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Probing of nonlinear hybrid optomechanical systems via partial accessibility
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Hybrid optomechanical systems are emerging as a fruitful architecture for quantum technologies. Hence
determining the relevant atom-light and light-mechanics couplings is an essential task in such systems. The
fingerprint of these couplings is left in the global state of the system during nonequilibrium dynamics. However,
in practice, performing measurements on the entire system is not feasible, and thus one has to rely on partial
access to one of the subsystems, namely, the atom, the light, or the mechanics. Here we perform a comprehensive
analysis to determine the optimal subsystem for probing the couplings. We find that if the light-mechanics
coupling is known or irrelevant, depending on the range of the qubit-light coupling, then the optimal subsystem
can be either the light or the qubit. In other scenarios, e.g., simultaneous estimation of the couplings, the light is
usually the optimal subsystem. This can be explained as light is the mediator between the other two subsystems.
Finally, we show that the widely used homodyne detection can extract a fair fraction of the information about
the couplings from the light degrees of freedom.
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I. INTRODUCTION

The field of cavity quantum electrodynamics (QED) [1–3],
as a rich blend of atomic physics and quantum optics, has
led to countless striking applications, including the one-atom
maser [4], one-atom laser [5], quantum gates [6,7], atom-
cavity microscopy [8,9], and novel quantum information and
computation schemes [10,11]. Undoubtedly, one of the most
fundamental models to investigate the coherent interplay be-
tween atom-field interactions is the Jaynes-Cummings model
(JCM) [12]. As initially formulated, the JCM is composed of
a two-level atom interacting with a quasiresonant quantized
cavity mode being first employed to unravel the classical
aspects of spontaneous emission [13]. To date, numerous
extensions of the original model have been put forward, for
instance, in the presence of multiple atoms [14,15] and arrays
of coupled cavities [16–18].

While JCM involves interaction between an atom and
a bosonic field, the field of cavity quantum optomechanics
[19–21] opens a new horizon by considering the interaction
between two bosonic modes, namely, a quantized electro-
magnetic field and a mesoscopic mechanical resonator. The
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canonical formulation of the optomechanical model considers
a nonlinear coupling between the photon number and the po-
sition of the mechanical resonator [22], making the physics of
such systems inherently distinct from the linear (in the boson
operator) nature of JCM. Similarly as for the JCM, the op-
tomechanical systems have been also fully solved analytically
for both time-dependent [23] and time-independent [24,25]
Hamiltonians. Extensive experimental efforts and theoretical
proposals have been devoted for the cooling of a mechanical
object toward the ground state or even nonclassical states
[26–50], which have led to a range of applications such as
quantum state transfer [51], entanglement distillation [52],
quantum state engineering [53], and quantum metrology pur-
poses [54–60], to name a few.

Recently, cavity QED has been merged with optomechan-
ics (see Fig. 1), enabling the emergence of vibrant novel
hybrid systems [61–66]. Indeed, the nonlinear addition of
a qubit into the optomechanical system allows us to si-
multaneously reach the strong single-photon optomechanical
regime and the resolved sideband condition, a challenging
experimental regime to reach in the absence of qubit hy-
bridization [67,68]. While the constituent elements of cavity
QED, i.e., the atoms and the light field, operate near reso-
nance, the building blocks of optomechanics, i.e., the light
and the mechanical fields, are highly off-resonant. There-
fore the hybridization of quantum systems provide a rich
playground for nonequilibrium dynamics involving distinct
natural frequencies [61,68]. These versatile systems provide
a fruitful architecture for various tasks for quantum tech-
nologies, including mechanical ground-state cooling [64,69–
74], transducers for long-distance quantum communication
[74–79], mechanical nonclassical state preparation [69,80],
tunable photon blockade effects [81], quantum entanglement
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Qubit Light Mechanics

FIG. 1. Schematic of a hybrid optomechanical tripartite system.
Two unknown parameters g1 and g2 are to be estimated in a cavity-
mediated system with partial accessibility.

[66], and quantum nonlocality [82]. Thanks to recent advance-
ments in quantum technologies, these structures have been
proposed and realized in various physical platforms, resulting
in a different range of couplings [83].

Consequently, the precise estimation of the couplings be-
tween the atom-light and the light-mechanics is a key step
for harnessing the hybrid systems for practical applications.
In order to approach this particular problem, we will then
exploit the tools given by local quantum estimation theory
(QET) [84–89] (for a global quantum sensing scheme see,
e.g., Ref. [90]) whose aim is indeed to provide the ultimate
bounds on parameter estimation in quantum systems and to
assess the usefulness of practical measurement strategies. This
kind of analysis has already been done for the estimation of
Hamiltonian coupling constants both for light-matter inter-
actions [91–93] and for optomechanical systems [94–97]. In
general, as the system evolves, the information of the relevant
couplings is imprinted in the quantum state of the global
system [98,99]. To extract such information and estimate the
parameters of interest, one must perform an appropriate mea-
surement on the system. In practice, however, the accessibility
to the whole system for performing a global measurement is
unlikely. Therefore one has to resort to partial accessibility
in which only one subsystem can be measured for infer-
ring the information about the system. Since the dynamics
make the subsystems of these hybrid structures highly entan-
gled, the information contained in each of these subsystems
is smaller than the global state. Indeed, quantum many-body
sensors with partial accessibility show reduced sensitivity in
spin chains, demanding complex driving necessary for restor-
ing the precision [100,101]. Thus several issues should be
addressed for probing the coupling in hybrid optomechanical
systems by partial accessibility: First, how the information of
the couplings spreads between the subsystems and how much
of it can be extracted with partial accessibility; second, which
subsystem has the maximum information content and thus is
the best to be measured for estimating the couplings; third,
by only considering the practically available measurements,
which fraction of the information content can be experimen-
tally extracted.

This paper addresses the above issues in a hybrid optome-
chanical system composed of a two-level atom, a cavity field,
and a mechanical oscillator. The goal is to determine the cou-
plings between the atom-light and the light-mechanics over a

wide range, considering only partial accessibility to one of the
subsystems. We consider three different regimes: (i) Estimat-
ing one coupling while the other is known (single-parameter
estimation), (ii) estimating one coupling while the other is
unknown (parameter estimation with nuisance parameters),
and (iii) estimating both of the couplings simultaneously (joint
estimation). For estimating the atom-light coupling, we found
that in the single- and nuisance multiparameter estimation,
depending on the range of couplings, either light or atom
can be the optimal subsystem to be measured. In all other
cases, the light is the dominant optimal subsystem to be
measured. Surprisingly, measuring the mechanical degrees
of freedom is hardly helpful for estimating the couplings.
This can be understood as the light mediates the interaction
between the other subsystems, thus carrying most of the infor-
mation. Nonetheless, the optimal measurement basis on light
degrees of freedom is very complex. Thus we focus on the
widely available homodyne detection for the estimation of the
couplings. Our analysis shows this can indeed determine the
couplings simultaneously with fair precision.

The rest of the paper is organized as follows: In Sec. II
we present preliminaries on quantum parameter estimation.
In Sec. III we introduce the hybrid optomechanical model and
a brief analysis on the entanglement dynamics. In Sec. IV,
we address the single-parameter estimation scenario and the
optimal subsystem which provides more information content.
We present the multiparameter case in Sec. V, including nui-
sance and joint estimation protocols. We also investigate how
much information one can extract with available homodyne
detection schemes. In Sec. VI, we investigate the parame-
ter estimation scenario in the presence of decoherence. In
Sec. VII, we justify the chosen set of parameters with current
state-of-the-art experiments. Finally, we conclude our work in
Sec. VIII. An Appendix gives some analytical insight on the
hybrid optomechanical system.

II. BITS OF QUANTUM PARAMETER ESTIMATION

In this section we will provide the basic ingredients of local
QET (we refer to Refs. [84–87] for more details and expla-
nations). We will start by considering the single-parameter
case and we will then extend the formalism to the multipa-
rameter one. We thus consider a family of states �λ, where
λ is the parameter that one wants to estimate. In a quantum
mechanical setting, one performs a measurement described by
a positive-operator valued measure (POVM) {�x}, such that
the whole process is described by the conditional probability

p(x|λ) = Tr[ρλ�x]. (1)

After obtaining a statistical sample of M outcomes X =
{x1, . . . , xM}, one can then define an estimator λ̃(X ) to infer
the value of λ. The variance of any unbiased estimator, such
that E[λ̃(X )] = λ, is proven to be bounded according to the
Cramér-Rao bound

Var(λ) � 1

MF
, (2)

where we have introduced the (classical) Fisher information

F =
∫

dx
1

p(x|λ)

(
∂ p(x|λ)

∂λ

)2

. (3)
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This bound can be in principle saturated via optimal esti-
mators, such as the maximum likelihood or the Bayesian
estimator. In quantum mechanics it is then possible to define
a more general bound that depends only on the quantum
statistical model ρλ and not on the particular measure-
ment performed {�x}. In particular one proves the quantum
Cramér-Rao bound

Var(λ) � 1

MF
� 1

MQ
, (4)

where we can now define the quantum Fisher information
(QFI)

Q = Tr
[
ρλL2

λ

]
, (5)

with the symmetric logarithmic derivative (SLD) operator Lλ

implicitly defined by the Lyapunov equation

∂ρλ

∂λ
= Lλρλ + ρλLλ

2
. (6)

Remarkably one can prove that the bound (4) can be always
saturated, that is, one can always find an optimal POVM {�x},
such that the corresponding classical Fisher information F is
equal to the QFI Q.

In the multiparameter scenario, the family of quantum
states ρλ is defined in terms of a set of unknown d parameters
λ = {λ1, . . . , λd}. The bounds (2) and (4) can be generalized
as matrix inequalities for the covariance matrix Cov(λ) of any
unbiased estimator as

Cov(λ) � 1

M
F−1 � 1

M
Q−1, (7)

where we have introduced the classical and QFI matrices with
elements

Fi j =
∫

dx
1

p(x|λ)

(
∂ p(x|λ)

∂λi

)(
∂ p(x|λ)

∂λ j

)
, (8)

Qi j = Tr

[
ρλ

LiL j + LjLi

2

]
, (9)

and where one defines a different SLD operator Lj for each
parameter λ j . The matrix bounds above can be translated into
a family of scalar bounds, where in particular we will consider
the one for the sum of the variances of each parameter∑

j

Var(λ j ) � 1

M
Tr[F−1] � 1

M
Tr[Q−1]. (10)

One of the main differences between the single- and the mul-
tiparameter scenario is that, while the classical Cramér-Rao
bounds (both matrix and scalar) defined in terms of the clas-
sical FI matrix F can be in principle saturated, this is not in
general the case for the quantum Cramér-Rao bounds dictated
by the QFI matrix Q. This fact can be understood by observing
that in general optimal measurements for different parameters
may correspond to noncommuting observables. This led to the
formulation of several other bounds that may be more tight
under certain conditions [87]. However, in this work, we will
not focus on this aspect, and we will rather consider the scalar
bound (10) as an ultimate benchmark able to give relevant
information on the multiparameter estimation properties of
the quantum system under exam, and we will then focus on

a particular feasible measurement strategy and to the corre-
sponding (pontentially achievable) classical bound.

In the framework of multiparameter quantum estimation
also falls the case of nuisance quantum estimation [102]: Sup-
pose we are interested only in a single-parameter λ j from the
set of d unknown parameters λ. In this case, the other d − 1
parameters are typically called nuisance parameters, and the
bound on the variance of any estimator of the parameter λ j

reads

Var(λ j ) � 1

M
(F−1) j j � 1

M
(Q−1) j j, (11)

where the inverse of the diagonal elements of the classical and
QFI F = F j j and Q = Q j j in Eq. (4) have been replaced by
the diagonal elements of the corresponding inverse matrices.
One has that in general (F−1) j j � (F j j )−1 and (Q−1) j j �
(Q j j )−1, confirming the fact that having less information on
the other parameters can only lead to a worse estimation
of the parameter λ j . We, however, remark that in this case,
the ultimate bound (11) for a single-parameter λ j can be in
principle achieved, with the optimal measurement strategy
that coincides with the one that is optimal in the nuisance-free
scenario.

As a technical remark, we point out that in order to derive
the bounds described in this section, it is necessary to know
the derivative of the operator respect to the parameters λ, for
example, in order to find the SLD operators as in Eq. (6).
In our case, we will need to resort to numerical procedures
often in order to evaluate this derivative. In particular we will
compute the five-point stencil first derivative approximation
with respect to λi and increment �λi � 1:

∂ f (λi)

∂λi
≈ [− f (λi + 2�λi ) + 8 f (λi + �λi )

− 8 f (λi − �λi ) + f (λi − 2�λi )]/(12�λi ), (12)

which has an error of order (�λi)4.

III. THE MODEL

We consider a hybrid system composed of a two-level
atom (qubit), a single electromagnetic (cavity) mode, and a
(mechanical) harmonic oscillator. The qubit interacts with
the cavity mode via JC Hamiltonian, whereas the cavity
field couples to the mechanical oscillator through nonlinear
optomechanical interaction [64]. Indeed, the qubit and the
mechanical parties will interact with the cavity mode undergo-
ing entirely different Hamiltonians. The total cavity-mediated
tripartite Hamiltonian is (h̄ = 1)

H = ωca†a + ωmb†b + ωq

2
σz + g1(σ+a + σ−a†)

− g2a†a(b† + b), (13)

where the cavity (mechanical) mode is described by the
bosonic operators satisfying [a, a†] = I ([b, b†] = I) with
natural frequency ωc (ωm). The qubit is described by Pauli
matrices σx,y,z, σ

+ = |e〉〈g|, σ− = |g〉〈e| with energy-gap ωq

between the ground-state |g〉 and the excited energy level
|e〉. The JC interaction term, σ+a + σ−a†, accounts for the
annihilation (creation) of a photonic excitation in the cavity
by (de-)exciting the qubit ground state (excited state) with
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coupling strength g1. The nonlinear optomechanical Hamil-
tonian, −g2a†a(b† + b), couples the cavity number operator
directly to the mechanical object’s position [∝ (b† + b)] via
radiation-pressure interaction with strength g2. While the di-
agonalization of the Hamiltonian in Eq. (13) for an arbitrary
set of coupling strengths has not yet been found, the use of
the polaron (a polariton-phonon states) basis permits diago-
nalizing the Hamiltonian for a particular regime of parameters
[64,103]. For the sake of completeness, we present such di-
agonalization on a polaron basis as well as some needed
analytical insights to grasp how the phononic excitations dress
the polariton JC states in the Appendix A. We would like
to estimate the coupling parameters g1 and g2 through the
dynamics of the system when the accessibility to the system
is limited, such that only one part of the hybrid system can be
measured.

The JC Hamiltonian assumes |ωq − ωc| � ωq + ωc for
its derivation, which in turn allows us to neglect the fast
temporal oscillations while keeping the rotating terms σ+a
and σ−a† [104]. As it is known, this rotating wave approx-
imation holds valid when g1 � 0.1ωc. Going beyond this
regime, one necessarily needs to describe the dynamics with
the isotropic quantum Rabi model as the counter-rotating
terms σ+a† and σ−a give rise to experimentally measurable
effects [105]. The single-photon optomechanical coupling g2

highly vary depending on the experimental setup considered
[58]. Nonetheless, in the nonlinear regime its value range
is typically from g2 � ωm to g2 � 0.2ωm for certain novel
architectures [27,106–110]. In general ωm � ωc and in what
follows, we assume ωc = ωq and ωc = 100ωm. Based on
these, we consider the coupling g1 and g2 varying within a
range g1 ∈ (0, 0.2ωm] and g2 ∈ (0, 0.2ωm].

We commence by considering the closed system evolution
(the open quantum case is studied in Sec. VI) from the initial
state:

|ψ (0)〉 = |g〉 ⊗ |α〉 ⊗ |β〉. (14)

Here the qubit initializes in its ground-state energy, whereas
the cavity (mechanical) field evolves from a coherent state
of amplitude α = 2 (β = 2). The system evolves under the
action of the Hamiltonian as |ψ (t )〉 = e−iHt |ψ (0)〉. The quan-
tum state of each subsystem is described by a reduced density
matrix through tracing out the other parties

ρs(t ) = Trŝ[|ψ (t )〉〈ψ (t )|], (15)

where the label s accounts for the cavity, qubit, or mechanical
subsystems and Trŝ[·] means tracing out the complementary
parts of the subsystem s. As the system evolves, the informa-
tion of g1 and g2 is imprinted in the wave-function |ψ (t )〉,
and thus ρs(t ). Regarding the estimation of g1 and g2, one can
raise two open questions: (i) Which subsystem is more infor-
mative about the values of g1 and g2? (ii) What percentage
of the global information content, extracted from the global
state |ψ (t )〉, can be accessed through each subsystem? In the
following sections, we address these issues.

Entanglement dynamics

The evolution governed by the Hamiltonian in Eq. (13)
is complex and can only be solved analytically in the limit

FIG. 2. Von Neumann entropy S(t ) for each subsystem as a
function of the scaled time ωmt for different g1 and g2 coupling
parameters. The dynamics evolves from an initial state as in Eq. (14)

of vanishingly small g2, namely, g2 � ωm. Therefore for a
general case we have to compute the evolution numerically.
To understand the dynamics of the system, we investigate how
each subsystem entangles in time, outlining relevant remarks
on the tripartite correlation dynamics. To do so, we compute
the von Neumann entropy

S(t ) = −Tr[ρs(t )log2ρs(t )], (16)

which quantifies the degree of entanglement between the sub-
system s and the rest of the system. Here the logarithm in base
2 sets the upper limit for a maximally entangled qubit sub-
system as 1. Furthermore, we numerically truncate the cavity
and the mechanical parties up to n = 25 of bosons, and hence
one can fairly compare the entanglement between such sub-
systems. In Fig. 2 we compute the von Neumann entropy S(t )
for each subsystem as a function of the scaled time ωmt for
four representative g1 and g2 coupling parameters. In Fig. 2(a)
we consider a regime where both g1 and g2 are small, namely,
g1 = g2 = 0.01ωm. As the figure shows, each party weakly
entangles with the rest of the system. However, a noticeable
oscillatory entanglement of both the cavity and the mechani-
cal oscillator within each mechanical cycle takes place. This is
because the optomechanical interaction occurs in time scales
of the order of 1/ωm, while the qubit-light interaction, here
scaled by ωm, evolves in slower times proportional to 1/ωc. In
Fig. 2(b), we consider the situation where g2 	 g1, namely,
g2 = 0.2ωm and g1 = 0.01ωm. As evident from the figure,
the nonlinear optomechanical evolution dominates over the
almost negligible qubit entanglement, showing the coherent
light-matter dynamics due to the well-known nonlinear Kerr-
like coherent phase [19,24]. The entanglement of the cavity
and the mechanical oscillator takes its maximum at half of the
mechanical oscillator’s cycle [24]. Furthermore, one finds the
expected mechanical disentanglement at multiples of 2πωmt ,
which due to the presence of the qubit, the disentanglement is
only approximated. Note that in Figs. 2(a) and 2(b) the entan-
glement of the cavity and the mechanical oscillator follow an
almost identical curve. This is because in these two regimes
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FIG. 3. Inverse of the QFI (Qii )−1 for partial access and for the global state for four coupling parameters. Panels (a) to (d) show the
estimation of g1 by knowing g2; panels (e) to (h) show the estimation of g2 by knowing g1.

g1 is very small, and thus the qubit is almost disentangled
from the rest. Therefore most of the entanglement is coming
from the bipartite entanglement between the cavity and the
mechanical oscillator. In Fig. 2(c), we consider the oppo-
site regime where g1 	 g2, namely, g1 = 0.2ωm and g2 =
0.01ωm. Interestingly, the qubit (almost overlapped with the
light subsystem) entangles maximally with the rest of the sys-
tem at the first mechanical oscillator, remaining considerably
high within the time interval ωmt ∈ (0, 6π ]. This is because in
this regime g2 is very small, and thus the mechanical oscillator
remains almost disentangled from the others. In Fig. 2(d), we
consider a regime where both g1 and g2 are not negligible,
namely, g1 = g2 = 0.2ωm. As opposed to the above cases,
there is an evident interplay between parties, and thus one
cannot only approximate its entanglement dynamics via JC
or optomechanical Hamiltonians alone. Unlike Fig. 2(b), the
stronger presence of the qubit makes the mechanical party
remain entangled after one period. Additionally, it is observed
that the qubit keeps highly entangled within the time window,
whereas the mechanical and the light parties now entangle
differently, with the cavity field reaching higher values of
entanglement with the rest of the system. This analysis shows
that, with partial accessibility, one has a rich playground for
sensing g1 and g2 and depending on their values the most
relevant subsystem may be different.

IV. SINGLE-PARAMETER ESTIMATION

Here we start to derive the different bounds on the estima-
tion precision for the two coupling parameters. We will thus
consider the evolved quantum state as our quantum statistical
model ρg, with the vector of parameters g = {g1, g2}.

We first focus on setting the precision limits for estimating
only one coupling parameter assuming the other one is known.
As presented in Sec. II, in this case the ultimate bound is
given by Eq. (4), and thus the expression that quantifies the
above is (Qii )−1, for i = 1, 2, and where Q is the QFI matrix
corresponding to ρλ.

In Fig. 3 we numerically evaluate the inverse of the QFI
(Qii )−1 for the partial and global states for four relevant cou-
pling parameters.

Let us first focus on panels Figs. 3(a) to 3(d), where we
show the precision limits in estimating g1 by knowing g2.
In Figs. 3(a) and 3(c), we consider weak optomechanical
coupling g2 = 0.01ωm while the qubit-light coupling takes
the values g1 = 0.01ωm and g1 = 0.2ωm, respectively. Notice
that, while the quantum state can be derived as in Eq. (A11),
the QFI expression remains intractable. Hence we rely on
numerical simulations with the five-point method derivative
as in Eq. (12). As expected, the mechanical oscillator which
can encode g1 only through the cavity field remains highly dis-
entangled from the rest of the system due to small g2 and thus
plays an irrelevant role in estimating g1. Nonetheless, as seen
from Fig. 3(a), having partial access to the qubit subsystem
nearly saturates the ultimate global bound. As g1 increases,
as shown in Fig. 3(c), a transition between the qubit and the
light parties occur at ωmt 
 2π for delivering the best partial
estimation performance. Thanks to the regime of g2 � ωm,
the mechanical system can be neglected and the dynamics
can be approximated by JC evolution. Indeed, an initial state
|ψJC(0)〉 = |g, α〉 evolves in the Schrödinger picture as

|ψJC(t )〉 = c0|g, 0〉 +
∞∑

n=1

cn(g1)|g, n〉 + dn(g1)|e, n − 1〉,
(17)

where

c0 = e−|α|2/2,

cn(g1) = c0
αn

√
n!

e−inωct cos(
√

ng1t ),

dn(g1) = −ic0
αn

√
n!

e−inωct sin(
√

ng1t ). (18)

The QFI for the JC global pure state in Eq. (17) can be derived
analytically, yielding

(Q11)−1
global,JC = 4|α|2t2, (19)
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which is almost equal to the precision achievable from the
global state Fisher information, orange-squared line in Fig. 3.
To observe that the global bound is nearly saturated by the
qubit subsystem, one realizes that for weak qubit-light cou-
pling g1 = 0.01ωm the system evolves approximately as

|ψJC(t )〉 ≈ (|g〉 + θ (g1)|e〉) ⊗ |α〉, (20)

with a g1-dependent coefficient θ (g1). Obviously, all the in-
formation of g1 is encoded in the state of the qubit, making
it the most relevant subsystem to be used for sensing g1. In
short, the vanishing value of g2 makes the mechanical part
irrelevant and the small value of g1 implies that the informa-
tion is almost fully encoded in the state of the qubit. Note
that Eq. (20) is only an approximation to have a qualitative
understanding of the dynamics. For instance, although the
cavity state in Eq. (20) looks independent of g1, Fig. 3(a)
clearly shows that the cavity subsystem carries information
about g1. On the other hand, increasing g1, see Fig. 3(c),
makes the Rabi coefficients cn(g1) and dn(g1) to dynamically
encode the parameter g1 into the cavity subsystem undergoing
more complex dynamics as shown in Eq. (18). In Fig. 3(b),
we consider g1 = 0.01ωm and g2 = 0.2ωm. Again, similar to
Fig. 3(a), because g1 is small the information content of the
qubit almost matches with the global state. However, since g2

is large the mechanical state cannot be ignored anymore and
one can write

|ψ (t )〉 ≈ (|g〉 + θ (g1)|e〉) ⊗ |ψOM(t )〉, (21)

where |ψOM(t )〉 is the quantum state of the cavity and the
mechanical oscillator evolved from |ψOM(0)〉 = |α, β〉. By
ignoring the JC Hamiltonian, one can show that (in a frame
rotating at the frequency ωc of mode a, thus ignoring the free
evolution induced by the term e−itωc/ωma†a) [24,25]

|ψOM(t )〉 = c0

∞∑
n=0

αn

√
n!

eig2
2/ω

2
mn2(ωmt−sin(ωmt ))|n, φn(t )〉, (22)

where the coherent mechanical state evolves as

|φn(t )〉 = |βe−iωmt + g2/ωmn(1 − e−itωm )〉. (23)

Obviously, the above is only an approximation as Fig. 3(b)
clearly shows that the cavity and the mechanical states carry
some information about g1, although this is not evident in
Eq. (22). In Fig. 3(d), we consider g1 = g2 = 0.2ωm. No
approximation can be cast for this scenario. Interestingly,
the cavity field is the subsystem which contains most of
the information of g1 and its achievable precision nearly
reaches the ultimate global bound. Notice that for this regime,
the mechanical oscillator also carries significant information
about the coupling g1, which is mediated through the cavity
subsystem.

We now focus on panels Figs. 3(e)–3(h), where we ex-
amine the precision bounds in estimating g2 by assuming
we know g1. In Figs. 3(e) and 3(f), we consider g1 � ωm

with optomechanical values g2 = 0.01ωm and g2 = 0.2ωm,
respectively. In this case, the qubit system (which can encode
g2 only through the cavity field) plays an irrelevant role in the
estimation of g2 due to the very weak coupling g1. In Figs. 3(e)
and 3(f), the mechanics shows high peaks at ωmt = 2πk for
some integer k. This poor performance in estimating g2 is

because such a system almost returns to its initial state [see
Eq. (23)] at those times,

|φn(ωmt = 2πk)〉 ≈ |β〉, (24)

and therefore it becomes almost completely independent of
g2. However, the mechanical system maximally entangles
with the light field at ωmt = kπ , which explains the constant
lower bounds reached by the mechanics shown in Figs. 3(e)
and 3(f). Notably, as g2 increases the information content of
the cavity field about g2 reaches close to the global bound
as evidenced in Fig. 3(f). Under the coarse optomechanical
approximation, i.e., g1 = 0, one can easily prove that access-
ing the light field coincides with the ultimate global bound at
multiples of ωmt = 2kπ , k being an integer. This is because
at those times, the mechanical oscillator decouples from the
light field and thus all the information of g2 is transferred to
the phase of the pure, decoupled cavity state. Indeed, from
Eq. (22), one finds

(Q22)−1
global,opto = (Q22)−1

light = (|α|g2kπ )−2

64(1 + 6|α|2 + 4|α|4)
. (25)

In Fig. 3(g), we consider g1 = 0.2ωm and g2 � ωm. Here the
strong presence of the qubit coupled to the cavity field pre-
vents the mechanical oscillator to return to its original state, as
evidenced in the attenuated peaks at ωmt = 2πk. In the regime
where both g1 and g2 are strong, exemplified in Fig. 3(h) with
g1 = g2 = 0.2ωm, accessing the cavity field delivers excellent
performance in estimating g2, almost saturating the global
bound, in the presence of strong qubit-light interaction g1.

In general, we can discuss the relationship between the en-
tanglement of different subsystems and their related ultimate
sensing precision by comparing the corresponding plots in
Fig. 2 and Fig. 3, respectively. In particular, we observe very
similar behavior in time, and specifically, a similar periodicity.
On the one hand, we can understand how entanglement is
necessary to redistribute the information on the parameters
among the different subsystems. On the other hand, for en-
tangled systems, the information on the parameters may be
encoded in the (quantum) correlations between such subsys-
tems, and as a consequence, one would lose this information
by assessing only one of them. Indeed, as we also remarked
before, we typically find that the optimal estimation precision
typically corresponds to the local minima of entanglement:
The subsystems acquire information on the parameters dur-
ing the dynamics and such information is localized in these
subsystems when the quantum correlations are small. The
only scenario where this picture fails and one observes
the opposite behavior is when one considers the estimation of
the light-mechanical coupling g2 via the mechanical system:
We observe that the minimum of entanglement, observed at
times ωmt = 2πk in this case, typically corresponds to the
worst estimation precision. This is because, at those specific
times, the mechanical system almost returns to its initial state,
and thus it carries little to no information on the parameter that
can be extracted via a measurement on this subsystem alone.

Optimal subsystem

As discussed in the previous section, accessing different
subsystems gives different estimation performances for a time
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FIG. 4. Efficiency as defined as in Eq. (26) for the estimation
of g1 [panels (a) and (c)] and g2 [panels (b) and (d)] for two time
intervals. The height of each bar quantifies the performance with
respect to the ultimate global bound, whereas the color for each bar
represents the optimal subsystem.

interval and a given set of parameters g1 and g2. One can
quantify the performance of each subsystem by comparing the
(Qii )−1

sub with the precision obtainable from the global state,
namely, (Qii )−1

global. Therefore we define the single-parameter
efficiency ratio

η
(single)
i = (Qii )−1

global

(Qii )−1
sub

∣∣∣∣∣
t=t∗

, (26)

where t∗ is the time where the optimal subsystem reaches
its minimum within a given time interval. In general, 0 �
η

(single)
i � 1 and each subsystem which contains more infor-

mation about gi results in higher values of η
(single)
i .

By fixing the time within the interval t � 6π/ωm, we deter-
mine which subsystem achieves higher efficiency. In Figs. 4(a)
and4(b), we depict the optimal subsystem as a function of
g1 and g2. In Fig. 4(a), g1 is estimated while g2 is known.
Interestingly, for small values of g1, no matter what g2 is, the
optimal subsystem is the qubit. For g1 > 0.05ωm, the optimal
subsystem changes to be the light. In Fig. 4(b), g2 is estimated
while g1 is known. Remarkably, the light remains the optimal
subsystem for all ranges of g1 and g2. In practice, the time over
which the estimation can happen is highly limited due to im-
perfections such as decoherence, damping, and dephasing. By
reducing the time interval to t � 2π/ωm, we repeat the above
analysis to determine the optimal subsystem. In Figs. 4(c) and
4(d), we depict the optimal subsystem as a function of g1 and
g2. In Fig. 4(c), we consider the case where g1 is estimated
and g2 is known. Interestingly, compared with Fig. 4(a), in
most of the cases, the optimal subsystem becomes the qubit.

In Fig. 4(d), we consider estimation of g2 when g1 is known.
Surprisingly, compared with Fig. 4(b), in the regime that g2

is very small, the optimal subsystem becomes the mechanical
oscillator.

This analysis shows that the optimal subsystem for esti-
mating g1 changes between the qubit and the light depending
on the affordable time interval as well as the strength of
the coupling, in particular g1. For estimating g2, in most of
the cases, the light is the optimal subsystem. Only when the
affordable time interval is short, and g2 is very small, the
optimal subsystem becomes the mechanical oscillator.

V. MULTIPARAMETER ESTIMATION

In this section, we present two different multiparameter
estimations scenarios: (i) Estimating only one gi by assuming
the nuisance presence of the other, the so-called nuisance
estimation, and (ii) inferring both unknown parameters g1 and
g2 simultaneously, the so-called joint estimation.

Let us first focus on the nuisance estimation of the parame-
ters g1 (g2) in the presence of g2 (g1). To do so, we recall from
the bounds in Eq. (11) that the expression that quantifies this
are the diagonal elements of the inverse of the QFI matrix

(Q−1)11 := Q22

Q11Q22 − Q2
12

, (27)

(Q−1)22 := Q11

Q11Q22 − Q2
12

. (28)

In Fig. 5, we present the precision limits quantified by (Q−1)ii

for the estimation of gi when the other nuisance parameter
g j is present in the system. Notably, as the figure shows,
the nuisance scenario highly resembles the single-parameter
estimation case already discussed and shown in Fig. 3. Hence
one concludes similar remarks, namely, (i) that the mechanical
oscillator (which can only encode g1 using the cavity field
as mediator) poorly performs for the estimation of g1 [see
Figs. 5(a)–5(d)], (ii) analogously the qubit system (which can
only encode g2 through the light field) poorly performs for
the estimation of g2 [see Figs. 5(e)–5(h)], and (iii) having
partial accessibility to the qubit or the light parties gives excel-
lent performances, even almost saturating the ultimate global
bound. It is worth emphasizing that while the above results
share similar conclusions with the single-parameter scenario,
they are far from being trivial. The fact that this is the case
for the present model shows the relevance of determining the
precision limits for each subsystem.

To evidence that the estimation in the presence of nuisance
parameters, which employs the multiparameter mathematical
tools for its description, would still degrade the estimation of
gi in the presence of an unknown g j , we define its correspond-
ing nuisance-estimation efficiency ratio as

η
(multi)
i = (Q−1)ii,global

(Q−1)ii,sub

∣∣∣∣∣
t=t∗

, (29)

where t∗ is the time where the optimal subsystem reaches
its minimum within a given time interval. In Fig. 6 we illus-
trate the efficiency for this scenario. As seen from the figure,
even in the presence of an unknown parameter, having par-
tial accessibility to the qubit and light subsystem still shows
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FIG. 5. Precision limits quantified by (Q−1)ii for the estimation of gi when a nuisance parameter gj is present in the system.

adequate performance. In particular, in panels (a) and (c)
of Fig. 6 one recovers the qubit-to-light efficiency transition
shown in Fig. 4 for a similar set of parameters g1 and g2. In
Figs. 6(b) and 6(d), it is evident that the light field performs
better for both time windows with minor degrading when it
is compared with the single-parameter scenario in Fig. 4. One
concludes that for the present hybrid model, the extra nuisance
parameter adds a feeble noise in the final precision limits for
this particular multiparameter estimation scenario.
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FIG. 6. Panels (a) and (c) show the efficiency for the estimation
of g1 in the presence of a nuisance unknown parameter g2 for two
time intervals. Similarly, panels (b) and (d) show the estimation of
g2 in the presence of a nuisance parameter g1 for the same time
windows.

We now focus on setting the precision limits when both
parameters are unknown, the so-called joint estimation. In
particular we will consider as our figure of merit the scalar
bound in Eq. (10) that in our scenario can be written explicitly
as (in the following we omit the number of repetitions for the
experiment M)

Var[g1] + Var[g2] � Tr[Q−1] := Q11 + Q22

Q11Q22 − Q2
12

, (30)

where Var[gi] is the variance for the parameter gi. The above
equations determine the uncertainty in estimating jointly the
unknown parameters g1 and g2.

In Fig. 7 we plot the joint uncertainty, quantified by
Tr[Q−1], for the simultaneous estimation of g1 and g2. The
figure shows that both the qubit and the mechanical parties
give poor performances compared with previous estimation
scenarios. This can be explained by separating the joint esti-
mation expression into its nuisances elements, i.e., Tr[Q−1] =
(Q−1)11 + (Q−1)22. As discussed in Fig. 5, while the qubit
(mechanics) provides a good performance in estimating g1

(g2), it fails in performing efficiently for the coupling pa-
rameter g2 (g1). Consequently, the overall additive operation
results in estimating both coupling parameters jointly with
deficient performances. The above bad additive compensation
undermines the qubit and the mechanical oscillator as good
probes when the system’s parameters are estimated jointly. On
the other hand, as evident from Fig. 7 the light subsystem per-
forms exceptionally well within the considered time window
remarkably even almost approaching the ultimate precision
limits given by accessing the system globally.

As we have mentioned in Sec. II, the multiparameter scalar
quantum Cramér-Rao bound is not in general achievable.
For this reason we will here also analyze the performance
of a particular measurement strategy in order to derive the
corresponding classical Fisher information matrix F and the
corresponding multiparameter scalar bound. Previous sec-
tions have studied the bounds in estimating g1 and g2 in
a hybrid nonlinear system with partial accessibility. In par-
ticular, our results show that the information content in the
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FIG. 7. Precision limits for the joint estimation Tr[Q−1] of pa-
rameters g1 and g2 as a function of time ωmt for four coupling
parameters. We have also included the optimized classical Fisher
information scalar bound, Tr[F−1], when the light field is measured
using a homodyne detection scheme.

cavity field makes it the most suitable subsystem to probe
the coupling parameters jointly (see Fig. 7). Therefore we
will only present a feasible measurement of the light field
for the simultaneous estimation of g1 and g2, the widely used
homodyne detection [111]. As presented in Sec. II, the scalar
bound that quantifies the precision limits in estimating g1 and
g2 simultaneously for a fixed measurement basis is

Var[g1] + Var[g2] � Tr[F−1], (31)

where the equality is reached for an optimal estimator and
F is the classical Fisher information whose elements can be
evaluated via Eq. (8) and by considering the homodyne condi-
tional probability p(x�LO |g). In particular we can compute this
probability as follows:

p(x�LO |g) = Tr[|x�LO〉〈x�LO |ρlight (t )], (32)

where |x�LO〉 is the eigenvector of the rotated quadrature oper-
ator xφ with local oscillator phase φ defined as

x�LO = ae−i�LO + a†ei�LO

√
2

, (33)

and ρlight (t ) is the reduced density matrix of the light field. No-
tice that the performance of the homodyne detection depends
on the choice of the local phase �LO. However, this phase
is known and tunable in real experiments and, therefore, we
optimize the homodyne detection procedure over �LO as

Tr[F−1] := min
−π��LO�+π

Tr[F−1]. (34)

In Fig. 7, we contrast the classical Fisher information bound
Tr[F−1] with the quantum bound Tr[Q−1]. As seen from the
figure, the homodyne detection for the light field performs
adequately within the time window. Interestingly, despite the

fact that the simple optimized homodyne detection is not the
optimal measurement basis (which could be unfeasible in
practice), its performance is not very far from the optimal one.
This shows that one can jointly determine g1 and g2 over a
wide range merely by performing the homodyne detection on
the cavity field.

VI. OPTIMAL SUBSYSTEM IN THE PRESENCE
OF IMPERFECTIONS

This section presents the performance of the subsystems
for the estimation of g1 and g2 in the presence of imper-
fections. For our purpose, we will restrict the analysis only
to imperfections arising from the dynamics while keeping
the whole measurement procedure with perfect efficiency. As
known, any physical system interacts unavoidably with one
or more reservoirs, an inaccessible system with larger degrees
of freedom than the system of interest that generally causes
detrimental effects to the system’s dynamics. From a practical
perspective, investigating the system under such detrimental
effects is of utmost importance as it determines its feasibility
in a more real experimental scenario. To have a fair compar-
ison between the unitary and the nonunitary dynamics, we
consider our system to evolve from

ρ(0) = |g〉〈g| ⊗ |α〉〈α| ⊗
∞∑

n=0

n̄n

(1 + n̄)n+1
|n〉〈n|. (35)

As seen from the above, while both the qubit and the cavity
are initialized in experimentally available pure states, we have
left the mechanical party to evolve from a thermal mixed state
in Fock basis with phonon number occupancy n̄. In particular,
we consider the initial state of the qubit as its ground-state
|g〉, the cavity field with coherent amplitude α = 2, and the
mechanical oscillator with phonon mean value n̄ = 1 [26,27].

To model the open (nonunitary) quantum dynamics, we
solve the Born-Markov master equation

dρ

dt
= −i[H, ρ] + κ

2
D[a]ρ + γD

4
D[σz]ρ + γD[σ−]ρ

× �

2
(1 + N̄ )D[b]ρ + �

2
N̄D[b†]ρ, (36)

where

D[O]ρ = 2OρO† − ρO†O − O†Oρ, (37)

and κ, �, γD, γ account for the cavity intensity decay rate,
the mechanical damping rate, the pure dephasing rate, and the
qubit relaxation rate, respectively. In Eq. (36), N̄ is the average
phonon number in thermal equilibrium N̄ = (eωm/kBT − 1)−1,
where the Planck constant has been set to h̄ = 1, T is the
temperature of the reservoir, and kB is the Boltzmann constant.
Due to the large difference between the mechanical and the
cavity modes, i.e., ωm � ωc, we have omitted the average
photon number in thermal equilibrium. In what follows, we
consider the hybrid system to evolve under the rates κ =
10−2ωm, � = 10−4ωm, γD = 10−2ωm, and γ = 10−2ωm em-
bedded in a reservoir with N̄ = 10 phonon excitations on
average.

We first focus on quantifying how much information con-
tent is lost when the optimal subsystem decoheres, whereas
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FIG. 8. Panels (a) to (d) show the efficiency ratios for the single-parameter and nuisance multiparameter cases when the optimal subsystem
and the global state are computed from a lossless closed dynamics. Panels (e) to (h) show the same as above when the optimal subsystem
decoheres while the global state remains lossless.

the global bound remains lossless. To do so, we consider the
same efficiency ratios as defined in previous sections, namely,
for the single-parameter estimation case

η
(single)
i = (Qii )−1

global,closed

(Qii )−1
sub

∣∣∣∣∣
t=t∗

, (38)

and

η
(multi)
i = (Q−1)ii,global,closed

(Q−1)ii,sub

∣∣∣∣∣
t=t∗

, (39)

for the nuisance multiparameter estimation scenario. Notice
that we have stressed in the above numerators that the global
state evolves as a closed (lossless) system, while the optimal
subsystem will undergo closed or open dynamics.

In Figs. 8(a)–8(d), we show the efficiency ratios for the
single-parameter and nuisance multiparameter cases when
the optimal subsystem and the global state are computed
from a unitary dynamics. Notice that with the choice of a
more experimental mechanical state initialization with n̄ � 1
[26,27], one reaches similar conclusions as to when the system
evolves from a coherent mechanical oscillator. In particular,
from Figs. 8(a)–8(d), it is evident that for estimating g1 the
optimal subsystems can be either the qubit or the cavity field
depending on the set of g1 and g2 parameters. Moreover,
very high performances can be reached especially for weak
values of g1. Additionally, for the estimation of g2, the cavity
field is the dominant optimal subsystem for all the considered
ranges of g1 and g2 parameters. In Figs. 8(e)–8(h), we show
the efficiency ratios for the single-parameter and nuisance
multiparameter cases when the optimal subsystem decoheres

and the global state remains to evolve without losses. Interest-
ingly, as seen from the figures, the efficiency ratios are mildly
attenuated. In other words, for the set of lossy parameters
considered here, one can argue that not much information
content is lost within that time interval, making the single-
parameter and the nuisance multiparameter estimation robust
under decoherence.

We now turn attention to quantify how much information
content the global state loses in the presence of decoherence.
To do so, let us define the single-parameter efficiency ratio
between global states as

μ
(single)
i = (Qii )−1

global,closed

(Qii )−1
global,open

∣∣∣∣∣
t=t∗

, (40)

and

μ
(multi)
i = (Q−1)ii,global,closed

(Q−1)ii,global,open

∣∣∣∣∣
t=t∗

(41)

being the nuisance multiparameter efficiency ratio between
global states undergoing a closed and an open evolution.

In Figs. 9(a)–9(d), we plot the single-parameter efficiency
ratio between global states as well as the nuisance multipa-
rameter efficiency ratio between global states. As seen from
the figures, the attenuation of the information content in the
whole state is around ∼20% for the set of damping ratios
considered for the numerical simulations. One can conclude
that both the optimal subsystems as well as the global bounds
in the presence of imperfections still have enough information
for the estimation of the g1 and g2 parameters.
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FIG. 9. Panels (a) and (b) show the single-parameter efficiency ratio between closed and open global states. Panels (c) and (d) show the
nuisance multiparameter efficiency ratio between global states.

VII. EXPERIMENTAL FEASIBILITY

Recent experimental efforts to hybridize electro- or op-
tomechanical systems with a nonlinear constituent, such as
a qubit, have been developed in devices including giga-
hertz superconducting circuits with Cooper pair boxes as
qubits [67], trapped Rubidium atoms in photonic crystal
cavities [112,113], trapped ions 40Ca+-ions in fiber cavi-
ties [112,114], defect centers in silica toroids [115], and
gallium-arsenide optomechanical resonators with cavity QED
couplings [116,117], among others. The inclusion of a qubit,
coupled either to the cavity or to the mechanical modes, al-
lows us to operate in the somewhat elusive optomechanical
regime, namely, the strong single-photon radiation pressure
interaction (g2 � κ) [118] and the resolved sideband condi-
tion (κ < ωm) simultaneously. Consequently, throughout our
work, we consider g1 ∈ (0, 0.2ωm], g2 ∈ (0, 0.2ωm], the res-
onant qubit-cavity case ωq = ωc, ωc = 100ωm, κ = 10−2ωm,
� = 10−4ωm, γD = 10−2ωm, γ = 10−2ωm, and N̄ = 10, a set
of parameters that can already be achieved in electromechani-
cal systems in the microwave regime. In particular, in order to
justify our set of parameters, we will focus on Ref. [67] where
for the first time a hybrid qubit-electromechanical system was
fully integrated and characterized. There a large d.c. voltage
bias between 5 to 10 V applied to the mechanical degree of
freedom couples via a movable capacitance to the charge qubit
composed of Josephson tunnel junctions. In this case, the ob-
tained hybrid characterization values carried out in a dilution
refrigerator at 20 mK temperature are ωc/2π = 4.93 GHz,
ωm/2π 
 65 MHz of the lowest flexural mode, and g1/ωm

ranges up to scaled coupling qubit-cavity QED frequencies
of 10 MHz (i.e., g1/ωc ∼ 1 near the deep-strong coupling
regime). Remarkably, in the absence of the qubit, an estima-
tion of the bare electromechanical coupling gives g2/ωm ∼
0.15 × 10−7, while by switching on the qubit coupling, the
bare electromechanical coupling increases up to six orders
of magnitude g2/ωm ∼ 0.25 × 10−1 and claimed in the same
Ref. [67] that an exceeding boosting of the electromechanical
radiation pressure up to eight orders of magnitude could be
achieved through an optimized device giving rise to g2 ∼ ωm.
The decoherence parameters are � � 10−5ωm, with N̄ ∼ 6,
γ ∼ ωm and 0.025 � κ/ωm � 0.1. The above justifies the
parameters considered throughout our work within state-of-

the-art experiments or near-future developments toward this
hybrid route.

VIII. CONCLUDING REMARKS

In this paper, we investigate the possibility of dynam-
ically estimating the couplings between qubit-light and
light-mechanics in a hybrid optomechanical system. Although
the quantum state of the entire system carries a wealth of
information about the couplings, in practice extracting such
information demands global measurements which are not
readily available. Thus the most sensible approach is to es-
timate the couplings through measurements on one of the
subsystems, namely, the qubit, cavity light, or the mechanical
oscillator. Due to the entanglement between different com-
ponents of the system, the reduced density matrix of each
subsystem is mixed, and thus it is not obvious how much
information one can extract via this partial accessibility. We
show that indeed the couplings can be estimated through par-
tial accessibility with the precision not very far from the global
bound. Our comprehensive analysis shows that for estimating
the light-mechanics coupling, the light field is dominantly
the optimal subsystem to be measured. Interestingly, this is
also the case for simultaneous joint estimation of the two
couplings. On the other hand, for estimating the qubit-light
coupling, depending on the situation either the qubit or the
light field can be the optimal subsystems. For instance, in the
case of single-parameter and nuisance multiparameter estima-
tion, depending on the range of the qubit-light coupling, the
optimal subsystem can change from the qubit to the cavity
field. The reason that light is the most suitable subsystem
for inferring the couplings is that the light is responsible
for mediating the interaction between the other two parties.
Finally, for the sake of completeness, we show that a simple
widely used homodyne measurement on the light degrees of
freedom can extract the values of the couplings with a fair
precision.
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APPENDIX: JC-LIKE DYNAMICS

This section puts forward key aspects of the tripartite sys-
tem which will help us understand the role of the mechanical
displacement in JC dynamics. Indeed, several works have
already considered such hybrid Hamiltonian in Eq. (13). In
particular, within the single-photon subspace, it has been stud-
ied in the regimes where g1 � ωm, g2 and g2 ≈ ωm leading
to slow Rabi oscillations and the case g2 � ωm where they
are almost suppressed [119]. Additionally, lifting the single-
photon subspace restriction has shown that the population
inversion exhibits anomalous oscillations induced by the me-
chanical displacement for g2 � ωm and different initial states
for the light field and the mechanical object [120]. For the sake
of completeness, we briefly present and discuss the derivation
of the JC-like Hamiltonian derived in Refs. [64,103], where
the mechanical displacement explicitly couples to a qubit-
light polariton doublet.

Let us first consider the polariton-phonon basis {|±(n), m〉}
for the resonant case (ωq = ωc), where m is an integer and
|±(n)〉 are the polariton JC dressed states defined as (n = 0
returns |g, 0〉)

∀n ∈ N, n �= 0,∣∣ +(n) 〉 = 1√
2

(|g, n〉 + |e, n − 1〉), (A1)

∣∣ −(n)
〉 = 1√

2
(|g, n〉 − |e, n − 1〉). (A2)

As known, the polariton basis exactly diagonalizes the JC
Hamiltonian (i.e., g2 = 0), and hence the basis {|±(n), m〉}
enables us to write the hybrid Hamiltonian in Eq. (13) as
follows:

H = ωmb†b +
∑
n∈N

H (n),

H (n) =
(

n − 1

2

)
ωcI

(n) + �(n)

2
σ (n)

z

− g2

{
1

2
σ (n)

x +
(

n − 1

2

)
I(n)(b + b†)

}
, (A3)

where �(n) = 2
√

ng1, I(n) is the identity matrix in the sub-
space spanned by the set {|+(n)〉, |−(n)〉}, and σ

(n)
i are Pauli

matrices acting on the same polariton subspace. Two read-
ily evident features can be drawn from Eq. (A3), namely,
(i) each of the two cavity polariton states {|±(n), m〉} cou-
ples effectively to the mechanical’s position evidenced by
∝ σ (n)

x (b + b†), and (ii) each {|±(n), m〉} contains on aver-
age n−1/2 excitations that displace the equilibrium position

of the mechanical object. One can further absorb the latter
n-dependent mechanical equilibrium displacement by intro-
ducing

b = bn + g2

ωm

(
n − 1

2

)
. (A4)

The above new operator bn introduces an associated Fock
basis |m(n)〉, with m(n) ∈ N phonons for the mechanical mode
centered at

√
2g2/ωm(n − 1/2). The above transformation

leads to the effective JC-like Hamiltonian for the weak single-
photon optomechanical regime g2 � ωm [64],

H 

∑
n∈N

ωmb†
nbn + √

ng1σ
(n)
z − g2

2

(
b†

nσ
(n)
− + bnσ

(n)
+

)
. (A5)

It is worth emphasizing that in the above we have performed
the rotating wave approximation for each n polariton sub-
space, namely, |ωm − �(n)| � ωm + �(n).

Since the polariton number operator N = a†a + σ+σ−
permits us to diagonalize the JC Hamiltonian in the basis
{|±(n), m〉}, one can employ the same techniques to diagonal-
ize the Hamiltonian in Eq. (A5) by defining a polaron number
operator as

Npolaron = b†
nbn + σ

(n)
+ σ

(n)
− . (A6)

This readily lead us to the polaron eigenbasis

�(n) �= ωm,(∣∣ +n,m(n) 〉
∣∣ −n,m(n) 〉

)
= R(2θn,m(n)

)

(∣∣ +(n)
〉∣∣(m − 1)n,m(n) 〉∣∣ −(n)

〉∣∣mn,m(n) 〉
)

, (A7)

where

R
(
2θn,m(n)) =

(
cos θn,m(n)

sin θn,m(n)

sin θn,m(n) − cos θn,m(n)

)
, (A8)

such that

θn,m(n) ∈
(
−π

2
, 0

]
,

tan 2θn,m(n) = g2

√
m(n)√(

�(n)−ωm
)2 + g2

2m(n)
, (A9)

and associated polaron eigenenergies

En,m(n)

± = ±
√

(�(n) − ωm)2

4
+ m(n)

g2
2

4

+ω
(n)
0 +

(
m(n) − 1

2

)
ωm. (A10)

While the unitary dynamics can be now solved straightfor-
ward using

|ψ (t )〉 =
∞∑

n=0
m(n)=0

∑
j=+,−

e−itEn,m(n)

j
∣∣ jn,m(n) 〉〈

jn,m(n) ∣∣ψ (0)
〉
, (A11)

special attention must be paid for the inner product between
the Fock states of b and the displaced basis bn which obeys

∀m(n), l ∈ N,〈
l|m(n)

〉 = Ll−m(n)

m(n)

([
g2

ωm

(
n − 1

2

)]2)
e−[ g2

ωm (n− 1
2 )]2

×
√

m(n)!

l!

[
g2

ωm

(
n − 1

2

)]l−m(n)

, (A12)
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where Ll−m(n)

m(n) (x) is the generalized Laguerre polynomial of
degree m(n) and index l − m(n).

The above brief review on the diagonalization of the
hybrid tripartite Hamiltonian in polaron basis serves two
main purposes, namely, (i) the effective JC-like Hamiltonian
neglects a Star-like shift in the eigenenergies induced by
σ (n)

x g2
2(n − 1/2)/ωm, which must be taken into account when

the single-photon coupling enters the strong-to-moderate op-
tomechanical regime, and (ii) the polaron picture shows that
the mechanical oscillator couples independently to each po-
lariton doublet. Similar effective Hamiltonians have been also
derived by different techniques, for instance, by a displaced
transformation picture [120,121] and through an operator ap-
proach [122].
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