]Rd

(CK+1)Ket tocd< <\/2)\+8(5\/26d +2\/d+ >+W2 Mo,éo)h

CK t to/ i B 5 R
i ;:Szlelg |b t T 1 a by, ( z, )|}u(dx1) ® - @ ji(dz,)
ol—to /Rdn;(sllelg |f t , T, W a) — nm(t~ T a)|}ﬁ(dz1) ® - @ fi(dxy,).

Now, from the Lemma A.3 we get

‘b(f, xi, (17, a) — bﬁl’m(f, z, a)‘

n

n g g B 1 -
< g [ (\t—mu—s)ﬂ +|yz-|+52|yj|><<ms>H<1><myj>dyjds-
Rdn 1 le

j=1

~n.T

An analogous estimate holds for |f(¢,z;, 1™, a) — fi .(t,%,a)|. Then, plugging these esti-
mates into (5.12) we obtain

(U1 — Ve um) (Lo, fo) < %52 ndCym ef~to 4 452T
#2804 )G+ Wi (1 1+ P8y
+ (Cx + 1)K e tocd< <\/2A + 851/ 2cq) + 2x/ﬁ> + Wa(po, 60)> b,
+ (Ck + 1) K e topnd+! /Rdn-H (‘t—T/\ (t—s)*t 2:|yZ
# 2  ul)oms) T omas s
j=1

J=1
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1 -
< 552 nd Crypm e + 46°T + A" ( /d (Jyl” + [y® + y]*6*) ¢y (y)dy
R

1 2
+5 <\/2A +854/2ca) + 2Vd + 2) /Rd (L4 |yl + |y|252)C1/5(y)dy>
; 1
+ (Cx +1)Ke' ey (5 <\/2)\ + 851/ 2¢4\ + 2V d + 2) + Wa (o, 60)> ho,

. - 1 &
(\t—TA(t—s)+|ﬁ+EZ|yil
1=1

+ (Cx +1) K ef~topndtl /

Rdn+1
n

+ % Z |yj|) ¢(ms) H D(my;)dy;ds,
j=1 /

Jj=1

where in the last inequality we have used again (5.8).

Now, we send € — 07 so the left hand side goes to u; — vg ., and the first term after
the last inequality above goes to zero. Then we send m — 400 (so the last term above
goes to zero), and afterwards n — +oo (the second to last term above goes to zero) and use
Theorem A.6. Finally, we send 6 — 0%, from which we obtain (notice that [5. |y|“Ci/s(y)dy =
Jza |2|°67¢1(2)dz, for every ¢ € N, with ¢; given by (4.8) with o = 1)

(w1 — vo)(to, o) < 0.
This gives a contradiction to (5.1).

STEP II. Proof of vy < uy. Our aim is to prove that
ug(t, ) > E[/ f(r, Xﬁ’f’“,Pxﬁ,g,u,a) dr +U2(8,]P>X;,§,a), (5.13)
t

for every (t,u) € [0,T] x Po(R?), s € [t,T], £ € L*(Q, F;, P;R?), with P = p, and a € M,
where M, denotes the set of Fi-measurable random variables a: Q@ — A. (X t’fva)Te[t,T] is
equal to the process (X54), ¢ with o, = a for r € [¢,T7.

To see why uy > vy follows from (5.13), we need to introduce some notation. First of all,
following [31, Definition 3.2.3|, we define on A the metric pk, given by

T
pxr(a, B) == E[/O |Ozt—ﬁt|dt:|, Va,p € A.

Recall that, by Assumption (C) A is a compact subset of some Euclidean space, so that
|ay — B denotes the Euclidean distance between «; and [;, moreover |a; — ;] is bounded
by some constant which depends only on A. Following [31], we also define the class of step
control processes for the problem starting at ¢ € [0, 7):

step

Al = {aGA:thereexistneNandt=t0<t1<---<tn_1<tn=T

such that ag = oy, Vs € [ty tiv1), 1=0,...,n— 1}.
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By [31, Lemma 3.2.6], we know that A’_ is dense in A with respect to the metric pg,.
Moreover, by similar arguments as in [31, Lemma 3.2.7|, it is easy to prove that the reward
functional J = J(s,£, «) in (2.4) is continuous in a with respect to the metric pk,. Then,
using the density of A _ in A and the continuity of the reward functional with respect
to pkr, we deduce that vy(¢, 1) can be equivalently defined as the supremum of the reward
functional over A, (rather than A). Now, let t € [0,7] and o € A’,_, so that there exist

neNt=ty<t; <---<tp,1<t,=T,and ag,...,a,_1: Q@ = A, with a; € F;,, such that
Qs = ay, Vs e [tiati+1)7 ’L:O,,’)’L—l

If (5.13) holds true, applying it recursively on the intervals [t;,¢;11), ¢ = 0,...,n — 1 with
a=4dag,...,0,_1, we get

T
u2(t, :U’) > E |:/ f(Ta X:’g’av Pxﬁ’ﬁ»aa ar) dr + g(X;,ﬁ,a’ ]P)X;’&a) .
t

Since o was arbitrary, the above inequality holds for every a € Al , proving that uy > vg.
It remains to prove (5.13). To this end, for every t € [0, 7], £ € L*(Q, F,P;RY), a € M;, we
consider the system of uncontrolled stochastic differential equations:

X, = &4 [70(r, X, Py, Y,) dr + [[o(r, X,,Y;) dB,, s€[t,T),
Y =a, s € [t,T].

We denote by (X%¢ Y49) the unique solution to the above system of equations. Then, fixed
te|0,7), s e (tT], weset

vi(t,v) = E{/ f(r,Xﬁ’é’“,]P’Xﬁ,g,a,YTt’“) dr +U2(S,PX;,§,‘1),
t

for all (t,v) € [t,s] x Po(R? x A), £ € L*(Q, F,P;R?) and a € M, such that P = v.
Then, our aim is to prove that uy(t, ) > v3(t,v), for every (t,v) € [t, s] x Po(R? x A), with
i being the first marginal of v, from which we get (5.13) for ¢ = ¢.

Suppose for a moment that us(s, -) is Lipschitz continuous. Then, reasoning as in the proof
of Proposition 2.5, we obtain that v* is bounded and Lipschitz continuous. If uy(s,-) is not
Lipschitz continuous, following [3, formula (5.1.4)] we can pointwise approximate us(s,-)
from below with an increasing sequence of bounded Lipschitz functions u,

inf uy(s, -) < ugp(p) < us(s, ) < supus(s,-),

vEP(RY) ua(S, 1) = limg—yo0 o k(1) = SUPLey Uz k(1)

up(p) = inf  {us(s,v)+kWs(p,v)}, with {
Then, we define
UZ (t, l/) = K |:/ f(r, Xﬁ’g’u, ]P)Xﬁ,&,u, }/Tt,u) d’l“:| + U2 k (PX;s,g,a).
t
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If we prove that us(t, u) > vi(t,v), for every k € N, then sending £k — oo we conclude that
us(t, ) > v*(t,v). In what follow we suppose that us(s, -) is Lipschitz continuous and there-
fore we consider the function v*® and we prove that uy(t, ) > v*(¢,v). This is not a loss of
generality. As a matter of fact, if us(s, -) is not Lipschitz continuous we repeat the same argu-
ments reported below to v} instead of v*®, therefore proving that us(t, u) > vi(t,v), for every
k € N. As already noticed, from the arbitrariness of k, we conclude that us(t, ) > v*(t, v).

Now, let us prove uy(t, 1) > vé(t,v), forevery t € [0,T), s € (¢, T], (t,v) € [t, s] x Po(R¥x A),
with p being the first marginal of v. We proceed by contradiction and suppose that there
exist t, € [0,7), so € (L5, 1], (to, to; o) € [ty, S0) X Pa(RY) x Po(R? x A), with o being the
first marginal of 14, such that

0™ (to,0) > ualto, Ho)-

As in STEP I, we can suppose that there exists some ¢ > 2 such that 1, € P,(R?).
For every n,m € N, let v;%, be the map given by (A.35). NOW we define u2(t W) =

el "uy(t, ), for every (t, ) € [to,so] x Po(RY), and similarly 03°,,, fi ., f from v, ,’%m, fs
respectively. We also define §(z, ) := e” "0 g(z, u) and iy, (S0, pt) := €%~ toun,m(so, ), for
every (z, 1) € R? x Py(R?). We observe that, given ag € M, with distribution being equal

to the marginal of 1y on A, s is a viscosity supersolution of the following equation (see e.g.

[16, Section 7]):
Onna(t )+ B{ 106 1.00) + J15[(007)0,6 0000y, )]
00t €00 Quta(t (€N | = ta(t), () € [t 0) x PalR)
[ (50, 1) = t2(s0, 1), p € Pa(RY),

for any ¢ € L*(Q, F;,P;RY), with P¢ = . Moreover, by Theorem A.8 we deduce that (A,
solves the following equation:

;

8 nm t v +]EZ{ t 51, 7§n7a6) + <B;,m(t7£17' s 7§n7aé)76xiéi?m(tagv aO)>

+ 5t (007) (1,6 0822, 530 5,ao>}}=62?m<t,v>, (t,v) € [to, 50) X Pa(R? x A),

\vflom(‘SO) ) ]E’[ﬁ'n,m(s())g)]a Ve PQ(Rd X A),
for any £ = (&1,...,&) € L*(Q, F, P;R™) and dy = (af, ..., af), with aj € M,, such that
Pegsy = v ® -+ @ v, where v0, (t,7,a) := et (t,z,a), for every (t,z,a) € [ty so] X

(R? x A)", with v, being the same function appearing in Theorem A.S8.
In the sequel it is useful to see uy as a function on [0,7] x Pa(R% x A) rather than
[0, T] x Po(R?). In other words, it is useful to consider the function

Us(t,v) = wuo(t, 1), Y (t,v) €[0,T] x Po(R? x A),
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with p being the first marginal of v. To avoid introducing additional notations, we denote
Uy still by us.

Now, notice that v;9,, is bounded by a constant independent of n,m. As a consequence,
there exists A > 0, independent of n, m, satisfying

sup ('lv}zom — 'LVL2> < (T)Zom - ag)(to, Vo) + A (514)
[0,T)xP2 (R4 x A) 7 ’

Since 9;°,, — Uy is bounded and continuous, by (5.14) and Theorem 4.5 applied on [t,, so] X
P2(R? x A) with G = 9, — 12, we obtain that for every 6 > 0 there exist {(tx, %) }iz1 C
[to; S0] X P2(R? x A) converging to some (%, 7) € [t,, so] X P2(R? x A) and 5 such that items
(1)-(ii)-(iii) and 1)-2)-3) of Theorem 4.5 hold.

Now, as in the proof of STEP I we distinguish two cases. If ¢ = s, and, in addition,
so = T, then we proceed as in SUBSTEP I-C to get a contradiction. On the other hand, if
sg < T, then we proceed as in SUBSTEP I-D in order to find a contradiction and conclude
the proof. H

Corollary 5.2 (Uniqueness). Let Assumptions (A), (B), (C), (D) hold. Then, the value
function v, given by (2.6), is the unique bounded and continuous viscosity solution of equation

(3.3).

Proof. From Proposition 2.5 and Theorem 3.8 we know that v is bounded, continuous, and
it is a viscosity solution of equation (3.3). Now, let v be another bounded and continuous
viscosity solution of equation (3.3). Then, by Theorem 5.1 we deduce that u < v and v < u
(in fact, both v and w are viscosity sub/supersolution of equation (3.3)), from which we
conclude that v = u. ]

A Smooth finite-dimensional approximations of the value
function

A.1 Mean field control problem on a different probabilistic setting
and approximation by non-degenerate control problems

In the present appendix we formulate the mean field control problem on a different proba-
bilistic setting, supporting an independent d-dimensional Brownian motion W.

Let (Q F, P) be a complete probability space on which a m-dimensional Brownian motion
B = (Bt)t>0 and a d-dimensional Brownian motion W = (Wt)t>0 are defined, with B and
W being independent. We denote by FBW = (FP"),5 the P-completion of the filtration
generated by B and W. We also assume that there exists a sub-o-algebra G of F satisfying
the following properties.

i) G and FBW are independent.

ii) Py(R?) = {P; such that £: Q0 — R% with € being G-measurable and E|£[? < co}.
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We denote by F = (F;);» the P-completed filtration of (G V F?" )0, for all t > 0. Fi-
nally, we denote by A the set of control processes, namely the family of all ]F—progressively
measurable processes @: [0,T] x Q — A.

Now, for every € > 0, t € [0,T], £ € L2(Q), F,, P;RY), & € A, let X6 = ()A(j*t’évé‘)se[t;p]
be the unique solution to the following controlled McKean-Vlasov stochastic differential
equation:

X, = §+/ b(r, X, Pg ,a,) dr+/ o(r,X,,6,)dB, +e(W,—W,), VseltT]
t t
Moreover, consider the lifted value function
Vo(t,§) = supIP:[ / Fr X P e ) dr 4+ g (X550 P L ea) |
acA t T T

for every t € [0,T], € € L*(Q, F;,P; R?). Under Assumption (A), from Theorem 2.4 applied
in the present probabilistic setting, with ¢ and B replaced respectively by (o,el;) and
(B , W), we know that V. satisfies the law invariance property. Therefore we can define the
value function v.: [0, 7] x Po(R%) — R as follows:

'Us(talu) = ‘/E(t7 é)? (Al)

for every (t, 1) € [0,T] x Po(R%) and any £ € L2(), F,,P;R?) such that P¢ = . Moreover,
applying Proposition 2.5 in the present probabilistic setting, it follows that v. is bounded,
jointly continuous on [0, 7] x Py(R?) and Lipschitz continuous in the measure: there exists
L > 0 such that

|U8(t’ /u) - U8(t/7 /'L,)l < LWQ(#? /'L,)’
for any ¢t € [0, 7] and p, i’ € Pa(RY).

Remark A.1. Notice that, under Assumption (A), it is not immediately clear if vy = v.
However, under Assumptions (A) and (B), applying Theorem 3.8 in the present probabilistic
setting we deduce that vy is a viscosity solution of the Master Bellman equation (3.3). As
a consequence, under Assumptions (A)-(B)-(C)-(D), by Corollary 5.2 we conclude that
vg = .

Lemma A.2. Suppose that Assumption (A) holds. Then, there exists a constant Cxr > 0,
depending only on K and T, such that, for every e > 0,

|U€(tvu)_v0(tau)| S CK,T{':;

for every (t,p) € [0,T] x Po(RY).
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Proof. By usual calculations (as in [31, Theorem 2.5.9]), we obtain

]E[ sup ‘X?t’é’é‘ —Xg’t’é’é‘f < CxT T 2, (A.2)

t<s<T

~

for every e > 0, t € [0,T], € € L2(Q, F,,P; RY), & € A, for some constant Cjx > 0, depending
only on K. Then, we have

T AN A~ N
|ve(t, 1) — vo(t, p)| < supE{/ |f(S,X§’t’£’a’PXs,t,é,da &5) — f(s, Xg’t’§7a7PX0,t,§,&a ds) ‘ ds

aeA t s s

+ g (X755, IP’X;,t,g,d) — g(XI2 ]PX%LE,&) |]

T = A N
< Ksup {/ {]E[\Xss,t,s,a — X084 W, (PXE,t,g,@,IPXO,t,g,d)}ds
acA \Jt s s
+ E[\X;;t,é,a _ X%t,é,du + W (IPXME@,IP’XOJM)}
T T

< K§u9{/tT{E[

aeA

Xsa,t,é,d_Xg,t,é,aﬁlﬂ_i_EHXse,t,éa XOt{a’ ]1/2} S

IS bt SRS i et ”2}
< 2K(T 4 1) /CxT eCxT g,

where the last inequality follows from estimate (A.9). O

A.2 Cooperative n-player stochastic differential game and
propagation of chaos result

Let n € N and let (Q, .73" , Plbe a complete probability space, supporting independent Brow-

nian motions B!, ... B", W1, . W”, with B’ (resp. W') being m-dimensional (resp. d-

dimensional). Let also FEW — (.7-'t M=o denote the P-completion of the filtration generated

by B and W, with B = (B!,..., B") and W = (W?!,... , W"). Moreover, let G be a sub-o-

algebra of F satisfying the followmg properties.

i) G and F2W are independent.
ii) Pa(R?) = {Pz such that £: Q@ — R?, with £ being G-measurable and E[¢[* < oo}

Furthermore, let F = (ﬁt)t>0 be given by F, :== GV FZW, for every t > 0. Finally, let
A" be the family of all F-progressively measurable processes a = (a',...,a"): [0,T] x Q —
A", Now, for every ¢ > 0, t € [0,T], a € A*, &',...,&" € L*(Q, .7: P;RY), with £ =
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(€Y,...,6m), let Xot&a = (Xlet&a  Xnet&ad) he the unique solution to the following
system of controlled stochastic differential equations:

Sy / b(r, X1, i, L) dr+ / o(r, Xial)dBi+e(Wi-W)),  Vse[T], (A3)
t t

fori=1,...,n, with

1 n
= =D 6.,  VreltT).
20k Vel

We denote 5462 = % 2?21 0 gietéa- We consider the cooperative n-players game where a
“rr
planner maximizes, over @ € A", the payoff

7 1 ~ g & ~ i .6, E,a ~n,E
Jen(ts ;) = EZEM f (s, Xietea pretéa gi) ds 4 g( X500, ipetes )},
=1

Then, the value function @.,,: [0,T] x Py(R?¥) — R of such cooperative n-player game is
given by

n T
6s,n(t;l_//) = sup EZE[/ f(st;',E,t,rSa,ﬁnetﬁa = )dS—{—g(Xzet&’a,ﬁ;Et& ):|7 (A4)

acAn T

for every t € [0,T], i € Po(R™), with £ € L*(Q, 7, P; R") such that Pz = fi.
We also introduce the following approximation of the value function: we call

Ve [0,T] x Po(R™) — R

the map given by

Tepm(t, ) = sup —ZE[ / fi (s, Xbmetéa | gnmetéa qi g (A.5)
+ gnm(Xl m.etEa N ’X;,m,a,t,g,o‘c) ,

where X#m=168 golves equation (A.3) with b replaced by b . where

n,m?

R &5 R

gnm

byt [0,T] X R™ x A — RY, Tt 0, T] xR x A5 R,

are smooth approximations of b, f, g defined as follows:

i =\ oondtl
b (t, T,a) = m /}Rdn+1 b(T/\ (t—s) o —yi, — Z&c] —yj ) JI;IICI) my;)dy;ds,

i,m(tviva’) - mnd+1 /d + f(T/\(t_S Y Zé% iz > HCI) mys dyjds7
Rdn 1 le
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n

. 1 n
7 - nd
Inm(T) = m Rdng(wi—yi,ﬁ § - yj> | |<I> (my;)dy;,
Jj=1

j=1

foralln,m e Nyi=1,...,n, 7 = (z1,...,7,) € R¥" (t,a) € [0,T] x A, with &: R? —

[0, +00) and ( R — [0, 4+00) being C** functions with compact support satisfying [,
Land ["2°¢(s)ds = 1.

Lemma A.3. Suppose that Assumptions (A) and (B) hold. Let i™* be given by

i 1
= 13,
n
j=1
Leti=1,...,n. We have

m by, (t,7,a) = b(t,z, B™7), lim f7..(t,Z,a) = f(t,z;, 0™7),

m——+00 m——+00

uniformly for (t,z,a) in [0,T] x R x A. Moreover,

lim gn m( ) g(xi,ﬁn,x)’

m—-+00

uniformly for & in R,
Furthermore we have the following estimates

bt 0) = Bt 0)] < K [ [e= (T A= 9)%)] Cms)is
R

. 1 n n
+ K m™ N (|yl| + - Z |yj|) H O (my;)dy;
" j=1 j=1

|f (t, 2, 0™, a) — é’m(t,a_c,a)‘ < Km/]R |t —(TA(E—s)") ‘ﬂC(ms)ds

. 1 n n
w8 [ (1l Sl ) TT G
" j=1 j=1

O(y) dy =

~n,T 7 n 1 . -
\g9(2s, 1) = gy (1, - )| < K m™ » <|3ﬁ| + 5Z|yj|> [ ®(my;)dy;  (A6)
" j=1 j=1

Finally

|b t z a) - bl (t’ z, a)‘ \% |fé,m(t7£7a) - ;;,,m(t7 2 a)| \4 |g;;1,m(j:) - gi,m(g)l

1 n
< K ||xz; — % —E — 2.
> |z Z|+n |$J ZJ']

Jj=1

39

(A7)



Proof. We first prove the claims for g. From the definition of gf%m we get

|g(xi7ﬁn7i) - gjz,m(xla s 71"11)}

~ 1 n n
< mm i, 1) — gl 2 — vy, — Oy d(my;)dy;
< RUC g( yn;JyJJl:[l(yg)ya

IN

N 1 n n
st [ (53 bl ) T otm)as
" j=1 j=1

where the last inequality follows from the Lipschitz continuity of ¢, and also from the fol-
lowing;:

n

B | 1 < 1 < 1o
Wz(ﬂ ’ ;ﬁz&:jyj) = W2<ﬁz5zj,gz5mjyj) < EZ|yj|7
j=1 j=1 j=1

=1

where the last inequality follows from the definition of W, (see (2.1)) taking the probability
measure 7 on R? x R? satisfying 7({(z;,z; —y;)}) =+, Vj=1,...,n.
For the other claim on g we use that

n

1
g(l'z - Yi, ﬁ Z 6J:j—yj)

Jj=1

n 1 <
[[e0nmy)dy; < K [Ixi — 2|+ EZ |z — Zj|] ;

j=1 7=1

(90 (T) = G (D) < m™

1 n
- g<Z’L - yi7 E Zl 5zj—yj)
j=

for every + = 1,...,n, where the last inequality follows from the Lipschitz continuity of g,
and also from the following:

Rdn

n

1 & 1 « 1
(13 230 ) < 2Dk s
j=1 j=1

j=1

which follows from the definition of W, (see (2.1)) taking the probability measure 7 on
R? x R? such that 7({(z; — y;,2; —y;)}) = %, Vi=1,...,n.
Now we prove the claims for b (the ones for f are proved exactly in the same way)

}b(t,xi,ﬁ”’i,a)—b;,m(t,f,a)} < m”dH/
—b(TA{t—98)" 2 —y lié _a
y L unj:l T;—Yjo

- b(T A(t— )T,z ™", a)

j=1

C(ms)ds +m"™
Rdn

(T A (t—8)t, x;, 1™, a)

n

1 n
- b<T A (t - 5)+7 X — Yi, ﬁ Z 6:Ej—yj7a’) ‘C(ms) H q)(myj)dy]ds
7=1

j=1
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Thanks to the Lipschitz property of b (see Assumption (A)-(ii)) the second integral is es-
timated as in the case of g considered above. Moreover, the first integral, thanks to the
Assumption (B) is estimated by K|t — (T A (t — s)7)|?. Finally, the Lipschitz estimates for
b and f are proved exactly in the same way as for g using Assumption (A) (ii)-(iii). O

Remark A.4. Notice that it is not a priori clear the fact that the right-hand side of (A.4)
depends on & only through its law fi. However, as the cooperative n-player game is an example
of mean field control problem (indeed, it is a standard stochastic optimal control problem)
we can apply the results of Section 2 to it. In particular, from Theorem 2.4 we deduce the
law invariance property, which explains why we can consider the value function 0., (and,
similarly, U...m), which depends only on [i rather than on &.

We also consider the functions v. , m, ven: [0,7] x Pa(R?) — R defined as

'Ua,n,m(t7 ,U) = @s,n,m(t7 IR Y u) and vem(ﬂ PJ) = f’e,n(t7 IR Y N): (A-8)

for every (¢, ) € [0, 7] x Pa(R9).
We first show that the analogous of Lemma A.2 holds for v, .

Lemma A.5. Suppose that Assumption (A) holds. Then, there exists a constant Cxr > 0,
depending only on K and T, such that, for every e > 0,

|U€,n,m(t7 ,LL) - UO,n,m(t7 /~L)| S CK,T g,
for every (t,p) € [0,T] x Po(RY).

Proof. The proof is similar to the one of Lemma A.2. We provide a sketch for the reader
convenience. By usual calculations (as in [31, Theorem 2.5.9]), we obtain

IE[ sup }Xg’m’a’t’g’o‘—Xz’m’o’t’é’o‘ﬂ < CkxTe%xT &2, (A.9)
t<s<T

for every i = 1,...,n, m € N, e > 0, t € [0,T], £ € L*(Q, F,P;R™), a € A", for
some constant Cg > 0, depending only on K. Then, we have, writing X% for

v 1,m.etéa v n,m.e,t&a
(Xs’ &b, e, X &, )’

1 _ r _ S . _ - .
|V mm (Ey 1) — Vo m(t, )| < " Z sup ]E[/t ‘f;’m(&X?,at,g,a,@;) B :zm (S,X?’O’t’g’a, ,a;) ‘ ds

i—1 acAn
. _ - o - K <& r._ o _ _ -
1ok (X7 46) = g (X72457) | < 25 sup { [ {B{Jprese - xpocsel] s
t

n ] acAn

n

_ _ T _ _
_i_I_EHX;z,E,t,&d . )—(%t,&au)} < E Z sup {/ {I_EHX;n,s,t,&o? i )—(Sm,o,t,é,a|2] 1/2

n = aean \Jt
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FE[| X465 — XUV ds 4 B[| X560 — XEAP) 4 B[ Rp0Ee — x0u6a )] 1/2}

< 2K(T +1)\/CxT T ¢,

where the last inequality follows from estimate (A.9). O

Now, we can state the following propagation of chaos result for v., ,, (a more general
propagation of chaos result holds for 0., see [32, Theorem 2.12]).

Theorem A.6. Suppose that Assumptions (A), (B), (C) hold. Let ¢ > 0 and (t,u) €
Po(R?). If there exists ¢ > 2 such that p € P,(R?), then

lim  lm v pm(t, ) = v(t, p).

n—-+00 m—-+400

Proof. From the definitions of b’
the convergence, a.s., when m — +oo, of Ximet&a to X84 This implies, using the
definitions of v, ,, ,, and v, ,,

s Joms Ghm We get, through straightforward arguments,

Hm Ve pm(t, ) = venlt, ).

m—»—+0oo

Then, the convergence
lm v, (t,n) = v(t,p)

n——+0o

is a consequence of [32, Theorem 2.12]. More precisely, for every n € N, € > 0, denote

Jen(t,p, Z]E{/ Xﬁvevtvfa,ﬁgftﬁa Ml)ds-l—g(X”tﬁa,ﬁ;gat&a) ,

for every t € [0,T], & € A", u € Po(R?), with £ € L*(€, 7, P;R™) such that Pz = p®- - -®p.
Notice that
Ven(t, ) = sup Jon(t,p,a@), () € [0,T] x Py(RY).
acAn
Now, by [32, Theorem 2.12|, for every n € N there exist ¢, > 0 and &, € A" such that
lim,, o €, = 0 and @, is an €,-optimal control for (A.4), namely it holds that

Jen(top, o) < vep(t,pn) < Jonlt, pt, an) + €, Vn e N. (A.10)

In addition, by the beginning of Step 3 of [32, Theorem 2.12] we have that {a, },, is converging
in a suitable way to some optimal relaxed control m*, and also we have the convergence of
the reward functionals: J. (¢, , &,) — ve(t, 1), where here we used that v.(¢, ) coincides
with the reward functional evaluated at the optimal relaxed control m*, that is v.(t, i) is

equal to the value obtained optimizing over relaxed controls, see [32, Theorem 2.4]. Then,
using the convergence J. ,,(t, t, &) — v-(t, 1), we see that the claim follows letting n — oo
n (A.10). O
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A.3 Smooth finite-dimensional approximations

We consider the same probabilistic setting as in Section A.2.

Theorem A.7. Suppose that Assumptions (A), (B), (D) hold. Then, for every ¢ > 0,
n,m € N, there exists Ve pm: [0,T] x R"™ — R such that

Venm(t, ) = /Rd Vemm(t, 21, ..., xp) p(dzy) - - - pday,), (A.11)

for every (t,p) € [0,T] x Pa(RY), with v p.m given by (A.8), and the following holds.
1) Vepm € CH2([0,T] x R™) and v.,m € CH2([0,T] x Py(RY)).

2) For all (t,z) € [0,T] x R, with & = (T1,...,Z0,.+,ZTan) = (T1,...,T,) and Ty € R,
z; € RY, it holds that

C
|00, Ve (t,7)| < =, (A.12)
n
1
_Cn,m S aigfhﬁs,n,m(tuj) S ?Cn,m, <A13)
foreveryi=1,...,n, {,h =1,...,dn, for some constants Cx > 0 and C,,,, > 0, with

Ck (resp. Cpm) possibly depending on K (resp. K,n,m), but independent of €,n,m
(resp. €), where K is as in Assumption (A).
3) Venm solves the following equation:

n

(
atvs,n,m(tu M) + / Z sup {<bfz,m(t7 L1y .oy T, ai)a amiﬁs,n,m<t7 f))

Rdn i=1 a;€A

+ %tr [((O—JT)@, 20, 05) + €2) 2, Ve, a?)] (t, 1) € [0,T) x Po(RY),
(A.14)

1 .
Uz—:,n,m(T7 :u) = E Z /Rd g;,m('xla s 7xn> ﬂ(dxl) - N(dxn)a e PQ(Rd)a

for everyn,m € N, & = (x1,...,1,) € R" and x,,..., 1, € RL

Proof. We split the proof into four steps.

Step I. Definition of e ., and its properties. Fix € > 0 and n,m € N. For every ¢ € [0,77,
T=(21,...,2,) € R™ let U ppm: [0,7] x R — R be given by

T}E,n,m(ta Tyyeno ,an) = {)a,n,m(t: 5w1 K ® 5a:n)a (A15)
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with ¥, ,,, defined by (A.5). In other words, ¥, corresponds to the value function of the
cooperative n-player game (see Section A.2) with deterministic initial state Z in place of the
random vector £. Hence

T

— _ i v 1m.etx,a vn,metT,a =1

Vemm(t,T1,. .., 2y) = sup — E E[/ fn,m(s,Xs ooy X1 ,as) ds
¢

acAn T

v 1,m,et,z,a
X7 1€yl
T

+ g D ¢ I (A.16)

This optimal control problem involve coefficients satisfying Assumption (A). Therefore 0. ,,
is bounded, jointly continuous, and Lipschitz with respect to z. Moreover, v, ,, ,, is a viscosity
solution of the following Bellman equation:

(

8t7_)5,n,m(t>f) + { Zf;m z

(a1yeees an)eA"

+Z Lt (00 100) + ) T f>]

A

(A.17)
+Z (T, a;) 8xiv6,n,m(t,x))} =0, V(t,z) € [0,T) x R™,

Ven(t, ) = Zgnm vz € R™.

\

We notice that equation (A.17) is uniformly parabolic, with coefficients satisfying Assump-
tions (A) and (B). It follows that o.,,,,, € C**([0,T] x R™) (see |36, Theorem 14.15] and
the comments just below Theorem 14.15 regarding the case with linear operators “L,”). In
addition, we observe that equation (A.17) can be equivalently written as

" 1 . .
aﬂ_je’"’m(t’ f) T Z Sup {ﬁ rlz,m(t7 T, ai) + <b;,m(t7 z, ai)a a:riﬂs,n,m@v 3_:)> (A-18)

i=1 a; €A

1 =
+ étr [((UO‘T)(t, a;) + 52)8§izi68,n7m(t7 j)] } 0,
for all (¢,z) € [0,T) x R,

Finally, from [31, Theorem 4.7.4] we deduce estimate (A.13). Concerning (A.12), we first
notice that it follows if we prove that

_ L _ Crk, . _
‘Ua,n,m(tax) _Ua,n,m(ta Z)l S 7K|x_2|7

whenever the components of z = (x1,...,2,) and Z = (21,...,2,) are equal, apart for
one component xy # 2. Such a Lipschitz continuity follows from the Lipschitz continuity

44



estimates for b}, ., f;,, and g}, ,, proved in Lemma A.3, formula (A.7). As a matter of fact,

from (A.16) and (A.7), we get

n T
|'l_]€,n,m<t7 j) - ﬁe,n,m(ta 2)‘ < 2K sup l Z I_E |:/ }X;’,m,s,t,i,o’z — X;’,m,s,t,i,o?}ds (A19)
=1 t

aejnn -

vi,m,e,tT,a v i,m,etZ,a
—+—|X13 1,8, T, _X’f EstsZ, | )

Now, suppose that z and Z differ only for the first component x; # z;. In addition, for
notational simplicity, suppose that d = 1. The case d > 1 can be treated exactly in the same
way at the price of adding one more index in the sums. Then, recall that X' := X#msta
solves the following equation on [t, T

X - xi+l/ibﬁm(njgﬂ.“,jﬂﬂai)dr+x/ﬁo{njﬁ,abcﬂﬂ-+e(ﬂﬁ——ﬂﬁ)
t t
Taking the derivative with respect to x; (see e.g. |14, Chap. V, Theorem 39|), we find
O Xi= 1y + 3 / O b (1 XL X7 6E)0p, X dr + / dyo(r, X', 61)0, X' dBI.
It t

Let 9,, X = (0,,X",...,0,,X™) be the unique solution to the above system of linear stochas-
tic equations (notice that drift and diffusion coefficients of the above system satisfy the stan-
dard assumptions of linear growth and Lipschitz continuity; this is a consequence of the fact
that the random coefficients 9, b, ,,(r, X}, ..., X, aL), 8,0(r, X}, &%) are bounded). Let

T

Vi — o J 0e0(nX]60)dB—5 [ 10x0(r,.X],67) 2dr 9y, X1 (A.20)

s

Then Y solves the following equation:
Vi = lgyoyy + Z/ O, b (r, XL, X a1 Y dr. (A.21)
j=17"

This is a system of linear equations with random coefficients, which can be written in vector
form as follows:

Y, = v1+/ AY, dr,
t

where v; is the n-dimensional column vector (1,0,...,0)", Y = (Y, ..., Y™)7 and
azlb}l,m(r’ ):(1}7 s J)gﬁu @71") T a,rnb}l’m(T, )9}7 s ’):(;Lv 6‘71")
Op U2 (1, X1 ... XM a2) - 0, b2, (r XL ..., X" a?)
Ar - ' . 7
O U2 (r X X0 ar) o Oy bl (r, XY X A



Taking the 1-norm, we obtain
1Yslr < ||01||1+/ ALYl dr < 1+/ [ Al [[Yr ]l dr, (A.22)
t t

where (using the Lipschitz continuity estimates for o}, ,, in (A.7))

A = maXZ|8 O X XAl

1<j<n 4

= maX{|8 S X X ad) ‘—FZ‘E) b r)_(j,...,)_(f,af.)}}

1<j<n 5 Tnm

Z#J

1\ K
< K(1+—>+—(n—1) = 2K.
n n

Then, from (A.22) we find

Yille < 142K [ ¥ ladr
t

An application of Gronwall’s inequality yields
|Yelh < 5T t<s<T. (A.23)

Let us now prove a strengthening of (A.23). Fix ¢ = 1,...,n and consider the family
of measurable maps {h{, ,, }( (wz1)eaxr, where, for each (w,z1) € 2 x R, hi, ., is the real-
valued map on [t,T] defined by hl,, (s) = [Y}(w)|, s € [t,T] (observe that, even if not
emphasized by the notation adopted, Y, as well as X?, depends on the initial condition z,
and in particular on z;). Notice that every A’ is bounded by e*)7. Let hi be a bounded
measurable map on [t, T defined as the essential supremum of the family {hf, , }(w.e1)c0x®-

The existence and uniqueness of hi follows for instance from [0, Proposition II-4-1|. From
(A.21) we deduce the following inequality:

hi(s) < L= 1}+K(1+ )/ hi(r)dr + — Z/ W (r
J#l

Denoting h = (ﬁl, e ﬁ”)T and reasoning as for Y, we end up with
Ih(s)]p < 2T, t<s<T. (A.24)

Now, by (A.20) we obtain

s

_ . Gi —i i1 Si =2 .
811Xl _ efts Ozo(r,XE,at)dBi+5 [} |0z0(r, XL ak)|?dr }/;z,
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hence

E[0, X < E [e [} Ozo(r X} @) dBr+ 5 [ |0so(r X a0 [Pdr \Yz{]
. < S
< E[ef: Opor(r,Xial)dBi+] [ |aza(r,Xi,ai)|2dr] ﬁi(s). (A.25)
Let T iR Xi,a
Zi = el %o XLENABI+3 [} 0o (r R G P t<s<T.

Then, by It6’s formula, we have
Zi= 1+ / 70,0 (r, X, )| dr + / 7 d,0(r, X', &) dB.
t t

Now, recall from Assumption (D) that [9,0| is bounded by K, so that the stochastic integral
s [ Zt0,0(r, X}, &) dBL is a martingale. Therefore, taking the expectation in the above

T

equality, we find for all s € [¢t,T], and x; € R,

E[Z] = 1+ / E[Z |0,0(r, XE,a) ] dr < 1+ K / B[] dr,
t t
where in the last inequality we used that Z¢ is non-negative. From Gronwall’s inequality, we
get
E[Zz] < &7, t<s<T, xR

Plugging the above inequality into (A.25), we obtain
E[|0,, Xi|] < X Thi(s), t<s<T, x €R (A.26)
Now, for every i = 1,...,n and s € [t,T)], consider the map F!: R — R defined as

],

where we recall that z is given by zZ = (z1,29,...,2,) € R" and it is fixed, while z¥ =
(z21 +y,22,...,2,) € R" so that z and z¥ differ only for the first component. Notice that
F(0) = 0. Let us prove that by (A.26) it follows that F" is Lipschitz continuous, in particular

y — FsZ (y) = E[lX;,m,e,t,zy,a _ X;,m,a,t,z,a

|Fi(y) — Fi(y)] < X Thi(s) |y —v/). (A.27)

As a matter of fact, for every 6 > 0 let n5: R — R be given by ns(x) = 1/ + |z|?> (more
precisely, for the sequel we only use that ns is a C'-approximation of |z| with derivative
bounded by 1). Then, for every i = 1,...,n and s € [t,T], consider the map F*: R — R
defined as

y — Fii(y) = Blps(Ximeta _ gimetsa)]
The derivative of F'? is given by E[nj(Ximet="a — Ximetza)g Ximetza] hence it is
bounded by (recall that the derivative of 75 is bounded by 1)

|]E [ng (X;‘,m,a,t,zy,& . X;’,m,a,t,z,&)axl X;’,m,a,t,zy,&} | S ]E Haleg,m,s,t,zy,&l] S eKZT fALi(S),
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where the last inequality follows from (A.26). This proves that F is Lipschitz continuous,
in particular
i i 2T 7
[Fo(y) = FP O] < T hi(s) [y — /.

Letting 6 — 0 we end up with (A.27). Now, taking in (A.27) ¥’ = 0 and y = x; — 21 (so that
z¥ = ), we find (recalling that F’(0) = 0)

E[|Xgmetod — Xpmet2 8] = Fi(zy — z1) = [Fi(z1 — 21) = Fy(0)] < ST (s) [y — 2.

Then, by (A.24) we obtain

n
ZI_EHX;‘,m,e,t,i,d - Xz,m,e,t,z,du < eK’QT ||IA7/(S)||1 |SE1 . Z1|

i=1
Plugging the above inequality into (A.19) we end up with (A.12).
Step 11. Proof of equality (A.11). We prove the more general equality
Bt 1) = / Bty 21y ) filde, . dn), (A.28)
Rdn

for every (¢, 1) € [0,T] x Py(R%"), from which (A.11) follows. Notice that equality (A.28)
can be equivalently written as

ﬁam,m(t)ﬂ) - E[ﬁs,n,m(t;g)]a

for every ¢t € [0,T], £ € L*(Q, F;, P; R™), with P¢ = 1. We split the rest of the proof of Step
IT into two substeps.

Step IlI-a. General case: & € L*(Q, F;,P;R™). Observe that we can apply Proposition
2.5 to the cooperative n-player game, from which we deduce that o, ,, ,, is bounded, jointly
continuous, and Lipschitz with respect to fi. Moreover, recall from Step I above that .,
is also bounded, jointly continuous, and Lipschitz with respect to Z. As a consequence,
the general case with & € L?(Q, F;,P;R%) can be deduced, relying on an approximation

argument, from the case where ¢ takes only a finite number of values, namely from the next
Step II-b.

Step II-b. &€ € L*(Q, F,,P;R™™) taking only a finite number of values. Firstly, we fix some
notation. For every t € [0, 7], let FBWt = (FBWt) ) be the P-completion of the filtration
generated by (Bt — Bi)sso and (Way: — Wy)s>0, where we recall that B = (B*,..., B")
and W = (W1 ... W"). Let also Prog(F?":!) denote the o-algebra of [0,7] x Q of all
FB-Wt progressive sets.

Proof of the inequality ¥e pm(t, 1) < E[0e nm(t, €)]. Suppose that & € L*(Q, F;, P; R™) takes
only a finite number of values. In such a case, by [16, Lemma B.3] there exists a JF;-
measurable random variable U: 0 — R, having uniform distribution on [0,1] and being
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independent of £. Then, by |16, Lemma B.2], for every a € A" there exists a measurable
function

a: ([0,7] x Q x R™ x [0,1], Prog(F®"") ® B(R™) ® B([0,1])) — (A", B(A"))

such that 3 := (as(&,U))sepon) € A" and

(57 (as(é_a 0))s€[t,T]a (Bs - Bt)se[t,T]y (Ws - V_Vt)se[t,T])

g _ — —

= (57 (as)se[t,T]y (Bs - Bt)sE[t,T]7 (Ws - Wt)sE[t,T]);
where Z stands for equality in law. As a consequence, proceeding along the same lines as in
[21, Proposition 1.137], we deduce that

(Xgl’g’t’g’&vdS)se[t,T} < (X?g’t’g’B?BS)se[t,T]'

Moreover, since £ takes only a finite number of values, it holds that
- k
£ = Zlg, (A.29)
k=1

-----

Brs = as(T,U), Vsel0,T], k=1,..., k.

It easy to see that X ™44 and X™eba001 15 ... Xmuebxfx 15, satisfy the same system
of controlled stochastic differential equations, therefore, by pathwise uniqueness, they are IP-
indistinguishable. Hence

Ie-[ [T . _ - B - - N i B
! Y 17 77t77 ) 77t7,
n ZEU Fon (5, X80, XML al) ds + g, (XpT 0L Xpmere)
i=1 ¢
L=l (" . _ . _ - - N i B
- ;ZE[/ Fogn (3, Xgmetel L XPmats?, B) ds + g (Xp ™07, XpmeieF)
=1

1 - r _ - _ I
— 7’ 17m757t7a: 75 n7m781t?z 7/8 Z
— EE :IE E: frm (s, X, WP X kO By ) ds
i=1 k=1 t

i o 1m.et, g, B, T mLEt T, Bl _
+gn,m(XT 7"'>XT ) 1Ek :

~+

Since both { XAk}, and {f;}x are independent of {E}}y, we have

k T

1 o - , _ . _ A

E E IE{ E (/ ffl’m (S’ Xsl,m,é,t,wkﬂk’ o 7X;L7m757t’-77k15k7 Blzc,s) ds
k=1 t

i=1
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i % l,m,E,t,.’fk,Bk T IGE LT 7Bk _
+gn,m(XT 7"'7XT )1Ek

n k
I E|: I_E|:/ fém s, lee,t,xk,ﬁk ) Xnmat:zk,ﬁk,ﬁl )
; 2

+ g:l’m (X’/]l_‘ym7€7t7fk’ﬁk’ . ,X;7m757t7jk):3k:)} ]-Ek:|
ff 1 n T _ ~
= Z E {ﬁ Z E{/ f:zm (s, Xsl,m,e,t,i‘k,ﬁk, L 7X:7m75;t7fkw8k’ B/Z,s)ds
k=1 i=1 t

- k
+ gl (X X"mfvtv“’kﬂk} ] ZI‘E[vmmtxk)l } = E[tenm(t €)]-

k=1

As & was arbitrary, we obtain (denoting by fi the law of &)

L= [T . : . Fa i
Vepmm(t, i) = sup — Z ]E{/ Fh (s, XPmobba X mebt 1) ds
: t

acA”

+ gf%m (Xr},m,a,t,g,&, o ’X;,m,a,t,f,&)] S E[lae,n,m(u f):' .

Deman(t, 1) Let A} be the subset of A" of all F#W"-
(071, co, @) [0, T]xQ — A™. Then, it is well-known
is also given by

Proof of the inequality E[v. 5, m (1, f)] <
progressively measurable processes & =
that the value function v, ,, in (A.15)

— i 1m6txoz vn,metT,a =1
Venm(ty 1, .. xy) = sup — E E[/ (s, X0 cey X1 ,at)ds  (A.30)
7 v 1,m,e,t,z,a v 1,M,EL,T,0
+gn’m(XT oo X ) ,

where the supremum is taken on A? rather than on A™. Now, let £ € L2_(Q,.7:}_, P; R¥) be
given by (A.29). By (A.30), for every § > 0 and k = 1,..., k, there exists 3, € A? (possibly
depending on ¢) such that

T
R , _ _ 7 - .
— = ) 1,m,e,t,Z1,53 n,m,e,t,T1,5 i
'Ua,n,m(t»xk) < - E E fn,m(S7Xs B X § k7ﬁk,s) ds
n- t
i=1
7 % 17m757t7ik75k \ nvmv57t7jk75k
+ g (X7 o XD )} + 0.

Then, define



Notice that p € A™. Moreover, it is easy to see that XmetdB and Xmehenh g, +---+
Xmetnbr | ; satisty the same system of controlled stochastic differential equations, there-

fore, by pathwise uniqueness, they are IE’-indistinguishable. Hence (using the independence
of both {Xm’s’fk’ﬁk}k and {ﬁk}k from {Ek}k)

VAN
E
=
ETE
1 M
=
| —— bl

7 1,m,e,t, 5,0 o nm.et T, Br i
/ fhm (s, X0 WP X kO Brs) ds

+ gz’m (X%,m,e,t,ik,ﬁk’ o 7X;,m,€,t,fk,5k):| 1Ek:| 44

- —ZE{ZE[ [ o it a5 )as
=1

+ g;’m (X%7m757t7ik7ﬁk7 oL ,X;ymya7t7zk76k):| 1E_'k:| _|_ 6

n E
_ E|: (/ f;m s, les,t,xk,ﬂk ] Xnmstxk,,ﬁk’ﬂz )
; 2

+ gnm(Xl mEtIk,Bk o 7X;,m,€,t,.1_:k,,3k)> lEk:| + 5

10 T [T - o _ —
SO 3! (TS S T
n < t 7
=1
+g;’m(X%,m,e,t,§B Xnmst )] +0 < Usnm(t :U’) + 0,

with /i being the law of £&. From the arbitrariness of &, we conclude that the inequality
E[l_]&‘,n,m(t: g)] S i}s,n,m(t, /7:) holds.

Step III. Proof of item 1). We begin noting that, by equality (A.11), we have

OpVe nm(t, 1) = Ol nm(t, 21, ..., ) p(day) - - - p(dey,), (A.31)

Rdn

which proves that d,v. ,,, exists and is continuous. Now, for every ¢ > 0 and n > 2, let
ﬁs,n,m: [07 T] X (PQ(Rd))n — R be given by

ﬁe,n,m(t M1, 7,“/71) = ﬁs,n,m(t; ,u1®' : ®,un) - / 'l_)z-:,n,m(t7 L1y ,LEn) Nl(dxl) e ,U/n(dxn)a
Rdn

for every (¢, i1, .., ptn) € [0,T] X (Py(R%))™. Then, by direct calculation, we obtain
8ui@5,n,m(t7 M1y - ,,U,n)(ll')

o1



= / 3zi?7€,n,m(t, T1yee 3 Ti—1, Ly Tl -+ - - ,xn)ﬂl(dﬂh) " 'ﬂi—l(dxi—l)ﬂi+1(dxi+1) o ',Un(dxn),
R

d(n—1)
for every (t,pu1,...,fin, @) € [0,T] x (Po(RY))" x RL i = 1,...,n. Since v.,nm(t,pn) =

Ve (s by - -, 1), We obtain

Oyt 1) () (A32)

- Z /d( ) O Vemm(t,T1, o i1, T, T, - o L) po(dy ) - - - pu(dai—q) p(dzigq) - - - p(dey,),
i=1 YRU"T

for every (t, u,z) € [0,T] x Po(R?) x RY. Hence
0.0, (b, 1)(2) (4.33)

n
- Z /]Rd( Y aﬁimiﬁe,n,m(ta Ty ooy Ty Ty L1y oy ) p(day) -+ - pu(dai—q) p(daigq) - - - p(dxy,),
i=1 "

for every (¢, p,z) € [0,T] x P2(R%) x R In conclusion, we see that v. ., € C([0,T] x
Pa(R9)).

Step IV. Proof of item 3). Recall that v., ., solves equation (A.17). Fix (¢,u) € [0,7] x
Py(RY). When t = T, integrating the terminal condition of (A.17) with respect to p®--- @ p
on R we get

1< :
Us,n,m(T7 M) = ﬁ Z /]Rd g;,m(‘xl: s 7xn) ,U;(dl’l) K ® ﬂ(dxn)>
i=1 "

which corresponds to the terminal condition of equation (A.14). On the other hand, when
t < T, integrating equation (A.18) with respect to #® ---® p on R% and using (A.31), we
find

- 1 .
atve,n,m(ta N) + / Z sup {_ rZL,m(TM ',1_77 a'i) + <b;,m(t> j7 ai); 8zi'l_}5,n,m(t7 j)>

Rin 77 ai€A (T
1
+ itr [((UUT)(t’ s, ai) + 62)82201'%?78:”77”(257 :Z'):l }ﬂ(dﬂfl) Q- ® ,U,(dxn) = 0,

which corresponds to equation (A.14). O

We end this section with the next result, which is used in the proof of the comparison theorem,
in order to prove that vy < us. We first need to regularize the coefficients also in the control
variable. For that, we fix p € N such that A C R? and a function (,: R? — [0, 400) being
of class C*° with compact support and satisfying pr (p(a)da = 1. Moreover, we extend
the continuous and bounded functions b and f defined on [0,7] x R? x P(RY) x A to
some continuous and bounded functions, still denoted by b and f, defined on [0, 7] x R4 x
P2(R?) x RP. Then, as in Section A.2 we define the coefficients b, ,, and f; ,, on the entire
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space [0, T] x R x RP (rather than [0, 7] x R*" x A). Afterwards, we define the coefficients
bpm and £, by

Bi’m(t,a_:,a) = mp/ bi’m(t,i,a—a')Cp(ma')da’,
RP

~,’;,m(t,a’:,a) = mp/ f,i,m(t,j,a—a')Cp(ma')da',
RP

foralln,meN,i=1,...,n, 7= (x1,...,7,) € R™ (t,a) €[0,T] x R”. We can now state
our last result.

Theorem A.8. Let Assumptions (A), (B), (C), (D) hold. For every t € [0,T], let M,
denote the set of Fi-measurable random variables a: Q — A. Let uy: [0,T] x Po(RY) — R

be a continuous and bounded function. For every t, € [0,T), so € (ty, T, let v*°: [ty, So] X
Py(R4 x A) — R be given by

s0
USO (t‘) V) = E |:/ f(r7 Xﬁ’&ao ) Pxilgv‘lO ) K‘t’ao) dr + U2 (SO’ IPXzE)&’uO ) )
t

for all (t,v) € [ty, so] x Po(R? x A), & € L*(Q, F,P;R?) and ag € M, such that P qp) =
v, where (X58&% Y1) js the unique solution to the following system of McKean-Viasov
stochastic differential equations:

X, = €4 [2b(r, X, Py, V) dr + [To(r, X, Y,)dB,,  s€[tT), A
Ys = ag, S € [t,T] '
Moreover, for every n,m € N, let v3°,.: [ty, so] X P2(R? x A) = R be given by
1 << 50 _ = - = o
o ty) ==Y E Loy X ebE8o [ X mebbto yihbao) A.35
S B B R e A L Y

+ un,m (807 isl(;m’t’g7ao’ A 7‘§;Lo’m’t’§7a0)} )
for every (t,v) € [ty s0] X Po(R? x A), £ = (&1,-...&) € L*(Q,F,P;RY) and ay =
(ag, - - ag), with af)i € M, such that Pgzy = v ® --- @ v. Moreover, Y""% = af for
r € [t, T] and X*™"4% solves equation (A.3) withe =0, a. = Y,""% forr € [t,T], b replaced
by b, - Similarly, tym(so,-): R — R is given by
1 n n
Un,m(50,T) = m" ) U2 (80, n Z(S-Tj_yj) H@(myj)dyj,
Rdn : :
7j=1 7j=1

for all z = (zy,...,1,) € R™ with ® as in Section A.2.
Then, for every n,m € N, there exists U5°,,: [to, so] X (R? x A)" = R such that

v (tv) = / 00 (215 a1, ay) v(dEy, day) - v(dag, day),
Rdn

for every (t,v) € [ty, s0] X Po(R? x A), and the following holds.
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1) o0, € CH2([Ly, so] x (R? x A)") and vi°,, € CM2([ty, so] X P2(R? x A)).

n,m

2) For all (t,z,a) € [tg,s0] x (R x A, with T = (x1,...,2,), @ = (ai,...,a,) and
T1,..., T, €ERY ay, ..., a, € A, it holds that

C
0,00, (t,7,a)| < —=,
n
for everyi=1,...,n, for some constant Cx > 0, possibly depending on K, but indepen-
dent of n,m, where K is as in Assumption (A).
3) 0%, solves the following equation:
(
a t V +]EZ{ él)"')éﬂdag)—}_<b?n,m(t7§1;'”7§naa’(t)) 81‘7, nm(t g Clo))
¢ 1 J
+ §tr[< (6 050 (., 80) | p =0, (t,v) € [t 50) x Pa(R x A),
kUTSLOm(S(h ) E[Umm(So,gﬂ, Ve 7)2(Rd X A),

for any €= (&,...,&) € LAHQ, F,P;R™) and ag = (ab,...,al), with a} € M,, such
that Pzgy =v & - Q.

4) If there exists q > 2 such that v € P,(R?), then

0 — S0
nl_l}I_{loo ml_l)riloov Lt ) v (t, v).

Proof. Items 1)-2)-3) follow from the same arguments as in Theorem A.7, taking into ac-
count that here we are in a “linear” context, while Theorem A.7 deals with the “fully non-
linear” case. Since we are in the linear case, the regularity results hold even if € = 0 (that’s
why here we do not need this extra parameter), as it can be deduced for instance from |23,

Theorem 6.1, Chapter 5|. Finally, item 4) follows from the propagation of chaos result |32,
Theorem 2.12] proceeding as in the proof of Theorem A.6 and noting that, in the present con-
text, Assumption (B) in [32| can be neglected (that is Lipschitz continuity of the coefficients
b and o with respect to the extra state variable a). As a matter of fact, Assumption (B) in
[32] is imposed to have uniqueness of the underlying McKean-Vlasov stochastic differential
equations, which in our case correspond to system (A.34) and uniqueness clearly holds under
our assumptions, without imposing in addition that b and ¢ are Lipschitz continuous with
respect to a. U]
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