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Introduction

Motivation

The dynamics of quantum field theories (QFTs) has been a major field of research in
theoretic physics for decades. The interest in the study of QFTs originates from the
description of fundamental interactions provided by the Standard Model which poses
interesting theoretical challenges such as the understanding of the confining behavior of
QCD.

The analysis of the strongly coupled regime of QFTs is particularly challenging due to
the fact that perturbative methods are no longer reliable and exact non-perturbative tech-
niques must be employed. Some non-perturbative techniques are always available, with
the most notable example being the constraints imposed by global symmetries through
the associated Ward identities. A class of QFTs where we have more control over the non-
perturbative regime is given by supersymmetric theories. Here many non-perturbative
results have been obtained in the last decades, including non-renormalization theorems,
exact computations for various partition functions and infrared dualities.

Our motivation for the study of supersymmetric QFTs relies on the expectation that they
provide a good sample of field theories with respect to general behaviors and phenom-
ena that they present. We will consider the landscape of supersymmetric QFTs as a
playground which is relatively under control where we can learn “how QFTs work”. As
an example where such a mindset was successful, in [6] it was shown that a supersym-
metric version of QCD exhibits confinement, and furthermore it was shown that this
phenomenon can be understood as a consequence of the condensation of monopoles.

Motivated by this, in this thesis we will analyze supersymmetric QFTs in three and four
spacetime dimensions. Our main goals will be to study the infrared behavior of these
theories, as well as to derive general constraints for the existence of the theories them-
selves. Our main goals include the identification and checking of infrared dualities, both
in three and four spacetime dimensions, and the study of some RG flows for the asso-
ciated theories. We will study exactly marginal deformations of 4d SCFTs and identify
instances of conformally dual theories. In the last Part of the thesis we will focus on the
topic of generalized symmetries in the context of highly supersymmetric non-lagrangian

xvii



xviii Thesis overview

SCFTs, and provide non-trivial consistency constraints for the existence of a certain class
of maximally strongly coupled SCFTs.

Organizational note

The present Thesis consists of three Parts, for a total of eleven Chapters. Part I is com-
posed of Chapters 2, 3 and 4 and presents various results in the context of IR dualities
and s-confinement in 3d SQFTs with four supercharges. Part II spans from Chapter 5
to Chapter 7 and addresses the analysis of conformally dual 4d N = 1 SCFTs obtained
from toric theories with orientifolds. Part III spans from Chapter 8 to Chapter 11 and
is devoted to the study of generalized symmetries in N = 3 four dimensional SCFTs,
including a full classification of 1-form symmetries for regular S-folds and exceptional
S-folds of type Er. Parts I, II, and a substantial fraction of Part III have appeared as refer-
eed publications in scientific journals; co-authors of the relevant articles are mentioned
below.

Chapter 1 :Seiberg duality: We review Seiberg duality forN = 1 four dimensional
SQCD. We introduce concepts such as IR dualities, s-confinement, conformal du-
alities and 1-form symmetris.

Chapter 2: Aharony duality and the S3 partition function: We briefly review
Aharony duality and the computation of the partition function of 3d N ≥ 2 QFTs
on the squashed three-sphere ZS3 .

Chapter 3: Webs of 3d N = 2 dualities with D-type superpotentials: We analyze
various dualities involving 3d N = 2 theories with two tensor or adjoint fields
and D-type superpotential. New dualities are discovered and we show relations
between those and other 3d and 4d dualities already studied in the literature, sup-
porting our claims through computation of exact partition functions. This work
has been completed in collaboration with A. Amariti and has been published as an
article in JHEP ([7]), on which the Chapter is based.

Chapter 4:S-confinement in 3dN = 2 SO/USp adjoint SQCD: We study 3dN = 2
SQCD theories with orthogonal or symplectic gauge groups and monopole super-
potential that exhibit s-confinement. The results are checked through the computa-
tion of the S3 partition function and via confinement/deconfinement procedures.
This work has been completed in collaboration with A. Amariti and has been pub-
lished as an article in Nucl.Phys.B ([8]), on which the Chapter is based.

Chapter 5: Conformal S-dualities from O-planes: We review the construction
of 4d N = 1 theories obtained from Type IIA elliptic models with orientifolds that
have a conformal manifold discussed in [9]. Different models can engineer theories
living on the same conformal manifold. Part of this Chapter has already appeared
in as an article in JHEP ([10]) written in collaboration with A. Amariti, M. Fazzi
and A. Segati.

Chapter 6: N = 1 conformal dualities from unoriented chiral quivers: We study a
series of 4dN = 1 theories engineered by a stack of D3-branes in Type IIB probing
a Calabi-Yau toric singularity in the presence of an orientifold. We build infinite
families of pairs of conformally dual theories. This work has been completed in
collaboration with A. Amariti, M. Bianchi, M. Fazzi, S. Mancani end F. Riccioni
and has been published as an article in JHEP ([11]), on which the Chapter is based.
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Chapter 7: Multi-planarizable quivers, orientifolds, and conformal dualities: We
expand upon the results of the previou chapters building other families of confor-
mally dual theories which generalize the conformal duality between the unori-
ented PdP3b and PdP3c toric theories [12]. This work has been completed in col-
laboration with A. Amariti, M. Bianchi, M. Fazzi, S. Mancani end F. Riccioni and
has been published as an article in JHEP ([13]), on which the Chapter is based.

Chapter 8: N = 3 S-folds: We review the construction of N = 3 S-fold SCFTs and
exceptional S-fold SCFTs.

Chapter 9: A recipe for genuine lines: 1-form symmetries in S-fold SCFTs: We
classify the 1-form symmetry groups of S-fold SCFTs as well as their global struc-
tures by analyzing the maximal refinements of their charge lattices. We also discuss
the presence of non-invertible symmetries in some of these theories. This work has
been completed in collaboration with A. Amariti, D. Morgante, A. Pasternak, and
V. Tatitschieff and has been published as an article in SciPost ([14]), on which the
Chapter is based.

Chapter 10: Exceptional S-folds and discrete gauging: We study the charge lat-
tices of exceptional S-fold SCFTs of type En. We find that all but one of these
theories do not admit a charge lattice consistent with the moduli space and must
be discrete gaugings of free theories. We compute the 1-form symmetry group of
the remaining SCFT.

Chapter 11: Charge lattices in N = 2 SCFTs with κ 6= {1, 2}: We develop con-
straints on the stratification of Coulomb branch and bounds for the 1-form sym-
metry group for N = 2 SCFTs with κ 6= {1, 2} by combining the classification of
rank-1 N = 2 SCFTs and general notions about the Coulomb branch stratification.
This Chapter is both inspired by the results of the previous Chapter and provides
additional evidence for the claims of that Chapter.





CHAPTER 1

Seiberg duality

In this Chapter we review Seiberg duality [15], which is an infrared duality between
N = 1 SQCD theories in four dimensions. This Chapter does not aim to provide a com-
prehensive analysis of SQCD, rather we will highlight some phenomena of this theory
to contextualize and motivate the main body of the thesis. We review the various IR
behaviors of SQCD as the number of flavors is varied and introduce the concepts of
s-confinement, IR duality, conformal duality and higher form symmetries. For a more de-
tails on this topic we refer the reader to the original literature [15, 16, 17, 18, 19, 20] as
well as to more extensive reviews [21, 22, 23].

The available supermultiplets in N = 1 field theories are the vector multiplet and the
chiral multiplet. On-shell the vector multiplet is composed by a vector field and a Weyl
fermion while the chiral multiplet is composed of a Weyl fermion and a complex scalar.
SQCD is a non-Abelian gauge theory whose field content is given by a vector multi-
plet transforming in the adjoint representation of the gauge group SU(Nc), Nf chiral
multiplets Qi transforming in the fundamental representation of the gauge group, usu-
ally called quarks, and Nf antifundamentals Q̃j , usually called antiquarks. The classical
global symmetry is SU(Nf )L × SU(Nf )R × U(1)B × U(1)A × U(1)R, and the charges of
the fields are:

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R
Qi � 1 1 1 RQ
Q̃j 1 � −1 1 RQ
λ 1 1 0 0 1

(1.1)

where λ is the fermion in the vector multiplet and RQ are the R-charges of the scalars in
the chiral multiplets. Anomaly cancellation for U(1)R imposes:

U(1)RSU(Nc)
2 : 2Nf (RQ − 1)T(�SU(Nc)) + T(AdjSU(Nc)

) = 0

⇒ RQ =
Nf −Nc
Nf

(1.2)

and the axial U(1)A symmetry is anomalous. Therefore the non-anomalous global sym-
metry of the theory is SU(Nf )L × SU(Nf )R × U(1)B × U(1)R, and the charges of the

1



2

fields are:
SU(Nf )L SU(Nf )R U(1)B U(1)R

Qi � 1 1
Nf−Nc
Nf

Q̃j 1 � −1
Nf−Nc
Nf

(1.3)

It is known that for 1 ≤ Nf < Nc a runaway potential is generated [19] and the theory
does not have supersymmetric vacua, while for Nf > 3Nc the beta function is positive
and the theory is IR free In the range 3

2Nc ≤ Nf ≤ 3Nc SQCD is believed to flow to
a non-trivial interacting IR fixed point. At large values of Nc and Nf for Nf/Nc inside
the conformal window the IR fixed point can be understood as the Banks-Zaks fixed
point, which is an attractive fixed point with non-trivial gauge coupling. It is widely
believed that such an IR fixed point also exists for finite values of Nf and Nc inside of
the conformal window, although a definitive proof of its existence is not available. At the
conformal fixed point the unitarity bound for the gauge invariant meson QiQ̃j imples:

∆[QiQ̃
j ] =

3

2
R[QiQ̃

j ] = 3RQ = 3
Nf −Nc
Nf

≥ 1

⇒ Nf ≥
3

2
Nc

(1.4)

where the relation:
∆ =

3

2
R (1.5)

holds for chiral multiplets if the R-charge U(1)R is the superconformal one, meaning that
its conserved current lies in the same supermultiplet as the conserved stress tensor. For
3
2Nc ≤ Nf the mesons QiQ̃j violate the unitarity bound. Then we expect an accidental
U(1) symmetries charging the mesons to appear along the RG flow. This accidental
symmetry can mix with the U(1)R, so that U(1)R is no longer the superconformal R-
charge. The analysis of the IR dynamics is better understood in terms of a magnetic dual
theory through Seiberg duality.

Seiberg duality is the statement that for Nf > Nc + 1 the following theories are infrared
dual, meaning that they describe the same infrared fixed point [15]:

• An electric SU(Nc) SQCD with Nf flavors Q, Q̃ and vanishing superpotential:

W = 0 (1.6)

• A magnetic SU(Nf − Nc) SQCD with Nf flavors q, q̃ and N2
f gauge singlet chiral

fields M i
j with superpotential:

W = hqiq̃
jM i

j (1.7)

thereforeM i
j transforms in the �×� representation of the non-abelian global sym-

metry SU(Nf )L × SU(Nf )R.

More explicitly the statement that these theories are dual means that the spectrum and
correlation functions in the IR are exactly the same. Nevertheless the mapping of opera-
tors between the two descriptions is non-trivial, the mesonQiQ̃j of the electric theory are
mapped to M j

i in the magnetic theory. The (anti-)baryons of the electric and magnetic
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theory B and b are mapped as follows:

Bj1,...,jNf−Nc =Qi1 . . . QiNc εj1,...,jNf−Nc ,i1,...,iNc

bj1,...,jNf−Ñc
=qi1 . . . qiÑc εj1,...,jNf−Ñc ,i1,...,iÑc

bj1,...,jNc ↔εi1...,iNf−Nc ,j1,...,jNcBj1,...,jNf−Nc

(1.8)

where the color indices are contracted with the ε symbol. The charges under U(1)R and
U(1)B of the (anti-)baryons of the electric and magnetic theories match.

Computing the full spectrum of the IR theories and the correlation functions is, up to
now, not possible. We can nevertheless perform non-trivial checks of Seiberg duality,
starting from the mapping of the global symmetries:

SU(Nf )L SU(Nf )R U(1)B U(1)R
Qi � 1 1

Nf−Nc
Nf

Q̃j 1 � −1
Nf−Nc
Nf

qi � 1 Nc
Nf−Nc

Nc
Nf

q̃j 1 � − Nc
Nf−Nc

Nc
Nf

M � � 0 2
Nf−Nc
Nf

(1.9)

A non-trivial check of the duality is given by the matching of the ’t Hooft anomalies
for the global symmetries. For example the cubic ’t Hooft anomaly U(1)2

BU(1)R in the
electric theory is given by:

U(1)2
BU(1)R :NfNcB[ψQ]2R[ψQ] +NfNcB[ψQ̃]2R[ψQ̃]

= NfNc

(
Nf −Nc
Nf

− 1

)
+Nf

(
Nf −Nc
Nf

− 1

)
= −2N2

c

(1.10)

where ψq is the fermion in the chiral multiplet q. On the magnetic side we have:

U(1)2
BU(1)R :Nf (Nf −Nc)

(
B[ψq]

2R[ψq] +B[ψq̃]
2R[ψq̃]

)
=2Nf (Nf −Nc)

(
Nc

Nf −Nc

)2(
Nc
Nf
− 1

)
= −2N2

c

(1.11)

the results on the sides match, and similarly one can check that all the other ’t Hooft
anomalies match in a non-trivial way. Other checks of the duality involve the matching
of the moduli space of vacua, the superconformal index as well as geometric construction
of SQCD in string theory.

We may now go back to the case of Nc + 1 < Nf < 3
2Nc. In the dual SU(Nf − Nc)

the beta functions for the gauge coupling and for h are positive, therefore the quarks
are weakly interacting and the singlets M i

j are free. If U(1)R was the superconformal
R-charge the singlets M i

j would violate the unitarity bound, therefore we expect that an
accidental U(1)M symmetry arises along the RG flow and mixes with U(1)R to form the
true superconformal R-symmetryU(1)R̃. We can fix the mixing parameter α by requiring
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that the singlets M are free in the IR:

R̃[M i
j ] =R[M i

j ] + αM [M i
j ] = 2

Nf −Nc
Nf

+ α = 1

⇒ α =
2Nc −Nf

Nf

(1.12)

Then the IR dynamics of SQCD for Nc + 1 < Nf <
3
2Nc is described by a dual theory

that contains weakly interacting quarks and free chirals.

So far our understanding of the dynamics of SQCD as we vary the number of flavors is
summarized in the following image:

There are two more values of flavor number Nf that we still need to study, namely
Nf = Nc and Nf = Nc + 1.

1.1 Nf = Nc: quantum deformed moduli space

Let us look for an effective description of SQCD with Nf = Nc in terms of the gauge
invariant composites of the theory. For Nf = Nc the (anti-)baryons are given by:

B = det(Q), B̃ = det(Q̃) (1.13)

and classically satisfy:
det(M) = BB̃ (1.14)

Notice that in particular the origin of moduli space where 〈M〉 = 〈B〉 = 〈B̃〉 = 0 satisfies
this constraint. At the quantum level this constraint can be modified as follows:

det(M)−BB̃ = Λ2Nc (1.15)

which is consistent with all the symmetries and includes the holomorphic scale Λ, treated
as a spurion. We can enforce such a constraint by introducing an auxiliary field λ that
acts as a Lagrange multiplier through an effective superpotential:

W = λ(det(M)−BB̃ − Λ2Nc) (1.16)

By integrating out one flavor and flowing to Nf = Nc − 1 the superpotential (1.16)
reproduces the correct Affleck-Dine-Seiberg superpotential, therefore (1.16) is the correct
effective superpotential for Nf = Nc.
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Notice that the origin of moduli space c, which is the singular point of the classical mod-
uli space, does not satisfy the quantum corrected constraint (1.15), therefore it is not part
of the quantum moduli space. Then the classical moduli space is smoothed out by quan-
tum corrections, and in particular there is no vacuum where the full global symmetry is
preserved.

The moduli space includes a mesonic branch:

〈M i
j〉 = Λδij

〈B〉 = 〈B̃〉 = 0
, SU(Nf )L × SU(Nf )R → SU(Nf )diag (1.17)

and a baryonic branch:

〈M i
j〉 = 0

〈B〉 = −〈B̃〉 = ΛNc
, U(1)B broken (1.18)

as well as mixed branches where both the mesons and baryons have non-zero vevs. The
mesonic and baryonic branches merge smoothly, in contrast to the classical picture:

1.2 Nf = Nc + 1: s-confinement

Now consider SQCD with Nf = Nc + 1 flavors. The gauge invariant composites are
the mesons M i

j and the baryon and antibaryon which transform in the antifundamen-
tal representations of SU(Nf )L and SU(Nf )R, respectively. The most general effective
superpotential is:

Weff = Λ1−2Nc(det(M)−BiM i
jB̃

j) (1.19)

One can check that turning on a mass to one flavor and flowing to SQCD with Nf = Nc
reproduces the correct superpotential (1.16). The equation of motion for the mesons and
baryons of the effective low energy theory impose:

MB̃ =BM = 0

minor(M)−BB̃ =0
(1.20)
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where minor(M) is matrix of minors of M i
j .

The origin of moduli space 〈M〉 = 〈B〉 = 〈B̃〉 = 0 satisfies both constraints and therefore
is a vacuum even at the quantum level. Therefore there is a vacuum where the full
symmetry group SU(Nf )L × SU(Nf )R × U(1)B is preserved.

Therefore the IR dynamics of SQCD with Nf = Nc + 1 is fully described by the gauge
invariant operators of the theory, mesons and baryons, and preserves all the symmetries
including in particular the chiral symmetry. This is an example of confinement without
chiral symmetry breaking, and is usually called s(oft)-confinement.

1.3 Nf = 2Nc: conformal manifold

Another case worth analyzing in more detail is Seiberg duality for SU(Nc) SQCD with
Nf = 2Nc, which sits in the middle of the conformal window. For this amount of flavor
we have Ñc = Nf − Nc = Nc, therefore the two phases of Seiberg duality only differ
by the presence of singlets and cubic superpotentials. The electric theory has Wele = 0
while in the dual theory there is a non-vanishing superpotential Wmag = hTr(Mqq̃),
where M = QQ̃ is the meson of the electric theory that corresponds to an elementary
singlet in the magnetic description. This theory can be deformed on the electric side by
quartic operators in the gauge invariant combinations of Q and Q̃. These deformations
are exactly marginal, they do not imply any RG flow and they just explore the conformal
manifold. Indeed we have:

R[Q] = R[Q̃] =
Nf −Nc
Nf

=
1

2
(1.21)

therefore at least classically:

R[(QQ̃)2] = 2 ⇒ ∆[(QQ̃)2] = 3 (1.22)

which means that quartic deformations are classically marginal.

The quartic deformations could have a non-zero anomalous dimension, spoiling (1.22).
In such cases the deformation is called marginally (ir)relevant. The quantum corrections
to classically marginal deformations in N = 1 QFTs has been analyzed in generality in
[16]. The two main results are:

• In N = 1 4d QFTs classically marginal deformations are either exactly marginal or
marginally irrelevant. In other words the anomalous dimension is non-negative.

• A marginal deformation can fail to be exactly marginal only if it recombines with
a conserved current.

More precisely the quantum conformal manifold of a QFT is obtained as the Kähler quo-
tient between the classical conformal manifold and the complexified global symmetry
group GC:

M =
Mclass

GC
(1.23)

The construction of the Kähler quotient is usually involved, but we can infer that our
theory has a conformal manifold by a simple counting argument. For large Nf there

are O
(
N2
f

)
conserved currents because the dimension of the adjoint representation of



Seiberg duality 7

g

ξ

g

h

ξ
~

~Electric
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Figure 1.1 On the LHS: couplings of the electric SQCD for Nf = 2Nc SQCD deformed
by a quartic superpotential for the quarks. On the RHS couplings of the dual magnetic
SQCD for Nf = 2Nc SQCD deformed by a quadratic superpotential for the meson. The
red lines represent the dual marginal deformations on both sides of the duality after the
addition of the respective deformations.

SU(Nf ) is dim(AdjNf ) ∼ O
(
N2
f

)
. On the other hand we have O

(
N4
f

)
marginal defor-

mations QiQ̃jQkQ̃l, therefore for large enough Nf there are not enough conserved cur-
rents that can recombine with all the marginal deformations and at least some marginal
deformations must be exactly marginal.

For example if we perturb the electric superpotential by ∆Wele = ξTr(QQ̃)2 such an
exactly marginal deformation corresponds to one direction in the conformal manifold,
emanating from the point (g, ξ) = (g∗, 0) (see the LHS of figure 1.1). This deformation
modifies the dual superpotential as ∆Wmag = ξ̂TrM2, which is marginal as well, because
of Seiberg duality. Indeed for Nf = 2Nc the singlet M has R-charge RM = 1. Also in
this case turning on the deformation correspond to moving on a line of conformal fixed
points, emanating in this case from the point (g̃, h, ξ̃) = (g̃∗, h∗, 0) (see the RHS of figure
1.1). Each point along this line is IR dual to the corresponding point in the dual magnetic
theory.

We can consider a weaker notion of duality under which all the point on the line are dual,
indeed along this line of the conformal manifold the two models share the same central
charges, global anomalies and superconformal index. We will refer to these types of
duals as conformal duals, borrowing the terminology of [24, 25, 26]. Two conformally dual
theories are not IR dual, and the spectrum and correlation functions can be different, but
one can smoothly interpolate between them without triggering RG flows. In this sense
SU(Nc) SQCD with Nf = 2Nc and W = ξTr(QQ̃)2 is conformally dual to SU(Nc) SQCD
with Nf = 2Nc and W = hTr(Mqq̃).
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Another crucial point of having a singlet M with R-charge equal to 1 is that this field
allows us to write down a (marginal) mass deformation in the superpotential. By inte-
grating out such a mass term the theory becomes self-dual and Seiberg duality can be
considered as an identification between points of the conformal manifold of the theory.

In Chapters 5 through 7 we will analyze the conformal manifolds of 4d toric theories and
provide many examples of theories associated to different Type IIB setups that, upon the
introduction of an orientifold, flow to different points of the same conformal manifold.

1.4 Seiberg duality for SO(Nc) groups: 1-form symmetries

Several generalizations of Seiberg dualities have been discovered since the original pa-
per [15], for example by considering SQCD with an orthogonal gauge group already
discussed in [15] or with a symplectic gauge group [17]. Let us consider the case of or-
thogonal gauge group., where the flavor are chirals in the vector representation of the
gauge group.

The following theories are claimed to be IR dual for Nf > Nc − 2:

• SQCD with gauge group SO(Nc) and Nf flavors Qi and vanishing superpotential.

• SQCD with gauge group SO(Nf − Nc + 4) and Nf flavors qi and Nf (Nf + 1)/2
gauge singlets M i,j with superpotential:

W = hQiQjM
i,j (1.24)

thereforeM i,j transforms in the rank-2 symmetric representation of the non-abelian
global symmetry SU(Nf ).

SQCD with orthogonal gauge groups presents many phenomena which are qualitatively
similar to those encountered in the SU(Nc) case. Here we will focus on an aspect which
is qualitatively new, which is due to the fact that SO(Nc) SQCD allows for different
global variants of the gauge group. Given a gauge algebra g the gauge group could be
either the simply connected groupG associated to the algebra or a quotient ofG by a sub-
group H of the center of the algebra G/H . In the case at hand the algebra is either Cn or
Dn, and examples of the possible gauge groups are Spin(Nc) or Spin(Nc)/Zs2 = SO(Nc).
Here Zs2 is the element of the center of Spin(Nc) that charges the spinor representations.
When the gauge algebra is An the possible gauge groups are SU(n) or SU(n)/Zk, with k
a divisor of k. It is important to notice that one can quotient by an element of the center
of the gauge algebra only when there are no fields that are charged under that element.

Different global structures for the gauge groups are associated to the presence of non-
trivial Wilson-’t Hooft lines [20, 27]. In the case of SU(Nc) SQCD the presence of matter
in the fundamental representation screens all the Wilson lines, and the only possible
gauge group is SU(Nc). Similarly, we can not quotient by any element of the center ZNc
of SU(Nc) because the fundamentals are charged under all the elements of the center,
with the exception of the identity.

On the other hand in SQCD with orthogonal gauge group there are no fields charged
under Zs2, the subgroup of the center that charges the spinorial representation S. Then
there are two gauge groups compatible with the matter content, namely Spin(Nc) and
Spin(Nc)/Zs2 = SO(Nc). Furthermore when performing the Zs2 quotient one can add a
Z2-valued torsion, which correspond to a topological term in the action called a discrete
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theta angle [20]. In total are three choices for the gauge group that correspond to three
choices of line operators:

Spin(Nc)

Wilson line in S
SO(Nc)+

’t Hooft line in S
SO(Nc)−

dyonic line in S
(1.25)

Therefore there are three version of SQCD with gauge algebra so(Nc) which have the
same local dynamic but differ by the spectrum of line operators. The line operators are
charged under a Z2 symmetry under which they transform by a phase shift. This sym-
metry, called a 1-form symmetry, only charges the lines which are extended operators
and is an example of a generalized symmetry introduced in [28]. Regular symmetry,
called 0-form symmetry in this language, are associated to codimension-1 topological
operators that implement the action of the symmetry itself. In the case of continuous
0-form symmetry this operator is given by the integral of the conserved Nöether cur-
rent over a codimension-1 surface. More generally the topological operators define the
symmetry, and we can generalize the notion of symmetries to different codimensions.
The 1-form symmetry in this case is generated by codimension-2 topological operators,
and their action on the lines is given by the linking number of the codimension-2 surface
with the line multiplied with the carge.

Seiberg duality maps these different global structures non-trivially [20]:

Spin(Nc)←→ SO
(
Nf −Nc + 4

)
−

SO(Nc)+ ←→ SO
(
Nf −Nc + 4

)
+

SO(Nc)− ←→ Spin
(
Nf −Nc + 4

) (1.26)

Therefore there is a non-trivial map between the line operators of the electric and mag-
netic theories.

In Chapters 9 through 11 we will study the global structure for a class of non-lagrangian
theories called S-folds. The analysis of [20] does not directly apply because we lack a
lagrangian description for many of these theories, therefore we will adopt an alternative
approach based on the analysis of the Coulomb branch of these theories presented in
[29].





Part I

IR Dualities and Confinement in
3d SQFTs





CHAPTER 2

Aharony duality and the S3 partition function

2.1 Introduction

In this Part we mainly consider 3d gauge theories with N = 2 supersymmetry (four
preserved supercharges). We will study IR dualities between various SCQD theories
involving tensorial matter (adjoints, symmetric and antisymmetric), superpotentials (in-
cluding monopole superpotentials) and s-confining theories. In preparation for the main
body of this Part, which consists in Chapter 3 and 4, let us briefly review the most well
known IR duality in this context. Aharony duality[30], which relates:

• 3d U(Nc) gauge theory with Nf chiral fields Qi in the fundamental representation
of the gauge group and Nf chiral fields Q̃i in the antifundamental representation,
with vanishing superpotential:

W = 0 (2.1)

• 3d U(Nf −Nc) gauge theory with Nf chiral fields qi in the fundamental represen-
tation and Nf chiral fields q̃i in the antifundamental representation, with superpo-
tential:

W = M j̃
i q
iqj̃ + v+V− + v−V+ (2.2)

Here M j̃
i with i, j = 1, . . . , Nf are singlets under the gauge group and correspond

to the mesons of the electric theory:

QiQ̃j̃ →M j̃
i (2.3)

Similarly, v± are singlets of the magnetic gauge group and correspond to the monopole
and antimonopole of the electric theory. V± are the monopole and antimonopole
of the magnetic theory, respectively.

These two theories are IR dual, therefore they describe the same theory in the infrared
despite being described by different UV fundamental fields. In particular the gauge
groups of the electric and magnetic theories are different for generic values of Nc and
Nf . This is not an obstruction for the two gauge theory to be dual because gauge sym-
metry is a redundancy in the description of a theory. On the other hand, gauge invariant
operators must be mapped one to one between the electric and magnetic theories. The

13
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explicit map of gauge invariant operator is:

U(Nc)

QiQ̃j̃

V±

→
U(Nf −Nc)

M j̃
i

v±

(2.4)

where V± are the monopole and antimonopole of the electric theory. Notice that in the
magnetic theory the mesons qiqj̃ and the monopoles V± are set to zero by the equation

of motion of M j̃
i and v±, respectively, therefore they do not contribute to the chiral ring

and do not need to be mapped to the electric theory. The global symmetry group must
match between the electric and magnetic description. In the case of Aharony duality the
full global symmetry group is “visible” in the UV, meaning that the symmetries of the
Lagrangian are the same as the symmetries of the IR fixed point. The symmetry group is
SU

(
Nf
)
×SU

(
Nf
)
×U(1)A×U(1)T ×U(1)R where U(1)T is the topological symmetry

and U(1)R is the R-symmetry. The charges of the fields under the global symmetry are
as follows:

U(1)R U(1)A SU
(
Nf
)

SU
(
Nf
)

U(1)T
Q 1/2 1 Nf 1 0

Q̃ 1/2 1 1 Nf 0

M ̃
i 1 2 Nf Nf 0

v± Nf −Nc + 1 −Nf 1 1 ±1
q 1/2 1 Nf 1 0
q̃ 1/2 1 1 Nf 0

M ̃
i 1 2 Nf Nf 0

v± Nf −Nc + 1 −Nf 1 1 ±1
V± Nc −Nf + 1 Nf 1 1 ±1

(2.5)

which is compatible with the operator map (2.4) and the superpotential of the magnetic
theory.

Generally it is possible that for one or both of the gauge theories the full global symmetry
group of the IR fixed point is not visible in the UV and only emerges in the IR. When this
is the case the two lagrangian descriptions appear to describe different IR fixed points,
and more care is required. On the other hand the emergent symmetries of one of the
phases often appear as symmetries of the lagrangian description of the other phase. Then
the duality can be used as an indicator of the emergence of a symmetry in the IR. A
notable example in this regard is the so-calledE7 surprise [31], a theory where the global
symmetry enhances to E7 in the IR. The enhancement can be inferred from a web of self-
dualities of the theory.

It is interesting to consider variations of Aharony duality, for example one can modify
the electric theory in the following ways:

• Introduce a Chern-Simons term for the gauge group. The resulting duality is
known as Giveon-Kutasov duality [32].

• Consider a different amount of fundamental and antifundamental chiral fields, see
[33].

• Consider other gauge groups, for example SU(Nc), SO(Nc) and USp(2Nc), see for
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example [34, 35, 36].

• Introducing a non-trivial superpotential to the electric theory.

• Introducing matter in tensorial representation of the gauge group [37, 38, 39].

In particular the dimensional reduction from 4d theories on S3×S1 to 3d theories on S3,
naturally started from Seiberg duality for SQCD [15] with unitary gauge group, has been
extended in various directions, either considering 4d dualities with real gauge groups
[18, 17], or a rank-two tensor matter field with a power law superpotential [40] or both
[41, 42]. It is sometimes possible to trigger and RG flow in the electric theory and follow
the flow on the magnetic theory, obtaining a new pair of dual models. This opens two
main possibilities in the study of dualities. The first one is to look for new dualities
by deforming known dualities, often by triggering an RG flow to a new IR fixed point.
The second is to relate different dualities, creating a web where some dualities can be
considered as a consequence of other dualities. Notice that such a web is not necessarily
unidirectional, for example Giveon-Kutasov duality can be obtained fro Aharony duality
with a suitable RG flow [43], but the opposite is true as well [44]. In Chapter 3 we explore
the duality web involving gauge theories with two adjoint matter fields and a D-type
superpotential, which generalizes a similar picture for theories with one adjoint matter
field and A-type superpotential [45, 46, 37].

An interesting possibility is that the dual model is described in terms of the confined
degrees of freedom of the original one. When this happens without breaking global
symmetries the electric theory is said to s-confine. Such phenomena often occur as a
limiting case of a duality, that is by suitably choosing Nc and Nf , see for example the
case of 4d SQCD with Nf = Nc + 1 flavors discussed in Chapter 1. In the 4d N = 1 case
with a single gauge group with W = 0 a systematic classification has been proposed by
[47, 48], and elaborating on that results many other examples have been found. Many
examples of this phenomenon in the 3d N = 2 case can be obtained through the circle
compactification of the 4d parent cases, along the lines of [49]. In s-confining dualities
fundamental degrees of freedom of the magnetic theory correspond to gauge invariant
operators of the electric theory, in this regard s-confining dualities represent an explicit
realization of the fact that gauge symmetries are a redundancy of a particular descrip-
tion of a field theory. Finding s-confining theories will be a major goal of the study of
3d field theories carried out in this Section, in particular in Chapter 4, where we will
analyze gauge theories with orthogonal or symplectic gauge groups, adjoint matter and
monopole superpotential.

The main results of this Part of the thesis can be classified in three categories:

• New dualities between 3d gauge theories.

• Relations between known dualities.

• Checks of dualities.

The checks of dualities consist in computing some property of the IR fixed point from
the two UV descriptions and matching the results between them. We already discussed
examples of such checks for Aharony duality in the form of the map of gauge invariant
operators and the match of the global symmetries. Another precision check that has been
extremely useful in the literature is the computation of the euclidean partition function
on S3 via localization techniques. The partition function of lagrangian N = 2 gauge
theories can be computed exactly and can be further refined by introducing fugacities
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for the global symmetries. The computation and matching of the partition function rep-
resents arguably the most precise and reliable check of dualities available, and we will
discuss it in the next Section.

Alongside RG flows and dimensional reduction another interesting approach to study
the relations between dualities is the confinement/deconfinement procedure [50]. More
generally, one can perform a local duality on certain fields of a theory. This provides an
alternative UV description for the physics associated to those fields, while other fields
are still described by the original lagrangian. As an example if we consider a gauge
theory with two gauge groups we may apply a duality to only one of the gauge groups,
provided that a dual description of the gauge group with the correct matter content
and superpotential is known. An iterative application of such local dualities provides
a large amount of dual phases and can be exploited to obtain a new duality from the
knowledge of the local dualities. This procedure has proven to be particularly insightful
when the “local” dualities are confining dualities. As an example, all the 4d s-confining
theories with a single gauge groups and vanishing superpotential can be “proven” to
confine from iterative application of Seiberg and Intriligator-Pouliot dualities [51]. We
will exploit this procedure in Chapter 4 as a consistency check for the new confining
dualities that we study there.

2.2 Three-sphere partition function

In this section we report some useful facts on the analysis of the three sphere partition
function that play a central role in our analysis of 3d N = 2 theories. The euclidean
partition function on the squashed three sphere S3 can be computed exactly for N = 2
theories via the localization technique [52, 53, 54, 55]. The infinite dimensional path inte-
gral reduces to a finite dimensional matrix integral over a vector ~σ representing the scalar
field in the Cartan of the gauge group. The functions that appear in the integrand are the
one loop determinants of the chiral and vector multiplets and they can be formulated in
terms of hyperbolic Gamma functions. These are defined as

Γh(x;ω1, ω2) ≡ Γh(x) ≡ e
πi

2ω1ω2

(
(x−ω)2−ω

2
1+ω2

2
12

)
∞∏
j=0

1− e
2πi
ω1

(ω2−x)e
2πiω2j
ω1

1− e−
2πi
ω2
xe−

2πiω1j
ω2

. (2.6)

where ω1 = ib and ω2 = i/b are related to the squashing parameter of the three sphere,
defined by the equation b2(x2

1 + x2
2) + b−2(x2

3 + x2
4) = 1. The parameter ω is defined as

2ω = ω1 + ω2. The other argument corresponds to the sum of the weights of the repre-
sentation of each field with respect to the scalar in the gauge multiplet ~σ and the scalar
obtained by weakly gauging the flavor symmetries (corresponding to the real masses in
the field theory language). There are also classical contributions to the integral, arising
from CS and FI terms. As an example the partition function of a U(n) gauge theory with
vanishing CS level, FI paramete ξ and Nf fundamental and antifundamental fields is
given by:

Z
Nf
U(Nc)

(~µ;~v; ξ) =
1

√
−ω1ω2

NcNc!

∫ Nc∏
i=1

dσie
−2iπξσi

Nf∏
a=1

Γh (σi + µa) Γh (−σi + νa)

×
∏
i<j

1

Γh

(
±
(
σi − σj

)) (2.7)



Aharony duality and the S3 partition function 17

where we use the shortcut notation:

Γh(a± b) = Γh(a+ b)Γh(a− b) (2.8)

The Gamma functions in the first row are the contributions of the 1-loop determinants of
the fundamental and antifundamental fields, while the Gamma functions at the denomi-
nator of the second row are the 1-loop determinants of the vector multiplet in the adjoint
representation. The fugacities ~µ and ~ν are associated to the SU(f)×SU(f)×U(1)A global
symmetry under which the fundamental fields are charged, therefore they satisfy:

Nf∑
i=1

µi =

Nf∑
i=1

νi = mA (2.9)

and the FI parameter ξ is the fugacity for the topological symmetry U(1)T . As discussed
above this theory is Aharony dual to a magnetic U(Ñc) gauge theory with Nf flavors
and singlets M j̃

i and v±. Aharony duality implies the identity of the partition functions
of the electric and magnetic theories:

Z
Nf
U(Nc)

(~µ;~v; ξ) =Z
Nf

U(Ñc)
(ω − ~µ;ω − ~v;−ξ) e

iπ
2ω1ω2

(λ
∑n+m−1
r=0 (µr−νr))

Nf∑
i,j=1

Γh(µi + νj)Γh

(Nf +Nc + 1)ω − 1

2

n+m−1∑
r=0

(µr + νr)±
ξ

2


(2.10)

with Ñc = Nf − Nc. The identity (2.10) is known to hold [56], providing a precision
check of Aharony duality.

Finally it is interesting to notice that the presence of a superpotential only affect the three
sphere partition function through a constraint on the fugacities. This will be important
when studying theories with a monopole superpotential in the next Chapters.

If an RG flow is triggered it is useful to follow it on the partition function. For example
a flow triggered by a large mass can be implemented by taking a the limit where come
combinations of the fugacities µa, νa are large. A useful formula in practical applications
is the following:

lim
|x|→∞

Γh(x) = e−
iπ
2 sign(x)(x−ω)2

(2.11)

Large fugacity limits usually produce divergent phases from (2.11), we have to provide
an Higgs flow on the dual side such that these divergent phases cancel between the
electric and magnetic theories. This reflects in a large mass limit for the parameters
associated to the gauge algebra ~σ, corresponding to the real scalar in the vector multiplet.
This is a delicate step, because it requires to commute limits and integral and some care
is necessary. The new gauge sector created by such a dual Higgsing are then usually
associated to confining gauge theories. Locally dualizing these sectors corresponds to
computing the associated integrals.

Another useful formula is the inversion formula for the hyperbolic Gamma functions
Γh(2ω − x)Γh(x) = 1. This formula corresponds in field theory to integrate fields ap-
pearing in the superpotential through a holomorphic mass term. Notice that no diver-
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gent phase is generated when a holomorphic mass term is introduced.



CHAPTER 3

Webs of 3d N = 2 dualities with D-type superpotentials

In this Chapter we study 3d N = 2 U(n) SQCD with two adjoints and USp(2n) SQCD
with two rank-two antisymmetric tensors, recovering some of the results already found
in the literature and finding new dualities. We exploit the construction of 3d N = 2
dualities from the dimensional reduction of 4dN = 1 parents on S1 which been a fertile
field of research recently(see [57, 58, 49, 59, 60, 38, 61, 62, 63, 64, 65, 66, 67, 68, 69, 37, 70, 71]
for a partial list of references). Furthermore the possibility of engineering real mass flows
in 3d has been crucial for constructing large webs of dualities without a 4d counterpart.

Cases with two rank-two tensors are less studied [45, 46], and only quite recently the case
of U(n) SQCD has been investigated [37]. The 4d duality shows indeed some differences
with respect to the cases with a single or without any adjoint. For example the chiral ring
is conjectured to be truncated at quantum level in some cases and this duality does not
have a brane engineering in the Hanany-Witten setup [72] so far.

The analisys of [37] was based on the general 4d/3d prescription of [49]: the authors
obtained first an effective duality on S1 and then they arrived to the pure 3d limit by
a real mass flow. Similarly to the analysis performed in the case with a single adjoint
in [38] the construction was pursued by breaking the U(n) gauge group in a product
of U(ni) SQCD sectors and then using known results from the reduction of 4d Seiberg
duality to 3d U(n) Aharony duality [30]. Eventually the unbroken gauge theory was
reconstructed and the 3d duality was proposed. Then in a more recent paper [39] a
generalization of this duality, adding linear superpotentials for the monopole and the
anti-monopole with topological charge one, has been claimed, generalizing the ordinary
SQCD construction of [67] and the case with an adjoint of [70]. In the case with two
adjoints it was observed that there is a second type of superpotential, for the monopole
and the anti-monopole with topological charge two. Non trivial checks have been done
by comparing the expansion of the 3d superconformal index of [73] up to very high
orders in the fugacities. This is the state of the art in the analysis of 3dN = 2 SQCD with
two adjoints. The large web of dualities obtained for other families of SQCD-like models
has not been studied yet and further generalizations in this direction are desirable.

We start our analysis with the case of 4d USp(2n) SQCD with 2Nf fundamentals and
two rank-two antisymmetric tensors A and B and superpotential W = AB2 + Ak+1.
This model was studied in [46] and it was shown to be dual to USp(2(3kNf − n − 4k −
2)) SQCD, with a similar matter content and a non trivial superpotential involving the
dressed symmetric and anti-symmetric mesons of the electric model. This model is the

19
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starting point of our analysis because it leads to the 3d dualities discussed in [37] and
[39], through dimensional reduction and real mass flows. By circle reduction we first
obtain an effective duality, with a KK monopole superpotential turned on. Then through
a real mass and a Higgs flow on both the electric and the magnetic side we arrive at the
3d U(n) duality recently discovered in [39] with two linear superpotential deformations,
for the bare monopole V+ and anti-monopole V− respectively.

The next step consists of eliminating the monopole deformations. This is the more del-
icate and intricate step of our construction, because it requires a dual Higgsing of the
gauge group. This dual Higgsing produces extra gauge sectors that are expected to
be dual to singlets. We conjecture the existence of such confining dualities, involv-
ing U(k − 1) SQCD with one flavor, two adjoints X and Y and superpotential W =
XY 2 + Y k+1 + V±. By the help of this confining duality we remove either the linear
monopole (or anti-monopole) superpotential or both from the U(n) model. In the first
case we obtain a new duality, that reduces in the limiting case to the conjectured confin-
ing duality discussed above. In the second case we find the pure 3d duality obtained in
[37] by reducing the 4d Brodie duality with U(n) gauge group.

Eventually we can also remove the KK monopole superpotential from the Usp(2n) dual-
ity, finding another new duality for pure 3d Usp(2n) with two rank-two antisymmetric
tensors. Also in this last case we observe that the confining sector, obtained after the dual
Higgsing, corresponds to the limiting case of the 3d U(n) duality with a linear monopole
superpotential turned on.

For ease of reading we have summarized the various flows and dualities illustrated in
this introduction in figure 3.1. We stress that this figure can be compared with the ones
appearing in [70] for the cases of U(n) SQCD and Usp(2n) SQCD with an adjoint. The
search for such a homogenous picture for the web generated by the reduction of 4d
Brodie and Brodie-Strassler duality was one of the main motivations of our work.

A central role in our analysis is played by the study of the 4d superconformal index and
by the 3d three sphere partition function [52, 53, 54, 55]. Indeed we will show that each
step taken on the field theory side can be reproduced by localization. Nevertheless, as
already stressed in the case with a single adjoint, the 4d identities relating the supercon-
formal indices of Brodie and Brodie-Strassler dualities are conjectural. At large n the 4d
superconformal index of [74] has been matched in [75], while a complete proof of such
relation still lacks for finite n.

Anyway, starting from such conjectural identities we can obtain the 3d identities for the
U(n) and the Usp(2n) cases with a KK monopole turned on, using the procedure of [49].
All the other steps, corresponding to real mass flow and Higgs flow on the field theory
side, can be studied on the partition function by considering large limits for some of the
parameters. If the divergent terms cancel in the identities we remain with a finite result
that can be interpreted as the new duality obtained after the flow.

In all of the derivation we have conjectured an identity, relating U(k − 1) with two ad-
joints and a linear monopole superpotential and a set of (interacting) singlets. As a con-
sistency check we have obtained this identity as a limiting case of a more general duality
and we have recovered the integral identities for the partition functions for dualities
already checked in terms of the superconformal index in the literature.

3.1 Known dualities with D-type superpotential
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4d U(n) Brodie duality [45]

3d U(n) duality
w/ KK monopoles 3.3

Pure 3d U(n) duality
Hwang-Kim-Park

duality [37]

4d Usp(2n) Orchestra
Brodie-Strassler duality [46]

3d Usp(2n) effective duality
with KK monopoles 3.2.1

Pure 3d
USp(2n)

duality 3.2.5

3d U(n)
Hwang-Kim-Park
duality with linear

monopole and
antimonopole [39]

3d U(n)
duality with linear

monopole or
antimonopole 3.2.3

Circle
reduction

Real masses
and

dual Higgsing

Circle
reduction

Real masses
and

dual Higgsing

Real masses
and

dual Higgsing

Real masses
and

dual Higgsing

Real masses
and

dual Higgsing

Real masses
and

dual Higgsing

Figure 3.1 Survey of the dualities and the flows studied in this thesis. The blue boxes and
arrows represents dualities and flows that have already been proposed and studied in
the literature. The red boxes and arrows represent the dualities and the flows proposed
and analyzed here.
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3.1.1 The 4d dualities

The original duality of [45] relates

• 4d SU(n) SQCD with F flavors Q and Q̃ with two adjoints X and Y interacting
through the superpotential

W = TrXY 2 + TrXk+1 (3.1)

with k odd.

• 4d SU(ñ = 3kF − n) SQCD with F dual flavors q and q̃ with two adjoints x and y
interacting through the superpotential

W = Trxy2 + Trxk+1 +

k−1∑
j=0

2∑
`=0

TrMj,`qx
k−1−jy`q̃ (3.2)

where the singletsMj,` correspond under the duality map to the dressed mesons
QXjY `Q̃ for j = 0, . . . , k − 1 and ` = 0, 1, 2 of the electric phase.

The non anomalous global symmetry is SU(f)L × SU(f)R × U(1)B × U(1)R. The fields
transform under the gauge and global symmetries as follows:

Field SU(n) SU(ñ) SU(f)L SU(f)R U(1)B U(1)R
Q n 1 f 1 1 1− n

f(k+1)

Q̃ n 1 1 f −1 1− n
f(k+1)

X n2 − 1 1 1 1 0 2
k+1

Y n2 − 1 1 1 1 0 k
k+1

q .1 ñ f 1 n
ñ 1− ñ

f(k+1)

q̃ 1 ñ 1 f −nñ 1− ñ
f(k+1)

x 1 ñ2 − 1 1 1 0 2
k+1

y 1 ñ2 − 1 1 1 0 k
k+1

Mj` 1 1 f f 0 2− 2
k+1 + 2(`−1)+k(j−1)

k+1

(3.3)

Here we are actually interested in the U(n) version of this duality, which is obtained by
the standard procedure of gauging the baryonic symmetry, normalized opportunely, in
both the electric and in the magnetic phase.

The other 4d dualities necessary for our analysis was found in [46] and it relates

• Usp(2n) SQCD with 2f fundamentals Q and two rank-two antisymmetric tensors
A and B interacting through a superpotential

W = TrAk+1 + TrAB2 (3.4)

• USp(2ñ = 2(3kf − n − 4k − 2)) SQCD with 2f fundamentals q, two rank-two
antisymmetric 1 tensors a and b and the dressed mesons M (j,`)

rs = QrA
jB`Qs sym-

1Here we refer to the reducible antisymmetric representation, made out of an irreducible traceless tensor
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metric (antisimmetric) for j` odd (even) with j = 0, . . . , k − 1 and ` = 0, 1, 2. The
superpotential of the dual phase is

W = Trak+1 + Trab2 +

k−1∑
j=0

2∑
`=0

Mj`qa
k−j−1b2−`q (3.5)

where the singletsMj,` correspond under the duality map to the dressed mesons
QXjY `Q for j = 0, . . . , k − 1 and ` = 0, 1, 2 of the electric phase. Furthermore k
here is required to be odd, otherwise the global anomalies do not match.

The non anomalous global symmetry is SU(2f)× U(1)B × U(1)R. The fields transform
under the gauge and global symmetries as follows:

Field Usp(2n) USp(2ñ) SU(2f) U(1)R
Q n 1 2f 1− n+2k+1

f(k+1)

A n(2n− 1) 1 1 2
k+1

B n(2n− 1) 1 1 k
k+1

q 1 ñ 2f 1− n+̃2k+1
f(k+1)

a 1 ñ(2ñ− 1) 1 2
k+1

b 1 ñ(2ñ− 1) 1 k
k+1

Mj 0 (j = 0, . . . , k − 1) 1 1 f(2f − 1) 2− 2(n+2k+1)
f(k+1) + 2j

k+1

M2j 1 (j = 0, . . . , k−1
2 ) 1 1 f(2f − 1) 2− 2(n+2k+1)

f(k+1) + 4j+k
k+1

M2j+1 1 (j = 0, . . . , k−3
2 ) 1 1 f(2f + 1) 2− 2(n+2k+1)

f(k+1) + 4j+k+2
k+1

Mj 2 (j = 0, . . . , k − 1) 1 1 f(2f − 1) 2− 2(n+2k+1)
f(k+1) + 2j+2k

k+1

(3.6)

The 4d dualities discussed here can be translated in integral identities between the su-
perconformal index of the electric and of the magnetic phase. These identities have been
conjectured in [77] for the SU(n) and the Usp(2n) dualities. The identity for the SU(n)
duality corresponds to the equivalence between the integral

ISU(n) =
(p, p)n−1(q, q)n−1

n!
Γn−1
e (u)Γn−1

e

(
u
k
2

)
(3.7)

×
∫ n∏

α=1

dzα
2πizα

f∏
a=1

Γe(sazα)Γe(t
−1
a z−1

α )
∏

1≤α<β≤n

Γe(u(zα/zβ)±1)Γe(u
k
2 (zα/zβ)±1)

Γe((zα/zβ)±1)

with
∏n
α=1 zα = 1, u = (pq)

1
k+1 and the integral

ISU(ñ) =
(p, p)ñ−1(q, q)ñ−1

n!
Γñ−1
e (u)Γñ−1

e

(
u
k
2

) k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γe
(
u

2j+k`
2 sa/tb

)
(3.8)

×
∫ ñ∏

α=1

dzα
2πizα

f∏
a=1

Γe(s̃az
−1
α )Γe(t̃

−1
a zα)

∏
1≤α<β≤ñ

Γe(u(zα/zβ)±1)Γe(u
k
2 (zα/zβ)±1)

Γe((zα/zβ)±1)

and a singlet. See [76] for a more complete discussion on this subtlety.
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with
∏ñ
α=1 zα = 1, s̃α = u

2−k
2

∏f
a=1(sata)

3k
2n s−1

a and t̃−1
α = u

2−k
2

∏f
a=1(sata)−

3k
2n ta.

In this thesis we skip most of the details of the index, referring the reader to [78] for con-
ventions. For completeness we just report the definitions of the q-Pochammer symbols
and of the elliptic Gamma functions

(x; p) ≡
∞∏
j=0

(1− xpj), Γe(z) ≡
∞∏

j,k=0

1− pj+1qk+1/z

1− zpjqk
(3.9)

The arguments appearing in these functions are fugacities associated to the symmetries.
For example p and q are associated to the isometries of S3, zα are associated to the gauge
symmetry and the other fugacities refer to the matter fields. The fugacities are con-
strained by the anomaly cancellation as

un
f∏
a=1

sat
−1
a = (pq)f (3.10)

This relation, commonly referred as balancing condition, is required for the validity of
the integral identity. Observe that here we will be interested in the U(n) version of the
duality., As explained in [49] the U(n) identity can be obtained by gauging the baryonic
symmetry, i.e. by integrating over the corresponding fugacity and by turning on the
contribution of the FI term.

Similarly the Usp(2n) duality corresponds to the equivalence between the integral

IUSp(2n) =
(p, p)n(q, q)n

2nn!
Γne (u)Γne

(
u
k
2

)
×

∫ n∏
α=1

dzα
2πizα

∏2f
a=1 Γe(saz

±1
α )

Γe(z
±2
α )

∏
1≤α<β≤n

Γe(uz
±1
α z±1

β )Γe(u
k
2 z±1
α z±1

β )

Γe(z
±1
α z±1

β )

(3.11)

with the balancing condition

un+2k+1

2f∏
a=1

sa = (pq)f (3.12)

and the integral

IUSp(2ñ) =
(p, p)ñ(q, q)ñ

2ññ!
Γñe (u)Γñe

(
u
k
2

) k−1∏
j=0

2∏
`=0

∏
a<b

Γe
(
u

2j+k`
2 sasb

) k−3
2∏

q=0

2f∏
a=1

Γe
(
u2q+1+ k

2 s2
a

)
×

∫ ñ∏
α=1

dzα
2πizα

∏2f
a=1 Γe(u

1− k2 /saz
±1
α )

Γe(z
±2
α )

∏
1≤α<β≤ñ

Γe(uz
±1
α z±1

β )Γe(u
k
2 z±1
α z±1

β )

Γe(z
±1
α z±1

β )

(3.13)
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3.1.2 The 3d dualities

The 3d duality obtained in [37] from the dimensional reduction of Brodie duality relates

• 3d U(n) SQCD with f flavors Q and Q̃ with two adjoints X and Y interacting
through the superpotential

W = TrXY 2 + TrXk+1 (3.14)

with k odd.

• 3d U(ñ = 3kf − n) SQCD with f dual flavors q and q̃ with two adjoints x and y
interacting through the superpotential

W = Trxy2 + Trxk+1 +

k−1∑
j=0

2∑
`=0

TrMj,`qxk−1−jy2−`q̃

+

k−1∑
j=1

V ±j,0Ṽ
±
k−j,0 +

2∑
`=0

V ±0,`Ṽ
±
0,2−` +

κ= k−3
2∑

q=0

W±q W̃
±
κ−q (3.15)

where the mesons correspond to the one discussed on the 4d side. There are also
dressed monopoles operators of the electric theory, carrying topological charge 1
and 2, denoted as V ±j,` and W±q respectively, acting as singlets in the dual phase,
interacting through (3.15) with the dual dressed monopoles, carrying topological
charge 1 and 2, denoted as Ṽ ±j,` and W̃±q respectively. These monopole operators
are defined by radial quantization from states on S2 carrying a non trivial magnetic
flux background. The dressed monopole are then mapped to the following states

V ±j` ↔ TrXjY `| ± 1, 0, . . . , 0〉
W±q ↔ TrX2q| ± 1,±1, 0, . . . , 0〉 (3.16)

and an analogous definition is given for the monopoles appearing in the dual
phase. As stressed in [37] the appearance of the W±q and W̃±q monopoles is one
of the most interesting novelties of models with two adjoints that does not have a
counterpart in any supersymmetric duality worked out so far.

The global symmetry is SU(f)L × SU(f)R ×U(1)A ×U(1)T ×U(1)R. The fields and the
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monopoles transform under the gauge and global symmetries as follows:

Field U(n) U(ñ) SU(f)L SU(f)R U(1)A U(1)T U(1)R
Q n 1 f 1 1 0 r

Q̃ n 1 1 f 1 0 r
X n2 1 1 1 0 0 2

k+1

Y n2 1 1 1 0 0 k
k+1

V ±j` 1 1 1 1 −f ±1 (1− r)f + 2j+k`−(n−1)
k+1

W±q 1 1 1 1 −2f ±2 2(1− r)f + 2+4q−2(n−1)
k+1

q 1 ñ f 1 −1 0 2−k
k+1 − r

q̃ 1 ñ 1 f −1 0 2−k
k+1 − r

x 1 ñ2 1 1 0 0 2
k+1

y 1 ñ2 1 1 0 0 k
k+1

Mj` 1 1 f f 2 0 2r + 2j+k`
k+1

Ṽ ±j` 1 1 1 1 f ∓1 (r − 1)f + 2j+k`+(n+1)
k+1

W̃±q 1 1 1 1 2f ∓2 2(r − 1)f + 2+4q+2(n+1)
k+1

(3.17)

Another useful duality was obtained in the more recent paper [39]. It relates

• 3d U(n) SQCD with F flavors Q and Q̃ with two adjoints X and Y interacting
through the superpotential

W = TrXY 2 + TrXk+1 + V +
0,0 + V −0,0 (3.18)

with k odd.

• 3d U(ñ = 3kf − n− 4k− 2) SQCD with F dual flavors q and q̃ with two adjoints x
and y interacting through the superpotential

W = Trxy2 + Trxk+1 +

k−1∑
j=0

2∑
`=0

TrMj,`qxk−1−jy2−`q̃ + Ṽ +
0,0 + Ṽ −0,0 (3.19)

where the mesons are defined as above

In this case the monopole superpotentials (3.18) and (3.19) break the axial and the topo-
logical symmetry. Furthermore they fix the R-charge r in (3.17) to r = 1 − n+2k+1

k+1 , that
can be computed from R[V0,0] = R[Ṽ0,0] = 2.

Another duality studied in [39] , involves U(n) with the linear monopole and anti-
monopole superpotential for W±0,0 and W̃±0,0

W = TrXY 2 + TrXk+1 +W+
0,0 +W−0,0 (3.20)
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and a dual U(3kF − n− 2k − 2) gauge theory with superpotential

W = Trxy2 + Trxk+1 +

k−1∑
j=0

2∑
`=0

TrMj,`qxk−1−jy2−`q̃ + W̃+
0,0 + W̃−0,0 (3.21)

Here we will not consider this case, even it may be interesting to derive this duality
flowing from some of the other cases studied here.

3.1.3 3d partition function

Focusing on the models of interest here, the partition function for Usp(2n) SQCD with
2f fundamentals and two antisymmetric A and B is given by

Z2f
Usp(2n)(~µ; τA, τB) =

Γh(τA)nΓh(τB)n
√
−ω1ω2

n
2nn!

∫ n∏
i=1

dσi

∏2f
a=1 Γh(±σi + µa)

Γh(±2σi)

×
∏
i<j

Γh(±σi +±σj + τA)Γh(±σi +±σj + τB)

Γh(±σi ± σj)
(3.22)

The superpotential W = Ak+1 + AB2 fixes as τA = 2
k+1ω and τA = k

k+1ω. Furthermore
in presence of a KK monopole superpotential we must impose the further contraints

2f∑
a=1

µa = 2(ω(f − 2)− (n− 1)(τA + τB − ω)) (3.23)

On the other hand the partition function for U(n) SQCD with f pairs of fundamentals
and anti-fundamentals and two adjoints X and Y is given by

ZfU(n)(~µ;~v; τX , τY ; ξ) =
Γh(τX)nΓh(τY )n
√
−ω1ω2

n
n!

∫ n∏
i=1

dσie
−2iπξσi

f∏
a=1

Γh(σi + µa)Γh(−σi + νa)

×
∏
i<j

Γh(±(σi − σj) + τX)Γh(±(σi − σj) + τY )

Γh(±(σi − σj))
(3.24)

The parameter ξ is the FI, corresponding to the mass parameter for the topological U(1)T
symmetry. The superpotential W = Xk+1 + XY 2 fixes as τX = 2

k+1ω and τY = k
k+1ω.

In this case we can impose different constraints on the parameters, depending on the
presence of a KK monopole superpotential or a linear monopole superpotential. The KK
monopole imposes

f∑
a=1

(µa + νa) = 2fω − nτX (3.25)

The linear monopole and anti-monopole superpotential imposes ξ = 0 and

f∑
a=1

(µa + νa) = 2(ω(f − 2)− (n− 1)(τX + τY − ω)) (3.26)
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while the linear monopole (or anti-monopole) superpotential imposes the constraint

f∑
a=1

(µa + νa) = +(or −)2ξ + 2((f − 2)ω − (n− 1) (τX + τY − ω)) (3.27)

3.2 4d/3d reduction of USp(2n) SQCD with two rank-two anti-symmetric
tensors

In this section we derive the 3d dualities starting from the circle compactification of the
one for Usp(2n) SQCD with two rank-two antisymmetric tensors. Before starting the
analysis we have decided to simplify the reading by summarizing the final dualities in
(3.28). We have specified the rank of the electric and of the magnetic gauge group, the
electric and the magnetic superpotential and the paragraph where we have discussed
the derivation of each duality.

Gelectric Gmagnetic Welectric Wmagnetic Paragraph
Usp(2n) USp(2(3kf − n− 4k − 2)) (3.29) (3.30) 3.2.1
U(n) U(3kf − n− 4k − 2) (3.18) (3.19) 3.2.2
U(n) U(3kf − n− 2k − 1) (3.37) (3.39) 3.2.3
U(n) U(3kf − n) (3.14) (3.15) 3.2.4

Usp(2n) USp(2(3kf − n− 2k − 1)) (3.4) (3.50) 3.2.5
U(n) U(3kf − n) (3.1) + (3.55) (3.2) + (3.56) 3.3

(3.28)

3.2.1 USp(2n) with KK monopole superpotential

The circle reduction of the 4d Brodie-Strassler duality for Usp(2n) with 2f fundamentals
and two adjoints gives rise to the following 3d effective duality

• 3d Usp(2n) SQCD with 2f fundamentals Q and two rank-two antisymmetric ten-
sors A and B

W = TrAk+1 + TrAB2 + ηYUSp (3.29)

• 3d USp(2(3kf − n − 4k − 2)) SQCD with 2f fundamentals q, two rank-two anti-
symmetric tensors a and b and the dressed mesons M (j,`)

rs = QrA
jB`Qs symmetric

(antisimmetric) for j` odd (even) with j = 0, . . . , k − 1 and ` = 0, 1, 2. The super-
potential of the dual phase is

W = Trak+1 + Trab2 +

k−1∑
j=0

2∑
`=0

Mj`qa
k−j−1b2−`q + η̃yUSp (3.30)

with k odd.

The monopole operators YUSp and yUSp can be generated because the rank-two antisym-
metric tensors do not carry new zero modes in the KK monopole background [79, 70].

The identity relating the superconformal indices of the 4d theory has been conjectured
in [77]. Reducing the identity between the indices to an identity between the partition
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functions can be done along the lines of the prescription given in [49]. Such prescription
requires a re-definition of the fugacities p, q associated to the isometries of S3, of the
fugacity ua associated to the global symmetry and of the fugacity zi associated to the
gauge symmetry:

p = e2πirω1 , q = e2πirω2 , z = e2πirσ, u = e2πirm (3.31)

The 3d limit is taken as r → 0, and it can be shown that the elliptic Gamma function
become hyperbolic Gamma functions

lim
r→0

Γe(e
2πirz) = e−

iπ
6ω1ω2r

(z−ω)Γh(z) (3.32)

There is a divergent contribution associated to the gravitational anomalies, that cancels
if one reduces an integral identity between 4d dual models. By applying this reduction
to the identity between (3.11) and (3.13) we arrive at

Z2f
Usp(2n)(~µ; τA, τB) = Z2f

USp(2(3kf−n−4k−2))(τA − τB − ~µ; τA, τB)

×
k−1∏
j=0

2∏
`=0

∏
1≤a<b≤f

Γh(jτA + `τB + µa + µb)

×
k−1∏
q=0

f∏
a=1

Γh((2q + 1)τA + τB + 2µa) (3.33)

with the constraint (3.23) among the mass parameters. This constraint descends from the
4d constraint (3.12). While this constraint corresponds to anomaly cancellations in 4d, in
3d it reflects the presence of the KK monopole superpotential, both in the electric and in
the magnetic phase, preventing the generation of an axial symmetry. This is the crucial
aspects underlining the reduction of 4d dualities to 3d, the presence of the KK monopoles
generates new effective dualities on the circle, having the same global symmetries of the
4d ones. This guarantees that the 4d duality is preserved in the effective 3d description.

It is then possible to flow to other 3d dualities by consistently removing the KK monopole
superpotential in both phases. This is in general non trivial because the real mass flow
necessary to remove the monopole superpotential in the electric phase can require also a
dual Higgsing in the magnetic one. On the partition function this translates into the can-
cellation of the divergent pre-factors emerging when integrating out the massive field
in both sides of the identities. In the following we study some of these flows starting
from the duality with the KK monopole superpotential and from the identity (3.33). In
this way we obtain the other 3d dualities summarized in figure (3.1) (except for the U(n)
case with a KK monopole turned on, that will be discussed separately in Section 3.3).

3.2.2 U(n) with linear monopole and anti-monopole superpotential

The first flow under investigation gives rise to the duality of [39] with linear monopole
and anti-monopole superpotential reviewed in sub-section 3.1.2.

The flow consists of assigning a large positive real mass to f of the fundamentals and a
large negative and opposite real mass to the remaining f fundamentals. This real mass
flow is then combined with a Higgs flow, corresponding to a shift of the real scalars in
the gauge group, equal (or equivalently opposite) to the one assigned to f fundamentals.
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The electric theory becomes U(n) with two adjoint and f pairs of fundamentals and
antifundamentals, Q and Q̃. On the dual side the real scalars in the gauge group are
shifted analogously, giving rise to an U(3kf − n − 4k − 2) gauge theory with f pairs of
fundamentals q and q̃ and anti-fundamentals and two adjoints. In this case only the an-
tiysimmetric contributions from the original mesons remains in the low energy spectrum
and they correspond to the dressed mesons Mr,s

j,` = QrXjY `̃Q̃s.

The flow does not generate an axial and a topological symmetry, signaling the presence
of the linear monopole and anti-monopole superpotential of [39].

This duality can be obtained also studying the flow on the partition function. In this case
we assign the masses as{

µa = ma + s a = 1, . . . , f
µa = na − s a = f + 1, . . . , 2f

, (3.34)

and we shift the intagration variables σi → σi + s in both the electric and the magnetic
phase.

By computing the large s limit and by canceling the common divergent pre-factors be-
tween the LHS and the RHS of the identity (3.33) we obtain a new identity

ZfU(n)(~m;~n, ; τA, τB ; 0) = ZfU(3kf−n−4k−2)(τA − τB − ~n; τA − τB − ~n; τA, τB ; 0)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb) (3.35)

with the constraint

f∑
a=1

(ma + nb) = 2(ω(f − 2)− (n− 1)(τA + τB − ω)) (3.36)

This is the expected identity for the duality with linear monopole and anti-monopole
superpotential. The constraints imposed by the superpotential correspond indeed to the
absence of an FI in (3.35) and to the constraint (3.36), as discussed in sub-section 3.1.3.

3.2.3 U(n) with a single linear monopole superpotential term

The next step consist of integrating out one massive flavor from the last duality and flow
to a new duality with a single one monopole (or anti-monopole) superpotential.

This flow requires some care in the magnetic sector, because it requires a dual higgsing
in order to match the discrete anomalies.

If we consider f + 1 flavors on the electric side and assign large oppsosite real masses to
the last pair on the dual side. The electric model becomes

W = TrXY 2 + TrXk+1 + V +
0,0 (3.37)

The linear monopole (anti-monopole) superpotential Wmon = V +
0,0 survives the real

mass flow. A completely analogous choice is give by linear superpotential for the anti-
monopole, giving rise to Wmon = V −0,0. The sign depends on the choice of the sign of the
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real mass assigned to the fundamental quarks.

In the magnetic theory, after the dual Higgsing, we have a U(3kf−n−2k−1)×U(k−1)
gauge group. There are f flavors q and q̃ in the first gauge sector and 1 pair qρ and q̃ρ in
the magnetic one. There are also two pairs of adjoints, x and y in the U(3kf −n−2k−1)
sector and xρ and yρ in the U(k − 1) sector. The superpotential is

W = Trxy2 + Trxk+1 + Trxρy
2
ρ + Trxk+1

ρ + Ṽ +
0,0 + Ṽ+

0,0

+

k−1∑
j=0

2∑
`=0

Tr(Mj,`qxk−1−jy2−`q̃ +Mj,`
ρ qρx

k−1−j
ρ y2−`

ρ q̃ρ) +

+

k−1∑
j=1

Ṽ −j,0Ṽ
−
k−j,0 +

2∑
`=0

Ṽ −0,`Ṽ
−
0,2−` +

κ= k−3
2∑

q=0

W̃−q W̃−
κ−q

(3.38)

where the singletsM andMρ are the light field that survive from the original mesons in
the real mass flow. Furthermore the bare monopoles and anti-monopoles of the U(k− 1)

sector have been denoted as Ṽ±0,0 and W̃±
0,0

Consistently with the assignation of the masses in the electric theory the linear monopole
(anti-monopole) superpotential Wmon = Ṽ +

0,0 + Ṽ+
0,0 (or Wmon = Ṽ −0,0 + Ṽ−0,0) remains

in the superpotential. On the other hand the last line in (3.39) represents the AHW-like
superpotential generated by the dual Higgsing between the monopole operators of the
two gauge sectors.

We can consider this relation between the electric and the magnetic theory as a new du-
ality forU(n) SQCD with two adjoint an a single monopole turned on. Nevertheless here
we are interested in a more conventional formulation of the dual model. This is achieved
by conjecturing that the U(k − 1) sector with two adjoints xρ and yρ interacting through
W = Trxk+1

ρ +Trxρy
2
ρ and one fundamental flavor identified with qρ and q̃ρ is confining

2 in presence of a linear monopole superpotential, eitherWmon = Ṽ+
0,0 (orWmon = Ṽ−0,0).

In absence of further interactions the confining theory corresponds to a set of singlets
identified with the dressed mesons qρxk−1−j

ρ y2−`
ρ q̃ρ and with the monopoles Ṽ−j,` (or

Ṽ+
j,`) with j` = 0 and W̃−

q (or W̃+
q ) with q− = 0, . . . , k−3

2 .

This conjecture allows us to dualize the U(k − 1) sector and the dual model becomes
U(3kf − n− 2k − 1) with superpotential

W = Trxy2 + Trxk+1 + Ṽ +
0,0 +

k−1∑
j=0

2∑
`=0

Tr(Mj,`qxk−1−jy2−`q̃) +

+

k−1∑
j=1

Ṽ −j,0V
−
k−j,0 +

2∑
`=0

Ṽ −0,`V
−
0,2−` +

κ= k−3
2∑

q=0

W̃−q W
−
κ−q

(3.39)

2Observe that in 4d the confining limiting case of Brodie duality has been studied in [80]. In 3d the number
of confining limiting cases is expected to be larger, because of the possible presence of monopole superpoten-
tials.
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where in the last line we have identified the monopoles of the confining sector with some
of the monopoles of the electric theory namely V +

j,0, V +
0,` and W+

q .

We can translate the conjecture on the partition function side, conjecturing the following
identity

Z1
U(k−1)(m,m; τA, τB ; 2(τA − τB − ω −m)) =

×
k−1∏
j=0

2∏
`=0

Γh(2m+ jτA + `τB)

k−3
2∏

q=0

Γh((2q + 1)τA − 4(m− τA + τB))

×
k−1∏
j=0

Γh(jτA − 2(m− τA + τB)))

2∏
`=1

Γh(`τB − 2(m− τA + τB))) (3.40)

where the FI is fixed by the balancing condition (3.27), corresponding to the presence of
the linear monopole superpotential, and k is odd. We are not aware of any mechanism to
obtain this duality from other known dualities. Rather, in this Chapter we show that this
conjecture, in particular in the s-confining case (3.40), allows us to consistently describe
the various RG flows depicted in figure 3.1. It would be interesting to provide indepen-
dent checks of this conjectured duality, for example by computing the superconformal
index for low values of k [73].

The flow is triggered by considering the identity (3.35) with f + 1 fundamental flavors
and assigning a large mass parameter to the last pair as{

mf+1 = m + s
nf+1 = m− s , (3.41)

On the dual side the gauge group U(3kf − n − k − 2) is higgsed to U(3kf − n − 2k −
1) × U(k − 1) by shifting (k − 1) integration variables as σi → σi − s. Computing the
large s limit on the identity (3.35) and eliminating the divergent part, that coincides on
the electric and on magnetic side we end up with the relation

ZfU(n)(~m,~n; τA; τB ;−2(m− ω)) = ZfU(3kf−n−2k−1)(~n, ~m; τA; τB ; 2(m− τB))

× Z1
U(k−1)(m̃, m̃; τA, τB ;−2(m− ω))

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB + 2m)e
iπ(k−1)

2

∑f
a=1(m2

a−n
2
a)

(3.42)

with ~̃n = τA− τB − ~n, ~̃m = τA− τB − ~m and m̃ = τA− τB −m. There is also a constraint
between the masses corresponding to

f∑
a=1

(ma + na) = 2((f − 1)ω − (n− 1)(τA + τB − ω))− 2m (3.43)
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that signals the presence of the monopole superpotential both in the U(n) and in the
U(3kf − n − 2k − 1) sector. The monopole superpotential in the U(k − 1) sector corre-
sponds to the constraint on the FI in the second line of (3.42). The integral corresponding
to the U(k − 1) sector can then be computed using the conjectured relation (3.40). Af-
ter eliminating the massive fields with the inversion formula for the hyperbolic gamma
functions we obtain the relation

ZfU(n)(~m,~n; τA ; τB ; 2(ω −m)) = ZfU(3kf−n−2k−1)(~n, ~m; τA; τB ; 2(m− τB))

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb)e
iπ(k−1)

2

∑f
a=1(m2

a−n
2
a)

×
∏

j = 0, . . . , k − 1
` = 0, . . . , 2
j` = 0

Γh((f − 1)ω − n− 1

2
τA −

f∑
a=1

(ma + na) + jτA + `τB)

×

k−3
2∏

q=0

Γh(2(f − 1)ω − (n− 1)τA − 2

f∑
a=1

(ma + na) + (2q + 1)τA)

(3.44)

This relation reproduces, on the partition function, the duality that we have claimed on
the field theory side. Furthermore the identity reduces to the one conjectured in formula
(3.40) for n = k − 1, f = 1 and m1 = n1.

3.2.4 U(n) without monopole superpotential

Another crucial sanity check of our construction consists of flowing to the pure 3d dual-
ity of [37]. This can be achieved by starting from the duality with linear monopole and
anti-monopole superpotential with f + 2 flavors and assigning two large and opposite
real masses to two pairs of fundamentals and antifundamentals.

In this case we have more freedom than above in the choice of the masses, and this gives
rise to a free FI in both the electric and magnetic side. Furthermore on the magnetic side
we have to consider the Higgsing to U(3kf−n)×U(k−1)2. In the first sector there are f
fundamental flavors while in the other two sectors there is a single fundamental flavor.
Each sector contains two adjoints interacting through the usual power law binomial su-
perpotential and there are interactions between the light singlets surviving the real mass
flow and coming from the original meson and other combinations of fundamental and
adjoint fields, generalizing the construction in (3.38). There linear monopole superpoten-
tials for the U(n) and the U(3kf − n) sector are lifted, while there is still a single linear
monopole superpotential in each U(k − 1) sector. Furthermore the dressed monopole
and the anti-monopoles of the U(3kf − n) interact through an AHW-like superpotential
with the ones of the two U(k − 1) sectors (with the sign choice given by the sign choice
of the large mass limit in the electric side). Proceeding as above we can dualize both the
U(k − 1) sectors and we end up with the duality of [37].

This construction can be reproduced on the partition function as well. The real masses
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are chosen as 
mf+1 = m + ξ

2 + s

mf+2 = m− ξ
2 + s

nf+1 = m + ξ
2 − s

nf+1 = m− ξ
2 − s

, (3.45)

On the dual side the gauge group U(3kf − n + 2k − 2) is higgsed to U(3kf − n) ×
U(k − 1) × U(k − 1) by shifting (k − 1) integration variables as σi → σi − s and (k − 1)
integration variables as σi → σi + s. Computing the large s limit on the identity (3.35)
and eliminating the divergent part, that coincides on the electric and on magnetic side
we end up with the relation

ZfU(n)(~m;~n, ; τA, τB ; ξ) = ZfU(3kf−n)(τA − τB − ~n; τA − τB − ~n; τA, τB ;−ξ)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb)

×
∏
η=±1

Z1
U(k−1)(m̃η, m̃η, τA, τB ; 2η(m− ω)− ξ)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

∏
η=±1

Γh(jτA + `τB + (2m+ ηξ))

(3.46)

with m̃η = τA − τB −m + ηξ
2 . The constraint on the parameters reads

f∑
a=1

(ma + na) = 2(fω − (n− 1)(τA + τB − ω))− 4m (3.47)

In this case it signals the presence of the AHW interactions and it plays an important
role in identifying the monopole operators of the confining sectors with the ones of the
electric theory. On the other hand it does not play any role on the U(n) and U(3kf − n)
sectors because we are in presence of an unconstrained FI ξ. It signals the absence of
linear monopole deformations in these two gauge sectors.

Proceeding as above by dualizing the two U(k − 1) sectors with the help of (3.40) and
eliminating the massive fields with the help of the inversion formula for the hyperbolic
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Gamma functions we end up with the relation

ZfU(n)(~m;~n, ; τA, τB ; ξ) = ZfU(3kf−n)(τA − τB − ~n; τA − τB − ~n; τA, τB ;−ξ)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτA + `τB +ma + nb)

×

k−3
2∏

q=0

Γh(±2ξ + 2fω−(n− 1)τA−
f∑
a=1

(ma + na)+(2q + 1)τA)

×
∏

j = 0, . . . , k − 1
` = 0, . . . , 2
j` = 0

Γh(±ξ + fω − n− 1

2
τA −

1

2

f∑
a=1

(ma + na) + `τB + jτA)

(3.48)

with unconstrained parameters. More precisely the parameters ma and na are con-
strained as

∑
ama =

∑
a na = fmA where mA is the parameter associated to the axial

symmetry. The relation (3.48) is the expected one between the electric and the magnetic
side of the duality found in [37].

3.2.5 Usp(2n) without monopole superpotential

Another duality that can be derived from the reduction of Usp(2n) on the circle is ob-
tained by eliminating the superpotentials ηYUSp and η̃yUsp in (3.4) and in (3.5). The flow
in this case is engineered by considering 2(f + 1) fundamentals and by assigning a large
and opposite mass to two of them. On the dual side the gauge group is Higgsed to
USp(3k − n− 2k − 1)× U(k − 1), with 2f light fundamentals q in the symplectic sector
and one fundamental flavor (p, p̃) in the U(k − 1) sector. Again the FI term generated
in the U(k − 1) sector is constrained and it signals the presence of a linear monopole or
anti-monople superpotential (here the choice depends on the sign of the shift in the real
scalar in the vector multiplet). In the USp(3k − n − 2k − 1) sector there are two anti-
symmetric rank-two tensors a and b while in the U(k− 1) sector there are two adjoints x
and y. The superpotential of this dual model is

W = Trak+1 + Trab2 + Trxk+1 + Trxy2 + V +
0,0 +

+

k−1∑
j=0

2∑
`=0

(Mj,`qa
jb`q +Nj,`px

jy`p̃) +

+

k−1∑
j=1

V −j,0Ỹk−j,0 +

2∑
`=0

V −0,`Ỹ0,2−` +

κ= k−3
2∑

q=0

W−q Z̃κ−q (3.49)

where Ỹj,` and Z̃q are dressed monopoles of the USp(3kf − n − 2k − 1) sector with
topological charge 1 and 2 respectively. They can be defined by radial quantization as
in (3.16). Dualizing the U(k − 1) sector we arrive at the final formulation of the duality,
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where the superpotential becomes

W = Trak+1 + Trab2 +

k−1∑
j=0

2∑
`=0

(Mj,`qa
jb`q) +

+

k−1∑
j=1

Yj,0Ỹk−j,0 +

2∑
`=0

Y0,`Ỹ0,2−` +

κ= k−3
2∑

q=0

YqZ̃κ−q (3.50)

where the monopoles arising from the U(k − 1) sectors are identified with the ones of
the electric Usp(2n) gauge theory.

The global symmetry in this case is SU(2f) × U(1)A × U(1)R and the fields and the
monopoles transform under the gauge and global symmetries as follows:

Field Usp(2n) USp(2ñ) SU(2f) U(1)A U(1)R
Q n 1 2f 1 r
A n(2n−1) 1 1 0 2

k+1

B n(2n−1) 1 1 0 k
k+1

Yj` 1 1 1 −2f 2f(1− r) + 2j+k`−2(n+k)
k+1

Zq 1 1 1 −4f 4f(1− r) + 2+4q−4(n+k)
k+1

q 1 ñ 2f −1 2−k
k+1 − r

a 1 ñ(2ñ−1) 0 2
k+1

b 1 ñ(2ñ−1) 1 0 k
k+1

Mj 0(j=0,...,k−1) 1 1 f(2f−1) 0 2(1−r) + 2j
k+1

M2j 1(j=0,..., k−1
2 ) 1 1 f(2f−1) 2 2(1−r) + 4j+k

k+1

M2j+1 1(j=0,..., k−3
2 ) 1 1 f(2f+1) 2 2(1−r) + 4j+k+2

k+1

Mj 2(j=0,...,k−1) 1 1 f(2f−1) 2 2(1− r) + 2j+2k
k+1

Ỹj` 1 1 1 2f 2(f−1)r + k`+2(j+n+k+1)
k+1

Z̃q 1 1 1 4f 4f(r−1) + 4(q+n+k)+6
k+1

(3.51)

We conclude the discussion by performing such a flow on the partition function. In this
case we consider 2f + 2 mass parameters µa and assign the masses as{

µf+1 = m + s
µf+2 = m− s , (3.52)

The dual higgsing corresponds to the shift σi → σi + s (or equivalently σi → σi + s) for
k − 1 integration variables.

Computing the large s limit on the identity (3.33) and eliminating the divergent part,
that coincides on the electric and on magnetic side, we end up with the relation
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Z2f
Usp(2n)(~µ; τA, τB) = Z2f

USp(2(3kf−n−2k−1))(τA − τB − ~µ; τA, τB)

×
k−1∏
j=0

2∏
`=0

∏
1≤a<b≤f

Γh(jτA + `τB + µa + µb)

×
k−1∏
q=0

f∏
a=1

Γh((2q + 1)τA + τB + 2µa)

× Z1
U(k−1)(m̃, m̃; τA, τB ,−2(ω −m))

×
k−1∏
j=0

2∏
`=0

∏
1≤a<b≤f

Γh(jτA + `τB + 2m)

(3.53)

with m̃ = τA − τB −m and the constraint

2f∑
a=1

µa = 2(ω(f − 1)− (n− 1)(τA + τB − ω))− 2m (3.54)

Again this constraints does not affect the mass parameters on the electric side, signaling
that the KK monopole superpotential has been lifted. On the dual side the constraint
is crucial for the identification of the monopoles (or anti-monopoles) of the confining
U(k − 1) sector with the ones of the electric Usp(2n) model. The last step consists of
integrating Z1

U(k−1) using the relation (3.40) and arrive to the equality

Z2f
Usp(2n)(~µ ; τA, τB) = Z2f

USp(2(3kf−n−2k−1))(τA − τB − ~µ; τA, τB)

×
k−1∏
j=0

2∏
`=0

∏
1≤a<b≤f

Γh(jτA + `τB + µa + µb)

k−3
2∏

q=0

f∏
a=1

Γh((2q + 1)τA + τB + 2µa)

×
∏

j = 0, . . . , k − 1
` = 0, . . . , 2
j` = 0

Γh(jτA + `τB + 2fω−τA(n+ k)−
2f∑
a=1

µa)

×

k−3
2∏

q=0

Γh((2q + 1)τA + 4fω−2τA(n+ k)−2

2f∑
a=1

µa)

3.3 Reconsidering the 4d/3d reduction of U(n) SQCD with two ad-
joints

In this section we study the reduction of the 4d duality worked out in [45] and reviewed
in sub-section 3.1.1 along the lines of [49].

Some comments are in order. First we consider a slight modification of the original the
duality, by gauging the baryonic symmetry. The SU(n) case can be studied similarly,
even if it modifies the structure of the effective superpotential generated in the circle
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reduction. It is nevertheless possible to recover the 3d limit of the SU(n) duality by
gauging the topological symmetry in the final step of our procedure. We will further
comment on this possibility in the conclusions. A second comment regards the restric-
tion to the case of odd k. A similar duality was also conjectured for the case of even k in
[45]. The difference in such case is that the chiral ring is not truncated at classical level
by the F-term constraints on the electric side and the proposal is that such truncation
appears quantum mechanically. Here we will not elaborate further on this case and we
restrict to the odd case.

The reduction of this duality to an effective duality on the circle has been studied in [37]
by breaking the gauge group, and by reducing the duality only in U(ni) sectors without
adjoints. Here we adopt a different strategy and leave the gauge group unbroken. The
motivation underlining our analysis is that we want to follow the various steps at the
level of the reduction of the 4d superconformal index to the 3d squashed three sphere
partition function.

On the circle we obtain an effective duality relating

• 3d U(n) SQCD with f flavors Q and Q̃ with two adjoints X and Y interacting
through the superpotential W = (3.1) +Wη with

W = TrXk+1 + TrXY 2 + η

k−1∑
j=1

V +
j,0V

−
k−j,0 +

2∑
l=0

V +
0,lV

−
0,2−l +

κ= k−3
2∑

q=0

W+
q W

−
κ−q


(3.55)

• 3d U(3kf − n) SQCD with f dual flavors q and q̃ with two adjoints x and y inter-
acting through the superpotential W = (3.2) +Wη̃

Wη̃ = η̃

k−1∑
j=1

Ṽ +
j,0Ṽ

−
k−j,0 +

2∑
l=0

Ṽ +
0,lṼ

−
0,2−l +

κ= k−3
2∑

q=0

W̃+
q W̃

−
κ−q

 (3.56)

The superpotentialsWη andWη̃ break the axial symmetry, anomalous in the 4d case. The
conventional 3d duality is obtained by a real mass flow, accompanied on the magnetic
side by a dual Higgsing of the gauge group. Such real mass flow can be engineered
on the electric side by considering f + 2 flavors and by assigning large (and opposite)
real mass to two pairs of fundamentals and anti-fundamentals. On the magnetic side
we can assign the same opposite shifts to the scalars in the vector multiplet by breaking
U(3k(f + 2) − n) → U(3kf − n) × U(3k)2. In the U(3kf − n) gauge sector we have
two adjoint x and y and f pairs of fundamental and anti–fundamental q and q̃. In the
U(3k) sectors we still have two adjoints, denoted respectively as xρ and yρ in the first
sector and xξ and yξ in the second sector and one flavor, denoted (qρ, q̃ρ) and (qξ, q̃ξ).
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The superpotential of this model is

W = Trxy2 + Trxk+1 + Trxρy
2
ρ + Trxk+1

ρ + Trxξy
2
ξ + Trxk+1

ξ

+

k−1∑
j=0

2∑
`=0

Tr(Mj,`qxk−1−jy2−`q̃ + +Mj,`
ρ qρx

k−1−j
ρ y2−`

ρ q̃ρ +Mj,`
ξ qξx

k−1−j
ξ y2−`

ξ q̃ξ)

+

k−1∑
j=1

(Ṽ +
j,0Ṽ

−
k−j,0 + Ṽ −j,0Ṽ

+
k−j,0 + Ṽ+

j,0Ṽ
−
k−j,0)

+

2∑
`=0

(Ṽ +
0,`Ṽ

−
0,2−` + Ṽ −0,`Ṽ

+
0,2−` + Ṽ+

0,`Ṽ
−
0,2−`)

+

κ= k−3
2∑

q=0

(W̃+
q W̃−

κ−q + W̃−q W̃+
κ−q + W̃+

q W̃−κ−q)

(3.57)

The first two lines of (3.57) correspond to the superpotential (3.2) in the gauge sectors of
the dual theory, inherited from the original one after the real mass flow and the Higgs
flow. The last three lines on the other hand correspond to an AHW-like superpoten-
tial generated between the monopole operators because of the dual Higgsing. We have
denoted as V and W the monopoles of U(3k)ρ sector and V and W the monopoles of
U(3k)ξ sector.

The last step consists of dualizing the U(3k) sectors in terms of singlets. The duality that
we have to use in this case corresponds to the limiting case of the 3d duality that we are
looking for. This is a very standard phenomenon in the reduction of 4d dualities to 3d.
In the case of SQCD such a limiting case was interpreted independently as local mirror
symmetry, indeed the extra sectors correspond to SQED with one flavor, and the confin-
ing model could be regarded as local mirror symmetry. In the case with one adjoint such
sector correspond toU(k) with one adjoint and one flavor andW = TrXk+1. This model
can be shown to be confining as well, even in absence of the adjoint superpotential, as
discussed for example in [81, 69]. In both cases the confining duality corresponds to the
limiting case of the duality that one is looking for.

Here we borrow the results obtained in sub-section 3.2.4 and dualize the two U(3k) sec-
tors with a fundamental flavor. From the superpotential (3.57) one can observe that
the mesons qξx

k−1−j
ξ y2−`

ξ q̃ξ and qρx
k−1−j
ρ y2−`

ρ q̃ρ become massive and they can be inte-
grated out at zero vev. In a similar fashion the monopoles Ṽ+

j,` and Ṽ−j,` with j` = 0 and

W̃+
q and W̃−q with q = 0, . . . , k−3

2 are singlets after confining the U(3k) gauge groups
and they become massive because of the superpotential (3.57). On the other hand the
monopoles Ṽ−j,` and Ṽ+

j,` with j` = 0 and W̃−
q and W̃+

q with q = 0, . . . , k−3
2 are singlets

of the U(3f − n) gauge theory that interact with the monopoles Ṽ ±j,` and W̃±q . They can
then be naturally identified with the monopoles V ±j,` and W±q of the electric theory act-
ing as singlets in the dual phase. All in all we arrive at the dual superpotential (3.15)
corresponding as expected to the one obtained in [37].

This analysis can be reproduced on the partition function as well. The first step consists
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of reducing the identity of [77] between the 4d indices using the prescription of [49].
This gives an identity reproducing the effective duality on S1, with a constraint between
the mass parameters signaling the presence of the KK monopole superpotential. The
identity for the effective duality is

ZfU(n)(~m,~n; τX , τY ; ξ) = ZfU(3kf−n)(
~̃n, ~̃n; τX , τY ;−ξ)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτX + `τY +ma + nb) (3.58)

where m̃a = τX − τY −ma and ña = τX − τY − na. In this case the FI parameter is free
while the constraint between the mass parameters corresponds to (3.25), preventing the
generation of an axial symmetry.

Next we need to engineer the flow to the pure 3d duality. This flow can be constructed
by considering f + 2 flavors and parameterizing the last two pairs as

mf+1 = m + s
mf+2 = m− s
nf+1 = m− s
nf+1 = m + s

, (3.59)

On the dual side the gauge group U(3k(f + 2)− n) is higgsed to U(3kf − n)× U(3k)×
U(3k), by shifting 3k integration variables as σi → σi − s and 3k integration variables
as σi → σi + s. Computing the large s limit on the identity (3.35) and eliminating the
divergent part, that coincides on the electric and on magnetic side we end up with the
relation

ZfU(n)(~m,~n; τX , τY ; ξ) = ZfU(3kf−n)(
~̃n, ~̃n; τX , τY ;−ξ)

×
∏
η=±1

Z1
U(3k)(m̃, ; τX , τY ; 2η(m− ω)− ξ) (3.60)

×
k−1∏
j=0

2∏
`=0

f∏
a,b=1

Γh(jτX + `τY +ma + nb)Γh(jτX + `τY + 2m)2

where m̃ = τX−τY −m. TheU(3k) sectors are confining and the corresponding integrals
can be computed using the results of the previous section. Indeed they correspond to the
limiting case of the identity (3.48), because the rank of the dual gauge group vanishes
if n = 3k and f = 1. By computing these integrals, simplifying the massive fields and
using the constraint

f∑
a=1

(ma + na) + 4m = 2ω(f + 2)− nτX (3.61)

we arrive at the final relation, that coincides with (3.48) as expected.
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3.4 Discussion and future developements

Many open questions arise from this work. First the prove of formula (3.40) is a nec-
essary step to confirm the validity of our approach and corroborate the claims that we
made for the new dualities. Another open question is related to the other duality 3 dis-
cussed in [39], and reviewed in sub-section 3.1.2, involving linear superpotentials for the
monopole operators with charge 2 under U(1)T . It would be interesting to obtain such a
duality by flowing from the ones discussed here.

Further classes of dualities can then be constructed starting from the ones proposed in
our work, involving CS terms, a chiral matter content (i.e. a different number of funda-
mentals and anti-fiundamentals) and/or SU(n) gauge groups. The 3d analog of Brodie
duality in presence of CS terms has been already proposed in [82]. It would be inter-
esting to obtain this last duality by flowing from the ones without CS terms and then
generalize the construction to the Usp(2n) case as well. Also the cases with a chiral mat-
ter content can in principle be studied by opportune real mass flows, with possible dual
Higgs flow, along the lines of [43, 83, 84, 85]. The analysis of SU(n) dualities is in gen-
eral less straightforward. This is due to the presence of quadratic monopole operators
in many of the dual phases. The general prescription to obtain an SU(n) gauge group
starting from U(n) consists of promoting the topological symmetry to a gauge symme-
try; in presence of an FI term this gauging leads to a mass term between the dynamical
photon of U(1)T and the original photon of U(1) ⊂ U(n), through a mixed CS term. By
integrating out the massive fields one is left, on the electric side, with an SU(n) gauge
group. On the other hand the presence of monopole operators in the dual phase does
not allow the same operation in a straightforward manner, because there are extra fields
charged under the gauged topological symmetry. The interpretation of the charge two
monopole operators arising from the gauging of U(1)T is less clear than the one for the
monopole with charge one under U(1)T and it is not obvious how to manage this new
gauged sector in general. Anyway one could reverse the logic and start from the duali-
ties that we have obtained here before applying any local confining duality on the extra
U(k − 1) sectors. We hope to come back to this problem in the future. Other interesting
lines of research involve the generalization of the construction to the other dualities with
two rank-two tensors proposed in [46].

As a last comment we would like to stress that all the models discussed here refer to
the case of odd k, being k + 1 the exponent of the adjoint X and of the anti-symmetric
A in all the U(n) and Usp(2n) SQCD superpotentials respectively. While this choice
is motivated by anomaly matching for the Usp(2n) gauge groups, U(n) gauge theories
with k-even are more tricky, because the chiral ring is supposed to truncate at quantum
level, differently from the classical truncation taking place for k-odd (see [86, 87, 88]
for further discussions on this issue). In three dimensions we have seen that the U(n)
dualities can be derived from the Usp(2n) one, derived by circle reduction, only for odd
k. It would be then interesting to understand if is there any connection between the
quantum truncation of the chiral ring and the 4d/3d reduction.

3Observe that in [39] many other dualities are conjectured in presence of linear monopole deformations for
the dressed monopole operators, in the case with a single adjoint. Similar results are then expected for the case
with two adjoints. Here we have not addressed such an issue from the 4d perspective.





CHAPTER 4

S-confinement in 3d N = 2 SO/USp adjoint SQCD

In this Chapter we study s-confining 3d theories withN = 2 supersymmetry. Compared
to the 4d case, an ingredient that makes the classification of such theories more intricate
and offers new examples of gauge theories with confining dynamics is given by the
possibility of turning on monopole superpotentials. Many examples of 3d s-confining
gauge theories been studied in [49, 59, 60, 64, 89, 90, 71, 70, 91, 92, 93, 94, 95], where
many checks of the new proposed dualities have been performed. In a recent paper [2]
models with real gauge groups and adjoint matter have been studied and new confining
dualities have been proposed. An interesting aspect of these cases is that the dualities
can be proved by sequentially deconfining the adjoint (symmetric or antisymmetric ten-
sors) in terms of other known dualities involving real gauge groups without any tensor.
Such a deconfinement of two-index matter fields follows from the one originally worked
out in 4d in [50] and then refined in [96] (see also the recent works [97, 51] where such
deconfinement technique has been reconsidered in the 4d case). In 3d the structure of
confining gauge theories is richer because of the possibility of turning on monopole su-
perpotentials.

In this Chapter we elaborate on these results, showing the matching of the three-sphere
partition function between the new dual phases proposed by [2]. We find that there is a
straightforward proof of the hyperbolic integral identity that corresponds to the match-
ing of the squashed three-sphere partition functions between the dual phases. The result
follows from the identity relating USp(2n) with the antisymmetric and four fundamen-
tals without monopole superpotential and its description in terms of confined degrees
of freedom. In this case by opportunely fixing the value of the mass parameters and by
applying the duplication formula for the hyperbolic Gamma functions we observe that the
identity can be manipulated into the expected ones for the new dualities proposed by
[2].

This correspondence motivates us to make one step further, and to consider the case
of USp(2n) with the antisymmetric and six fundamentals, in presence of a monopole
superpotential (see [67, 98, 66, 68, 99, 100, 101, 102, 103, 104, 105, 106] for recent examples
of 3d N = 2 gauge theories and dualities with monopole superpotential turned on).
This model is confining as well and it admits the same manipulation referred above on
the integral identity matching the squashed three-sphere partition functions. Again we
obtain identities relating, in this case, the partition function of models with USp(2n)

43
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or SO(N) gauge groups with four fundamentals or three vectors and an adjoint matter
field, and the partition function of models with (interacting) singlets.

We then analyze these models through sequentially deconfining the adjoint fields, ob-
taining a proof of the dualities. This last approach offers also an alternative derivation
of the integral identities (obtained so far through the duplication formula), in terms of
adjoint deconfinement. Indeed, as we will explicitly show below, each step discussed
in the physical proof of the duality corresponds to the application of a known identity
between hyperbolic integrals.

4.1 3d confining models with real gauge groups and adjoint matter

These dualities have been proved in [2] and they are the starting point of our analysis.
Here we review the main properties of these dualities and briefly discuss their deriva-
tion.

The three classes of s-confining dualities with adjoint matter obtained in [2] are summa-
rized in the following.

• In the first case the electric side of the duality involves an USp(2n) gauge theory
with adjoint S and two fundamentals p and q with superpotential W = Tr(pSp).
The dual model corresponds of a WZ model with 4n chiral multiplets. These 4n
gauge fields corresponds to gauge invariant singlets of the electric theory. There
are 2n dressed monopole operators, Yj = YUSp TrSj , j = 0, . . . , 2n−1, where YUSp
is the unit flux monopole of the USp(2n) gauge theory. Then there are n dressed
mesons M` = qS2`+1q with ` = 0, . . . , n − 1 and eventually there are n singlets
σk = TrS2k with k = 1, . . . , n.

• The second case involves an SO(2n) gauge theory with an adjoint A and a vector
q, without superpotential. The dual theory is a WZ model with 4n chiral fields,
corresponding to gauge invariant singlets of the electric theory. There are 2n − 1
dressed monopole operators, Y +

j = Y +
SO TrAj , j = 0, . . . , 2n− 2, where Y +

SO is the
unit flux monopole of the SO(2n) gauge theory with positive charge with respect
to the charge conjugation symmetry. Then there are n dressed mesons M` = qA2`q
with ` = 0, . . . , n− 1 and n− 1 singlets σk = TrA2k with k = 1, . . . , n− 1. The last
two chiral fields correspond to the baryon B ≡ Pf A and to the baryon monopole
Y −An−1 , obtained from the unit flux monopole of the SO(2n) gauge theory with
negative charge with respect to the charge conjugation symmetry.

• The third and last case involves an SO(2n+ 1) gauge theory, again with an adjoint
A, a vector q and vanishing superpotential. The dual theory is a WZ model with
4n+ 2 chiral fields, corresponding to gauge invariant singlets of the electric theory.
There are 2n dressed monopole operators, Y +

j = Y +
SO TrAj , j = 0, . . . , 2n−1, where

Y +
SO is the unit flux monopole of the SO(2n) gauge theory with positive charge

with respect to the charge conjugation symmetry. Then there are n dressed mesons
M` = qA2`q with ` = 0, . . . , n− 1 and n singlets σk = TrA2k with k = 1, . . . , n. The
last two chiral fields correspond to the baryon B = ε2n+1(qAn) and to the baryon
monopole Y −qAn−1

As stressed in [2] the superpotential of the dual models correspond to polynomials
of the singlets and with complexity that rapidly grows when the ranks of the gauge
groups increase. Nevertheless by flipping the singlets σk, and the baryon and the baryon
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monopole in the orthogonal cases, these superpotentials are given by cubic combinations
of the remaining singlets.

Let us briefly sketch the strategy for proving these dualities. The first step consists of
deconfining the adjoint field. In the symplectic case the adjoint is in the symmetric rep-
resentation and it can be deconfined in terms of an orthogonal gauge group. On the other
hand in the orthogonal case the adjoint is in the antisymmetric representation and it can
be deconfined in terms of a symplectic gauge group. In each case this step requires to
find a confining duality that reduces to the original model. After deconfining the adjoint
one is then left with a two gauge node quiver gauge theory and one can then proceed by
dualizing the original gauge node, by using a known duality. In the cases at hand this
duality corresponds to a limiting case of an Aharony duality or a modification of it, with
monopole superpotentials. This gives raise to another model with a real gauge group
and adjoint matter and generically a more sophisticated superpotential. By repeating
the procedure of rank-two tensor deconfinement and duality one is left with the original
gauge group but with rank of one unit less and it allows to iterate the procedure and
arrive to the desired WZ model at the end of such a cascading process.

By inspection it has been shown in [2] that the adjoint of the USp(2n) case can be decon-
fined by an SO(2n+ 1) gauge group and a superpotential flipping the monopole. After
dualizing the USp(2n) gauge theory one ends up with an SO(2n+ 1) gauge theory with
an adjoint and a dynamically generated superpotentials flipping both the monopole and
the baryon monopole. In this case the adjoint can be deconfined by an USp(2n − 2)
gauge group and a more intricate flavor structure. Indeed the SO(2n+ 1)/USp(2n− 2)
gauge group have one extra vector/fundamental charged chiral fields and there is a su-
perpotential interactions between these two fields and the SO(2n + 1) × USp(2n − 2)
bifundamental. Furthermore there is a linear monopole superpotential for the USp(2n)
gauge node. By dualizing the SO(2n+ 1) gauge node with 2n vectors one ends up with
an USp(2n − 2) gauge theory, with two fundamentals and a non trivial superpotential.
By opportunely flipping some of the singlets of the original model one can recast that
the original USp(2n), iterate the procedure and eventually prove the duality. Similar
analysis have been used to prove the orthogonal dualities as well. In such cases after
deconfining the antisymmetric in terms of USp(2n − 2) and dualizing the original or-
thogonal gauge group one is left with USp(2n − 2) and two fundamentals. Then the
duality proven above for this case can be used to prove the duality for the orthogonal
cases as well.

4.1.1 Confining theories and the three-sphere partition function

We are interested in two confining gauge with USp(2n) gauge group and antisymmetric
and six or four fundamentals. In the first case the theory has a monopole superpotential
and it corresponds to the reduction of a 4d N = 1 confining gauge theory. In the second
case the theory with four fundamentals can be obtained by a real mass flow, it is still
confining but in this case the superpotential is vanishing. Details on these models have
been discussed in [70, 71].

In general the partition function of an USp(2n) gauge theory with 2nf fundamentals and
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an antisymmetric tensor is

Z
USp(2n)
τ,~µ =

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫ n∏
a=1

dya

∏2nf
r=1 Γh(±ya + µr)

Γh(±2ya)

∏
1≤a<b≤n

Γh(±ya ± yb + τ)

Γh(±ya ± yb)

(4.1)

Where the parameters τ and µr are associated to the antisymmetric tensor and to the 2nf
fundamentals respectively. The two confining dualities discussed above for 2nf = 6 and
2nf = 4 correspond to the following identities

ZUSp(2n)
τ,µ1...,µ6

=

n−1∏
j=0

Γh((j + 1)τ)
∏

1≤r<s≤6

Γh(jτ + µr + µs) (4.2)

with the balancing condition

2(n− 1)τ +

6∑
a=1

µa = 2ω (4.3)

signaling the presence of a linear monopole superpotential, and

ZUSp(2n)
τ,µ1,...,µ4

=

n−1∏
j=0

Γh((j + 1)τ)

Γh((2n− 2− j)τ +
∑4
r=1 µr)

∏
1≤r<s≤4

Γh(jτ + µr + µs) (4.4)

with unconstrained parameters, corresponding to the absence of any monopole super-
potential.

These identities are the starting point of our analysis, and they contain all the mathemat-
ical information on the models with real gauge groups and adjoint matter.

In order to transform symplectic gauge groups into unitary one we will use a well known
trick, already used in the literature [78, 107, 108, 43]. It consists of using the duplication
formula [109, 110, 111]

Γh(2x) = Γh(x)Γh

(
x+

ω1

2

)
Γh

(
x+

ω2

2

)
Γh(x+ ω) (4.5)

to modify the partition function of the vector multiplet of USp(2n) into the partition
function of the vector multiplet of SO(2n) or SO(2n+ 1).

This transformation requires to consider an USp(2n) gauge theory with fundamental
matter fields and assign to some of the mass parameters some specific value as µ = ±ωi2
or µ = ω or µ = 0. Then by applying the duplication formula (and the reflection equation
Γ(x)Γ(2ω − x) = 1 when necessary) one can convert the contribution of USp(2n) with
fundamentals in the one of SO(2n) or SO(2n + 1) with (few) vectors. Furthermore,
by using the same mechanism, one can convert also the contribution of the USp(2n)
antisymmetric field into the one of an adjoint (for both the symplectic and the orthogonal
cases).

To simplify the reading of the various steps of the derivation we conclude this section
by summarizing the integral identities for USp(2n) and SO(N) s-confining SQCD, that
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we have used in the analysis below. These identities are indeed necessary for translating
into the language of the squashed three-sphere partition function the chain of adjoint
deconfiments and dualities introduced above. In the table we indicate the gauge group,
the matter content, the superpotential and the reference to the integral identity equating
the partition function of each gauge theory with the one of its confined description .

Gauge group Matter Superpotential Identity
USp(2n) 2n+ 4� W = YUSp (B.1)
USp(2n) 2n+ 2� W = 0 (A.2)
SO(2n) 2n+ 1� W = YSO+ (B.3)
SO(2n) 2n− 1� W = 0 (A.3)

SO(2n+ 1) 2n+ 2� W = YSO+ (B.2)
SO(2n+ 1) 2n� W = 0 (A.1)

4.2 Proving known results

In this section we show how to obtain the integral identities for the three dualities re-
viewed in subsection (4.1) by applying the duplication formula (4.5) on the identity (4.4).
Here and in the following section we will use three choice of masses, that are

I. ~µnf =
(
τ
2 + ω1

2 ,
τ
2 + ω2

2 ,
τ
2 , ~µnf−3

)
II. ~µnf =

(
ω1

2 ,
ω2

2 , 0, ~µnf−3

)
III. ~µnf =

(
ω1

2 ,
ω2

2 , τ, ~µnf−3

)
Here we did not specify the length nf of the vector ~µ. In the following we will have
nf = 4 for the cases of [2] and nf = 6 for the new dualities discussed here.

Case I: USp(2n)

We choose the masses µr as ~µ =
(
τ
2 + ω1

2 ,
τ
2 + ω2

2 ,
τ
2 ,m

)
and apply the duplication for-

mula. Explicitly, the contribution of the quarks to the partition function becomes:

n∏
a=1

4∏
r=1

Γh (±xa + µr)→
n∏
a=1

Γh

(
±xa +

τ

2
+
ω1

2

)
Γh

(
±xa +

τ

2
+
ω2

2

)
× Γh

(
±xa +

τ

2

)
Γh (±xa +m)

=

n∏
a=1

Γh (±2xa + τ) Γh (±xa +m) Γh

(
±xa + ω − τ

2

) (4.6)

where we used the duplication formula (4.5) with x = ±xa + τ/2 and the reflection
equation:

Γh

(
xa + ω − τ

2

)
Γh

(
−xa + ω +

τ

2

)
= 1 (4.7)
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The LHS of (4.4) becomes

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

×
n∏
j=1

Γh(τ ± 2xj)Γh(m± xj)Γh(ω − τ
2 ± xj)

Γh(±2xj)
dxj (4.8)

This corresponds to the partition function of USp(2n) with an adjoint S, a fundamental
p and a fundamental q with superpotential W = Tr(pSp), where the constraint imposed
by the superpotential corresponds to the presence of the parameter ω− τ

2 in the argument
of the last hyperbolic gamma function in the numerator of (4.8).

On the other hand the RHS of (4.4) requires more care. Let us separate first the contri-
butions of the three terms. By substituting the parameters µr and using the reflection
equation we have

n−1∏
j=0

Γh(ω −
(
2n− j − 1

2

)
τ)−m)

× Γh((j + 1)τ, (j + 1)τ +
ω1

2
, (j + 1)τ +

ω2

2
, (j + 1)τ + ω)

× Γh(
(
j +

1

2

)
τ +

ω1

2
+m,

(
j +

1

2

)
τ +

ω2

2
+m,

(
j +

1

2

)
τ +m

)
(4.9)

where we used the shorthand notation Γh(a, b) = Γh(a)Γh(b). By using the duplication
formula it becomes

n−1∏
j=0

Γh

(
ω −

(
2n− j − 1

2

)
τ)−m, 2(j + 1)τ, (2j + 1)τ + 2m

)
Γh(
(
j + 1

2

)
τ +m+ ω)

(4.10)

This last formula can be reorganized as

2n−1∏
j=0

Γh

(
ω −

(
2n− j − 1

2

)
τ −m

)
·
n−1∏
`=0

Γh((2`+ 1)τ + 2m) ·
n∏
k=1

Γh(2kτ)

(4.11)

The three terms in the argument of these hyperbolic Gamma function correspond to
the ones expected from the duality. Indeed if we associate a mass parameter τ to the
adjoint and two mass parameters m1 = m and m2 = ω − τ

2 then the unit flux bare
monopole YUsp has mass parametermYUsp = 2ω−2nτ−m1−m2. The dressed monopole
Yj = YUspS

j has mass parametermYj = 2ω−(2n−j)τ−m1−m2. By using the constraint
imposed by the superpotential on m2 we then arrive at mYj = ω − (2n − j − 1

2 )τ −m,
corresponding to the argument of the first hyperbolic Gamma function in (4.11). On the
other hand the arguments of the second and of the third Gamma functions in (4.11) are
straightforward and they correspond to the dressed mesonsM` = qS2`+1q and the to the
singlets σk = TrS2k.
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Case II: SO(2n)

In this case we choose the parameters µr as ~µ =
(
ω1

2 ,
ω2

2 , 0,m
)

and apply the duplication
formula. On the LHS of (4.4) we obtain

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

n∏
j=1

Γh(m± xj)dxj (4.12)

This corresponds to the partition function of SO(2n) with an adjoint A and a vector q
with vanishing superpotential. Actually to correctly reproduce the expected partition
function we need an extra factor of 2, in order to have 2n−1 in the denominator, that
correctly reproduces the Weyl factor. This extra 2 will be generated when looking at the
RHS as are going to explain.

The RHS of (4.4) can be studied as in the USp(2n) case above. In this case we obtain

1

2
Γh(nτ) · Γh(ω − (n− 1)τ −m) ·

n−1∏
k=1

Γh(2kτ)

×
n−1∏
`=0

Γh(2`τ + 2m) ·
2n−2∏
j=0

Γh(ω − (2n− 2− j)τ −m) (4.13)

where we used the duplication formula, the reflection equation and the relations Γh
(
ω1

2

)
=

Γh
(
ω2

2

)
= 1√

2
. As anticipated above, the 1

2 term can be moved on the LHS reproducing
the Weyl factor of SO(2n). The other contributions correspond to the 4n singlets of [2] .
Let us discuss them in detail. Again we associate a mass parameter τ to the adjoint and a
mass parameters m to the vector. The unit flux bare monopole Y +

SO has mass parameter
mY +

SO
= ω−2(n−1)τ−m. The dressed monopoles Y +

j = Y +
SO TrAj have mass parameter

mY +
j

= ω− (2n− 2− j)τ −m, corresponding to the last term in the second line of (4.13).
The mass parameter associated to the baryon monopole is obtained by adding (n − 1)τ
to mY +

SO
. This gives mY −

An−1
= ω − (n − 1)τ −m and it corresponds to the second term

in the first line of (4.13). The first term of (4.13), with mass parameter nτ corresponds to
the baryon B ≡ Pf A. The dressed mesons M` = qA2`q and the singlets σk = TrA2k are
associated to the combinations mM`

= 2`τ + 2m and mσk = 2kτ respectively.

Case III: SO(2n+ 1)

In this case we choose the parameters µr as ~µ =
(
ω1

2 ,
ω2

2 , τ,m
)

and apply the duplication
formula. On the LHS of (4.4) we obtain

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

n∏
j=1

Γh(τ ± xj)Γh(m± xj)
Γh(±xj)

dxj

(4.14)

This corresponds to the partition function of SO(2n+1) with an adjoint A and a vector q
with vanishing superpotential. Actually we are still missing a contribution Γh(m) com-
ing from the zero modes of the vector. As in the SO(2n) case discussed above, the extra
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term comes from the RHS, that in this case becomes

Γh(ω − nτ)Γh(nτ +m)

Γh(m)

n∏
k=1

Γh(2kτ)

n−1∏
`=0

Γh(2`τ + 2m)

×
2n−1∏
j=0

Γh(ω − (2n− 1− j)τ −m) (4.15)

As anticipated above the denominator can be moved on the LHS and it is necessary
to reproduce the zero mode of the chiral fields in the vectorial representation of the
SO(2n+ 1) gauge group. The other 4n+ 2 Gamma functions correspond to the singlets
discussed in [2]. Let us discuss them in detail. Again we associate a mass parameter τ to
the adjoint and a mass parameters m to the vector. The unit flux bare monopole Y +

SO has
mass parameter mY +

SO
= ω − (2n − 1)τ −m. The dressed monopoles Y +

j = Y +
SO TrAj

have mass parameter mY +
j

= ω − (2n − 1 − j)τ −m, corresponding to the term in the

second line of (4.13). The baryon monopole Y −qAn−1 is obtained by adding (n−1)τ +m to
the contribution of mY +

SO
. This gives mY −

qAn−1
= ω − (n− 1)τ , and this gives raise to the

first term in the first line of (4.15). The second term in the first line of (4.15), with mass
parameter nτ + m corresponds to the baryon ε2n+1(qAn). The dressed mesons M` =
qA2`q and the singlets σk = TrA2k are associated to the combinations mM`

= 2`τ + 2m
and mσk = 2kτ respectively.

4.3 New results

In this section we propose three new dualities, that generalize the ones reviewed above,
in presence of two more fundamentals (or vectors) and of a monopole superpotential.

Here we propose such dualities by reversing the procedure adopted so far. We start from
the integral identity (4.2) , that has a clear physical interpretation, because it gives the
mathematical version of the confinement of USp(2n) with an antisymmetric, six funda-
mentals and the monopole superpotential.

Then we use the duplication formula and we obtain three new relations as discussed
above in terms of USp(2n) (SO(N)) with an adjoint S (A), four (three) fundamentals
(vectors) and W = pSp (W = 0). In each case the masses are constrained because the
choice of parameters necessary to apply the duplication formula leaves us with a con-
straint, corresponding to the leftover of (4.3).

By applying the three choices of mass parameters discussed in Section 4.2 we arrive at
the following three identities
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Case I: USp(2n)

The first choice corresponds to choosing ~µ =
(
τ
2 + ω1

2 ,
τ
2 + ω2

2 ,
τ
2 , µ1, µ2, µ3

)
. Substituting

in (4.2) it gives raise to the following identity

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

n∏
j=1

Γh(τ ± 2xj)
∏4
r=1 Γh(µr ± xj)

Γh(±2xj)
dxj

=

n∏
k=1

Γh(2kτ) ·
n−1∏
j=0

3∏
r=1

Γh((2j + 1)τ + 2µr) ·
2n−1∏
j=0

∏
1≤r<s≤3

Γh(jτ + µr + µs) (4.16)

=

n∏
k=1

Γh(2kτ) ·
n−1∏
j=0

( ∏
1≤r≤s≤3

Γh((2j + 1)τ + µr + µs) ·
∏

1≤r<s≤3

Γh(2jτ + µr + µs)

)
with the conditions

2nτ +

4∑
a=1

µa = 2ω & 2µ4 + τ = 2ω (4.17)

Schematically this corresponds to:

Sp(2n) w/ adjoint S
and 4 fundamentals q1,2,3, p

W = YUSp + Tr(pSp)

⇐⇒

Wess-Zumino w/ 10n chirals

σk = TrS2k, k = 1, . . . , n

A(2`)
rs ≡ qrS2`qs, r < s

S(2`+1)
rs ≡ qrS2`+1qs, r ≤ s

(4.18)

where ` = 0, . . . n − 1 and r, s = 1, 2, 3. The dual (confined) model corresponds to a set
of singlets, σk = TrS2k, with k = 1, . . . , n, and dressed mesons. These are in the antisym-
metric and in the symmetric representation of the flavor symmetry group that rotates
q1,2,3 and they can be defined as A(2`)

rs ≡ qrS
(2`)qs and S(2`+1)

rs ≡ qrS
2`+1qs respectively.

By flipping the singlets σk we modify the electric theory, adding the superpotential terms
∆Wele

=
∑n
k=1 ρk TrS2k. In the dual theory we are left with the cubic superpotential

W =
∑

`1+`2+`3=2n−2

εr1r2r3εs1s2s3S(2`1+1)
s1,r1 S(2`2+1)

s2,r2 S(2`3+1)
s3,r3

+
∑

`1+`2+`3=2n−1

εr1r2r3εs1s2s3A(2`1)
s1,r1A

(2`2)
s2,r2S

(2`3+1)
s3,r3 (4.19)

On the identity (4.16) the effect of such a flip corresponds to moving the terms Γh(2kτ)
on the LHS and taking them to the numerator by using the reflection equation, giving
raise to the contribution Γh(2ω − 2kτ), corresponding to the singlets ρk.
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Case II: SO(2n)

The second choice corresponds to choosing ~µ =
(
ω1

2 ,
ω2

2 , 0, µ1, µ2, µ3

)
. Substituting in

(4.2) gives raise to the following identity

Γh(τ)n

(−ω1ω2)
n
2 2n−1n!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

n∏
j=1

3∏
r=1

Γh(µr ± xj)dxj = Γh(nτ)

n−1∏
k=1

Γh(2kτ)

n−1∏
j=0

3∏
r=1

Γh(2jτ + 2µr)
∏

1≤r<s≤3

Γh((n− 1)τ + µr + µs)

2n−2∏
j=0

Γh(jτ + µr + µs)

(4.20)

with the condition

2(n− 1)τ +

3∑
r=1

µr = ω (4.21)

This corresponds to the duality:

SO(2n) w/ adjoint A
and 3 vectors q1,2,3

W = Y +
SO

⇐⇒

Wess-Zumino w/ 10n+ 3 chirals

σk = TrA2k

A(2`+1)
rs ≡ qrA2`+1qs r < s

S(2`)
rs ≡ qrA2`qs r ≤ s

B = Pf A

Br = εrst ε2n(An−1qsqt)

(4.22)

with k = 1, . . . , n − 1, ` = 0, . . . , n − 1 and r, s = 1, 2, 3. The dual description consists
of a set of chiral fields identified with mesons and baryons of the electric theory. The
baryon B = Pf A is reproduced on the partition function by Γh(nτ) while the baryons
Br = εrst ε2n(An−1qsqt) are reproduced on the partition function by Γh((n−1)τ+µr+µs).
There is also a tower of singlets σk associated to the singlets TrA2k contributing to the
partition function as

∏n−1
k=1 Γh(2kτ).

The mesons are in the antisymmetric and in the symmetric representation of the flavor
symmetry group that rotates the three vectors and they can be defined as A(2`+1)

rs ≡
qrA

2`+1qs and S(2`)
rs ≡ qrA

2`qs respectively. By flipping the singlets σk and the baryons
we are left, in the dual theory, with the cubic superpotential

W =
∑

`1+`2+`3=2n−2

εr1r2r3εs1s2s3S(2`1)
s1,r1S

(2`2)
s2,r2S

(2`3)
s3,r3

+
∑

`1+`2+`3=2n−3

εr1r2r3εs1s2s3A(2`1+1)
s1,r1 A(2`2+1)

s2,r2 S(2`3)
s3,r3 (4.23)

Again we can reproduce the effect of the flip on the partition function by moving the
relative Gamma function on the LHS of (4.20) and using the reflection equation.
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SO(2n+ 1)

The third choice corresponds to choosing ~µ =
(
ω1

2 ,
ω2

2 , τ, µ1, µ2, µ3

)
. Substituting in (4.2)

gives raise to the following identity

Γh(τ)n
∏3
r=1 Γh(µr)

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

Γh(τ ± xj ± xk)

Γh(±xj ± xk)

×
n∏
j=1

Γh(τ ± xj)
∏3
r=1 Γh(µr ± xj)

Γh(±xj)
dxj = Γh(ω − nτ)

3∏
r=1

Γh(nτ + µr)

×
n∏
k=1

Γh(2kτ)

n−1∏
j=0

3∏
r=1

Γh(2jτ + 2µr)

2n−1∏
j=0

∏
1≤r<s≤3

Γh(jτ + µr + µs)

(4.24)

with the condition

(2n− 1)τ +

3∑
a=1

µa = ω (4.25)

This corresponds to:

SO(2n+ 1) w/ adjoint A
and 3 vectors q1,2,3

W = Y +
SO

⇐⇒

Wess-Zumino w/ 10n+ 4 chirals

σk = TrA2k

A(2`+1)
rs ≡ qrA2`+1qs r < s

S(2`)
rs ≡ qrA2`qs r ≤ s
B ≡ ε2n+1A

n−1q1q2q3

Bi ≡ ε2n+1A
nqi

(4.26)

with k = 1, . . . , n − 1, ` = 0, . . . , n and r, s = 1, 2, 3. The dual description consists of
a set of chiral fields identified with symmetric and antisymmetric mesons as above, the
baryons B ≡ ε2n+1A

n−1q1q2q3 and Bi ≡ ε2n+1A
nqi and the singlets σk = TrA2k. On the

partition function such fields correspond to Γh(ω − nτ), Γh(nτ + µr) and
∏n
k=1 Γh(2kτ)

respectively. Again by flipping the singlets and leaving only the mesons on the dual
side we are left with the superpotential (4.23). We can reproduce the effect of such flip
on the partition function by moving the relative Gamma function on the LHS of (4.24)
and using the reflection equation.

4.3.1 A consistency check: flowing to the cases of [2]

Here we show that by giving large masses to two of the fundamentals (or two of the vec-
tors in the theories with orthogonal group) the dualities (4.16), (4.20) and (4.24) reduce
respectively to the dualities (5.1), (5.2) and (5.3) of [2].

Case I: USp(2n)

We consider the real mass flow triggered by giving large real masses (of opposite signs)
to two of the quarks, say q1 and q2. On the electric side we are left with a USp(2n) theory
with two quarks q = q3 and p, one adjoint and W = pSp. The linear monopole superpo-
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tential is lifted in the mass flow. On the magnetic side the dressed mesons A(2`)
3r , S(2`+1)

3r

and S(2`+1)
rr with r = 1, 2 become massive and are integrated out in the IR. The dressed

mesons A(2`)
12 and S(2`+1)

12 are massless and are identified with the dressed monopoles
Yj of the electric theory. More precisely we identify A(2`)

12 with Y2` and S(2`+1)
12 with

Y2`+1 for ` = 0, . . . , n − 1. The leftover dressed mesons S2`+1
33 correspond to M`, for

` = 0, . . . , n− 1. The superpotential (4.19) reduces to the one of [2] when the singlets σk
are flipped. Indeed the only superpotential terms surviving the real mass flow are

W ∝
∑

`1+`2+`=2n−2

S
(2`1+1)
1,2 S

(2`2+1)
1,2 S

(2`+1)
3,3 +

∑
`1+`2+`=2n−1

A
(2`1)
1,2 A

(2`2)
1,2 S

(2`+1)
3,3

=
∑
j1,j2,`

Yj1Yj2M`δj1+j2+2`−4n+2 (4.27)

We can follow this real mass flow on the partition function in the following way. We
parametrize the mass parameters as:

µ1 = ν + s, µ2 = ν − s, µ3 = m (4.28)

and we take the limit s→∞. The constraint from the monopole superpotential reads:

2ν = ω − 2nτ +
τ

2
−m (4.29)

On the RHS of (4.16) the Gamma functions with finite argument in the s→∞ limit are:

n−1∏
`=0

Γh
(
(2`+ 1)τ + 2m

) 2n−1∏
`=0

Γh (`τ + 2ν)

=

n−1∏
`=0

Γh
(
(2`+ 1)τ + 2m

) 2n−1∏
j=0

Γh

(
ω + jτ − 2nτ +

τ

2
−m

) (4.30)

which correspond to the singlets M` and Yj . On the LHS it corresponds to the partition
function of USp(2n) with 2 fundamentals p, q, one adjoint S, n singlets ρk and superpo-
tential W =

∑n
k=1 ρk TrS2k + pSp as expected. The Gamma functions with divergent

argument can be written as an exponential using (2.11), that we report here:

lim
z→±∞

Γh(z) = ζ−sgn(z)exp
(

iπ

2ω1ω2
sgn(z)(z − ω)2

)
(4.31)

where ζ = exp
(

2πi
ω2

1+ω2
2

48ω1ω2

)
. The resulting phase on the LHS is then (we omit the prefac-

tor iπ
2ω1ω2

):
n∑
j=1

(s+ ν ± xj − ω)2 − (−s+ ν ± xj − ω)2 = 8sn(ν − ω) (4.32)
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while on the RHS it is:
n∑
`=1

(
((2`− 1)τ + 2ν + 2s− ω)2 − ((2`− 1)τ + 2ν − 2s− ω)2

)
+

2n−1∑
`=0

(
(`τ +m+ ν + s− ω)2 − (`τ +m+ ν − s− ω)2

)
= 4ns(6ν + 2m− 4ω + (4n− 1)τ)

(4.33)

Under the constraint (4.29) the divergent phases cancel between the RHS and the LHS.
We are then left with an equation which corresponds to the identity between the partition
functions of the theories of the duality (5.1) of [2].

Case II: SO(2n)

We can flow from the duality (4.20) to (5.2) of [2] by giving a large mass of opposite sign
to two vectors. Indeed the only mesons that survive the projection are the ones labeled
by A(2`+1)

12 , S(2`)
12 and S(2`)

33 . The first two are associated to the dressed monopoles Y +
j as

A(2`+1)
12 = Y +

2`+1 and S(2`)
12 = Y +

2` for ` = 0, . . . , n − 1. The leftover dressed mesons S2`
33

correspond to M`. After the real mass flow the superpotential (4.23) reduces to the one
of [2] when the singlets σk, Y −An−1 and Y +

j are flipped:

W ∝
∑

`1+`2+`=2n−2

S(2`1)
1,2 S

(2`2)
1,2 S

(2`)
3,3 +

∑
`1+`2+`=2n−3

A(2`1+1)
1,2 A(2`2+1)

1,2 S(2`)
3,3

=
∑
j1,j2,`

Y +
j1
Y +
j2
M`δj1+j2+2`−4n+4 (4.34)

In order to follow the real mass flow on the partition function we parametrize the masses
as:

µ1 = ν + s, µ2 = ν − s, µ3 = m (4.35)

The constraint reads:
2(n− 1)τ + 2ν +m = ω (4.36)

Taking the limit s → ∞ the LHS becomes the partition function for SO(2n) with one
vector and one adjoint multiplied by a divergent phase. The singlets on the RHS of
(4.20) that remain massless are:

Γh (nτ)

n−1∏
k=1

Γh (2kτ)

n−1∏
`=1

Γh (2`τ + 2m) Γh
(
ω − (n− 1)τ −m

)
×

2n−1∏
j=0

Γh
(
ω + jτ −m− 2(n− 1)τ

) (4.37)

which correspond respectively to the singlets B, σk, M`, Y −An−1 and Y +
j discussed above.

Along the lines of the computation done in the previous case one can show that the
divergent phases cancel between the LHS and the RHS. The limit s → ∞ then gives the
identity between the partition functions of the dual theories (5.2) of [2].
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Case III: SO(2n+ 1)

When we give large masses to two of the vectors this duality reduces to the duality (5.3)
of [2]. Analogously to the SO(2n) case the the superpotential reduces to the one of [2]
when the singlets σk, Y +

j and Y −qAn−1 are flipped.

We parametrize the real masses as in (4.35). The constraint reads:

(2n− 1)τ + 2ν +m = ω (4.38)

The LHS becomes the partition function for a SO(2n + 1) gauge theory with one vector
q and one adjoint A multiplied by a divergent phase. The singlets on the RHS of (4.24)
that remain massless are:

Γh (ω − nτ) Γh (nτ +m)

n∏
k=1

Γh (2kτ)

n−1∏
`=0

Γh (2`τ + 2m)

×
2n−1∏
j=0

Γh
(
ω + jτ −m− (2n− 1)τ

) (4.39)

which correspond respectively to the singlets Y −qAn−1 , B, σk ,M` and Y +
j discussed above.

The divergent phases cancel between the LHS and the RHS. The resulting identity cor-
responds to the duality (5.3) of [2].

4.3.2 Proving the new dualities through adjoint deconfinement

The dualities read above from the matching of the three-sphere partition functions can be
proved along the lines of [2] by deconfining the adjoints as reviewed in sub-section 4.1.
Even if the logic is very similar the presence of more fundamentals/vectors and the con-
straints imposed by the monopole superpotentials modify the analysis and it is worth to
study explicitly the mechanism. Furthermore when translated to the three-sphere parti-
tion function this process offers an alternative derivation of the mathematical identities
(4.16), (4.20) and (4.24) from a physical perspective. In Figure 4.1 we show schemati-
cally the confinement/deconfinement procedure we used to prove the confinement of
the USp(2n) model with monopole superpotential.

Case I: USp(2n)

The USp(2n) model with an adjoint S, four fundamentals {q1,2,3, p} and superpotential
(4.18) is dual to the USp(2n) × SO(2n) quiver given in Figure 4.2. As discussed above
the analysis is made easier by flipping the singlets TrS2k with k = 1, . . . , n. On the
physical side this corresponds to adding singlets ρk to the original USp theory with
superpotential:

δW =

n∑
k=1

ρk Tr
(
S2k
)

(4.40)

while mathematically it corresponds to moving the tower Γh(2kτ) on the LHS of (4.16)
and by using the reflection equation we are left with Γh(2ω − 2kτ). The superpotential
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Figure 4.1 Schematic representation of one step of the deconfinement procedure used
to prove the confinement of the USp(2n) model with monopole superpotential. The
superpotential and three-sphere partition function of each model in Figure are:

T1 T ′1 T2 T ′2 T3

W (4.18) (4.41) (4.52) (4.54) (4.60)
ZS3 (4.16) (4.50) (4.53) (4.58) (4.62)
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SO(2n) USp(2n)

31

Q

qb

a

Figure 4.2 Quiver description of the deconfinement of the adjoint S of theUSp(2n) model
with superpotential (4.18). In this and in the following quivers we decided to omit to
represent the various singlets.

associated to the quiver in Figure 4.2 is then1:

W = YUSp + Y +
SO + Tr(abQ) + s1ε2n(Q2n) +

n−1∑
k=1

ρkTr
(

(QQ)2k
)

(4.41)

Indeed by confining the SO(2n) gauge node of this quiver we arrive at the original
model. This can be proved thanks to a confining duality reviewed in the appendix B.
By confining the SO(2n) node the superpotential becomes

W = YUSp + Tr(aMbQ) +

n−1∑
k=1

ρk Tr
(
S2k
)

+ s1qb + pSp

+ Mbbq
2
b +MbQqbp+ det

(
S MbQ

MbQ Mbb

)
(4.42)

where the duality map for the meson of SO(N) is(
QQ bQ
bQ bb

)
≡
(

S MbQ

MbQ Mbb

)
(4.43)

1In ε2nQ2n the USp indices of Q are contracted using J =

(
0 In
−In 0

)
and the SO indices are con-

tracted with ε2n, explicitly ε2nQ2n = εi1j1...injnQ
a1
i1
Ja1b1Qbn

j1
. . . Qan

in
JanbnQbn

jn
. Similarly Tr

(
Sn

)
is a

shorthand notation for Tr
(
(S · J)n

)
. In the rest of this Chapter we omit the matrix J , which is always under-

stood whenever we contract the indices of a symplectic group.
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while the baryons are qb ≡ ε2n(Q2n) and p ≡ ε2n(Q2n−1b). The field S is in the adjoint
of USp(2n) while the field p is the fourth fundamental of USp(2n) (the other three fun-
damentals q1,2,3 are spectator when confining SO(2n)). By evaluating the F-terms of the
massive fields we end up with the original USp(2n) gauge theory, with an adjoint, four
fundamentals and superpotential

W = YUSp + pSp+

n−1∑
k=1

ρk Tr
(
S2k
)

+Mbbdet(S) (4.44)

We can expand the determinant of S in terms of traces2:

det (S) ∝ Tr
(
S2n

)
+ multi-traces (4.45)

By dropping the multi-trace terms and by comparing with the superpotentialW = (4.18)
+ (4.40) of the USp(2n) model we started with, we identify Mbb = ρn.

On the partition function the mass parameters for the fields appearing in this USp(2n)×
SO(2n) quiver are related to the ones of the original USp(2n) model (i.e. µr and τ in
formula (4.16)) by the following set of relations

3∑
r=1

µr + 2nµQ + µa = 2ω, 2nµQ + µb = ω, µQ + µb + µa = 2, µs1 + 2nµQ = 2

(4.47)

where µr are the three mass parameter for the fields q1,2,3. Furthermore we can map
these parameters to the ones in the confined SO(2n) model by imposing µQ = τ

2 . In this
way we arrive at the following identifications

µs1 = 2ω − nτ, µb = ω − nτ, µa = 2ω −
3∑
r=1

µr − nτ (4.48)

with the constraint

2nτ − τ

2
+

3∑
r=1

µr = ω (4.49)

The duality between the original USp(2n) model and the quiver with the deconfined
adjoint can be checked on the partition function by using the identity (B.3). This can be

2For a 2n× 2n symmetric matrix S:

det(S) = det(S · J) =
1

(2n)!
B2n(s1, . . . , s2n), sk = (−1)k−1(k − 1)! Tr

(
(S · J)k

)
(4.46)

where Bn are Bell polynomials Bl(s1, . . . , sl) = sl + . . . .
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shown explicitly by considering the partition function of the quiver, i.e.

ZUSp(2n)×SO(2n) =

∏n−1
k=1 Γh(2ω − 2kτ)Γh(µs1)

(−ω1ω2)n22n−1(n!)2

∫ n∏
i=1

dxi
Γh(±xi + µb)

Γh(±xi)

×
n∏
α=1

dyα
Γh(±yα + µa)

∏3
r=1 Γh(±yα + µr)

Γh(±2yα)

×
∏n
i=1

∏n
α=1 Γh

(
±xi ± yα + µQ

)∏
i<j Γh(±xi ± xj)

∏
α<β Γh(±yα ± yβ)

(4.50)

and then by using the relation (B.3). This is possible because the mass parameters of the
2n+ 1 vectors in the SO(2n) model are related, due to the linear monopole superpoten-
tial, by

n∑
α=1

(±yα + µQ) + µb = 2nµQ + µb = ω (4.51)

By applying (B.3) and by using the reflection equation we end up with the first line of
(4.16), finding the expected result.

Next we can dualize the USp(2n) node with the linear monopole superpotential turned
on. We are left with an SO(2n) SQCD with an adjoint A and superpotential

W = Y +
SO +

n−1∑
k=1

ρk TrA2k + εrst(MrsvtPfA+ vrε(A
n−1usut)) + s1PfA (4.52)

In this case the fields are mapped to the ones in theUSp(2n)×SO(2n) quiver as ur = Qqr,
A = QQ, Mrs = qrqs and vr = aqs. The fields ur are three vectors while A is in the
adjoint of SO(2n). The fields Mrs and vr are singlets. The term εrst(. . . ) in the superpo-
tential originates from the Pfaffian of the generalized meson, built up by contracting the
fundamentals of the USp(2n) gauge node, after integrating out the massive component
MQa = Qa.

The partition function is obtained by the limiting case of the identity given in Proposi-
tion 5.3.4 of [56] and we report it in formula (B.1). It corresponds to the confining duality
for USp(2n) with 2n + 4 fundamentals and linear monopole superpotential turned on.
This identity was obtained also in [49] from the reduction of the integral identity relat-
ing the superconformal indices of the 4d duality of [17]. The partition function obtained
after confining the USp(2n) gauge node is

ZSO(2n) =

∏
r<s Γh(µr + µs)

∏3
r=1 Γh

(
ω + nτ − τ

2 + µr
)

Γh(2ω − nτ)
∏n−1
k=1 Γh(2ω − 2kτ)

(−ω1ω2)
n
2 2n−1(n!)

×
∫ n∏

i=1

dxi

3∏
r=1

Γh

(
±xi + µr +

τ

2

) ∏
1≤i<j≤n

Γh(±xi ± xj + τ)

Γh(±xi ± xj)
(4.53)

As a consistency check we can now use formula (4.20) on the integral (4.53) because
the mass parameters are constrained as in (4.21). After some rearranging we eventually
checked that the integral reduces to the LHS of (4.16). This signals the consistency of the
various steps done so far and motivated us to further deconfine the adjoint of SO(2n) in



S-confinement in 3d N = 2 SO/USp adjoint SQCD 61

SO(2n)USp(2n-2)

21

Q

cd

f

1

e

Figure 4.3 Quiver representation of the SO(2n) model after the adjoint field has been
deconfined

order to produce a new quiver with a symplectic and an orthogonal node.

The SO(2n) model with adjoint and three fundamentals is equivalent to the USp(2n −
2)× SO(2n) quiver given in Figure 4.3 with superpotential

W = YUSp + Y +
SO +

n−1∑
k=1

ρk Tr(QQ)2k + Tr(Qef) + v1ε2n(Q2n−2c2c3)

+ v3 Tr(fc2) + v2 Tr(fc3) + ε2n(Q2n) (Tr(de) + εrstMrsvt)

(4.54)

The duality map reflects on the following relations between the mass parameters in the
partition function

µc2,3 = µ2,3 +
τ

2
, µd1

= µ1, µQ =
τ

2
(4.55)

Furthermore the superpotential imposes the following relations on the other parameters

µf = ω − µ2 − µ3 − nτ, µe = 2ω − nτ − µ1 (4.56)

and the usual constraint

2nτ − τ

2
+

3∑
r=1

µa = ω (4.57)

We can see that this model reduces to the SO(2n) model discussed above when the
USp(2n− 2) node with 2n+ 2 fundamentals and a linear monopole superpotential con-
fines. Again the confinement of the USp(2n− 2) symplectic gauge group gives raise to a
superpotential term proportional to the Pfaffian of the generalized meson. By integrat-
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ing out the massive fields and substituting in the Pfaffian we recover the superpotential
(4.52). The partition function of the USp(2n− 2)× SO(2n) model is

ZSO(2n)×USp(2n−2) =

∏
r<s Γh(µr + µs)

∏3
r=1 Γh

(
ω + nτ − τ

2 + µr
)∏n−1

k=1 Γh(2ω − kτ)

(−ω1ω2)
2n−1

2 22n−2(n!(n− 1)!)

×
∫ n∏

i=1

dxi
Γh(±xi + µf )

∏3
`=2 Γh(±xi + µc`)

Γh(±xi)

×
n−1∏
a=1

dya
Γh(±ya + µd)Γh(±ya + µe)

Γh(±2ya)

×
∏n
i=1

∏n−1
a=1 Γh

(
±xi ± ya + µQ

)∏
i<j Γh(±xi ± xj)

∏
a<b Γh(±ya ± yb)

(4.58)

One can check that the partition functions for the SO(2n) model and that for theUSp(2n−
2) × SO(2n) quiver are equal by applying the identity for the confining USp node with
2n + 2 fundamentals discussed above. The last step consists in performing a confining
duality on the SO(2n) gauge node with 2n + 1 vectors and linear monopole superpo-
tential turned on. This gives raise to an USp(2n− 2) gauge theory with an adjoint, four
fundamentals and a series of singlets. The mesonic and baryonic operators associated to
the SO(2n) gauge group are

M =

 S ≡ Q2 MQ,f ≡ Qf MQ,cl ≡ Qcl
MT
Q,f Mff ≡ ff Mf,cl ≡ fcl

MT
Q,cl

MT
f,cl

Mcl,cm ≡ clcm

 , Q =


q ≡ ε2n(Q2n−3fc2c3)
qf ≡ ε2n(Q2n−2c2c3)
qc2 ≡ ε2n(Q2n−2fc3)
qc3 ≡ ε2n(Q2n−2fc2)


(4.59)

with l,m = 2, 3 and where S is in the adjoint of the USp(2n − 2) gauge group, while
MQ,f ,MQ,c1 ,MQ,c2 and q are four fundamentals of USp(2n−2). There are also two extra
fundamentals of USp(2n− 2) corresponding to the fields d and e of the previous model,
which are not modified by the duality on the SO(2n) gauge node. The superpotential of
the dual USp(2n− 2) adjoint SQCD is then

W = YUSp +

n−1∑
k=1

ρk TrS2k +MQQT + detM+ eMQ,f + v1qf

+ v3Mf,c2 + v2Mf,c3 + Tr (Sn) (de+ εrstMrsvt) (4.60)

The determinant can be evaluated as

WdetM = detS det

(
Mff Mf,~c

MT
f,~c M~c,~c

)
+ ε2n−2ε2n−2

(
S2n−3(MQ,fMc2,c3 +MQc2Mf,c3

+ MQc3Mf,c2)2 + S2n−4(MQ,fMQ,c2MQ,c3(MQ,fMc2,c3 +MQc2Mf,c3

+ MQc3Mf,c2) + S2n−5(MQ,fMQ,c2MQ,c3)2
)

(4.61)

We can then integrate out the massive fields {e,MQ,f , ~v, qf ,Mf,~c} and we are left with
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USp(2n − 2) adjoint SQCD with four fundamentals. There is a rather rich structure
of singlets that we do not report here but that can be read by computing the F -terms
of (4.60). We can now iterate this procedure by alternating adjoint deconfinement and
duality in order to arrive to the final step and eventually prove the duality.

As anticipated this procedure can be used on the mathematical side to prove the identity
(4.16) from a physical perspective. In order to complete the proof we need to consider
the partition function obtained so far after the final duality on the SO(2n) node (B.3). It
is

ZUSp(2n−2) =

∏
l,m=1,2 Γh(µcl + µcm)

∏2
l=1 Γh

(
ω − µcl

)
Γh(2µa)

∏3
r<s Γh (µr + µs)

(−ω1ω2)
n−1

2 2n−1(n− 1)!

×
n−1∏
k=1

Γh(2ω − 2kτ)

∫ n−1∏
α=1

dyα

∏4
r=1 Γh(±yα + µ̃r)

Γh(±2yα)

∏
1≤α<β≤n−1

Γh
(
±yα ± yβ + τ

)
Γh
(
±yα ± yβ

)
(4.62)

Where the masses µ̃r are:

~̃µ =

{
µ1, µ2 + τ, µ3 + τ, ω − τ

2

}
(4.63)

Notice that the superpotential constraint reads:

2(n− 1)τ +

4∑
r=1

µ̃r = 2ω & 2µ̃4 + τ = 2ω (4.64)

which is equivalent in form to the original superpotential constraint (4.17).
The contribution of the singlets can be written as:

n−1∏
k=1

Γh (2ω − 2kτ)

3∏
r<s

Γh (µr + µs)

3∏
r=2

Γh
(
µr + µ1(2n− 1)τ

)
× Γh (µ2 + µ3 + τ)

3∏
r=2

Γh (2µr + τ) Γh
(
2µ1 + τ(2n− 1)

) (4.65)

We can prove the confining duality forUSp(2n) with four fundamental and linear monopole
superpotential by iterating this procedure n times. In each step we obtain a new set of
singlets as in (4.65), with the exception that the tower of Γh (2ω − 2kτ) reduces of one
unit. Furthermore in each step the rank of the gauge group decreases by one and the
real masses are redefined as in (4.63), so that the fundamentals of USp(2(n − h)) ob-
tained after h steps are related to the original ones by:

~µh-th step =

{
µ1, µ2 + hτ, µ3 + hτ, ω − τ

2

}
(4.66)

Thus iterating this procedure n times each term in (4.65) gives a tower of singlets of the
final confined phase. Schematically:
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3∏
r<s

Γh (µr + µs) →



n−1∏
`=0

3∏
r=2

Γh (`τ + µ1 + µr)

n−1∏
`=0

Γh (2`τ + µ2 + µ3)

(4.67)

3∏
r=2

Γh
(
µr + µ1(2n− 1)τ

)
→

2n−1∏
`=n

3∏
r=2

Γh (`τ + µ1 + µr) (4.68)

Γh (µ2 + µ3 + τ) →
n−1∏
`=0

Γh
(
(2`+ 1)τ + µ2 + µ3

)
(4.69)

3∏
r=2

Γh (2µr + τ) →
n−1∏
`=0

3∏
r=2

Γh
(
2µr + (2`+ 1)τ

)
(4.70)

Γh
(
2µ1 + τ(2n− 1)

)
→

n−1∏
`=0

Γh
(
2µ1 + τ(2`+ 1)

)
(4.71)

while the contribution of the tower
∏n−1
k=1 Γh (2ω − 2kτ) reduces of one unit at each step,

and eventually disappear. Together these reproduce the formula (4.16).

Case II: SO(2n)

Now we prove the confining duality for SO(2n) with one adjoint A, three vectors q1,2,3

and monopole superpotential (4.20) by deconfining the adjoint. The mass parameters
for the three vectors qr are referred as µr with r = 1, 2, 3 and the one for the adjoint is
referred as τ . The SO(2n) model is equivalent to the USp(2n − 2) × SO(2n) quiver in
Figure 4.3, but this time the superpotential is

W = YUSp + Y +
SO + gTr(de) + Tr(Qef) (4.72)

The duality map is:
µc2,3 = µ2,3, µd = µ1 −

τ

2
, µQ =

τ

2
(4.73)

The other parameters are fixed by the constraints given by the superpotential:

µe = 2ω− nτ − µ1 +
τ

2
µf = ω− µ2 − µ3 − (n− 1)τ = (n− 1)τ + µ1, µg = nτ (4.74)

with the constraint given by the monopole superpotential:

2(n− 1)τ +

3∑
r=1

µr = ω (4.75)
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The partition function of the quiver is:

ZSO(2n)×USp(2n−2) =
Γh
(
µg
)

(−ω1ω2)
2n−1

2 22n−2(n!(n− 1)!)

×
∫ n∏

i=1

dxi
Γh(±xi + µf )

∏3
`=2 Γh(±xi + µc`)

Γh(±xi)

×
n−1∏
a=1

dya
Γh(±ya + µd)Γh(±ya + µe)

Γh(±2ya)

×
∏n
i=1

∏n−1
a=1 Γh

(
±xi ± ya + µQ

)∏
i<j Γh(±xi ± xj)

∏
a<b Γh(±ya ± yb)

(4.76)

Now we dualize the node with orthogonal group, this results in a USp(2n − 2) model
with four fundamentals and superpotential:

W = YUSp + hTr(de) + Tr(MQfe) + detM+ TrQMQ (4.77)

where M and Q are given by (4.59). Due to the rather complicated structure of such
superpotential we decide to proceed by adding some interactions in the original theory.
We turn on the extra superpotential term

δWSO(2n) =

n−1∑
k=1

ρk TrA2i + β Pf A+ εrstαrε2n(An−1qsqt) (4.78)

On the partition function this removes the contributions of Γh(nτ),
∏
r<s Γh((n − 1)τ +

µr + µs) and
∏n
k=1 Γh(2kτ) from the RHS of (4.20) giving raise to the contributions

Γh(2ω−nτ),
∏3
r=1 Γh(ω+ (n−1)τ +µr) and

∏n
k=1 Γh(2ω−2kτ) on the LHS. Mathemat-

ically this is achieved by applying the reflection equation and the balancing condition
(4.75) and it does not spoil the integral identity (4.20). Furthermore (4.72) becomes

W = YUSp + Y +
SO +

n−1∑
k=1

ρk TrQ2k + Tr(Qef)

+ α1ε2n(Q2n−2c2c3) + α2 Tr(fc2) + α3 Tr(fc3) (4.79)

In this way we can dualize the USp(2n−2) node integrating outMQe and f and identify
β with Mde. The final result coincides to the original model with the superpotential
deformation (4.78).

We can proceed by confining the SO(2n) node with 2n + 1 fundamentals and linear
monopole superpotential after we have added the contributions of α1,2,3 and β. The



66 4.3 New results

partition function for the USp(2n− 2) model is

ZUSp(2n−2)=

∏n−1
k=1 Γh(2ω − 2kτ)

∏
2≤l≤m≤3 Γh(µcl + µcm)

∏3
l=2 Γh

(
ω − µcl

)
Γh(2µf )

(−ω1ω2)
n−1

2 2n−1(n− 1)!

×
∫ n−1∏

a=1

dya

∏4
r=1 Γh(±ya + µ̃r)

Γh(±2ya)

∏
1≤a<b≤n−1

Γh (±ya ± yb + τ)

Γh (±ya ± yb)
(4.80)

Where the masses are:

~̃µ =

{
µ1 −

τ

2
, µ2 +

τ

2
, µ3 +

τ

2
, ω − τ

2

}
(4.81)

If we now ignore the singlets we observe that the contribution of the USp(2n− 2) gauge
sector to this partition function corresponds to the LHS of the identity (4.16). The du-
ality associated to such a sector was proven in the previous section. We can then use
this duality to confine the USp(2n − 2) theory, resulting in a WZ model with partition
function:

∏
2≤l≤m≤3

Γh(µcl + µcm) · Γh(2µf ) ·
n−2∏
`=0

2∏
r=1

Γh
(
2(`+ 1)τ + 2µr

)
Γh (2`τ + 2µ1)

×
3∏
l=2

Γh
(
ω − µcl

)
·

2n−3∏
`=0

(
Γh
(
(`+ 1)τ + µ2 + µ3

)
·

2∏
r=1

Γh (`τ + µ1 + µr)
) (4.82)

which reproduces the RHS of (4.20) once the contributions of the baryons PfA and
ε2n−2(An−1qrqs) and of the singlets TrA2k are removed.

Case III: SO(2n+ 1)

The SO(2n+ 1) model with adjoint A and three fundamentals q1,2,3 is equivalent to the
USp(2n) × SO(2n + 1) quiver given in Figure 4.4. The superpotential of this quiver is
given by

W = YUSp + Y +
SO + Tr(abQ) + f1Tr(c1a) + f2Tr(c2a) + gTr(c2c3) (4.83)

The mass parameters in the partition function are

µc2,3 = µ2,3 −
τ

2
, µQ =

τ

2
, µd = µ1, µa = 2ω − µ2 − µ3 − nτ +

τ

2
µb = ω − µ1 − nτ, µg = 2ω − µ2 − µ3 − τ, µf2,3 = µ3,2 + nτ

(4.84)
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SO(2n+1) USp(2n)

21

Q

d

a

1

b

c

Figure 4.4 Quiver representation of the SO(2n+ 1) model after the adjoint field has been
deconfined

with the constraint (4.25). The partition function of the SO(2n+ 1)× USp(2n) quiver is
given by

ZSO(2n+1)×USp(2n) =
Γh(µg)

∏
m=2,3 Γh(µfm))Γh(µd)Γh(µb)

(−ω1ω2)
2n
2 22n(n!)2)

×
∫ n∏

i=1

dxi
Γh(±xi + µd)Γh(±xi + µb)

Γh(±xi)

×
n∏
α=1

dyα
Γh(±yα + µa)

∏3
m=2 Γh(±yα + µcm)Γh(±yα + µQ)

Γh(±2yα)

×
∏n
i=1

∏n
α=1 Γh

(
±xi ± yα + µQ

)∏
i<j Γh(±xi ± xj)

∏
α<β Γh(±yα ± yβ)

(4.85)

Next we have to confine the SO(2n+1) sector with 2n+2 vectors and a linear monopole
superpotential and we end up with USp(2n). The problem consists of understanding
the interaction among the various singlets from the confining dynamics of SO(2n + 1).
Again we can simplify the problem by modifying the original SO(2n + 1) model by
considering the superpotential

W = Y +
SO +

n∑
k=1

ρk TrA2k + βε2n+1(An−1q1q2q3) +

3∑
r=1

αrε2n+1(Anqr) (4.86)

corresponding to remove the baryons and the singlets TrA2k from the confined phase
and add the new singlets α1,2,3 and β in the original model. On the partition function
this removes the contributions of Γh(ω− nτ),

∏3
r=1 Γh(nτ + µr) and

∏n
k=1 Γh(2kτ) from
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the RHS of (4.24) giving raise to the contributions Γh(ω + nτ),
∏3
r=1 Γh(2ω − nτ − µr)

and
∏n
k=1 Γh(2ω − 2kτ) on the LHS. Mathematically this is achieved by applying the

reflection equation and it does not spoil the integral identity (4.24). By deconfining the
adjoint A the superpotential (4.83) is modified as well. The new superpotential is

W = YUSp + Y +
SO + Tr(abQ) + gTr(c2c3) + β Tr bd+ α1ε2n+1(Q2nd) (4.87)

We can proceed by confining the SO(2n+ 1) node. By integrating out the massive fields
we arrive to an USp(2n) gauge theory with an adjoint S, three fundamentals, identified
by d and the two mesonic composites Qc2 and Qc3, and a fourth fundamental corre-
sponding to u = ε2n+1(Q2n−1bd) , interacting with the adjoint through a superpotential
term W ∝ uSu. There is also a linear monopole superpotential and many more interac-
tions with the singlets that we do not report here, but that can obtained by evaluating
the determinant detS and the superpotential contraction of S with the baryons of the
confined SO(2n+ 1) node. The partition function of the model is

ZUSp(2n) =
Γh(τ)n

∏n
k=1 Γh(2ω − 2kτ)Γh(2µ1)Γh(ω − µ1)Γh(ω + µ1 + 2nτ)Γh(2µb)

(−ω1ω2)
n
2 2n(n!))

×
∫ n∏

a=1

dya

∏4
r=1 Γh(±yi + µ̃r)

Γh(±2ya)

∏
1≤a<b≤n

Γh(±ya ± yb + τ)

Γh(±ya ± yb)
(4.88)

with ~̃µ =
{
µ1 − τ

2 , µ2 + τ
2 , µ3 + τ

2 , ω −
τ
2

}
and the constraints

∑4
`=1 µ̃` + 2nτ = 2ω and

2µ̃4 + τ = 2ω. Also in this case we can borrow the results of the previous sections.
Indeed if we ignore the singlets we observe that the contribution of the gauge USp(2n−
2) sector to this partition function corresponds to the LHS of the identity (4.16). The
duality associated to such a sector was proven in the previous section. We can then use
this duality to confine the USp(2n − 2) theory and prove the confining duality for the
SO(2n+ 1) model.

4.4 Discussion

In this Chapter we exploited the duplication formula to study 3d N = 2 confining gauge
theories with real USp/SO gauge groups, with fundamentals/vectors and adjoint mat-
ter. We where able to show that the cases of [2], with two fundamentals and one vec-
tor respectively, can be studied by the squashed three-sphere localization by applying
the duplication formula for the hyperbolic Gamma function of another s-confining model,
namely USp(2n) with an antisymmetric and four fundamentals. By applying the same
strategy we derived three new integral identities involving symplectic and orthogonal
adjoint SQCD, with four fundamentals and three vector respectively and a monopole
superpotential.

There are several directions where this approach can be applied. For example one can
apply the duplication formula to the integral identities for USp(2n) theories with an anti-
symmetric and eight fundamentals, where the A7 global symmetry enhances to E7. This
case has been deeply investigated in the mathematical [56] and then in the physical lit-
erature [70, 71] and it may be interesting to understand if similar enhancements or new
dualities appear for models with adjoint matter as well.

Another interesting family of models that may deserve some further investigation are
models with power law superpotential for the two index tensor. In this case the starting
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point of the analysis are the integral identities discussed in [112] for USp(2n) with an-
tisymmetric and adjoint matter fields. Again applying the duplication formula in such
cases could lead to new relations between these models and to new results for the or-
thogonal cases.

A deeper question that we have not addressed here consists of the physical interpreta-
tion, if any, of the duplication formula. As observed in the literature this formula allows to
switch from the integral identities for the USp(2n) duality with fundamentals to the in-
tegral identities for the SO(n) dualities with vectors. This has been discussed in [108] for
the superconformal index of 4d dualities and in [43] for the squashed three-sphere par-
tition function of 3d dualities. In presence of monopole superpotential this issue is more
delicate, because in some cases it can lead to a singular behavior that requires more care.
In any case, when the procedure gives rise to a finite result, also in presence of monopole
superpotential, the constraints imposed by anomalies (in 4d) and by monopole super-
potential (in 3d) translate in a consistent way into the new identities, and the latter can
be interpreted as new physical dualities (or in new examples of s-confining theories). It
should be then important to have a physical interpretation of the duplication formula.





Part II

Exploring Conformal Manifolds
of 4d SCFTs





CHAPTER 5

Conformal S-dualities from O-planes

In this Part of thesis we will consider 4d QFTs obtained from stacks of D3 branes in Type
IIB string theory probing a toric Calabi-Yau singularity in the presence of orientifolds,
following [113]. Two different CY singularity correspond, in the low energy limit cap-
turing the worldvolume theory of the D3 branes, to different 4d theories. When on top
of the CY singularity we also consider an orientifold projection it is possible for two dif-
ferent singularity to have the same IR dynamics. More precisely, it is possible that two
QFTs obtained as the low energy limit of different CY singularities with an orientifold to
be related by exactly marginal deformations.

This phenomenon has been strudied in great detail in a recent paper [9], where it has
been observed that there are infinite families of examples in which models that are un-
related by any IR duality before the projection turn out to share the same central charges
and superconformal indices in the IR after it. This generalizes a previous construction
[12] for oriented chiral quivers. The equivalence of these quantities led to a natural dual-
ity conjecture among these oriented models, but this duality cannot be always obtained
by applying the usual rules of Seiberg duality on the quiver.

In Chapter 6 and 7 we construct many examples of toric theories which, in the presence
of an orientifold, engineer conformally dual theories. The examples studied in Chapter
6 are a generalization of the models studied in [9], and consist in Z2 orbifolds of the
singularities considered in [9] in the presence of orientifolds. The examples studied in 7
generalize the duality of [12] between orientifolds of the PdP 3b and PdP 3c singularities.

As motivation for the following two Chapters let us briefly review the examples of con-
formal dualities between orientifolds of toric theories considered in [9].

5.1 Conformal dualities from Type IIA elliptic models with orientifolds

Let us consider the models studied in [9]. For these theories an alternative construction
in terms of elliptic models in Type IIA is available, and involves D4 branes wrapped on
a compact direction, NS5 branes and orientifold planes. Some of these models (corre-
sponding to pairs of O6 and pairs of O6’-planes) were studied in [3, 4] where a Type
IIB T-dual description was also constructed. The directions wrapped by the branes are

73
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D4
NS5 x6

NS5’

u

v
x9

O6

Figure 5.1 IIA picture of an elliptic model with O6-planes. The low-energy effective
quiver theory can have orthogonal and/or symplectic gauge groups.

summarized in the following table:

0 1 2 3 4 5 6 7 8 9

D4 − − − − · · − · · ·
NS5 − − − − − − · · · ·
NS5’ − − − − · · · − − ·
O6 − − − − · · · − − −
O6’ − − − − − − · · · −

The presence of both primed and non-primed branes breaks supersymmetry to N = 1:
a pair of nearby NS-NS’ gives infinite mass to the scalar in the N = 2 vector multiplet
breaking supersymmetry to N = 1, while an NS-O6’-NS (NS’-O6-NS’) configuration
brings N = 1 chiral multiplets in conjugate tensorial representations other than the ad-
joint. Again we do not consider models which need additional flavor D6-branes. NS5-
branes must be tilted in pairs, according to the Z2 quotient. A possible configuration is
shown in figure 5.1.

The classification of possible configuration of O6-planes and NS5-branes (coincident
with the O6-planes) is shown in table 5.2. There, the resulting quiver theories are shown
schematically with the leftmost and rightmost gauge groups together with their tenso-
rial matter. The other nodes have unitary gauge groups with (without) adjoint if the
corresponding NS5-branes are parallel (non-parallel). Additionally, the real groups may
have either an adjoint, or a tensorial representation other than the adjoint or may not
have any tensorial matter at all. The type of tensorial matter for the real groups depends
on the orientation of the corresponding O6-plane, while the presence of tensorial matter
depends on the orientation of the two nearest NS5-branes. Quivers without tensorial
matter for the real groups can be engineered by considering O6-planes at an angle in the
(4578) space, but we do not consider this possibility here.

Following the notation of [3], there are four families of quivers distinguished by the
leftmost and rightmost gauge group. In the following we consider configurations which
correspond to quivers with ng + 1 nodes. The amount of NS5-branes needed to obtain
such theories depends on the family.1 The i-th node has an adjoint if i ∈ I , where I is a

1For family i) one needs 2ng NS5’s, for families ii) and iii) one needs 2ng + 1 NS5’s, and for family iv) one
needs 2ng + 2 NS5’s. Furthermore observe that the number of regular D4-branes corresponds to 2(Nc − ng)
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φ = adjoint

S = symmetric
S, S̃ =

symmetric and
symmetric conjugate

S̃ = symmetric conjugate

A = antisymmetric
A, Ã =

antisymmetric and
antisymmetric conjugate

Ã = antisymmetric conjugate

Table 5.1 Conventions for representing tensorial matter in quiver diagrams. When there
are two possible representations for a tensorial field (e.g. the antisymmetric representa-
tion for an orthogonal gauge group) we choose to represent it as an adjoint.

set of indices, while nodes with i /∈ I do not have an adjoint. For the sake of simplicity
we have not drawn the adjoints. The enumeration of the nodes in the quivers goes from
left to right, starting at 1.

i) This is realized without NS5-branes intersecting the O-planes. The quiver is:

SO(2Nc) SU(2Nc − 2) SU(2Nc − 4) USp(2(Nc − ng))

(5.1)

with superpotential

W = φ1X12X21 +
∑
i∈I

φi(Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

+
∑
i/∈I

(±Xi,i−1Xi−1,iXi,i+1Xi+1,i) + φng+1Xng+1,ngXng,ng+1 ,
(5.2)

where traces are understood as well as the correct sums over the color indices in
each term. The i-th node has an adjoint iff i ∈ I . N = 2 models in this family,
corresponding to cases with parallel NS5-branes, are self-dual under S-duality, i.e.
the S-dual phases have the same gauge algebra and matter content.

ii) This is realized when an NS5 intersects the O6− and there are no NS5’s intersecting
the O6+. The quiver is:

SO(2Nc + 1) SU(2Nc − 1) SU(2Nc − 3) SU(2Nc − 2ng + 1)

A, Ã
(5.3)

for family i) and ii), 2(Nc − ng) + 1 for family iii), and Nc − 2ng for family iv).
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with two antisymmetric A, Ã for the rightmost gauge group and superpotential

W = φ1X12X21 +
∑
i∈I

φi(Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

+
∑
i/∈I

(±Xi,i−1Xi−1,iXi,i+1Xi+1,i) + φng+1AÃ .
(5.4)

where the i-th node has an adjoint iff i ∈ I . We will refer to this family as theory A.

iii) This is realized when an NS5 intersects the O6+ and there are no NS5’s intersecting
the O6−. The quiver is:

SU(2Nc) SU(2Nc − 2) SU(2Nc − 4) USp(2(Nc − ng))

S, S̃

(5.5)
with two conjugate symmetric tensors S and S̃ for the leftmost gauge group and
superpotential

W = φ1SS̃ +
∑
i∈I

φi(Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

+
∑
i/∈I

(±Xi,i−1Xi−1,iXi,i+1Xi+1,i) + φng+1Xng,ng+1Xng+1,ng .
(5.6)

where the i-th node has an adjoint iff i ∈ I . We will refer to this family as theory B.
S-duality maps model A to model B in the N = 2 case.

iv) This is realized when both O6−-planes have an NS5 on top. The quiver is:

SU(Nc) SU(Nc − 2) SU(Nc − 4) SU(Nc − 2ng)

A, ÃS, S̃

(5.7)
with two antisymmetric A, Ã for the rightmost gauge group and two symmetric S, S̃
for the leftmost gauge group. The superpotential is

W = SS̃φ1 +
∑
i∈I

φi(Xi,i−1Xi−1,i −Xi,i+1Xi+1,i)

+
∑
i/∈I

(±Xi,i−1Xi−1,iXi,i+1Xi+1,i) + φng+1AÃ ,
(5.8)

where the i-th node has an adjoint iff i ∈ I . In this case the models are not in general
self-dual under S-duality.2 For example when ng = 0 the S-dual models have been
found in [114, 115]. However for higher values of ng one can still have shift and per-
mutation symmetries for the NS5-branes that are not placed on top of the O-planes.

(In the above survey we have described the case where the leftmost and rightmost

2We are grateful to I. García-Etxebarria for comments on this point.



Conformal S-dualities from O-planes 77

groups have an adjoint φ1, φng+1, or either an adjoint or a tensor for the real groups.
If they do not have such two-index matter field, the corresponding superpotential term
must be replaced with a quartic term, in a straightforward way.)

Given an N = 1 model from one of the families above, for fixed ng , one can show that
the vanishing of the beta functions fixes the R-charge of the adjoint matter to be equal
to 1. Then a mass term for the adjoint fields is a marginal deformation, and a further
analysis of the global charges of the adjoints, following [16], shows that this deformation
is exactly marginal. Then two theories differing for the number of adjoint fields can be
connected by adding a large mass to some of the adjoint fields and integrating them
out, which is a marginal deformation. This provides infinite families of examples of the
phenomenon that we are interested in: two different elliptic models, which correspond
to different CY singularities in the dual Type IIB construction, give rise to conformally
dual theories in the presence of orientifolds.

An interesting duality also exists between models in families families ii) and iii), i.e.
model A and B respectively where some of the NS5-branes are non-parallel. In [9, 10]
it was shown that this can be considered as an example of inherited S-duality from the
correspondingN = 2 models where all NS5 branes are parallel. We will not discuss this
topic further, but we summarize the results of [9, 10] in Table 5.2.
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CHAPTER 6

N = 1 conformal dualities from unoriented chiral quivers

In this Chapter we generalize the phenomenon described in Chapter 5, where specific
orientifold models not only give rise to conformal fixed points at strong coupling in the
infrared (IR), but also that these models belong to the same conformal manifold. The
mechanism was first identified and discussed in [12, 9] and then extended in [10] to
non-chiral La,b,a quiver gauge theories, a subfamily of the Lp,q,r models [116, 117, 118]
characterized by the presence of orbifold singularities. The models admit both a brane
tiling description and a Hanany–Witten one [72] in type IIA string theory in terms of
N D4-branes, extended along the directions x0123 and compactified along one direction,
say x6, and nG NS5-branes extended along x012345 and separated along x6. We described
the Hanany-Witten setup in more details in Chapter 5. Such non-chiral models, known
as elliptic models [119, 120], have nG SU(N) gauge groups1 and N = 2 supersymmetry
if a = 0, otherwise N = 1. Pairs of six-dimensional orientifold planes with opposite
charge (O6±) extended along x0123457 can be placed symmetrically on the circle without
breaking further supersymmetry. For the case with extended supersymmetry this de-
scription has been extensively studied in [3], where four families of models have been
identified. The classification depends on the presence of an odd or even number nG of
gauge groups and on the possibility of placing, or not placing, an O6+ and/or an O6− on
top of an NS5-brane. Breaking supersymmetry down toN = 1 in presence of orientifold
planes and suitable choices of fractional branes has been shown to lead to models with
conjugate pairs of chiral multiplets with R-charge R = 1 in tensor representations of
the gauge group [121, 9, 10]. Supersymmetry is broken in general by tilting some of the
NS5-branes and/or O6-planes, such that the orientifold projection can be still applied
consistently.2

From the perspective of brane tilings associated to La,b,a, we can visualize the process
with orientifolds acting with fixed loci on the tiling, as discussed in [113]. Proper choices
of fractional branes, often dictated by the constraints on the β-functions, lead to models
with the same central charges and superconformal index after integrating out the chiral
fields with R-charge R = 1 [9, 10]. The mass terms for these fields have indeed R-
charge R = 2 and they are exactly marginal deformations. From a purely field theory
perspective, a similar situation occurs when breaking N = 2 by a mass term for the
adjoint field, given an N = 1 description. The resulting theory develops a quartic term

1The U(1)center-of-mass is free while the other U(1)’s decouple in the IR.
2In the IIA elliptic engineering of La,b,a, a + b corresponds to the total number of untilted NS5-branes,

whereas a to that of the tilted NS5’s. When a = 0 we are left with b = nG NS5’s andN = 2 supersymmetry.
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in the superpotential and the Seiberg dual theory has mesons with a marginal mass
term, so that these mesons can be integrated out. In this context, Seiberg duality relates
strongly-coupled and weakly-coupled regimes of theories whose matter content differs
only for mesons with marginal mass [122, 123], inheriting the action of S-duality from
the mother N = 2 theory.3

Observe that parent theoriesLa1,b1,a1 , described either by elliptic models or brane tilings,
admit relevant mass terms [125] that deform the model into an La2,b2,a2 with a1 + b1 =
a2 + b2 and b1 > b2. Clearly, they are not Seiberg dual to each other, as can be seen from
the fact that their toric geometry is different. The novel aspect here is the presence of
the orientifold, because once we reach N = 1, all projected models with constant a + b
have the same number of gauge groups and of non-anomalous U(1)’s but differ only
by the presence of fields, tensors or adjoints, that admit marginal mass terms. There-
fore, the consequence of the orientifold projection is that the two theories flow to the
same conformal manifold. For this reason, we borrow nomenclature from the literature
[24] and say that certain orientifolds of La,b,a with constant a + b are conformally dual.
They are not Seiberg dual, for they cannot be related by Seiberg dualities known in the
literature [9, 10], but they inherit part of the S-duality action on the marginal masses
from the mother N = 2 models through the mechanism of inherited duality introduced
in [126, 127].

It is natural to wonder whether the mechanism discussed so far can be generalized to
other N = 1 models, extending the notion of conformal dualities to toric quiver gauge
theories with a chiral field content. The first necessary ingredient in the recipe is the
presence of internal points in the toric diagram. Indeed these are associated to anoma-
lous U(1) global (baryonic) symmetries and they require the presence of a chiral field
content, i.e. there are bi-fundamental fields connecting two nodes of the quiver, without
the corresponding anti-bifundamental [128]. Another necessary ingredient is the pres-
ence of points on the perimeter of the toric diagram, because this allows to RG flow from
one model to another even before the orientifold projection, through a mass deforma-
tion [125].

A natural set of models where to look for a generalization of the mechanism of conformal
duality in presence of orientifolds consists of La,b,a/Z2 orbifolds, leading generically to a
chiral field content (with the exception of L0,2,0 and L1,1,1) – see Fig. 6.1 for examples of
such orbifolds on the toric diagram. In this Chapter we will see that such orbifolds admit
a generalization of the mechanism of conformal duality similar to the one obtained for
the fourN = 2 families of [3] broken toN = 1. We will distinguish two out of these four
families (corresponding to families i) and iv) of [3]) allowing for the presence of marginal
mass terms. Another difference with the construction presented in [9, 10], briefly review
in Chapter 5, is that here we will observe that in some cases fractional branes will not
be required. Observe also that in these La,b,a/Z2 models the type IIA description is not
readily available and the orientifold projection can be performed on the dimer model
with the techniques of [113] and the recent extension of [129] in terms of a Klein bottle.
This is the other main novelty of the construction performed here. We will observe that
the projections are implemented on the brane tiling either in terms of fixed points and
fixed lines or by maps on the dimer without fixed points that lead to Klein bottles.

3Or better, being η the coupling of the quartic term, there is a line of conformal theories described by the
equation γ(g, η) = −1/2 and Seiberg duality relates opposite regimes on this line, see [124].
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L2,4,2 L2,4,2/Z2

L2,6,2 L2,6,2/Z2

Figure 6.1 Examples of chiral orbifolds for the La,b,a family.

6.1 Orientifolds and conformal duality

The aim of this section is to summarize the results of [12, 9, 10], where specific N = 1
supersymmetric gauge theories obtained as orientifold projections of toric quivers were
shown to be related to one another by conformal duality. We will first concentrate on the
simplest models wherein this occurs, namely the orientifold of C2/Z2 ×C and the orien-
tifold of the conifold, obtained by mass deformation of the former [130]. This example
contains all relevant information and, as we will see, it can be naturally generalized to
the more elaborate models discussed in [12, 9, 10].

6.1.1 A picture of five-branes

A toric diagram in a Zd lattice encodes the information about a d-dimensional complex
toric variety, admitting the action of a complex torus (C∗)d [131, 132, 133, 134]. For toric
CY threefolds (i.e. d = 3) it is enough to focus on a two-dimensional diagram, thanks to
the vanishing of the first Chern class [132]. The toric data can be translated into a well
defined supersymmetric gauge theory in four dimensions, using a five-brane diagram
as an intermediate step, from which the corresponding brane tiling or dimer can be im-
mediately drawn [135, 136, 137, 138, 139, 140, 141, 142]. More explicitly, one identifies
the vectors with coordinates (p, q) that are dual (outgoing normal) to the sides of the
toric diagram and represents them as one-cycles of a two-dimensional torus with (p, q)
winding numbers. The resulting five-brane diagram owes its name to the fact that in
the IIB picture, whereby D3-branes are T-dualized into D5-branes wrapping the two-
torus, the one-cycles are NS5-branes that emerge from T-dualizing the toric singularity.
As an example, see the toric diagram of C3/Z2 and the associated five-brane diagram in
Figs. 6.2a-6.2b.

The one-cycles divide the planar graph in different regions, highlighted in white, gray
or black in Fig. 6.2b. White regions are SU(N) gauge factors, whereas bifundamental
fields Xab, where a, b are labels for the gauge factors, correspond to arrows crossing the
white regions a and b at the intersection points. The direction of the arrows determines
if a field transforms as a fundamental (out) or antifundamental (in) of a gauge factor.
Gray and black regions are encircled by the arrows in clockwise (+1) or counterclock-
wise (−1) direction, respectively. They correspond to gauge-invariant interaction terms,
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(a) The toric diagram of C2/Z2×C and
the vectors orthogonal to the edges.

1 1

0

0

11

(−1)

(+1)

(+1)

(−1)

τ0 τ00

τ1 τ11

(b) The five-brane diagram of C2/Z2 ×
C, with the four fixed points of the ori-
entifold projection.

that involve all the fields surrounding the region and give rise to a trace-like ‘mesonic’
operator. In our example, the five-brane diagram in Fig. 6.2b gives two gauge factors,
which have been labelled by 0 and 1. The bifundamental fields are

X1
01 =

(
0, 1

)1
, X1

10 =
(

1, 0

)1
X2

01 =
(

0, 1

)2
, X2

10 =
(

1, 0

)2
X00 = φ0 =

(
0, 0

)
, X11 = φ1 =

(
1, 1

) (6.1)

where the latter two fields are adjoints and the upper index labels different fields with
the same transformation rules. The superpotential reads

W
C2/Z2×C

= εij

(
φ1X

i
10X

j
01 + φ0X

i
01X

j
10

)
. (6.2)

As a final step one turns the five-brane diagram into the brane tiling or dimer by shrink-
ing the gray and black regions into points, white points for (+1) and black for (−1), and
connects white points to black ones by edges, so as to obtain a bipartite graph. This is in
a sense dual to the five-brane diagram, as the edges represent the bifundamental fields.
The brane tiling encodes the information about the toric CY geometry and completely
defines the dual gauge theory in the sense of the AdS/CFT correspondence. The brane
tiling of C2/Z2 × C is drawn in Fig. 6.3.

To sum up, in a toric variety the geometry is encoded in a toric diagram whose discrete
data allows to construct the brane tiling, which translates geometric information into
a 4d gauge theory. The dictionary of this bipartite graph is as follows. Each face rep-
resents a gauge group factor SU(N)a, each edge represents a bifundamental field Xab

transforming under the adjacent faces, with an orientation given by the direction black
to white, each node represents a gauge-invariant term in the superpotential. The gauge
factors and matter fields can be translated from the five-branes to a quiver representa-
tion in form of nodes and arrows, respectively. The legend in Fig. 6.4 shows the various
matter fields that appear in subsequent sections.
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1 1

0

0

11

τ0 τ00

τ1 τ11

Figure 6.3 The brane tiling of C2/Z2 × C with the four fixed points of the orientifold
projection.

a b
Xab(
a, b

)
a b|

Yab

( a, b)

a b|

Ỹab(
a, b

)

a
Aa Ãa

a

φa = Adja
a

Sa S̃a

Figure 6.4 The various matter fields and their representations that we will use in quiver
diagrams. We draw multiple arrows for multiple fields connecting the same pair of
nodes. When nodes are both SO and/or USp groups, we drop the arrow and connect
them with an edge, signaling the fact that representations are real. For tensor represen-
tations, when not specified if they are symmetric or antisymmetric, we simply denote
them by Ta.
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6.1.2 Inherited S-duality

The quiver of C2/Z2 × C is drawn on the top left of Fig. 6.5, where the red dashed line
highlights the orientifold projection. (Let us call the projection Ω.) On the brane tiling,
the projection is realized by four fixed points, whose charges are encoded in a vector
~τ = (τ0 , τ00 , τ1 , τ11) and project in turn the gauge group SU(N0), the field φ0, the gauge
group SU(N1) and the field φ1. Positive τ ’s give either orthogonal groups or symmet-
ric representations, while negative τ ’s give either symplectic groups or antisymmetric
representations. The product of the τ ’s is constrained by the condition [113]∏

τ = (−1)
NW

2 , (6.3)

where NW is the number of terms in the superpotential of the parent theory. In the
present C2/Z2 × C case NW = 4, thus the product of the τ ’s is +1. The superpotential
reads

WΩ

C2/Z2×C
= −T0X01X10 + T1X10X01 . (6.4)

We observe that in the five-brane diagram in Fig. 6.2b, the fixed points that project the
adjoint fields are located at the intersections between the ‘vertical’ (blue) brane and the
‘oblique’ (green) brane, and the two ‘horizontal’ (red) branes are identified by the orien-
tifold.

Given the above orientifold, the field content of the model can easily be read from the
linear quiver either on the top right or bottom of Fig. 6.5, the two representing two
different choices for ~τ . We can find out whether the model has a conformal fixed point
by analyzing the beta functions. Let us identify the R-charges R01 and R10 of the two
bifundamental fields, while imposing R(W ) = 2 that identifies the R-charges R0 and R1

of the two projected fields. This gives the condition r0 + 2r01 = −1, where

r = R− 1 (6.5)

is the R-charge of the fermion in the chiral multiplet.4 Together with the condition that
the β-functions of the two gauge group vanish, we have

r0(m+ 2τ00) = −(m− 2τ0) ,

r0(m− 2τ11) = −(m+ 2τ1) , (6.6)

where m = N0 − N1. We now study the solutions to these equations for the different
possible choices of the τ ’s.

It is straightforward to see that there is a choice that preserves N = 2 supersymmetry,
choosing τ00 = −τ0 and τ11 = −τ1, and we denote it as ~τA. (Let us call ΩA the associated
orientifold projection.) In this case the solution demands m = 2τ0 and τ1 = −τ0, so that
~τA = (±, ∓, ∓, ±). These conditions leave r0 undetermined, and we find that at large
N the value of r0 that maximizes the central charge a is r0 = − 1

3 . Hence, at large N the
R-charges of all the fields are 2

3 , and the central charge

aΩA
C2/Z2×C

=
1

4
N2 (6.7)

4R = 2/3 is the ‘canonical’ R-charge of a free field.
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0 1
Ω 0 1

SO(N) USp(N − 2)

0 1

SO(N) USp(N − 2)

Figure 6.5 The quiver diagram for C2/Z2×C with the orientifold projection Ω on the top
left, while on the top right the associated (linear) ‘unoriented’ quiver after the N = 2
choice for the orientifold and the N = 1 choice at the bottom.

is half the value of the central charge of the parent theory. To summarize, and choosing
without loss of generality τ0 = 1, one gets the gauge groups SO(N) and USp(N − 2),5
with projected fields A0 and S1 in the adjoint of each group.

There are however other possible solutions to Eq. (6.6). These are N = 1 solutions with
τ00 = τ0, τ11 = τ1 and τ1 = −τ0, which we denote as ~τB = (±, ±, ∓, ∓) giving

r00 = −m− 2τ0
m+ 2τ0

,

r01 = − 2τ0
m+ 2τ0

. (6.8)

In general for these solutions one should worry about the presence of gauge-invariant
composite operators that hit the unitarity bound R = 2/3 and decouple. This analysis
was performed in [9] and it was shown that in the range 1 < m < 10 this cannot oc-
cur. There is a particular value of m in this range, namely m = 2τ0, that gives R0 = 1
and R01 = 1/2. We observe that the value of m is the same as the one of the N = 2
preserving orientifold, i.e. τ0 = −τ00 = −τ1 = τ11, and the value of the central charge
a = 3

32 (3TrR3 − TrR) ∼ c at large N is

aΩB
C2/Z2×C

=
27

128
N2 , (6.9)

which is 27
32 times the central charge of the N = 2 orientifold. Again, choosing τ0 = 1

gives the gauge groups SO(N) and USp(N − 2), but now the projected fields are S0 and
A1 and both have R = 1, while the bifundamental fields have R = 1/2. We observe that
the fields with R = 1 do not contribute to the central charge.

The other value for m in Eq. (6.6) we are interested in is m = 4τ0, which gives R00 =
R01 = 2/3 as in the N = 2 model, and as a consequence gives also the same central
charge at large N , although the difference between the ranks at finite N is not the same,

5Here N0 = N , which is assumed to be even. The ranks of the two groups are N/2 and N/2− 1.
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(a) The toric diagram of the conifold
C and the vectors orthogonal to the
edges.

0 0

1

1

(−1)

(+1)

(+1)

(+1)

(+1)

τ0

τ1

(b) The five-brane diagram of the coni-
fold C with the fixed lines of the Ω pro-
jection.

and the projected fields are not in the adjoint. As we will see, the presence of this kind
of solution will be systematic in the models discussed in this Chapter.

The central charge of the N = 1 model with m = 2τ0 coincides (exactly, that is even at
finite N ) with the central charge of the orientifold of the conifold C. This can be quickly
shown by determining the central charges and the difference of the ranks of the two
gauge groups at the conformal fixed point. For completeness, we draw in Figs. 6.6a and
6.6b the toric diagram and the five-brane diagram of the conifold. We also draw in Fig.
6.7 the corresponding quiver. In this case the orientifold projection cannot be realized
on the five-brane diagram by fixed points, but instead by fixed lines. Identifying the
R-charges of all the fields, the superpotential of the parent theory

WC = εabεcdX
a
01X

c
10X

b
01X

d
10 (6.10)

implies that they are all equal to 1/2, and they do not change after the orientifold pro-
jection. Denoting as before τ0 and τ1 the orientifold charges that project the two gauge
groups, the condition that the β-functions vanish gives m = 2τ0 and τ1 = −τ0, where
again we denote with m the difference N0 − N1. Choosing τ0 = +1, we end up again
with the gauge groups SO(N) and USp(N − 2), while the bifundamental fields have
R = 1/2.6 Hence, apart from the absence of the fields S0 and A1, we get exactly the
same ranks and the same R-charges as the N = 1 C2/Z2 × C orientifold with m = 2τ0,
implying that we get exactly the same central charge in Eq. (6.9).

As is well-known [130], if one deforms the C2/Z2 × C parent theory by adding a mass
term for the two adjoint fields, this generates a flow that in the IR reaches the conifold
model. This explains why the ratio of the central charges of the two parent theories
is 27/32 [146]. This picture is preserved by the orientifold: starting with the N = 2
C2/Z2 ×C orientifold and mass deforming, one ends up with the orientifold of the coni-
fold, and again this explains the value of the ratio of the central charges. The fact that the
orientifold of the conifold and theN = 1 orientifold ~τB of C2/Z2 × C with m = 2τ0 have

6The same solution for the orientifold of the conifold has been constructed in [143, 144, 145], where the first
reference observes that seven-branes should not be present in the type IIB configuration due to the lack of 1/N
corrections to the a-anomaly, and the other two construct a configuration with one O3+ and one O3− that
wrap two homologically different two-cycles, both coming from a fractional O5.
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0 1
Ω 0 1

SO(N) USp(N − 2)

Figure 6.7 On the left, the quiver diagram for C, where the red line represents the ori-
entifold projection. On the right, the linear ‘unoriented’ quiver for the theory after the
orientifold [1].

Mass Def Mass Def

Figure 6.8 The chain of toric diagrams connected by mass deformation for n = 6: C2/Z6×
C→ L2,4,2 → L3,3,3, the number of points remains n+ 2 = 8 all along. It holds also with
the orientifold projection, mutatis mutandis.

the same central charge suggests that the two theories are conformally dual, meaning
that they flow to the same conformal manifold, and indeed they are connected by turn-
ing on a mass term for the projected fields, which is an exactly marginal deformation
because these fields have R = 1 and the mass operator is not charged under any other
global factors.

The results of [9, 10] are a natural generalization of the mechanism described above to
the infinite class of La,b,a theories (a ≤ b). The parent La,n−a,a toric models can all be
obtained by mass deformations of L0,n,0, which is theN = 2 orbifold C2/Zn×C. Specif-
ically, starting from L0,n,0, one can add a mass to a pair of adjoints7 of gauge groups
that are connected in the quiver, and integrating out this mass term gives the L1,n−1,1

theory [125]. This can be iterated to produce a chain that ends with L
n
2 ,
n
2 ,
n
2 for n even

and L
n−1

2 ,n+1
2 ,n−1

2 for n odd. We represent some steps of this chain for n = 6 in Fig. 6.8.
In fact, these theories can be embedded in IIA elliptic models, where stacks of D4-branes
are wrapped around a circle and their worldvolume is divided by orthogonal NS5’s. The
rotation of the five-branes describes the mass deformation, see for example Fig. 6.9. This
construction holds also in presence of orientifold planes.

For the orientifold of L0,n,0 theory one can choose the ranks in such a way that the choice
of τ ’s preserving N = 2 supersymmetry has a fixed point with ‘canonical’ R-charges

7Giving mass to pairs is necessary but not sufficient to preserve toricity [125].
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Figure 6.9 The theories C2/Z3 × C and suspended pinch point (SPP) represented via IIA
elliptic models. Rotating NS5 branes results in mass deforming the theory.

2/3 and half the central charge of the parent theory at large N . On the other hand, for
all such theories it is also possible to perform an N = 1 orientifold projection, with the
same ranks of the gauge groups, and such that all the adjoints and projected fields have
R = 1 and all the bifundamental fields have R = 1/2.

Note also that, for higher values of n, the La,n−a,a theory admits different toric phases,
which means different ways of integrating out pairs of adjoints, compatible with the
orientifold. These correspond to different ways of accommodating the horizontal branes
in the five-brane diagram, see Fig. 6.12 for an example.

For a family with n even, there are orientifold projections that generalize the ones of
C2/Z2 × C and the conifold, corresponding to the fixed points in Fig. 6.2b and the fixed
lines in Fig. 6.6b. As an example, we represent in Fig. 6.10 the n = 6 case. The five-
brane diagrams are constructed from the toric diagrams in Fig. 6.8. The parent theories
describe six gauge groups, with vector-like bifundamentals connecting group i and i+1.
In the first and second diagram, the fixed points with charge τ0 and τ3 project the groups
0 and 3, while τ00 and τ33 project the adjoints of these groups. TheL1,5,1 theory is missing
in the chain because it does not allow this orientifold. Indeed, in L1,5,1 we would have
five horizontal red branes (pointing towards the left) and one horizontal brown brane
(pointing towards the right), and there is no way to accommodate them compatibly with
the desired orientifold. Finally, the last diagram represents the orientifold of the non-
chiral Z3 orbifold of the conifold, which is realized by fixed lines that project groups 0
and 3. In general, given a generic even n, all of the N = 1 orientifold theories in the
family have the same central charge a, ’t Hooft anomalies and superconformal index of
the orientifold of the orbifold of the conifold, which is the theory at the end of the chain.
The value of the central charge is always 27/32 the value of the N = 2 theory. This
was shown originally in [9] for n = 3p studying the orientifold of the non-chiral orbifold
SPP/Zp, i.e. the Lp,2p,p theory and, then generalized in [10] to any even n.

For n even another orientifold projection is allowed, with all of the four fixed points
lying on the intersections between NS5-branes, i.e. generating two conjugate pairs of
tensor matter fields. In this way, all gauge factors remain unitary. We can construct
such an orientifold by shifting the fixed points by a quarter of a period in the five-brane
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Figure 6.10 The chain of five-brane diagrams connected by mass deformation for n = 6:
C2/Z6 ×C→ L2,4,2 → L3,3,3, the number of vectors remains n+ 2 = 8 all along. It holds
also with the orientifold projection, provided a Z2 symmetry is preserved.

0 1 2 3

SO(N) SU(N − 2) SU(N − 4) USp(N − 6)

0 1 2 3

SO(N) SU(N − 2) SU(N − 4) USp(N − 6)

0 1 2 3

SO(N) SU(N − 2) SU(N − 4) USp(N − 6)

Figure 6.11 The chain of linear quiver diagrams after the orientifold connected by mass
deformation for n = 6: C2/Z6 × C→ L2,4,2 → L3,3,3.
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Figure 6.12 The two inequivalent ways of accommodating the horizontal branes forL2,8,2

and the associated linear quivers.

diagram (see Fig. 6.13 for the L2,4,2 example). These orientifolds were also analyzed in
[10], and shown to realize the same mechanism as the models above. Note that when
the toric diagram is a rectangle, such a projection cannot be obtained either with fixed
points or with fixed lines, which implies that in order to include the last step of the chain
the orientifold projection must be realized differently on the five-brane diagram. As we
will see in the next section, this occurs for a chain of La,b,a/Z2 models with a particular
orientifold projection introduced in [129] known as glide orientifold. This will play an
important role in the remainder.

In the case of n odd the process is similar, but at the end of the chain a single adjoint
field remains, corresponding to the L

n−1
2 ,n+1

2 ,n−1
2 toric model. We show in Fig. 6.14 the

example of SPP, that is L1,2,1, obtained by a mass deformation of C2/Z3 × C. The figure

τ00 τ00

τ22 τ22

1 1

0

0

2

2

0 1 2SU(N)

SU(N)

SU(N)

Figure 6.13 The orientifold projection of L2,4,2 with four fixed points that yields unitary
groups and pairs of conjugate tensor fields and the choice τ00 = −1, τ22 = +1.
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τ11τ11
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1
0 1

SO(N)

SU(N − 2)

Figure 6.14 An example with n odd obtained from mass deformation of C2/Z3 × C and
the orientifold projection with fixed points. On the left, the toric diagram of L1,2,1 or
SPP, center its five-brane and on the right the quiver after the orientifold with τ0 = +1,
τ00 = +1, τ11 = −1.

reveals the general feature of these orientifolds, in which one group and its adjoint are
projected, while the other two τ ’s give two conjugate fields which are symmetric or
antisymmetric under a unitary group. In [9] these models where studied for n = 3p and
generalized in [10] to any n, showing that again the same mechanism occurs.

Finally, [10] shows that the conformal duality discussed above is an ‘inherited S-duality’
from the mother N = 2 theory that is subsequently mass-deformed.

In the rest of this Chapter we will show how the same construction works for another
infinite class of toric models, which are Z2 chiral orbifolds of the models of this section.
In particular, the next section is devoted to the description of the models in terms of
five-brane diagrams.

6.2 Glide orientifold and La,b,a/Z2 models

In this section we are going to introduce the class of orientifold models La,b,a/Z2, which
we will focus on hereafter. In the first subsection we discuss the glide orientifold projec-
tion introduced in [129], which we will perform in the case a = b. The second subsection
is devoted to a description of the models involved and the results. The following two
sections will then contain a detailed analysis of such models.

6.2.1 Orientifolds and Klein bottles

Among the Z2 involutions of a torus, there are some choices that do not leave fixed
points. This is interesting, as the five-brane diagram and the brane tiling are embedded
in a torus and the orientifold projection is realized as a Z2 involution. While the past
literature mostly focuses on projections with fixed loci, the case of a glide orientifold
was recently analyzed in [129]. This involution maps a point to another by combining
a shift by half a period of the fundamental cell with a reflection about one of its axes,
see Fig. 6.15b. The topology obtained after this involution is that of a Klein bottle. This
operation does not leave any fixed points and this can be understood by the fact that
the net orientifold charge in the system is zero. As a consequence, the glide orientifold
yields only SU(N) gauge factors and tensor representations, if any, in conjugate pairs.
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(a) The toric diagram of
C2/Z2 × C.

Ωgl

0

0

0

(b) The five-brane dia-
gram of C2/Z2 × C and
the horizontal axis that
provides the glide orien-
tifold.

0

0

0

(c) The five-brane dia-
gram of C2/Z2 × C and
the Klein bottle result-
ing from the glide orien-
tifold.

0

SU(N)

Figure 6.16 The linear quiver resulting from the glide orientifold of C3/Z2.

Hence, the resulting model is automatically free of any gauge anomaly. We denote this
projection by Ωgl.

As an example, consider again the original orbifold C2/Z2×C. First, we need to move to
a different toric phase by means of an SL(2,Z) transformation, since the toric diagram
needs to be symmetric about an axis that crosses at least two points of the toric diagram.
In other words, if one consider the vectors dual to the sides of the toric diagram, an even
number of them must be parallel to the symmetry axis of the glide. For our example, we
choose the phase displayed in Fig. 6.15a, whose associated five-brane and its symmetry
axis is drawn in Fig. 6.15b. Finally, the Klein bottle is explicitly displayed in Fig. 6.15c.
The parent theory has two gauge factors, labelled by 0 and 1. The projection maps one
factor into the other, while representation are conjugate. Moreover, the glide projection
maps fields φ0 → φ1, X1

01 → X2
01 and X1

10 → X2
10, so the upper index can be dropped.

Since 1 → 0, we can split X01 =
(

0, 1

)
in 0 = A, 0 = S, and X10 =

(
1, 0

)
in 0 = Ã, 0 = S̃. The linear quiver that summarizes this matter content is drawn in
Fig. 6.16. Finally, the superpotential reads

WΩgl

C2/Z2×C
= φ0ÃS − φ0S̃A . (6.11)

6.2.2 Families of orientifolds of La,b,a/Z2

In the previous section we argued about a conformal duality between projected non-
chiral toric theories, connected by a deformation that changes the shape of the toric
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diagram while preserving the number of points [125]. We constructed a chain of toric
polygons that belong to the La,b,a family, where a and b can take generic values with
a ≤ b.

In order to generalize the duality to chiral theories, we consider the Z2 orbifold La,b,a/Z2

of that family, and infer some general behaviors that may be useful for a complete classi-
fication of the phenomenon of conformal duality among toric quivers after an orientifold
projection. Indeed we observe that all such models are chiral, except for L0,2,0 and L1,1,1.
Note that in order to have chiral theories, we lose the elliptic model description of these
model. Perhaps, one could still construct a similar one along the lines of [129].

Moreover, for constructing a chain of toric diagrams as before, the number of external
points of the toric diagram, i.e. on the perimeter, and the number of internal points
must separately coincide. This implies that the models before the projection have the
same number of gauge nodes and of non-anomalous U(1) symmetries. This imposes
constraints on the possible orbifold that we can use to generate an infinite family of
dual models. Interestingly the conformally dual models discussed in [12], that are not
related by an R = 2 mass deformation, respect these constraints as well. It may be a hint
to a more general phenomenon whereby the conformally dual models obtained after
orientifold projections are related by non-quadratic superpotential deformations.

In the following we identify three families in terms of the parity of a and b and in terms
of the type of projection that we will realize on the five-brane web, though we will focus
only on the first two.

Family A

The first family that we study is the orientifold projection of La,b,a/Z2 with a + b even
that leads to quiver gauge theories with only unitary gauge groups and two pairs of
conjugate tensor matter fields at the extremal gauge nodes, and we call it family A. This
is the generalization of family i) of [10] and we analyze it in Section 6.3. Imposing a+b =
2k, two extreme possibilities are L0,2k,0/Z2 and Lk,k,k/Z2. As anticipated above, the case
with k = 1 has a non-chiral field content before the orientifold projection, while for k > 1
internal points on the toric diagram necessarily arise. A generic model in the family is
L2p,2k−2p,2p/Z2 with 4k − 4p hexagons and 4p squares. We can construct a chain of toric
diagrams that describe, upon orientifold projection, theories connected by conformal
duality, i.e. a quadratic exactly marginal deformation:

L0,2k,0/Z2 → L2,2(k−1),2/Z2 . . .→ L2p,2k−2p,2p/Z2 → . . . → Lk,k,k/Z2 , (6.12)

where p = 1, . . . , bk2 c. Along the chain, pairs of vector-like fields with R = 1 are in-
tegrated out thanks to quadratic marginal deformation, until the last step where tensor
fields are deformed. Note that the number of vector-like fields is k−1, so when k is even
the last step requires that one remaining vector-like field is integrated out together with
the tensors.

In all steps but the last the orientifold projection is given by fixed points. On the five-
brane, these lie at the intersection between a vertical brane and a skew brane. On the
other hand, the last step requires a glide orientifold. An example of a chain of models,
upon orientifold, is showed in Fig. 6.17-6.18, and the quiver in Fig. 6.19.

Note that the orientifold projection allows also for another configuration with four tensor
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fields at four different nodes, associated to five-branes where the four fixed points lie at
the intersection of the green vectors and horizontal red ones. In this way, orientifolds
of Lp,2k−p,p/Z2 are also allowed. However, such a configuration does not feature the R-
charges and dualities we want to discuss here, at least for the first examples we worked
out, hence we will not consider it in the following.

Mass Def Mass Def

Figure 6.17 An example of a chain of toric diagrams of family A connected by mass de-
formation for k = 3: L0,6,0/Z2 → L2,4,2/Z2 → L3,3,3/Z2. It holds also with the orientifold
projection, mutatis mutandis.

τ00 τ00

τ55 τ55

0

1 2

3 4
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τ00 τ00

τ55 τ55
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1 2

3 4

5

5

τ3

0

1 2

3 4

5

5

Figure 6.18 The chain of five-brane diagrams of family A connected by mass deforma-
tion for k = 3: L0,6,0/Z2 → L2,4,2/Z2 → L3,3,3/Z2. It holds also with the orientifold
projection, provided a Z2 symmetry is preserved.
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Figure 6.19 The quiver for the orientifold theory of L0,6,0/Z2 → L2,4,2/Z2 → L3,3,3/Z2

in Family A with choice (τ00 = +, τ55 = −). Colored fields represent the pairs that are
mass deformed in the chain, the color match the chain of five-branes in Fig. 6.18.
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Figure 6.20 The chain of five-brane diagrams of family B connected by mass deforma-
tion for k = 3: L0,6,0/Z2 → L2,4,2/Z2 → L3,3,3/Z2. It holds also with the orientifold
projection, provided a Z2 symmetry is preserved.

Family B

We will refer to the second family as family B, which generalizes family iv) of [10]. Also
in this case a+ b = 2k, but the orientifold projection acts either with fixed points or with
fixed lines, lying on top of the faces of the five-brane, either hexagons or squares depend-
ing on the fixed loci. Contrary to the previous family, four gauge factors are now real
groups,8 SO or USp depending on the signs of the fixed loci. The chain of toric diagrams
is the same as in the previous family, Eq. (6.12), but the orientifold projection is realized
differently on the five-branes, as we need to move the fixed points by a quarter period,
see for example Fig. 6.20 and the associated quiver in Fig. 6.21. The extremal cases are
L0,2k,0/Z2 and Lk,k,k/Z2. Moreover, the last model in the chain is projected by fixed
lines. As we will observe in Section 6.4, in this family marginal quadratic superpotential
deformations with R = 2 can be generated only with a specific shift between the ranks
of the gauge factors.

8We loosely refer to SO(N) or USp(N) as real gauge groups since, contrary to SU(N), they do not admit
complex representations. Complex spinors do not appear in perturbative open string constructions.
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Figure 6.21 The quiver for the orientifold theory of L0,6,0/Z2 → L2,4,2/Z2 → L3,3,3/Z2 in
Family B with choice (τ0 = τ1 = +, τ6 = τ7 = −). Colored fields represent the pairs that
are mass deformed in the chain, the color match the chain of five-branes in Fig. 6.20.

0

1 2k − 3

2 2k − 2

2k − 1

. . .

. . . . . .

. . .

|

|

|

|

Figure 6.22 The generic quiver of familyAmodels. Colored fields are the mass deformed
pairs. All gauge nodes are SU(N).

6.3 Family A

In this section we study in detail the conformal duality for the La,b,a/Z2 models (with
a + b = 2k) after an orientifold projection that induces only unitary gauge groups. The
generic quiver of this family of models is given in Fig. 6.22, where colored fields have
R = 1 and they are progressively integrated out by mass deformations that generate the
chain of conformally dual models in Eq. (6.12). We realize the orientifolds as fixed points
on the five-brane for a 6= b and both even, while for a = b the gauge theory is realized as
a glide orientifold [129].

The analysis is based on the computation and comparison of the central charges of the
different La,b,a/Z2 orientifolds, which we denote as aΩ

a,b,a. We first analyze in detail the
cases with k = 1 and k = 2 and then discuss the generalization to any k.

6.3.1 Orbifold with k = 1

The case k = 1 is the only non-chiral one among the models we discuss in this section.
The L0,2,0/Z2 model is C3/(Z2 × Z2) with charges (0, 1, 1) × (1, 0, 1), while L1,1,1/Z2 is
the non-chiral Z2 orbifold of the conifold C.
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Figure 6.23 The model L0,2,0/Z2. On the left the toric diagram is drawn, at the center
the five-brane and its orientifold projection with fixed points, on the right the quiver
resulting from the orientifold projection.

Orientifold projection of L0,2,0/Z2 with fixed points

We study the orientifold projections with fixed points of L0,2,0/Z2. After the projection,
the gauge group is G = SU(N0)× SU(N1), whereas the field content is given by

X01 =
(

0, 1

)
, X10 =

(
1, 0

)
Y01 = ( 0, 1) , Ỹ01 =

(
0, 1

)
T00 = ( 0, 0) , T̃00 =

(
0, 0

)
T11 = ( 1, 1) , T̃11 =

(
1, 1

)
, (6.13)

where fields Y01 and Ỹ01 arise at the intersection between red and blue vectors on the
five-brane diagram in Fig. 6.23, while the particular representation of the tensor fields
T00, T̃00, T11 and T̃11 depends on the signs of the charges ~τ . Since NW /2 = 4, the prod-
uct of these charges must be positive. Another constraint for the charges ~τ comes from
gauge anomaly cancellation that requires the presence of conjugate pairs of tensor rep-
resentations, hence τ00 = τ̃00 and τ11 = τ̃11. We denote the inequivalent choices of
~τ = (τ00, τ̃00, τ11, τ̃11) as ~τA = (±, ±, ∓, ∓) and ~τB = (±, ±, ±, ±). The resulting
quiver is drawn in Fig. 6.23, while the superpotential reads

WΩ
0,2,0

= X01T11Ỹ01 − Y01T̃11X10 +X10T00Ỹ01 − Y01T̃00X01 . (6.14)
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Imposing that the β-functions all vanish one obtains

r00 + r̃00 = r11 + r̃11 ,

r01 + r̃00 + rY = −1 ,

r10 + r00 + r̃Y = −1 ,

(r00 + r̃00) + (r01 + r10) + (rY + r̃Y ) = −2 ,

(r00 + r̃00) (m+ 2τ00) = −2m ,

(r00 + r̃00) (m− 2τ11) = −2m , (6.15)

where m = N0 − N1 and ~τA is selected. Note that with m = 0, the choice on ~τ is no
longer constrained.9 Further imposing that R-charges of conjugate pairs are the same,
i.e. r01 = r10 and r = r̃ we get

r00 = r̃00 = r11 = r̃11 = − m

m+ 2τ00
,

r01 + r00 + rY = −1 , (6.16)

We can select equal ranks by imposing m = 0, as opposed to the orientifold projection
studied in [9, 10], meaning that this model does not requires the presence of fractional
branes. This holds for the whole family A. At large N , we have

TrR = 0 ,

TrR3 = 2N2
(
r3
01 + (−1− r01)3 + 1

)
, (6.17)

and the central charge is maximized at

r00 = r̃00 = r11 = r̃11 = 0 ,

r01 = r10 = rY = r̃Y = −1

2
,

aΩm=0

0,2,0
=

27

64
N2 , (6.18)

implying superconformal R = 1 for the tensor fields, and R = 1/2 for the remaining
ones.

Finally, note that for m = τ01, we have that all the fields have R = 2/3, and the value of
the central charge is

aΩm=τ01
0,2,0

=
1

2
N2 . (6.19)

Remarkably, shifting the ranks of the unitary groups, which means that a fractional brane
is present in the system, yields the R-charge of free fields. This solution is present for
all orbifold of flat space

(
L0,2k,0/Z2

)Ω. Surprisingly, the ratio between the two central

9The fact that ~τB works here is due to R = 1. Similarly, in family ii) and iii) of [10] one can engineer a
configuration of O6-planes that yields pairs of tensors that transform in the same way. The point is that they
can still be integrated out.



N = 1 conformal dualities from unoriented chiral quivers 99

Ωgl 0

1

1

0 1SU(N) SU(N)

|

|

Figure 6.24 The model L1,1,1/Z2. On the left the toric diagram is drawn, at the center the
five-brane and its glide projection, on the right the quiver resulting from the orientifold
projection.

charges in Eqs. (6.18)-(6.19) is 27/32. This is supposed to happen whenN = 2 is broken,
via mass deformation, down to N = 1 [146]. We briefly discuss the role of this solution
in section 7.5.

Glide orientifold of L1,1,1/Z2

We study the glide orientifold of L1,1,1/Z2, whose field content is

X01 =
(

0, 1

)
, X10 =

(
1, 0

)
Y01 = ( 0, 1) , Ỹ01 =

(
0, 1

)
, (6.20)

which is similar to Eq. (6.13) except for the tensor fields. The projection yields a theory
with gauge group G = SU(N0)× SU(N1) and superpotential

WΩgl

1,1,1
= X01X10Y01Ỹ01 −X10X01Y01Ỹ01 , (6.21)

as can be read from Fig. 6.24. The set of constraints for the superconformal R-charges,
together with r01 = r10 yields

N0 = N1 = N ,

r01 + rY = −1 , (6.22)

and at large N we retrieve Eqs. (6.17) and at the local maximum

r01 = r10 = rY = r̃Y = −1

2
,

aΩgl

1,1,1
=

27

64
N2 . (6.23)

The central charge, ’t Hooft anomalies and the superconformal index are the same for
the orientifold projection with fixed points of L0,2,0/Z2 and the two orientifold theories
are conformally dual.
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Figure 6.25 The model L0,4,0/Z2. On the left the toric diagram is drawn, at the center
the five-brane and its orientifold projection with fixed points, on the right the quiver
resulting from the orientifold projection.

6.3.2 Orbifold with k = 2

We now discuss models with a + b = 4. The parent theories are chiral and their toric
diagrams are reflexive polygons, having one internal point [147]. As already mentioned
above, we restrict ourselves on orientifolds of models with even a (and b), because in the
case of a, b odd the projection does not give a theory with the the desired features, as we
will explicitly see for L1,3,1/Z2.

Orientifold projection of L0,4,0/Z2 with fixed points

We study the orientifold of L0,4,0/Z2 with fixed points such that
∏
τ = +1 the projection

yields gauge groups G = SU(N0) × SU(N1) × SU(N2) × SU(N3). The toric diagram
of the parent theory, the five-brane and the quiver of the resulting projected theory are
shown in Fig 6.25. The field content is

X02 =
(

0, 2

)
, X10 =

(
1, 0

)
X12 =

(
1, 2

)
, X21 =

(
2, 1

)
X23 =

(
2, 3

)
, X31 =

(
3, 1

)
Y02 = ( 0, 2) , Ỹ01 =

(
0, 1

)
Y13 = ( 1, 3) , Ỹ23 =

(
2, 3

)
T00 = ( 0, 0) , T̃00 =

(
0, 0

)
T33 = ( 3, 3) , T̃33 =

(
3, 3

)
(6.24)

and the superpotential reads

WΩ
0,4,0

= T00Ỹ01X10 −X10X02X21 + T̃00X02Y02 − Y02Ỹ01X12

+X12X23X31 + Y13Ỹ23X21 − T33Ỹ23X23 − T̃33X31Y13 . (6.25)
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Figure 6.26 The model L2,2,2/Z2. On the left the toric diagram is drawn, at the center the
five-brane and its glide orientifold, on the right the quiver resulting from the projection.

Cancellation of gauge-anomalies requires that

N1 −N2 = 2 (τ00 − τ̃00) . (6.26)

Proceeding as before, we find the condition for β-functions to vanish and R(W ) = 2,
together with demanding that the R-charges of conjugate pairs are equal. Imposing that
all ranks are equal, Na = N ∀a, we find

r00 = r̃00 = r33 = r̃33 = r12 = r21 = 0 ,

rY02
= r10 , rY13

= r23 ,

r02 = r̃Y01
= −1− r10 , r31 = r̃Y23

= −1− r23 , (6.27)

in terms of two R-charges r10 and r23. This solution gives at large N

TrR = 0 ,

TrR3 = 2N2
[
r3
10 + (−1− r10)

3
+ r3

23 + (−1− r23)
3

+ 2
]
, (6.28)

which is symmetric under the exchange r10 ↔ r23. The resulting global anomaly is twice
the one of

(
L0,2,0/Z2

)Ω and the local maximum stays at

r10 = r23 = −1

2
,

aΩ
0,4,0

=
27

32
N2 , (6.29)

so that the R-charges of tensor fields and vector-like fields is R = 1 and they do not
contribute to ’t Hooft anomalies and the superconformal index, while the remaining
ones have R = 1/2.

Glide orientifold of L2,2,2/Z2

We now study the glide orientifold of L2,2,2/Z2, which yields a theory with gauge group
G = SU(N0)×SU(N1)×SU(N2)×SU(N3). The toric diagram of the parent theory, the
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five-brane and the quiver resulting from the projection are drawn in Fig. 6.26. The field
content is

X10 =
(

1, 0

)
, X02 =

(
0 2

)
X23 =

(
2, 3

)
, X31 =

(
3 1

)
Y02 = ( 0, 2) , Ỹ23 =

(
2, 3

)
;

Y13 = ( 1, 3) , Ỹ01 =
(

0, 1

)
, (6.30)

whereas the superpotential is

WΩgl

2,2,2
= X10Y02 (X02)

T
Ỹ01 −X10X02X23X31 +X31Y13 (X23)

T
Ỹ23

− Ỹ01Y13Ỹ23Y02 + Ỹ23X23Y13 (X31)
T

+ Y02 (X10)
T
Ỹ01X02 . (6.31)

The field content is similar to Eq. (6.24) except for the tensor and the vector-like fields.
We notice that in this case it is not enough to mass deform the pairs of tensor fields from(
L0,4,0/Z2

)Ω, but we need to mass deform alsoX12,X21. This happens when the number
k − 1 of vector-like fields is odd, hence for k even.

The set of constraints for the superconformal R-charges, together with cancellation of
gauge-anomaly and the Z2-symmetry of the quiver yields

N0 = N1 = N2 = N3 = N ,

r23 = r10 , r02 = r31 = −1− r10 ,

rY13
= rY02

, r̃Y23
= r̃Y01

= −1− rY02
, (6.32)

expressed in terms of the two charges r10 and rY02
. At largeN , the global anomalies read

TrR = 0 ,

TrR3 = 2N2
[
r3
10 + (−1− r10)

3
+ r3

Y02
+ (−1− rY02

)
3

+ 2
]
, (6.33)

whose share the same form and local maximum of
(
L0,4,0/Z2

)Ω in Eqs. (6.28)-(6.29), as

r10 = rY02
= −1

2
,

aΩ
0,4,0

=
27

32
N2 , (6.34)

The two models orientifold ofL0,4,0/Z2 and ofL2,2,2/Z2 are conformally dual, connected
by quadratic marginal deformations.

L131/Z2 and general feature of odd a

The set of parent theories La,b,a/Z2 with a+ b = 4 involves also the case a = 1 and b = 3,
i.e. both odd numbers. The orientifold of L1,3,1/Z2 with four fixed points yields a theory
that does not belong to the chain of conformally dual projected theories, i.e. cannot be
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Figure 6.27 The model L1,3,1/Z2. On the left the toric diagram is drawn, at the center
the five-brane and its orientifold projection with fixed points, on the right the quiver
resulting from a choice of orientifold projection consistent with gauge anomalies. This
does not belong to family A.

connected to other models by an exactly marginal deformation that integrates out pairs
of conjugate fields, as we instead showed in the previous sections and works [9, 10].
We can see this clearly from Fig. 6.27. In particular, from the quiver we see that the four
tensor fields transform under four different groups, hence they cannot be mass deformed
as for the theories in family A. Moreover, cancellation of gauge anomalies gives

N0 −N1 −N2 +N3 + 4τ00 = 0 ,

−N0 +N1 +N2 −N3 + 4τ11 = 0 ,

N0 −N1 −N2 +N3 − 4τ22 = 0 ,

−N0 +N1 +N2 −N3 − 4τ33 = 0 (6.35)

and all ranks equal is not a solution, as it is for family A.

From the point of view of the five-brane diagram, when a and b are both odd, the Z2

involution of the orientifold imposes that two horizontal vectors, one oriented to the
right and one to the left, pass through two fixed points. See for example Fig. 6.27, where
a red vector oriented to the left lies on τ00 and τ11, while a brown vector oriented to the
right lies on τ22 and τ33. Since only two five-branes can meet on a point,10 we need to
move either the skew green vectors or the vertical blue vectors. The consequence is that
the four fixed points project fields transforming in four different groups. This is general,
for all odd a and b, and therefore they do not belong to the family A.

Finally, one can easily see that from the five-brane in Fig. 6.27 the models do not admit a
glide orientifold.

10Or better, in those cases one can describe strongly coupled sectors following [148].
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Figure 6.28 A portion of generic quiver of the orientifold of L0,2k,0/Z2 from node 2i.

6.3.3 Generalization

In this section we want to show the previous results are general and hold for the whole
chain

L0,2k,0/Z2 → L2,2(k−1),2/Z2 . . .→ L2p,2k−2p,2p/Z2 → . . . → Lk,k,k/Z2 , (6.36)

where p = 1, . . . , bk2 c. Let us begin with the orientifold of L0,2k,0/Z2, the generic quiver
is drawn in Fig. 6.22, with all vector-like fields. From the five-brane, we can write down
the superpotential as

WΩ
0,2k,0 = T00Ỹ01X10 + T̃00X02Y02 −X02X21X10 − Y02Ỹ01X12

− T2k−1,2k−1Ỹ2k−2,2k−1X2k−2,2k−1 − T̃2k−1,2k−1X2k−1,2k−3Y2k−3,2k−1

+X2k−2,2k−1X2k−1,2k−3X2k−3,2k−2 + Y2k−3,2k−1Ỹ2k−2,2k−1X2k−2,2k−3

+

k−2∑
i=1

(
X2i−1,2iX2i,2i+1X2i+1,2i−1 +X2i,2i−1X2i−1,2i+2X2i+2,2i

)

−
k−2∑
i=1

(
X2i+1,2i+2X2i+2,2iX2i,2i+1 +X2i+2,2i+1X2i+1,2i−1X2i−1,2i+2

)
. (6.37)

We need to impose the conditions R(W ) = 2 and that all β-functions vanish, with all
ranks equal, Na = N ∀a. Consider a section of the quiver from node 2i, as in Fig. 6.28
and the related superpotential terms, whose constraints imply

r2i,2i−1 =− 1− (r2i−1,2i+2 + r2i+2,2i) ,

r2i−1,2i =− 1− (r2i,2i+1 + r2i+1,2i−1) , (6.38)

as well as the same equations with i→ i+ 2. The sum of this four equations gives:

m2i,2i−1 +m2i+2,2i+1 = −4−
(
r2i−1,2i+2 + r2i+2,2i + r2i,2i+1 + r2i+1,2i−1 + {i→ i+ 2}

)
.

(6.39)
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where m2i,2i−1 = r2i,2i−1 + r2i−1,2i. Vanishing of the beta functions on the nodes 2i + 2
and 2i+ 1 imply:

m2i+2,2i+1 =− 2− (r2i+2,2i + r2i−1,2i+2 + r2i+4,2i+2 + r2i+2,2i+3) , (6.40)

m2i+2,2i+1 =− 2− (r2i+1,2i−1 + r2i,2i+1 + r2i+1,2i+4 + r2i+3,2i+1) . (6.41)

The combination of Eqs. (6.40) + (6.41)− (6.39) gives

m2i,2i−1 = m2i+2,2i+1 , i = 1, . . . , (k − 2) . (6.42)

Similarly one can show that

r00 + r̃00 = r2k−1,2k−1 + r̃2k−1,2k−1 = m2i,2i−1 , i = 1, . . . , (k − 2) . (6.43)

Finally the beta equation for the node i = 0 and the superpotential terms that include
the tensor fields T00 and T̃00 yield

(r00 + r̃00)2τ00 = 0 (6.44)

Together with (6.43) this implies that the combinations T00T̃00, T2k−1,2k−1T̃2k−1,2k−1 and
X2i,2i−1X2i−1,2i have fermionic R-charge r = 0 (bosonic R-charge R = 2) and they
are marginal deformations. If we impose that conjugate fields have the same R-charge,
this also means that tensor fields and vector-like have r-charge r = 0. The quadratic
marginal operators written above give mass to the fields and we can integrate them out.
The resulting effective theory is the orientifold of L2p,2k−2p,2p/Z2, where p is the number
of pairs of conjugate fields that have been integrated out. The conformal mass terms for
the pairs of conjugate fields is marginal and does not trigger an RG flow. Another way to
see this is that the superpotential of the orientifold of L2p,2k−2p,2p/Z2 imposes the same
constraints in the r-charges as the theory

(
L0,2k,0/Z2

)Ω. Indeed from the last two lines
of the superpotential in Eq (6.37), using i→ (i+ 2) for the first term in each line, we can
write

r2i+2,2i+3 + r2i+3,2i+1 + r2i+1,2i−1 + r2i−1,2i+2 = −2 ,

r2i+2,2i + r2i,2i+1 + r2i+1,2i+4 + r2i+4,2i+2 = −2 , (6.45)

where we also used (6.44). These are exactly the constraints from the quartic terms after
the quadratic deformation. This is due to the fact that one integrates the pairs of con-
jugate fields out plugging their F -terms into the superpotential. Therefore, all we need
to study is the first model of the chain in Eq. (6.36). From the superpotential and the
β-functions we have now

r00 = r̃00 = r2k−1,2k−1 = r̃2k−1,2k−1 = r2i,2i−1 = r2i−1,2i = 0 ,

r2i−1,2i+2 + r2i+2,2i = −1 ,

r2i,2i+1 + r2i+1,2i−1 = −1 . (6.46)

All superpotential terms are generated sequentially shifting i → (i+ 2) from the quiver
combining a vertical arrow, which does not contribute now, an horizontal one and a
diagonal one. Compare Fig. 6.19 and Eq. (6.37) in order to see that. Moreover, the generic
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SO(N) SU(N − 2) SU(N − 2k + 2) USp(N − 2k)
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. . .

Figure 6.29 The general quiver of family Bmodels. Colored fields are the mass deformed
pairs.

quiver has a Z2 symmetry. Hence, we can impose

r10 = r02 = r2k−2,2k−1 = r2k−1,2k−3 = r2i,2i+1 = r2i−1,2i+2 = . . . {i→ (i+ 2)} ,

rY02 = r̃Y01 = rY2k−2,2k−1
= r̃Y2k−3,2k−1

= r2i+2,2i = r2i+1,2i−1 = . . . {i→ (i+ 2)} , (6.47)

so that we can express ’t Hooft anomalies only in terms of fourR-charges, r10, (−1−r10),
rY02

and (−1− rY02
), and we have a number k of each of them. The central charge reads

aΩ
0,2k,0

=
9

32
N2k

[
r3
10 + (−1− r10)

3
+ r3

Y02
+ (−1− rY02

)
3

+ 2
]
, (6.48)

whose local maximum is

r10 = rY02
= −1

2
,

aΩ
0,2k,0

=
27

64
N2k , (6.49)

and the same holds for the orientifold of L2p,2k−2p,2p/Z2 and Lk,k,k/Z2, as they only
differ by fields with r = 0. Since the quiver is the same and these fields enter in conjugate
pairs, ’t Hooft anomalies and superconformal index match along the chain of quadratic
marginal deformation.

6.4 Family B

As already anticipated in section 6.2, the second family of conformally dual models that
we consider are orientifolds of the chiral Z2 orbifolds of La,b,a/Z2 (with fixed a+ b = 2k)
that give rise to four real gauge groups. As shown in Fig. 6.20, for a 6= b (and again both
a and b even) the orientifold projection is realized on the five-brane diagram by means
of fixed points that are shifted horizontally by a quarter of a period with respect to the
case of family A, while for a = b the projection is realized by means of fixed lines. The
resulting quiver in drawn in Fig. 6.29, where as in the previous case the colored fields
have unit R-charge and they are progressively integrated out along the chain.

Again, the results are based on the computation and comparison of the central charges,
that we denote as aΩ

a,b,a as in the previous section.11 We will discuss in more detail the

11Given that these models are not compared to the models in the previous sections, we assume that this will
not cause any confusion to the reader.
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k = 1 and k = 2 cases, showing that the central charges of the orientifolds of L0,2,0/Z2

and L1,1,1/Z2 coincide. The analysis reveals a direct analogy with the models in family
A, and as a consequence the generalization to any k will be given with fewer details.

6.4.1 Orbifold with k = 1

Orientifold projection of L0,2,0/Z2 with fixed points

We draw in Fig. 6.30 the toric diagram of the parent L0,2,0/Z2 theory, the five-brane
diagram with the location of the fixed points and the resulting quiver. Imposing that the
superpotential has R-charge 2 gives the constraints

r03 + r01 + r13 = −1

r03 + r02 + r23 = −1

r12 + r01 + r02 = −1

r12 + r13 + r23 = −1 . (6.50)

We assign the same τ ’s and the same ranks on the groups 0 and 1 and the groups 2 and
3 respectively, so that the quiver possesses a Z2 symmetry under flip with respect to a
horizontal axis, which implies that r02 = r13 and r03 = r12. As a consequence, Eqs. (6.50)
are reduced to two independent equations implying r01 = r23, and plugging this into the
condition that the β-function vanishes for each gauge group gives

r01 =
N2 −N0 + 2τ0

N0 −N2
=
N2 −N0 − 2τ2

N0 −N2
. (6.51)

This condition clearly imposes τ0 = −τ2, and we can set τ0 = 1 to get the groups in Fig.
6.30. It we also assign the ranks as in the figure,12 Eq. (6.51) gives r01 = 0. Therefore
the fields X01 and X23 have R-charge equal to 1, and maximizing the a central charge
one can show that the other R-charges are all equal to 1

2 , which can also be more directly
deduced observing that the quiver has an additional symmetry under flip of the nodes
2 and 3. The value of the central charge at large N is

aΩ
0,2,0 =

27

64
N2 . (6.52)

As an aside, we observe that once again there is a different assignment of the ranks of
the gauge groups, namelyN2 = N0−3, which results in a conformal field theory with all
R-charges equal to 2

3 , and central charge equal to 1
2N

2. This corresponds to two SO(N)

and two USp(N − 3) gauge groups.13 The occurrence of these orientifolds is a feature of
all L0,2k,0/Z2 models.

12This implies that N must be even.
13Obviously N must be odd in this case.
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Figure 6.30 The model L0,2,0/Z2. On the left the toric diagram is drawn, at the center
the five-brane and its orientifold projection with fixed points, on the right the quiver
resulting from the orientifold projection.
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Figure 6.31 The model L1,1,1/Z2. On the left the toric diagram is drawn, at the center the
five-brane and its orientifold with fixed lines, on the right the quiver resulting from the
orientifold projection.

Orientifold projection of L1,1,1/Z2 with fixed lines

The second and last orientifold in the k = 1 chain is the L1,1,1/Z2 orientifold described
in Fig. 6.31. This theory has a quartic superpotential which leads to the constraints

r02 + r12 = −1

r03 + r13 = −1

r03 + r02 = −1

r13 + r12 = −1 , (6.53)

and substituting them in the β-function conditions implies the τ ’s and the rank assign-
ment that can be read from the quiver. Imposing a-maximization one can show that the
R charges must all be equal to 1

2 , as one could also easily deduce by symmetry argu-
ments. This results in a central charge identical to the one in Eq. (6.52).
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Figure 6.32 The model L0,4,0/Z2. On the left the toric diagram is drawn, at the center
the five-brane and its orientifold projection with fixed points, on the right the quiver
resulting from the orientifold projection.

6.4.2 Orbifold with k = 2

Orientifold projection of L0,4,0/Z2 with fixed points

The next model we consider is the L0,4,0/Z2 orientifold, whose five-brane diagram and
quiver, together with the toric diagram of the parent theory, are drawn in Fig. 6.32. We
assign the same rank to the groups 0 and 1, 2 and 3 and 4 and 5, and we also require τ0 =
τ1 and τ4 = τ5. Again, this implies a symmetry under flip with respect to an horizontal
axis. Imposing that the superpotential has R-charge 2 then implies r01 = r23 = r45, and
requiring that the β-functions vanish gives

r01 =
N2 −N0 + 2τ0

N0 −N2
=
N4 −N2 − 2τ4

N2 −N4
(6.54)

together with the further condition on the ranks

N2 =
N0 +N4

2
. (6.55)

One can then immediately notice that the rank and τ assignment in the quiver in Fig. 6.32
implies that X01, X23 and X45 have R-charge 1, while all the remaining fields have R-
charge 1

2 . The value of the central charge at large N is

aΩ
0,4,0 =

27

32
N2 . (6.56)

From Eqs. (6.54) and (6.55) we deduce that imposing instead that there is a shift of 3 in
the ranks, i.e. N2 = N0 − 3 and N4 = N2 − 3, results in a conformal model in which all
the R-charges are equal to 2

3 and the central charge is equal to N2 at large N .

Orientifold projection of L2,2,2/Z2 with fixed lines

For the sake of completeness, we also briefly discuss the other model with k = 2, namely
the L2,2,2/Z2 orientifold with fixed lines. The toric diagram of the parent theory, together
with the projected five-brane diagram and quiver, are given in Fig. 6.33, and as usual we
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Figure 6.33 The model L2,2,2/Z2. On the left the toric diagram is drawn, at the center the
five-brane and its orientifold with fixed lines, on the right the quiver resulting from the
projection.

assign the ranks so that the quiver possesses a symmetry with respect to the horizontal
axis. This fully constrains the model, because imposing the relations on the R-charges
coming from the superpotential and requiring that the β-functions vanish give

N2 = N0 − 2τ0 N2 =
N0 +N4

2
N4 = N2 + 2τ2 . (6.57)

From this we read that the τ ’s must be opposite, and choosing for instance τ0 = 1 one
gets N2 = N0 − 2 and N4 = N2 − 2, which gives precisely the groups and their cor-
responding ranks as in the quiver in Fig. 6.33. One can finally realize that the central
charge aΩ

2,2,2 matches exactly, i.e. at all orders in N , the central charge in Eq. (6.56).

6.4.3 Generalization

In the following we generalize the set of constraints for the R-charges in order to find a
superconformal point. Since the line of reasoning follows closely section 6.3.3, we show
the generic solution in a more compact way. In this family of models the τ ’s of the four
fixed points project four of the (2k + 2) gauge factor as (τ0, τ1, τ2k, τ2k+1), which must
be equal in pairs as (±, ±, ∓, ∓), in order to yield the same theory of the last model in
the family with fixed lines. Let us use the upper signs without loss of generality and
consider L0,2k,0/Z2. All interactions are cubic and the generic terms read

±X2j+2,2jX2j,2j+3X2j+3,2j+2 ∓ X2j+3,2j+1X2j+1,2j+2X2j+2,2j+3 . (6.58)

Using Fig. 6.29, we choose the ranks such that they are symmetric around the horizontal
axis, i.e. N2i = N2i+1 with i = 0, . . . , k. Moreover, all fields enter iteratively in the
superpotential and we call the R-charge of the fermions rx for all horizontal fields, ry
for all diagonal ones and rz for all vertical one. The latter are precisely the fields that
are integrated out in the chain Eq. 6.12.14 Note that the choices we made corresponds
to require that the non-anomalous baryonic symmetries do not contribute at the fixed

14With the choice of the orientifold of family B.
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point. The condition from the superpotential together with the beta functions impose

rx + ry + rz = −1 ,

N2i −N2i+2 =
2

rz + 1
. (6.59)

We see that choosing a pattern for the ranks fixes the R-charge of the vertical fields in
Fig. 6.29. For instance, with N2i+2 = N2i − 2,15 rz = 0 and the mechanism described
in the previous sections arises, as we can integrate out the vertical fields. The crucial
point is that their mass term is exactly marginal. The resulting theory is the orientifold
of L2p,2k−2p,2p/Z2 with quartic terms in the superpotential that give 2rx + 2ry = −2.
Therefore, the solution for L0,2k,0/Z2 still holds.

Finally, there are 2k fields with fermionic R-charge rx and 2k with ry = −1 − rx, so at
large N the local maximum of the central charge reads

rx = −1

2
,

aΩ
0,2k,0

=
27

64
kN2 . (6.60)

If we use instead N2i+2 = N2i − 3, we find the solution where RX = RY = RZ = 2/3,
that holds only for L0,2k,0/Z2, i.e. the orbifolds of flat space, since the R-charges are not
compatible with a marginal mass term.

6.5 Discussion and conclusions

In this Chapter we have generalized the mechanism studied in [9, 10] to chiral Z2 orb-
ifolds of La,b,a models. The La,b,a family exhausts the class of non-chiral toric models.
However there exists one (and only one) non-chiral orbifold which does not belong to
this infinite class, corresponding to the C3/(Z2 × Z2) theory studied in section 6.3. We
have observed that the fixed point orientifold of this theory is conformally dual to the
glide orientifold of L2,2,2, corresponding to the non-chiral Z2 orbifold of the conifold (i.e.
L1,1,1/Z2). The presence of the glide orientifold is the key ingredient that has allowed
us to generalize the above construction to an infinite family of dualities analogous to
the case of La,b,a studied in [9, 10]. We explicitly verified that this is not possible for the
La,b,a non-chiral theories studied in [9, 10], so the additional Z2 orbifold is a necessary
condition for the new infinite family to exist.

With the exception of the “seed” duality between the non-chiral C3/(Z2 × Z2) orbifold
andL1,1,1/Z2, this generalization involves chiral models such as C3/(Z2×Z2k) = L0,2k,0/Z2

andLk,k,k/Z2. For k ≥ 2 we have observed the presence of intermediate modelsL2p,2k−2p,2p/Z2

with fixed point projections. They altogether form a family of dual projected models that
we named family A in section 6.3. The field theory interpretation of the duality is the
presence of an exactly marginal quadratic deformation. In the La,b,a case such deforma-
tion is realized by a pairing of (conjugate) two-index tensor fields with R = 1 [9, 10]. In
the orientifolded La,b,a/Z2 chiral orbifolds studied here we have observed the possibility
of realizing the quadratic deformation via a pair of conjugate bifundamentals. Note that

15Which is the choice in Fig. 6.29.
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a different glide orientifold, i.e. around the other axis (see figure 6.26 for example) does
not give rise to conformally dual models.

By considering a different fixed point projection of L2p,2k−2p,2p/Z2 with 0 ≤ p < bk/2c
we have found the existence of a second family, dubbed family B in section 6.4, involving
the fixed line orientifold of Lk,k,k/Z2. This represents a more conventional family of
dualities from the perspective of [9, 10] since it does not involve a glide orientifold.

Another difference between family A and B is that in the former all gauge group ranks
are equal, whereas in the latter the ranks are assigned in a way that resembles what done
in the non-chiral cases of [9, 10]. Moreover, in the orientifold models of [9, 10] there is al-
ways anN = 2 mother theory with the same choice of the ranks that flows, upon adding
a relevent deformation, to the N = 1 models. This is the reason why those dual mod-
els inherit part of the action of S-duality. We have not been able to identify the mother
counterpart for the theories studied here, neither the origin of their duality. However, in
both families A and B, the extremal case L0,2k,0/Z2 has always a different rank assign-
ment such that R = 2/3 for all fields and all β-functions vanish. This choice has two
interesting features. First, it is always a shift by one unit w.r.t the rank choice that yields
the conformal duality discussed here. It is unclear if this can be understood in terms
of fractional branes present in the system, and if there exists any relevant deformation
that connects to the conformally dual models. Second, its central charge is always 27/32
times smaller than the central charge of the conformally dual theories, which usually
happens when supersymmetry is broken via mass deformation from N = 2 to N = 1
[146]. Clearly, this in not the case here, but an explanation is that the Cartan of SU(2)R
survives the extra orbifold Z2 and enters in the combination with the U(1)R as in [146].

In all orientifold models studied so far, both here and in [9, 10], there are empirical rules
at the level of toric diagrams which are necessary but not sufficient to have a conformal
duality, namely that the numbers of internal and external points are separately equal and
that all internal points sit on a line. The geometric deformation that allow us to pass from
a toric diagram to another with these rules is associated to the quadratic deformation on
the field theory side, which integrates out fields with R = 1.

Another pair of toric quiver gauge theories describing different singularities before the
orientifold projection but that give rise to a pair of chiral models on the same conformal
manifold has been obtained in [12], relating a fixed line projection of PdP3b to a fixed
point projection of PdP3c. In this case there is no notion of geometric deformation, i.e.
the possibility of deforming the superpotential by an exactly marginal massive chiral
operator. Even though PdP3c is actually L1,2,1/Z2, it does not belong to any of the fami-
lies studied here, because the sum a + b is odd. Nevertheless the model of [12] behaves
as the models studied here from the toric perspective, i.e. the toric diagrams in the two
phases have separately the same number of internal and external points. For this reason,
the models of [12] represent a seed for another infinite family of dual orientifold models.
In a forthcoming publication we are planning to show the generalization of this model,
similarly to the cases discussed here.

Finally, let us discuss some interesting avenues of future investigation. A possible gener-
alizations involve orientifolds in presence of extra flavors. In [149] different projections
of the same orbifold result in dual unoriented theories. One may also ask if dualities
similar to the ones studied here exist in lower or higher dimensional SCFTs. In lower
dimensions it would also be interesting to apply the orientifold projections, denoted as
Spin(7) orientifolds in [150, 151], which break holomorphy while preserving some su-



N = 1 conformal dualities from unoriented chiral quivers 113

persymmetry.

Another aspect that we would like to stress is that differently from the pure La,b,a cases,
where four families have been identified [10], here for the chiral La,b,a/Z2 orbifolds we
only found two families giving rise to a conformal duality. The two missing families
correspond to the S-dual quivers studied in [10]. Here, by inspection, we have not found
the generalization of models with both real gauge groups and tensor matter. If they do
not exist, we would like to understand why.

It would be desirable to have a geometric interpretation of the conformal duality from
the perspective of the 10d string setup and/or the holographic dual. For instance for
the conformal dualities of non-chiral La,b,a models one can understand them as being
inherited from S-duality of the N = 2 parent theories. (See [10, Sec. 4.2].) The latter
are engineered as type IIA elliptic models of D4’s, NS5’s and O6-planes, where by tilting
some of the NS5-branes (or the O6-planes) one can halve supersymmetry. In turn, by
lifting theN = 2 models to M-theory one can understand S-duality relating two type IIA
configurations as two different classical degenerations of the M-theory torus [3]. Having
at hand a similar picture for the N = 1 dualities studied here would clarify their string
theory origin. A possible starting point is the conformal duality between one of the fixed
point orientifolds of C3/Z2 and the fixed line orientifold of L1,1,1, i.e. the conifold. For
the latter, both type IIB and IIA (elliptic) configurations have been constructed in [144]
without relying on the brane tiling technology. One would then need to construct the
type IIA engineering of the former, and lift the two IIA setups to M-theory to try to
understand the addition of the exactly marginal quadratic deformation in field theory
(responsible for the N = 1 conformal duality) via a chain of string dualities.

Lastly, another promising piece of geometric technology is K-stability [152, 153] of the
SCFT [154, 155, 156, 157, 158, 159, 160], which can be understood as a criterion to check
whether the SCFT is stable in the IR against certain deformations of its superpotential,
captured by the chiral ring. In favorable situations (such as for toric theories, but also
for classes of non-toric ones) these deformations can be classified, and are related to
complex deformations of the hypersurface singularity probed by the N D3-branes. It
would be interesting to study whether the conformal dualities of this paper admit an
interpretation in terms of deformations of the chiral ring of the SCFTs.





CHAPTER 7

Multi-planarizable quivers, orientifolds, and conformal
dualities

In this Chapter we study further instances of conformally dual theories obtained from
Type IIB string theory setups in the presence of orientifolds. The examples worked out
in [9, 10, 11] and reviewed in Chapter 5 and 6, corresponding to orientifolds of Laba and
Laba/Z2, provide examples of conformally dual theories engineered in string theories.
The parent models (i.e. before the orientifold projection) describe stacks of D3-branes
probing different Calabi–Yau threefolds (CY3’s) and, only after the projection and for
suitable choices of ranks, the models have the same conformal and ’t Hooft anomalies
and superconformal indices. The claim is that the models are also conformally dual and
the marginal deformations that relate them are associated to quadratic superpotential
deformations.1 Then, by integrating out such conformal masses, the final models become
identical.

Another similar behavior was anticipated in [12]. In this case the two models before
the projection are associated to D3-branes probing two different singularities, namely
(cones over) the pseudo del Pezzo surfaces PdP3b and PdP3c. After a fixed-line and
fixed-point projection respectively, again with a suitable choice of ranks, it turns out
that the two models have the same quiver structure, field content, anomalies and index.
These models differ only by the superpotential interactions, i.e. they differ only by the
point on the conformal manifold that they describe, or equivalently there is an exactly
marginal deformation connecting them. This notion of conformal duality between these
two models generalizes the one found for the Laba and Laba/Z2 orientifolds discussed
in [9, 10, 11] (see Chapters 5 and 6), even though in the former there is not any (explicit)
conformal mass connecting the two theories.

Motivated by this example, in this Chapter we look for a generalization of this behavior
for infinite families of toric quiver gauge theories. We note that the crucial property at the
core of the relation between PdP3b and PdP3c is that the two models can be represented
with the same quiver even before the orientifold projection. The quiver admits two dif-
ferent planarizations, corresponding to the two inequivalent toric descriptions. We then
look for families of quivers admitting multiple planarizations, referring to quivers of
such type as multi-planarizable. We find an infinite family of models of such type: toric
diagrams described by three parallel lines connecting the integer point lattices, two on

1Note that these mass terms are relevant in the parent theories [125, 121], but become marginal after the
orientifold projection.
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the perimeter and a central one (see Fig. 7.9). We observe that there always exist coinci-
dent quivers (in some Seiberg/toric dual phase) associated to different toric diagrams in
this family. The recipe to obtain such quivers corresponds to moving one or more lattice
points from one external line to the other.

We then study orientifold projections of these models, and by inspection we identify
a subfamily that generalizes the construction discussed above for PdP3b and PdP3c.
This subfamily corresponds to the case where there is an even number of points on the
perimeter.

We show that after the orientifold (by fixed lines or fixed points, depending on the toric
diagram) the models differ only by exactly marginal deformations. Furthermore we
observe that acting with Seiberg duality and global symmetries we can always find a
phase where the difference between these models corresponds to a sign or a set of signs
in some superpotential interaction.

7.1 Toy models for conformal dualities

In this section we construct pairs of N = 1 toy models that differ only by a marginal
deformation on the conformal manifold. In particular, given a unique quiver we turn on
different interaction terms such that the models are not the same. We begin with SQCD
in the conformal window, and introduce singlets and interactions so that the global sym-
metry contains (at least) an SU(2) factor. Turning on further interactions breaks this
SU(2) and yields different models. We find a behavior that resembles β-deformations in
N = 4 SYM [122], as the models differ only by a sign flip in a subset of terms.

We exhibit examples with unitary and real gauge factors, which will be embedded in
string models in later sections.

7.1.1 SQCD with singlets

The simplest toy model in which the mechanism of conformal duality described above
can be found is SQCD with a single unitary gauge group SU(N) and F flavors. We can
break the flavor group SU(F ) in different patterns, by introducing singlets and turning
on interactions. Let us start from the quiver drawn in Fig. 7.1a with F quarks q, F
anti-quarks q̃ and no interaction, and choose F such that the theory stays inside the
conformal window, i.e. F = 2N . Now break the non-abelian global symmetry from
SU(F )×SU(F ) into the pattern in Fig. 7.1b, SU(F1)×SU(F2)×SU(G1)×SU(G2) with
F1 + F2 = G1 +G2 = F . The quarks q1, q2 transform under SU(F1)× SU(F2), whereas
the anti-quarks q̃1 and q̃2 under SU(G1) × SU(G2). Note that with no gauge singlets
and W = 0 the non-abelian global symmetry of this quiver is actually enhanced back to
SU(F )×SU(F ). In order to effectively break the flavor, we introduce gauge singletsM11,
M12, M21 and M22, which interact with the quarks via a cubic superpotential. Denoting
the color indices with a and flavor indices with f`, gj (`, j = 1, 2), we can write

W = h`j
(
M`j

)
fj

g`(q̃`)g`
a(
qj
)
a

fj
, (7.1)

so that we can control the actual global symmetry by turning on subsets of h`j and im-
posing conditions on the ranks of the flavor groups. Henceforth we will omit color and
flavor indices for clarity. For instance, the theory with only h11 6= 0 and h12 = h21 =
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h22 = 0 has superpotential given by

W = h11M11q̃1q1 , (7.2)

and if we require further that F1 = G1 and F2 = G2, we obtain the quiver of Fig. 7.1c.
This model is studied in [161], where it is shown that it is dual to the case with h11 = 0
and h12, h21, h22 6= 0 with a bifundamental singlet, an adjoint singlet on the second node
and the same requirement for the ranks of the flavor groups.

An interesting case is the one given by h11, h22 6= 0 and h12 = h21 = 0, thus the interac-
tion has the form

W = h11M11q̃1q1 + h22M22q̃2q2 , (7.3)

where two out of four couplings are non-zero. Requiring that G1 = G2, F1 = F2 and
identifying singlets M11 = M22 = M and couplings h11 = h22 = h, the resulting quiver
is drawn in Fig. 7.1d and the superpotential simplifies to

W = hMq̃1q1 + hMq̃2q2 . (7.4)

Note that we can rotate the quarks q1, q2 and the anti-quarks q̃1, q̃2, signaling an SU(2)×
SU(2) global symmetry that emerges only under the required condition. Rotating both
quarks and anti-quarks gives the same superpotential, while rotating only one species is
equivalent to choosing h12, h21 to be non-zero and the diagonal terms to be zero.

The final case has h`j 6= 0 ∀ `, j. We can require that either F1 = F2, G1 = G2 so that
there are four bifundamental singlets, or F1 = G1, F2 = G2 resulting in two conjugated
bifundamental singlets and one adjoint singlets at each node [161].

All patterns of global symmetry breaking discussed above are summarized in Tab. 7.1.

Couplings Superpotential Global Symmetry

hij = 0 W = 0 SU(F )× SU(F ), Fig. 7.1a

h11 6= 0 W = h11M11q̃1q1 SU(F1)2 × SU(F2)2, Fig. 7.1c

h11 = h22 = h 6= 0 W = hM(q̃1q1 + q̃2q2) SU(F1)× SU(G1 = F1)× SU(2)2, Fig. 7.1d

h`j 6= 0 W = h`jM`j q̃`qj SU(F1)× SU(F2)×
SU(G1)× SU(G2), Fig. 7.1b

Table 7.1 The various patterns for breaking the global symmetry SU(F ) × SU(F ) of
SQCD introducing four singlets M`j and four couplings h`j , `, j = 1, 2, referring to Fig.
7.1b with F1 + F2 = F = G1 +G2.

Consider now the case with two couplings turned on, either h11 = h22 = h 6= 0 or
h12 = h21 = h 6= 0. In particular, from the quiver in Fig. 7.1d we focus on two models,
obtained by turning on the first pair or the second one. Denoting them as model A and
B respectively, their superpotentials read

WA = hM(q̃1q1 + q̃2q2) ,

WB = hM(q̃1q2 + q̃2q1) . (7.5)
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As mentioned above, we can move from one model to the other by rotating the pairs of
quarks, thanks to the SU(2) global symmetry. It is useful for later purposes to change
basis for the quarks as

q1 → (Q+ +Q−) ,

q2 → (Q+ −Q−) ,

so that the superpotentials in the two models become

WA → hM
[
q̃1(Q+ +Q−) + q̃2(Q+ −Q−)

]
,

WB → hM
[
q̃1(Q+ −Q−) + q̃2(Q+ +Q−)

]
, (7.6)

and we can redefine the field Q− → −Q− in WA so that the two interactions match. We
add further flavors to this construction, in order to turn on additional interactions. In
Fig. 7.1d, add e.g. SU(F3)2 × SU(G3)2, bifundamental matter fields p, p̃, bifundamental
singlets l, r, f1, f2, f̃1, f̃2 landing us onto the model in Fig. 7.2. Note that the ranks of the
flavor groups must be chosen such that 2F1 + F3 = 2G1 +G3 for the theory to be free of
gauge anomalies. Another interaction can be turned in both model A and B, namely

Wλ = λ plq̃1 + λ rp̃q1 + λ q̃2pf1f2 + λ p̃q2f̃2f̃1 , (7.7)

where λ is the coupling.2 This interaction breaks the SU(2) global symmetry, as we
cannot rotate the quarks anymore. In the basis chosen earlier, we have

WA +Wλ → hM
[
q̃1(Q+ +Q−) + q̃2(Q+ −Q−)

]
+ λ plq̃1 + λ rp̃(Q+ +Q−) + λq̃2pf1f2 + p̃(Q+ −Q−)f̃2f̃1 ,

WB +Wλ → hM
[
q̃1(Q+ −Q−) + q̃2(Q+ +Q−)

]
+ λ plq̃1 + λ rp̃(Q+ +Q−) + λq̃2pf1f2 + p̃(Q+ −Q−)f̃2f̃1 , (7.8)

and, if we proceed as before, the additional transformation Q− → −Q− does not send
one model into the other. The new interaction is crucial as there is no field redefinition
that transforms the two superpotentials into the same form. However, the two models
preserve the same global symmetry. In particular, the constraints for the R-charges are
compatible and if a conformal point exists for one model, the same happens for the other,
where one of the couplings has acquired a minus sign. As long as the ranks of the gauge
group and of the flavor groups are chosen such that the β-functions vanish, we expect
that they live on the same conformal manifold.

In order to see that, let us choose the ranks of the flavour groups as

G1 = N + 2 , F3 = N + 4 ,

F1 = N − 2 , G3 = N − 4 , (7.9)

and let us turn on the interaction terms one by one, following the flow at every step.

2In principle, there may be two different couplings, λ(3) for cubic terms and λ(4) for quartic, and the
argument still holds. We pick λ(3) = λ(4) = λ for the sake of brevity.
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When W = 0 all of the fields are free, i.e. R = 2/3, the central charge is a = 11/24
and the cubic interaction WA is marginal, while the quartic operators in Wλ are irrele-
vant. Requesting that the β-functions of all the couplings vanish leads to a new confor-
mal fixed point, whose central charge a has decreased to a ' 0.305. The R-charges of
gauge-invariant operators stay above the unitarity bound, so no accidental symmetries
are generated along the flow. The story is repeated exactly with WB , and both WA +Wλ

andWB+Wλ have the same central charge. At this conformal point, the non-anomalous
global symmetry of the two models match as well, with the same charges for the matter
fields, see Tab. 7.2 and therefore the ’t Hooft anomalies match. One can see that WB

(WA) is classically marginal at the fixed point of model A (B). Furthemore, from Tab.
7.2, we can see thatWB (WA) is not charged under any of the global symmetries, hence it
is exactly marginal [16] for the model A (B). This identifies a direction on the conformal
manifold along which we can move from one model to the other by turning on exactly
marginal operators.

q1 q2 q̃1 q̃2 M p p̃ l r f1 f2 f̃1 f̃2

U(1)
B

1 1 −1 −1 0 1 −1 0 0 0 0 0 0

U(1)1 1 1 0 0 −1 − 1
2 − 3

2
1
2

1
2 0 1

2 0 1
2

U(1)2 2 2 −1 −1 −1 1
2 − 5

2
1
2

1
2 1 − 1

2 1 − 1
2

U(1)3 0 0 0 0 0 0 0 0 0 1 −1 1 −1

Table 7.2 The global symmetry charges for the matter fields, both for WA + Wλ and for
WB +Wλ.

Furthermore, we shall see that the quiver in Fig. 7.2 can be embedded in a dimer con-
struction, where one can read off the low-energy gauge theory associated to a particular
toric singularity. To be more precise, the flavor factors would be gauged and further in-
teractions arise, since each field must appear twice in the superpotential with opposite
sign,3 as a consequence of the strong constraints given by the toric condition. We no-
tice that in each case considered below, any pairs of superpotentials of conformally dual
models, obtained along these lines, do not admit any field redefinitions transforming
one into another.

7.1.2 Real gauge groups

The previous mechanism of conformal duality can occur also in the case of a real gauge
group. In order to see that, consider a single gauge group, either SO(N) or USp(N),4
with 2F flavors and a singlet in a tensor representation of the flavor group SU(F ). Let
us choose the tensor to be symmetric for orthogonal gauge groups and antisymmetric
for symplectic ones. The quiver associated to this theory is drawn in Fig. 7.4a,5 where
q1 and q2 are the fundamental flavors, T is the tensor, and the real group is drawn as a
diamond (see Fig. 7.3 for a legend about our notation for quivers.). We can turn on two

3This can be accounted for by inserting a factor (−1)`+1 in front of the superpotential in Eq. (7.1) and the
subsequent ones.

4In our convention USp(2) ∼= SU(2), hence in USp(N)N is even.
5Even though the gauge group is real, we keep drawing arrows for the bifundamental matter fields to show

the chirality under SU(F ).
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(a) The quiver for SQCD with gauge
group SU(N), non-abelian global symme-
try SU(F )× SU(F ) and W = 0.
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(b) The quiver for SQCD with gauge
group SU(N), non-abelian global symme-
try SU(F1)× SU(F2)× SU(G1)× SU(G2),
with F1 + F2 = F = G1 + G2, singlets Mij

and W = hijMij q̃iqj .
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q1

q̃1

q2

q̃2

M11

(c) The quiver for SQCD with gauge
group SU(N), global symmetry SU(F1)2 ×
SU(F2)2, adjoint singlet M11 and interac-
tion W = h11M11q̃1q1.

N F1G1

q1

q2

q̃1
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(d) The quiver for SQCD with gauge
group SU(N), non-abelian global symme-
try SU(F1) × SU(G1 = F1) × SU(2)2, bi-
fundamental singlet M11 = M22 = M and
interaction W = hM(q̃1q1 + q̃2q2).

N F1G1

G3F3

q1

q2

q̃1

q̃2

M

l
p p̃

r

F3 G3

f1 f̃1

f2 f̃2

Figure 7.2 The quiver for SQCD with singlets with gauge group SU(N) and non-abelian
global symmetry SU(F1)× SU(G1)× SU(F3)2 × SU(G3)2.
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N N

F

gauge SU(N) gauge SO/USp(N)

flavor SU(F )

Figure 7.3 The notation we use for quivers: a blue circle for a SU(N) gauge factor, a blue
diamond for a SO(N) or USp(N) gauge factor and a red square for a flavor factor.

interaction terms

WA = h
1

2
T (q2

1 + q2
2) , (7.10)

WB = hTq1q2 , (7.11)

where h is the coupling, and we refer to the theory with WA (WB) turned on as model
A (B). The constraints for the R-charges given by these interactions are compatible with
each other. Redefine the fields as

q1 →
1√
2

(Q+ +Q−) ,

q2 →
1√
2

(Q+ −Q−) , (7.12)

so that the interaction terms become

WA = h
1

2
T (q2

1 + q2
2)→ 1

2
T
(
Q2

+ +Q2
−

)
,

WB = hT (q1q2)→ 1

2
T
(
Q2

+ −Q2
−

)
, (7.13)

and they differ only by a relative sign. As before, we can still perform a second trans-
formation on WA that acts as Q− → iQ− and the two theories end up having the same
interaction. Hence, they are equivalent and we can move from one to the other with
simple field redefinitions, similarly to the previous case.

Let us add two flavour groups and four bifundamental fields, w, v, f1 and f2 as in
Fig. 7.4b. We can turn on an additional interaction in both models, as

Wλ = λ q1wv − λ q2wv + λ q1wf1f2 + λ q2wf1f2 , (7.14)

so that modelA has superpotentialWA+Wλ and modelB hasWB+Wλ. We note that the
constraints for theR-charges are compatible, similarly as before, and we ask whether the
two theories are equivalent. If we perform again the two transformations, i.e. Eq. (7.12)
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for both models and subsequently Q− → iQ− for model A, we obtain

WA +Wλ → h
1

2
T
(
Q2

+ −Q2
−

)
+ λ

[
1√
2

(Q+ + iQ−)− 1√
2

(Q+ − iQ−)

]
wv

+
1√
2

(Q+ + iQ−)wf1f2 +
1√
2

(Q+ − iQ−)wf1f2 ,

WB +Wλ → h
1

2
T
(
Q2

+ −Q2
−

)
+ λ

[
1√
2

(Q+ +Q−)− 1√
2

(Q+ −Q−)

]
wv

+
1√
2

(Q+ + iQ−)wf1f2 +
1√
2

(Q+ − iQ−)wf1f2 , (7.15)

and the two models are no longer trivially connected by a simple field redefinition, due
to the presence of additional interactions. As before, the two theories preserve the same
global symmetry, including the abelian R-symmetry and if a conformal point exists, e.g.
by choosing ranks such that the β-functions vanish, it exists for both models. Let us
choose the ranks as

F = N − 2 , F = N − 4 , (7.16)

and study, as before, the dynamics of operators turning interactions one by one. With
no interactions, all of the fields are free and the central charge is a = 11/48. Around
this conformal point, the cubic operators are marginal and quartic ones are irrelevant.
As in the previous section, it exists a consistent conformal point in the IR where the
β-functions for all the couplings vanish, with a ' 0.153, reached by both WA + Wλ

and WB + Wλ. No accidental symmetries are generated along the flow. Again, the two
models share the same global symmetry and the charges match, see Tab 7.3, and WA is
exactly marginal for modelB, and viceversa. As before, the two models live on the same
conformal manifold, even though they they flow to different points on the conformal
manifold.

q1 q2 w v T f1 f2

U(1)1 1 1 −3 2 −2 0 2

U(1)2 0 0 −1 1 0 1 0

Table 7.3 The global symmetry charges for the matter fields, both for WA + Wλ and for
WB +Wλ.

7.1.3 Duality frames

When the models we introduced in the previous subsections are embedded in larger
quivers, the resulting theory contains more gauge group factors, fields and interactions.
At any rate, two models that differ only by superpotential terms of the formWA andWB

are in fact the same theory, but if an interaction that breaks explicitly the rotation among
the quarks in both models is present, then they live on the same conformal manifold, at
separate points where one of the couplings (or a subset thereof) has changed sign. How-
ever, the presence of extra structure can hide the superpotential mechanism we showed
earlier. While the computation of protected quantities such as anomalies and indices
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N

F

SO(N)

SU(F )

q1 q2

T

(a) The quiver model with a single real
gauge and global symmetry SU(2F ).

N
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FSO(N)

SU(F )

SU(F )

q1 q2

w

v

T

F SU(F )

f1

f2

(b) The quiver model with a single real
gauge and global symmetry SU(F ) ×
SU(F )2.

would undoubtedly signal that the two theories end up on the same conformal mani-
fold, it can be unclear whether they are actually the same theory or different points on
the same manifold [12]. One would need to compare and map gauge-invariant operators
of the models. In this regard, finding the proper duality frame can make the comparison
easier.

Below we will show prototypical examples that we will encounter in the rest of the Chap-
ter. The idea is that after some duality operation, the superpotential can be brought to
the form of Eqs. (7.8)-(7.15). Even though there are more gauge factors, the underlying
message is the same as long as all factors lie in the conformal window. For instance, it
may happen that the SU(2) is not explicit, namely q̃2 and q2 are not present in the theory,
but a composite operator will take their place. There is a Seiberg-dual frame in which
this is a fundamental field of the theory and one only needs to find this dual description.
A common situation occurs as follows. Suppose we have the quiver in Fig. 7.5a, part of
two larger models A and B with superpotential

WA = hMq̃1q1 + hMd̃ũud+ λ pld̃ũ+ λ p̃udr + . . . ,

WB = hMq̃1ud+ hMd̃ũq1 + λ pld̃ũ+ λ p̃udr + . . . , (7.17)

where the dots indicate the part of the superpotential that does not contain d̃, d, ũ or
u and it is shared by models A and B. Note that all the nodes in the quiver are gauge
factors. If we dualize both nodes G4 and G5 in models A and B, the dual quiver results
in the one of Fig. 7.5b, where the dual quarks are D, U , Ũ , D̃ and the mesons ud = q2,
d̃ũ = q̃2. As there will be more fields transforming under the nodes G4 and G5, more
mesons will be present and other interaction terms will arise, but they do not spoil the
argument. The superpotentials of the Seiberg-dual phases read

WA = hMq̃1q1 + hMq̃2q1 + λ plq̃2 + λ p̃q2r + q2D̃Ũ + q̃2UD + . . . ,

WB = hMq̃1q2 + hMq̃2q1 + λ plq̃2 + λ p̃q2r + q2D̃Ũ + q̃2UD + . . . , (7.18)

and the quarks qi and q̃j can be rotated as in Eq. (7.6), hence, with the proper choice of
ranks such that the two theories stay inside the conformal window, they live on the same
conformal manifold. Looking back at the original phase (i.e. before dualization), despite
the fact that the interactions differ in the two models (a cubic and a quintic in model A,
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(b) The quiver with tensors, part of a larger
model, where tensor T2 has been deconfined
into (t2)2 and the gauge node SU(G2) has
been dualized.

and two quartic terms in modelB), the two models flow to the same conformal manifold.

It may also happen that we need to dualize only one model, if the interaction in the other
one is already in the form of Eq. (7.18).6 As a consequence, we have two interesting types
of conformal duality: either a pair of models with two cubic terms in A and two quartic
terms in B, or a pair of models with one cubic term and one quintic term in A and two
cubic terms in B.

Deconfinement of tensors

The last case of interest concerns the presence of tensor fields. Suppose we have the
quiver of Fig. 7.6a, part of two larger models A and B with superpotentials

WA = h
1

2
T1

(
q2
1 + u2d̃2

)
+ λwvq1 + . . . ,

WB = hT1q1ud̃+ λwvq1 + . . . . (7.19)

6We need to be careful that the new phase does not exhibit any global symmetry enhancement.
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We may proceed as before, but we need to dualize the node with the tensor field T2.
In order to do that, we need first to deconfine the tensor field [50, 162, 96], which is
seen as the result of the confinement of a real group. At this step, we need to be careful
not to add extra gauge-invariant operators, which may arise due to the presence of the
confining gauge factor. In particular, when T2 is an antisymmetric tensor of SU(G) and
G is even, the confining gauge factor is symplectic7 and we may need to add the Pfaffian
operator WT2

= Pf(T2) to the superpotential, so that it is forced to vanish. However, the
complete structure of the interaction may already impose this constraint, so a case-by-
case analysis is actually needed.8

After having deconfined, we are allowed to dualize the node SU(G2), resulting in the
meson ud̃ = q2, possibly among other composite operators that become fundamental in
the dual phase. The dual theory has the quiver shown in Fig. 7.6b and the superpoten-
tials of the two models read

WA = h
1

2
T1

(
q2
1 + q2

2

)
+ λwvq1 + q2D̃U + . . . ,

WB = hT1q1q2 + λwvq1 + q2D̃U + . . . . (7.20)

We realize we are back to the models described in Sec. 7.1.2, hence the same argument
holds. In this case, model A with a cubic interaction and a quintic interaction, involving
a tensor field, flows to the same conformal manifold of model B with a quartic term
involving a tensor field.

7.2 Gauging the flavor: PdP3b vs. PdP3c and their orientifolds

In this section we discuss gauging of global symmetries in the toy models studied above,
focusing on a detailed example. On one hand, this section is a bridge that allows us to
fix the notation necessary for the more general analysis of the conformal dualities for
multi-planarizable quivers studied below. On the other hand we will be able to give an
explanation for the results obtained in [12]. The models that we present here correspond
indeed to stacks of D3-branes probing the complex cone over the pseudo del Pezzo sur-
faces PdP3b and PdP3c with appropriate orientifold projections, over specific toric phases
that enjoy the Z2 needed for the projection. The final models can be constructed by gaug-
ing the global symmetries of the toy models discussed above, by further requiring the
cancellation of gauge anomalies and the vanishing of the beta functions.

As observed in [12] the quivers associated to the PdP3b and PdP3c coincide, and are given
in Fig. 7.7a. However the two models have different superpotentials. Explicitly:

Wb = X01 X13X30 −X13 X35X51 +X35 X50X03 −X50 X01X12X24 X45

+ X12 X23X34X45 X51 +X24 X40X02 −X02 X23X30 −X40 X03X34 (7.21)

7In the case of a symmetric tensor, the auxiliary gauge factor that confines is orthogonal. The moduli space
of such a gauge theory must be studied carefully, since the origin may not be smoothed out [18]. Whenever
we need to deconfine a symmetric tensor, we restrict ourselves to the case in which the auxiliary gauge factor
SO(N + 4) confines, generating a symmetric tensor of SU(N).

8In this Chapter we will study cases where those operators are irrelevant.
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(a) The quiver of theories PdP3b and
PdP3c, with the orientifold represented
with the dashed red line.
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(b) The quiver of theories PdP3b and
PdP3c after the orientifold projection.

and

Wc = X01 X13X30 −X13 X34X45X51 +X35 X50X03 −X40 X01X12X24

+ X12 X23X35 X51 −X24 X45X50X02 −X02 X23X30 +X40 X03X34 . (7.22)

This difference gives rise to two different dimers and thus two different toric diagrams.
As a consequence the two models are not related by any IR duality.

As discussed in the introduction in this case we refer to the quiver as multi-planarizable,
because there exist two inequivalent periodic planar quivers (and consequently dimers),
i.e. there are two different consistent choices of toric data for the quiver in Fig. 7.7a.
In absence of orientifolds this degeneration does not have further implications for the
gauge theories associated to the two singularities.

The situation is more interesting if one studies orientifold projections. When orientifolds
are added to the previous brane setups symplectic and orthogonal gauge groups and two
index symmetric and antisymmetric representations naturally arise after the projections
and the quivers become unoriented. This is a consequence of the fact that the orientifolds
reverse the orientation of the strings, giving rise to a Z2 involution on the gauge theory
[163, 164, 165, 166, 167, 168]. On the brane tiling these projections can be represented
by the general fixed points/fixed lines procedure spelled out in [113, 169, 170] (recently
also projections that involve the Klein bottle have been considered [129]). Orientifolds
have many applications in various sectors, both at theoretical level [171, 172, 173, 174,
175, 176, 177, 178] and at phenomenological one [179, 180, 181, 182, 183, 184, 185].

Here we will not review the whole construction and refer the reader to [113, 170] for
more details and notations. The idea is that one considers the action of the orientifold
by looking at identifications on the dimer in terms of fixed points and fixed lines. The
charges carried by the orientifolds reflect in consistent choices of charges associated to
the fixed points and fixed lines. As discussed in [12], the non-trivial statement is that
there exists a fixed-line projection on PdP3b that has the same quiver as a fixed-point
projection of PdP3c. The action of such projections on the dimer is explicitly represented
in Fig. 7.8. The final quiver after the projection corresponds to the unshaded one in
Fig. 7.7a, which results in the quiver in Fig. 7.7b. The net effect of the projection is
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Figure 7.8 The dimers of Pseudo del Pezzo 3b and 3cwith the fixed lines and fixed points
projections, drawn in red.

then to identify the gauge groups SU(N1) with SU(N5) and SU(N2) with SU(N4). As
a consequence, bifundamental fields X51 and X24 are projected to two-index tensor rep-
resentations, drawn in red and green. Finally, the remaining two gauge groups SU(N0)
and SU(N3) are projected to USp or SO depending on the choice of charges associated
to the fixed points. We use to draw the real gauge nodes as diamonds on the quiver. Ob-
serve that the quiver in Fig. 7.7b is the simplest model that one can construct by gauging
the flavour in the model discussed in Sec. 7.1.2 and Fig. 7.6a.

In the case of the fixed-point orientifold there are four charges, denoted with τ and la-
beled from 1 to 4 as in Fig. 7.8. These charges are either +1 or −1 and then, from
now on, we will associate to them the value τi = ±1 with i = 1, . . . , 4. In the case at
hand, τ1 projects the bifundamental X51 to the conjugate tensor T̃11, τ2 projects the bi-
fundamental X42 to the tensor T22, τ3 acts on the gauge factor SU(N3) and τ4 acts on
the factor SU(N0). As discussed in [12] the product of these charges is constrained as∏4
i=1 τi = (−1)nW /2 where nW is the number of superpotential terms. We thus have∏4
i=1 τi = 1. The further requirement that PdP3c and PdP3b have the same quiver after

the projections imposes that τ1 = τ4 and τ2 = τ3, as these are the charges of the two
fixed lines. The choices of τi consistent with the vanishing of the beta functions are con-
strained by τ1 + τ2 = 0. This requirement further fixes the gauge ranks properly. There
are two possible choices for τ1 = ±1, but they are equivalent because of the Z2 reflection
symmetry of the quiver. In general, for the more complicated cases that we will analyze
below, this property does not hold anymore and the two choices for τ1 will give rise to
different models.
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Let us fix τ1 = 1 for concreteness. In this case we are left with an

SO(N0 = n)× SU(N1 = n− 2)× SU(N2 = n− 2)× USp(N3 = n− 4) (7.23)

gauge theory. Each pair of nodes is connected by a bifundamental field, where the rep-
resentations are inherited from the parent theory consistently with the projection. Fur-
thermore there are two tensors for the unitary gauge groups. In the SU(N1) case there
is a conjugate antisymmetric tensor, denoted T̃11 and colored in green in Fig. 7.7b. In
the SU(N2) case there is a symmetric tensor that we denote T22 and color in red in Fig.
7.7b. The same colors are used in the rest of the Chapter. In the general analysis in the
following sections we will not specify the value of τ1. For this reason in this section we
are using the same notation T for symmetric and antisymmetric tensors. This implies
that in each case the correct representation will be specified by the choice of sign for τ1.9
On the other hand we distinguish with a tilde the conjugate representation, because it is
independent of the choice of sign for τ1.

The superpotentials (7.21) and (7.22) are projected as

WΩf.l.
3b = X01X13X30 −X02X23X30 +

1

2
T22X

2
02

− 1

2
T22(X01X12)2 − 1

2
T̃11X

2
13 +

1

2
T̃11(X12X23)2 (7.24)

by fixed lines, and

W
Ωf.p.
3c = X01X13X30 −X02X23X30 + T22X12X01X02 − T̃11X13X12X23 (7.25)

by fixed points. Observe that, as in Sec. 7.1, in these formulas and in the rest of the
Chapter all the gauge contractions will be understood.

Let us make an important remark regarding the factors of 1/2 in formula (7.24). The
presence of such factors has not been discussed in the original references on orientifolds
and dimers [113], because the authors were not interested in the structure of the exactly
marginal deformations. Here we observe that these factors appear each time a fixed line
crosses some superpotential interaction in the dimer, which in turn arises from a disk
amplitude in the five-brane picture and whose volume is halved by the fixed line. As
we discussed above, they are crucial in our discussion about the conformal duality. The
analysis of the fixed point via a-maximization was performed in [12]. This analysis has
shown that the two models differ only by exactly marginal deformations.

Here we analyze the fixed points of the two models by turning on the superpotential
terms one by one. We stress that a similar analysis can be performed in the other models
considered in next sections. We start from W = 0, where a fixed point exists with central
charge a ' 0.650, and the unitarity bound is not violated. Let us first focus on the PdP3b.
At this point, at large N , the cubic operators without tensors in Eq. (7.24) are marginal,
the quintic operators are irrelevant and the cubic operators with tensors are relevant.
We turn on the cubic operators and find a new fixed point with a ' 0.609, where the
unitarity bound is satisfied. At this new fixed point, the quintic operators are marginal.

Studying the model PdP3c, at the fixed point with W = 0 the cubic operators in Eq.
(7.25) are marginal and the quartic operators, which involve tensors, are irrelevant. By

9We are confident this will not generate any confusion in the attentive reader.
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turning on these operators we find a new fixed point with central charge a ' 0.609, the
same value we just found for PdP3b. The unitarity bound is satisfied and we see that the
central charge has decreased. This suggests that the quartic operators are dangerously
irrelevant. At this fixed point the operators appearing in the superpotential of PdP3b are
classically marginal. One can check, from Tab. 7.4, that these operators are in fact exactly
marginal, therefore the two theories live on the same conformal manifold.

X01 X02 X12 X13 X23 X30 T̃11 T22

U(1)1 0 1 1 1 0 −1 −2 −2
U(1)2 1 0 −1 0 1 −1 0 0

Table 7.4 The global symmetry charges for the matter fields, at large N , both for PdP3b

and for PdP3c.

Here we will go one step further by applying a chain of tensor deconfinement ‘tricks’ and
Seiberg dualities to show that the two superpotentials are actually identical up to some
sign factors. The interpretation of the conformal duality in this sense is more natural and
fits with the general behaviors discussed in Sec. 7.1. Observe that the simplest example
of such a conformal duality is the case of N = 4 SYM in presence of a β-deformation
[122]. More generally the β-deformation is always an exactly marginal deformation for
any toric quiver gauge theory [186, 187]. Starting from the superpotential W = hW0 of a
toric quiver gauge theory the beta deformed superpotential is W = hW0 + βWβ , where
Wβ corresponds to the toric superpotential but this time taken with all plus signs. In this
sense a model with W = hW0 is conformally dual to a model with W = hWβ . Here we
will consider exactly marginal deformations of this type, but only by flipping the sign of
a subset of superpotential interactions.

The next step consists in finding an auxiliary quiver without tensors. This corresponds
to deconfining the symmetric tensor with an SO(NA = n + 2) gauge node and the con-
jugate antisymmetric tensor with an USp(NB = n − 6) gauge node. The new bifunda-
mentalsXA1 andX2B will appear quadratically in the superpotentials, i.e. we substitute
T22 → X2

2B and T̃11 → X2
A1. (Indeed by confining these nodes the theory comes back to

the original one with the tensor.) There are in addition non-perturbative contributions
for the tensors but for generic N they are irrelevant and we can ignore them. In the de-
confined model we can Seiberg dualize the unitary gauge nodes. In this way we want to
explicitly see the conformal duality applying the ideas and the construction discussed in
Sec. 7.1.

The models share two cubic superpotential terms, hence the chain of dualities we are
going to discuss will affect them in the same way, for this reason we prefer to keep the
discussion simple by not showing them in the following. Seiberg duality on SU(N2 =

n− 2) gives an SU(Ñ2 = n) gauge node with dual superpotential

Wdual = M1BYB2Y21 +M13Y32Y21 +M0BYB2Y20 +M03Y32Y20 , (7.26)

where M are the mesons of this duality and Y are the dual (bi-)fundamentals. The re-
maining superpotentials in the two cases are

W3b = M03X30 −X02X23X30 +
1

2
M2

0B −
1

2
M2

1BX
2
01 +

1

2
X2
A1M

2
13 −

1

2
X2
A1X

2
13 (7.27)
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and

W3c = M03X30 −X02X23X30 +M0BM1BX01 −X2
A1M13X13 . (7.28)

By integrating out the massive fields (only M03 and X30 for the moment)

M03X30 −X02X23X30 +M03Y32Y20 → −X01X13Y32Y20 , (7.29)

we have

W3b = M1BYB2Y21 +M13Y32Y21 +M0BYB2Y20 (7.30)

− X01X13Y32Y20 +
1

2
M2

0B −
1

2
M2

1BX
2
01 +

1

2
X2
A1M

2
13 −

1

2
X2
A1X

2
13

and

W3c = M1BYB2Y21 +M13Y32Y21 +M0BYB2Y20 (7.31)
− X01X13Y32Y20 +M0BM1BX01 −X2

A1M13X13

Next we can dualize node 2. Seiberg duality on SU(N1 = n−2) gives an SU(Ñ1 = 2n−4)
gauge node. Using the letter N for the mesons of this duality and Z for the dual quarks,
the dual superpotential of the gauge node reads

Wdual =
∑
i=1,2

N
(i)
23 Z

i
31Z12 +N

(i)
A3Z

i
31Z2A +N

(i)
03 Z

i
31Z10 +

+ N0BZB1Z10 +N2BZB1Z10 +NABZB1Z1A , (7.32)

where the index i refers to the mesons constructed from X13 (i = 1) or M13 (i = 1) . The
remaining superpotentials in the two cases are

W3b,def = M0BYB2Y20 + Y32N
(2)
23 + YB2N

(2)
2B −N

(1)
03 Y32Y20 +Wdual

+
1

2
(M2

0B −N2
0B +N

(1)
A3

2
−N (2)

A3

2
) (7.33)

and

W3c,def = M0BYB2Y20 + Y32N
(2)
23 + YB2N

(2)
2B −N

(1)
03 Y32Y20 +Wdual

+ M0BN0B +N
(1)
A3N

(2)
A3 . (7.34)

We can see that the difference between the two models corresponds then to the last line
in (7.33) and (7.34) respectively.

By rotating the fields M0B and N0B and the fields N (1)
A3 and N

(2)
A3 we arrive at a situa-

tion similar to the one discussed in Sec. 7.1. The main difference in this case is that the
difference between the models resides in mass terms and not in cubic interactions. Nev-
ertheless we can proceed by rotating these fields as discussed above and then integrate
them out in both phases.10 The final difference then resides only in the sign of some of
the superpotential terms as in the discussion in Sec. 7.1.

10Observe that there are other massive terms that can be integrated out as well but they behave identically
between the two phases.
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Observe that we can rotate fields only if they carry the same charges under the global
symmetry, otherwise we will generate non-marginal terms and break the global symme-
try explicitly. As stressed in Sec. 7.1, in addition to sharing the same quiver the models
need to have the same global anomalies in order to be conformally dual. This is crucial,
as it determines which theories that share the same quiver flow to the same conformal
manifold. For example, the parent theories PdP3b and PdP3c, without the orientifold
projection, still share the same quiver but are not conformally dual because cancellation
of the β-functions requires different solutions. In this sense, the action of the orientifold
is pivotal to ensure anomaly matching.

7.3 Embedding in string theory

In this section we give a general description of the 4d N = 1 toric quiver gauge theories
that generalize the duality between PdP3b and PdP3c after the fixed-line/fixed-point ori-
entifold projections. The key fact that lends itself to a natural generalization is that both
PdP3b and PdP3c can be represented by the same quiver. However the two models have
different superpotentials that correspond to the two inequivalent planarizations of the
quiver and they cannot be related by any low-energy duality. This reflects in the fact that
the two toric diagrams are not related by any SL(2,Z) transformation. In general we are
looking for examples of such type: pairs (or sets) of models sharing the same quiver but
with inequivalent planarizations. This is a necessary but not sufficient condition in our
construction of conformally dual models. We refer to such quivers as multi-planarizable.
After obtaining classes of models with this property we discuss general aspects of their
orientifold projections that give rise to conformal dualities.

7.3.1 Multi-planarizable quivers

In most cases, given a planarizable quiver the latter admits a unique planarization in
terms of plaquettes and therefore a unique dimer and tiling. However here we are in-
terested in families of models with the same quiver but different planarizations. We
identify such families in terms of their toric diagrams, that are inequivalent also up to
SL(2,Z2) transformations. From the toric diagram we then identify the brane tiling
using the inverse algorithm. This step is not unique, because toric dual phases can
emerge by different choices of the intersections of the five-branes in the brane tilings
that preserve the zig-zag paths. Nevertheless we observe that it is always possible to
choose these brane tilings for pairs of inequivalent toric diagrams, in order to obtain an
identical quiver. This implies that the quivers obtained by this procedure are the multi-
planarizable quivers that we are looking for. The simplest realization of models with
such property corresponds to the case of PdP3b and PdP3c.
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(0, 0)

(0, k1)

(1, k3)

(2, k2)

Figure 7.9 Generic toric diagram la-
beled by (k1, k2, k3).

Figure 7.10 Fundamental cell of the
(k1, k2, k3) model.

Let us start by identifying the toric diagrams: they are drawn in Fig. 7.9. In general we
label these toric diagrams by three integers (k1, k2, k3), where k1 and k2 represent the
number of points in the two external lines and k3 is the number of points in the central
one, excluding the points at the base. Equivalently, k1 and k2 represent the length of the
external lines, while k3 the length of the central line.

It is possible to show that such toric diagrams always admit a dimer with a fundamental
cell given in Fig. 7.10. This dimer has 2k1 squares obtained by cutting hexagons with
the NW-SE orientation and 2k2 with the NE-SW orientation. Then, there are k3− k2− k1

hexagons in the central part of the fundamental cell. The other column is on the other
hand made of k3 hexagons. We have to require k3 ≥ k2 + k1, which is saturated when
there are only squares in the central column. With this notation, the examples in the
previous section correspond to (1, 1, 2) for PdP3b and (0, 2, 2) for PdP3c.

Here is the key observation that allows us to construct multiplanarizable quivers. We
consider the flip in figure 7.11, where a hexagon cut by a diagonal with the NW-SE
orientation is transformed into a NE-SW oriented one, while relabeling the faces as in
Fig. 7.11. This flip does not give in general a new consistent brane tiling, and in many
cases the flipped dimer shows one of the inconsistencies discussed in [188]. However
this is not the case for the models labeled by (k1, k2, k3) considered here. Indeed in such
cases the flip does not modify the quiver even if it is associated in general to a consistent
but inequivalent model. In fact the latter has a different toric diagram. Labeling the
original toric diagram with the triple (k1, k2, k3), the new toric diagram after such a flip
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Figure 7.11 In this picture we represent the flip on the dimer that preserves the quiver.
We consider a pair of faces A and B obtained by cutting an hexagon with a NW-SE
diagonal and we flip it into a NE-SW one. By relabeling the faces one can see that the
quiver remains identical even if in general it is associated to a different toric diagram.

is given by the new triple (k1 + 1, k2 − 1, k3). In general we can iterate the flip described
above and conclude that two models (k1, k2, k3) and (k′1, k

′
2, k
′
3) have the same quiver

but different toric data if k′3 = k3 and k1 + k2 = k′1 + k′2 (observe that the choice k1 = k′2
is trivial in this sense).

7.3.2 Orientifold projections

In this sub-section we add the orientifolds to the previous brane setups and we focus on
the relation between the orientifolds and the conformal symmetry. Typically when O-
planes are considered it is not straightforward to preserve the conformal symmetry for
stacks of N D3- branes probing the singularity. On the field theory side suitable choices
of gauge ranks have to be considered.

As discussed in [12] there are three possible scenarios if one considers the fate of confor-
mal invariance after the projection. The first scenario corresponds to the case in which
there is a fixed point after the projection and there are O(1/N) corrections on the physi-
cal observables due to the presence of the orientifold. The second scenario corresponds
to the case in which the theory obtained after the projection does not have any confor-
mal fixed point. The third possible scenario corresponds to the case in which there is a
new fixed point in the unoriented model, but the corrections are not of order O(1/N)
anymore.

In the example of [12] it was shown that there is an interplay between the first and the
third scenario in the orientifold projections of the two inequivalent models. Here we
will extend this relation in the models parameterized by (k1, k2, k3). Namely we will
find a general assignment of gauge ranks such that some unoriented conformal theories
will belong to the first scenario and some other to the third scenario. We checked that
the central charges of these orientifold models match and that only the cases with k1 =
k2 belong to the first scenario. Furthermore we claim that by applying the orientifold
and assigning such ranks to pairs of inequivalent models sharing the same quiver we
obtain unoriented theories differing only by exactly marginal deformations as in the
case studied in [12] that we have reviewed above.

Concretely, by analyzing a large amount of models, we have indeed observed that the
conformal duality obtained in [12] can be generalized by requiring that the final mod-
els have two real gauge groups (and equivalently two two-index tensors for two of the
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unitary groups). This restricts the possibilities, implying that k1 + k2 = 2k with k inte-
ger, and k3 ≥ 2k. We have explicitly seen that relaxing this condition allows for models
which are not conformally dual, but it is not clear, at least for the moment, what is the
reason behind it, both from the field theory perspective and from the string theory side.
In this way one of the possible models is always (k, k, k3 ≥ 2k), that admits a fixed-line
projection. This fixes also the possible signs of the fixed-point projections in the other
models in the same family of conformally dual theories. In order to construct a family
of fixed-point conformally dual orientifolds we proceed as follows. First we identity the
model with (0, 2k, k3) as the seed of the family. This model and the (k, k, k3) model must
be chosen in a Seiberg dual phase that allows the fixed-point or fixed-line projections to
give rise to the same final quiver. Such a phase is not unique, there can also be other
phases that give rise to the same final quiver, and there can be also other (inequivalent)
choices. As we will discuss, those inequivalent choices are no longer related by chains
of Seiberg dualities after the orientifold projection. Once this is fixed we can increase k1

using the flip in figure 7.11 by two units preserving the sum k1 + k2. A generic model
in this case is (2p + 1, 2k − 2p − 1, k3). Depending on the parity of k the sequence of
flips terminates with (k, k, k3) or (k − 1, k + 1, k3). We will give evidence that all of the
models constructed by fixed-point orientifolds in this way are conformally dual to the
fixed-line11 orientifold of (k, k, k3) (i.e. that there is at least one Seiberg dual phase that
gives rise to such a conformally dual theory, once the gauge ranks are suitably chosen).
Observe that the minimal k = 1 corresponds to the case studied in [12], where indeed
there are only two possibilities (1, 1, k3 = 2) and (0, 2, k3 = 2). Furthermore, the case
k = 2 cannot give rise to any intermediate case either, since only (2, 2, k3 = 4) and
(0, 4, k3 = 4) are allowed, while (1, 3, k3 = 4) does not admit any toric dual phases that
can be projected consistently with the other two cases. Hence, the first non-trivial case
with more than two models has necessarily k = 3.

By inspection we have also observed that there is a unique assignation of ranks that gives
rise to the generalization of the conformal duality found in the original PdP3b/c case. This
choice is explained as follows. Consider the limiting case with k1 = k2 and its fixed-line
orientifold projection, so that there are only two charges whose signs are τ1 and τ2. On
the reduced fundamental cell delimited by the fixed lines, τ1 is the charge associated to
the line at the top, while τ2 at the bottom, as in Fig. 7.12. The vanishing of the beta
functions always requires that τ1 = −τ2 = τ , consistently with the prototypical case of
PdP models. Consider the case in which the gauge factors projected by the top line and
the bottom lines lie on the side of the dimer, and label them with 0 and 3k, respectively.
The hexagons on the sides of the reduced cell are labelled with 3`, ` = 0, . . . , k. As
a consequence, gauge factors from the central line in the reduced cell of the dimer are
labelled with 3` + 1 and 3` + 2 for a pair of squares, 3` + 1 (or 3` + 2 equivalently) for
hexagons. Having set up the notation for the labels, we assign rank N0 = n to the first
gauge factor12 and the choice of the ranks is summarized as

N3` = n− 4` τ1 , (7.35)

N3`+1 = N3`+2 = n− 2− 4` τ1 , (7.36)

11For odd k, the (k, k, k3) case admits also a fixed-point projection. We will see in the examples below that
this choice has to be considered as well because it can give rise to new types of conformally dual models.
Observe that there are also other choices of signs if (k, k, k3) has fixed points but we will not discuss such
possibility below.

12Or better, the zeroth one.
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with ` = 0, . . . , k, where the shifts are understood as in Fig. 7.12.

If the projected gauge factors lie on the central part of the dimer instead, we only need
to shift the labels by 3, with `→ `+ 1, and the rank assignement remains as in Eq. (7.35)
for the gauge factors on the side of the dimer, and Eq. (7.36) for the gauge factors on
the central part of the dimer. Colored fields in red and green represent tensors and
conjugated tensors, while diamond nodes are real gauge groups. Finally, the general
quiver is drawn as in Fig. 7.13 and wherever there are hexagons in the central line of the
dimer, their contribution to the quiver is drawn in an example in Fig. 7.14, where we
may think of it as part of the diagram has been folded.

Figure 7.12 On the LHS we summarize the general rank assignation on the dimer that we
have considered in the whole Chapter. We start by considering the same rank for each
node and then we shift the ranks by jτ where j = 0, 2, 4 following the coloring of the
arrows in the figure. On the RHS we consider the choices of the charges τ fo a generic
fixed line and fixed point projection.
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Figure 7.13 The generic quiver associated to a toric theory with (k1, k2, k3) and k3 =
k1 + k2 = 2k and ` = 0, . . . , k.
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Figure 7.14 The generic quiver associated to a toric theory with (k1, k2, k3) and k3 >
k1 + k2 = 2k and ` = 1, . . . , (k + 1).

7.4 Case study

In this section we apply the construction discussed above for obtaining conformally dual
models by suitable orientifold projections of multi-planarizable toric quiver gauge the-
ories. We will discuss explicitly two cases, both with k = 2, where all the properties
and possibilities discussed in Sec. 7.1 show up. A larger set of examples is included in
App. C. In the following analysis we will keep the same conventions for the quivers
and for the projections discussed in the previous sections. We checked, by following the
same analysis discussed for the toy models and the PdPs, that each model has a fixed
point that satisfies the unitarity bound. We will then show in each case that, by applying
chains of tensor matter deconfinements, dualities and rotations, all the conformally dual
models can be transformed into models with the same superpotential up to some signs
in the interactions, making the conformal duality completely explicit.

7.4.1 (2, 2, 5) vs. (0, 4, 5)

Let us start the analysis with the dimers and the toric diagrams depicted in Fig. 7.15.
There are three dimers associated to the (2, 2, 5) model and one dimer associated to the
(0, 4, 5) model. Even if the three dimers associated to (2, 2, 5) are Seiberg dual before
the orientifold, we will analyze the various possibilities because the conformal duality
model emerges in different ways.

While in the (0, 4, 5) case we have only a single fixed-point orientifold projection that
adapts to our goals, in the (2, 2, 5) case there are three orientifold projections that we can
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consider. Two of them are fixed-line projections while the last is one by fixed points.

Figure 7.15 The dimers representing the orientifold projection of toric diagrams (2, 2, 5),
on the left, and (0, 4, 5) on the right. For (2, 2, 5), there are both fixed lines and fixed
points projections.

The projections give rise to different superpotentials. For the first fixed-line projection of
the (2, 2, 5) model we have

W
Ω1

f.l.
(2,2,5) =

1

2
T33(X2

13 − Y 2
13) + Y13X35Y51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56X68X84X45 −X46X67X78X84

+X67X79X96 −X68X89X96 +
1

2
T̃77(X2

78X
2
89 −X2

79) , (7.37)



138 7.4 Case study

3

4

5

6

1

8

7

9

Figure 7.16 The quiver for the theories (2, 2, 5) and (0, 4, 5), after the orientifold projec-
tion.

while the second fixed-line projection of the (2, 2, 5) model we have

W
Ω2

f.l.
(2,2,5) =

1

2
T33(X2

13 − Y 2
13) + Y13X35Y51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56X67X78X84X45 −X46X68X84

+X68X89X96 −X67X79X96 +
1

2
T̃77(X2

79X
2
78 −X2

89) . (7.38)

On the other hand the fixed-point projection of the (2, 2, 5) model gives

W
Ωf.p.

(2,2,5) =
1

2
T33X13Y13 + Y13X34X45X51 −X13X35Y51

+X35X56X63 −X34X46X63 +X46X68X84 −X56X67X78X84X45

+X67X79X96 −X68X89X96 + T̃77X79X78X89 . (7.39)

Lastly, the fixed-point projection for the (0, 4, 5) model gives

W
Ωf.p.

(0,4,5) = T33X13Y13 + Y13X34X45X51 −X13X35Y51

+X35X56X63 −X34X46X63 +X46X67X78X84 −X56X68X84X45

+X68X89X96 −X67X79X96 + T̃77X78X89X79 . (7.40)

The ranks of the gauge groups consistent with the anomaly cancellations and the exis-
tence of a conformal fixed point are

N1 = n, N3 = n− 2τ, N4 = N5 = n− 4τ,

N6 = n− 6τ, N7 = N8 = n− 8τ, N8 = n− 10τ . (7.41)

Let us remind the reader that the two possible choices of sign τ = ±1 give rise to two
different quivers, that in this case are inequivalent and need to be studied separately.

The two different projections indeed yield either SO(N1) and USp(N9) or USp(N1) and
SO(N9). Furthermore the tensors T33 and T̃77 are either symmetric and conjugate anti-
symmetric or conjugate symmetric and anti-symmetric, respectively.
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We have checked that both choices of τ give consistent SCFT by a-maximizing with the
ranks in formula (7.41). Furthermore we have computed the various ’t Hooft anomalies
and have seen that they coincide between the models. The relation between these models
is then very similar to one between the projections of PdP3b and PdP3c.

In the following we will see that indeed, by applying the general analysis of Sec. 7.1, we
can distinguish (in some Seiberg dual phase) the models only by some superpotential
signs.

Let us begin by comparing the superpotential of the two fixed-line projections of the
model (2, 2, 5), Eqs. (7.37)-(7.38). They differ only in the last terms in the second line and
the first two terms in the last line. While the latter two can be reabsorbed by a change
of sign in X96, the former two can not, and we proceed as follow. Observe that before
the orientifold projection the two theories represent two different Seiberg dual phases
associated with the same toric geometry. After the projection they are conformally dual,
and one might think they are actually Seiberg dual. We shall see that this is not the
case. Performing Seiberg duality on the gauge node labeled by 5, the superpotentials
become13

W
Ω1

f.l.
(2,2,5) = (. . .) +M46X68X84 −X46X67X78X84 ,

W
Ω2

f.l.
(2,2,5) = (. . .) +M46X67X78X84 −X46X68X84 , (7.42)

where we have highlighted only the unequal terms and where M46 is one of the mesons
in the duality. If we consider the combinationsN (±)

46 = X46±M46 we can see that the two
superpotentials differ only in a sign, as discussed in Sec. 7.1. Hence, the theories after
the orientifold projection are conformally dual but not Seiberg dual (as one could expect,
since usually the orientifold does not “commute” with Seiberg duality.)14 However, in
larger dimer structures there may be chains of Seiberg dualities preserved by the orien-
tifold projection, as we show in App. C. Observe that one can equivalently deconfine
the tensor T̃77 and dualize node 7, obtaining the same result.

If we compare the orientifold projection with fixed points on the model (2, 2, 5) to the
fixed-line ones, we see from Eqs. (7.39)-(7.37) that we need to act upon the terms with
the tensors and the same pair of terms of the previous case, hence the discussion holds
in the same way. Furthermore, Eqs. (7.39)-(7.38) differ only in the terms where tensors
appear, and we are back to the case studied in Sec. 7.1.2.

These three theories obtained by projecting the (2, 2, 5) models can also be related to
the fixed-point projection of the (0, 4, 5) case corresponding to the superpotential (7.40).
The proof is straightforward because it uses the same dualities and field redefinitions
discussed already in the (2, 2, 5) case.

The models discussed in this subsection summarize the core of the mechanism of confor-
mal duality as it is introduced in Sec. 7.1, i.e. no field redefinition reabsorbs the relative

13Also, some fields become massive in both models and are integrated out, but their F -terms do not affect
the terms we are interested in.

14This happens when one performs Seiberg duality on a gauge factor “close” to the fixed locus. On the brane
tiling, Seiberg duality corresponds to moving NS5-branes across each other. This operation does not commute
with the orientifold projection when one needs to cross the orientifold plane. On the other hand, before and
after the projection the duality is preserved when the NS5-branes do not cross the orientifold plane and the
same operation is performed on the NS5’s on the other side, preserving the Z2 symmetry.
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sign between parts of a pair of superpotential and transform one into the other. It is the
flip move, introduced in Sec. 7.3 from one dimer to the other that generates the sign flips.
Some of them can be fixed by the redefinition of an horizontal edge (X96 in (7.37)-(7.38)),
but this is not enough to fix the whole superpotential. The reason is that the orientifold
theory inherits the structure of the interaction from the parent theory and the pattern of
the signs is strongly constrained by the toric condition.

7.4.2 (2, 2, 6) vs. (0, 4, 6)

We conclude this section with a second example. The two models before the projections
correspond to the toric diagrams identified by (k1, k2, k3) = (2, 2, 6) and (k1, k2, k3) =
(0, 4, 6). We refer to the projections considered here as “first case”, because there is a sec-
ond possibility discussed in the App. C. The models and the projections are summarized
in Fig. 7.17.

Figure 7.17 The dimers representing the orientifold projection of toric diagrams (2, 2, 6),
on the left, and (0, 4, 6) on the right. For (2, 2, 6), there are both fixed-line and fixed-point
projections.
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Figure 7.18 The quiver for the theories (2, 2, 6) and (0, 4, 6), after the orientifold projec-
tion.

The projections give rise to different superpotentials. For the first fixed-line projection of
the (2, 2, 6) model we have

W
Ω1

f.l.
(2,2,6) =

1

2
T22

(
X2

02 −X2
01X

2
12

)
+X01X13X30 −X02X23X30

+X23Y34X41X12 −X13X34X41 +X34X46X63 − Y34Y46X63

+ Y46X67X78X84 −X46X68X84 +X68X89X96 −X67X79X96

+
1

2
T̃77

(
X2

79 −X2
78X

2
89

)
, (7.43)

while the second fixed-line projection of the (2, 2, 6) model we have

W
Ω2

f.l.
(2,2,6) =

1

2
T22

(
X2

01X
2
12 −X2

02

)
+X02X23X30 −X01X13X30

+X13Y34X41 −X23X34X41X12 +X34X46X63 − Y34Y46X63

+ Y46X67X78X84 −X46X68X84 +X68X89X96 −X67X79X96

+
1

2
T̃77

(
X2

79 −X2
78X

2
89

)
. (7.44)

On the other hand the fixed-point projection of the (2, 2, 6) model gives

W
Ωf.p.

(2,2,6) = T22X02X01X12 +X01X13X30 −X02X23X30

+X23Y34X41X12 −X13X34X41 +X34X46X63 − Y34Y46X63

+ Y46X67X78X84 −X46X68X84 +X68X89X96 −X67X79X96

+ T̃77X79X78X89 . (7.45)
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Lastly, the fixed-point orientifold projection for the (0, 4, 6) model yields

WOP(0,4,6) = T22X01X12X02 +X01X13X30 −X02X23X30

+X23Y34X41X12 −X13X34X41 +X34X46X63 − Y34Y46X63

+ Y46X68X84 −X46X67X78X84 +X67X79X96 −X68X89X96

+ T̃77X79X78X89 . (7.46)

The ranks of the gauge groups consistent with the anomaly cancellations and the exis-
tence of a conformal fixed point are

N0 = n, N1 = N2 = n− 2τ, N3 = n− 4τ

N4 = n− 6τ, N6 = n− 8τ, N7 = N8 = n− 10τ, N9 = n− 12τ . (7.47)

Again the two possible choices of sign τ = ±1 give two different quivers, that in this case
are inequivalent and need to be studied separately. The two different projections indeed
give either SO(N0) and USp(N9) or USp(N0) and SO(N9). Furthermore the tensors T22

and T̃77 are either symmetric and conjugate anti-symmetric or conjugate symmetric and
anti-symmetric, respectively. We have checked that both choices of τ give a consistent
SCFT by maximizing the a central charge with the ranks in formula (7.47). Furthermore
we have computed the various ’t Hooft anomalies and we have seen that they coincide
among the models.

Similarly to the previous example we can study the conformal duality between these
four models by applying the discussion in Sec. 7.1. Again the first three cases are toric
dual before the projections and even if such a duality is broken by the projections the
models remain conformally dual.

Let us discuss the map between each pair of superpotentials explicitly. The superpo-
tentials of the two fixed-line projections, given in formulae (7.43) and (7.44), differ by a
sign15 by considering the combinationsN (±)

34 = X34±Y34. The superpotentials of the two
fixed-point projections, given in formula (7.45) and (7.46), differ by a sign by considering
the combinationsN (±)

46 = X46±Y46. The map among one of the superpotentials obtained
by a fixed-line projection and one obtained from a fixed-point projection requires also to
apply one Seiberg duality on node SU(N1) and one on node SU(N8).

The transformations of the two superpotentials obtained by a fixed-line projection after
this duality corresponds to

1

2
T22(X2

02 −X2
01X

2
12) → 1

2
T22(X2

02 −M2
02) ,

1

2
T̃55(X2

79 −X2
78X

2
89) → 1

2
T̃55(X2

79 −M2
79) , (7.48)

while those of the two superpotentials obtained by a fixed-point projection after this

15Also by a sign in the first line, but this can be reabsorbed redefining X30 and T22, similarly as in the
previous section.
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duality corresponds to

T22X01X12X02 → T22M02X02 ,

T̃77X79X78X89 → T̃77X79M79 . (7.49)

After applying these dualities we consider the combinations of fields X02 ± M02 and
X79 ±M79. We can see explicitly that combining these operations and the field redef-
initions X46 ± Y46 and X34 ± Y34 when necessary, each superpotential obtained by a
fixed-line projection differs only in sign choices from the superpotentials obtained by a
fixed-point projection.

This concludes the analysis for this case, showing indeed that the conformal duality can
be reformulated along the lines of the discussion in Sec. 7.1.

We have studied many other examples, and they all behave as the two examples studied
here. For completeness we briefly discuss these models in App. C.

7.5 Discussion and conclusions

In this Chapter we have generalized the result obtained in [12], where it was shown that
two quiver gauge theories describing stacks of D3-branes probing different toric CY3

singularities reside on the same conformal manifold once suitable orientifold projections
are considered. The two singularities studied in [12] are the PdP3b and PdP3c surfaces
and the orientifolds are implemented by a fixed-line and a fixed-point projection on the
dimer, respectively.

The key point allowing for a natural generalization of this conformal duality is that the
two models share the same quiver even before considering the orientifold. These quivers
have different superpotentials however, and this gives rise to different dimers and toric
diagrams. Nonetheless there exists a “flip” on the dimer (see Fig. 7.11) that can be used
to transform one toric diagram into the other, by reversing the orientation of one zig-
zag path in a consistent way. We have found infinite families of dimers associated to
different toric diagrams but sharing the same quiver by the application of this flip. It is
enough to require that the flip does not spoil the quiver structure and that the zig-zag
paths intersect consistently. We have referred to quivers with this property as multi-
planarizable, i.e. the same quiver admits different planar periodic quivers associated, in
general, to different CY singularities. We have then studied the orientifold projections in
terms of fixed-line and fixed-point identifications on the dimer. By analyzing a large set
of models we have found infinite classes of models that behave as the ancestral case of
PdP3b and PdP3c. These models are specified by the reflection symmetry property of the
toric diagram, in the phase projected by fixed lines.

We have further studied the conformal dualities among the models obtained after the
projection by iterative applications of ordinary Seiberg dualities. Our strategy consists
in considering two conformally dual phases and applying the same dualities on both.
This procedure preserves the fact that the two models have the same quivers and that
all the fields have the same global charges. We have found that a judicious application
of Seiberg dualities transforms the superpotential interactions of the two phases in a
remarkable way. There always exists a phase where two conformally dual models have
the same quiver and the same superpotential interaction. The only difference regards
the sign of the coupling: some of these may indeed have a different sign. This sign
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difference cannot be reabsorbed in a phase for the fields and thus represents a genuine
exactly marginal deformation connecting the two models.

We left open many questions and possible directions of future investigation. Here we
have found infinite families of quivers that admit different periodic planar descriptions.
It is natural to wonder if these families exhaust (up to Seiberg or toric dualities) the possi-
ble quivers with this peculiar property. If other such models exist then one should check
if there are orientifold projections giving rise to conformally dual models for suitable and
consistent choices of gauge ranks. One may also add flavor branes to the configuration
along the lines of [1], which will provide an even richer structure on the gauge theory
and more freedom for the choice of the gauge ranks, but at the same time one would lose
the description of the orientifold projection from the dimer construction.

One can also wonder whether there are quivers that coincide only after the orientifold
projection. If true, it should be possible to find other conformal dualities for these cases
as well.

In general it is worth mentioning that all the conformally dual models found in this
Part and in [12, 9, 10, 11] share a similar property when looking at their toric diagrams,
i.e. they have the same number of internal and external points. This signals that the
gauge theories have the same number of gauge groups and of non-anomalous global
symmetries. The role of the orientifold is to further break the global symmetry, and to
identify the ’t Hooft anomalies of the surviving ones. This idea can be used to generalize
the construction to more general cases. One may in principle find examples of confor-
mal dualities with different Lagrangians and quivers by studying orientifolds of models
with the same number of gauge groups and global symmetries. The final goal of this
program consists in finding a predictive stringy recipe for obtaining conformal dualities
in presence of orientifolds. One may think of such a top-down approach as complemen-
tary to the bottom-up one used in [24] to find conformal dualities. A key role in their
setup seems related to the presence of orientifolds, since most of the examples feature
real gauge groups and tensor matter fields.

One last natural question regards the holographic interpretation of the dualities found
here.16 In particular, it is necessary to understand the role played by exactly marginal
deformations in the gravity dual. As we stressed in the discussion the marginal defor-
mation connecting the models obtained here is related to the β-deformation of SYM, be-
cause it can always be reformulated as a sign flip of some superpotential terms. Observe
that, despite the similarities among models related by such a sign flip, there are non-
trivial differences. For example they differ in the spectrum of chiral primaries operators
[190, 191]. See also [192, 193] for an analysis of the chiral matter superfield propagator in
the β-deformed case. The holographic dual mechanism for the case of the β-deformed
N = 4 SYM was originally interpreted in [194] as a TsT transformation on the AdS side.
Here we are considering more complicated cases, because the sign change involves only
a subset of couplings and because we are in presence of orientifolds. A general discus-
sion on the gravitational origin of marginal deformations for toric quiver gauge theories
appeared in [187]. In absence of orientifolds, the intimate relations between the marginal
deformations and the zig-zag paths recently obtained in [195, 196] may provide a useful
guideline to address the problem from the gravity side. Generalizing such constructions
in presence of orientifolds represents a first step to investigate in this direction.

Finally it would be desirable to find the origin of the conformal dualities in terms of

16See also the recent reference [189] for related comments.
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string dualities, starting from two inequivalent CY3 singularities and considering orien-
tifolds of those which are known to give rise to conformally dual gauge theories.





Part III

Generalized Symmetries, S-folds
and N = 2 SCFTs





CHAPTER 8

N = 3 S-folds

In this Part of this thesis we consider superconformal theories (SCFTs) in 4d. In particular
we will be interested in SCFTs with N ≥ 2, that is conformal theories which preserve at
least 8 supercharges (plus the 8 conformal partners of the supercharges). We will study
the 1-form symmetry groups of these theories, which are global symmetries that act
trivially on local operators but act non-trivially on line operators. Furthermore we will
develop some consistency conditions for these CFTs based on the rank, the geometry
of the space of vacua and the electromagnetic charges of local operators. We analyze a
class of N = 3 SCFTs called S-fold SCFTs [197], that we briefly review in Section 8.1. In
general, theories with N = 3 supersymmetry have not been deeply investigated so far.
Such models have been predicted in [198], and then found in [197]. Many generalizations
have been then studied by using various approaches [199, 200, 201, 202, 203, 204, 205,
5], we will be interested in particular in the theories called exceptional S-fold SCFTs
introduced in [200].

Our interest in studying CFTs arises from their role as fixed points of the RG flow, making
CFTs a basic building block of our understanding of quantum field theories. Alongside
CFTs obtained as IR fixed points of Lagrangian theories a large and interesting class
of interacting CFTs can be obtained from string/M-theory, either through dimensional
compactification or geometric engineering. Many of these theories lack a conventional
Lagrangian description, therefore the study of their dynamics should involve an analysis
of their stringy construction, aided by field theoretical constraints, for example those
originating by symmetries.

When, on top of the conformal symmetry, a CFT also enjoys supersymmetry then field
theoretical results can strongly constrain a theory. As an example it is widely believed
that in 4d with 16+16 conserved supercharges all the CFTs are classified by N = 4 SYM
theories with arbitrary gauge group, possibly with the addition of topological terms in
the action. With a lower amount of supersymmetry such a complete classification is not
available, although some progress has been made in the last two decades for SCFTs with
N ≥ 2 SUSY [206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 204, 226, 227, 203, 228, 229]. An important ingredient that renders a
classification program feasible is the existence of a Coulomb branch (CB), an r-complex-
dimensional space of vacua, with r the rank of the SCFT, where on general points the low
energy dynamics is that of a N ≥ 2 U(1)r gauge theory where all the charged states are
massive. On non-general singular points of the CB some charged states become massless
and give rise to non-trivial dynamics in the IR.
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The the analysis of the interesting physics of N ≥ 2 SCFTs boils down to what happens
at singularities of the CB, as discussed for example in the seminal paper by Seiberg and
Witten [230]. The theory arising on a codimension-n singularity is a theory with rank n <
r, making it possible to studyN ≥ 2 SCFTs “by induction” on the rank: the properties of
a rank-r theory are related to the properties of the theories supported on its singularities,
which have rank less than r. This procedure has been referred as CB stratification [204]
and in the following we will borrow this terminology.

We will adapt the general ideas of the stratification to the charge lattice Γ of N ≥ 2 the-
ories which is the lattice of electromagnetic charges under U(1)r of the massive states in
a generic vacua of the CB, and the associated Dirac pairing J . In N = 2 theories there
is a close connection between the charge lattice Γ and the 1-form symmetry group G(1)

[29, 231, 14, 232], which allow us to study the generalized symmetries of these theories
directly from their charge lattices. Indeed the objects charged under 1-form symme-
tries, which are Wilson-’t Hooft lines [233] in a generic CB vacua, are constrained by the
spectrum of charged local states through the Dirac quantization condition. For example,
given a basis of the charge lattice, the Dirac pairing matrix J in this basis is related to the
order of G(1) as follows [231]: ∣∣∣G(1)

∣∣∣ =
∣∣Pf (J)

∣∣ (8.1)

It is possible to obtain more refined informations about the 1-form symmetries and the
spectrum of line operators from the charge lattice. The electromagnetic charges of line
operators can be obtained as a maximal set of charges that can be added to the charge
lattice Γ without breaking the Dirac quantization condition. Generally there are multiple
choices for this set of line operators which correspond to multiple global structures for
the same local dynamics. A rough outline of the procedure is as follows. Given a charge
lattice Γ then any line operator ` must have integer Dirac pairing with any charge in Γ:

〈`, γ〉 ∈ Z ∀γ ∈ Γ (8.2)

in order for the line operator to be well defined with respect to the Aharonov-Bohm
effect. For the same reason, any two line operators `i, `j must satisfy:

〈`i, `j〉 ∈ Z ∀i, j (8.3)

The analysis of the solutions of (8.2) and (8.3) is simplified by the fact that the non-trivial
information about the line spectrum is contained in the lines with charges inside the
fundamental domain in Γ, therefore we can study line operators up to the equivalence
relations:

` ∼ `+ γ ∀γ ∈ Γ (8.4)

In Chapter 9 we will determine the 1-form symmetries and global structures of a class of
N = 3 SCFTs called S-fold SCFTs by explicitly computing the charges of line operators,
the results are summarized in Table 9.1.

2-form symmetries, on the other hand, are related to discrete gauging [28]. In 4d gauging
a discrete 0-form symmetry generates a magnetic 2-form symmetry, whose topological
operators are the Wilson lines of the discrete gauge group. On top of that, if the 0-
form symmetry acts non-trivially on the CB, gauging it generates singularities on the
CB in correspondence of the fixed points under the action of the symmetry. There are no
massless states on these new singularities, therefore there are no BPS states whose central
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charge vanishes there. This means that 2-form symmetries can be used as indicators of
discrete gauging, and the same is true for CB singularities with no massless charged
state. In Chapter 10 we study this phenomena in S-fold SCFTs as well as in exceptional
S-fold SCFTs. We will recover the known results for S-fold SCFTs, obtained via M-theory
considerations in [199], and we will show that some exceptional S-fold SCFTs are discrete
gauging of free theories. Our results for exceptional S-fold SCFTs are summarized in
Table 10.1.

All in all, in N ≥ 2 SCFTs the structure of higher form symmetries can give information
about the local dynamics, namely on the charge lattice and BPS condition of charged
states, and viceversa. In this thesis we only study SCFTs with N = 3 supersymmetry,
but the techniques described can be applied to the case of N = 2 SCFTs as well.

8.1 S-fold SCFTs

Historically, S-folds represent the first examples of N = 3 SCFTs in four spacetime di-
mensions, discovered by Garcia-Etxebarria and Regalado in [197]. A key role in the
analysis of [197] is based on the existence, in the string theory setup, of non-perturbative
extended objects that generalizes the notion of orientifolds, the S-folds (see [234, 235]
for their original definition). From the field theory side, the projection implied by such
S-folds on N = 4 SYM has been associated to the combined action of an R-symmetry
and an S-duality twist on the model at a fixed value of the holomorphic gauge coupling,
where the global symmetry is enhanced by opportune discrete factors. Four possible Zk
have been identified, corresponding to k = 2, 3, 4 and 6. While the Z2 case corresponds
to the original case of the orientifolds [163, 164, 165, 166, 167, 168], where actually the
holomorphic gauge coupling does not require to be fixed, the other values of k corre-
spond to new projections that can break supersymmetry down to N = 3. The analysis
has been further refined in [199], where the discrete torsion, in analogy with the case
of orientifolds, has been added to this description. In this way, it has been possible to
achieve a classification of such N = 3 S-folds SCFT in terms of the Shephard–Todd
complex reflection groups.

S-fold SCFTs can be engineered in Type IIB string theory as the low energy theory on the
worldvolume of a stack of nD3-branes that probe a terminal singularity. This singularity
is obtained by a Zk quotient of Type IIB which involves both a spacetime orbifold and an
S-duality action, which becomes a symmetry for particular values of the axiodilaton. The
spacetime orbifold is R3,1 × (C3/Zk), where D3-branes are extended along R3,1, and the
S-duality action is given by an element ρk ∈ SL(2,Z) of the S-duality group of Type IIB.
One can think about this non-geometric spacetime as follows: looping around a cycle
in C3/Zk every object in string theory is acted upon by the S-duality transformation ρk.
This Type IIB non-geometric singularity can alternatively be described by a geometric
singularity in F-theory, where the F-theory torus has a ρk monodromy around the C3/Zk
singularity. The F-theory picture will not be relevant in this paper, and we refer the
reader to the original literature on this topic [197, 199].

The S-duality element ρk must generate a Zk subgroup of SL(2,Z), which is only pos-
sible for k = 1, 2, 3, 4, 6. Furthermore, the axiodilaton τ must be fixed by ρk in order for
the subgroup generated by ρk to be a symmetry of the theory. The S-duality elements ρk
with the corresponding values of τ are listed in Table 9.2. In the absence of the S-fold the
stack of D3 brane preserves sixteen supercharges in 4d: Qi, i = 1, 2, 3, 41. The S-duality

1Each Q is a four dimensional Dirac spinor with four components.
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transformation ρk acts on the supercharges as [236]:

ρk : Qi → e
πi
k Qi i = 1, 2, 3, 4 (8.5)

On the other hand the spacetime orbifold corresponds to an R-symmetry transformation
rk ∈ SU(4)R and can be chosen such that its action on the supercharges is:

rk :

Qi → e−
πi
k Qi i = 1, 2, 3

Q4 → e
3πi
k Q4

(8.6)

Under the combined action ρk · rk the supercharges Q1,2,3 are preserved while Q4 trans-
forms as:

ρk · rk : Q4 → e
2πi
k Q4 (8.7)

For k = 1, 2 this supercharge is preserved as well and the resulting 4d theory has N = 4
supersymmetry. The case k = 1 corresponds to no projection at all, and engineers su(N)
N = 4 SYM, while the case k = 2 corresponds to the orientifold plane O3 and engineers
N = 4 SYM with gauge algebra dn, bn or cn depending on the discrete torsion to be
discussed briefly. The cases of interest in this paper are k = 3, 4, 6 where generally only
twelve supercharges are preserved and the low energy theory on the stack of D3-branes
is an N = 3 SCFT.

It was shown in [199] that generally one has the possibility to introduce a discrete torsion
in the S-fold background, that is a non-trivial flux for the Type IIB 2-form fields B2 and
C2 around a non-contractible 2-cycle of the holographic background AdS5 × (S5/Zk).
The 2-form fields transform in the two dimensional representation of the S-duality group
SL(2,Z), therefore their flux on this 2-cycle is classified by the second twisted cohomolgy
groups H2(AdS5 × (S5/Zk); (Z ⊕ Z)ρk) = H2(S5/Zk; (Z ⊕ Z)ρk). These groups were
computed in [199], see also [237] for a review. One finds:

H2

(
S5/Zk; (Z⊕ Z)ρk

)
=


Z2 × Z2,

Z3,

Z2,

1,

k = 2

k = 3

k = 4

k = 6

(8.8)

where 1 is the trivial group. Therefore there are four choices of discrete torsion for the

orientifold (k = 2) corresponding to the O3−, O3+, Õ3− and Õ3+ orientifold planes
respectively. For k = 3 there are three choices, one with trivial discrete torsion and
two with non-trivial discrete torsion. The two choices with non-zero discrete torsion are
related by charge conjugation so there are only two physically different choices: trivial or
non-trivial discrete torsion. Finally for k = 4 one can have trivial or non-trivial discrete
torsion and for k = 6 the only choice is to have trivial discrete torsion.

In summary the S-fold setup of [197], briefly reviewed above, gives rise to an infinite
family of N = 3 SCFTs parametrized by the number r of D3-branes, the order of the
quotient k and, when allowed, the choice of discrete torsion. There are five variants
of N = 3 S-folds which we denote as Sk,` following the notation of [199]. Here ` =
1 corresponds to the absence of discrete torsion and ` = k corresponds to non-trivial
discrete torsion. The five variants are therefore S3,1, S4,1, S6,1, S3,3 and S4,4.
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8.2 Exceptional S-folds

In [197] the authors presented an alternative M-theory construction of regular S-fold
theories dual to the Type IIB setup described above. This allowed them to generalize the
S-fold construction of [197] to a wider class of theories parametrize by an ADE algebra
and the order of the S-fold projection k = 3, 4, 6. In this classification the regular S-folds
are associated to the An algebras. Let us briefly review the results of [197] in preparation
for Chapter 10, where we will analyze various properties of the S-folds associated to the
Er algebras.

The S-fold projection involves an element of the S-duality group as well as an element of
the R-symmetry SO(6) of N = 4 SU(N) SYM , which is a rotation transverse to the D3
branes in the Type IIB setup. By compactifying two directions T 2

E transverse to the D3-
brane stack we generally break the R-symmetry to SO(4) × Z2, although for particular
values of the complex structure of the torus the R-symmetry enhances to SO(4)×Z4 for
τE = i or SO(4)×Z6 for τE = e2πi/3. These subgroups of the original SO(6) R-symmetry
are enough to perform the S-fold projection.

Now we may T-dualize along one compact transverse direction, giving a Type IIA setup,
and then uplift to M-theory. By carefully tracking the action of the various symmetries
along these manipulations, it was shown that the regular S-fold setup is dual to M-theory
on R1,3 × (S1

M × S1
T × S1

E × C2)/Zk, with a stack of N M5-branes along R1,3 × S1
M × S1

T .
The radii of the various circles are related by:

RM = R RT = Im(τ)R RE =
1

Im(τ)R2
(8.9)

And the Zk quotient act as a rotation on C2 and on the torus S1
M × S1

T , as well as a non-
geometric quotient on S1

M × S1
T × S1

E fixing the ρ parameter of this torus to be order
1:

ρ =

∫
T 3

C + i
√

detG (8.10)

We now have an S-fold construction that involves a stack of N M5-branes. Famously,
on flat spacetime, this stack engineers the (2, 0) 6d theory of type AN once the center
of mass motion is decoupled. It is natural to ask wether it is possible to generalize this
setup to the other (2, 0) 6d theories, namely the type D and type E theories. In [197]
it was shown that such a construction is possible and involves a non-geometric setup,
meaning that there is no duality frame where the system is described by string theory in
a geometric background. By contrast, the regular S-fold setup is dual to F-theory on a
geometric terminal singularity.

In this thesis we will study exceptional S-fold theories as a particular projection of the
corresponding N = 4 SYM theories obtained by compactifying the (2, 0) theory on a
torus. Indeed both the R-symmetry and the S-duality involved in the S-fold quotient are
present in the 4d theory, allowing us to understand some properties of the S-fold theories
directly in 4d. There are some subtleties in this approach given by the fact that quanti-
ties of interest, for example the moduli space and the charge lattice, are only defined up
to Weyl transformations of the gauge algebra, as explained in [5].This approach is ex-
panded upon in Chapter 8, while we refer the reader to the original literature [197, 238]
for the M-theory construction of exceptional S-fold theories.





CHAPTER 9

A recipe for genuine lines: 1-form symmetries in S-fold
SCFTs

The goal of this Chapter consists in classifying one-form symmetries for regular S-fold
SCFTs, constructing the lattices of line operators and identifying which models possess
non-invertible symmetries. The main motivation behind this expectation is that for the
rank-2 S-folds, in absence of discrete torsion, the SCFTs enhance to N = 4 SYM [199]
where these properties are present. The existence of non-trivial one-form symmetries in
some exceptional N = 3 theories has also been argued in [217].

Our strategy adapts the one presented in [29] to S-fold setups. There, the spectrum of
lines is built from the knowledge of the electromagnetic charges of massive states in a
generic point of the Coulomb branch. These charges are read from the BPS quiver, under
the assumption that the BPS spectrum is a good representative of the whole spectrum
of electromagnetic charges. In the case of S-folds however such a BPS quiver descrip-
tion has not been worked out and we extract the electromagnetic charges of dynamical
particles from the knowledge of the (p, q)-strings configurations in the Type IIB setup
[239, 240]. The main assumption behind the analysis is that such charges are a good
representative of the electromagnetic spectrum.

We proceed as follows. First we choose an N = 3 theory constructed via an S-fold
projection of Type IIB. This consists in having N D3-branes, together with their images,
on the background of an S-fold. At a generic point of the Coulomb branch, the corre-
sponding low energy gauge dynamics corresponds to a U(1)N gauge theory where each
U(1) is associated to a D3. Then we list all (p, q)-strings that can be stretched between
D3-branes and their images. They have electric and magnetic charges with respect to
U(1)N . Eventually we run the procedure of [29]. This consist in finding all the lines that
are genuine, i.e. have integer Dirac pairing with the local particles, modulo screening
by the dynamical particles. This gives the lattice of possible charges, then the different
global structures correspond to maximal sub–lattices of mutually local lines.

Our results are summarized in Table 9.1. In the first column, one finds the type of S-fold
projection that has been considered. Such projections are identified by the two integers k
and ` in Sk,`. The integer k corresponds to the Zk projection while the second integer ` is
associated to the discrete torsion. Then, when considering an Sk,` S-fold on a stack of N
D3-branes the complex reflection group associated to such a projection is G(k, k/`,N).
In the second column, we provide the one-form symmetry that we found in our analy-
sis, and in the third, the number of inequivalent line lattices that we have obtained. The
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S-fold One-form
symmetry

# of inequivalent
lattices

Non-invertible
symmetry

S3,1 Z3 2 Yes
S3,3 1 1 No
S4,1 Z2 2 Yes
S4,4 1 1 No
S6,1 1 1 No

Table 9.1 Summary of the results of Chapter 9. 1 represents a trivial group.

last column specifies whether there exist cases that admit non-invertible symmetries. In-
deed, here we find that in some of the cases there exists a zero-form symmetry mapping
some of the different line lattices, that are therefore equivalent. Furthermore in such
cases we expect the existence of non-invertible symmetries obtained by combining the
zero-form symmetry with a suitable gauging of the one-form symmetry.

A remarkable observation strengthening our results regards the fact that our analysis
reproduces the limiting G(k, k, 2) cases, where supersymmetry enhances to N = 4 with
su(3), so(5) and g2 gauge groups for k = 3, 4 and 6 respectively. Another check of our re-
sult is that it matches with the casesG(3, 1, 1) andG(3, 3, 3), where anN = 1 Lagrangian
picture has been worked out in [241]. The 1-form symmetries of S-fold SCFTs where also
computed in [237] from the Type IIB setup. Whenever our results can be compared with
those of [237] we find a perfect agreement, providing a reliable and independent check
for our results.

9.1 Generalities

9.1.1 Global structures from the IR

The strategy adopted here, as already discussed in the introduction, is inspired by the
one of [29]. The main difference is that instead of using BPS quivers, not yet available
for our S-folds, we take advantage of the type IIB geometric setups and probe the charge
spectrum with (p, q)-strings – the bound state of p fundamental strings F1 and q Dirichlet
strings D1.1

Despite this difference, the rest of the procedure is the one of [29] which we now sum-
marize. Denote as

γi = (e
(i)
1 ,m

(i)
1 ; . . . ; e(i)

r ,m(i)
r ) (9.1)

a basis vector of the electromagnetic lattice of dynamical state charges under the U(1)re×
U(1)rm gauge symmetry on the Coulomb branch. The spectrum of lines can be deter-
mined by considering a general line Lwith charge

` = (e
(l)
1 ,m

(l)
1 ; . . . ; e(l)

r ,m
(l)
r ) . (9.2)

This is a genuine line operator if the Dirac pairings with all dynamical states Ψ are inte-

1In order to provide the IR spectrum of line operators of the SCFTs from this UV perspective, we assume the
absence of wall-crossing. While such an assumption is a priori motivated by the high degree of supersymmetry,
a posteriori it is justified by the consistency of our results with the literature.
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ger:
〈Ψ,L〉 ∈ Z ∀Ψ . (9.3)

This can be rephrased as the condition

r∑
j=1

e
(i)
j m

(l)
j −m

(i)
j e

(l)
j ∈ Z ∀ i . (9.4)

Furthermore, inserting a local operator with charge γi on the worldline of a line with
charge ` shifts its charge by γi. Therefore if a line with charge ` appears in the spectrum
then a line with charges ` +

∑
kiγi with ki ∈ Z must also appear. When classifying

the spectrum of charges of the line operators of a QFT it is then useful to consider the
charges ` modulo these insertions of local states. This gives rise to equivalence classes of
charges with respect to the relation:

` ∼ `+ γi ∀ i . (9.5)

Borrowing the nomenclature of [29], we will refer to such identification as screening and
we will work with each equivalence class by picking one representative. The genuine
lines after screening form a lattice. In general two such lines are not mutually local and
a choice of global structure corresponds to a choice of a maximal sublattice of mutually
local lines.

9.1.2 Charged states in Sk,l-folds

We aim to determine the electromagnetic charges of the local states generated by (p, q)-
strings stretched between (images of) D3-branes in presence of an S-fold. The S-fold
background of Type IIB string theory consist of a spacetime R4 × (R6/Zk) where the
Zk quotient involves an S-duality twist by an element ρk ∈ SL(2,Z) of order k, where
k = 2, 3, 4, 6. For k > 2 the value of the axio-dilaton vev is fixed by the requirement that
it must be invariant under the modular transformation associated to ρk. The matrices ρk
and the corresponding values2 of τ are given in Table 9.2.

SL(2,Z) S2 = −I2 (ST )−1 S (S3T )−1

k 2 3 4 6

ρk

(
−1 0
0 −1

) (
0 1
−1 −1

) (
0 −1
1 0

) (
0 −1
1 1

)

ρ−1
k

(
−1 0
0 −1

) (
−1 −1
1 0

) (
0 1
−1 0

) (
1 1
−1 0

)
τ any τ e2iπ/3 i e2iπ/3

Table 9.2 Elements ρk of SL(2,Z) of order k used in S-fold projections, and the corre-
sponding fixed coupling τ .

A stack ofN D3-branes probing the singular point of the S-fold background engineer an
2In our convention, an SL(2,Z) transformation of the axio-dilaton τ → (aτ+b)/(cτ+d) relates to a matrix

ρk =

(
d c
b a

)
. We also have S =

(
0 −1
1 0

)
and T =

(
1 0
1 1

)
.
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N = 3 field theory on the worldvolume of the stack of D3-branes. It is useful to consider
the k-fold cover of spacetime, and visualize theN D3-branes together with their (k−1)N
images under the Sk-fold projection. We are going to label them-th image of the i-th D3-
brane with the index im, where i = 1, . . . , N and m = 1, . . . , k.

Under the S-fold projection, the two-form gauge fields of the closed string sector B2 and
C2 transform in the fundamental representation:(

B2

C2

)
→ ρk

(
B2

C2

)
. (9.6)

Consistently, the (p, q) strings charged under these potentials are mapped to (p′, q′) where:

(p′ q′) = (p q) · ρ−1
k . (9.7)

We denote a state associated to a (p, q) connecting the im-th D3-brane and the jn D3-
brane as:

|p, q〉im,jn = | − p,−q〉jn,im , (9.8)

where we identity states with both opposite charges and orientation.

First, strings linking branes in the same copy of R6/Z2 transform as follows:

|p, q〉im,jm → ζ−1
k |p

′, q′〉im+1,jm+1
, (9.9)

where (p′, q′) are related to (p, q) by (9.7) and ζk is the primitive k-th root of unity. These
states always collectively give rise to a single state in the quotient theory, with charges:

D3iD3j : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ;

j-th︷ ︸︸ ︷
−p,−q; . . . ; 0, 0) . (9.10)

An important ingredient we need to add to our picture is the discrete torsion for B2 and
C2 [242, 199]. In presence of such a discrete torsion, a string going from the im-th brane
to the jm+1-th brane should pick up an extra phase which depends only on its (p, q)-
charge and the couple (θNS, θRR). More precisely, one expects that the S-fold action can
be written as follows [243]:3

|p, q〉imjm+1
→ ζ−1

k e2πi(pθNS+qθRR) |p′, q′〉im+1jm+2
, (9.11)

where again (p′, q′) are related to (p, q) by (9.7). For i 6= j, this always leads to the
following state in the projected theory [244, 245]:4

D3iD3ρj : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ;

j-th︷ ︸︸ ︷
−(p q) · ρk; . . . ; 0, 0) . (9.12)

Note that this is the only case that might not lead to any state in the quotient theory when
i = j, i.e. when a string links a brane and its image. When the quotient state exists, it has

3We thank Shani Meynet for pointing out [243] to us.
4The action on (p, q) involves ρ−1

k , see (9.7). In writing (9.12) however, we measure the charge with respect
to the brane in the chosen fundamental domain, hence the appearance of ρk instead of its inverse.
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charges

D3iD3ρi : (0, 0; . . . ;

i-th︷ ︸︸ ︷
(p q)− (p q) · ρk; . . . ; 0, 0) . (9.13)

Analogously, strings twisting around the S-fold locus n-times pick up n-times the phase
in (9.11).

A last remark is that discrete torsion allows some strings to attach to the S-fold if the
latter has the appropriate NS and/or RR charge. If this is the case, the state is mapped
as in (9.9):

|p, q〉Skim → |p
′, q′〉Skim+1

, (9.14)

and provides the following charge in the projected theory:

SkD3i : (0, 0; . . . ;

i-th︷︸︸︷
p, q ; . . . ; 0, 0) . (9.15)

These rules are illustrated and details on discrete torsion are provided in the remaining
of this section for orientifolds and S-folds separately.

The case with k = 2: orientifolds

In this subsection we apply the formalism described above for orientifolds and repro-
duce the spectrum of strings known in the literature.

The matrix ρ2 is diagonal, therefore the two p and q factors can be considered inde-
pendently. In this case the field theory obtained after the projection is Lagrangian and
can be studied in perturbative string theory with unoriented strings. Discrete torsion
takes value in (θNS, θRR) ∈ Z2⊕Z2, giving four different choices of O3-planes related by
SL(2,Z) actions [242], see Table 9.3.

O3-planes O3− O3+ Õ3
−

Õ3
+

(θNS, θRR) (0, 0) (1/2, 0) (0, 1/2) (1/2, 1/2)

Table 9.3 Different discrete torsions on O3-planes.

The orientifold action is then recovered from (9.9) and (9.11) with ζ2 = −1. First, we
have

|p, q〉i1j1 → −| − p,−q〉i2j2 = −|p, q〉j2i2 . (9.16)

For the strings that stretch from one fundamental domain of R6/Z2 to the next, there are
four cases depending on the values of θNS and θRR:

O3− : |p, q〉i1j2 → −|p, q〉j1i2 ,
O3+ : |p, q〉i1j2 → −epπi|p, q〉j1i2 ,
Õ3
−

: |p, q〉i1j2 → −eqπi|p, q〉j1i2 ,
Õ3

+
: |p, q〉i1j2 → −e(p+q)πi|p, q〉j1i2 .

(9.17)
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The cases with k > 2: S-folds

The construction discussed above can be applied to Sk>2 in order to obtain the string
states in the quotient theory. For k > 2, the discrete torsion groups have been computed
in [199], the result being θNS = θRR ∈ Z3 for the S3-case and θNS = θRR ∈ Z2 for the
S4-case. The S6-fold does not admit non-trivial discrete torsion. It was also pointed out
that, for the S3-case, the choices θNS = θRR = 1/3 and θNS = θRR = 2/3 are related by
charge conjugation; therefore everything boils down to whether the discrete torsion is
trivial or not. Following the notation of [199], we denote as Sk,1 the S-folds with trivial
discrete torsion and as Sk,k the S-folds with non-trivial discrete torsion.

As before, the only states that might not lead to any state in the quotient theory are the
strings linking different covers of R6/Zk. These transform as follows:

S3,1 : |p, q〉i1jm+1
→ e−i2π/3|q − p,−p〉i2jm+2

,
S3,3 : |p, q〉i1jm+1 → e−i2π/3eim(p+q)2π/3|q − p,−p〉i2jm+2 ,
S4,1 : |p, q〉i1jm+1

→ e−iπ/2| − q, p〉i2jm+2
,

S4,4 : |p, q〉i1jm+1
→ e−iπ/2eim(p+q)π| − q, p〉i2jm+2

,
S6,1 : |p, q〉i1jm+1 → e−iπ/3|p− q, p〉i2jm+2 .

(9.18)

This shows that no state is projected out for S3,1 and S3,3. Analogously to the orientifold
cases, we project out some strings linking mirror branes: |p, q〉inin+2

in S4,1 and S4,4, and
|p, q〉inin+3 in S6,1 respectively.

Finally, we get extra strings linking the S-fold to D-branes for the cases with discrete
torsion. Following the discussion in [245], we know that these S-folds admit all kinds of
p and q numbers:

S3,3 : |p, q〉S3,3in , S4,4 : |p, q〉S4,4in . (9.19)

9.1.3 Dirac pairing from (p, q)-strings

Having determined the states associated to (p, q)-strings that survive the S-fold projec-
tion we now analyze the electromagnetic charges of these states. It is useful to consider
the system of a stack of D3-branes and an Sk,`-fold on a generic point of the Coulomb
branch. This corresponds to moving away the D3-branes from the S-plane. On a generic
point of the Coulomb branch, the low energy theory on the D3-branes is a U(1)Ni gauge
symmetry, where eachU(1)i factor is associated to the i-th D3-brane. The theory includes
massive charged states generated by the (p, q)-strings studied in the previous section. A
(p, q)-string stretched between the i-th and j-th D3-brane has electric charge p and mag-
netic charge q under U(1)i as well as electric charge −p and magnetic charge −q under
U(1)j , and is neutral with respect to other branes. We organize the charges under the
various U(1)s in a vector:

(e1,m1; e2,m2; . . . ; eN ,mN ) (9.20)

where ei and mi are the electric and magnetic charge under U(1)i, respectively. In this
notation the charge of a string stretched between the i-th and j-th D3-brane in the same
cover of R6/Z2 has charge:

D3iD3j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−p,−q; . . . ) , (9.21)
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where the dots stand for null entries. We will keep using this notation in the rest of the
Chapter. A (p, q)-string stretched between the i-th D3-brane and the l-th image of the
j-th D3-brane imparts electromagnetic charges (p, q) under U(1)i and charges −(p, q)ρlk
under U(1)j . In formulas:

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρlk; . . . ) . (9.22)

The last ingredient for our analysis is given by the Dirac pairing between two states.
Consider a state Ψ with charges ei,mi under U(1)i and a state Ψ′ with charges e′i,m

′
i

under U(1)i. The pairing between F1 and D1-strings in Type IIB dictates that the Dirac
pairing between these states is given by:

〈Ψ,Ψ′〉 =

N∑
i=1

(eim
′
i −mie

′
i) . (9.23)

By using this construction we can reproduce the usual Dirac pairing of N = 4 SYM
with ABCD gauge algebras. As an example we now reproduce the Dirac pairing of DN ,
engineered as a stack of N D3-branes probing an O3−-plane. In this case the allowed
(p, q)-strings have the following charges:

D3iD3j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷ ︸︸ ︷
−p,−q; . . . )

D3iD3ρj : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; 0, 0; . . . ;

j−th︷︸︸︷
p, q ; . . . )

(9.24)

The states associated to (1, 0)-strings correspond to theW bosons while the states asso-
ciated to (0, 1)-strings correspond to magnetic monopoles M. For each root Wi of DN

letMi be the corresponding coroot. More precisely ifWi is associated to a (1, 0)-string
connecting two D3-branes, then the corootMi corresponds to the string (0, 1) stretched
between the same pair of D3-branes. The only non-vanishing Dirac pairing is the one
between a Wi boson and an Mj monopole. This pairing between the simple (co)roots
Wi andMj is given by the intersection betweenWi andWj , explicitly:

〈Wi,Mj〉 = (ADN )i,j , (9.25)

where ADN is the Cartan matrix of the DN algebra, corresponding to an so(2N) gauge
theory. Indeed the intersection between F1 strings in the background of an O3− repro-
duces the intersection of the roots of DN . The Dirac pairing (9.25) reproduces the Dirac

pairing of so(2N) N = 4 SYM. Similar constructions for O3+, Õ3
−

, and Õ3
+

lead to the
B and C cases (while branes in absence of orientifold would give A). The corresponding
gauge algebras are summarized in Table 9.4.

9.1.4 Lines in O3-planes

Before moving to new results, we illustrate our method with well understood O3-planes.
Specifically, we consider placing N = 2 D3-branes in the background of an O3+-plane.

In this specific example, the F1-strings corresponding to elementary dynamical states in
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O3-planes F1-string D1-string F1-D1 bound state

O3− so(2N) so(2N) so(2N)
O3+ usp(2N) so(2N + 1) usp(2N)

Õ3
−

so(2N + 1) usp(2N) usp(2N)

Õ3
+

usp(2N) usp(2N) so(2N + 1)

Table 9.4 F1-string, D1-string, and the F1-D1 bound state providing respectively the elec-
tric, magnetic, and dyonic charges of the projected N = 4 gauge theory.

(1,0)

(1,0)

D31D3ρ1D3ρ2

D32

O3+

Figure 9.1 A pictorial representation of two D3-branes probing the O3+ orientifold on
a generic point of the Coulomb branch. The light blue shaded area is a possible choice
of fundamental domain under the spacetime identification induced by the orientifold.
Black (gray) dots represent (images of) D3-branes. Black lines correspond to (p, q)-strings
stretched between D3-branes. In particular, we drew (p, q)-strings generating the W-
bosons corresponding to simple roots N = 4 usp(4) SYM.

the quotient theory can be chosen to be |1, 0〉1211
and |1, 0〉1121

. The first links the i = 1
brane to its mirror (D3ρ1D31) and the second links the i = 1 to the i = 2 brane (D31D32).
A pictorial representation of this setup is shown in Figure 9.1. In the notation of the
previous section, they lead toWi-bosons in the gauge theory with the following charge
basis:

D3ρ1D31 : w1 = (2, 0; 0, 0) , D31D32 : w2 = (−1, 0; 1, 0) . (9.26)

These generate the algebra usp(4) of electric charges. The elementary magnetic monopoles
Mi come from the D1-strings |0, 1〉O3+11

and |0, 1〉1121
, and provide the following charges:

O3+D31 : m1 = (0, 1; 0, 0) , D31D32 : m2 = (0,−1; 0, 1) . (9.27)

This generates the algebra so(5) of magnetic charges. Finally, the elementary (1, 1)-
strings leading to states in the quotient theory can be chosen to be |1, 1〉1211

and |1, 1〉1121
,
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i.e. D3ρ1D31 and D31D32 respectively. They provide dyons Di:

D3ρ1D31 : d1 = (2, 2; 0, 0) , D31D32 : d2 = (−1,−1; 1, 1) , (9.28)

which reproduces an usp(4) algebra. We will limit ourselves to considering the W-
bosons and magnetic monopoles M. Indeed, they generate the full lattice of electro-
magnetic charges admissible in the orientifold theory. See that

d1 = w1 + 2m1 d2 = w2 +m2 . (9.29)

Clearly, all other allowed (p, q)-charges can be reconstructed in this way. The Dirac pair-
ing between these elementary electromagnetic charges reads

〈W1,W2〉 = 〈M1,M2〉 = 0 ,

〈M1,W2〉 = 1 ,

〈W1,M1〉 = 〈M2,W1〉 = 〈W2,M2〉 = 2 .

(9.30)

Now, introduce a line operator L with charge vector `. It is convenient to express it in
the basis of dynamical charges:

` = α1w1 + α2w2 + β1m1 + β2m2 , (9.31)

where αi and βi to be determined. Screening with respect toW1 andW2 imposes

α1 ∼ α1 + 1 , α2 ∼ α2 + 1 , (9.32)

respectively, while screening with respect toM1 andM2 imposes

β1 ∼ β1 + 1 , β2 ∼ β2 + 1 . (9.33)

Mutual locality with respect to the dynamical charges requires the quantities

〈L,W1〉 = −2β1 + 2β2 , 〈L,W2〉 = β1 − 2β2 ,
〈L,M1〉 = 2α1 − α2 , 〈L,M2〉 = −2α1 + 2α2 ,

(9.34)

to be integers. All these constraints set

α1 =
e

2
α2 = 0 , β1 = 0 , β2 =

m

2
mod 1 , (9.35)

with e,m = 0, 1. Linearity of the Dirac pairing then guarantees mutual locality with re-
spect to the full dynamical spectrum. Thus, the charge of the most general line (modulo
screening) must read:

`e,m =
1

2
(2e,−m; 0,m) . (9.36)

A choice of global structure consists in finding a set of mutually local lines. The mutual
locality condition between two lines L and L′ with charges `e,m and `e′,m′ is given by:

〈L,L′〉 =
1

2
(−em′ + e′m) ∈ Z . (9.37)
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Equivalently:
em′ −me′ = 0 mod 2 . (9.38)

We find three such sets, each composed of a single line with non-trivial charge: `1,0,
`0,1, or `1,1. In agreement with [20], we find that the line with charge `1,0 transforms as a
vector of usp(4) and the theory isUSp(4). The line with charge `0,1 transforms as a spinor
of so(5) and corresponds to the global structure (USp(4)/Z2)0. The line with charge
`1,1 transforms both as a vector and a spinor, and the gauge group is (USp(4)/Z2)1.
Motivated by the match between our results (obtained through the procedure described
above) and the global structures of Lagrangian theories [20], in the next sections we use
our method to analyze the line spectra of S-fold theories.

9.2 Lines in S-folds with N = 4 enhancement

We now derive the spectrum of mutually local lines for the gauge theories obtained
with N = 2 D3-branes in the background of an Sk,1 plane, in each case k = 3, 4 and
6. More precisely, exploiting the strategy spelled out in Section 9.1, we first compute
the electromagnetic charge lattice of local states generated by (p, q)-strings. From this
we extract the possible spectra of lines and compare them with the ones obtained in an
N = 4 Lagrangian formalism [20], since these theories have been claimed to enhance
to N = 4 SYM [49]. Matching the spectra provides an explicit dictionary between the
various lattices and corroborates the validity of our procedure. In section 9.3 we will then
generalize the analysis to the pure N = 3 Sk,` projections for any rank, thus providing
the full classification for the one-form symmetries in all such cases.

9.2.1 Lines in su(3) from S3,1

Dynamical states and their charges

Two D3-branes probing the singular point of the S3,1-fold are claimed to engineer su(3)
N = 4 SYM. The charges of states generated by (p, q)-strings stretching between D31

and D32 or its first copy (see Figure 9.2) are

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q; q, q−p) , D31D3ρ
2

2 : (p, q; p−q, p) . (9.39)

One may also consider copies of the strings listed in Equation 9.39 such as:

D3ρ1D3ρ2 : (−q, p− q; q, q − p) , (9.40)

as well as the strings going from one D3-brane to its own copies, for instance5

D31D3ρ1 : (2p− q, p+ q; 0, 0) . (9.41)

The charges of a generic string D31D3ρ
2

2 in (9.39) can be expressed in terms of D31D32

5In the absence of discrete torsion, these states have not been considered previously in the literature [246,
245], and we do here for the sake of consistency with the analysis of section 9.1. Note however that since
their charge (which is the only feature that matters in order to derive line spectra) can be expressed as linear
combinations of the charges of more conventional states, our results are independent of whether we consider
them or not.
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±(1,0)
±(0,1)

±(1,1)

D31

D3ρ
1

D3ρ2
1

D3ρ2
2

D3ρ
2

D32

Figure 9.2 A pictorial representation of two D3-branes probing the S3,1-fold. The trans-
verse directions to the S-fold are shown. The light blue dot represents the position of the
S3,1-fold. The light blue shaded area is a possible choice of fundamental domain under
the spacetime identification induced by the S3,1-fold. Black (gray) dots represent (im-
ages of) D3-branes. Black lines correspond to (p, q)-strings stretched between D3-branes.
In particular, we drew (p, q)-strings corresponding toW-bosons of N = 4 su(3) SYM.

and D31D3ρ2 charges:

D31D3ρ
2

2 : (p, q; p− q, p) = q(1, 0;−1, 0) + (q − p)(0, 1; 0,−1)
+(p− q)(1, 0; 0,−1) + p(0, 1; 1, 1) ,

(9.42)

where the first two vectors on the RHS come from D31D32 with p = 1, q = 0 and p = 0,
q = 1 respectively, and the last two come fromD31D3ρ2 with p = 1, q = 0 and p = 0, q = 1

respectively. Acting with ρ3, one can express allD3ρ1D3ρ2 andD3ρ
2

1 D3ρ
2

2 charges in terms
of D31D32 charges. The charges D3iD3ρi can also be expressed as linear combinations of
D31D3ρ2 and D3ρ2D3ρ1 charges. All in all, we find that the charges of the strings D31D32

and D31D3ρ2 form a basis of the lattice of dynamical charges.

The states corresponding to theW-bosons generate the su(3) algebra. One can take the
strings D31D32 with p = 1 and q = 0 and D31D3ρ2 with p = 0 and q = 1 as representing
a choice of positive simple roots. Their electromagnetic charge w reads:

w1 = (1, 0;−1, 0) , w2 = (0, 1; 1, 1) . (9.43)

Furthermore, one can choose the strings D31D32 with p = 0 and q = 1 and D31D3ρ2 with
p = −1 and q = −1 as generating the charge lattice of magnetic monopolesM of N = 4
SYM with gauge algebra su(3):

m1 = (0, 1; 0,−1) , m2 = (−1,−1;−1, 0) . (9.44)

The qualification of electric chargesW and magnetic monopolesM of the N = 4 theory
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makes sense since the Dirac pairing reads:

〈W1,W2〉 = 〈M1,M2〉 = 0 ,
〈W1,M1〉 = 〈W2,M2〉 = 2 ,
〈W1,M2〉 = 〈W2,M1〉 = −1 .

(9.45)

In [246, 245], it has been shown that these states correspond indeed to BPS states, and
this is a strong check of the claim of the supersymmetry enhancement in this case.

Line lattices

Having identified the electromagnetic lattice of charges of (p, q)-strings we can now con-
struct the spectrum of line operators and the corresponding one-form symmetries. It is
useful to consider the charge ` = (e1,m1; e2,m2) of a general line L to be parameterized
as follows:

` = α1w1 + α2w2 + β1m1 + β2m2

= (α1 − β2, α2 + β1 − β2;−α1 + α2 − β2, α2 − β1) .
(9.46)

Screening with respect to wi and mi translates as the identifications:

αi ∼ αi + 1 , βi ∼ βi + 1 . (9.47)

The Dirac pairing between the generic line L with charge ` given in (9.46) and the states
W andMmust be an integer, i.e.:

〈L,W1〉 = 2β1 − β2 , 〈L,W2〉 = −β1 + 2β2 ,
〈L,M1〉 = −2α1 + α2 , 〈L,M2〉 = α1 − 2α2

∈ Z . (9.48)

Mutual locality with respect to the other states then follows by linearity as soon as (9.48)
holds. Combining (9.47) and (9.48) we have

α1 = −α2 =
e

3
, and β1 = −β2 =

m

3
, (9.49)

for e,m = 0, 1, 2. Then, the charge of the most general line compatible with the spectrum
of local operators modulo screening reads

`e,m =
1

3
(2e−m, e+m; −e−m, e− 2m) . (9.50)

These charges form a finite 3 × 3 square lattice. The Dirac pairing between two lines L
and L′ with charges `e,m and `e′,m′ is

〈L,L′〉 =
2

3
(em′ − e′m) . (9.51)

Two lines L and L′ are mutually local if their Dirac pairing is properly quantized. In our
conventions this corresponds to the requirement that 〈L,L′〉 is an integer:

e′m− em′ = 0 mod 3 . (9.52)

The lattice of lines together with the mutual locality condition obtained in (9.52) fully
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specifies the global structure of the S3,1 SCFT of rank-2.

Our result is equivalent to the one obtained in [20] from the Lagrangian description of
su(3) N = 4 SYM theory. Let us first write the charges in (9.50) as:

`e,m = e
w1 − w2

3
+m

m1 −m2

3
. (9.53)

Note that (w1−w2)/3 (respectively, (m1−m2)/3) is a weight of the electric (respectively,
magnetic) algebra su(3) with charge 1 under the center Z3 of the simply-connected group
SU(3). Therefore, the line `e,m corresponds to a Wilson-’t Hooft line of charge (e,m)
under Z3 × Z3.

As shown in [20], there are four possible lattices of mutually local Wilson-’t Hooft lines
specified by two integers i = 0, 1, 2 and p = 1, 3. The corresponding gauge theories are
denoted (SU(3)/Zp)i and relate to the line spectra we have obtained as follows:

SU(3) ↔ {`0,0, `1,0, `2,0} ,
(SU(3)/Z3)0 ↔ {`0,0, `0,1, `0,2} ,
(SU(3)/Z3)1 ↔ {`0,0, `1,1, `2,2} ,
(SU(3)/Z3)2 ↔ {`0,0, `2,1, `1,2} .

(9.54)

It follows from linearity and screening that each lattice in the S-fold picture is deter-
mined by a single non-trivial representative, that can itself be identified by two integers
(e,m). For example, a possible choice is

(e,m) = (1, 0), (0, 1), (1, 1), (2, 1) . (9.55)

9.2.2 Lines in so(5) from S4,1

Dynamical states and their charges

Two D3-branes probing the singular point of the S4,1-fold are claimed to engineer so(5)
N = 4 SYM. Following a reasoning similar to one of the S3,1-fold case, we can write all
string charges as linear combinations of two kinds of strings, say

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q;−q, p) . (9.56)

States corresponding to the W-bosons of N = 4 SYM are generated by D31D32 with
p = 1 and q = 0, and D31D3ρ2 with p = −1 and q = −1. Their charges are

w1 = (1, 0;−1, 0) , w2 = (−1,−1; 1,−1) . (9.57)

These states generate the algebra so(5) with short and long positive simple roots w1

and w2, respectively. A possible choice of states corresponding to elementary magnetic
monopolesM is D31D32 with p = −1 and q = 1, and D31D3ρ2 with p = 1 and q = 0. The
charges of these strings are:

m1 = (−1, 1; 1,−1) , m2 = (1, 0; 0, 1) , (9.58)
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with m1 the long and m2 the short positive simple roots of the Langland dual algebra
usp(4). The Dirac pairings betweenW andM are as expected:

〈W1,W2〉 = 〈M1,M2〉 = 0 ,
〈W1,M1〉 = 〈W2,M2〉 = 〈M1,W2〉 = 2 ,
〈M2,W1〉 = 1 .

(9.59)

Line lattices

We begin by parametrizing the charge ` of a general line L as:

` = α1w1 + α2w2 + β1m1 + β2m2

= (α1 − α2 − β1 + β2, β1 − α2; −α1 + α2 + β1, −α2 − β1 + β2) .
(9.60)

Screening with respect to the local statesW andM translates as:

αi ∼ αi + 1 , βi ∼ βi + 1 . (9.61)

Mutual locality with respect to the dynamical states generated by (p, q)-strings reads:

〈L,W1〉 = 2β1 − β2

〈L,W2〉 = −2β1 + 2β2

〈L,M1〉 = −2α1 + 2α2

〈L,M2〉 = α1 − 2α2

∈ Z . (9.62)

This imposes α1 = β2 = 0 and α2, β1 ∈ 1
2Z, and therefore the charge of the most general

line compatible with the spectrum of local states can be written as:

`e,m =
e

2
w2 +

m

2
m1 =

1

2
(−e−m,−e+m; e+m,−e−m) . (9.63)

The Dirac pairing between two lines L and L′ with charges `e,m and `e′,m′ is:

〈L,L′〉 =
1

2
(e′m− em′) . (9.64)

Two such lines are mutually local if their Dirac pairing if 〈L,L′〉 is an integer, i.e.:

(e′m− em′) = 0 mod 2 . (9.65)

Therefore, the allowed lines form a finite 2×2 square lattice parametrized by e,m = 0, 1,
where the mutual locality condition is given by (9.65). This reproduces the expected
global structures ofN = 4 so(5) SYM. There are three possible choices of maximal lattices
of mutually local lines which correspond to the three possible global structures of so(5).
The explicit mapping can be obtained by comparing the electromagnetic charges of the
lines with the charges of theW bosons and monopolesM, along the lines of the analysis
of above in the su(3) case. We obtain the following global structures:

Spin(5) ↔ {`0,0, `1,0} ,
SO(5)0 ↔ {`0,0, `0,1} ,
SO(5)1 ↔ {`0,0, `1,1} .

(9.66)
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9.2.3 Trivial line in g2 from S6,1

Dynamical states and their charges

Two D3-branes probing the singular point of the S6,1-fold are claimed to engineer g2

N = 4 SYM. The charges of states generated by (p, q)-strings are:

D31D32 : (p, q;−p,−q) , D31D3ρ2 : (p, q;−q, p− q) ,
D31D3ρ

2

2 : (p, q; p− q, p) , D31D3ρ
3

2 : (p, q; p, q) ,

D31D3ρ
4

2 : (p, q; q,−p+ q) , D31D3ρ
5

2 : (p, q;−p+ q,−p) ,
etc.

(9.67)

As shown in [199] and as before, one can choose a set of strings representing dynamical
particles and generating the algebra g2.

Line lattice

The analysis of the charge spectrum in the case of the S6,1-fold can be carried out along
the lines of the previous sections. One can show that the only line that is mutually local
with respect to the local states generated by (p, q)-strings modulo screening is the trivial
line with charges ` = (0, 0; 0, 0). This is consistent with the enhancement to N = 4 with
gauge algebra g2 because the center of the simply-connected G2 is trivial, which implies
the absence of non-trivial lines [20]. There is only one possible global structure, and the
one-form symmetry is trivial.

9.3 Lines in N = 3 S-folds

In this section, we generalize the procedure spelled out in the previous sections to S-
folds theories of arbitrary rank, and later to the cases with non-trivial discrete torsion
for the B2 and C2 fields. This allows us to classify the line spectrum for every N = 3
S-fold theory, and identify the one-form symmetry group as well as the allowed global
structures for a given theory.

The basic ingredients needed in the analysis are the lattice of electromagnetic charges of
local states and the Dirac pairing, both of which can be inferred from the Type IIB setup
along the lines of the rank-2 cases studied in Section 9.2. As already emphasized, we
work under the assumption that the states generated by (p, q)-string form a good set of
representatives of the electromagnetic charge lattice of the full spectrum.

Note that it does not strictly make sense to talk about (p, q)-strings on the R4 × R6/Zk S-
fold background because the S-fold projection involves an SL(2,Z) action which mixes
F1 and D1 strings. This is analogous to the fact that in the orientifold cases it only makes
sense to consider unoriented strings, since the orientifold action reverses the worldsheet
parity (equivalently, it involves the element −I2 ∈ SL(2,Z)). Nevertheless it makes
sense to consider oriented strings (together with their images) on the double cover of
the spacetime; this allows the computation of the electromagnetic charge lattice of local
states and the Dirac pairing, as reviewed in Section 9.1. Similarly when dealing with Sk-
folds we consider (p, q)-strings on the k-cover of the spacetime, and extract from this the
charges of local states and the Dirac pairing. The spectrum of lines can then be obtained
using the procedure of [29] reviewed in Section 9.1.
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9.3.1 Lines in S3,1-fold

Let us first determine the lattice of electromagnetic charges of dynamical states. The
charges generated by (p, q)-strings on the background of an S3,1 fold are given by

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρl3; . . . ; 0, 0) . (9.68)

This expression is obtained from a (p, q)-string stretched between the i-th D3-brane and
the l-th image of the j-th D3-brane. Recall that ρ3 generates a Z3 subgroup of SL(2,Z).
A possible basis for the lattice of charges generated by (p, q)-strings is given by:

w1 = (1, 0;−1, 0; . . . ) ,
w2 = (0, 1; 1, 1; . . . ) ,
m1 = (0, 1; 0,−1; . . . ) ,
m2 = (−1,−1;−1, 0; . . . ) ,

Pi = (1, 0; 0, 0; . . . ;

i−th︷ ︸︸ ︷
−1, 0; 0, 0; . . . ) ,

Qi = (0, 1; 0, 0; . . . ;

i−th︷ ︸︸ ︷
0,−1; 0, 0; . . . ) ,

(9.69)

where wi and mi are the charges of the corresponding states in the rank-2 case, with all
other entries set to 0. Let Pi and Qi be the states with charges Pi and Qi respectively,
for i = 3, . . . , N . Note that when the rank is N > 2, it does not make sense to talk
about W-bosons and magnetic monopolesM since the pure N = 3 theories are inher-
ently strongly coupled and do not admit a Lagrangian description. Nevertheless, we
will denoteWi andMi the states with charges wi and mi respectively, by analogy with
the above.

The charge ` of a general line L can be written as the linear combination:

` = α1w1 + α2w2 + β1m1 + β2m2 +

N∑
i=3

(δiPi + γiQi) . (9.70)

Besides, screening translates into the identifications:

αi ∼ αi + 1 , βi ∼ βi + 1 , δi ∼ δi + 1 , γi ∼ γi + 1 . (9.71)

Let us now analyze the constraints imposed on this line given by mutual locality with
respect to the dynamical states generated by (p, q)-strings. Our results are summarized
in Table 9.5.

Consider the mutual locality conditions:

〈L,Pi − Pj〉 = δi − δj ∈ Z ⇒ δi = δj = δ i, j = 3, . . . , N , (9.72)

and

〈L,Qi −Qj〉 = γj − γi ∈ Z ⇒ γj = γi = γ i, j = 3, . . . , N . (9.73)
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Rank Line charge

3n `r,s =
r

3
w1 +

s

3
w2 −

r

3
m1 −

s

3
m2 +

r + s

3
(P −Q)

3n+ 1 `r,s =
r

3
w1 +

r − s
3

w2 +
s

3
m1 +

r

3
m2 +

r + s

3
(P −Q)

3n+ 2 `r,s =
r

3
w1 −

r

3
w2 +

s

3
m1 −

s

3
m2 −

r + s

3
(P −Q)

Table 9.5 The charges of allowed lines in the S3,1-fold theories. The chargeswi,mi, P and
Q are given in (9.69), and r, s = 0, 1, 2. The mutual locality condition for two lines with
charges `r,s and `r′,s′ is rs′ − sr′ = 0 mod 3.

Furthermore, there are dynamical states with charges:

(0, 0; . . . ;

i−th︷ ︸︸ ︷
1,−1; . . . ) =(p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )∣∣ p = 0

q = 1

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
p− q, p; . . . )∣∣ p = 0

q = −1

,

(0, 0; . . . ;

i−th︷︸︸︷
2, 1 ; . . . ) =(p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )∣∣ p = −1

q = 0

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
p− q, p; . . . )∣∣ p = 1

q = 0

.

(9.74)

Mutual locality with respect to these implies:

γ = −δ , δ ∈ 1

3
Z . (9.75)

Therefore, the charge of a general line can be rewritten as:

` = α1w1 + α2w2 + β1m1 + β2m2 + δ(P −Q) , (9.76)

where

P =

N∑
i=3

pi = (N − 2, 0; 0, 0;−1, 0;−1, 0; . . . ;−1, 0) ,

Q =

N∑
i=3

qi = (0, N − 2; 0, 0; 0,−1; 0,−1; . . . ; 0,−1) .

(9.77)

In (9.77), we have modified our notation slightly since the dots . . . now represent a se-
quence of pairs (−1, 0) and (0,−1) for P andQ respectively. Mutual locality between the
line L and the generators of the charge lattice of dynamical states imposes the following
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constraints:
〈L,Pi〉 = (N − 1)δ − α2 − β1 + β2 ,
〈L,Qi〉 = (N − 1)δ + α1 − β2 ,
〈L,W1〉 = (N − 2)δ − 2β1 + β2 ,
〈L,W2〉 = (N − 2)δ − 2β2 + β1 ,
〈L,M1〉 = (N − 2)δ + 2α1 − α2 ,
〈L,M2〉 = −2(N − 2)δ − α1 + 2α2

∈ Z . (9.78)

One can compute the following:

〈L,W1 + 2W2〉 = 3(N − 2)δ − 3β2 ∈ Z ⇒ β2 ∈ 1
3Z ,

〈L,M1 + 2M2〉 = −3α1 ∈ Z ⇒ α1 ∈ 1
3Z ,

〈L,W1 −W2〉 = 3(β2 − β1) ∈ Z ⇒ β1 ∈ 1
3Z ,

〈L,M1 −M2〉 = 3(N − 2)δ + 3(α1 − α2) ∈ Z ⇒ α2 ∈ 1
3Z .

(9.79)

In brief, we have found that αi, βi, δ ∈ 1
3Z. It is now useful to treat separately three

cases, depending on the value of N mod 3. In all these cases we find that the lines
modulo screening can be arranged in a finite 3× 3 lattice, the one-form symmetry group
is Z3 and there are four choices of global structure.

Case N = 3n

The mutual locality conditions in (9.78) can be written as:

〈L,Pi〉 = −δ − α2 − β1 + β2 ,
〈L,Qi〉 = −δ + α1 − β2 ,
〈L,W1〉 = δ − 2β1 + β2 ,
〈L,W2〉 = δ − 2β2 + β1 ,
〈L,M1〉 = δ + 2α1 − α2 ,
〈L,M2〉 = δ − α1 + 2α2

∈ Z . (9.80)

One computes that:

〈L,Qi +W1〉 = α1 + β1 ⇒ β1 = −α1 ,
〈L,Pi +W2〉 = −α2 − β2 ⇒ β2 = −α2 ,
〈L,Qi〉 = −δ + α1 + α2 ⇒ δ = α1 + α2 ,

(9.81)

and this implies:

α1 = −β1 =
r

3
, α2 = −β2 =

s

3
, δ =

r + s

3
, r, s = 0, 1, 2 . (9.82)

Therefore the lines form a finite 3 × 3 lattice parametrized by r and s. Mutual locality
between two general lines L and L′ with charges `r,s and `r′,s′ reads:

〈L,L′〉 =
2

3
(sr′ − rs′) ∈ Z , (9.83)

or equivalently:
sr′ − rs′ = 0 mod 3 . (9.84)

There are four possible choices of maximal lattices of mutually local lines. As in the rank-
2 case discussed in section 9.2, each lattice is uniquely identified by one of its element,
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or equivalently by the pair (r, s) of one of its non-trivial elements:

(r, s) =


(1, 0)↔ {`0,0, `1,0, `2,0}
(0, 1)↔ {`0,0, `0,1, `0,2}
(1, 1)↔ {`0,0, `1,1, `2,2}
(1, 2)↔ {`0,0, `1,2, `2,1}

. (9.85)

Case N = 3n+ 1

In this case the mutual locality constraints (9.78) are:

〈L,Pi〉 = −α2 − β1 + β2

〈L,Qi〉 = α1 − β2

〈L,W1〉 = −δ − 2β1 + β2

〈L,W2〉 = −δ − 2β2 + β1

〈L,M1〉 = −δ + 2α1 − α2

〈L,M2〉 = 2δ − α1 + 2α2

∈ Z . (9.86)

One computes that:
α2 = α1 − β1 ,
δ = α1 + β1 ,
α1 = β2 .

(9.87)

Therefore the most general αi, βi and δ satisfy:

α1 = β2 =
r

3
, β1 =

s

3
, α2 =

r − s
3

, δ =
r + s

3
, r, s = 0, 1, 2 . (9.88)

The lines again form a finite 3 × 3 lattice parametrized by r and s. Mutual locality be-
tween two general lines L and L′ with charges `r,s and `r′,s′ reads:

〈L,L′〉 =
1

3
(sr′ − rs′) ∈ Z , (9.89)

or equivalently:
sr′ − rs′ = 0 mod 3 . (9.90)

Similarly to the case N = 3n there are four possible choices of maximal lattices of
mutually local lines that can be indexed by one of their element, or equivalently by
(r, s) = (1, 0), (0, 1), (1, 1), (1, 2).

Case N = 3n+ 2

In this case, the mutual locality constraints (9.78) are

〈L,Pi〉 = δ − α2 − β1 + β2

〈L,Qi〉 = δ + α1 − β2

〈L,W1〉 = −2β1 + β2 = β1 + β2

〈L,W2〉 = −2β2 + β1

〈L,M1〉 = 2α1 − α2 = −α1 − α2

〈L,M2〉 = −α1 + 2α2

∈ Z . (9.91)
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One can compute that the solution is given by

β2 = −β1 ,
α2 = −α1 ,
δ = −α1 − β1 .

(9.92)

Therefore the most general αi, βi and δ satisfy:

α1 = −α2 =
r

3
, β1 = −β2 =

s

3
, δ = −r + s

3
, r, s = 0, 1, 2 . (9.93)

Dirac pairing between two general lines L and L′ with charges `r,s and `r′,s′ reads:

〈L,L′〉 =
2

3
(sr′ − rs′) ∈ Z . (9.94)

Two such lines are mutually local if they satisfy the constraint:

sr′ − rs′ = 0 mod 3 . (9.95)

As before, there are four possible choices of maximal lattices of mutually local lines that
can be indexed by one of their element, or equivalently by

(r, s) = (1, 0), (0, 1), (1, 1), (1, 2) . (9.96)

9.3.2 Lines in S4,1-fold

We now study the spectrum of lines in theories engineered by a stack of D3-branes prob-
ing the S4,1-fold. The charges of states generated by a (p, q)-string on the background of
an S4,1-fold read

D3iD3ρ
l

j : (0, 0; . . . ;

i−th︷︸︸︷
p, q ; . . . ;

j−th︷ ︸︸ ︷
−(p q) · ρl4; . . . ; 0, 0) (9.97)

for a (p, q)-strings stretched between the i-th D3-brane and the l-th image of the j-th
D3-brane. One possible basis for the lattice of charges generated by (p, q)-strings is:

w1 = (1, 0;−1, 0; 0, 0; . . . ) ,
w2 = (−1,−1; 1,−1; 0, 0; . . . ) ,
m1 = (−1, 1; 1,−1; 0, 0; . . . ) ,
m2 = (1, 0; 0, 1; 0, 0; . . . ) ,

Pi = (1, 0; 0, 0; . . . ;

i−th︷ ︸︸ ︷
−1, 0; 0, 0; . . . ) ,

Qi = (0, 1; 0, 0; . . . ;

i−th︷ ︸︸ ︷
0,−1; 0, 0; . . . ) ,

(9.98)

where wi and mi are the charges of the corresponding states in the rank-2 case, with all
other entries set to 0. We denoteWi,Mi,Pi andQi the states with charges wi, mi, Pi and
Qi, respectively.
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The charge ` of a general line L can be written as the linear combination:

` = α1w1 + α2w2 + β1m1 + β2m2 +

N∑
i=3

(δiPi + γiQi) . (9.99)

Screening translates into the identifications:

αi ∼ αi + 1, βi ∼ βi + 1, δi ∼ δi + 1, γi ∼ γi + 1 . (9.100)

In the remainder of this section we compute the constraints imposed by mutual locality
between the general line L and dynamical states. Our results are summarized in Table
9.6.

Rank Line charge

2n `r,s =
r

2
w2 +

s

2
m1 +

r + s

2
(P −Q)

2n+ 1 `r,s =
r

2
w1 +

s

2
w2 +

s

2
m1 +

r

2
m2 +

r

2
(P −Q)

Table 9.6 The charges of allowed lines in the S4,1-fold theories. The chargeswi,mi, P and
Q are given in (9.98), (9.77), and r, s = 0, 1. The mutual locality condition for two lines
with charges `r,s and `r′,s′ is rs′ − sr′ = 0 mod 2.

Consider first the mutual locality conditions:

〈L,Pi − Pj〉 = δi − δj ∈ Z ⇒ δi = δj = δ , (9.101)

〈L,Qi −Qj〉 = γj − γi ∈ Z ⇒ γj = γi = γ . (9.102)

Furthermore, there are dynamical states with charges:

(0, 0; . . . ;

i−th︷ ︸︸ ︷
1,−1; . . . ) = (p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )∣∣ p = 0

q = 1

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
−q, p; . . . )∣∣ p = 0

q = −1

,

(0, 0; . . . ;

i−th︷︸︸︷
1, 1 ; . . . ) = (p, q; . . . ;

i−th︷ ︸︸ ︷
−p,−q; . . . )∣∣ p = −1

q = 0

+ (p, q; . . . ;

i−th︷ ︸︸ ︷
−q, p; . . . )∣∣ p = 1

q = 0

.

(9.103)
and mutual locality with respect to these states implies:

γ = −δ, δ ∈ 1

2
Z . (9.104)

Therefore, the charge of a general line can be rewritten as:

` = α1w1 + α2w2 + β1m1 + β2m2 + δ(P −Q) , (9.105)

where P and Q are defined in (9.77). Mutual locality between the line L and the genera-
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tors of the charge lattice of dynamical states implies:

〈L,Pi〉 = (N − 1)δ + α2 − β1 ,
〈L,Qi〉 = (N − 1)δ + α1 − α2 − β1 + β2 ,
〈L,W1〉 = (N − 2)δ − 2β1 + β2 ,
〈L,W2〉 = 2(N − 2)δ − 2β2 + 2β1 ,
〈L,M1〉 = 2α1 − 2α2

〈L,M2〉 = (N − 2)δ − α1 + 2α2

∈ Z . (9.106)

One computes the following:

〈L,W1 +W2 −M1 −M2〉 = −β2 − α1 ∈ Z ⇒ β2 = −α1 ,
〈L,Qi + Pi〉 = −2β1 ∈ Z ⇒ β1 ∈ 1

2Z ,
〈L,Qi − Pi〉 = −2α2 ∈ Z ⇒ α2 ∈ 1

2Z ,
〈L,M1〉 = 2α1 ∈ Z ⇒ α1, β2 ∈ 1

2Z .

(9.107)

We have thus shown that αi, βi, δ ∈ 1
2Z and α1 = −β2. It is now useful to treat separately

the cases of odd and even N . In both cases we find that the lines form a 2× 2 lattice, the
one-form symmetry is Z2 and there are three choices of global structure.

Case N = 2n

Mutual locality conditions (9.106) read:

〈L,Pi〉 = −δ − β1 + α2

〈L,Qi〉 = −δ − α2 − β1

〈L,W1〉 = β2

〈L,W2〉 = 0
〈L,M1〉 = 0
〈L,M2〉 = −α1

∈ Z , (9.108)

and each solution can be written as:

α2 =
r

2
, β1 =

s

2
, α1 = β2 = 0 , δ =

r + s

2
, r, s = 0, 1 . (9.109)

Therefore the lines form a 2×2 lattice parametrized by r, s. Mutual locality between two
lines L and L′ with charges `r,s and `r′,s′ respectively translates into:

〈L,L′〉 =
1

2
(r′s− rs′) ∈ Z , (9.110)

or equivalently:
r′s− rs′ = 0 mod 2 . (9.111)

The one-form symmetry group is thus Z2 and there are three different choices of maximal
lattices of mutually local lines parametrized by (r, s) = (1, 0), (0, 1), (1, 1).
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Case N = 2n+ 1

The Dirac pairings (9.106) read:

〈L,Pi〉 = α2 − β1 ,
〈L,Qi〉 = −α2 − β1 ,
〈L,W1〉 = δ + β2 ,
〈L,W2〉 = 0 ,
〈L,M1〉 = 0 ,
〈L,M2〉 = δ − α1

∈ Z , (9.112)

and the general solution can be written as:

α1 = β2 = δ =
r

2
, α2 = β1 =

s

2
, r, s = 0, 1 . (9.113)

Mutual locality between two lines L and L′ with charges `r,s and `r′,s′ respectively trans-
lates into:

〈L,L′〉 =
1

2
(r′s− rs′) ∈ Z , (9.114)

or equivalently:
r′s− rs′ = 0 mod 2 . (9.115)

As in the previous case, the one-form symmetry group is therefore Z2 and there are three
different choices of maximal lattices of mutually local lines that can be parametrized by:

(r, s) = (1, 0), (0, 1), (1, 1) . (9.116)

9.3.3 Trivial line in S6,1-fold

The analysis of the spectrum of lines in the case of the S6,1-fold can be carried out along
the lines of the previous subsections. One finds that the integer lattice of charges asso-
ciated to (p, q)-strings is fully occupied. To see this notice that there are two states with
the following charges:

(1, 0; 0, 0; 0, 0; . . . ) = (p, q; p− q, p; 0, 0; . . . )∣∣ p = 0
q = −1

− (p, q;−q, p, 0, 0; . . . )∣∣ p = 1
q = 0

,

(0, 1; 0, 0; 0, 0; . . . ) = (1, 0; 0, 0; 0, 0; . . . )− (p, q;−p− q; 0, 0; . . . )∣∣ p = 0
q = 1

−(p, q;−q, p; 0, 0; . . . )∣∣ p = 0
q = −1

.

(9.117)
By combining these states with Pi and Qi we can obtain states with electric or magnetic
charge 1 with respect to the i-th brane, and all other charges set to zero. Let us now
consider a general line L with charge ` = (e1,m1; e2,m2, . . . ). Mutual locality with
respect to the local states we have just discussed implies:

ei,mi ∈ Z ∀i , (9.118)

and the insertion of the same local states along the lines translates to the identification:

ei ∼ ei + 1, mi ∼ mi + 1 . (9.119)
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Therefore, the only allowed line modulo screening is the trivial line, with charge ` =
(0, 0; 0, 0; . . . ). This implies that the one form symmetry group is trivial, and accordingly
there is only one possible choice of global form.

9.3.4 Trivial line in the discrete torsion cases

We generalize the analysis discussed in the previous sections to the cases with non-trivial
discrete torsion in the S3,3-fold and S4,4-fold.

As we argued in Section 9.1 all the strings states that are present when the discrete tor-
sion is trivial are also allowed when the discrete torsion is non-zero. Furthermore, there
are strings ending on the S-fold itself, as discussed in Section 9.1. Thus, the lattice of
charges of local states in the case of the S3,3-fold and S4,4-fold are generated by strings
stretched between (images of) D3-branes – as in the cases with trivial discrete torsion
– together with those additional strings. One can show that the integer lattice of elec-
tromagnetic charges of dynamical states is then fully occupied. Therefore, by a similar
argument to the one used in the case of the S6,1-fold in Section 9.3.3, the only line that
is allowed is the trivial one, and the one-form symmetry group is 1 for the S3,3-fold and
S4,4-fold with non-zero discrete torsion.

9.4 Non-invertible symmetries

We now discuss the possible presence of non-invertible symmetries in S-fold theories.
In the case of N = 4 theories, the presence of S-duality orbits can imply the existence of
non-invertible duality defects which are built by combining the action of some element
of SL(2,Z) and the gauging of a discrete one-form symmetry [247, 248, 249, 250, 251,
252, 253, 254, 255, 256, 257, 258].

Similar structures can be inferred from the S-fold construction. Consider moving one of
the D3-brane along the non-contractible one-cycle of S5/Zk until it reaches its original
position. The brane configurations before and after this are identical, and therefore the
S-fold theories are invariant under this action. Going around the non-contractible one-
cycle of S5/Zk in the case an Sk,l-fold involves an SL(2,Z)-transformation on the electric
and magnetic charges ei, mi associated to the D3-brane that has been moved. Let Σik
denote the process of moving the i-th D3-brane along the non-contractible cycle of an
Sk,l-fold. The action of Σik on the charges is:

Σik :

(
ej
mj

)
→


ρk ·

(
ej
mj

)
j = i(

ej
mj

)
j 6= i

. (9.120)

The charge lattice of dynamical states is invariant under Σik, while the set of line lattices
can be shuffled. Consider for example the S3,1-case with rank N = 2. One can compute
explicitly the following orbits:

(1, 0) (0, 1) (1, 1) (1, 2) , (9.121)

where the pairs (e,m) parametrize the maximal sub-lattice of mutually local lines as dis-
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cussed in section (9.2.1). Two line lattices connected by an arrow in (9.121) are mapped
to each other under proper combinations of Σi3.

This theory enhances to su(3) N = 4 SYM. Using the mapping (9.54) between the line
lattices parametrized by (e,m) and the global structures of su(3), the formula (9.121)
reproduces the N = 4 orbits under the element ST ∈ SL(2,Z). As shown in the liter-
ature [247, 250, 251, 248], this transformation can be combined with a proper gauging
of the one-form symmetry to construct the non-invertible self-duality defects of su(3) at
τ = e2πi/3. Therefore in our notation we expect the existence of non-invertible symme-
tries involving Σik for the lattices labeled by (e,m) = (1, 0), (0, 1), (1, 1), and none in the
(e,m) = (1, 2) case.

Similarly, one can consider the orbits in the case of S4,1 with N = 2, where the SCFT
enhances to so(5) N = 4 SYM. By using the transformations Σi4 as above we find the
following orbits

(0, 1)←→ (1, 0) (1, 1) , (9.122)

where the pairs (e,m) parametrize the maximal sub-lattices of mutually local lines as
discussed in section (9.2.2).

These reproduce the N = 4 orbits under the element S ∈ SL(2,Z). Again this transfor-
mation can be combined with a proper gauging of the one-form symmetry to construct
the non-invertible self-duality defects of so(5) at τ = i.

Motivated by this match, one can expect that in the case of general rank, non-invertible
symmetries will be present when multiple choices of maximal sub-lattices of mutually
local lines are related by the transformations Σik, as above. The orbits are:

S3,1 : (1, 0)←→ (0, 1)←→ (1, 1) (1, 2) , (9.123)

S4,1 :


(0, 1)←→ (1, 0) (1, 1) N = 0 mod 2

(1, 0)←→ (1, 1) (0, 1) N = 1 mod 2
, (9.124)

where the pairs (r, s) parametrize the maximal sub-lattices of mutually local lines as in
section 9.3.

In the S6,1, S3,3 and S4,4-cases, there is only one possible global structure that is mapped
to itself by the Σik transformations.

By analogy with the cases where there isN = 4 enhancement, we expect the existence of
non-invertible symmetries when the transformations Σik map different line lattices, built
by combining this Σik-action with a suitable gauging of the one-form symmetry.

9.5 Conclusions

In this Chapter, we have exploited the recipe of [29] for arranging the charge lattice of
genuine lines modulo screening by dynamical particles. We have adapted such strategy,
originally designed for BPS quivers, to the case of (p, q)-strings, in order to access to the
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electromagnetic charges of non-Lagrangian N = 3 S-fold SCFTs. This procedure has al-
lowed us to provide a full classification of the one-form symmetries of every S-fold SCFT.
We singled out two cases with a non-trivial one-form symmetry, corresponding to the Z3

and the Z4 S-folds in absence of discrete torsion, denoted here as S3,1 and S4,1 respec-
tively. Our results are consistent with the supersymmetry enhancement that takes place
when two D3-branes are considered. Lastly, we discuss the possibility of non-invertible
duality defects, by recovering the expected results for the cases with supersymmetry en-
hancement and proposing a generalization at any rank. A natural generalization of the
analysis performed in this Chapter is to consider the exceptionalN = 3 theories [200, 5].
In Chapter 10 and 11 we will study exceptional S-folds of type Er with an approach
similar to the one discussed in this Chapter.

We left many open questions that deserve further investigations. It would for exam-
ple be interesting to study in more details the projection of the states generated by the
(p, q)-configurations in an S-fold background. In the present thesis, the only relevant
information was the electromagnetic charges carried by these states, but a deeper anal-
ysis of the dynamics of these S-fold theories requires more work. This would in turn
improve our understanding of their mass spectrum. For instance, a comparison of the
BPS spectrum could be made exploiting the Lagrangian descriptions of [241]. This could
also help finding the origin of the mapping between the multiple lattices found in the
S3,1 and S4,1-cases. Further investigations in this direction would deepen our geometric
understanding of the non-invertible symmetries expected in this class of theories, along
the lines of the brane analysis of [259, 260, 261].

It would also be of interest to generalize the analysis to the cases of S-folds with N = 2
supersymmetry [262, 263] (see [264, 265] for similar analysis in class S theories). In the
absence of BPS quivers, one needs to adapt the UV analysis of [29]. In general, one would
like to find a stringy description that avoids wall crossing and allows reading the charge
lattices and the one-form symmetries for such theories.



CHAPTER 10

Exceptional S-folds and discrete gauging

In this Chapter, building upon the analysis and results of Chapter 9, we study a class of
4d SCFTs with N = 3 SUSY called exceptional S-fold theories, first constructed in [200].
We analyze the structure pf higher-form symmetries in conjunction with the charge lat-
tice and the possibility of discrete gauging.

Not much is known about these theories aside from their geometric construction, a no-
table exception being the CB geometry computed in [5] by Kaidi, Gabi and Martone.
Our analysis relies heavily on their approach as well as on the CB geometry itself. As
discussed in Section 8.2, N = 3 S-fold SCFTs are labelled by an integer k = 3, 4, 6, called
the order of the S-fold, and a simply-laced Lie algebra g, and we will denote them as
“S-folds of type g” or more concisely as gSk-fold. The ArSk-folds, denoted here as “reg-
ular” S-folds, engineer the theories of [197], and are equivalent to non-geometric Type
IIB setups. The DrSk-folds and ErSk-folds are called “exceptional” S-fold theories. In
this thesis we only discuss the g = Er case, but our procedures can be straightforwardly
applied to the DrSk-folds as well.

We thus consider a total of nine theories, the ErSk-folds, which are believed to be non-
trivial interacting SCFTs with rank varying from 2 to 4. We show that all but one of these
theories, the E8S4-fold, are discrete gauging of free theories. This is essentially due to
the fact that they do not admit a consistent charge lattice. Exceptional S-folds can be
considered sporadic even when compared to the “regular” ArSk-folds, nevertheless the
obstruction to having a consistent charge lattice that they exhibit generalizes nicely to
arbitrary ranks, as we will discuss in Chapter 11.

For the sake of readability, let us outline the general strategy adopted in this Chapter
and state the results. A summary of our results can be found in Table 10.1.

General strategy

Our approach to the study of charge lattices of S-fold theories reduces to two main ideas.
The first idea is based on the results of [5], where it was shown that the moduli space
of an S-fold SCFT of type g can be obtained as a slice of the moduli space of a “parent”
N = 4 SYM theory with gauge algebra g. In analogy with this result, we compute the
charge lattice of an S-fold theory as a sublattice of the charge lattice of the parent N = 4
SYM.

181



182

The second ingredient is the consistency of the structures of N = 2 SCFTs along the
Coulomb branch stratification. In our case this boils down to the fact that the charges
that become massless at some codimension-n singularity on the Coulomb branch must
generate the charge lattice of some rank-n theory supported on the singularity. If this
is not the case, then the singularity can not support an interacting theory and must be
empty. The singularity itself then supports a discrete gauging of a free theory, and the
SCFT can be considered as a discrete gauging of a parent theory. In most exceptional
S-fold theories we find that none of the codimension-1 singularity can support an inter-
acting theory, signaling that the exceptional S-fold theory itself is a discrete gauging of a
free N = 4 theory.

This procedure is particularly powerful when considering the codimension-1 singulari-
ties of a maximally strongly coupled theory. If the singularity is non-empty then it must
support a rank-1 N = 2 SCFT. We have a full classification of these theories and their
charge lattices are characterized by the absolute value of the Pfaffian of the Dirac pairing
J : ∣∣Pf (J)

∣∣ =

{
2 (discrete gauging of) N = 2∗SU(2)SYM

1 otherwise
(10.1)

For any other values of
∣∣Pf (J)

∣∣ on a codimension-1 singularity, the corresponding states
can not be BPS and the singularity must be empty.

Given an exceptional S-fold theory our analysis roughly follows these steps:

• Determine the Coulomb branch geometry as was computed in [5]

• Compute the charge lattice and Dirac pairing from the parent N = 4 theory.

• Compute the sublattice of charges that should become massless on all codimension-
1 singularities

• If these lattices are compatible with one of the options in (10.1) there is a SCFT
supported there, otherwise the singularity is empty.

• Also impose the constraints on the central charges, namely the farmulae of [218].

At the end of these steps if there are some singularities which support an interacting
SCFT we claim that the S-fold SCFT is non-trivial. Instead if all the singularities are
empty we claim that the S-fold theory is a discrete gauging of a free theory.

Results

We find that all but one of the exceptional S-fold SCFTs of type Er are discrete gauging
of free theories, the exception being the S-fold of type E8 with k = 4, also called the
G31 theory. In particular, the S-fold theories of type E6 and E8 with k = 3, 6 do not
have consistent charge lattices. In these theories, on any codimension-1 singularity the
charges that should become massless span a rank-2 sublattice where the Dirac pairing is

such that
∣∣∣∣Pf
(
J (1)

)∣∣∣∣ = 3, and comparing with eq. (10.1) there is no rank-1 SCFT that can

be supported there. Therefore all codimension-1 singularities are empty, and the S-fold
theories themselves are discrete gauging of free theories. All S-fold theories of type E7

and the S-fold theory of type E6 with k = 4 admit a consistent charge lattice, but this
lattice is incompatible with the constraints coming from the central charge formulae of
[218].
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k
g

E6 E7 E8

3 C = C3/G25

d.g. of U(1)3 N = 4
C = C3/G26

d.g. of U(1)3 N = 4
C = C4/G32

d.g. of U(1)4 N = 4

4 C = C2/G8

d.g. of U(1)2 N = 4
C = C2/G8

d.g. of U(1)2 N = 4

C = C4/G31

Interacting SCFT
G(1) = 1, 12c = 372

6 C = C2/G5

d.g. of U(1)2 N = 4
C = C3/G26

d.g. of U(1)3 N = 4
C = C4/G32

d.g. of U(1)4 N = 4

Table 10.1 Properties of exceptional S-folds of type g = En. For each theory the Coulomb
branch C is reproduced from [5] and we specify wether the theory is a discrete gauging
(d.g) of a free theory. Red cells are theories whose Coulomb branch do not admit any
consistent charge lattice, orange cells are theories where the charge lattice is incompatible
with the constraints on the central charges. For the only interacting SCFT the 1-form
symmetry group G(1) is written and the central charge is reproduce from [5].

The only S-fold theory of type En that has a well defined charge lattice compatible with
the formulae of [218] is the G31 theory. We claim that this is an interacting SCFT. The
theory has rank equal to 4 and the Coulomb branch and central charges are those com-
puted in [5], see Table 10.1. Furthermore we find that the 1-form symmetry group of this
theory is trivial.

10.1 Another look at S-folds SCFTs

In this Section we outline our procedure for analyzing various properties ofN = 3 S-fold
theories. We do so by studying explicit examples of S-folds SCFTs engineered in Type
IIB, which we denote as “regular” S-folds, providing various prescriptions that will ap-
ply to the general cases of exceptional S-folds [200] engineered in M-theory discussed in
Section 10.2. All the results contained in this Section have already appeared in the liter-
ature and most of the techniques are well known, with the exception of the discussion
given in Subsection 10.1.2. There we leverage the stratification of the Coulomb branch
and the classification of N = 2 rank 1 SCFTs to constrain the BPS spectrum and ulti-
mately understand the 2-form symmetries of these theories. This argument, to the best
of our knowledge, is original.

10.1.1 Moduli space

The S-fold theories have a moduli space of vacua parametrized by the motion of the
N D3-branes on the transverse space C3/Zk which is given by (C3)N/G(k, 1, N) [199],
where G(k, 1, N) is a crystallographic complex reflection group (CCRG). By choosing
an N = 2 subalgebra of the N = 3 superalgebra the R-symmetry group is broken to
(SU(2) × U(1))R and the moduli space splits into a N -dimensional Coulomb branch,
an 2N -dimensional Higgs branch and a mixed branch with respect to the choice of sub-
algebra. Of particular interest in this paper is the Coulomb branch, where the U(1) R-
symmetry is broken and the SU(2) R-symmetry is preserved. In the brane picture the
Coulomb branch can be identified with the space parametrized by the positions zi of the
N D3-branes on a 1-complex-dimensional slice C/Zk of the transverse space. Here zi is
a complex number that parametrize the position of the i-th D3-brane on this slice. The
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Coulomb branch is then CN/G(k, 1, N), where G(k, 1, N) is generated by the transfor-
mations:

zi → e
2πi
k zi

zi ↔ zj
i, j = 1, . . . , N (10.2)

The ring of polynomials in the zi that are invariant under G(k, 1, N) is freely generated,
meaning that there are no non-trivial relations between the generators. There are N
generators whose degrees are:

∆ = (k, 2k, 3k, . . . , Nk) (10.3)

The analysis of moduli space given so far has relied upon the brane picture for regu-
lar S-fold. Such a picture will not be available when we consider the generalization to
exceptional S-fold, so an alternative approach is desirable. Kaidi, Martone and Zafrir
presented a possible approach in [5], where they studied the moduli spaces of excep-
tional S-fold theories. Here we briefly review their results, more details can be found in
the original paper. The idea is to start with a stack ofNk D3-branes in flat space. The low
energy theory is thenN = 4 SYM with gauge algebra su(Nk) and CB (C)Nk/W(su(Nk))
parametrized by the scalars Φ. HereW(g) is the Weyl group of the Lie algebra g. Intro-
ducing an Sk-fold imposes the identification:

w ·Φ = OkΦ (10.4)

Here Ok is the action of the S-fold on the scalars, which is given by the R-symmetry
transformation: Ok = e2πi/k. w is the Weyl element corresponding to the permutation of
branes that maps each D3-brane to its first image under the S-fold and it is equal to the
N -th power of the Coxeter element c:

w =cN

c =s1 · s2 · · · · · sNk−1

(10.5)

where si is the reflection along the i-th simple root. Then (10.4) becomes:

cN ·Φ = e2πi/kΦ (10.6)

Notice that (10.6) only requires to know the moduli space of the low energy field theory
in the absence of the S-fold, which in this case is N = 4 SU(Nk) SYM, and does not
rely on a brane picture. This allowed the authors of [5] to generalize this procedure to
exceptional S-fold where the “parent” N = 4 theory has gauge algebra en or dn. This
generalization requires a choice of an element w of the Weyl group, we will see that this
choice is unique under a technical but reasonable assumption.

Mathematically ΦC is a point in a space acted upon by a real reflection group (the Weyl
group), and (10.6) identifies the eigenspace of the element w of the Weyl group (in this
case cN ) with eigenvalue e2πi/k. The action of the Weyl group on this eigenspace is
called a reflection subquotient, and has been studied in generality in the mathematical
literature, see [266] and reference therein for a comprehensive review of this topic. Here
we report some results on reflection subquotient that are relevant for the study of moduli
spaces of S-fold theories. Proofs and discussions regarding these mathematical results
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can be found in [266], see Theorem 11.24, Corollary 11.25, Theorem 11.28 and Theorem
11.38 in that reference.

• The rank r of an Sk-fold N = 3 theory is given by the number of degrees of CB
invariants of the “parent” N = 4 SYM that are divisible by k.

• The Coulomb branch of an Sk-fold N = 3 theory is Cr/C with C a complex crystal-
lographic reflection group.

• The degrees of the generators of the Sk-fold Coulomb branch invariants are the
degrees of C, and are given by the degrees of invariants of the “parent” N = 4
theory that are divisible by k.

• The codimension-1 singularities in the Coulomb branch of the Sk-fold N = 3 the-
ory are given by the intersection of the codimension-1 singularities of the “parent”
N = 4 theory with the N = 3 Coulomb branch.

In the case of regular S-folds the “parent” theory is SU(Nk)N = 4 SYM, and the degrees
of the generators of Coulomb branch invariants are:

2, 3, . . . , Nk (10.7)

There are N degrees that are divisible by k:

k, 2k, . . . , Nk (10.8)

that correspond to the degrees of the complex crystallographic reflection groupG(k, 1, N).
This is consistent with the brane picture analysis, where the Coulomb branch was found
to be CN/G(k, 1, N).

When a brane picture is not available one needs to specify the element w of the Weyl
of the “parent” N = 4 theory that is involved in the S-fold projection (10.4). Modulo a
technical assumption1 such an element is unique up to conjugation and is characterized
by having an r-dimensional eigenspace with eigenvalue e2πi/k. Therefore the analysis of
the Coulomb branch of exceptional S-fold theories boils down to finding an element w
of the Weyl group that has an r-dimensional eigenspace with eigenvalue e2πi/k.

Charge lattices of S-fold theories

In this Section we briefly recall the computation of the charge lattice of regular S-fold
SCFTs performed in Chapter 9 and we give a field theoretic prescription to generalize
the analysis to exceptional S-folds. Consider a stack of N D3-branes probing an Sk-fold
without discrete torsion together with the (k − 1)N image D3-branes. The local states of
the SCFT are associated to finite length (p, q)-strings stretched between the D3-branes,
plus their images under the Sk-fold. Denote as |(p, q)〉i,j a state associated to a (p, q)-
string between the i-th and j-th D3-brane. The first image of this string is a (p′, q′)-string
stretched between the π(i)-th and π(j)-th D3-brane. Here (p′, q′) are related to (p, q) by
the S-duality transformation involved in the S-fold:

(p′, q′) = ρk · (p, q) (10.9)

1Here, following [5], we assume that the rank of theN = 3 theory is the highest possible.
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And the π(i)-th D3-brane is the first image of the i-th D3-brane. Let us number the D3-
branes such that π(i) = i+N , and i ∼ i+ kN . The following states are invariant under
the S-fold action:

|(p, q)〉i,j =
1√
k

k−1∑
t=0

|(ρk)t · (p, q)〉πt(i),πt(j) (10.10)

The electromagnetic charges of the state |(p, q)〉i,j can be written as a 2Nk-dimensional
vector:

Q
[
|(p, q)〉i,j

]
=

1√
k

(e1, . . . , eNk,m1, . . . ,mNk) (10.11)

where ei and mi are the electric and magnetic charges under the i-th D3-brane, respec-
tively. The Dirac pairing between two states φ and ψ with charges ei,mi and e′i,m

′
i is

then:

〈φ, ψ〉 =
1

k

Nk∑
i=1

(eim
′
i − e′imi) (10.12)

One can show that despite being represented by 2Nk-dimensional vectors the set of
states invariant under the S-fold action (10.10) only span a 2N -dimensional lattice, which
is the charge lattice of the rank-N S-fold SCFT.

In order to generalize this analysis to the exceptional S-fold case, let us express the vari-
ous quantities of the S-fold theory (10.10),(10.11) and (10.12) in terms of field theoretical
data of the “parent” N = 4 SU(kN) SYM theory, namely the roots αi,j of SU(kN) and
the Cartan matrix ASU(Nk). This can be done as follows. The string state |(p, q)〉i,j cor-
respond to a dyonic state with electric charge p and magnetic charge q with respect to a
root αi,j of SU(kN):

|(p, q)〉i,j → |αi,j , (p, q)〉 (10.13)

The S-fold acts with a matrix ρk on the electric and magnetic charges (p, q) and acts as
a permutation on the indices i, j. As discussed in the previous Section the permutation
corresponds the the action of the Coxeter element c to the N -th power on the root αi,j .
Suppresseing the indices i, j the S-fold action can be written as:

Sk :
∣∣α; (p, q)

〉
→
∣∣∣cN · α; ρk · (p, q)

〉
(10.14)

The states invariant under the S-fold (10.10) can be written in the following form in terms
of the states of the “parent” N = 4 theory:

∣∣α, (p, q)〉 =
1√
k

k−1∑
t=0

∣∣∣ctN · α; (ρk)t · (p, q)
〉

(10.15)

The charge lattice of the S-fold theory is spanned by these states for all choices of root
α ∈ ∆

[
SU(Nk)

]
and for any p, q ∈ Z.

The electromagnetic charge of a state |α; (p, q)〉 is given by;

Q
[
|α; (p, q)〉

]
=

1√
k

k−1∑
t=0

(w ⊗ ρk)t ·Q
[
|α; (p, q)〉

]
(10.16)
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where Q
[
|α; (p, q)〉

]
is the electromagnetic charge of the corresponding state of SU(Nk)

N = 4 SYM. Finally, the Dirac pairing defined on the charge lattice of the S-foldss theory
is obtained as a restriction of the Dirac pairing of SU(Nk) N = 4 SYM. Explicitly the
Dirac pairing between two states of the S-fold theories with charges qi and qj is given
by: 〈

qi, qj
〉

= qi · JSU(Nk) · qTj (10.17)

where:

JSU(Nk) =

 0
(
ASU(Nk)

)T
−ASU(Nk) 0

 (10.18)

is the Dirac pairing of the parent SU(Nk) N = 4 gauge theory [231]. Then the charge
lattice ΓN,k of the Sk-fold theory is:

ΓN,k =

{
Q
[
|(p, q)〉i,j

]
| p, q ∈ Z, i, j = 1, . . . , Nk

}
(10.19)

and the associated Dirac pairing is given by (10.17) and (10.18).

In this Chapter we are interested in the quantity |Pf(J)|. As already discussed in Chap-
ter 9 the value of |Pf(J)| is an invariant of any N = 2 SCFT that equals the order of
the 1-form symmetry group. One can intuitively think of this invariant as a measure of
“how spread out” the charge lattice is. Indeed the number of electromagnetic charges
that can be added to the charge lattice Γ without breaking the Dirac quantization condi-
tion is given by |Pf(J)|−1. In this sense, the charge lattice Γ can not be arbitrarily dense,
because |Pf(J)| is at least 1. Crucially, in the rank-1 case there is also an upper bound
for |Pf(J)|, given that we have a full classification of rank-1 N = 2 SCFTs. The pfaffian
of the Dirac pairing of a rank-1 SCFT is at most 2, therefore the 1-form symmetry group
of a rank-1 SCFT is either Z2 or the trivial group.

Intuitively the upper bound for “how spread out” the charge lattice is in rank-1 SCFTs,
together with the idea of stratification of the Coulomb branch, should impose an upper
bound for higher rank theories as well. In Section 10.2 we will see that this is the case by
studying explicit examples, namely exceptional S-fold SCFTs, while in Chapter 11 with
discuss this idea in more generality.

Discrete torsion

Some S-fold backgrounds can admit a non-zero flux for the Type IIB 2-form fields around
cycles of the transverse space. This is possible for k = 2, giving rise to the orientifold
O3+, Õ3+ and Õ3−, and for k = 3, 4 giving rise to fluxful S-folds denoted as S3,3 and
S4,4. When the discrete torsion is non-zero the S-fold is magnetically charged under the
corresponding 2-form field, and strings can end on the S-fold itself. Strings stretched
between the S-fold and a D3-brane generate additional states in the SCFT with respect to
the fluxless case, and the charge lattice is more dense. The states corresponding to strings
stretched between the S-fold and a D3-brane can not be written in the form (10.15). In
order to include them we are led to consider states of the general form:

∣∣α, (p, q)〉{pi,j} =
1√
k

k−1∑
i=0

1∑
j=0

pi,j

∣∣∣ciN · α; (ρk)
j · (p, q)

〉
(10.20)
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where pi,j are integers such that the state (10.20) are invariant under the S-fold action
(10.14). The sum over i runs from 0 to k−1 because cN satisfies its characteristic equation,
which is an order k polynomial equation, and similarly the sum over j runs from 0 to 1
because ρk satisfies an order 2 polynomial equation.

One can show that such states correctly reproduce the strings stretched between a D3-
brane and the S-fold itself. We can therefore see that the presence of a non-trivial discrete
torsion can be accounted for by considering the charge lattice spanned by the states
(10.20) rather than (less general) states (10.15).

In the context of exceptional S-folds the states (10.20) will only play a minor role, there-
fore we will not discuss them further.

10.1.2 Discrete gauging and 2-form symmetries

The S-fold theories obtained from the Type IIB setup can sometimes have a non-trivial
2-form symmetry and can be seen as a discrete gauging of a “parent” theory [199]. Gaug-
ing a discrete 0-form symmetry of the parent theory gives rise to a magnetic 2-form
symmetry, and viceversa. One can go from the parent theory to the daughter theory by
gauging the relative discrete symmetry. This operation is therefore reversible, and one
may choose to study either of the two theories without loosing information. When this
is the case it is convenient to study the parent theory itself, for example the Shapere-
Tachikawa formula for the central charges is believed to hold only in the absence of
2-form symmetries.

In this Section we show how to detect 2-form symmetries that arise from the discrete
gauging of a 0-form symmetry that acts on the Coulomb branch. We also give a con-
sistency constraint for the BPS spectrum of N = 2 SCFTs based on the classification of
rank-1 theories. We elaborate this analysis in the cases of the O3− and the flux-less S3-
fold. In Section 10.2 similar considerations will lead us to claim that some exceptional
S-fold theories are discrete gaugings of free theories.

Strings across the flux-less orientifold

As a familiar example, consider the O3− plane, which corresponds to the S-fold with
k = 2 and trivial discrete torsion. The low energy theory on a stack of N D3 branes on
top of the O3− is N = 4 SYM with gauge algebra so(2N), and is believed to be a Z2

discrete gauging of the N = 4 theory with gauge group Spin(2N). Indeed the space
parametrized by the transverse motion of the D3-branes is CN/

(
W
[
so(2N)

]
o Z2

)
,

which is compatible with the moduli space of N = 4 Spin(2N) with an additional Z2

identification given by gauging charge conjugation. In this example the “parent” theory
has trivial 2-form symmetry and has a Z2 0-form symmetry, namely charge conjugation.
The theory on the stack of D3-branes is obtained by gauging this Z2 0-form symmetry,
and therefore has a Z2 2-form symmetry.

The 2-form symmetry can be detected by looking at the moduli space CN/
(
W
[
so(2N)

]
o Z2

)
.

In particular the singularities on moduli space given by the additional Z2 identifications
correspond to configurations where one D3-brane is on top of the orientifold. There are
no massless BPS charged states associated to this singularities because the ground state
of strings connecting the D3-brane and its image, which have zero length, are projected
out by the orientifold [267]. This is consistent with the fact that the Z2 identification on
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moduli space is due to a discrete gauging of a Z2 0-form symmetry. In general a discrete
gauging of a 0-form symmetry that acts non-trivially on the Coulomb branch produces
singularities where no BPS state becomes massless. Suppose that an S-fold theory T has
a Coulomb branch:

C = CN/
(
G o G′

)
(10.21)

and charge lattice Γ. Suppose that on the fixed loci of G some state γ ∈ Γ has zero central
charge Z , and therefore becomes massless, while on the fixed points of G′ all the states in
the charge lattice are massive. Then T has a non-trivial 2-form symmetry G(2) = G′ and
can be regarded as a G′ discrete gauging of a “parent” theory T ′ with Coulomb branch:

C′ = CN/ (G) (10.22)

and with the same charge lattice Γ. The “parent” theory T ′ has a 0-form symmetry
which contains G′ as a discrete subgroup. Therefore we are able to detect the presence of
a non-trivial discrete 2-form symmetry G(2) from the knowledge of the Coulomb branch
and charge lattice if G(2) arises from a discrete gauging of a 0-form symmetry that acts
non-trivially on the Coulomb branch.

In the example of the O3− given above the absence of charged massless states on the
fixed points of the Z2 identification can be explained from string theoretical considera-
tions, but one would like a field theoretical argument as well. Consider a point p in CN

that is fixed under Z2 and is generic otherwise. The prescription given in Section 10.1 to
compute the charge lattice Γ predicts massless states on this singularity corresponding
to (p, q)-strings stretched between a D3-brane and its image. Denote as Γ(1) the sublat-
tice of Γ spanned by these states. Γ(1) should be the charge lattice of a rank-1 QFT T (1)

whose Coulomb branch is given by the slice transverse to the singular locus in a neigh-
bor of p, namely C/Z2. A basis of Γ(1) is given by the states associated to an F1 and a D1
string which we denote as ψ and φ respectively. The Dirac pairing between these states
is Pf(J (1)) = 〈ψ, φ〉 = 4, therefore they are not mutually local and T (1) must be an in-
teracting CFT. We have denoted as J (1) the matrix representing the Dirac pairing of the
rank-1 theory in this basis. Furthermore by the argument given in [29] (see Section 10.1)
T (1) should have a non-trivial 1-form symmetry group of order 4. A full classification
of rank-1 N = 2 SCFTs is available [207, 209, 206, 208], and a theory such as T (1) does
not exist. In particular the maximum order for the 1-form symmetry group of a rank-1
SCFT is 2 [231], saturated for example byN = 4 SU(2) SYM. We conclude that the states
in Γ(1) can not be BPS, therefore on the fixed locus of the Z2 identification there are no
massless states, consistently with the string theory prediction.

Strings across the flux-less S3-fold

We have shown that the analysis of the charges of states becoming massless on a singu-
larity of the Coulomb branch imposes non-trivial constraints on the BPS spectrum of a
theory. This is especially interesting to study in non-lagrangian theories, where discrete
gaugings and 2-form symmetries are not readily apparent. As an example, we now show
that in the flux-less S-folds with k = 3 the strings stretched between one D3-brane and
its image are not BPS. Consequently, these theories are discrete gaugings of otherN = 3
“parent” theories, as originally discussed in [199]. A similar analysis in Section 10.2
will show that some exceptional S-fold theories, for example the G5 theory discussed in
Section 10.2.2, are discrete gauging of free theories.
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The Coulomb branch of the regular Sk-fold SCFT at rank r theories has two types of
codimension 1 singularities on the Coulomb branch: singularities where two D3-branes
coincide and singularities where one D3-brane is on top of the S-fold. When two D3-
branes coincide the associated rank-1 theory is always SU(2) N = 4 SYM, which is a
consistent rank-1 SCFT, therefore we will focus on the other singularities. When one
D3-brane is on top of the S-fold the corresponding rank-1 theory is the rank-1 version of
the S-fold theory under consideration. In the case of flux-less S-folds the rank-1 theories
are believed to be discrete gaugings of U(1) N = 4, with no massless states charged
under the U(1). Let us show that this must indeed be the case for the k = 3 S-fold.
In the absence of discrete torsion the charge sublattice Γ(1) is spanned by (p, q)-strings
stretched between the D3-brane and its image. A possible basis for this lattice is given
by the states associated to an F1 and a D1 string, let us denote them as |f1〉 and |d1〉
respectively. The Dirac pairing matrix in this basis is:

J (1) =

(
0 〈f1, d1〉

−〈f1, d1〉 0

)
(10.23)

The order of the 1-form symmetry group is give by the Pfaffian of the Dirac pairing:

|G(1)| =
∣∣∣∣Pf
(
J (1)

)∣∣∣∣ = 〈f1, d1〉 =

 3 k = 3
2 k = 4
1 k = 6

(10.24)

The Coulomb branch of these rank-1 theories is C/Zk. For k = 3 the putative theory on
this singularity is inconsistent because, as discussed above, the maximum order for the
1-form symmetry group of a rank-1 N = 2 SCFT is 2. Therefore the states associated to
strings stretched between a D3-brane and its images can not be BPS.

The Coulomb branch can thus be written as:

C = CN/
(
G(3, 1, r)

)
= CN/

(
G(3, 3, r) o Z3

)
(10.25)

where there are massless charged states on the fixed points of G(3, 3, r) and there are
no massless charged states on the fixed points of Z3. This Coulomb branch is consistent
with the Coulomb branch of a Z3 discrete gauging “parent” theory with Coulomb branch
C′ = CN/G(3, 3, r) and 2-form symmetry group Z3, reproducing the M-theory results of
[199]. Furthermore we have shown that in a flux-less S-fold background with k = 3
the states associated to strings stretched between a D3-brane and its image are not BPS,
because otherwise the Coulomb branch stratification would be inconsistent. This further
strengthens the analysis of the BPS spectrum of the rank-2 S-fold theories performed
in [246, 245]. One could perform a similar analysis in the case of flux-full S-folds. The
resulting rank-1 theories on the codimension-1 singularities are all consistent in this case,
therefore the Coulomb branch of these theories is CN/

(
G(k, 1, r)

)
and there are massless

charged states on all singularities.

Strings across the flux-less S4-fold

As a final example of our techniques before delving into the topic of exceptional S-folds
we consider the fluxless S-fold with k = 4. Similarly to the case of the S3-fold we will
show that the strings stretched between a D3-brane and its images do not produce BPS
states. In addition to the analysis of the charge lattice we will also consider constraints on
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the central charges of the theories supported on codimension-1 singularities. These two
computations give incompatible results unless the strings across the S4-fold are not BPS
and in return the S4-fold SCFTs must be discrete gaugings, reproducing the M-theory
results of [199]. A similar phenomena happens in exceptional S-fold theories, for exam-
ple the G8 theory discussed in Section 10.2.3 turns out to be a discrete gauging of a free
theory.

Consider the rank-r fluxless S4-fold SCFT. The Coulomb branch of the rank-1 SCFT on
the singularity that arises when a D3-brane coincides with the S4-fold is parametrized
by the motion of the D3-brane on a 1-complex-dimensional slice of the transverse space,
and is therefore C/Z4. The order of the 1-form symmetry group of the rank-1 SCFT on
this singularity was computed in (10.24):∣∣∣G(1)

∣∣∣ =

∣∣∣∣Pf
(
J (1)

)∣∣∣∣ = 2 (10.26)

The only candidate for the rank-1 theory supported on this singularity is the N = 3
preserving Z4 gauging of SU(2) N = 4 SYM.

We may now consider the central charge of the S4-fold SCFTs. Assuming that the rank-1
theories on all the singularities are not empty and the S4-fold SCFTs are not discrete
gaugings the central charges can be computed with the Shapere-Tachikawa formula
[268]:

2(2a− c) =

r∑
j=1

∆j −
r

2
= 2r2 +

3

2
r (10.27)

where {∆i} = {4, 8, . . . 4r} are the degrees of invariants of G(4, 1, r). The central charges
may also be computed using the formulae of [218, 210] that relate data of the rank-1
theories supported on the codimension-1 singularities to the central charge of the rank-r
theory:

12c = 2r + hECB +
∑
i∈I

∆sing
i bi (10.28)

where bi is a quantity associated with the rank-1 theory supported on the i-th codimension-
1 singularity as follows:

bi :=
12ci − hi − 2

∆i
(10.29)

In our theory the extended Coulomb branch dimension is hECB = r and the set I con-
sists of the two codimension-1 singularities. The scaling dimensions ∆

sing
i of these sin-

gularities can be found for example in [5], Appendix B. It turns out that the singularity
associated to the collision of two D3-branes has scaling dimension ∆

sing
1 = 4r(r− 1) and

parameter b1 = bSU(2) = 3. The other singularity has scaling dimension ∆
sing
2 = 4r,

therefore (10.28) reduces to:

12c = 3r + 12r(r − 1) + b24r (10.30)

Comparing with (10.27) with a = c and solving for b2 one finds:

b2 =
9

2
(10.31)
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AE6
=


2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

 ,

AE7 =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2


,

AE8
=



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2


Figure 10.1 Cartan matrices of the exceptional algebras Er, r = 6, 7, 8.

Which is compatible with having a rank-1 fluxfull S4-fold SCFT on the singularity corre-
sponding to a D3-brane on top of the S4-fold. This is incompatible with the charge lattice
computed above, indeed the only possible SCFT on this singularity compatible with the
charge lattice is a discrete gauging of N = 4 SU(2) SYM, which would require b2 = 3.

We conclude that the states associated to string stretched between a D3-brane and its
images do not produce BPS states. Then the rank-1 theory arising when one D3-brane
approaches the fluxless S4 fold is not an interacting SCFT, but rather a discrete gauging
of free N = 4 Maxwell theory. The S4-fold SCFTs can then be thought as a Z4 discrete
gauging of a parent theory with moduli space C3r/G(4, 4, r), reproducing the results of
[199].

10.2 Exceptional S-folds

In this Section we study exceptional S-fold N = 3 SCFTs [200]. We apply the tech-
niques spelled out in the previous Sections to compute the charge lattice of these theo-
ries, the order of the 1-form symmetry group and we determine when such SCFTs can
be built as discrete gauging of a parent theory. The exceptional S-fold setup of [200],
briefly reviewed below, engineers a set of SCFTs labelled by an algebra of type Dn or Er,
r = 6, 7, 8, and the order of the S-fold k = 3, 4, 6. The analysis can be generalized by in-
cluding a suitable outer automorphism [5]. For simplicity in this paper we focus on the
exceptional algebras E6,7,8 with k = 3, 4, 6 and without outer automorphism twists. Ex-
tending our methods to the full set of exceptional S-fold SCFTs should not present any
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major technical or conceptual difficulty, but we leave this task to future work. We are
thus interested in 9 theories labelled by k = 3, 4, 6 and by the exceptional algebra Er. We
find compelling arguments that suggest that all but one of these theories do not admit
a well defined charge lattice and are discrete gauging of free theories. In particular the
only theory that, given our current understanding, is a proper interacting N = 3 SCFTs
is the G31 theory that can be engineered as the E8S4-fold. Our results are summarized
in Table 10.1.

10.2.1 S-folds from the (2, 0) E6 theory

The six-dimensional (2, 0) theory of type E6 on torus T 2 × R4 engineers N = 4 SYM
with gauge algebra E6 in the 4d limit. When this compactification is complemented
with the S-fold projection spelled out above one obtains the exceptional S-fold theories
of interest. The strategy we adopt, introduced in full generality in Section 10.1, is to
compute the effect of the S-fold projection directly on the four-dimensional charge lattice.
This approach allows us to compute the charge lattice of the N = 3 S-fold theories from
the charge lattice of the N = 4 SYM with gauge algebra E6. The analysis parallels the
one in [5], where the moduli space of exceptional S-fold theories was computed as a
subquotient of the moduli space of the N = 4 SYM parent theory.

The charge lattice of N = 4 E6 SYM is spanned by the W-bosons, which are valued
in the root lattice ∆ of E6 and by the magnetic monopoles, which are valued in coroot
lattice ∆∨. Choose a basis for the root and coroot lattices given by a set of simple roots
and the corresponding coroots respectively. In this basis the metric on the root lattice
is given by the Cartan matrix AE6

of E6, see Figure 10.1, and the roots are represented
by integer vectors with length

√
2. The simple roots are represented by vectors with

one entry equals to 1 and the other entries equal to 0. A charge Q̃ in the charge lattice
Γ = ∆⊗∆∨ is represented by an integer twelve-dimensional vectors, where the first six
entries are electric charges and the last six entries are magnetic charges:

Q̃ = (e1, e2, . . . , e6,m1,m2, . . . ,m6) (10.32)

The Dirac pairing between two charge Q̃ and P̃ is given by Q̃ · JE6
· P̃T where the Dirac

pairing JE6 is given by [231]:

JE6 =

(
0 (AE6)

T

−AE6
0

)
(10.33)

In the following it will be more convenient to write the charges in a basis where we
alternate electric charges and magnetic charge, namely:

Q = (e1,m1, e2,m2, . . . , e6,m6) (10.34)

We will distinguish the charges in the two basis by using tildes for vectors in the first
basis (10.32) and symbols without tildes in the second basis (10.34).

The Weyl group of E6 is generated by the reflections along the simple roots, we denote
the reflection along the i-th simple root as si. A useful element of the Weyl group is the
Coxeter element cE6 , defined as:

cE6
= s1 · s2 · s3 · s4 · s5 · s6 (10.35)
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g degrees codegrees
E6 2,5,6,8,9,12 0,3,4,6,7,10
E7 2,6,8,10,12,14,18 0,4,6,8,10,12,16
E8 2,8,12,14,18,20,24,30 0,6,10,12,16,18,22,28

Table 10.2 Degrees and codegrees of the exceptional algebras Er.

E6

k w r ECCRG ∆i

3 (cE6)
4 3 G25 {6, 9, 12}

4 (cE6
)
3 2 G8 {8, 12}

6 (cE6
)
2 2 G5 {6, 12}

Table 10.3 Elementsw ∈ W [E6] that characterize the S-fold actions for the S-fold theories
of type E6 through (10.38) and (10.39). Here cE6 is the Coxeter element of E6, r is the
rank of the S-fold theory and in the fourth and fifth columns the exceptional complex
crystallographic reflection group (ECCRG) associated to the S-fold theories and its de-
grees ∆i are reproduced.

which has order equal to the Coxeter number hE6 = 12:

(cE6
)
12

= Id (10.36)

The eigenvalues of the Coxeter element are λi = e2πi/(mi−1) where mi, i = 1 . . . , 6 are
the degrees of the invariants of E6, tabulated in 10.2. In the basis given by the simple
roots the Coxeter element is represented by the matrix:

cE6 =


0 0 1 0 −1 −1
1 0 1 0 −1 −1
0 1 1 0 −1 −1
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 1 0 0 −1

 (10.37)

Consider now the exceptional S-fold setup that engineers an N = 3 SCFT in four di-
mensions. In Section 10.1 we studied the S-fold projection along the lines of [5] and
discussed how the rank, Coulomb branch, charge lattice and associated Dirac pairing
can be computed directly from the N = 4 parent theory, in this case N = 4 E6 SYM.
Here we summarize the main results for ease of readibility. The Coulomb branch of the
N = 3 S-fold theory is given by the solutions to:

w · φC = e2πi/kφC (10.38)

where φC are elements of the Coulomb branch ofE6N = 4 SYM. The elementw ∈ W [E6]
encodes the projection induced by the S-fold on the Coulomb branch and on the charge
lattice of the E6 N = 4 theory. The rank r of the N = 3 theory is given by the complex
dimension of the eigenspace associated to the eigenvalue e2πi/k of w and we choose w
such that the N = 3 has maximum rank, following [5]. The degrees of basic Coulomb
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branch invariants is then given by the degrees of invariants of E6 that are divisible by k
and the N = 3 Coulomb branch itself is Cr/G with G the complex reflection group with
the correct degrees, see Table 10.3.

The charged states |α; (p, q)〉 of the N = 3 theory are given by:

|α; (p, q)〉 =
1√
k

k−1∑
t=0

∣∣∣wt · α; (ρk)
t · (p, q)

〉
(10.39)

where |β; (p, q)〉 is a (p, q)-dyonic states of E6 N = 4 SYM associated to the root β of E6.
The electromagnetic charge of a state |α; (p, q)〉 is given by;

Q
[
|α; (p, q)〉

]
=

1√
k

k−1∑
t=0

(w ⊗ ρk)t ·Q
[
|α; (p, q)〉

]
(10.40)

whereQ
[
|α; (p, q)〉

]
is the electromagnetic charge of the corresponding state ofE6 N = 4

SYM, expressed as in (10.34). As an example the W-boson associated to the first root α1

ofE6 has chargeQ
[
|α1; (1, 0)〉

]
= (1, 0; 0, 0; . . . ) while the magnetic monopole associated

to the first coroot has charge Q
[
|α1; (0, 1)〉

]
= (0, 1; 0, 0; . . . ).

One can consider more general states that are invariant under the S-fold action, see for
example (10.20). In the case of regular S-folds some of these states appear in the presence
of discrete torsion and correspond to strings stretched between the S-fold and a D3 brane.
In the case of exceptional S-folds the states (10.20) can never be included consistently,
therefore in the remainder of this paper we will only mention them briefly.

Finally, the Dirac pairing defined on the charge lattice of theN = 3 theory is obtained as
a restriction of the Dirac pairing of E6 N = 4 SYM (10.33). Explicitly the Dirac pairing
between two states of the S-fold theories with charges qi and qj is given by:〈

qi, qj
〉

= qi · JE6 · qTj (10.41)

Notice that it is not guaranteed that
〈
qi, qj

〉
gives an integer result and one should check

case by case that the Dirac pairing between any two charges of the S-fold theories is
integer. In the following we do not consider any charge lattice where the Dirac pairing
can take fractional values.

10.2.2 The k = 6 S-fold: G5

The first exceptional S-fold theory that we consider is obtained as a Z6 S-fold compacti-
fication of the (2, 0) six-dimensional E6 theory to four dimension. The compactification
preserves N = 3 supersymmetry in four dimension and involves an S-duality transfor-
mation ρ6 ∈ SL(2,Z) and an R-symmetry twist. The Coulomb branch is given by the
solutions to (10.38) with k = 6, namely:

w · φC = eπi/3φC (10.42)

There are 2 invariants of E6 whose degrees are divisible by 6, namely the invariants with
degrees 6 and 12, and therefore we expect that the N = 3 theory has rank r = 2. We
choose an element w ∈ W [E6] which has a two-dimensional eigenspace associated to
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the eigenvalue eπi/3:
w = (cE6

)
2 (10.43)

which is the basis given by the simple roots is represented by the matrix:

w =


0 1 0 −1 0 0
0 1 1 −1 −1 −1
1 1 1 −1 −1 −1
0 1 1 −1 0 −1
0 0 1 −1 0 0
0 1 0 0 −1 0

 (10.44)

Then the Coulomb branch of theN = 3 theory, given by the solutions to (10.42), is C2/G5

where G5 is the CCRG with degrees 6 and 12. Similarly the charge lattice of the N = 3
theory can be obtained from the charge lattice of the N = 4 E6 SYM. Given a state of
N = 4 E6 SYM associated to the root α with electric and magnetic charges (p, q) one can
build a state |α, (p, q)〉 that is invariant under the S-fold action:

|α, (p, q)〉 =
1√
6

5∑
t=0

∣∣∣wt · α; (ρ6)
t · (p, q)

〉
(10.45)

Consider the six states |αi, (1, 0)〉 obtained with this projection from the W -bosons asso-
ciated to the simple roots αi, i = 1, . . . , 6 of E6. The electromagnetic charges qi of these
states can be computed using (10.40):

q1 =
1√
6

(2,−1, 1, −2, 2, −4, 0, −3, 1, −2, 0, 0)

q2 =
1√
6

(1,−2, 3, −3, 2, −4, 1, −2,−1,−1, 2, −4)

q3 =
1√
6

(1, 1, 2, −1, 4, −2, 3, −3, 2, −1, 0, 0)

q4 =
1√
6

(−2,1, −1, 2, −2, 4, 0, 3, −1, 2, 0, 0)

q5 =
1√
6

(−1,2, −3, 3, −2, 4, −1, 2, 1, 1, −2, 4)

q6 =
1√
6

(0, 0, −2, 4, −2, 4, −2, 4, 0, 0, 2, 2)

(10.46)

Notice that q1 = −q4 and q2 = −q5, therefore these charges span a four-dimensional
lattice Γ:

Γ = SpanZ {q1, q2, q3, q6} (10.47)

The charges of states obtained from W -bosons associated to other roots of E6 are in-
cluded in Γ because the other roots are linear integer combinations of the simple roots
and (10.40) is linear in the charges. One can also check that the charges of states |αi, (0, 1)〉
obtained from monopoles of E6 are included in Γ as well, therefore by linearity Γ in-
cludes the charges of all the states (10.45). One may also consider the more general states
(10.20). We checked explicitly that including some or all of these states either leaves Γ
unchanged or produces fractional Dirac pairing between the states, which is inconsis-
tent. Then (10.47) is the candidate for the charge lattice Γ of the N = 3 G5 exceptional
S-fold theory. In the remainder of this section we will show that Γ is actually incom-
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patible with a consistent Coulomb branch stratification, and we will argue that the low
energy field theory is given by a discrete gauging of free U(1)2 N = 4 gauge theory.

Having computed a candidate Γ for the charge lattice of theG5 theory we now study the
Dirac pairing defined on this lattice and the sublattices of states that become massless on
some Coulomb branch singularity. The Dirac pairing between two states with charges qi
and qj is given by:

〈qi, qj〉 = qi · JE6
· qTj (10.48)

where JE6
is the Dirac pairing of the N = 4 theory (10.33). In the basis of Γ given by

q1, q2, q3 and q6 the Dirac pairing JG5 of the N = 3 theory is represented by the matrix:

JG5
=


0 −1 3 −4
1 0 −1 4
−3 1 0 −2
4 −4 2 0

 (10.49)

If Γ is the charge lattice of the G5 theory then the order of the 1-form symmetry group is
given by the absolute value of the Pfaffian of JG5 :∣∣∣G(1)

G5

∣∣∣ =
∣∣Pf (JG5

)
∣∣ = 6 (10.50)

Let us consider the states becoming massless on some codimension-1 singularity on the
Coulomb branch. We can parametrize the Coulomb branch of the N = 4 E6 SYM with
six complex scalars φi, i = 1, . . . , 6, with identifications given by the Weyl group of E6.
The Coulomb branch CG5

of the N = 3 G5 theory is given by the eigenspace of w with
eigenvalue eπi/3 and can be parametrized as follows as en embedding in CE6

:

CG5 =
(
φ3 − φ4, e

iπ/3φ3 + e−iπ/3φ4, φ3, φ4, e
2πi/3(φ4 − φ3),

√
3eiπ/6φ3 + 2e4πi/3φ4

)
(10.51)

The codimension-1 singularities of CG5
correspond to fixed points under the reflection of

G5 acting on this slice. As discussed in Section 10.1.1 can be obtained as the intersections
of the codimension-1 singularities of the E6 N = 4 SYM with the slice (10.51). As an
example consider the singularity HE6

s1 of CE6 corresponding to the fixed locus under s1,
the reflection along the first simple root of E6, which is the 5-dimensional hyperplane:

HE6
s1 =

{
(φ1, 2φ1, φ3, φ4, φ5, φ6) , φi ∈ C

}
(10.52)

The intersection of HE6
s1 with the slice CG5

gives a codimension-1 singularity HG5
s1 of the

Coulomb branch of the G5 theory:

HG5
s1 = HE6

s1 ∩ CG5

=

(
1, 2,

1

2

(
5− i

√
3
)
,

1

2

(
3− i

√
3
)
,−(−1)2/3,

1

2

(
3− i

√
3
))

φ3

(10.53)

The states that can become massless on HG5
s1 are those whose central charge Z vanish

identically on HG5
s1 . On a generic point φ of the Coulomb branch of E6 N = 4 SYM the
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central charge Z of a state with charge q is given by:

Z[q] =

6∑
i,j=1

φi (AE6)ij (ej + τmj) (10.54)

The central charges Z[q1] and Z[q3] of |α1, (1, 0)〉 and |α3, (1, 0)〉 identically vanish on
the singularity HG5

s1 , therefore the corresponding BPS states become massless on this

singularity. One can also check that the sublattice ΓH
G5
s1 of charges of states that become

massless on this singularity HG5
s1 is generated by q1 and q3. The lattice ΓH

G5
s1 should

correspond to the charge lattice of the rank-1 CFT supported on the singularity HG5
s1 .

The Dirac pairing restricted to the sublattice ΓH
G5
s1 , which we denote as JH

G5
s1 , has Pfaffin

given by: ∣∣∣∣Pf
(
JH

G5
s1

)∣∣∣∣ =
∣∣〈q1, q3〉

∣∣ = 3 (10.55)

Which should be equal to the order of the 1-form symmetry group of the rank-1 theory
supported on the singularityHG5

s1 . Then the theory on this singularity would be a rank-1
N ≥ 2 SCFT with a 1-form symmetry group of order 3. All the rank-1 theories with
N = 2 or higher supersymmetry have been classified, and such a theory does not exist.
In particular the maximum order of the 1-form symmetry group for a rank-1 N = 2
SCFT is 2. We conclude that the theory living on this singularity of Coulomb branch is
not a CFT, but rather a discrete gauging of free U(1) N = 4 Maxwell theory, which is
the only other possibility2. In particular this implies that there are no states becoming
massless on the singularity, therefore the states with charges lying on the sublattice ΓH

G5
s1

are not BPS.

As another example, consider the singularity corresponding to the reflection s6 along
the sixth root of E6. The locus of the singularityHG5

s6 can be parametrized as:

HG5
s6 =

(
1,

1

6

(
9− i

√
3
)
,

(
2− 2i√

3

)
,

(
1− 2i√

3

)
,−(−1)2/3,

(
1− i√

3

))
φ3 (10.56)

and the sublattice of charges becoming massless on this singularity is spanned by q6 and
(q2 + q3 − q1). The Dirac pairing restricted to this sublattice has Pfaffian equal to:∣∣∣∣Pf

(
JH

G5
s6

)∣∣∣∣ =
∣∣〈q6, q2 + q3 − q1〉

∣∣ = 6 (10.57)

Then the rank-1 CFT on this singularity should have a 1-form symmetry group of order
6. As was the case for the previous singularity, such a CFT does not exist, and the theory
on this singularity must be a discrete gauging of free U(1) N = 4 Maxwell theory. We
conclude that there are no states becoming massless on this singularity.

One can perform similar computations on all the singularities of the Coulomb branch of
the G5 N = 3 theory. It turns out that all the codimension-1 singularities are equivalent,
up to G5 transformations, either to HG5

s1 or to HG5
s6 . It follows that the rank-1 theories

supported on every codimension-1 singularities of the Coulomb branch CG5
are discrete

2Remember that the exceptional S-fold theory are maximally strongly coupled, therefore the theories living
on the singularities of the moduli space can not be IR-free theories.
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gaugings of free U(1) N = 4 Maxwell theory. Then there are no charged states be-
coming massless an any codimension-1 singularity, and the G5 theory itself must be a
discrete gauging of a free theory, namely free U(1)2 N = 4 gauge theory. Indeed, if any
charged state with charge q become massless at the origin of the Coulomb branch, which
is a codimension-2 singularity, then it satisfies the BPS bound and is massless when-
ever its central charge vanishes, namely on the codimension-1 hypersurface identified
by Z[q] = 0. As we just discussed there are no charged states that become massless on
any codimension-1 singularities, therefore there are no massless charged states on any
point of the Coulomb branch, including the origin. In Chapter 11 we give additional
evidence for this claim and show that it is in fact impossible to define a consistent charge
lattice on a Coulomb branch with geometry C2/G5.

10.2.3 The k = 4 S-fold: G8

In this Section we consider the exceptional S-fold SCFT obtained as a k = 4 S-fold of
the E6 (2, 0) six-dimensional theory, called the G8 SCFT. We find that the charge lattice
is not consistent with the stratification proposed in [5]. In more detail, our analysis sug-
gests that the theory supported on condimension-1 singularities in the Coulomb branch
is theN = 3 preserving Z4 gauging of SU(2)N = 4 SYM, while the constraints from the
central charge formulae are compatible with this theory being the rank-1 S4,4-fold SCFT.
Therefore we claim that the G8 theory is a discrete gauging of free U(1)2 N = 4 gauge
theory.

The Coulomb branch of the G8 theory is given by the solutions of (10.38) with w an
element of the Weyl group of E6:

w = (cE6)
3 (10.58)

which satisfies w4 = Id and has a two-dimensional eigenspace with eigenvalue eπi/2.
The N = 3 theory then has rank r = 2 and the degrees of invariants on the Coulomb
branch are given by the degrees of E6 that are divisible by 4, namely ∆i = 8, 12. The
Coulomb branch is given by C2/G8 whereG8 is the exceptional complex reflection group
with the correct degrees of invariants.

The states that are invariant under the S-fold action can be computed using (10.39),
(10.40). In particular the states obtained from the W-bosons corresponding to the simple
roots of E6 have charges:

q1 =
1√
2

(1,−1, 0, −2, 0, −2,−1,−1, 0, 0, 0, −2)

q2 =
1√
2

(0, 0, 1, −1, 0, −2, 0, −2,−1,−1, 0, 0)

q3 =
1√
2

(1,−1, 1, −1, 2, −2, 1, −1, 1, −1, 0, −2)

q4 =
1√
2

(−1,1, 0, 2, 0, 2, 1, 1, 0, 0, 0, 2)

q5 =
1√
2

(0, 0, −1, 1, 0, 2, 0, 2, 1, 1, 0, 0)

q6 =
1√
2

(0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 2, 2)

(10.59)

Notice that q4 = −q1 and q5 = −q2, therefore these charges span a four-dimensional
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lattice. By computing the charges of the states obtained from the magnetic monopoles
of the E6 N = 4 theory and by linearity argument one shows that the candidate Γ for
charge lattice Γ of the G8 theory is:

Γ = SpanI {q1, q2, q3, q6} (10.60)

The charge lattice in the basis {q1, q2, q3, q6} is represented by the matrix JG8
:

JG8 =


0 1 −1 2
−1 0 1 −2
1 −1 0 2
−2 2 −2 0

 (10.61)

And the order of the 1-form symmetry group is given by:∣∣∣G(1)
G8

∣∣∣ =
∣∣Pf (JG8

)
∣∣ = 2 (10.62)

Next we can study the sublattices of charges of states becoming massless at codimension-
1 singularities. All the codimension-1 singularities are related byG8 transformations and
the slices transverse to these singularities are locally C/Z4. Furthermore through similar
computations to the ones spelled out in the previous section one finds that the charge
lattice of the rank-1 theory supported on these singularities is generated by two charges
Q1 and Q2 with |〈Q1, Q2〉| = 2. Then the rank-1 theory supported on the codimension-1
singularities is a N ≥ 2 SCFTs with Coulomb branch C/Z4 and a non-trivial Z2 1-form
symmetry. The only candidate is the N = 3 preserving Z4 descrete gauging of N = 4
SU(2) SYM [269]. This is in contradiction with the analysis of the central charge of
the G8 theory performed in [217, 5], where the theory supported on the codimension-1
singularities was found to be the rank-1 S4,4-fold SCFT, denoted also as S(1)

∅,4. Let us
briefly review this analysis.

Assuming that the G8 theory is not a discrete gauging, the central charges a = c can be
computed with the Shapere-Tachikawa formula [268]:

2(2a− c) =

r∑
j=1

∆j −
r

2
(10.63)

where ∆i are the degrees of the fundamental invariants on the Coulomb branch. In the
case of the G8 theory we have {∆1,∆2} = {8, 12}. On the other hand the formulae of
[218, 210] allow us to relate the central charges of the G8 theory with the data of the
rank-1 theories supported on the codimension-1 singularities:

12c = 2r + hECB +
∑
i∈I

∆sing
i bi (10.64)

where bi is a quantity associated with the rank-1 theory supported on the codimension-1
singularities as follows:

bi :=
12ci − hi − 2

∆i
(10.65)

In our theory we have hECB = r = 2 and the set I of strata consist of only one singularity
with scaling dimension ∆sing = l.c.m.(8, 12) = 24 and parameter b. Then, remembering



Exceptional S-folds and discrete gauging 201

that a = c for any N = 3 theory, one may solve for b and finds:

b =
9

2
(10.66)

which is compatible with the rank-1 fluxfull S4-fold SCFT. In contrast, if the theory sup-
ported on the codimension-1 singularities was a discrete gauging of SU(2) N = 4 SYM,
we would have bSU(2) = 3.

We found that the charge lattice (10.60) is incompatible with analysis of the central
charges performed via the stratification of the Coulomb branch3. Therefore we claim
that charged states can not become massless on the singularities of the Coulomb branch.
Similar to the case of the G5 theory, studied in Section 10.2.2, we thus conclude that the
G8 theory is not an interacting SCFT but rather a discrete gauging of free U(1)2 N = 4
gauge theory. In Chapter 11 we will give additional evidence for this claim by showing
that any well defined charge lattice on the Coulomb branch C2/G8 is only compatible
with having (a discrete gauging of) SU(2) N = 4 SYM supported on the codimension-1
singularities.

10.2.4 The k = 3 S-fold: G25

In this section we study the theory obtained with a k = 3 exceptional S-fold from the E6

(2, 0) six-dimensional theory, denoted as theG25 theory. By similar argument to the ones
spelled out in the previous cases we find that this theory is a discrete gauging of U(1)3

N = 4 gauge theory. In particular the charge is incompatible with any choice of rank-1
SCFTs on the codimension-1 singularities of the Coulomb branch.

The Coulomb branch and charge lattice can be found respectively with (10.38) and (10.40)
with:

w = (cE6)
4 (10.67)

which satisfies w3 = Id and has a three-dimensional eigenspace with eigenvalue e2πi/3.
The N = 3 theory then has rank r = 3 and the degrees of invariants on the Coulomb
branch are given by the degrees of E6 that are divisible by 3, namely ∆i = 6, 9, 12. The
Coulomb branch is given by C3/G25 where G25 is the exceptional complex reflection
group with the correct degrees of invariants.

The lattice of electromagnetic charges associated to the rank-1 theory supported on the
codimension-1 singularities can be computed with the techniques spelled out in the pre-
vious Sections. The result is that these lattices are generated by two charges Q1 and Q2

with 〈Q1, Q2〉 = 3, indicating that the rank-1 theory on these singularity should have a
1-form symmetry group of order 3. This is not possible and we conclude that the theory
on the codimension-1 singularity is a discrete gauging of N = 4 Maxwell theory. There-
fore the G25 theory itself must be a discrete gauging of free U(1)3 N = 4 gauge theory,
because charged states can not become massless anywhere on the Coulomb branch. In
Chapter 11 we give additional evidence for this claim and show that it is impossible to
define a consistent charge lattice on a Coulomb branch C3/G25.

3Another possibility is that the Shapere-Tachikawa formula does not hold for the G8 theory. In that case
the G8 theory could be an interacting SCFT with 12c = 78. We do not consider this possibility further in this
paper and trust the Shapere-Tachikawa formula for any theory that is not a discrete gauging.
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E7

k w r ECCRG ∆i

3 (cE7)
6 3 G26 {6, 12, 18}

4 (cE6
)
3 2 G8 {8, 12}

6 (cE7)
3 3 G26 {6, 12, 18}

Table 10.4 Elementsw ∈ W [E7] that characterize the S-fold actions for the S-fold theories
of type E7 through (10.38) and (10.39). Here cE7

and cE6
are the Coxeter element of E7

and the E6 subalgebra, respectively, r is the rank of the S-fold theory and in the fourth
and fifth columns the exceptional complex crystallographic reflection group (ECCRG)
associated to the S-fold theories and its degrees ∆i are reproduced.

10.2.5 S-folds from the (2, 0) E7 theory

In this section we consider the exceptional S-fold theories obtained from the (2, 0) six
dimensional theory of type E7. All the techniques that we use were spelled out in de-
tails in Section 10.1 and were applied to the E6 case in Section 10.2.1. Therefore in this
section we will only provide the informations that define the S-fold projection, namely
the element w ∈ W [E7], and the final results. The main result is that all the exceptional
S-folds SCFTs obtained from the E7 theories are discrete gauging of free U(1)r N = 4
gauge theory, where r is the rank of the theory, see Table 10.4.

We work in a basis of the algebraE7 given by simple roots αi such that the Cartan matrix
is the one in Figure 10.1. The reflections along the simple roots are denoted as si and the
corresponding Coxeter element of E7 is:

cE7 =

7∏
i=1

si =



0 0 0 1 0 −1 −1
1 0 0 1 0 −1 −1
0 1 0 1 0 −1 −1
0 0 1 1 0 −1 −1
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0
0 0 0 1 0 0 −1


(10.68)

which satisfies:
(cE7

)
18

= 1 (10.69)

In defining the elementsw involved in the S-fold projections we will also use the Coxeter
element of the E6 subalgebra:

cE6
=

7∏
i=2

si =



1 0 0 0 0 0 0
1 0 0 1 0 −1 −1
0 1 0 1 0 −1 −1
0 0 1 1 0 −1 −1
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0
0 0 0 1 0 0 −1


(10.70)

which satisfies:
(cE6

)
12

= 1 (10.71)
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The degrees and codegrees of E7 are tabulated in Table 10.2. Let us now consider the
exceptional S-fold theories parametrized with k = 3, 4, 6.

• Case k = 3, G26: The Coulomb branch and charge lattice can be computed with
(10.38) and (10.39) respectively with:

w = (cE7)
6 (10.72)

The theory is a rank 3 SCFT with Coulomb branch C3/G26 where G26 is the EC-
CRG with degrees 6,12 and 18. There are two independent codimension-1 singu-
larities that correspond to two rank-2 Coulomb branches with geometry C2/G5

and C2/G(3, 1, 2), respectively. The slice transverse to the G5 singularity is C/Z2

while the slice transverse to the G(3, 1, 2) singularity is C/Z3. One can compute
the order of the 1-form symmetry groups of the rank-1 theories supported on these
singularities from the charge lattice, and we find:

Z2 singularity: G(1) = Z2 Z3 singularity: G(1) = Z3 (10.73)

There is no rank-1N = 2 SCFT with a Z3 1-form symmetry, therefore we conclude
that the Z3 singularity is empty and supports a discrete gauging of free U(1)N = 4
Maxwell theory. Comparing with the analysis of the central charges performed in
[5] the only option is that the Z2 singularity is empty as well and therefore the G26

theory is itself a discrete gauging of free U(1)3 N = 4 gauge theory.

• Case k = 4, G8: The Coulomb branch and charge lattice can be computed with
(10.38) and (10.39) respectively with:

w = (cE6)
3 (10.74)

The theory is a rank 2 SCFT with Coulomb branch C3/G8 where G8 is the EC-
CRG with degrees 8 and 12. This theory is believed to be the same theory as the
exceptional S-fold SCFT of type E6 with k = 4 studied in Section 10.2.3. The rank-
1 theory supported on the codimension-1 singularity has a Z2 1-form symmetry.
Then following the same arguments as in Section 10.2.3 we find that this theory
must be a discrete gauging of free U(1)2 N = 4 gauge theory.

• Case k = 6, G26: The Coulomb branch and charge lattice can be computed with
(10.38) and (10.39) respectively with:

w = (cE7
)
3 (10.75)

The theory is a rank 3 SCFT with Coulomb branch C3/G26 whereG26 is the ECCRG
with degrees 6,12 and 18. Performing the same computations as in the k = 3 case
we find that this theory must be a discrete gauging of free U(1)3 N = 4 gauge
theory as well.

We argued that all the exceptional S-fold theories of typeE7 are not interacting SCFTs but
rather discrete gauging of free theories. In Chapter 11 we will give additional evidence
for this claim by showing that it is not possible to define a consistent charge lattice on
the Coulomb branches of these theories.
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E8

k w r ECCRG ∆i

3 (cE8)
10 4 G32 {12, 18, 24, 30}

4
(
cE8(s7s8)−1cE8cE8(s7s8)−1

)6 4 G31 {8, 12, 18, 24}
6 (cE8

)
5 4 G32 {12, 18, 24, 30}

Table 10.5 Elementsw ∈ W [E8] that characterize the S-fold actions for the S-fold theories
of type E8 through (10.38) and (10.39). Here cE8

is the Coxeter element of E8, si are the
reflection along the i-th simple root, r is the rank of the S-fold theory and in the fourth
and fifth columns the exceptional complex crystallographic reflection group (ECCRG)
associated to the S-fold theories and its degrees ∆i are reproduced.

10.2.6 S-folds from the (2, 0) E8 theory

In this section we consider the exceptional S-fold theories obtained from the (2, 0) six
dimensional theory of type E8. Our main result is that the exceptional S-folds SCFTs
obtained from the E8 theories with k = 3, 6 are discrete gauging of free U(1)r N = 4
gauge theory, where r is the rank of the theory, see Table 10.5. On the other hand, the
exceptional S-fold SCFT of type E8 with k = 4, also known as the G31 theory, passes all
consistency checks, therefore we expect it to be a non-trivial interacting N = 3 SCFT.
Considering also our results for the exceptional S-fold theories of type E6 and E7 the
G31 theory is the only exceptional S-fold SCFT of type E which is a proper interacting
theory. We also compute the 1-form symmetry group of the G31 theory and find it to be
trivial.

We work in a basis of the algebraE8 given by simple roots αi such that the Cartan matrix
is the one in Figure 10.1. The reflections along the simple roots are denoted as si and the
corresponding Coxeter element of E8 is:

cE8
=

8∏
i=1

si =



0 0 0 0 1 0 −1 −1
1 0 0 0 1 0 −1 −1
0 1 0 0 1 0 −1 −1
0 0 1 0 1 0 −1 −1
0 0 0 1 1 0 −1 −1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 −1 0
0 0 0 0 1 0 0 −1


(10.76)

which satisfies:
(cE8

)
30

= 1 (10.77)

• Case k = 3 or 6, G32: The exceptional S-folds of type E8 with k = 3 and k = 6
give rise to the same field theory. The Coulomb branch and charge lattice can be
computed with (10.38) and (10.39) respectively with:

w =

{
(cE8

)
10
, k = 3

(cE8)
5
, k = 6

(10.78)

The Coulomb branch is C4/G32 with G32 the ECCRG with degrees 12,18,24 and 30.
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There is only one codimension-1 singularity up to G32 transformation. The trans-
verse slice to this singularity is C/Z3 and the 1-form symmetry group of the theory
supported on this singularity is Z3. There is no rank-1 N = 2 theory compatible
with a C/Z3 Coulomb branch and with a Z3 1-form symmetry group, therefore this
singularity must be empty. Then the G32 theory itself must be a discrete gauging
of free U(1)4 N = 4 gauge theory.

• Case k = 4, G31: The Coulomb branch of the S-fold theory of type E8 with k = 4
can be computed with (10.38) where:

w =
(
cE8

(s7s8)
−1
cE8

cE8
(s7s8)

−1
)6

(10.79)

The Coulomb branch is C4/G31 where G31 is the ECCRG with degrees 8,12,20 and
24. Notice that in order for the S-fold theory to be rank 4, w must have a four
eigenvalues i. w is real, therefore it must also have four eigenvalues −i, and thus
w2 = −1. Then one can consider the states:

|α, (p, q)〉short =
1√
2

1∑
t=0

∣∣∣wt · α; (ρ4)
t · (p, q)

〉
(10.80)

where α is a root of E8. The states (10.80) are invariant under the S-fold action for
any α and (p, q), therefore we consider the charge lattice Γ spanned by the charges
of the states (10.80). A basis for this lattice is given by the charges qi of the states
|αi, (1, 0)〉short obtained from the W-bosons associated with the simple roots αi of
E8 with i = 1, . . . , 8:

q1 =
1√
2

(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0)

q2 =
1√
2

(0,−1, 1, −2, 0, −3, 0, −4, 0, −5, 0, −4, 0 ,−2 0, −2)

q3 =
1√
2

(0, 1, 0, 2, 1, 3, 0, 4, 0, 4, 0, 3, 0, 1, 0, 2)

q4 =
1√
2

(0, 0, 0, −1, 0, −2, 1, −2, 0, −2, 0, −1, 0, 0, 0, −1)

q5 =
1√
2

(0,−1, 0, −1, 0, −1, 0, −2, 1, −3, 0, −2, 0, −1, 0, −2)

q6 =
1√
2

(0, 0, 0, 1, 0, 1, 0, 2, 0, 3, 1, 2, 0, 1, 0, 2)

q7 =
1√
2

(0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

q8 =
1√
2

(0, 1, 0, 1, 0, 2, 0, 3, 0, 4, 0, 2, 0, 1, 1, 2)

(10.81)
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The Dirac pairing JG31
in this basis can be computed with (10.41):

JG31 =



0 0 0 1 −1 −1 1 1
0 0 0 0 0 1 0 −1
0 0 0 −1 1 −1 1 0
−1 0 1 0 0 0 −1 0
1 0 −1 0 0 0 0 1
1 −1 1 0 0 0 0 −1
−1 0 −1 1 0 0 0 0
−1 1 0 0 −1 1 0 0


(10.82)

The order of the 1-form symmetry group of the G31 is given by the absolute value
of the Pfaffian of JG31 : ∣∣∣G(1)

∣∣∣ =
∣∣Pf (JG31)

∣∣ = 1 (10.83)

Therefore the G31 theory has trivial 1-form symmetry.

Let us now consider the stratification of the Coulomb branch C4/G31. There is
one codimension-1 singularity up to G31 transformations and the sublattice of Γ
corresponding to the states becoming massless on this singularity is compatible
with SU(2) N = 4 SYM. The transverse slice to this singularity is C/Z2 which
is compatible with the Coulomb branch of SU(2) N = 4. This stratification is
consistent with the central charge formulae of [218], as already checked in [5]. We
briefly review the relevant computations here for ease of readibility. The Shapere-
Tachikawa formula with a = c allow us to compute the central charges:

2c =

r∑
j=1

∆j −
r

2
= 8 + 12 + 20 + 24− 2 = 62 (10.84)

While the formulae of [218] relate the central charges with data of the theory sup-
ported on the codimension-1 singularity. For the G31 theory this formula reads:

12c = 3r + ∆singb = 12 + 120b (10.85)

where ∆sing = lcm(∆i) is the scaling dimension of the codimension-1 singularity
and b is associated to the data of the rank-1 theory supported on this singularity by
(10.65). Solving for b we find:

b = 3 (10.86)

which is consistent with having SU(2) N = 4 SYM as the theory supported on the
codimension-1 singularities.

To summarize, we have found that the exceptional S-fold theories of type E8 with k =
3, 6 are discrete gauging of free theories. The exceptional S-fold theory of type E8 with
k = 4, denoted as the G31 theory, passes all the consistency checks that we have at our
disposal. We are then lead to claim that the G31 theory is the only exceptional S-fold
theory of type E that is a proper interacting SCFT. We have also found that the 1-form
symmetry group of the G31 theory is trivial.



CHAPTER 11

Charge lattices in N = 2 SCFTs with κ 6= {1, 2}

One of the main features of S-fold SCFTs it that they are maximally strongly coupled the-
ories. This means that whenever a charged state become massless then another charged
state which is mutually non local with respect to the first one becomes massless as well.
Then at any non-generic point of the Coulomb branch the low energy theory is strongly
coupled and does not admit a conventional lagrangian description. On the one hand
this fact renders the study of S-fold SCFTs challenging, because the only vacua where
perturbative techniques are viable are the most generic points of the Coulomb branch,
where the low energy theory is simply U(1)r with no massless charged states. On the
other hand, as was shown in [217], maximally strongly coupled theories have to satisfy
a series of non-trivial constraints, and are quite restricted as a result. Motivated by the
results of [217] in this Section we study the charge lattices of a large class ofN = 2 SCFTs
that are maximally strongly coupled, namelyN = 2 SCFTs with characteristic dimension
κ 6= {1, 2}. All the regular and exceptional S-fold SCFTs belong to this class of theories
except for the known cases where SUSY enhances to N = 4 [199].

For the rest of this Chapter we only consider interacting rank-r SCFTs with κ 6= {1, 2}.
Our main results are:

Claim A: The order of the 1-form symmetry group G(1) of an N = 2 rank-2 SCFT with
κ 6= {1, 2} satisfies 1 ≤

∣∣∣G(1)
∣∣∣ ≤ 4. The upper bound can only be saturated by

stacks of lower rank theories.

Claim B: An N = 2 SCFT with κ 6= {1, 2} and rank r ≥ 2 that is not a stack of lower rank
theories must have at least one codimension-1 singularity that supports (a discrete
gauging of) N = 2∗ SU(2) SYM.

We also apply the techniques that we develop to the exceptional S-fold theories, which
provides an independent argument for claiming that most of these theories are not in-
teracting SCFTs.

Let us review the definitions and results of [217] that will be useful in this Section. The
characteristic dimension of an N = 2 SCFT is defined as follows. Write the degrees of
Coulomb branch invariants ∆i as:

(∆1, . . . ,∆N ) = λ(d1, . . . , d2), di ∈ Z, gdc(d1, . . . , dN ) = 1 (11.1)

207
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Then the characteristic dimension is defined as:

κ =
1

{λ−1}
(11.2)

where {x} is defined as the unique real number such that {x} = x mod 1 and 0 < {x} ≤
1. The characteristic dimension can only take eight values κ ∈ {1, 6/5, 4/3, 3/2, 2, 3, 4, 6}.
An SCFT with κ 6= {1, 2} is maximally strongly coupled and for any state with charge
q, central charge Z[q] 6= 0 there is another state with charge p and central charge Z[p] =
ζZ[q] where:

ζ =


e2πi/3 κ = 3, 3/2
i κ = 4, 4/3
e2πi/6 κ = 6, 6/5

(11.3)

therefore the charge lattice Γ is mapped to a lattice Z[ζ]r by the central charge Z. The
Dirac pairing between two charges p and q can be written as:

〈q, p〉 =
1

ζ − ζ
(
H(q, p)−H(p, q)

)
(11.4)

here and in the remainder of this Section, with an abuse of notation, we denote with
the same symbol the electromagnetic charges in Γ and the corresponding element in the
lattice Z[ζ]r. Here H is a positive definite Hermitian form:

H : Z[ζ]r × Z[ζ]r → Z[ζ] (11.5)

An important implication of having κ 6= {1, 2} is that when a state with charge q be-
comes massless then also a state with charge p = ζq becomes massless. Then we can
always choose a basis of the lattice of charges becoming massless at a codimension-1
singularity that is of the form {q, ζq}.

11.1 1-form symmetries of rank-2 N = 2 SCFTs with κ 6= {1, 2}

Consider a rank-2 N = 2 SCFTs with κ 6= {1, 2}. We choose a basis of the charge lattice
Γ of the form {q1, ζq1, q2, ζq2}:

Γ = SpanZ{q1, ζq1, q2, ζq2} (11.6)

Were q1 and ζq1 become massless at some codimension-1 singularity H1 and q2 and ζq2

become massless at some other codimension-1 singularityH2. q1 and q2 must be linearly
independent for Γ to have dimension 4.

An interesting quantity to consider is the absolute value of the Pfaffian of the Dirac
pairing J , which is an invariant of the charge lattice and intuitively tells us how sparse
the charge lattice is. More precisely in [231] it was shown that this quantity is equal
to the order of the 1-form symmetry group, which in turn is related to how much the
charge lattice can be refined without breaking the Dirac quantization condition. The
number of charges that can be added in the fundamental domain of the charge lattice
while preserving the Dirac quantization condition is given by

∣∣Pf (J)
∣∣minus 1.

Consider the rank-1 theory Ti supported on the codimension-1 singularityHi. Its charge
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lattice is spanned by {qi, ζqi} and the Dirac pairing JHi is such that:

∣∣Pf (JHi)
∣∣ =

∣∣∣∣∣Pf
(

0 〈qi, ζqi〉
−〈qi, ζqi〉 0

)∣∣∣∣∣ =
∣∣〈qi, ζqi〉∣∣ = H(qi, qi) (11.7)

where in the last equality we used (11.3). Ti is an N = 2 rank-1 SCFT, therefore the 1-
form symmetry is either Z2, if this theory is (a discrete gauging of) N = 2∗ SU(2) SYM,
or trivial in any other case. Therefore we found:

H(qi, qi) =

{
2 Ti is (a discrete gauging of) N = 2∗ SU(2) SYM
1 otherwise

(11.8)

Now let us compute the Pfaffian of the Dirac pairing J (2) of the rank-2 theory itself. We
find:

∣∣∣∣Pf
(
J (2)

)∣∣∣∣ =

∣∣∣∣∣∣∣∣Pf


0 〈q1, ζq1〉 〈q1, q2〉 〈q1, ζq2〉

〈ζq1, q1〉 0 〈ζq1, q2〉 〈ζq1, ζq2〉
· · · · · · 0 〈q2, ζq2〉
· · · · · · 〈ζq2, q2〉 0


∣∣∣∣∣∣∣∣

=
∣∣〈q1, ζq1〉 〈q2, ζq2〉 − 〈q1, q2〉 〈ζq1, ζq2〉+ 〈ζq1, q2〉 〈q1, ζq2〉

∣∣
=H(q1, q1)H(q2, q2)−

∣∣H(q1, q2)
∣∣2

(11.9)

where we dropped the absolute value in the last line because the Cauchy-Shwarz in-
equality ensures that the last expression is positive. We are now able to determine upper
and lower bounds for this quantity:

1 ≤
∣∣∣∣Pf
(
J (2)

)∣∣∣∣ ≤ H(q1, q1)H(q2, q2) ≤ 4 (11.10)

The first inequality holds because the Dirac pairing is integer and non-degenerate, while
the last inequality follows from the analysis of the rank-1 theories supported on the
codimension-1 singularities (11.8). The inequality:∣∣∣∣Pf

(
J (2)

)∣∣∣∣ ≤ H(q1, q1)H(q2, q2) (11.11)

is saturated only if H(q1, q2) vanishes. Then in order to have a rank-2 SCFT with κ 6=

{1, 2}with
∣∣∣∣Pf
(
J (2)

)∣∣∣∣ = 4 it is necessary that for every choice of codimension-1 singular-

itiesH1,H2 the theories supported on the singularities is (a discrete gauging of )N = 2∗

SYM and that H(q1, q2) = 0. This means that, for every choice of H1,H2, the charges
becoming massless onH1 are mutually local with respect to the charges becoming mass-
less on H2. The rank-2 theory then must be a stack of the rank-1 theories supported on
Hi. We are not interested in theories that are stacks of lower rank theories, therefore we
can drop the equal sign in (11.11), and (11.10) reduces to:

1 ≤
∣∣∣∣Pf
(
J (2)

)∣∣∣∣ ≤ 3 (11.12)
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As already discussed the absolute value of the Pfaffian of the Dirac pairing is equal to
the order of the 1-form symmetry group, therefore we find our first claim:

Claim A: The order of the 1-form symmetry group G(1) of an N = 2 rank-2 SCFT with
κ 6= {1, 2} satisfies 1 ≤

∣∣∣G(1)
∣∣∣ ≤ 4. The upper bound can only be saturated by

stacks of lower rank theories.

Consider now a theory where H(qi, qi) = 1 for every choice of Hi. As we just discussed
equation (11.11) is only saturated for rank-2 theories that are stacks of rank-1 theories.
Then for a N = 2 rank-2 SCFT with κ 6= {1, 2} that is not a stack of lower rank theories
we have:

1 ≤
∣∣∣∣Pf
(
J (2)

)∣∣∣∣ < 1 (11.13)

This is a contradiction and signals that on such a Coulomb branch it is not possible to
define a consistent charge lattice. We can then formulate our second claim in the case of
rank-2:

Claim B’: A rank-2 N = 2 SCFT with κ 6= {1, 2} that is not a stack of lower rank theories
must have at least one codimension-1 singularity that supports (a discrete gauging
of) N = 2∗ SU(2) SYM.

As we will see in the next Section this second claim generalizes to arbitrary rank.

In the context of N = 3 exceptional S-fold SCFT the second claim already rules out
some of the Coulomb branch geometries. The most straightforward to study are the G5

theory that we studied in Section 10.2.2 as well as the G4 theory that can be constructed
from the D4 (2, 0) six-dimensional theory with an S-fold procedure in the presence of an
outer automorphism twist. Both these theories are maximally strongly coupled and only
have codimension-1 singularities with a transverse slice C/Z3, which can not support a
discrete gauging of N = 2∗ SU(2) SYM.

The G8 theory, studied in Section 10.2.3, is more subtle. There is one codimension-1
singularity with transverse slice C/Z4. Our second claim then imposes that the theory
supported on this singularity is a Z4 gauging of N = 4 SU(2) SYM. On the other hand
the analysis of the central charges with the formulae of [218] is not consistent with this
choice, as already computed in [5] and as we discussed in Section 10.2.3. To summarize,
we find that the exceptional S-fold theories G4, G5 and G8 can not be interacting SCFTs
because it is not possible to define a consistent charge lattice on their Coulomb branches.
Therefore these theories must be discrete gaugings of free U(1)r N = 4 gauge theories,
which is the only other possibility.

11.2 A constraint for the stratification of N = 2 SCFTs

Consider a rank-r N = 2 SCFT with κ 6= {1, 2} such that the rank-1 theories supported
on all codimension-1 singularities are SCFTs with trivial 1-form symmetries. We can
choose a basis of the charge lattice Γ such that:

Γ = SpanZ{q1, ζq1, . . . , qr, ζqr} (11.14)
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where qi and ζqi become massless at some codimension-1 singularity Hi and generate
the charge lattice of the rank-1 theory supported there. Then we have:

H(qi, qi) = 1 ∀i = 1, . . . , r (11.15)

because H(qi, qi) is equal to the order of the 1-form symmetry group of the theory sup-
ported on Hi, which is trivial by hypotesis. The Chaucy-Schwarz inequality together
with the fact that all the qi are linearly independent imposes:∣∣H(qi, qj)

∣∣2 < H(qi, qi)H(qj , qj) = 1 ∀i 6= j (11.16)

On the other hand
∣∣H(qi, qj)

∣∣2 must be an integer because it can be written as an integer
linear combination of Dirac pairings:∣∣H(qi, qj)

∣∣2 =
〈
qi, qj

〉 〈
ζqi, ζqj

〉
−
〈
ζqi, qj

〉 〈
qi, ζqj

〉
(11.17)

Then
∣∣H(qi, qj)

∣∣2 must vanish and H(qi, qj) vanishes as well as a consequence. The re-
sulting Dirac pairing matrix is block diagonal with only 2× 2 blocks:

J (r) = diag

{(
0 1
−1 0

)
,

(
0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)}
(11.18)

This is the case for every choice of codimension-1 singularities Hi, therefore the states
becoming massless at any singularity Hi are mutually local with respect to the states
becoming massless at any other singularity. Then the rank-r theory must be a stack of
r rank-1 theories. Therefore in order to have a rank-r SCFT that is not a stack of lower
rank theories, one must allow for codimension-1 singularities Hi that support either (a
discrete gauging of) N = 2∗ SU(2) SYM, which would imply that H(qi, qi) = 2, or an
IR-free theory. This is our second claim:

Claim B: An N = 2 SCFT with κ 6= {1, 2} and rank r ≥ 2 that is not a stack of lower rank
theories must have at least one codimension-1 singularity that supports (a discrete
gauging of) N = 2∗ SU(2) SYM.

The second claim provides additional evidence for the results that we obtained in Chap-
ter 10, summarized in Table 10.1. There we showed that the charge lattice of most of the
exceptional S-fold SCFTs of type Er are not consistent, and therefore those theories must
be discrete gaugings of free theories. Now we show that the same conclusions can be
derived by applying claim B to the CB stratification of exceptional S-folds, computed in
[5]. This argument will actually provide a stronger result regarding exceptional S-fold
SCFTs: not only the charge lattices computed in Chapter 10 are inconsistent, but it is
not possible to define any consistent charge lattice on the CB geometries of exceptional
S-fold SCFTs of type Er, with the exception of the G31 theory.

Claim B directly rules out the exceptional S-fold theories G25 and G32 as possible inter-
acting SCFTs. Indeed in both cases all codimension-1 singularity have transverse slice
C/Z3 which can not support a discrete gauging of N = 2∗ SU(2) SYM, and both theo-
ries are maximally strongly coupled and can not have IR-free theories supported on any
singularity. In the case of the G26 theory, studied in Section 10.2.5, there is only one sin-
gularity with transverse slice C/Z2 which could support N = 2∗ SU(2) SYM, while the
other singularity has transverse slice C/Z3. However, as computed in [5] and discussed
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above, this choice is inconsistent with central charge formulae of [218]. To summarize,
we find that the G25, G26 and G32 theories can not be interacting SCFTs because it is not
possible to define a consistent charge lattice on their Coulomb branches. Therefore these
theories must be discrete gaugings of free theories, which is the only other possibility.

The only exceptional S-fold SCFT obtained from the (2, 0) En six-dimensional theories
that satisfies our constraint is the G31 theory. This is the SCFT obtained from the E8

(2, 0) theory with an exceptional S-fold of order k = 4. The Coulomb branch is C4/G31

and has one codimension-1 singularity with transverse slice C/Z2. Our constraint then
imposes that the rank-1 theory supported on this singularity is SU(2)N = 4 SYM, which
is consistent with the analysis of the central charges performed in [5]. We claim that this
theory is a proper interacting rank-4 SCFT, but it must be noted that the possibility of
having a discrete gauging of U(1)4 N = 4 gauge theory is also consistent with all the
constraints that are available. To solve this ambiguity it would be desirable to analyze
the spectrum of charged operators directly from the M-theory setup of [200], but we
leave this problem to future work.

11.2.1 Other exceptional S-folds

In this thesis we have analyzed the exceptional S-fold theories obtained from the (2, 0)
En six-dimensional theories, but it is also possible to define similar M-theory setups
involving the (2, 0) Dn theories, with or without outer automorphism twists, and gener-
alizations to non-simply laced algebras have also been considered. We leave the detailed
analysis of the charge lattices of the resulting theories to future work, but we can easily
check if the Coulomb branches of such theories, computed in [5], satisfy our consistency
conditions.

The Coulomb branches of the S-fold SCFTs obtained from the (2, 0) Dn theories are
Cr/G(k,m, r) for k = 4, 6 and m a divisor of k. In all these cases there is at least one
codimension-1 singularity with transverse slice C/Z2 which can support SU(2) N = 4
SYM, therefore these theories satisfy our consistency condition.

The case of non-simply laced algebra generates one Coulomb branch geometry that does
not appear in the exceptional S-fold theories of type En and Dn, namely C2/G12. Here
G12 is the exceptional complex reflection group with degrees 6 and 8. In this geometry
there are codimension-1 singularity with transverse slice C/Z2 that can support SU(2)
N = 4 SYM, therefore this theory satisfies our consistency checks.

As already discussed in [5] there are four possible geometries associated to ECCRGs
that do not appear in any known construction but are consistent Coulomb branches for
putativeN = 3 SCFTs. These geometries are C3/G24, C4/G29, C5/G33 and C6/G34 where
Gi are ECCRGs. In all cases there are codimension-1 singularities that have transverse
slice C/Z2 and could support SU(2) N = 4 SYM, therefore all these Coulomb branches
satisfy our consistency condition.

11.3 Discussion and conclusions

In this and in the previous Chapters we studied the exceptional S-fold SCFTs discovered
in [200] and their associated charge lattices. In Chapter 10 we analyzed explicitly all
the exceptional S-folds of type Er, computing their charge lattices by generalizing the
techniques of [5]. Furthermore we considered the sublattices of charges that become
massless at codimension-1 singularities of the Coulomb branch. By comparing these
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charges with the charge lattices of rank-1 N = 2 SCFTs we showed that some of the
exceptional S-fold SCFTs can not be interacting theories because their charge lattice in
not consistent. For exceptional S-folds of typeEr the only theory that admits a consistent
charge lattice is the S-fold of type E8 with k = 4, called the G31 theory. Thus we claimed
that the G31 theory is an interacting SCFT, while all the other S-folds of type Er are
discrete gauging of free theories.

In this Chapter we provided additional evidence for this claim by studying the charge
lattice of N = 2 SCFTs with characteristic dimension κ 6= {1, 2}. By exploiting the re-
sults and the formalism developed in [217] we computed an upper bound for the 1-form
symmetries of rank-2 theories withN = 2, denoted as Claim A throughout this Chapter,
and we found a consistency constraints for the Coulomb branch stratification for such
SCFTs at any rank, denoted as Claim B throughout this Chapter. When applied to the
case of exceptional S-fold SCFTs this constraint, in combination with other constraints
from [218], shows that all the S-folds of type Er do not admit a consistent charge lattice
except for the G31 theory.

There are multiple directions our work can be extended towards. As we already com-
mented in main body of Chapter 10 theG31 theory passes all our consistency checks, but
this does not guarantee that this theory is indeed an interacting SCFT and it may be a
discrete gauging of a free theory. A possible way to determine whether this is the case
would be to compute the 2-form symmetries of this theory directly from the M-theory
construction along the lines of [237]. Indeed if the 2-form symmetry group is not trivial
and can be gauged then the G31 theory should be a discrete gauging of some “parent”
theory. A similar approach was adopted in [199] to understand the presence of discrete
gauging in regular S-folds.

Our results on N = 2 SCFTs with κ 6= {1, 2} could be expanded upon in different direc-
tions. It would be nice to generalize Claim A to arbitrary ranks, and understand wether
a bound for the 1-form symmetry group exists also at higher ranks. Another interesting
perspective would be to relax the condition on the characteristic dimension, and study
theories with κ equal to 1 or 2. This would require a different set of tools than the ones
we used in this Chapter, for example considering the monodromies around Coulomb
branch singularities along the lines of [209, 206, 223]. Recently a new relation between
1-form symmetries of N = 2 SCFTs and Seiberg-Witten curves has been investigated
[232], and it would be interesting to understand what are the connections (if any) with
our results.





Future directions

In this Chapter we summarize and expand on the possible future directions the work
presented in this thesis can be expanded towards. Some of the possible future directions
suggested here are currently being explored by the author and collaborators.

3d dualities and integral identities: The analysis of 3d dualities spelled out in Chap-
ters 3 and 4 can be generalized by considering different matter content, superpoten-
tial and gauge groups. Furthermore, there is a close relationship between the study
of 3d N = 2 QFTs and the integral identities between their partition functions on the
squashed three-sphere. This allowed us to exploit the duplication formula to study and
predict new IR dualities in Chapter 4. On the other hand, it would be nice to under-
stand wether the duplication formula has a general physical interpretation. The dupli-
cation formula can be applied to obtain identities involving SO(N) gauge groups start-
ing from USp(2N) gauge groups, and it would be interesting to understand wether
this is only a mathematical trick or if it reflects some physical phenomena.

Webs of 3d dualities: IR dualities can often be related by RG flows and/or dimen-
sional compactification, as we explored in details in Chapter 3 for a class of theories
with D-type superpotential. Then a natural question is to understand which dualities
are related in this way and which are independent. We can think of the independent
dualities as fundamental dualities, while all the other dualities can be considered as a
consequence of the fundamental ones. It is not establish which dualities are indepen-
dent, nor it is known whether all IR dualities can be related by RG flows. It would
be useful to develop a more comprehensive view on this topic, as IR dualities are a
powerful tool in the study of the strongly coupled regime of QFTs.

Conformal dualities and Calabi-Yaus: The phenomena of conformal duality be-
tween toric theories in the presence of orientifolds has been addressed in Chapters 5
through 7 from a field theoretical point of view. It is an open question to understand
the notion of conformal duality for these theories from their Type IIB construction
as stacks of D3-branes probing a toric CY cone on top of an orientifold. We were
able to find a number of families of conformally dual theories, but a general mech-
anism underlying this phenomena is not understood, and a general prescription for
generating new cases of conformally dual theories in this setup is not available. An
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holographic analysis of this phenomenon from the Type IIB perspective could shed
some light on these open questions and complement our field theoretical analysis.

Classification of SCFTs: A very ambitious goal in the study of QFTs is the classifica-
tion of CFTs, which are fixed points of the RG flow. The classification with maximal
supersymmetry in 4d is believed to be complete, composed of all N = 4 SYM theo-
ries. With a lower amount of supersymmetry such a classification is not yet available,
although promising results have been obtained for N = 2 SCFTs at low rank. The
analysis of consistency conditions for SCFTs, such as those developed in Chapter
11, provide a useful tool in the classification effort. Thus it would be nice to elabo-
rate on the consistency condition called Claim B throughout this thesis, for example
by refining it using informations on the Coulomb branch geometry. Another pos-
sible generalization would be to apply the ideas developed in Chapters 10 and 11
to N = 2 SCFTs which are not maximally strongly coupled. This would probably
require a more in-depth analysis of the charge lattice for those theories.

1-form symmetries in N = 2 SCFTs: The upper bound for the 1-form symmetry
group of rank-2 N = 2 SCFTs with κ 6= {1, 2} that we analyzed in Chapter 11 does
not have a generalization to higher ranks up to now. It would be nice to understand
wether such a bound exists at arbitrary ranks, at least for theories with κ 6= {1, 2}.
SCFTs with κ 6= {1, 2} are maximally strongly coupled and do not admit a con-
ventional lagrangian description, therefore understanding properties of their global
symmetries would be a useful tool for studying such theories. Furthermore it would
be interesting to study the implications of the existence of this bound on the dual
gravity theory.
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APPENDIX A

Dualities with adjoint and without Wmonopole on ZS3

Here we follow the sequential deconfinement procedure performed in Section 5.1, 5.2
and 5.3 of [2] on the partition function. These chains of confining/deconfining dualities
allows to prove the dualities for symplectic (orthogonal) gauge group with two fun-
damentals (one vector), one adjoint without monopole superpotential. The identities
needed are

Z
Nf=2n

SO(2n+1) =

∏2n
r=1 Γh (µr)√
−ω1ω2

n
2nn!

∫
Cn

∏n
j=1

∏2n
r=0 Γh

(
µr ± xj

)∏
1≤j<k≤n Γh

(
±xj ± xk

)∏n
i=1 Γh (±xi)

n∏
j=1

dxj

= Γh

ω − 2n∑
r=1

µr

 ∏
1≤r≤s≤2n

Γh (µr + µs)

2n∏
r=1

Γh (ω − µr)

(A.1)

Z
Nf=2n+2

USp(2n) =
1

√
−ω1ω2

n
2nn!

∫
Cn

∏n
a=1

∏2n+2
r=0 Γh (µr ± ya)∏

1≤a<b≤n Γh (±ya ± yb)
∏n
a=1 Γh (±2ya)

n∏
a=1

dya

= Γh

2ω −
2n+2∑
r=1

µr

 ∏
1≤r<s≤2n+2

Γh (µr + µs)

(A.2)

Z
Nf=2n−1

SO(2n) =
1

√
−ω1ω2

n
2n−1n!

∫
Cn

∏n
j=1

∏2n−1
r=0 Γh

(
µr ± xj

)∏
1≤j<k≤n Γh

(
±xj ± xk

) n∏
j=1

dxj

= Γh

ω − 2n−1∑
r=1

µr

 ∏
1≤r≤s≤2n−1

Γh (µr + µs)

2n−1∏
r=1

Γh (ω − µr)

(A.3)

which correspond to limiting cases of Aharony duality.
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Case I: USp(2n)

The partition function of theory T1 of [2] is:

ZT1
=

Γh(τ)n

(−ω1ω2)
n
2 2nn!

∫ n∏
a=1

dya
Γh(±ya +m)Γh

(
±ya + ω − τ

2

)
Γh(±2ya)

×
∏

1≤a<b≤n

Γh(±ya ± yb + τ)

Γh(±ya ± yb)

(A.4)

This is equivalent to a two-node quiver with gauge groups SO(2n + 1) × USp(2n), de-
noted T1′ with partition function:

ZT1′ =
Γh(τ)nΓh(ω + nτ)

(−ω1ω2)n22nn!2

∫ n∏
a=1

dya
Γh(±ya +m)Γh

(
±ya + τ

2

)
Γh(±2ya)

n∏
i=1

dxi
Γh
(
±ya ± xi + τ

2

)
Γh(±xi)

×
∏

1≤a<b≤n

1

Γh(±ya ± yb)
∏

1≤i<j≤n

1

Γh(±xi ± xj)
(A.5)

These two expressions can be shown to coincide by using (A.1) to confine the orthogonal
node. Then we dualize the symplectic node using (A.2):

ZT2
=

Γh(τ)nΓh(ω + nτ)Γh
(
2ω −m− τ

2 − nτ
)

(−ω1ω2)
n
2 2nn!

∫ n∏
i=1

dxi
Γh
(
±xi +m+ τ

2

)
Γh
(
m+ τ

2

)
Γh(±xi)

×
∏

1≤i<j≤n

Γh
(
±xi ± xj + τ

)
Γh(±xi + τ)

Γh(±xi ± xj)
(A.6)

The mass parameters for the symplectic gauge group satisfy

2ω − (2n+ 1)
τ

2
+

n∑
i=1

(
±xi +

τ

2

)
+
τ

2
= 2ω (A.7)

We then deconfine the adjoint using the confining duality with linear monopole super-
potential (B.1):
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Figure A.1 Schematic representation of one step of the deconfinement procedure of [2]
for the USp(2n) model with adjoint. The partition functions of the model are:

T1 T ′1 T2 T ′2 T3

ZS3 (A.4) (A.5) (A.6) (A.8) (A.9)

ZT2′ =
Γh(τ)nΓh(ω + nτ)Γh

(
2ω −m− τ

2 − nτ
)

(−ω1ω2)
n(n−1)

2 2n(n−1)n!(n− 1)!

∫ n∏
i=1

dxi
Γh
(
±xi +m+ τ

2

)
Γh
(
m+ τ

2

)
Γh(±xi)

×
∏

1≤i<j≤n

Γh(±xi + nτ)Γh(nτ)

Γh(±xi ± xj)

n−1∏
a=1

dya
Γh
(
±ya + 2ω − (2n+ 1) τ2

)
Γh(±2ya)

×
∏

1≤a<b≤n−1

1

Γh(±ya ± yb)

n−1∏
a=1

n∏
i=1

Γh

(
±xi ± ya +

τ

2

)
Γh

(
±ya +

τ

2

)
(A.8)

The last step consists in dualising the orthogonal node with (A.1):

ZT3 =
Γh(τ)nΓh

(
ω −m− τ

2 − (2n− 1)τ
)

Γh(2m+ τ)Γh(2nτ)Γh
(
ω −m− τ

2

)
(−ω1ω2)

n−1
2 2n−1(n− 1)!

×
∫ n−1∏

a=1

dya
Γh(±ya +m+ τ)Γh

(
±ya + ω − τ

2

)
Γh(±2ya)

∏
1≤a<b≤n

Γh(±ya ± yb + τ)

Γh(±ya ± yb)

(A.9)

This is equivalent to the theory T1 with a lower rank and additional singlets. The new
mass for the fundamental q is m̃ = m + τ . The whole step is shown schematically in
Figure A.1. By iterating these steps n times one gets to a confining theory with singlets
described by (4.11).
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Case II: SO(2n)

Now we consider a SO(2n) theory with one fundamental and one adjoint with W = 0.
The partition function is:

Γh(τ)n

(−ω1ω2)
n−1

2 2nn!

∫ n∏
i=1

dxiΓh (±xi +m)
∏

1≤i<j≤n

Γh
(
±xi ± xj + τ

)
Γh(±xi ± xj)

(A.10)

we deconfine the adjoint with (A.2) and get to a quiver with gauge groups USp(2n −
2)× SO(2n):

Γh(τ)nΓh(nτ)

(−ω1ω2)n−12n(n−1)n!(n− 1)!

∫ n∏
i=1

dxiΓh (±xi +m)
∏

1≤i<j≤n

1

Γh(±xi ± xj)

×
n−1∏
a=1

dya
Γh
(
±xi ± ya + τ

2

)
Γh(±2ya)

∏
1≤a<b≤n−1

1

Γh(±ya ± yb)

(A.11)

Next we dualise the orthogonal node:

Γh(τ)nΓh(nτ)Γh(ω − (n− 1)τ −m)Γh(2m)Γh(ω −m)

(−ω1ω2)
n−1

2 2n−1(n− 1)!

×
∫ n−1∏

a=1

dya
Γh
(
±ya + ω − τ

2

)
Γh
(
±ya +m+ τ

2

)
Γh(±2ya)

∏
1≤a<b≤n−1

Γh(±ya ± yb + τ)

Γh(±ya ± yb)

(A.12)

This is the USp theory with adjoint considered in the previous case with additional sin-
glets. We use the result from the previous case to confine the gauge theory and recover
(4.13).

Case III: SO(2n+ 1)

The case of orthogonal gauge group with odd rank is already covered in the computa-
tion for symplectic gauge group. This theory corresponds to the third step in the USp
computation, namely (A.6), modulo the presence of some singlets. One can follow the
confinement/deconfinement steps going from (A.6) to (A.9), then confine the USp gauge
theory using the result from the previous case.



APPENDIX B

3d SO(N) with N + 1 flavors and linear monopole
superpotential

In this appendix we review the duality for SO(N) gauge theories with N + 1 vectors
Qi and W = Y+ proposed by [2]. We further discuss the related identity between the
partition functions. This is useful for the proofs of the dualities in the body of Chapter 4
because we use such dualities to deconfine the adjoint of symplectic gauge groups.

In this case the claim is that the model is dual to a WZ model, where the fields are
the baryons q = εN (QN ) and the symmetric meson S with superpotential W = qSq +
detS. In order to obtain the partition function for such a duality we start from USp(2n)
with linear monopole superpotential W = YUSp and 2n + 4 fundamentals. The linear
monopole imposes the constraint µ1 + · · · + µ2n+4 = 2ω on the mass parameters µr of
the fundamental fields in the partition function. The integral identity is [56]

1

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

1

Γh(±xj ± xk)

n∏
j=1

∏2n+4
r=1 Γh(µr ± xj)

Γh(±2xj)
dxj

=
∏

1≤r<s≤2n+4

Γh(µr + µs) (B.1)

If we then assign the mass parameters as µ1 = ω1

2 and µ2 = ω1

2 , and we use the duplica-
tion formula on both sides of (B.1), we arrive at the identity∏2n+2

r=1 Γh(µr)

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

1

Γh(±xj ± xk)

n∏
j=1

∏2n+2
r=1 Γh(µr ± xj)

Γh(±xj)
dxj

=
∏

1≤r≤s≤2n+2

Γh(µr + µs)

2n+2∏
r=1

Γh(ω − µr) (B.2)

with the constraint
∑2n+2
r=1 µr = ω. This corresponds to the case of SO(2n+1) with 2n+2

fundamentals. The arguments of the singlets on the dual side correspond to the mesons
and to the baryons of the electric theory.

The even case is obtained by considering also µ3 = 0. In this case, by using the duplica-
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tion formula on both sides of (B.1) we end up with

1

(−ω1ω2)
n
2 2n−1n!

∫
Cn

∏
1≤j<k≤n

1

Γh(±xj ± xk)

n∏
j=1

2n+1∏
r=1

Γh(µr ± xj)dxj

=
∏

1≤r≤s≤2n+1

Γh(µr + µs)

2n+1∏
r=1

Γh(ω − µr) (B.3)

with the constraint
∑2n+1
r=1 µr = ω. This corresponds to the case of SO(2n) with 2n + 1

fundamentals. The arguments of the singlets on the dual side correspond to the mesons
and to the baryons of the electric theory.

As a consistency check we can perform a real mass flow by giving large masses of op-
posite sign to two vectors and retrieve the limiting case of Aharony duality. In (B.2) we
fix:

µ2n+1 = s+ ν, µ2n+2 = −s+ ν (B.4)

and take the limit s → ∞. The constraint reads ω −
∑2n
r=1 µr = 2ν and the divergent

phases cancel between the RHS and the LHS. We obtain:∏2n
r=1 Γh(µr)

(−ω1ω2)
n
2 2nn!

∫
Cn

∏
1≤j<k≤n

1

Γh(±xj ± xk)

n∏
j=1

∏2n
r=1 Γh(µr ± xj)

Γh(±xj)
dxj

= Γh

ω − 2n∑
r=1

µr

 ∏
1≤µr≤µs≤2n

Γh(µr + µs)

2n∏
r=1

Γh(ω − µr) (B.5)

which corresponds to the limiting case of Aharony duality for SO(N) = SO(2n+ 1) and
2n vectors, with W = 0 [43].

Similarly in (B.3) we fix:

µ2n = s+ ν, µ2n+1 = −s+ ν (B.6)

and obtain:

1

(−ω1ω2)
n
2 2n−1n!

∫
Cn

∏
1≤j<k≤n

1

Γh(±xj ± xk)

n∏
j=1

2n−1∏
r=1

Γh(µr ± xj)dxj

= Γh

ω − 2n−1∑
r=1

µr

 ∏
1≤µr≤µs≤2n−1

Γh(µr + µs)

2n−1∏
r=1

Γh(ω − µr) (B.7)

which corresponds to the limiting case of Aharony duality for SO(N) = SO(2n) and
2n− 1 vectors, with W = 0 [43].



APPENDIX C

Further examples of multiplanarizable quivers

In this Appendix we give additional examples of multiplaarizable quivers studied in
Chapter 7. In table C.1 is the list of cases that we have analyzed in detail. Two examples

nG → nΩ
G (k1, k2, k3) Comments

6→ 4 (1, 1, 2) - (0, 2, 2) Original PdP3b/c case, see [12]
8→ 5 (1, 1, 3) - (0, 2, 3) See App. C.0.1
10→ 6 (1, 1, 4) - (0, 2, 4) Two cases, see App. C.0.2
12→ 7 (1, 1, 5) - (0, 2, 5) See App. C.0.3
12→ 7 (2, 2, 4) - (0, 4, 4) Also Ωf.p. for (2,2,4), see App. C.0.4
14→ 8 (2, 2, 5) - (0, 4, 5) See Sec. 7.4.1
16→ 9 (2, 2, 6) - (0, 4, 6) Two cases, Sec. 7.4.2 and App. C.0.5
18→ 10 (3, 3, 6) - (2, 4, 6) - (0, 6, 6) Intermediate case, see App. C.0.6

Table C.1 List of cases (ordered by increasing number nΩ
G of gauge groups after the pro-

jection) analyzed in detail in the Chapter 7.

have been studied in the core of Chapter 7. Here for completeness we briefly survey
the other cases. We will give the brane tilings, the orientifold projections, specifying the
choices of fixed lines or fixed points.

For each case we will also provide the choice of ranks (consistent with the general one
discussed in Fig. 7.12) that allows to find the conformally dual models together with the
projected superpotentials.

C.0.1 (1, 1, 3) - (0, 2, 3)

The dimers and the toric diagrams are given in Fig. C.1. The (k1, k2, k3) = (1, 1, 3) model
is projected with fixed lines while the (k1, k2, k3) = (0, 2, 3) model is projected with fixed
points. We assign the charges to the fixed points and lines as discussed in the body of
Chapter 7. Again we do not distinguish between τ1 = 1 and τ1 = −1 and consider the
two possibilities in a uniform language. The superpotential for the (1, 1, 3) model after
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Figure C.1 Fixed-line and fixed-point projections for the (1, 1, 3) and the (0, 2, 3) models.
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the fixed lines projection is

WΩf.l.
(1,1,3) =

1

2
T22(X2

02 −X2
01X

2
12) +X30X01X13 −X30X02X23

+ X41X12X23Y34 −X41X13X34 +
1

2
T̃33

(
X2

34 − Y 2
34

)
. (C.1)

The superpotential for the (0, 2, 3) model after the fixed points projection is

W
Ωf.p.

(0,2,3) = T22X01X12X02 +X30X01X13 −X30X02X23

+ X41X12X23Y34 −X41X13X34 + T̃33X34Y34 , (C.2)

where, as in the body of Chapter 7, the gauge contractions are taken opportunely. The
choice of gauge ranks that gives rise to the conformal duality is

N0 = n, N1 = N2 = n− 2τ, N3 = n− 4τ, N4 = n− 6τ . (C.3)

The conformal duality can be associated to a pair of superpotentials with different signs
by first applying Seiberg duality on node SU(N1). Then we can consider the combi-
nations of the fields X34 with Y34 and X02 with M02, where M02 in the dual phase is
the meson X01X12, that is considered as elementary field after the duality on SU(N1).
After these operations, the two superpotentials (C.1) and (C.2) become identical up to
some signs. The conformal duality between the two models becomes then manifest and
explicit, fitting with the discussion of Sec. 7.1.

C.0.2 (1, 1, 4) - (0, 2, 4)

The next case corresponds to the fixed line projection of (k1, k2, k3) = (1, 1, 4) and to the
fixed point projection of (k1, k2, k3) = (0, 2, 4). In this case there are two possible pro-
jections for each models. These projections give different quivers and they are studied
separately.

First case

The first possibility is represented in Fig. C.2. The superpotential for the (1, 1, 4) model
after the fixed-line projection is

WΩf.l.
(1,1,4) =

1

2
T22

(
X2

02 −X2
01X

2
12

)
+X30X01X13 −X30X02X23

+ X41X12X23Y34 −X41X13X34 +X63X34X46 −X63Y34Y46

+
1

2
T̃44

(
X2

46 − Y 2
46

)
. (C.4)
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Figure C.2 Fixed lines and fixed points projections for (1, 1, 4) and (0, 2, 4). This is the
first conformal duality obtained projecting these models.

The superpotential for the (0, 2, 4) model after the fixed points projection is

W
Ωf.p.

(0,2,4) =
1

2
T22X01X12X02 +X30X02X23 −X30X01X13

+ X41X13Y34 −X41X12X23X34 +X63X34X46 −X63Y34Y46

+
1

2
T̃44X46Y46 . (C.5)

The choice of gauge ranks that gives rise to the conformal duality is

N0 = n, N1 = N2 = n− 2τ, N3 = n− 4τ, N4 = n− 6τ, N6 = n− 8τ . (C.6)

We can use the usual tools, i.e. Seiberg duality on SU(N1) and suitable field redefini-
tions, such that (C.4) and (C.5) become identical up to some signs. The conformal duality
between the two models becomes again explicit as in the general discussion of Sec. 7.1.



Further examples of multiplanarizable quivers 229

Second case

The first possibility is represented in Fig. C.3.

Figure C.3 Fixed-line and fixed-point projections for (1, 1, 4) and (0, 2, 4). This is the
second conformal duality obtained projecting these models.

The superpotential for the (1, 1, 4) model after the fixed lines projection is

WΩf.l.
(1,1,4) =

1

2
T33

(
X2

13 − Y 2
13

)
+ Y13X35X51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56Y67X74X45 −X46X67X74

+
1

2
T33

(
X2

67 − Y 2
67

)
. (C.7)
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The superpotential for the (0, 2, 4) model after the fixed points projection is

WΩf.l.
(1,1,4) = T33X13Y13 + Y13X35X51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56Y67X74X45 −X46X67X74

+ T33X67Y67 . (C.8)

The choice of gauge ranks that gives rise to the conformal duality is

N1 = n, N3 = n− 2τ, N4 = N5 = n− 4τ, N6 = n− 6τ, N7 = n− 8τ . (C.9)

In this case, it can be shown that the two superpotentials in Eqs. (C.7)-(C.8) to be identical
without any further duality. Indeed by substituting the combinations X13 ± Y13 and
X67±Y67, the superpotentials (C.7) and (C.8) become identical up to some signs, making
the conformal duality explicit.

C.0.3 (1, 1, 5) - (0, 2, 5)

The next case corresponds to the fixed line projection of (k1, k2, k3) = (1, 1, 5) and to
the fixed-point projection of (k1, k2, k3) = (0, 2, 5). The dimers and the toric diagrams
are given in Fig. C.4. The are also other models where the diagonal appears in the first
hexagon on the tiling, but conformal duality works similarly and we show only these
two dimers for simplicity. The superpotential for the (1, 1, 5) model after the fixed-line
projection is

WΩf.l.
(1,1,5) =

1

2
T33

(
X2

13 − Y 2
13

)
+ Y13Y34X41 −X13X34X41

+X34X46X63 − Y34Y46X63 + Y46X68X84 −X46X67X78X84

+X67X79X96 −X68X89X96 +
1

2
T̃77

(
X2

78X
2
89 −X2

79

)
. (C.10)

The superpotential for the (0, 2, 5) model after the fixed points projection is

WΩf.l.
(0,2,5) = T33X13Y13 + Y13Y34X41 −X13X34X41

+X34X46X63 − Y34Y46X63 + Y46X68X84 −X46X67X78X84

+X67X79X96 −X68X89X96 + T̃77X
2
78X89X79 . (C.11)

The choice of gauge ranks that gives rise to the conformal duality is

N1 = n, N3 = n− 2τ, N4 = n− 4τ,

N6 = n− 6τ, N7 = N8 = n− 8τ, N9 = n− 10τ . (C.12)

The conformal duality between the two models becomes explicit as in Sec. 7.1, by ap-
plying a Seiberg duality on SU(N8), and considering the combinations X13 ± Y13 and
X79 ±M79, where M79 ≡ X78X89.
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Figure C.4 Fixed lines and fixed points projections for (1, 1, 5) and (0, 2, 5).

C.0.4 (2, 2, 4) - (0, 4, 4)

Here we study two fixed line projections and one fixed point projection for (k1, k2, k3) =
(2, 2, 4) and a fixed point projection of (k1, k2, k3) = (0, 4, 4). The projections are sum-
marized in Fig. C.5. The superpotential for the (2, 2, 4) model after the first fixed lines
projection is

W
Ω1

f.l.
(2,2,4) =

1

2
T00

(
X2

02 −X2
01X

2
12

)
+X01X13X30 −X02X23X30

+X23X35X51X12 −X13X34X45X51 +X34X46X63 −X35X56X63

+
1

2
T̃44

(
X2

45X
2
56 −X2

46

)
. (C.13)
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Figure C.5 Fixed lines and fixed-point projections for (2, 2, 4) and (0,4,4).

The superpotential for the (2, 2, 4) model after the fixed-point projection is

W
Ωf.p.

(2,2,4) = T00X02X01X12 +X02X23X30 −X01X13X30

+X13X35X51 −X23X34X45X51X12 +X34X46X63 −X35X56X63

+ T̃44X45X56X46 . (C.14)

The superpotential for the (2, 2, 4) model after the second fixed-line projection is

W
Ω2

f.l.
(2,2,4) =

1

2
T00

(
X2

01X
2
12 −X2

02

)
+X02X23X30 −X01X13X30

+X13X35X51 −X23X34X45X51X12 +X34X46X63 −X35X56X63

+
1

2
T̃44

(
X2

45X
2
56 −X2

46

)
. (C.15)
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The superpotential for the (0, 4, 4) model after the fixed-point projection is

W
Ωf.p.

(0,4,4) = T00X02X01X12 +X01X13X30 −X02X23X30

+X23X35X51X12 −X13X34X45X51 +X34X46X63 −X35X56X63

+ T̃44X45X56X46 . (C.16)

The choice of gauge ranks that gives rise to the conformal duality is

N0 = n, N1 = N2 = n− 2τ, N3 = n− 4τ, N4 = N5 = n− 6τ, N6 = n− 8τ (C.17)

The situation here is similar to the one in sub-section 7.4.1. Indeed there are three cases
that are Seiberg dual before the projections, and that become conformally dual after the
projection. We can make the conformal dualities among the various model more ex-
plicit along the lines of the discussion in Sec. 7.1. By combining the dualities on node
SU(N1,2,3) and the suitable field redefinitions we can indeed prove that each pair of
superpotentials become identical up to signs.

C.0.5 (2, 2, 6) - (0, 4, 6): second case

Here we study another case involving the (2, 2, 6) and (0, 4, 6) models. Here we have
two fixed line projections and one fixed point projection for (k1, k2, k3) = (2, 2, 4) and a
fixed point projection of (k1, k2, k3) = (0, 4, 4). The projections are summarized in Fig.
C.6. The superpotential for the (2, 2, 6) model after the first fixed-line projection is

W
Ω1

f.l.
(2,2,6) =

1

2
T33

(
X2

13 − Y 2
13

)
+ Y13X34X45X51 −X13X35X51

+X35X56X63 −X34X46X63 +X46X67X78X84 −X56X68X84X45

+X68X89X96 −X67X79X96 +X79Y90X07 −X89X90X07X78

+
1

2
T̃99(X2

90 − Y 2
90) . (C.18)

The superpotential for the (2, 2, 6) model after the second fixed lines projection is

W
Ω2

f.l.
(2,2,6) =

1

2
T33

(
X2

13 − Y 2
13

)
+ Y13X34X45X51 −X13X35X51

+X35X56X63 −X34X46X63 +X46X68X84 −X56X67X78X84X45

+X67X79X96 −X68X89X96 +X89Y90X07X78 −X79X90X07

+
1

2
T̃99

(
X2

90 − Y 2
90

)
. (C.19)
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Figure C.6 Fixed-line and fixed-point projections for (2, 2, 6) and (0, 4, 6). This is the
second conformal duality obtained projecting these models. The first one has been dis-
cussed in the body of Chapter 7 in Sec. 7.4.2.
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The superpotential for the (2, 2, 6) model after the fixed points projection is

W
Ωf.p.

(2,2,6) = T33Y13X13 + Y13X35X51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56X67X78X84X45 −X46X68X84

+X68X89X96 −X67X79X96 +X79Y90X07 −X89X90X07X78

+ T̃99Y90X90 . (C.20)

The superpotential for the (0, 4, 6) model after the fixed points projection is

W
Ωf.p.

(0,4,6) = T33Y13X13 + Y13X35X51 −X13X34X45X51

+X34X46X63 −X35X56X63 +X56X68X84X45 −X46X67X78X84

+X67X79X96 −X68X89X96 +X89Y90X07X78 −X79X90X07

+ T̃99Y90X90 . (C.21)

The choice of gauge ranks that gives rise to the conformal duality is

N1 = n, N3 = n− 2τ, N4 = N5 = n− 4τ, (C.22)
N6 = n− 6τ, N7 = N8 = n− 8τ, N9 = n− 10τ,N0 = n− 12τ .

The situation here is similar to the one in Sec. 7.4.2. The two cases with fixed lines are
related by a field redefinition. Analogously the two cases with fixed points are related
by a field redefinition. The cases with fixed lines are connected to the cases with fixed
points by first considering Seiberg dualities on SU(N2) ad SU(N5) and then by suitable
field redefinitions.

C.0.6 (3, 3, 6) - (2, 4, 6) - (0, 6, 6)

The last case that we present in this appendix correspond to the fixed lines projection of
(3, 3, 6) and to the fixed point projections of both (2, 4, 6) and (0, 6, 6).

This case is interesting because it is the first one where there are three different toric di-
agrams that give origin to conformal dualities after the projection. There are degenerate
choices of (3, 3, 6) and (2, 4, 6) but here for simplicity we study only a single possibility.
The other Seiberg dual case become conformally dial after the projection as in the cases
discussed above. The toric diagrams, the dimers and the projections are represented in
Fig. C.7. The fixed-line projection of the (3, 3, 6) model under investigation has superpo-
tential

WΩf.l.
(3,3,6) =

1

2
T22(X2

02 −X2
01X

2
12) +X01X13X30 −X02X23X30

+X23X34X45X51X12 −X13X35X51 +X35X56X63 −X34X46X63

+X46X68X84 −X56X67X78X84X45 +X67X79X96 −X68X89X96

+
1

2
T̃77(X2

78X
2
89 −X2

79) . (C.23)
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Figure C.7 Fixed-line projection of (3, 3, 6) and fixed-point projections of (2, 4, 6) and
(0, 6, 6).
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The fixed point projection of the (2, 4, 6) model under investigation has superpotential

W
Ωf.p.

(2,4,6) = T22X02X01X12 +X01X13X30 −X02X23X30

+X23X34X45X51X12 −X13X35X51 +X35X56X63 −X34X46X63

+X46X68X84 −X56X67X78X84X45 +X67X79X96 −X68X89X96

+ T̃77X78X89X79 . (C.24)

The fixed-point projection of the (0, 6, 6) model has superpotential

W
Ωf.p.

(0,6,6) = T22X02X01X12 +X01X13X30 −X02X23X30

+X23X35X51X12 −X13X34X45X51 +X34X46X63 −X35X56X63

+X56X68X84X45 −X46X67X78X84 +X67X79X96 −X68X89X96

+ T̃77X78X89X79 . (C.25)

Finally, the ranks read

N0 = n, N1 = N2 = n− 2τ, N3 = n− 4τ, N4 = N5 = n− 6τ, (C.26)
N6 = n− 8τ, N7 = N8 = n− 10τ, N9 = n− 12τ . (C.27)

The first two cases are related by Seiberg dualities on SU(N1) and SU(N8) and by suit-
able field redefinitions. The second and the third case are related by Seiberg duality on
SU(N4) and field redefinitions. The first and the third cases are then related by Seiberg
duality on SU(N1,4,8) and field redefinitions.

This concludes the analysis showing that the superpotentials of the three cases become
identical up to sign factors, fitting with the analysis of section 7.1.





APPENDIX D

Counting phases of multiplanarizable quivers

Given a general model (k1, k2, k3) from Chapter 7 there could be various configurations
with the same numbers, i.e. various choices to combine the squares and the hexagons
in the reduced cell of the dimer after the orientifold projection. For simplicity, let us call
the reduced cell CΩ. A dual family of models can be denoted with two numbers (k, k3),
where k1 + k2 = k; also, denote k3 = 2k + p, so that we can distinguish between two
cases: p = 0 and p 6= 0.

Let us focus first with p = 0, so the dual family is identified by (k, 2k). There are only k
pairs of squares in the central column of CΩ, a certain number nWE with a long edge ori-
ented along the WE axis and another nEW along EW , related to k1 and k2 as explained
above. We ask the question: how many configurations are there with a certain number of
nWE and nEW ? In other words, how many conformally dual models in a family (k, k3)?.
We need to count the combinations of these elements that fill k position. Since there are
2 choices per position, nEW = k − nWE and in total there are 2k configurations. These
can be counted as

2k =

k∑
nWE=0

(
k

nWE

)
, (D.1)

where each summand
(

k
nWE

)
is the number of configurations of a model with k squares

of which nWE are WE oriented, the remaining nEW = k − nWE are EW . However,
some of them are equivalent, i.e. they give the same quiver and superpotential with
some indices recast. First, we can exchange nWE ↔ nEW , which means the cell CΩ is
reflected along a vertical axis and the property of the binomial coefficient(

k

nWE

)
=

(
k

k − nWE

)
=

(
k

nEW

)
(D.2)

account for this reflection. We need to count only the configurations until nWE = bk2 c.
Second, each set of configurations

(
k

nWE

)
has an equivalence class, for we can reflect

along a horizontal axis and a configuration is mapped to another one. If k is odd, there
is always one mapped to itself. The number of inequivalent configurations of a cell NCΩ
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with k pairs of squares and no hexagons is then

NCΩ
=

(
k

0

)
+

b k2 c∑
nWE=1

1

2

(
k

nWE

)
, k even ,

NCΩ =

(
k

0

)
+

b k2 c∑
nWE=1

1

2

[(
k

nWE

)
+ 1

]
, k odd . (D.3)

It is crucial to note that the orientifold projection is not yet chosen, i.e. the Z2 involution
is not specified. Each inequivalent arrangement of squares in

(
k

nWE

)
gives a cell CΩ, and

we choose a fixed point projection if the Z2 image cell CΩ = CΩ. The copy has the same
number of WE pairs of squares nWE = nWE , so that k1 = 2nWE and k2 = 2k − k1 =
2nEW . Thus, a projection with fixed points must have k1 and k2 even. We can express
Eq. D.3 in terms of k1 and count the number of orientifold projections with fixed points
as

N
f.p.
CΩ

=

(
k

0

)
+

2b k2 c∑
k1=2

1

2

(
k
k1

2

)
, k even ,

N
f.p.
CΩ

=

(
k

0

)
+

2b k2 c∑
k1=2

1

2

[(
k
k1

2

)
+ 1

]
, k odd . (D.4)

Each summand in Eq. D.4 counts the number of inequivalent fixed point projections
with the same (k1, 2k − k1, 2k). We can depict Eq. D.4 as the sum of the possible fixed
points projections of a toric diagram with (k1, 2k − k1, 2k).

On the other hand, the fixed lines projection is given by CΩ = −CΩ. This Z2 involution
changes the direction of the squares, so it sends nWE → nEW and nEW = k − nWE →
nWE = k − nEW . As a consequence, k1 = nWE + nWE = k2 = k, with no restriction on
k1 being even or odd. The number of models projected with fixed lines is

N f.l.
CΩ

=

(
k

0

)
+

b k2 c∑
nWE=1

1

2

(
k

nWE

)
, k even ,

N f.l.
CΩ

=

(
k

0

)
+

b k2 c∑
nWE=1

1

2

[(
k

nWE

)
+ 1

]
, k odd , (D.5)

all of them with (k1, k2, k3) = (k, k, 2k).

Let us show two examples. Consider k = 1, which gives the PdP family of models. The
unique

(
k
0

)
configuration gives the reduced cell CΩ. Then we can perform the projection

with fixed points, so that the Z2 copyCΩ = CΩ and we have PdPΩ
3c, (k1, k2, k3) = (0, 2, 2).

Or, we can perform the orientifold projection with fixed lines, so that CΩ = −CΩ and we
have PdPΩ

3b, (k1, k2, k3) = (1, 1, 2).
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Consider now k = 2, studied in Sec. C.0.4. The first configuration is
(

2
0

)
, and we can de-

cide for fixed-point projection CΩ = CΩ or fixed-line projection CΩ = −CΩ, respectively
the rightmost (k1, k2, k3) = (0, 4, 4) and the leftmost (k1, k2, k3) = (2, 2, 4) dimers in Fig.
C.5. Then, we have

(
2
1

)
, whose reduced cell CΩ is drawn in the central dimers of Fig.

C.5, whose central left is given by a fixed-point orientifold CΩ = CΩ and central right by
fixed-line orientifold CΩ = −CΩ, both (k1, k2, k3) = (2, 2, 4).

When p 6= 0, we need to distinguish between two orientifold projections, ΩA and ΩB .
The former consist in the projection where projected gauge factors come from the side of
the cell CΩ, whereas the latter in the projection where at least one projected gauge factor
comes from the central line in CΩ. When we add hexagons to the central lines of the
cell CΩ, i.e. p 6= 0, both types of the projection are allowed. If p is odd the number of
complete hexagons nh = (p−1)/2, as half hexagon is added at one of the boundary of the
reduced cellCΩ, in this case the projection is always ΩB . If p is even we have two choices,
projection ΩA and nh = p/2 complete hexagons in CΩ, or projection ΩB and nh = p/2−1
complete hexagons in CΩ and one half hexagons on each boundary of the reduced cell.
Once we have defined the number nh, we have k+nh = nWE+nEW +nh slots to be filled
with squares of the two types and hexagons. The three numbers (nWE , nEW , nh) defines
a model, since they are related to k1, k2 and k3. The number of possible configurations is
the number of ways we can fill the slots, i.e. the number of permutations of 3 elements

P
nWE ,(k−nWE),nh
(k+nh) =

(k + nh)!

nWE !(k − nEW )!nh!
,

NCΩ
= P 0,k,nh

(k+nh) +

b k2 c∑
nWE=1

1

2
P
nWE ,(k−nWE),nh
(k+nh) , (k + nh) even ,

NCΩ
= P 0,k,nh

(k+nh) +

b k2 c∑
nWE=1

1

2

[
P
nWE ,(k−nWE),nh
(k+nh) + 1

]
, (k + nh) odd , (D.6)

where we have already accounted for the exchange nWE ↔ nEW and the reflection of
CΩ around an horizontal axis. Note that for p = 0, i.e. nh = 0, Eq. D.3 reduces to Eq.
D.6.

Now, we need to choose the orientifold projection, either with fixed points CΩ = CΩ

or with fixed lines CΩ = −CΩ. As before, for fixed points orientifolds k1 = 2nWE ,
k2 = 2k − k1 = nEW and by definition p = k3 − 2k. Again, we can express Eq. D.6 as a
sum over k1 even

N
f.p.
CΩ

= P 0,k,nh
(k+nh) +

2b k2 c∑
k1=2

1

2
P

(k1/2),(k−k1/2),nh
(k+nh) , (k + nh) even ,

N
f.p.
CΩ

= P 0,k,nh
(k+nh) +

2b k2 c∑
k1=2

1

2

[
P
k1/2,(k−k1/2),nh
(k+nh) + 1

]
, (k + nh) odd , (D.7)

where each summand with the same value of k1 gives the number of conformally dual
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models with (k1, 2k − k1, 2k + p). For fixed lines orientifolds, k1 = k2 = k and

N f.l.
CΩ

= P 0,k,nh
(k+nh) +

b k2 c∑
nWE=1

1

2
P
nWE ,(k−nWE),nh
(k+nh) , (k + nh) even ,

N f.l.
CΩ

= P 0,k,nh
(k+nh) +

b k2 c∑
nWE=1

1

2

[
P
nWE ,(k−nWE),nh
(k+nh) + 1

]
, (k + nh) odd , (D.8)

and all are conformally dual models with (k, k, 2k + p).
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