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1 Introduction and summary of results

Since the formulation of the AdS/CFT correspondence, asymptotically AdS black holes
have been attracting much interest, partly due to their application to entropy calculations
through the counting of black hole microstates (see [2–4] for examples in N = 2, D = 4
Fayet-Iliopoulos (FI)-gauged supergravity). In this context gauged supergravity theories
play an important role, since the gauging of (part of) the R-symmetry generically leads
to a scalar potential which, in a vacuum configuration, behaves effectively as a cosmolog-
ical constant and allows for non-asymptotically flat solutions that often (but not always)
approach AdS at infinity.

It has been known for many years that a negative cosmological constant allows for black
holes with non-spherical horizons, cf. e.g. [5] and references therein. Gauged supergravity is
thus an interesting terrain to study these kinds of black holes. Indeed, the scalar potential
typically violates the assumptions that go into uniqueness theorems, so that one can have
horizons that are flat, hyperbolic or compact Riemann surfaces of any genus [6–8].
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In these contexts, cubic models are of special interest. Like in the ungauged case, some
cubic models in gauged supergravity can be embedded into higher-dimensional theories
describing the low energy limit of some string theory. In particular, the FI-gauged stu
model, containing three vector multiplets, can be obtained as a consistent truncation of
eleven-dimensional supergravity compactified on a 7-sphere [9, 10]. A special subcase is
the so-called t3 model, where the three vector multiplets are identified and which will be
considered in this work.

Due to its importance, the gauged stu model has been extensively studied in the past.
The first example appeared in [9], where the four-dimensional N = 2 theory was obtained
as a truncation of N = 8 gauged supergravity, and static nonextremal black holes carrying
electric or magnetic charges were presented. Subsequently, static and BPS generalizations
were constructed in [7, 11–15], while nonextremal solutions to the t3 and stu models were
found in [16, 17]. Rotation was added in [18, 19], and more recently in [20–22]. Moreover,
in [20] a general analysis of the possible asymptotic behaviours was performed by means
of the real formulation of special geometry, in terms of a specific quartic form I4 invariant
under symplectic transformations. This provides a way to treat symplectically related
prepotentials on the same footing, including theories which do not admit a prepotential.
Although in the ungauged case all these theories lead to the same physics, the gauging
breaks symplectic invariance, producing systems with different behaviours for the same
gauge couplings, e.g. an AdS boundary at infinity or something completely different.

In this paper we will focus on the t3 model with prepotential F = −(X1)3/X0 and
electric gauging. Using the classification of half-supersymmetric backgrounds presented
in [1], we will be able to obtain three classes of near-horizon solutions. Unfortunately, none
of their possible full black hole extensions is expected to be asymptotically AdS4 due to
the absence of critical points of the scalar potential. Specifically, in section 2 we briefly
review N = 2, D = 4 FI-gauged supergravity and the classifications of 1/4- and 1/2-BPS
backgrounds given respectively in [23] and [1]. In section 3 we construct three new classes
of near-horizon geometries, one of which turns out to be a generalization of the solution
derived in section 4 of [21]. Sections 4 and 5 are devoted to a deeper analysis of two of the
new solutions, that can either have noncompact horizons, or spherical horizons with conical
singularities (spikes) at one of the two poles. In 6 a full black hole extension of the third
one is presented. Finally, applying a double-Wick rotation (which amounts to an analytical
continuation of the coordinates) to the first two solutions, we obtain configurations with
NUT charge that asymptote to curved domain walls with AdS3 world volume, where AdS3
appears as a Hopf-like fibration over H2.

2 N = 2, D = 4 FI-gauged supergravity

2.1 The theory and BPS equations

We consider N = 2, D = 4 gauged supergravity coupled to n abelian vector multiplets [24].1
Apart from the vierbein eaµ, the bosonic field content includes the vectors AIµ enumerated

1Throughout this paper, we use the notations and conventions of [25].
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by I = 0, . . . , n, and the complex scalars zα where α = 1, . . . , n. These scalars parametrize
a special Kähler manifold, i.e., an n-dimensional Hodge-Kähler manifold that is the base
of a symplectic bundle, with the covariantly holomorphic sections

V =
(
XI

FI

)
, DᾱV = ∂ᾱV −

1
2(∂ᾱK)V = 0 , (2.1)

where K is the Kähler potential and D denotes the Kähler-covariant derivative. V obeys
the symplectic constraint

〈V , V̄〉 = XI F̄I − FIX̄I = i . (2.2)

To solve this condition, one defines

V = eK(z,z̄)/2v(z) , (2.3)

where v(z) is a holomorphic symplectic vector,

v(z) =
(

ZI(z)
∂
∂ZI

F (Z)

)
. (2.4)

F is a homogeneous function of degree two, called the prepotential, whose existence is
assumed to obtain the last expression. The Kähler potential is then

e−K(z,z̄) = −i〈v, v̄〉 . (2.5)

The matrix NIJ determining the coupling between the scalars zα and the vectors AIµ is
defined by the relations

FI = NIJXJ , DᾱF̄I = NIJDᾱX̄J . (2.6)

The bosonic action reads

e−1Lbos = 1
2R+ 1

4(ImN )IJF IµνF Jµν −
1
8(ReN )IJ e−1εµνρσF IµνF

J
ρσ

− gαβ̄∂µz
α∂µz̄β̄ − V ,

(2.7)

with the scalar potential

V = −2g2ξIξJ [(ImN )−1|IJ + 8X̄IXJ ] , (2.8)

that results from U(1) Fayet-Iliopoulos gauging. Here, g denotes the gauge coupling and
the ξI are FI constants. In what follows, we define gI ≡ gξI .

The most general timelike supersymmetric background of the theory described above
was constructed in [23], and is given by

ds2 = −4|b|2(dt+ σ)2 + |b|−2(dz2 + e2Φdwdw̄) , (2.9)

– 3 –
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where the complex function b(z, w, w̄), the real function Φ(z, w, w̄) and the one-form σ =
σwdw+σw̄dw̄, together with the symplectic section (2.1)2 are determined by the equations

∂zΦ = 2igI
(
X̄I

b
− XI

b̄

)
, (2.10)

4∂∂̄
(
XI

b̄
− X̄I

b

)
+ ∂z

[
e2Φ∂z

(
XI

b̄
− X̄I

b

)]

− 2igJ∂z
{
e2Φ

[
|b|−2(ImN )−1|IJ + 2

(
XI

b̄
+ X̄I

b

)(
XJ

b̄
+ X̄J

b

)]}
= 0 , (2.11)

4∂∂̄
(
FI

b̄
− F̄I

b

)
+ ∂z

[
e2Φ∂z

(
FI

b̄
− F̄I

b

)]

− 2igJ∂z
{
e2Φ

[
|b|−2ReNIL(ImN )−1|JL + 2

(
FI

b̄
+ F̄I

b

)(
XJ

b̄
+ X̄J

b

)]}

− 8igIe2Φ
[
〈I , ∂zI〉 −

gJ
|b|2

(
XJ

b̄
+ X̄J

b

)]
= 0 , (2.12)

2∂∂̄Φ = e2Φ

igI∂z
(
XI

b̄
− X̄I

b

)
+ 2
|b|2

gIgJ(ImN )−1|IJ + 4
(
gIX

I

b̄
+ gIX̄

I

b

)2
 , (2.13)

dσ + 2 ?(3)〈I , dI〉 − i

|b|2
gI

(
X̄I

b
+ XI

b̄

)
e2Φdw ∧ dw̄ = 0 . (2.14)

Here ?(3) is the Hodge star on the three-dimensional base with metric3

ds2
3 = dz2 + e2Φdwdw̄ , (2.15)

and we defined ∂ = ∂w, ∂̄ = ∂w̄, as well as

I = Im
(
V/b̄

)
, R = Re

(
V/b̄

)
. (2.16)

Note that the eqs. (2.10)–(2.13) can be written compactly in the symplectically covariant
form

∂zΦ = 4〈I,G〉 , (2.17)

∆I + 2e−2Φ∂z
{
e2Φ [〈R, I〉ΩMG − 4R〈R,G〉]

}
− 4G [〈I, ∂zI〉+ 4〈R, I〉〈R,G〉] = 0 ,

(2.18)

∆Φ = −8〈R, I〉
[
GtMG + 8|L|2

]
= 4〈R, I〉V , (2.19)

where G = (gI , gI)t represents the symplectic vector of gauge couplings,4 L = 〈V ,G〉, ∆
denotes the covariant Laplacian associated to the base space metric (2.15), and V in (2.19)

2Note that also σ and V are independent of t.
3Whereas in the ungauged case, this base space is flat and thus has trivial holonomy, here we have U(1)

holonomy with torsion [23].
4In the case considered here with electric gaugings only, one has gI = 0.
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is the scalar potential (2.8). Moreover,

Ω =
(

0 1
−1 0

)
, M =

(
ImN + ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1

)
. (2.20)

Finally, (2.14) can be rewritten as

dσ + ?h

(
dΣ−A+ 1

2νΣ
)

= 0 , (2.21)

where the function Σ and the one-form ν are respectively given by

Σ = i

2 ln b̄
b
, ν = 8

Σ〈G,R〉dz , (2.22)

A is the gauge field of the Kähler U(1),

Aµ = − i2(∂αK∂µzα − ∂ᾱK∂µz̄ᾱ) , (2.23)

and ?h denotes the Hodge star on the Weyl-rescaled base space metric

hijdx
idxj = 1

|b|4
(dz2 + e2Φdwdw̄) . (2.24)

(2.21) is the generalized monopole equation [26], or more precisely a Kähler-covariant
generalization thereof, due to the presence of the one-form A. In order to cast (2.14) into
the form (2.21), one has to use the special Kähler identities

〈DαV,V〉 = 〈DαV, V̄〉 = 0 . (2.25)

Note that (2.21) is invariant under Weyl rescaling, accompanied by a gauge transformation
of ν,

hmndxmdxn 7→ e2ψhmndxmdxn , Σ 7→ e−ψΣ , ν 7→ ν + 2dψ , A 7→ e−ψA . (2.26)

It would be very interesting to better understand the deeper origin of the conformal in-
variance of (2.21) in the present context.

The integrability condition for (2.21) reads

Di

[
hij
√
h(Dj −Aj)Σ

]
= 0 , (2.27)

with the Weyl-covariant derivative

Di = ∂i −
m

2 νi , (2.28)

where m denotes the Weyl weight of the corresponding field.5 It is straightforward to show
that (2.27) is equivalent to

〈I,∆I〉+ 4e−2Φ∂z
(
e2Φ〈I,R〉〈G,R〉

)
= 0 , (2.29)

5A field Γ with Weyl weight m transforms as Γ 7→ emψΓ under a Weyl rescaling.
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which follows from (2.18) by taking the symplectic product with I. To shew this, one has
to use

1
2 (M+ iΩ) = ΩV̄VΩ + ΩDαVgαβ̄Dβ̄V̄Ω, (2.30)

〈DαV,DβV〉 = 0 , 〈DαV,Dβ̄V̄〉 = −igαβ̄ , (2.31)

as well as (2.17) and (2.25).
Given b, Φ, σ and V, the fluxes read

F I = 2(dt+ σ) ∧ d
[
bXI + b̄X̄I

]
+ |b|−2dz ∧ dw̄

[
X̄I(∂̄b̄+ iAw̄ b̄) + (DαXI)b∂̄zα

− XI(∂̄b− iAw̄b)− (DᾱX̄I)b̄∂̄z̄ᾱ
]
− |b|−2dz ∧ dw

[
X̄I(∂b̄+ iAw b̄)

+ (DαXI)b∂zα −XI(∂b− iAwb)− (DᾱX̄I)b̄∂z̄ᾱ
]

− 1
2 |b|

−2e2Φdw ∧ dw̄
[
X̄I(∂z b̄+ iAz b̄) + (DαXI)b∂zzα −XI(∂zb− iAzb)

− (DᾱX̄I)b̄∂z z̄ᾱ − 2igJ(ImN )−1|IJ
]
.

(2.32)

2.2 1/2-BPS near-horizon geometries

An interesting class of half-supersymmetric backgrounds was obtained in [1]. It includes
the near-horizon geometry of extremal rotating black holes. The metric and the fluxes read
respectively

ds2 = 4e−ξ
(
−r2dt2 + dr2

r2

)
+ 4(e−ξ −Keξ)(dφ+ r dt)2 + 4e−2ξdξ2

Y 2(e−ξ −Keξ) , (2.33)

F I = 16i
√
K

(
X̄XI

1− iY −
XX̄I

1 + iY

)
dt ∧ dr

+ 8
√
K

Y

[
2X̄XI

1− iY + 2XX̄I

1 + iY
+ (ImN )−1|IJ gJ

]
(dφ+ r dt) ∧ dξ ,

(2.34)

where X ≡ gIXI , K > 0 is a real integration constant and Y is defined by

Y 2 = 64e−ξ|X|2 − 1 . (2.35)

The moduli fields zα depend on the horizon coordinate ξ only, and obey the flow equation6

dzα

dξ
= i

2X̄Y
(1− iY )gαβ̄Dβ̄X̄ . (2.36)

(2.33) is of the form (3.3) of [27], and describes the near-horizon geometry of extremal
rotating black holes,7 with isometry group SL(2,R)×U(1). From (2.36) it is clear that the
scalar fields have a nontrivial dependence on the horizon coordinate ξ unless gIDαXI = 0.

6Note that this is not a radial flow, but a flow along the horizon.
7Metrics of the type (2.33) were discussed for the first time in [28] in the context of the extremal Kerr

throat geometry.

– 6 –



J
H
E
P
0
9
(
2
0
2
1
)
1
0
2

As was shown in [1], the solution with constant scalars is the near-horizon limit of the
supersymmetric rotating hyperbolic black holes in minimal gauged supergravity [6].

Using Y in place of ξ as a new variable, (2.36) becomes

dzα

dY
=

Xgαβ̄Dβ̄X̄

(Y − i)
[
−X̄X +DγXgγδ̄Dδ̄X̄

] . (2.37)

This can also be rewritten in a Kähler-covariant form, as a differential equation for the
symplectic section V,

DY V =
XDαVgαβ̄Dβ̄X̄

(Y − i)
[
−X̄X +DγXgγδ̄Dδ̄X̄

] , (2.38)

where
DY ≡

d

dY
+ iAY (2.39)

denotes the Kähler-covariant derivative.

2.3 The t3 and square root model

The specific t3 model under investigation is defined by the prepotential

F = −(X1)3

X0 . (2.40)

As mentioned before, we work in a pure electric gauging, i.e. G = (0, 0, g0, g1)t, and choose
the parametrization

Z0 = 1 , Z1 = iτ . (2.41)

Then, the holomorphic symplectic vector, the Kähler potential, the scalar metric and the
scalar potential are respectively given by

v = (1, iτ,−iτ3, 3τ2)t , e−K = (τ + τ̄)3 , (2.42)

and
gτ τ̄ = 3

(τ + τ̄)2 , V = − 8g2
1

3(τ + τ̄) . (2.43)

Note that V is of Liouville-type, and has thus no critical points, so the theory does not
admit AdS4 vacua with constant moduli.

A different model is defined by the prepotential8

F = −2i(X0)1/2(X1)3/2 . (2.44)

If we take
Z0 = 1 , Z1 = τ2 , (2.45)

8Note that both (2.40) and (2.44) belong to the general class of models with F proportional to
(X0)p(X1)q, where homogeneity of degree two requires p+ q = 2.
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the holomorphic symplectic vector, Kähler potential and scalar metric become respectively

v = (1, τ2,−iτ3,−3iτ)t , e−K = (τ + τ̄)3 , gτ τ̄ = 3
(τ + τ̄)2 , (2.46)

while the matrix N in (2.6) and the inverse of its imaginary part are given by

N = 1
3τ − τ̄

(
−2iτ3τ̄ 3iτ(τ̄ − τ)

3iτ(τ̄ − τ) −6i

)
, (2.47)

(ImN )−1 = 4
3(τ + τ̄)3

(
−6 −3

2(τ − τ̄)2

−3
2(τ − τ̄)2 |τ |2(τ2 − 4τ τ̄ + τ̄2)

)
. (2.48)

Finally, the scalar potential reads

V = − 8g1
3(τ + τ̄)

[
3g0 + g1|τ |2

]
, (2.49)

which has a critical point at τ2 = τ̄2 = 3g0/g1 that corresponds to an AdS vacuum.

3 Half-BPS rotating near-horizon geometries

3.1 t3 model

For the model defined by (2.40), the flow equation (2.37) boils down to

dτ

dY
=

(τ + τ̄)
[
3ν + i(τ − 2τ̄)

]
(ν + iτ)

6(Y − i)
(
−ν2 − iντ + iντ̄ − 1

3τ τ̄ + 1
3τ

2 + 1
3 τ̄

2) , (3.1)

where ν ≡ g0/g1. It turns out that (3.1) can be solved using the assumption

τ̄ = τ − 2iµ , (3.2)

with µ real and constant. This leads to

(−3ν2 + 6νµ− 4µ2 − 2iµτ + τ2)dτ
(τ − iµ)(τ − iν)(τ + 3iν − 4iµ) = dY

Y − i
, (3.3)

and thus
τ = iµ+ (µ− ν)

(
Y ±

√
Y 2 − 3

)
. (3.4)

Note that a different class of half-BPS rotating near-horizon geometries in the t3 model
was obtained in [21]. This is also of the form (2.33), but has Y = −1/

√
3 and is thus

clearly not contained in the solutions derived above, where Y was used as a coordinate.
A different way to deal with equation (3.1) is to define the shifted complex scalar

τ̂ ≡ τ − iν (3.5)

and to split the flow equation in its real and imaginary parts,

dτ̂R
dY

= τ̂R
Y (τ̂2

R + 3τ̂2
C) + 2τ̂Rτ̂C

(1 + Y 2)(τ̂2
R − 3τ̂2

C) ,
dτ̂C
dY

= τ̂R
τ̂2
R + 3τ̂2

C − 2Y τ̂Rτ̂C
(1 + Y 2)(τ̂2

R − 3τ̂2
C) , (3.6)

– 8 –
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where τ̂R ≡ Reτ̂ and τ̂C ≡ Imτ̂ . We can easily decouple this system by defining the
auxiliary function f(Y ) ≡ τ̂C/τ̂R. In this way, we get

f ′ = (1 + f2)(1− 3Y f)
(1 + Y 2)(1− 3f2) . (3.7)

A more convenient way of dealing with this equation is to suppose the function f(Y ) to be
invertible and to rewrite (3.7) in terms of the inverse Y (f),

Y ′ = (1 + Y 2)(1− 3f2)
(1 + f2)(1− 3fY ) . (3.8)

Since they will guide our steps in the construction of more solutions, we present here the
expressions of f(Y ) and its inverse in the case of (3.4),

f(Y ) = 1
Y ±

√
Y 2 − 3

, Y (f) = 1 + 3f2

2f . (3.9)

Inspired by these, we define y(f) ≡ 2fY (f) and suppose a polynomial expansion for it.
Then, it is straightforward to check that y(f) can be at most of degree 2, and the only
possible solutions are

Y (f) = 1 + 3f2

2f , Y (f) = 1− f2

2f , Y (f) = f , (3.10)

with inverse

f(Y ) = Y ±
√
Y 2 − 3
3 , f(Y ) = −Y ±

√
Y 2 + 1 , f(Y ) = Y . (3.11)

The first solution is exactly (3.4), as expected. In order to find τ̂R and τ̂C in the remaining
cases, the expression for f has to be plugged into its definition to get τ̂C as a function of
τ̂R (or viceversa), and with this relation one can try to solve the system (3.6). For the last
two cases of (3.11), this leads respectively to

τ = µ

√
Y 2 + 1∓ 2Y√
Y 2 + 1

(
±Y +

√
Y 2 + 1± i

)
+ iν , (3.12)

τ = µ√
3Y 2 − 1

(1 + iY ) + iν . (3.13)

For the solution (3.13), the relation (2.35) between the coordinates Y and ξ boils down to

µ = 8g2
1e
−ξ
√

3Y 2 − 1 . (3.14)

Plugging this into (3.13) gives

τ = 8g2
1e
−ξ (1 + iY ) + iν , (3.15)

which, contrary to (3.13), is well-defined also for Y 2 = 1/3. For Y = −1/
√

3 this corre-
sponds exactly to the near-horizon solution costructed in [21], cf. (4.13) and (4.14) of [21].
Eliminating Y in (3.15) one gets

τ = 8g2
1e
−ξ
(

1± i√
3

√
1 + e2ξ µ2

64g4
1

)
+ iν , (3.16)

– 9 –



J
H
E
P
0
9
(
2
0
2
1
)
1
0
2

and thus the solution in [21] is retrieved for µ = 0. It is worth noting that when the
scalar is written in terms of Y , µ = 0 seems not to be an allowed value since, from the
expression for the Kähler potential, Reτ > 0. The origin of this discrepancy resides in the
fact that (3.14) implies Y = ±1/

√
3 for µ = 0.

3.2 Square root model

For the model (2.44), we define a rescaled scalar field z by

z =
(
g1
3g0

)1/2
τ , (3.17)

such that the AdS critical point of the potential (2.49) is at z = 1. Then the flow equa-
tion (2.37) becomes

dz

dY
=

(
1
3 + z2

) (
−1− z̄2 + 2zz̄

)
(z + z̄)

2(Y − i)
[

1
3 − 2zz̄ + zz̄(zz̄ − z2 − z̄2)

] . (3.18)

Solutions for the square root prepotential are actually already known, since the model (2.44)
with purely electric gauging is equivalent to the t3 model with mixed gauging considered
in [20]. In fact, one can rotate the t3 model into (2.44) by a symplectic transformation with

S =


0 0 −α−3 0
0 α 0 0
α3 0 0 0
0 0 0 α−1

 , (3.19)

where α ∈ R\0. Notice that S is fixed by the following constraints: first of all, it must be
symplectic,

StΩS = Ω , (3.20)

with Ω given in (2.20). Moreover, the symplectic sections (2.1) must satisfy the con-
straint (2.2), and finally the prepotentials which describe the two models, (2.40) and (2.44),
must be proportional, Fsqrt ∝ Ft3 . It turns out that, in the present case, the correct relation
is Fsqrt = ±2Ft3 . Without loss of generality we take the upper sign,9 which leads to (3.19).

The action of the symplectic rotation (3.19) on a generic vector of gauge couplings
G = (g0, g1, g0, g1)t is given by

G′ = SG =


−g0/α

3

g1α

g0α3

g1/α

 , (3.21)

and thus the mixed gauging of [20] (g1 = g0 = 0) is rotated into the purely electric one
considered here. Notice also that purely magnetic or purely electric gaugings are always

9Cf. the comment further below on the case of the lower sign.
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rotated into mixed ones. Conversely, a mixed gauging may be rotated either into a pure
or a mixed one, depending on which are the nonvanishing FI-parameters. For instance,
g0 = g1 = 0 is transformed into a purely magnetic gauging, while g0 = g0 = 0 is rotated
into a mixed one (with the same non-zero coupling constants).

Instead of S, we can equally choose

S ′ =


−β3 0 0 0

0 0 0 − 1
3β

0 0 − 1
β3 0

0 3β 0 0

 (3.22)

(β ∈ R\0), which has the same effect, but leads to Fsqrt = −2Ft3 .

4 The first solution

In this section we construct the near-horizon black hole solution associated to the scalar (3.4).
Introducing the new coordinate p ≡ Y ±

√
Y 2 − 3 and shifting µ→ µ+ ν for convenience,

the scalar field takes the form
τ = i(µ+ ν) + µp , (4.1)

while the metric is given by (2.33),

ds2 = p(9 + p2)∆
8

(
−r2dt2 + dr2

r2

)
+ p2(9 + p2)2∆2 − 1024K

8p(9 + p2)∆ (dφ+ rdt)2

+ 9
2

p3(9 + p2)∆3

p2(9 + p2)2∆2 − 1024Kdp2 ,

(4.2)

and the gauge potentials follow from (2.34),

A0 = − 24g1
√
K

µ2p2(9 + p2)(dφ+ rdt) , (4.3a)

A1 = 8g1
√
K
[
3ν + µ(3 + p2)

]
µ2p2(9 + p2) (dφ+ rdt) , (4.3b)

where we introduced the constant ∆ ≡ µ/g2
1.

In order to have the correct signature, we need p∆ > 0 and p2(9+p2)2∆2−1024K > 0.10

Without loss of generality we shall take p > 0, ∆ > 0, and thus µ > 0. Since K and p∆
are both positive, the second constraint reduces to f1(p) ≡ p(9 +p2)∆−32

√
K > 0. In our

range of parameters the cubic polynomial f1 is characterized by a negative discriminant
and has therefore only one real root p̄ which represents a coordinate singularity. Since
the polynomial is positive for p > p̄, our spacetime is defined in the interval p ∈ (p̄,+∞).
Inspection of the scalar curvature shows the presence of a curvature singularity at p = 0,
which lies outside the allowed domain. The range of the periodic angular coordinate φ is

10Notice that p∆ > 0 also follows from the constraint Reτ > 0, cf. the expresssion (2.42) for the Käh-
ler potential.
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fixed by imposing the absence of conical singularities. The induced metric on surfaces of
constant t, r can be written as

ds2∣∣
t,r

= f1(f1 + 64
√
K)

8p(9 + p2)∆ dφ2 + 9p3(9 + p2)∆3

2f1(f1 + 64
√
K)

dp2 . (4.4)

Close to the singularity p→ p̄ this becomes

ds2∣∣
t,r
→ 3p̄2∆

3 + p̄2

[
dρ2 + (3 + p̄2)2

4p̄2 ρ2dφ2
]
, (4.5)

where ρ2 ≡ p− p̄. A conical singularity in p = p̄ (ρ = 0) is thus avoided if we identify

φ ∼ φ+ 4πp̄
3 + p̄2 . (4.6)

5 The second solution

Here we shall analyze the spacetime generated by the solution (3.12) to the flow equation.
In doing this we follow the path traced in the previous section, to which we refer for
further details.

We start defining p ≡ Y ±
√
Y 2 + 1, which, for consistency, implies p > 0 when the

plus sign is taken and p < 0 otherwise. Without loss of generality, in what follows we shall
restrict to the first case. In terms of p the scalar field becomes

τ = µ
3− p2

1 + p2 (p+ i) + iν , (5.1)

the metric (2.33) reads

ds2 = p(3− p2)∆
8

(
−r2dt2 + dr2

r2

)
+ p2(3− p2)2∆2 − 1024K

8p(3− p2)∆ (dφ+ rdt)2

+ 9
2

p3(3− p2)∆3

p2(3− p2)2∆2 − 1024Kdp2 ,

(5.2)

and the gauge potentials are given by

A0 = 8g1
√
K

µ2
1− 3p2

p2(3− p2)2 (dφ+ rdt) , (5.3a)

A1 = −8g1
√
K

µ2
ν(1− 3p2) + µ(1− p2)(3− p2)

p2(3− p2)2 (dφ+ rdt) , (5.3b)

where, again, ∆ ≡ µ/g2
1.

The range of the coordinate p is defined by p(3−p2)∆ > 0 and p2(3−p2)2∆2−1024K >

0,11 hence f2(p) ≡ p(3− p2)∆− 32
√
K > 0. In this case the analysis of the polynomial f2

11Also here the first constraint is equivalent to Reτ > 0.
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p

f2(p)

p3

0 3
p

f2(p)

pM p3

- 3 0 3

p

f2(p)

p1 p2 p3

- 3 0 3

Figure 1. Graph of f2 for: (a) 0 > ∆ > −16
√
K, (b) ∆ = −16

√
K, (c) ∆ < −16

√
K. Switching

the sign of ∆ produces a reflection of f2 over the vertical axis.

is more complicated since the discriminant does not have a definite sign. For ∆ < 0, f2 has
a local maximum at p = pM = −1, where f2(pM) = −32

√
K + 2|∆|, and a local minimum

at p = pm = 1, where f2(pm) = −32
√
K − 2|∆| < 0.12 The polynomial f2 has one root for

|∆| < 16
√
K, one single and one double root when the equality holds and three distinct

zeroes for |∆| > 16
√
K.

From the possible graphs of f2, shown in figure 1 for negative values of ∆, we derive
the following ranges of definition of p:

• ∆ < 0: p ∈ (p̄3,+∞) ,
• 0 < ∆ ≤ 16

√
K: no interval ,

• ∆ > 16
√
K: p ∈ (p̄2, p̄1).13

Notice that ∆ determines the topology of the horizon, which is noncompact for ∆ < 0 and
compact for ∆ > 16

√
K. Finally, the scalar curvature diverges in p = 0 and p = ±

√
3.

Since f2(0) = f2(±
√

3) < 0, these points are located outside the allowed regions.
In order to fix the periodicity of the angular coordinate φ we restrict again to surfaces

of constant t and r. Close to a generic root p̄ of f2 the metric approaches

ds2∣∣
t,r
→ 3p̄2|∆|
|1− p̄2|

[
dρ2 + (1− p̄2)2

4p̄2 ρ2dφ2
]
, (5.4)

where again ρ2 ≡ |p− p̄|. (5.4) is free from conical singularities in p = p̄ if

φ ∼ φ+ 4πp̄
|1− p̄2|

. (5.5)

Let us now consider the case of a compact horizon, i.e., ∆ > 16
√
K, p ∈ (p̄2, p̄1). Since p̄2

lies at the left of the local maximum in p = 1 and p̄1 on the right, we have p̄2
2 < 1 < p̄2

1.
Requiring the periodicities of φ in p̄1 and p̄2 to be equal gives thus

p̄1
p̄2

1 − 1 = p̄2
1− p̄2

2
⇒ p̄1 = 1

p̄2
(∨ p̄1 = −p̄2) , (5.6)

where the last case is excluded since we assumed p > 0. We can then write

f2(p) = p(3− p2)∆− 32
√
K = −∆

(
p− 1

p̄2

)
(p− p̄2)(p− p̄3) . (5.7)

12For ∆ > 0, p = 1 is a maximum and p = −1 a minimum.
13Here the p̄’s have opposite sign w.r.t. the ones in figure 1.
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Figure 2. Embedding diagram of the horizon of the black hole (5.2) for ∆ = 86 and K = 10.

Comparing the coefficients of the various powers one obtains p̄2 = 1 and therefore also
p̄1 = 1. One can thus remove only one of the two conical singularities located at the poles,
and it is not possible to have a horizon that is smooth in both p̄1 and p̄2. The remaining
singularity can be thought of as being created by a semi-infinite cosmological string. The
horizon geometry is visualized by means of the embedding diagram in figure 2.

Alternatively, one can keep both singularities and tune the parameters of the metric
such that the horizon becomes a specific kind of orbifold,14 the weighted projective space
Σ = WCP1

[n1,n2], also called spindle (see [29–31] for a list of recent references on this
topic). This space is topologically a 2-sphere, but with conical singularities at the poles,
characterized by deficit angles 2π(1 − 1/n1,2), with n1,2 two coprime positive integers.
Locally, the poles are modelled on R2/Zn1 and R2/Zn2 . Fixing appropriately the constant√
K/∆ and the period of φ, the two-dimensional metric spanned by p and φ becomes a

smooth metric on the orbifold Σ.

5.1 Uplifting to D = 5

Sometimes a better understanding of a given solution may be gained by taking advantage
of the correlation between four and five-dimensional supergravity theories and studying the
counterpart of the initial background. In this subsection we shall follow this strategy.

Let us consider the black hole solution (5.1)–(5.3) and uplift it to N = 2, D = 5
FI-gauged supergravity through the r-map (cf. appendix A). Since the starting point is the
four-dimensional t3 model, the result will solve the equations of motion of five-dimensional
pure gauged supergravity, whose bosonic sector consists of an Einstein-Maxwell theory

14We recall that an n-dimensional orbifold is a topological space locally modelled on Rn/Γ, where Γ are
finite groups.
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with Chern-Simons term and cosmological constant. The oxidized solution reads

ds2 = 1+x
8g2

1

(
−r2dt2+ dr2

r2

)
+ 1

8g2
1

(1+x)
[
x(3−x)2−1024K

]
x(3−x)2 (dφ+rdt)2

+ 9
8g1

1

1+x
x(3−x)2−1024K dx2+x(3−x)2

(1+x)2

[
dψ+ 8

√
2K
g1

1−3x
x(3−x)2 (dφ+rdt)

]2
,

A=
√

3 3−x
1+x dψ−

8
√

6K
g1

1
1+x(dφ+rdt) ,

(5.8)

where we defined the new coordinate x = p2 and rescaledK 7→ ∆2K in order to get rid of µ.
Even though this expression may seem not very instructive, setting K = 0 it is possible

to retrieve the spindle solution of [29], namely equations (3)-(5), with a = 1, a limiting
case in which the horizon collapses to a circle. Despite the analogy between the four-
and five-dimensional solutions, the two spindles have quite a different origin. Indeed, in
the uplifted solution with vanishing K, φ, which played the role of horizon coordinate in
D = 4, now parametrizes an AdS3 space (cf. [29]), while the Kaluza-Klein coordinate ψ
gives birth, along with x, to the spindle.

6 Black hole extension

In what follows we shall construct and analyze the extension of the solution associated
to (3.16) to the whole spacetime outside the black hole. To this end, it is convenient to
rewrite the solution in a different coordinate system, which allows, by comparing to [21],
to extend the metric to the region far from the horizon.

The metric is given by (2.33), where

Y (ξ) = 1√
3

√
1 + µ2

64g4
1
e2ξ , (6.1)

which follows from (3.14). The potentials related to the fluxes (2.34) are

A0 = −
√
Ke2ξ

16g3
1

(dφ+ rdt) , (6.2a)

A1 = −
√
Ke2ξ

16g3
1

(
∓8g2

1e
−ξY (ξ)− g0

g1

)
(dφ+ rdt) . (6.2b)

With the change of coordinates

e−ξ =
√
K coth x̃ , φ =

√
3y , t = T

2
√
K
, (6.3)

we can recast the scalar, metric and gauge potentials in a form that closely resembles the
one in section 4.1 of [21],

τ = R(x̃)
(√

3± iF (x̃)
)

+ i
g0
g1
, (6.4)

ds2 = − 8g2
1√

3R(x̃)

(
rdT + 3

4g2
1
∂x̃R(x̃)dy

)2
+
√

3R(x̃)
2g2

1

(
dr2

r2 + 3(dx2 + dy2)
sinh2x̃

)
, (6.5)
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A0 = − 2g1
3R(x̃)2

(
rdT + 3

4g2
1
∂x̃R(x̃)dy

)
, (6.6a)

A1 = − 2g1
3R(x̃)2

(
∓R(x̃)F (x̃)− g0

g1

)(
rdT + 3

4g2
1
∂x̃R(x̃)dy

)
± coth x̃

2g1
F (x̃)dy , (6.6b)

where

R(x̃) = Ξ1 coth x̃ , Ξ1 = 8g2
1

√
K

3 ,
dx̃

dx
= ∓F (x̃) ≡ ∓

√
1 + µ2

3R(x̃)2 . (6.7)

Inspired by [21], we make the following ansatz for the full black hole extension (α and β
are real constants):

τ =
√

3
√
αr + β +R2 ± iRF + i

g0
g1
, (6.8)

ds2 = − 8g2
1√

3
√
αr + β +R2

(
rdT + 3

4g2
1
∂x̃Rdy

)2

+
√

3
√
αr + β +R2

2g2
1

(
dr2

r2 + 3(dx2 + dy2)
sinh2x̃

)
,

(6.9)

A0 = − 2g1
3(αr + β +R2)

(
rdT + 3

4g2
1
∂x̃Rdy

)
, (6.10a)

A1 = − 2g1
3(αr + β +R2)

(
∓RF − g0

g1

)(
rdT + 3

4g2
1
∂x̃Rdy

)
± coth x̃

2g1
Fdy , (6.10b)

which we have shown to satisfy all the BPS equations of section 2.1. Eqs. (6.8)–(6.10)
represent a generalization of the black hole solution constructed in section 4.1 of [21] with
Ξ2 = 0. If the free parameter µ vanishes, our solution boils down to the one in [21]
with Ξ2 = 0.

The spacetime (6.9) has a horizon for r = 0, with induced metric

ds2∣∣
t,r

= 3
√

3
2g2

1 sinh2x̃

[√
β +R2dx2 + β + Ξ2

1√
β +R2dy

2
]
. (6.11)

As expected, the metric (6.9) is not asymptotically AdS4 since the scalar potential in (2.43)
has no critical points. A detailed physical discussion of the supersymmetric black hole given
by (6.8)–(6.10) will be presented elsewhere.

6.1 Uplifting to D = 5

In order to gain a deeper insight into this solution, once again we apply the r-map and
uplift (6.8)–(6.10) to five dimensions. The five-dimensional background is

ds2 = −8g2
1

3f

(
rdT + 3

4g2
1
∂x̃Rdy

)2
+ 1

2g2
1

(
dr2

r2 + 3(dx2 + dy2)
sinh2x̃

)

+ 3f
[
dz −

√
8g1
3f

(
rdT + 3

4g2
1
∂x̃Rdy

)]2

,

A = ±F coth x̃
(

Ξ1dz + dy√
2g1

)
,

(6.12)
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where we defined
f(r, x̃) = αr + β +R(x̃)2 . (6.13)

Although written in an obscure form, this is actually a product space between an extremal
BTZ black hole and the hyperbolic plane. To see this, start by shifting the y coordinate as
ŷ = y +

√
2g1Ξ1z, which yields a simplified expression for the metric and the gauge field,

ds2 = −8g2
1

3f0
r2dT 2 + dr2

2g2
1r

2 +
(√

3f0dz −
√

8g1√
3f0

rdT

)2

+ 3
2g2

1

dx2 + dŷ2

sinh2x̃
,

A = ± F√
2g1

coth x̃dŷ ,
(6.14)

with
f0(r) = αr + β + Ξ2

1 . (6.15)

The canonical two-dimensional hyperbolic metric appears explicitely defining

λ cosh θ = ±F coth x̃ , φ = ŷ

√
1 + µ2

3Ξ2
1
, (6.16)

while the BTZ metric can be retrieved by the coordinate change

t = 2g2
1√

3α
T , ρ2 = f0(r) , ψ = −

√
3
2g1z + 2g2

1√
3α
T . (6.17)

The result is

ds2 = 2
g2

1

[
−N2dt2 + dr2

N2 + ρ2(dψ +Nψdt)2
]

+ 3
2g2

1
(dθ2 + sinh2θdφ2) ,

A = 1√
2g1

cosh θdφ ,
(6.18)

where

N = ρ− β + Ξ2
1

ρ
, Nψ = −β + Ξ2

1
ρ2 , (6.19)

which are, respectively, the lapse and shift functions that define an extremal BTZ black hole
with mass M = 2(β+Ξ2

1). It is worth noting that the solution is described by the only free
parameterM , contrary to the three constants characterizing the four-dimensional system.15

The behaviour we observe is somewhat unexpected: the full black hole solution (6.8)–(6.10)
reduces to the near-horizon of a black string with momentum along the string once uplifted
to five dimensions. Notice in this context that the extremal BTZ black hole preserves half
of the supersymmetries of (1, 1) AdS supergravity in three dimensions [32] and that the
whole five-dimensional background can be proved to be 1/2-BPS, as expected for a near-
horizon geometry.

15If α is nonvanishing, its value in (6.8)–(6.10) can be set equal to 1 by rescaling r and T .
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7 Analytical continuation to NUT black holes

It is possible to analytically continue the near-horizon metric of an extremal rotating black
hole to obtain a spacetime with NUT charge. In the following, we apply this procedure to
a standard example, namely the extreme Kerr throat geometry, and then to the rotating
near-horizon solutions described in the previous sections.

7.1 From the extremal Kerr black hole to a NUT spacetime

Let us consider the near-horizon metric of the extremal Kerr black hole [28],

ds2 = 1 + cos2θ

2

(
−r

2

r2
0
dt2 + r2

0
r2dr

2 + r2
0dθ

2
)

+ 2r2
0 sin2θ

1 + cos2θ

(
dφ+ r

r2
0
dt

)2
, (7.1)

where the constant r0 is related to the rotation parameter by r2
0 = 2a2.

We perform a double Wick rotation on the coordinates t and φ by t → iϕ, φ→ iτ .
Furthermore, we introduce the new radial coordinate ρ = N cos θ and rename a → N ,
where N is interpreted as the NUT parameter. It is worth noting that after the ana-
lytic continuation the coordinate r should not be considered radial anymore. Finally, the
rescaling r → 2N2r and τ → τ/2N brings the metric (7.1) to the form

ds2 = −f(ρ)(dτ + 2Nrdϕ)2 + dρ2

f(ρ) + (N2 + ρ2)
(
r2dϕ2 + dr2

r2

)
, (7.2)

where the radial function is defined as

f(ρ) = N2 − ρ2

N2 + ρ2 . (7.3)

Equation (7.2) is the hyperbolic NUT spacetime [33, 34] with parameter N .

7.2 NUT black holes

Since the supersymmetric near-horizon geometry (2.33) has the same form as (7.1), one
can try to apply the analytical continuation outlined above also in that case. We shall do
this for the two particular examples (4.2) and (5.2) to obtain black holes with NUT charge.

By Wick-rotating the coordinates t→ iϕ, φ→ iτ in (4.2), we find

ds2 = −p
2(9 + p2)2∆2 − 1024K

8p(9 + p2)∆ (dτ + rdϕ)2

+ 9
2

p3(9 + p2)∆3

p2(9 + p2)2∆2 − 1024Kdp2 + p(9 + p2)∆
8

(
r2dϕ2 + dr2

r2

)
,

(7.4)

where now p has radial character. The very same transformations must be applied to the
other fields of the theory, namely the fluxes and the scalar, and one can verify that the
new fields still satisfy the equations of motion. Note also that (7.4) is of Petrov-type D.
In order to have real gauge potentials and thus real charges, it is necessary to analytically
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continue the gauge coupling constant as well, g → −ig. This implies gI → −igI , and
thus (4.3) leads to

A0 = − 24g1
√
K

µ2p2(9 + p2)(dτ + rdϕ) , (7.5a)

A1 = 8g1
√
K
[
3ν + µ(3 + p2)

]
µ2p2(9 + p2) (dτ + rdϕ) , (7.5b)

while the scalar field is still given by (4.1).16 Note that the Wick rotation of the coupling
constant amounts to changing the theory from genuine supergravity to fake supergrav-
ity [35], where an R-symmetry instead of a U(1) is gauged. Introducing the new coordinate
R = p1/2 and taking the limit R → ∞, the asymptotic metric takes the simple form of a
domain wall,

ds2 = R6

144

[
−(dτ + rdϕ)2 + r2dϕ2 + dr2

r2

]
+ dR2 , (7.6)

where we rescaled the metric by a factor of 18∆. Notice that the world volume of this
domain wall is curved, since the metric in brackets in (7.6) is AdS3, written as a Hopf-like
fibration over H2, cf. e.g. [36].

A second black hole with NUT charge can be generated by Wick-rotating the near-
horizon geometry (5.2), which leads to

ds2 = −p
2(3− p2)2∆2 − 1024K

8p(3− p2)∆ (dτ + rdϕ)2

+ 9
2

p3(3− p2)∆3

p2(3− p2)2∆2 − 1024Kdp2 + p(3− p2)∆
8

(
r2dϕ2 + dr2

r2

)
,

(7.7)

which is also of Petrov-type D, and p is now a radial coordinate. Sending g to −ig, the
gauge potentials (5.3) become

A0 = 8g1
√
K(1− 3p2)

µ2p2(3− p2)2 (dτ + rdϕ) , (7.8a)

A1 = −8g1
√
K
[
ν(1− 3p2) + µ(1− p2)(3− p2)

]
µ2p2(3− p2)2 (dτ + rdϕ) , (7.8b)

and the scalar field is the same as in (5.1), with µ = g2
1∆. We have checked explicitely

that (7.7), (7.8), together with (5.1), satisfy the equations of motion of fake gauged super-
gravity. For ∆ < 0 and large p, the metric (7.7) asymptotes again to the domain wall (7.6),
where R = p1/2.

We conclude this section by noting that solutions (7.4) and (7.7) represent genuine
black hole metrics. They both have a curvature singularity in p = 0 covered by an event
horizon. It is then appropriate to call them ‘NUT black holes’.

16The relation between ∆ and µ introduced in section 4 is actually ∆ = µ/|g2
1 |, where the absolute value

stems from |X|2 in (2.35). After taking g1 → −ig1 one has thus still ∆ = µ/g2
1 .
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A r-map

N = 2 gauged supergravity theories in four and five dimensions are closely related by a
special dimensional reduction called r-map, which connects the latter to the subclass of
four-dimensional theories with cubic prepotential

F = −1
6Cαβγ

XαXβXγ

X0 . (A.1)

Here we shall consider vector multiplets only and focus on an abelian gauging, following the
conventions of [37].17 The dimensional reduction is performed along an S1 with compact
coordinate z by means of the Kaluza-Klein ansatz

ds2
(5) = e

φ√
3ds2

(4) + e
− 2φ√

3 (dz +Kµdx
µ)2 , Aα = Bα(dz +Kµdx

µ) + Cαµdx
µ ,

zα = e
− φ√

3hα + iBα , eK = 1
8e
√

3φ , F Iµν = 1√
2

(dKµν , dC
α
µν) ,

(A.2)

where all the fields depend only on the four-dimensional coordinates xµ. We recall that
α = 1, . . . , n and I = 0, . . . , n, and the complex scalars zα are defined through the projection
zα = −iXα/X0. Moreover, one has to impose the constraints

g(4) = 3
√

2g(5) , ξ0 = 0 , (A.3)

where g(4) and g(5) are the gauge couplings in four and five dimensions respectively.
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