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Abstract

Infectious diseases generate heterogeneous economic and health impacts within countries, thus it is

essential to account for the spatial dimension in the design of epidemic management programs. We

analyze the optimal regional policy to contain the spread of a communicable disease in a spatial framework

with endogenous determination of the regional borders characterizing which policy regime will prevail.

Specifically, the social planner needs to choose how to split the entire spatial economy in a number of

regions in which a different combination of lockdown and treatment measures will be employed: in some

region the only mitigation instrument will be treatment, while in some other treatment will be accompanied

by a partial lockdown. We characterize the optimal solution both in an early and an advanced epidemic

setting, showing that according to the circumstances it may be convenient either to partition the spatial

economy in multiple regions with differentiated policies or to consider it a unique region subject to the

same policy measure. Moreover, we show that from a normative perspective it is rather difficult to

understand how to effectively determine the optimal size of a lockdown area (and thus of the lockdown

intensity) since this critically depends on a number of factors, including the initial spatial distribution

of disease prevalence, the amount of resources diverted from one region to the other, and the possible

spatio-temporal evolution of the disease.
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1 Introduction

The ongoing COVID-19 pandemic is ravaging the world showing more clearly than ever than infectious

diseases may generate devastating consequences both in industrialized and developing countries. By affecting

the labor market, education attainment, fertility, life expectancy and civil unrest, communicable diseases

impact economic activities through a variety of microeocnomic and macroeconomic channels (Bloom et al.,

2004; Acemoglu and Johnson, 2007; Bleakley, 2007; Adda, 2016; Cervellati et al., 2017; Klasing and Milionis,

2020). Such effects generate important short run implications determining the availability of resources to

finance private and public investments, ultimately harming the long run prospects of economic growth and

development (Boucekkine et al., 2009; Lopez et al., 2006; WHO, 2009). This explains why the eradication of
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infectious diseases is a primary social objective, as confirmed by the inclusion in the UN’s 2030 sustainable

development goals of specific targets related to the elimination or reduction of HIV, tuberculosis, hepatitis,

malaria, water-borne and tropical illnesses (UN, 2015). In order to contain the spread of communicable

diseases and mitigate their economic consequences a range of publicly-funded pharmaceutical measures,

broadly categorized as forms of prevention (aiming to reduce disease incidence) and treatment (aiming to

reduce disease prevalence), have been employed almost everywhere in the world. The role of such control

policies along with their effectiveness as mitigation strategies have been extensively discussed in the economic

epidemiology literature (Goldman and Lightwood, 2002; Gersovitz and Hammer, 2004; Anderson et al, 2010;

see also the surveys by Philipson, 2000; and Gersovitz and Hammer, 2003). Less known is the impact of

non-pharmaceutical policy tools, recently employed on a large scale to fight the COVID-19 pandemic, which

represent a special form of preventive measures that do not only improve epidemiological outcomes but also

deteriorate economic conditions.1

COVID-19 is a highly contagious virus-induced communicable disease for which human-to-human trans-

mission occurs though unprotected contacts between infective and suceptible individuals (WHO, 2020a).

The epidemic has origin in China in late 2019 and the disease has spread rapidly both within and between

countries reaching a pandemic status in a few months, resulting thus far (in March 2023) in over 430 mil-

lion confirmed cases and nearly 6 million deaths globally (Dong et al., 2020). On top of the traditional

prevention and treatment measures, a variety of alternative non-pharmaceutical policy actions have been

taken all over the world to contain the epidemic, including the introduction of social and physical distancing,

the imposition of mobility constraints, and the adoption of voluntary isolations and lockdowns (Cheng et

al., 2020). Despite their beneficial effects in reducing the disease incidence by decreasing the probability

of transmission, such policy measures have also generated dramatic economic effects by imposing stringent

restrictions on individuals and firms’ behavior resulting in sharp reductions in GDP and sharp increases in

job losses worldwide. The impacts of the disease and the policy measures implemented to contain it have

been highly diverse between countries and industries, with those extensively relying on contact-intensive

activities suffering the most (OECD, 2020a). Understanding thus how relying on non-pharmaceutical inter-

vention tools to balance the needs to preserve health conditions and to support economic activities in the

shadow of the COVID-19 pandemic is a current priority for policymakers, and our goal in this paper is to

contribute to this important issue by developing a normative approach to characterize how policy measures

should be determined in order to account for the geographical features of economic and epidemiological

outcomes.

Indeed, the impacts of COVID-19 have been highly heterogeneous not only between countries but also

within countries, showing large differences both at regional and local levels (Thomas, 2020; Amdaoud et al.,

2021; Francetic and Munford, 2021). For example, in Italy, one of the countries suffering the most in Europe,

the northern regions have been hit hardest, with Lombardy (the wealthiest region in the country) registering

the largest number of cases and deaths (Bourdin et al., 2021). Therefore, in order to limit the detrimental

consequences on national economic activity, it is essential to understand how to discriminate the form and

intensity of mitigation strategies at subnational level, as the spatial dimension plays an important role in the

design of effective epidemic management programs (Della Rossa et al., 2020; Desmet and Wacziarg, 2021).

Despite initially the policy response to the growing spread of the disease has been uniformly applied at the

national level, in an attempt to balance the competing economic and epidemiological needs policymakers

have opted more and more frequently for policy heterogeneity (Kraemer et al., 2020; OECD, 2020b). Several

measures, including mobility restrictions and lockdowns, have been implemented with variable intensity and

1Non-pharmaceutical interventions have probably been employed for the first time during the sixth century in the Roman

empire to contain the buboinic plague epidemic (also known as Justinian’s plague), when isolation and quarantine measures

have been introduced to fight the diffusion of the disease (Sarris, 2022). Since then non-pharmaceutical interventions have been

frequently used everywhere in the world to limit the spread of deadly infectious diseases, such as the plague, cholera, ebola

virus, SARS.
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timing at the different subnational levels, trying to closely relate their severity and duration with the local

level of disease prevalence (Cheng et al., 2020; Keystone, 2020).2 All over the world, the implemented policies

have been differentiated at various (state, interregional, regional, municipal) levels and policymakers have

been facing the critical problem to determine at which specific geographical level the alternative policy

measures should be applied (OECD, 2020b). In order to address such an important research and policy

question we develop a spatial macroeconomic-epidemiological framework to characterize how policy measures

should vary between regions by endogenously determining the regional borders characterizing which policy

regime is applied within the different regions.

Specifically, we analyze a spatially structured optimal control problem in which the national economy

is represented by a continuum of locations distributed over a closed interval, and the global policymaker

chooses the regional borders delimiting the area (i.e., the set of locations) in which a specific policy mix

will prevail. In particular, consistent with the COVID-19 policy response implemented in several countries

(such as Italy and China, just to mention two countries which have been deeply exposed to the disease),

the social planner needs to split the entire spatial economy in a number of regions in which a different

combination and intensity of lockdown and treatment measures will be employed: in some region the only

mitigation instrument will be treatment, while in some other treatment will be accompanied by a partial

lockdown whose intensity needs to be optimally determined. Moreover, restrictions on individuals’ mobility

are in place to prevent agents to travel between regions, such that the different regions are isolated from an

epidemiological perspective since disease transmission may occur only within a single region. However from

an economic point of view the different regions are interconnected as the need to finance extra-treatment

in the regions with the largest degree of disease prevalence is fulfilled by partly relying on the tax revenue

collected in the other regions. By determining the optimal size of the different regions the social planner

affects not only the number of locations in which the lockdown is applied but also the amount of resources

available for treatment in all locations. In this setting we characterize the optimal lockdown policy along

with the optimal size of the different regions, analyzing how the results may change in early and advanced

epidemic frameworks. We show that according to the specific circumstances, it may be convenient either to

partition the spatial economy in multiple regions with differentiated policies or to consider it as a unique

region subject to the same policy measures. Moreover, we show that from a normative perspective it is

rather difficult to understand how to effectively determine the optimal size of a lockdown area (and thus

the lockdown intensity) since this critically depends on a number of factors, including the initial spatial

distribution of disease prevalence, the amount of resources diverted from one region to the other, and the

possible spatio-temporal evolution of the disease.

Our paper mainly contributes to two different literature streams. Clearly our work is closely related to the

macroeconomic epidemiology literature which aims to analyze the mutual implications between epidemics

and aggregate economic activity (Goenka and Liu, 2012, 2019; Goenka et al., 2014; La Torre et al., 2020),

in particular in the light of the ongoing COVID-19 pandemic (Acemoglu et al., 2021; Alvarez et al., 2021;

Atkeson, 2020; La Torre et al., 2021a, 2022; Eichenbaum et al., 2021). Most of these studies adopt a

normative point of view to determine the optimal policy to contrast the spread of a communicable disease

by accounting for the macroeconomic consequences of different policies including the fact that the availability

of resources to finance them depends on the level of disease prevalence. With the exception of La Torre et

al. (2022) who analyze the spatial implications of such epidemiological-macroeconomic issues abstracting

from the determination of the optimal dimension of a lockdown area, the discussion of the optimal policy at

different geographical levels has never been explored thus far, which is instead a distinctive feature of our work

2For example, in Italy the national territory has been divided in four main (red, orange, yellow and white) areas, with the

severity of the mitigation measures changing according to which zone a specific region or municipality belongs to, such that

while in some areas businesses have been allowed to regularly run and individuals’ mobility to normally occur (apart from the

need to ensure physical distancing and to enforce the use of personal protective equipments), in others unnecessary businesses

have been forced to closure and individuals’ mobility completely forbidden (Sanfelici, 2020).
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aiming to characterize how mitigation policy should be differentiated between regions and locations.3 Such

a spatial focus closely relates our work also to the macroeconomic geography literature which discusses the

geographical implications of economic activities, with particular emphasis on capital accumulation (Camacho

et al., 2008; Boucekkine et al., 2009, 2013, 2019; La Torre et al., 2015) and environmental problems (Brock

and Xepapadeas, 2008, 2010, 2017; de Frutos and Martin-Herran, 2019a, 2019b; La Torre et al., 2019, 2021b).

These studies characterize how the optimal economic policy may change across space to account for the

eventual heterogeneity in the features of different locations and for the spatial externalities associated with

cross-location flows of resources, distinguishing eventually between global and local approaches characterized

by the presence or absence of regional coordination, respectively. To the best of our knowledge, none of them

allows for an endogenous determination of the borders of the different geographical areas which instead are

assumed to be exogenously given, while the possibility to determine the size of the geographical areas in

which a specific policy is implemented is an important peculiarity of our setup.

The paper proceeds as follows. Section 2 discusses a spatial extension of the traditional SIS epidemi-

ological model pointing out the differences arising from spatial and a-spatial settings. Section 3 presents

our baseline two-regions spatial macroeconomic-epidemiological model in which policymakers determine not

only the optimal intensity of the policy measures implemented but also the geographical areas in which

specific policies are employed. Section 4 focuses on the early stage of the epidemic in which the disease

prevalence is rather limited and the disease dynamic equation can be approximated by a linear partial dif-

ferential equation, allowing thus for a closed-form characterization of the solution. Section 5 focuses on the

advanced stage of the epidemic in which such an approximation is not applicable since disease prevalence is

no longer negligible, and thus the disease dynamics is described by a quadratic partial differential equation,

precluding the possibility to obtain closed-form solutions. Section 6 generalizes our analysis by considering

three regions and different combinations of lockdown and non-lockdown areas, showing how increasing the

number of regions in which to partition the entire spatial economy may affect our conclusions. Section 7

presents some extensions of our baseline two-region model to account for the effects of the policy measures

implemented in order to control the spread of COVID-19 and for some of its epidemiological peculiarities,

showing that our framework can account also for important realistic consequences of mitigation policies

along with realistic features of the disease. Section 8 as usual concludes and suggests directions for future

research. All technicalities are presented in appendixes A, B and C.

2 The Epidemiological Framework

The SIS model is one of the simplest and most widely used framework in mathematical epidemiology (Ker-

mack and McKendrick, 1927; Hethcote, 2000), allowing to describe the evolution of a number of infectious

diseases which do not confer permanent immunity after recovery. It can thus be used to analyze the spread

of common diseases, such as the seasonal flu and the common cold, but also of emerging diseases, such as

COVID-19 since thus far there exists no compelling evidence that “people who have recovered from COVID-

19 and have antibodies are protected from a second infection” (WHO, 2020b). We introduce a SIS setting

into a spatial context in which the economy develops along a line (Hotelling, 1929) and the points on the

line represent different geographical units, such that the population may move across different locations and

thus the diseases may spread across the different geographical units (Wang, 2014).

3A limited number of studies introduces a spatial dimension in the analysis of optimal lockdown strategies by considering

that the economy is structured in a network and the nodes represent different local units (Birge et al., 2020; Bisin and Moro,

2020; Bognanni et al., 2020; Cuñat and Zymek, 2020; Fajgelbaum et al., 2020;Giannone et al., 2020). These works focus on how

the interactions between geographical units affect the epidemic dynamics, showing that lockdowns targeted at the different local

levels are more cost-effective than uniform lockdowns as they allow to reduce the economic losses associated with mitigation

policies. Different from these papers in which the analysis is carried out in a purely numerical setting precluding the possibility

to understand the different mechanisms at work, our approach allows for an analytical characterization of the lockdown intensity

at different local levels clarifying the role of spatial interactions.
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We denote with Nx,t, Sx,t and Ix,t, respectively the population, the susceptibles and the infectives in

the position x at date t, in a compact interval [xa, xb] ⊂ R, and we assume that the Neumann boundary

conditions hold true, that is there are no mobility flows through the borders of [xa, xb] namely the directional

derivatives are null,
∂Nx,t

∂x =
∂Sx,t

∂x =
∂Ix,t
∂x = 0, at x = xa and x = xb. Every individual in the population

in each location can be either suceptible or infective, Nx,t = Sx,t + Ix,t: susceptibles become infectives by

interacting with other infectives and α ≥ 0 measures the infectivity rate (i.e., the average number of contacts

required in order to give rise to a new infection), and infectives become susceptible after recovering from the

disease and δ ≥ 0 is the recovery rate. In each location the evolution of susceptibles and infectives can be

described through the following system of partial differential equations:

∂Sx,t
∂t

= d
∂2Sx,t
∂x2

+ δIx,t − αSx,t
Ix,t
Nt

(1)

∂Ix,t
∂t

= d
∂2Ix,t
∂x2

+ αSx,t
Ix,t
Nt

− δIx,t. (2)

where Nt =
1

xb−xa

∫ xb

xa
Nx,tdx represents the average population size within the whole spatial economy. In

the above equations the term Sx,t
Ix,t
Nt

states that human interactions do not change with the spread of

the disease, and thus what determines the disease transmission is the share of infected population,
Ix,t
Nt

,

rather than the total number of infectives, Ix,t. Moreover, the diffusion terms d ∂2

∂x2 captures the existence of

spatial externalities, describing how individuals’ mobility within the spatial economy may lead the disease

to spread geographically even in locations far away from the location of the initial outbreak. In particular,

diffusion describes the effects of the demographic changes associated with migration which leads individuals

to permanently move from one location to the next (La Torre et al., 2022). The parameter d = dI = dS ≥ 0

measures the speed at which such cross-location effects take place, which for the sake of simplicity is assumed

to be the same for both infectives and susceptibles.

Since Nx,t = Sx,t + Ix,t, by summing the above equations it follows that the population in location x

satisfies the classical heat equation:
∂Nx,t

∂t
= d

∂2Nx,t

∂x2
(3)

subject to the Neuman boundary conditions and Nx,0 = Ix,0+Sx,0. This implies that the average population

size within the whole spatial economy is constant over time since:

d

dt
Nt =

1

xb − xa

∫ xb

xa

∂

∂t
Nx,tdx =

1

xb − xa
d

∫ xb

xa

∂2

∂x2
Nx,tdx = 0, (4)

thus in the following we shall denote the average population size with the constant N , that is Nt = N, ∀t.
Equation (3) states that human population moves from locations more populated to those less populated,

and so do susceptibles and infectives (see equations (1) and (2)) which are two sub-population groups which

make up the whole population.4 Migration towards less densely populated locations, on the one hand,

decreases the probability of infection of the single individual and, on the other hand, increases the degree of

infection in the locations receiving such migrants (La Torre et al., 2022). Therefore, such a characterization

of population mobility and infection spread is well suitable to describe the spatial disease dynamics during an

4We assume that the mobility patterns of infectives and susceptibles coincide, thus also infectives can move from one location

to the next. This is generally the case with common diseases (such as the seasonal flu or the common cold) while with highly

contagious and deadly diseases (such as COVID-19), infectives’ mobility might be precluded by hospitalization or limited by

public regulation. In reality though, even if public regulations might require non-hospitalized infectives to be quarantined

or self-isolating, individual compliance is not perfect and many individuals (especially asymptomatics) may be unaware of

their infectivity status, meaning that infectives’ spatial mobility represents an important determinant of disease spreading. It

seems interesting thus in our baseline framework to focus on the implications of spatial mobility on epidemic dynamics and

the mitigation policies in a context in which both susceptibles and infectives move across locations. We postpone to later the

discussion of how results may change when the mobility patterns of infectives and susceptibles differ (see section 7).
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epidemic outbreak, in which individuals’ attempt to reduce their disease exposure increases the probability

of infection of other individuals.5

To analyze the disease dynamics it is convenient to recast the model in terms of the share of infectives,

ix,t =
Ix,t
N , and the share of suscetibles, sx,t =

Sx,t

N , which is summarized by the following dynamic equations

with boundary and initial conditions:

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ δix,t − αsx,tix,t, x ∈ (xa, xb), t > 0 (5)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsx,tix,t − δix,t, x ∈ (xa, xb), t > 0 (6)

∂sx,t
∂x

=
∂ix,t
∂x

= 0, x ∈ {xa, xb}, t > 0 (7)

sx,0 = s0(x), ix,0 = i0(x) > 0 x ∈ [xa, xb] (8)

By assuming that s0 and i0 are continuous on [xa, xb], s0(x) > 0, i0(x) > 0 for any x ∈ [xa, xb], the theory

for parabolic equations (Lieberman, 1996) ensures that the above boundary value problem admits a unique

classical and continuous solution sx,t, ix,t ∈ C2,1((xa, xb)× (0,∞)). Moreover, the strong maximum principle

and the Hopf boundary lemma for parabolic equations (Protter and Weinberger, 1984) establish that both

sx,t and ix,t are nonnegative for all x ∈ [xa, xb] and t > 0 (Wang et al., 2015). Indeed, by being defined in

terms of the average population size in the spatial economy, the above shares of infectives and suscetibles

turn out to be only nonnegative and not naturally limited by one.

Since a new disease outbreak does not lead to an immediate policy response, for a certain period of time

the disease spreads freely within the population and thus the share of infectives tends to grow at a constant

(or even decreasing) rate. In order to characterize such a specific situation several studies analyze the disease

dynamics in an early epidemic setting by assuming that the evolution of the share of infectives is described by

a linear equation (Chowell et al., 2016; Ma, 2020). In our spatial context such an early epidemic framework

translates into assuming that the share of susceptibles is approximately constant, namely sx,t ≃ s,∀x, t.
This implies that it is possible to characterize the model’s outcome by analyzing only the evolution of the

disease prevalence, which is given by the following equation:

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsix,t − δix,t (9)

As discussed in literature the above approximation is applicable only in situations in which the disease

prevalence does not get too large, which in a spatial context means that the total prevalence within the

whole spatial economy, it =
∫ xb

xa
ix,tdx, remains small over time. Therefore, an early epidemic setting can be

used to describe the disease dynamics only in contexts in which the total prevalence shows a nonincreasing

pattern converging eventually to a situation in which eradication will be achieved in the spatial economy.

After an early stage in which the disease spreads freely within the population in the absence of policy-

makers’ containment efforts, the disease prevalence may get too large for the early epidemic approximation

to keep holding true. In such an advanced epidemic stage, in order to analyze the model’s outcome, we

need to accompany the dynamics of the disease prevalence with that of the share of population in location

x. Indeed, since nx,t = sx,t + ix,t, the shares of susceptibles is automatically determined once the disease

prevalence and the local population are known. By exploiting the fact that sx,t = nx,t − ix,t, we need to

5Modeling mobility in a different way to allow for population to get more and more concentrated in given locations would

give rise to the counterintuive result in which because of their own migration decisions people end up increasing their individual

probability of infection. The implication of such an alternative modeling approach is clearly not consistent with real world

experiences during major epidemic outbreaks, thus our modeling approach seems the most convenient to characterize the

spatial spread of a communicable disease. Note that a similar framework is typically employed also in mathematical epidemiology

(Martcheva, 2015; Anita and Capasso, 2017).
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analyze the following system of partial differential equations:

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(nx,t − ix,t)ix,t − δix,t (10)

∂nx,t
∂t

= d
∂2nx,t
∂x2

. (11)

where nx,t is simply Nx,t scaled down for the constant N . The expression of nx,t satisfies the classical heat

equation with Neumann boundary conditions, and its solution is well known (see James et al., 2020) and

given by the following expression:

nx,t =
∑
n≥0

Bne
−
(

nπ
xb−xa

)2
dt
cos

[
nπ(x− xa)

xb − xa

]
, (12)

where B0 = 1
xb−xa

∫ xb

xa
nx,0dx and Bn = 2

xb−xa

∫ xb

xa
nx,0 cos

[
nπ(x−xa)
xb−xa

]
dx are the Fourier coefficients. In

particular, the closed-form expression above implies that nx,t → B0 whenever t → ∞, which allows us to

determine the equilibria of the system (10) - (11). It is straightforward to show that the system above

admits two homogeneous equilibria E = (i, n), given by the two pairs:

EF : i
F
= 0, nF = 1

EE : i
E
= α−δ

α , nE = 1
(13)

The former represents a disease-free equilibrium as the disease prevalence is null (i
F
= 0) in each location in

the spatial economy and it exists for all parameter values. The latter instead is an endemic equilibrium since

the disease prevalence is strictly positive (i
E
= α−δ

α > 0) and it exists only if α > δ. Moreover, when only

EF exists this equilibrium is asymptotically stable, while when both equilibria exist EF loses its stability and

EE becomes asymptotically stable. Therefore, according to the parameters configuration the economy may

alternatively converge to either a disease-free equilibrium (if α ≤ δ) or an endemic equilibrium (α > δ). This

conclusion is consistent with the traditional result in mathematical epidemiology stating that the prevailing

equilibrium depends on the value of the “basic reproduction number”, R0, quantifying the average number

of secondary infections produced by a typical infectious individual introduced into a completely susceptible

population. The basic reproduction number is given by the ratio between the infectivity rate and the recovery

rate as follows:

R0 ≡
α

δ
(14)

Also in our spatial framework, exactly as in an a-spatial context, the threshold value of R0 determining

which equilibrium will emerge is equal to 1: if R0 ≤ 1 the prevailing equilibrium will be disease-free while

if R0 > 1 it will be endemic. Intuitively, any single infection needs to generate a multiplier effect in order

to allow the disease to become endemic persisting thus in the long run. As extensively discussed both

in the mathematical epidemiology and economic epidemiology literature, since pharmaceutical and non-

pharmaceutical mitigation tools affect either the infectivity rate (i.e., prevention) or the recovery rate (i.e.,

treatment) they may be effectively employed in order to bring and maintain the basic reproduction number

below unity allowing thus to achieve disease eradication in the long run.

Before introducing our economic framework, some further comments on the assumptions underlying our

epidemiological setting are needed. First of all, even if the SIS framework can be used to describe the spread

of COVID-19 in a simplified and intuitive way, it clearly does not provide a precise representation of its

dynamics since infection from COVID-19 seems to confer some temporary (few-months long) immunity which

would require to add a further group of individuals (i.e., the recovereds) who, different from the susceptibles,

cannot become infectives for a certain period of time. Moreover, the fact the spatial spread of the disease is

driven entirely by demographic dynamics may represent well the spatial pattern of infections in developing
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and less developed countries where people’s movements are limited, while it may not represent well the

situation in industrialized countries in which individuals regularly commute between locations for business

or leisure favoring thus the spatial propagation of a disease. In order to take these issues into account we

would need to introduce the presence of an additional sub-population group and local effects which partly

drive the spatial spread of infection. Since these additional features will substantially complicate the model’s

structure precluding the possibility to obtain closed-form solutions, it seems convenient to present our setup

in its simplest possible form first, postponing to later a formal discussion of how our baseline model might

need to be modified in order to describe more rigorously some epidemiological features of COVID-19 in

industrialized countries, including the possibility of temporary immunity and disease spreading faster than

demography (see section 7).

3 The Economic Framework

We now extend the above spatial SIS framework to account for the role of public policies and to analyze

its relation with macroeconomic outcomes. We thus present a spatial macroeconomic-epidemiological setup

in which the disease prevalence drives output production and both non-pharmaceutical (i.e., lockdown) and

pharmaceutical (i.e., treatment) measures are used to manage the epidemic. While lockdowns do not require

funding, treatment is funded via income taxation which however depends on disease prevalence, since by

affecting output it determines the availability of resources to finance pharmaceutical interventions. Such

feedback effects between health and macroeconomic outcomes are complicated by the spatial interactions

within and between different geographical units.

We analyze a short time horizon setting in which the social planner decides which policy measures to

implement in order to reduce the spread of a communicable disease, along with the geographical area of

applicability of such policies, in order to minimize the social cost associated with the epidemic management

program. We consider therapeutic treatment, 0 < vx,t < 1 which increases the speed of recovery of the

infectives decreasing disease prevalence, and a lockdown which limits the social contacts by a percentage

0 < ux,t < 1 reducing thus disease incidence. Over a short time horizon saving and capital accumulation

are irrelevant while fiscal policy can be taken as exogenously given because of its implementation delay,

thus we simply assume that in each location individuals entirely consume their disposable income as follows:

cx,t = (1 − τ)yx,t, where cx,t denotes consumption, yx,t income and 0 < τ < 1 the exogenous and constant

tax rate. The tax revenue is allocated to finance treatment, thus pharmaceutical policy interventions are

completely publicly provided by maintaining a balanced budget position. Output is produced through a

linear production function by susceptibles as follows: qx,t = sx,t.

The planner needs to choose how to split the entire spatial economy in a number of regions in which

different combinations of the pharmaceutical and non-pharmaceutical interventions will be implemented.

For the sake of expositional simplicity we consider only two regions for the time being. In one region (which

we refer to as region A = [xa, ξ] for expositional simplicity) both treatment and lockdown will be used, while

in the other (region B = [ξ, xb]) only treatment will be used. In region A, which develops from xa to ξ, only

a certain share of the social contacts, 1 − ux,t, is allowed to regularly occur, thus output net of lockdown

measures is given by: yx,t = (1−ux,t)qx,t. The tax revenue, τyx,t, is entirely used to finance treatment locally,

and some extra resources from treatment are collected from region B, rx,t, such that vx,t = τyx,t + rx,t. The

disease dynamics is described by a SIS equation as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 +α(1−ux,t)sx,tix,t−δ(1+ωvx,t)ix,t,

where ω > 0 measures the effectiveness of treatment in speeding up recovery. In region B, which develops

from ξ to xb, there is no lockdown thus output in each location is determined by the unconstrained supply:

yx,t = qx,t. The tax revenue, τyx,t, is entirely used to finance treatment, but only a part 0 ≤ β ≤ 1 is

employed locally while the remaining part is allocated to finance extra treatment in the region A. The

disease dynamics is described by a SIS equation as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 +αsx,tix,t− δ(1+ωvx,t)ix,t, where

vx,t = βτqx,t. The total amount of tax revenues diverted from region B, (1 − β)τ
∫
B qx,tdx, is equally split

8



within region A thus each location x ∈ [xa, ξ] receives a share 1
ξ−xa

of the total: rt =
(1−β)τ
ξ−xa

∫
B qx,tdx. In

both regions the disease is characterized by the same features and we assume that the infectivity rate is

larger than the recovery rate (i.e., α > δ) such that the basic reproduction number in the absence of public

intervention is larger than one (i.e., R0 > 1) and thus public policy is effectively needed in order to eventually

achieve long run disease eradication. We also assume that the initial prevalence is strictly positive over the

whole spatial domain (i.e., ix,0 = i0(x) > 0), which thanks to evolution operator theory guarantees that

disease prevalence is well defined (that is ix,t > 0, ∀x, t).
The social planner needs to determine the size of the two regions in order to minimize the social cost

of the epidemic management program, which is given by the discounted sum (ρ > 0 is the discount rate)

of the instantaneous losses in regions A and B during the duration of the program, augmented for the

final damage in the entire spatial economy at the end of the program. In region A, the instantaneous

loss function depends on the spread of the disease and the output lost due to the lockdown measure, and

takes a quadratic non-separable form as follows: ℓ(ix,t, ux,tqx,t) =
i2x,t(1+u2

x,tq
2
x,t)

2 , penalizing deviations from

the disease-free status and from the no-production-loss scenario. In region B, as there is no lockdown the

instantaneous loss function depends only on the level of disease prevalence: ℓ(ix,t) =
i2x,t
2 . Since in region

B the public health intervention is rather limited and some of its resources are diverted to region A, the

instantaneous losses in region B are weighted by its size-adjusted importance with respect to region A’s,

given by µ
ξ−xa

where µ > 0 and ξ − xa > 0 measure the relative importance and size of the region B,

respectively. The final damage function depends only of the level of disease prevalence at the end of the

epidemic management program and takes a quadratic form as follows: dT =
i2x,T
2 . The relative weight of the

final damage in terms of the instantaneous losses is measured by the degree of health concerns, ϕ > 0.

The social planner needs also to determine the size of the regions by determining their boundary point

ξ ∈ (xa, xb), thus the optimization problem can be stated as follows: Find ξ ∈ (xa, xb) which minimizes the

optimal value:

C(ξ) = min
ux,t∈U

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,ts
2
x,t]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (15)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)sx,tix,t − δ

[
1 + ωτ(1− ux,t)sx,t +

(1− β)ωτ

ξ − xa

∫ xb

ξ

sx,tdx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsx,tix,t − δ[1 + βωτsx,t]ix,t, x ∈ [ξ, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

sx,t = nx,t − ix,t
∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0, x ∈ [xa, xb]

nx,0 = n0(x) > 0, x ∈ [xa, xb]

where the set of admissible controls is given by:

U = {ux,t : [xa, ξ]× [0, T ] → R : ux,t is continuous, 0 < ux,t < 1} (16)

Since there is no control over the region B = [ξ, xb] we can extend any element in U to be zero over such a

region. We assume that ix,t is piecewise smooth and integrable, that is it belongs to C2,1((xa, ξ)× (0, T )) ∩
L1([xa, ξ]× [0, T ]) and C2,1((ξ, xb)× (0, T ))∩L1([ξ, xb]× [0, T ]), and similarly that also both i0(x) and n0(x)

are piecewise continuous and integrable and they are in C2(xa, ξ)∩L1([xa, ξ]) and C
2(ξ, xb)∩L1([ξ, xb]). By

applying the same argument used for the system (5) - (8), it is possible to conclude that the boundary value
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problems over both the regions A = [xa, ξ] and B = [ξ, xb] are well-posed and admit a unique positive solution

ix,t, sx,t, nx,t whenever α > δβωτ and α > δωτ , respectively. This follows from the considerations similar to

those discussed earlier along with a comparison theorem for reaction-diffusion equations (Friedman, 2008).

Since β ∈ [0, 1], it follows that δωτ > δβωτ and, therefore, both boundary value problems for the state

equations are well-posed under the common condition α > δωτ across the two regions, which we will assume

to hold true in the rest of the paper.

The strict convexity of the objective function in C(ξ) implies that the solution of the above optimal control

problem exists and is unique for any fixed ξ ∈ (xa, xb) (Casas et al., 2018). Note that the boundedness of

the function ix,t (due to the fact that ix,t ≤ nx,t and nx,0 is continuous) implies that the the middle integral

goes to +∞ when ξ → x+a . Furthermore, thanks to the continuity of both ix,t and ux,t we have that the

integrands in the first two integrals are bounded (and then integrable). By using the property that the

Lebesgue integral of an integral function is continuous and the well-posedness of the state equations, we get

that C(ξ) is a continuous function for any ξ ∈ (xa, xb]. Therefore C(ξ) attains a global minimum on each

compact interval [k, xb] with k > xa. The fact the optimal solution may need to be found for values of

ξ > xa implies that in our setting at least a minimal lockdown area is required to contain the spread of the

disease (ξ = xb represents the case in which the region B does not exist).

Note also that by choosing the boundary point between the two regions, the social planner endogenously

determines the weight to attach to the instantaneous losses experienced by region B and the point at which

mobility between locations is interrupted. Because of this interruption in cross-regional movements, at the

boundary point between regions some extra Neumann boundary conditions are applied (i.e.,
∂ix,t
∂x =

∂nx,t

∂x =

0), which means that the two regions are a smaller-scale copy of the entire spatial economy. Note also

that the problem above can be seen as a particular type of Stefan problems or variable boundary problems

(Stefan, 1899; Rubinstein, 1971; Friedman, 1972), which represent general frameworks in which the boundary

between regions changes over time. In our formulation we consider the separating boundary between two

regions to be endogenously determined and constant over the period [0, T ],6 thus in our setup the boundary

does not change over time but it is determined optimally by the social planner, and to the best of our

knowledge a similar problem has never been analyzed in economics thus far.

Before proceeding with our analysis, let us add a few remarks on some assumptions underlying our

economic framework. We have assumed that the planner wishes to partition the economy in two regions

only, and clearly this is a mere simplification of reality in which instead a different (possibly large) number

of regions may be considered as well. In order to set up a baseline framework for our analysis, it seems

convenient to present first the case in which the number of regions is limited to two, postponing to later the

discussion of how our results may change in a multi-regional context (see section 6 where we will consider

three regions, which requires to analyze what happens whether this extra region is either a lockdown or non-

lockdown area). We have also assumed the diffusion coefficients capturing the speed of the spatial spread of

the epidemics is homogeneous across population groups and across regions, while it may be reasonable to

consider that the recommendations for self-isolation in the case of infection and the introduction of lockdown

measures reduce mobility among infectives and within the lockdown area respectively, such that both the

population subpopulation groups and the regions might be characterized by different diffusion parameters.

Given the short time horizon nature of the problem this will not modify our qualitative conclusions, thus

also in this case it seems convenient to present our model in its simplest possible form discussing later how

results may change under heterogeneity in mobility patterns across groups and across regions (see section

6Our model can be easily extended to consider a multi-period framework, in which there exists a sequence of time horizons

over which the planner determines the boundary point between the two regions, eventually revising his decisions moving from

one time horizon to the next. In this case the model would consist of multiple optimization problems to be solved over a

finite number N of disjoint time intervals [0, T1], [T1, T2], ..., [TN−1, TN ], such that ξ might change between time intervals. This

setup allows to characterize the true problem faced by policymakers in the real world in which the lockdown decisions (i.e., the

lockdown intensity and the lockdown area) are determined in advanced for a certain period of time, to then be revised when

new information regarding disease prevalence become available.
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7).

4 The Early Epidemic Stage

We first analyze the above problem in an early epidemic setting in which, recalling what we have discussed

in section 2, the share of susceptibles can be thought to be constant over time and homogeneous across

space, sx,t ≃ s, ∀x, t. Under this approximation the problem boils down to the following: Find ξ ∈ (xa, xb)

which minimizes the optimal value:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,ts
2]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (17)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)six,t − δ

[
1 + ωτ(1− ux,t)s+

(1− β)ωτ

ξ − xa

∫ xb

ξ

sdx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsix,t − δ[1 + βωτs]ix,t, x ∈ [ξ, xb]

∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

Note that in this case the well-posedness of the boundary value problems for the state equations and the

strict positivity of their solution is ensured by the linearity of the epidemic equations. Moreover, since the

solution can be obtained in closed-form, the value of objective functional can be calculated explicitly in

order to find the value of ξ which minimizes it. Therefore, in order to determine the optimal solution of the

problem (17) we first assume that the boundary point ξ ∈ (xa, xb) is fixed and solve the problems in the

regions [xa, ξ] and [ξ, xb], and then we determine the optimal boundary point by using the solution obtained

in the previous step to compute the value of the functional and identify the value of ξ which minimizes it.

Finally, note that because of the convexity of the objective functional the above optimal control problem is

also well-posed (Dontchev and Zolezzi, 1993).

Let us start thus from the case in which ξ is fixed. The following result (Lemma 1) presents the elements of

the exponential matrix which will be used to determine the closed-form solution as a function of ξ (Theorem

1). The proofs of all the theorems, propositions, corollaries and lemmas are presented in appendix A.

Lemma 1. By defining the following aggregated parameters:

η1 := s(α− δ τω)− δ − δ (xb − ξ) (1− β) τω s

ξ − xa
(18)

η2 := 4 δ2τ2ω2 − 8α δω τ + 4α2 + 4 η1
2 − 4 η1 ρ+ ρ2 = 4(α− δωτ)2 + (ρ− 2η1)

2 (19)

and considering the matrix:

Θ =

 s(α− δτω)− δ − δ
(
(xb−ξ)(1−β)τωs

ξ−xa

)
−(α− δτω)2

−1 ρ− s(α− δτω) + δ + δ
(
(xb−ξ)(1−β)τωs

ξ−xa

)  , (20)

11



then the entries of the exponential matrix eΘt are given by:

eΘt
11 = −e

ρt
2

(
ρ− 2 η1 ) sinh

(√
η2t
2

)
−√

η2 cosh
(√

η2t
2

))
√
η2

(21)

eΘt
12 = −2e

ρt
2 (−δ τω + α)2

sinh
(√

η2t
2

)
√
η2

(22)

eΘt
21 = −2e

ρt
2

sinh
(√

η2t
2

)
√
η2

(23)

eΘt
22 = e

ρt
2

(
ρ− 2 η1 ) sinh

(√
η2t
2

)
+
√
η2 cosh

(√
η2t
2

))
√
η2

(24)

Let us notice that in the region B, where lockdown measures are not employed, the lockdown intensity is

null (i.e., ux,t ≡ 0,∀x ∈ [ξ, xb]). This allows us to express the closed-form solution in a more compact form.

In order to ease readibility in the statement of our results we shall denote the lockdown intensity and the

share of infectives in regions A and B with the superscript j = {A,B}. Furthermore, throughout the paper

the convergence of the Fourier series is intended in Lebesgue sense.

Theorem 1. Assuming that ξ ∈ (xa, xb) is fixed. Under the regularity assumptions on the state and the

control variables presented in the model statement, the optimal pair (ix,t, ux,t) solving problem (17) satisfies

the following optimality conditions:

• ix,t : [xa, xb]× [0, T ] → R+ and it is defined as

ix,t = iAx,tχ[xa,ξ] + iBx,tχ[ξ,xb] (25)

where χS is the indicator function of the set S (χS(x) = 1 for any x ∈ S, 0 otherwise)

• ux,t : [xa, xb]× [0, T ] → R+ and it is defined as

ux,t = uAx,tχ[xa,ξ] (26)

• The function iBx,t solves the following boundary value problem:
∂iBx,t
∂t = d

∂2iBx,t
∂x2 + (αs− δ − δβτωs) iBx,t x ∈ [ξ, xb]

∂iBx,t
∂x = 0 x ∈ {ξ, xb}
iBx,0 = i0(x) x ∈ [ξ, xb]

(27)

whose solution is:

iBx,t =
∑
n≥0

Cne
−d

(
nπ

xb−ξ

)2
t
e(αs−δ−δβτωs)t cos

[
nπ(x− ξ)

xb − ξ

]
(28)

where:

C0 =
1

xb − ξ

∫ xb

ξ
i0(x)dx, Cn =

2

xb − ξ

∫ xb

ξ
i0(x) cos

[
nπ(x− ξ)

xb − ξ

]
dx (29)

12



• The pair (iAx,t, u
A
x,t) solves the following optimality conditions:

∂iAx,t
∂t = d

∂2iAx,t
∂x2 +

[
s(α− δωτ)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
iAx,t − suAx,ti

A
x,t(α− δτ)

∂λA
x,t

∂t = ρλAx,t − d
∂2λA

x,t

∂x2 − iAx,t − λAx,t

[
s(α− δωτ)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
uAx,t =

λA
x,t(α−δτω)

siAx,t
∂iAx,t
∂x = 0, x ∈ {xa, ξ}
∂λA

x,t

∂x = 0, x ∈ {xa, ξ}
iAx,0 = i0(x) x ∈ [xa, ξ]

λAx,T = ϕiAx,T x ∈ [xa, ξ]

(30)

where λAx,t is the costate variable. The closed-form solution is given by:

iAx,t =
∑
n≥0

(
eΘt
11Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

12Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos

(
nπ

[
x− xa
ξ − xa

])
(31)

uAx,t =

∑
n≥0(α− δτω)

(
eΘt
21Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

22Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos
(
nπ
[
x−xa
ξ−xa

])
∑

n≥0

(
eΘt
11Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

12Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos
(
nπ
[
x−xa
ξ−xa

]) (32)

where:

Bn =

[
eΘT
21 − ϕ2e

ΘT
11

ϕ2eΘT
12 − eΘT

22

]
Ane

−d
(

nπ
ξ−xa

)2
T

(33)

A0 =
1

ξ − xa

∫ ξ

xa

i0(x)dx, An =
2

ξ − xa

∫ ξ

xa

i0(x) cos

(
nπ

[
x− xa
ξ − xa

])
dx (34)

and eΘt
11 , e

Θt
12 , e

Θt
21 , and e

Θt
22 are the entries of the exponential matrix eΘt presented in Lemma 1.

Note that, since we are assuming that ξ is fixed for the time being, provided that ix,t > 0 and 0 < ux,t < 1

the conditions stated in Theorem 1 are also sufficient thanks to the convexity of the objective functional. In

particular, the theorem determines in an explicit form the spatio-temporal dynamic path of the lockdown

intensity (in region A) and disease prevalence (in both regions A and B), which are expressed in terms of

cosine Fourier expansions. We can notice that both ujx,t and i
j
x,t are in general non-constant over time and

non-homogeneous across space. However, their analytical expressions are particularly cumbersome and thus

it is not possible to perform any comparative statics exercise in order to understand how they depend on

the different parameters. Nevertheless, they still allow us to derive some interesting results.

Corollary 1. The following result holds true:

∥ix,t∥2L2 = ∥iAx,t∥2L2 + ∥iBx,t∥2L2 (35)

and:

2

ξ − xa
∥iAx,t∥2L2 = 2(eΘt

11A0 + eΘt
12B0) +

∑
n≥1

(
eΘt
11Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

12Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)2

(36)

2

xb − ξ
∥iBx,t∥2L2 = 2C2

0e
2(αs−δ−δβτωs)t +

∑
n≥1

C2
ne

2t

[
αs−δ−δβτωs−d

(
nπ

xb−ξ

)2
]

(37)
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Corollary 1 provides an upper bound to control the L2 norm of the disease prevalence in both regions

A and B, and thus in the entire spatial economy. The following proposition refines the above result by

providing sufficient conditions which guarantee that the epidemic management program is effective, that is

the total disease prevalence decreases over time in both regions A and B.

Proposition 1. Assume that β > αs−δ
sδωτ , then it follows that d

dt

∫ xb

ξ iBx,tdx = d
dt∥i

B
x,t∥L1([ξ,xb]) < 0 and

d
dt

∫ ξ
xa
iAx,tdx = d

dt∥i
A
x,t∥L1([xa,ξ]) < 0, which imply that the total disease prevalence over the spatial domain

(i.e., it =
∫ xb

xa
ix,tdx = ∥ix,t∥L1([xa,xb])), decreases over time.

Proposition 1 states that if treatment in region B is effective (i.e., β > αs−δ
sδτω ), that is the amount of

resources kept within region B to finance local treatment is large enough to reverse the disease growth

pattern, then the total disease prevalence will decrease over time not only in region B but also in region

A, and thus over the whole spatial domain.7 The result is intuitive: since all economic and epidemiological

parameters are exactly the same in both regions, if the cross-subsization of treatment from region B to region

A is not too large, then region B will have enough resources to contain the disease regionally and the same will

be true in region A, where all resources are kept within the region. Regional cross-subsization of treatment,

despite limited, works jointly with the lockdown intensity: if less resources are diverted from region B, a

more stringent lockdown to achieve effective disease containment may be needed. Overall, provided that

β > αs−δ
sδτω , the treatment and lockdown policy mix in the two regions allows for a monotonic reduction in

the total disease prevalence in the whole spatial economy. Despite the epidemic management program is

effective as it allows to decrease the total disease prevalence, consistent with what shown in La Torre et al.

(2021a) in an a-spatial setting, complete spatial eradication is not possible over a finite time horizon, while

it may be possible only asymptotically. Moreover, as discussed in section 2, if the condition in Proposition 1

holds true, then our early epidemic approximation allows us to well characterize the spatio-temporal disease

dynamics within the entire spatial economy.

Thus far we have simply assumed that the boundary point between the two regions is exogenously given,

while this needs to be optimally determined by the social planner. In order to determine the optimal ξ,

which we shall denote with ξopt, we plug the analytical expressions of ujx,t and i
j
x,t provided by Theorem 1

into the functional cost in (17) to assess how it depends on ξ. Specifically, we need to minimize the following

functional cost C(ξ):

C(ξ) =
∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,ts
2]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρTdx (38)

with respect to ξ over the interval (xa, xb). As we have already observed the function C(ξ) goes to +∞ when

x → x+a and it is continuous over any compact interval [k, xb] with k > xa, thus thanks to Weierstrass’s

theorem this implies the existence of a global minimizer over the interval [k, xb] which may be either an

interior or a corner solution. Since determining analytically the optimal boundary point is not possible we

will need to proceed through numerical analysis which confirms that in different circumstances ξopt may be

an interior or a corner point.

In order to visually illustrate the implications of our analysis we now present a calibration of our model

based on the Italian COVID-19 experience during its first epidemic wave (February-June 2020). We set

the parameter values as in La Torre et al.’s (2021a) baseline a-spatial model, distinguishing between an

early epidemic stage at the national level (where the disease prevalence has remained relatively small) and

an advanced epidemic stage at the regional level in Bergamo (where the prevalence has reached a sizeable

portion of the local population). Specifically, we set α = 0.1328 and δ = 0.0476 (implying R0 = 2.79),

along with ρ = 0.04/365, ω = 8.23 and τ = 0.3. The parameters related to the peculiarities of our spatial

7Note that the sufficient conditions outlined in Proposition 1 also imply that the early epidemic stage approximation is

suitable to describe the disease dynamics as prevalence does not show an explosive behavior but it always remain bounded from

above.
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framework are instead set arbitrarily as follows: xb = 1, xa = −1, d = 0.01, s = 0.98, while i0(x) and β

are varied to see how they impact the solution. Figures 1 and 2 depict the spaio-temporal evolution of the

lockdown intensity (left panels) and share of infectives (right panels) under different configurations of the

initial distribution of the disease prevalence, distinguishing between situations in which β = 0.2 (top panels)

and β = 0.8 (bottom panels). In order to allow comparability, at time 0 the average disease prevalence over

the whole spatial domain is assumed to be the same and in particular to be equal to 0.03, while disease

prevalence is relatively higher in the left than in the right locations such that effectively the leftmost region

may require more intervention than the rightmost one, justifying thus the adoption of a lockdown policy at

least somewhere in the spatial economy. Note that under our parametrization the condition in Proposition

1 (β > αs−δ
sδωτ = 0.72) holds true only in the β = 0.8 case and thus the epidemic management program gives

rise to a reduction in the total disease prevalence in the spatial economy only in such a scenario, while in

the β = 0.2 case the total disease prevalence may even increase over time.

Figure 1: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = −0.04
2 (x+ 1) + 0.05, and either

β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = −0.5253 with Copt = 0.0233 (top) and

ξopt = −0.7273 with Copt = 0.0124 (bottom).

Figure 1 represents the outcome in a scenario in which the initial distribution is monotonically decreasing

over the spatial domain, and specifically it is given by ix,0 = −0.05
2 (x + 1) + 0.05. We can observe that in

region A the lockdown intensity decreases over time and this initially high value is large enough to reverse

the growth pattern of the disease leading the disease prevalence to substantially decrease over time; in region

B, despite the absence of lockdown, as enough (not enough) resources are allocated to local treatment, the

disease prevalence decreases (increases) over time whenever β = 0.8 (whenever β = 0.2). It is interesting

to note that the lockdown intensity is homogeneous across space in region A despite the fact that each

location in the region is characterized initially by a different level of disease prevalence. This is due to the

role of spatial diffusion which tends to increase prevalence in locations in which it is initially lower leading
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thus to a homogenization of prevalence across locations over time (La Torre et al., 2021b), thus from the

social planner’s perspective it is convenient to internalize such dynamic effects applying the same lockdown

intensity everywhere in the region A (La Torre et al., 2021b). Even if from a qualitative point of view

the behavior of the variables is independent of the value of β, this parameter critically impacts the optimal

boundary point ξ and the locdkdown intensity. Indeed, β determines which share of the tax revenue collected

in region B is spent locally in the region, thus a higher β implies that region B subsidizes treatment in region

A by a smaller extent. We can observe that with a lower value of β (top panels) region A covers a larger

area than what happens with a higher β (bottom panels): as intervention is less cross-subsidized by region

B it is optimal to reduce the size of region A and increase the lockdown intensity in order to compensate

for the reduced resources for treatment and to allow for a reduction in disease prevalence within the region.

It is possible to show that this result is robust and the larger β the smaller ξopt (i.e., ξopt moves leftward)

such that region A gets smaller.

Figure 2: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = k(sin(πx)2e−x−1 + 0.01) where

k = 0.03(4π2+1)
(1−e−2)π2+0.01(4π2+1)

, and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt =

−0.4243 with Copt = 0.0069 (top) and ξopt = −0.6667 with Copt = 0.0052 (bottom).

Figure 2 repeats our previous analysis in the case in which the initial distribution of the disease

prevalence is sinusoidal and given by the following expression: ix,0 = k(sin(πx)2e−x−1 + 0.01) with k =
0.03(4π2+1)

(1−e−2)π2+0.01(4π2+1)
. From a qualitative point of view the results are similar to those discussed earlier:

disease prevalence decreases in region A, but the high heterogeneity of the initial distribution within the

region leads the lockdown intensity to be initially higher in the locations in which prevalence is initially

higher. Despite the physical mechanism of diffusion tends to increase prevalence in locations in which it is

initially lower and to decrease it in those in which it is initially higher, it is optimal from the social planner’s

perspective to intervene more severely in the central locations of the region. It is interesting to observe
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that the ξopt does not coincide with x = 0, that is the point associated with the lowest initial prevalence

level between the peaks occurring at x = −0.5 and x = 0.5, but it is shifted leftmost. Moreover, ad before

different values of β do not change the qualitative behavior of the main variables but the parameter plays

an important role in determining the optimal boundary point. In particular, the larger β the smaller ξ (i.e.,

ξ moves lefttward) such that region A gets smaller, which is exactly the same result we have discussed in

Figure 1.

Overall, these figures show that from a normative perspective it is not simple to understand how to

effectively determine the optimal size of a lockdown area since the chosen regional size determines the

availability of resources to finance pharmaceutical interventions in different regions and thus it critically

affects the eventual success of national epidemic management programs. In particular, the optimal choice of

the lockdown area (and thus of the lockdown intensity) depends on the initial spatial distribution of disease

prevalence and on the amount of resources diverted from one region to the other, thus policymakers’ task

to determine the optimal lockdown area and intensity is all but simple as it requires a large amount of

information on the characteristics of the disease across the whole spatial economy.

4.1 The Homogeneous Case

A particular case of our general model is represented by the situation in which the initial distribution of the

disease prevalence is spatially homogeneous (i.e., i0(x) = i0). In this specific situation the leftmost locations

are characterized by exactly the same level of disease prevalence as the rightmost locations, thus intervening

more severily (with both lockdown and treatment measures) in the left region may not be a sensible approach.

Nevertheless, this special case allows us to derive substantially simpler analytical expressions for ujx,t and

ijx,t and to understand more clearly how the optimal boundary point is determined, thus it represents an

interesting and instructive example. The following proposition summarizes our results under homogeneity

of the initial distribution of the disease prevalence.

Corollary 2. Suppose i0(x) = i0 for any x ∈ [xa, xb]. Then, assuming that ξ is fixed, the optimal pair

(ix,t, ux,t) solving problem (17) is given by the following expressions:

ix,t =

iAx,t = i0

(
eΘt
11 + eΘt

12

[
eΘT
21 −ϕ2eΘT

11

ϕ2eΘT
12 −eΘT

22

])
x ∈ [xa, ξ]

iBx,t = i0e
(αs−δ−δβτωs)t x ∈ [ξ, xb]

(39)

ux,t =


uAx,t =

(α−δτω)

(
eΘt
21+eΘt

22

[
eΘT
21 −ϕ2e

ΘT
11

ϕ2e
ΘT
12 −eΘT

22

])
(
eΘt
11+eΘt

12

[
eΘT
21 −ϕ2e

ΘT
11

ϕ2e
ΘT
12 −eΘT

22

]) x ∈ [xa, ξ]

uBx,t = 0 x ∈ [ξ, xb]

(40)

Corollary 2 determines the dynamics of the lockdown intensity and disease prevalence in the case in

which the initial prevalence distribution is homogeneous across space, showing that ujx,t and i
j
x,t are spatially

homogeneous as well. This result is due to the fact that all economic and epidemiological parameters are

spatially homogeneous and thus in the absence of any source of heterogeneity the variables behavior needs

to be exactly the same in every location within each region. In the case of a homogeneous initial distribution

of the disease prevalence, the functional form of C(ξ) simplifies and it can be written as:

C(ξ) = C1(ξ) + C2(ξ) + C3(ξ) (41)
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where:

C1(ξ) =
(ξ − xa)i

2
0

2

∫ T

0
(eΘt

11 + LeΘt
12 )

2e−ρtdt+
(ξ − xa)i

2
0s

2(α− δωτ)2

2

∫ T

0
(eΘt

11 + LeΘt
12 )

2e−ρtdt (42)

C2(ξ) =
µ(xb − ξ)i20
2(ξ − xa)

(
e2(αs−δ−δβτωs)T − 1

2(αs− δ − δβτωs)

)
(43)

C3(ξ) =
Φ(xb − xa)i

2
0

2

(
(eΘT

11 + LeΘT
12 )2 + 2e2(αs−δ−δβτωs)T

)
(44)

and L =
eΘT
21 −ϕ2eΘT

11

ϕ2eΘT
12 −eΘT

22
. The integrals in the above expression can be solved in closed-form but the expression

of C(ξ) turns out to be quite cumbersome in general, and thus it is not possible to explicitly determine the

optimal ξ. However, in a special case in which the tax revenue collected from region B is employed entirely

locally within the region (i.e., β = 1) it is possible to obtain in closed-form such an optimal boundary point,

as stated in the following corollary.

Corollary 3. Suppose that β = 1, and the following condition holds:

2µ(αs− δ − δτωs)(
e2(αs−δ−δτωs)T − 1

) [∫ T

0
(eΘt

11 + LeΘt
12 )

2e−ρtdt

]−1

< xb − xa

Then C ′(ξ) = 0 if and only if the following result holds:

ξ = xa +

√
2µ(αs− δ − δτωs)(xb − xa)

(1 + s2(α− δωτ)2)
(
e2(αs−δ−δτωs)T − 1

) ∫ T
0 (eΘt

11 + LeΘt
12 )

2e−ρtdt
(45)

where η1 = s(α − δ τω) − δ and η2 = 4(α − δωτ)2 + (ρ − 2η1)
2. Furthermore ξ is a global minimizer of C

when x > xa and ξ ∈ (xa, xb).

Corollary 3 demonstrates that, under a quite general parameter condition the function C has a global

minimizer, which is an interior point of the domain (xa, xb), which suggests that also under a homogeneous

initial disease prevalence distribution the optimal ξ may be characterized by an interior solution. It is

not possible though to infer how this optimal boundary point depends on the main parameters, as its

expression is extremely complicated due to the presence of the entries of the exponential matrix which

depend nonlinearly on the model parameters. Apart from what happens in this particular case, in general

the behavior of C(ξ) shows a vertical asymptote at ξ = xa and then a decreasing trend followed by an

increasing one, which suggests that also under a homogeneous initial disease prevalence distribution the

optimal ξ may be characterized by an interior or a corner solution, exactly as it happens whenever the

initial disease prevalence distribution is heterogeneous. Therefore, as before we proceed with numerical

simulations to illustrate the behavior of the optimal solution.

Figure 3 shows the spatio-temporal evolution of the lockdown intensity (left panel) and disease prevalence

(right panel) in the homogeneous initial prevalence distribution case. In particular, we set ix,0 = 0.03 such

that the total share of infectives within the whole spatial economy is the same as in Figures 1 and 2. We

can observe that the results are qualitative identical to those earlier discussed in the case of a heterogeneous

initial distribution: the initially high value of the lockdown intensity in region A (which covers a small portion

of the entire spatial domain) allows to reverse the disease growth pattern in the region, while prevalence

increases or decreases in region B according to the size of β. The most noticeable difference with respect to

what have seen earlier is related to the impact of β: independently of the value of this parameter the optimal

boundary point is always located in the same position: as there are no sources of heterogeneity between

regions (the parameters along with the initial prevalence are the same in the two regions) the redistribution

of resources between regions affects only the intensity of the lockdown intensity in region A (and clearly the

possibilities for treatment in both regions A and B) but not the optimal size of the lockdown area.
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Figure 3: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = 0.03 and either β = 0.2 (top)

or β = 0.8 (bottom). Optimal boundary point: ξopt = −0.7273 with Copt = 0.0091 (top) and ξopt = −0.7273

with Copt = 0.0045 (bottom).

5 The Advanced Epidemic Stage

We now analyze the problem in an advanced epidemic setting in which the share of susceptibles is not

necessarily either constant or homogeneous, sx,t ̸= s. In this context, along the lines of what we have seen

in section 2, by exploiting the fact that sx,t = nx,t − ix,t the problem can be rewritten as follows: Find

ξ ∈ (xa, xb] which minimizes the following functional:
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C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,t(nx,t − ix,t)
2]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (46)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)(nx,t − ix,t)ix,t − δ

[
1 + ωτ(1− ux,t)(nx,t − ix,t)

+
(1− β)ωτ

ξ − xa

∫ xb

ξ

(nx,t − ix,t)dx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(nx,t − ix,t)ix,t − δ[1 + βωτ(nx,t − ix,t)]ix,t, x ∈ [ξ, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

In this case, even after a variable change the problem does not take a linear-quadratic form but nevertheless

the objective function is convex and it is possible to prove existence and uniqueness of the solution by using

the fact that the optimal control is unique along with the fact that the state and costate equations are

bounded, meaning that the associated system of differential equations has a Lipschitz structure (Fleming

and Rishel, 1975). Also in this case because of the convexity of the objective functional the optimal control

problem turns out to be well-posed (Dontchev and Zolezzi, 1993). Exactly as in the previous section we

proceed by steps, considering ξ as exogenously given first, and determining ξopt endogenously then. However,

different from the previous section in which it has been possible to obtain the optimal solution in closed-form,

now the highly nonlinear structure of the problem precludes us from deriving explicitly the dynamic path of

the lockdown intensity and disease prevalence. Therefore, apart from the characterization of the optimality

conditions (Theorem 2), we will need to mostly rely on a numerical analysis.

Theorem 2. Assuming that ξ ∈ (xa, xb) is fixed. Under the regularity assumptions on the state and the

control variables presented in the model statement, then the optimal pair (ix,t, ux,t) solving problem (46)

satisfies the following optimality conditions:

• ix,t : [xa, xb]× [0, T ] → R+ and it is defined as ix,t = iAx,tχ[xa,ξ] + iBx,tχ[ξ,xb]

• ux,t : [xa, xb]× [0, T ] → R+ and it is defined as ux,t = uAx,tχ[xa,ξ]

• The function iBx,t solves the following boundary value problem:
∂iBx,t
∂t = d

∂2iBx,t
∂x2 + (α− δβτω)iBx,t(n

B
x,t − iBx,t)− δiBx,t, x ∈ [ξ, xb]

∂iBx,t
∂x = 0, x ∈ {ξ, xb}
ix,0 = i0(x) x ∈ [ξ, xb]

(47)

where:

nBx,t =
∑
n≥0

Bne
−
(

nπ
xb−ξ

)2
dt
cos

[
nπ(x− ξ)

xb − ξ

]
(48)

B0 =
1

xb − ξ

∫ xb

ξ
nx,0dx, Bn =

2

xb − ξ

∫ xb

ξ
nx,0 cos

[
nπ(x− ξ)

xb − ξ

]
dx (49)
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• The pair (iAx,t, u
A
x,t) solves the following optimality conditions:

∂iAx,t
∂t = d

∂2iAx,t
∂x2 + (α− δτω)iAx,t(n

A
x,t − iAx,t)(1− uAx,t)− δ

[
1 + (1−β)τω

ξ−xa

∫ xb

ξ (nBx,t − iBx,t)dx
]
iAx,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2 − iAx,t − λAx,t

[
(α− δτω)(nAx,t − 2iAx,t)− δ − (1−β)τω

ξ−xa

∫ xb

ξ (nBx,t − iBx,t)dx
]

uAx,t =
λA
x,t(α−δτω)

(nA
x,t−iAx,t)i

A
x,t

∂iAx,t
∂x = 0, x ∈ {xa, ξ}
∂λA

x,t

∂x = 0, x ∈ {xa, ξ}
iAx,0 = i0(x) x ∈ [xa, ξ]

λAx,T = ϕiAx,T x ∈ [xa, ξ]

(50)

where λAx,t is the costate variable and

nAx,t =
∑
n≥0

Bne
−
(

nπ
ξ−xa

)2
dt
cos

[
nπ(x− xa)

ξ − xa

]
(51)

B0 =
1

ξ − xa

∫ ξ

xa

nx,0dx, Bn =
2

ξ − xa

∫ ξ

xa

nx,0 cos

[
nπ(x− xa)

ξ − xa

]
dx (52)

Theorem 2 determines the necessary conditions for an optimum of our optimization problem. Since

we are assuming that ξ is fixed for the time being, provided that 0 < ix,t < nx,t and 0 < ux,t < 1, the

conditions stated in Theorem 2 are also sufficient. In fact, despite the Hamiltonian function is non-convex,

it is possible to show that the optimal control and the state and costate equations are bounded, meaning that

the derived system of forward-backward differential equations has a Lipschitz structure (Jung et al., 2002;

La Torre et al., 2020). These specific properties of the model ensure that the solution that we are able to

characterize by analyzing the system of first order conditions is effectively the unique optimal solution of our

minimization problem. However, the absence of a closed-form solution does not allow us to infer anything

about the behavior of the lockdown intensity and disease prevalence over time and across space. Nevertheless,

similar to what we have seen in an early epidemic setting, it is possible to derive some sufficient conditions

guaranteeing that the epidemic management program is effective, allowing thus a monotonic reduction in

the total disease prevalence in the entire spatial economy.

Proposition 2. Assume that αs̃−δ
s̃δωτ < β < α

ωδτ where s̃ = maxx,t(nx,t − ix.t) ≥ 0; then it follows that
d
dt

∫ xb

ξ iBx,tdx = d
dt∥i

B
x,t∥L1([ξ,xb]) < 0 and d

dt

∫ ξ
xa
iAx,tdx = d

dt∥i
A
x,t∥L1([xa,ξ]) < 0, which imply that the total

disease prevalence over the spatial domain (i.e., it =
∫ xb

xa
ix,tdx = ∥ix,t∥L1([xa,xb])), decreases over time.

Proposition 2 states that if the amount of resources kept within region B to finance local treatment is

large enough to reverse the disease growth pattern (i.e., β > αs̃−δ
s̃δωτ ) but not excessively large to allow for

enough cross-subsidization of treatment in region A (i.e., β < α
ωδτ ), then the total disease prevalence will

decrease over time in both regions A and B, and thus also in the entire spatial domain. Note that, different

from what we have seen in an early epidemic setting, the minimal amount of resources required to finance

local treatment in region B depends on s̃, which represents the maximum of the susceptibles sx,t = nx,t− ix.t
over time and space within the spatial economy. This means that ensuring that the epidemic management

program is effective requires to forecast the possible spatio-temporal disease dynamics in order to determine

which share of the resources needs to be maintained within region B and which share can be diverted to

region A. Apart from this difference, comments similar to those discussed in an early epidemic setting apply.

As already discussed in the early epidemic scenario, in order to determine ξopt we proceed by minimizing

the functional cost C(ξ) given by:

C(ξ) =
∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,t(nx,t − ix,t)
2]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρTdx (53)
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with respect to ξ over the interval (xa, xb). The absence of a closed form expression for the dynamic path of

the control and state variables does not allow us to state anything about the behavior of the cost functional

and thus we need to proceed via numerical analysis in order to determine the optimal spatio-temporal

dynamic path of ujx,t and ijx,t and the optimal boundary point (see appendix B for a discussion of the

numerical method employed in our analysis). We keep relying on the same parameters we have employed in

the previous section based on the COVID-19 experience during its first epidemic wave in Italy. In order to

characterize an advanced epidemic setting in which the disease prevalence is no longer negligible as in an early

epidemic stage, we now increase the average prevalence value over the whole spatial domain to 0.1. Figures

4 and 5 depict the spatio-temporal evolution of the lockdown intensity (left panels) and disease prevalence

(right panels) under different configurations of the initial prevalence distribution, distinguishing between the

case in which β = 0.2 (top panels) and β = 0.8 (bottom panels). Note that under our parametrization and

numerical simulations the condition in Proposition 2 holds true (αs̃−δ
s̃δωτ < β < α

ωδτ ) only in the β = 0.8 case

and thus the epidemic management program gives rise to a reduction in the total disease prevalence in the

spatial economy only in such a scenario, while in the β = 0.2 case the total disease prevalence may even

increase over time.

Figure 4: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = −0.2
2 (x+ 1) + 0.21, and either

β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = 1 with Copt = 0.0143 (top) and ξopt = 1

with Copt = 0.0274 (bottom).

Under a monotonically decreasing initial prevalence distribution (see Figure 4) we can see that the results

are qualitatively similar to those discussed in the previous section, apart from the fact that the lockdown

intensity increases over time. We can note that in an advanced epidemic stage the size of region A is

larger than in an early epidemic setting (ξopt is located rightmost), and actually the region A covers the

entire spatial economy. As initially disease prevalence is higher in the whole spatial domain, the need for

intervention is more stringent in every location and thus it is convenient to increase the size of region A
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(where more stringent lockdown measures can be applied) in order to effectively reverse the disease growth

pattern. In this case β does not play any role as independently of the value of the parameter the optimal

boundary point is located at its upper extreme.

Figure 5: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = k(sin(πx)2e−x−1 + 0.01) where

k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

, and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt =

0.8284 with Copt = 0.0043 (top) and ξopt = 0.8890 with Copt = 0.0069 (bottom).

Similar comments apply also under a sinusoidal initial prevalence distribution (see Figure 5). Similar to

what happens in an early epidemic stage, initially the lockdown intensity is higher in locations characterized

by a higher level of disease prevalence, Moreover, exactly as what we have seen in the previous figure in the

case of a monotonically decreasing prevalence distribution, we can note that with a sinusoidal distribution

in an advanced epidemic stage the size of region A is larger than in an early epidemic setting (ξopt is located

rightmost). This is again due to the role of a higher disease prevalence in the whole spatial domain, which

thus requires to intervene more severely (with both lockdown and treatment measures) in a larger number of

locations. As the lockdown region does not cover the entire spatial economy, the effects of β on the optimal

boundary point are noticeable in this case. Specifically, different from what we have discussed under a

monotonically decreasing initial prevalence distribution, the optimal boundary point shifts rightward as β

increases. The availability of less resources from region B to subsidize treatment in region A requires to

intervene more severely (through lockdown measures) in a larger number of locations.

Overall, these figures confirm what we have earlier discussed in an early epidemic setting, and in particular

from a normative perspective it is not simple to understand how to effectively determine the optimal size

of a lockdown area since this critically depends on the initial spatial distribution of disease prevalence

and the amount of resources diverted from one region to the other. Moreover, different from what we

have discussed in an early epidemic stage, ensuring the effectiveness of the epidemic management program
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requires to forecast the possible spatio-temporal disease dynamics in order to determine which share of the

resources needs to be maintained within one region for local treatment and which share can be diverted to

cross-subsidizing treatment in the other region.

5.1 The Homogeneous Case

Different from what we have seen in an early epidemic setting in which the case of a spatially homogeneous

initial distribution of the disease prevalence (i.e., i0(x) = i0) allows for a more clear characterization of the

optimal solution and of the determination of the optimal boundary point, in an advanced epidemic stage such

advantages deriving from the homogeneity assumption disappear because the spatio-temporal dynamic path

of the state and control variables cannot be derived in closed-form. Therefore, we necessarily need to rely

on a numerical analysis which however confirms what we have already discussed in an early epidemic stage:

in our previous parametrization based on Italian COVID-19 experience, the cost functional is resembles an

U-shaped parabola in ξ and thus the optimal boundary point may coincide with either one of the extremes

of the spatial domain or with an interior point.

Figure 6: Spatio-temporal evolution of ux,t (left) and ix,t (right) with ix,0 = 0.03 and either β = 0.2 (top)

or β = 0.8 (bottom). Optimal boundary point: ξopt = 1 with Copt = 0.0032 (top) and ξopt = 1 with

Copt = 0.0053 (bottom).

Figure 6 shows the spaio-temporal evolution of the lockdown intensity (left panels) and disease prevalence

(right panels) in the homogeneous initial prevalence distribution case. We can observe that the results are

qualitative similar to those earlier discussed in an early epidemic stage, apart from the fact that, exactly

as in the previous monotonically decreasing initial prevalence scenario, the lockdown area covers the entire

spatial domain independently of the value of β. Different from what we have seen in an early stage setting,

in an advanced epidemic stage because of the lack of heterogeneity between regions it is convenient from
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the social planner’s point of view to apply the same policy mix (based both on lockdown and treatment

measures) everywhere in the spatial economy.

6 Multiple Regions

Thus far we have presented our analysis in a two-regions framework as a matter of expositional simplicity, but

our setup can be straightforwardly generalized to multiple regions. In order to exemplify how the addition

of further regions may affect our results we focus only on a three-regions case in which two boundary points

(rather than one as in a two-regions context) need to be optimally determined. Specifically, we consider two

alternative scenarios differing on the nature of a third region (which we shall refer to as region C): in the

first one the third region is not subject to lockdown and part of the tax revenues collected in the region are

diverted to the lockdown region to finance extra treatment (i.e., the extra region resembles region B); in

the second one the third region is subject to lockdown such that the intensity of the lockdown needs to be

determined in two regions (i.e., the extra region resembles region A). These two alternative scenarios are

not exhaustive of all the possible ways in which a continuous spatial domain may be partitioned in order to

control the spread of an infectious disease in real world situations, but they well exemplify the generality

of our setup and how it can be modified in order to deal with the different needs of policymakers. In our

following discussion we will focus only on the advanced epidemic stage, but similar to what we have shown

in the previous sections the early epidemic stage may be analyzed as well. For the benefit of the reader and

simplify the exposition, in the following we will not stress the technical mathematical assumptions but rather

we will focus on the economic and policy implications of our model extension. However, precise definitions

of the set of admissible controls as well as the regularity hypotheses on the state and the control variables

can be stated similar to those presented in the previous sections.

6.1 An Extra Non-Lockdown Region

The planner needs to choose how to split the entire spatial economy in three regions in which different

combinations of the pharmaceutical and non-pharmaceutical interventions will be implemented. In one

region (region A = [ξ1, ξ2]) both treatment and lockdown will be used, while in the others (regions C = [xa, ξ1]

and B = [ξ2, xb]) only treatment will be used (with xa < ξ1 < ξ2 < xb). In region A, which develops from

ξ1 to ξ2, output net of lockdown measures is given by: yx,t = (1 − ux,t)qx,t, while the tax revenue, τyx,t,

is entirely used to finance treatment locally, and some extra resources from treatment are collected from

regions B and C, rBx,t and r
C
x,t, such that vx,t = τyx,t+ r

B
x,t+ r

C
x,t. The disease dynamics is described by a SIS

equation as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 + α(1− ux,t)sx,tix,t − δ(1 + ωvx,t)ix,t. In region B and C, which develop

from ξ2 to xb and from xa to ξ1 respectively, output in each location is determined by the unconstrained

supply: yx,t = qx,t, while a part of the tax revenue, βiτyx,t where 0 ≤ βi ≤ 1 with i = {B,C} is employed

locally to finance treatment and the remaining part is allocated to finance extra treatment in the region A.

The disease dynamics is described by a SIS equation as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 + αsx,tix,t − δ(1 + ωvx,t)ix,t,

where vx,t = βiτqx,t. The total amount of tax revenues diverted from regions B and C, (1−βB)τ
∫
B qx,tdx+

(1 − βC)τ
∫
C qx,tdx, is equally split within region A thus each location x ∈ [ξ1, ξ2] receives a share 1

ξ2−ξ1
of

the total: rBx,t + rCx,t =
τ

ξ2−ξ1
[(1− βB)

∫
B qx,tdx+ (1− βC)

∫
C qx,tdx]. The social planner needs to determine

the size of the three regions in order to minimize the social cost of the epidemic management program,

accounting also for the instantaneous loss in region C. In region C, exactly as in region B, as there is no

lockdown the instantaneous loss function depends only on the level of disease prevalence: ℓ(ix,t) =
i2x,t
2 . Since

in region B and C the public health intervention is rather limited and some of its resources are diverted

to region A, the instantaneous losses in these regions are weighted by their size-adjusted importance with

respect to region A’s, given by µB

xb−ξ2
with µb > 0 for region B and µC

ξ1−xa
with µC > 0 for region C. The

planner’s optimization problem reads thus as follows: Find ξ1, ξ2 ∈ (xa, xb) with ξ2 > ξ1 which minimizes
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the optimal value:

C(ξ1, ξ2) = min
ux,t

µ

ξ1 − xa

∫ T

0

∫ ξ1

xa

i2x,t
2
e−ρtdxdt+

∫ T

0

∫ ξ2

ξ1

i2x,t[1 + u2x,ts
2
x,t]

2
e−ρtdxdt+

µ

xb − ξ2

∫ T

0

∫ xb

ξ2

i2x,t
2
e−ρtdxdt

+ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (54)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsx,tix,t − δ[1 + βCωτsx,t]ix,t, x ∈ [xa, ξ1]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)sx,tix,t − δ {1 + ωτ(1− ux,t)sx,t+

+
ωτ

ξ2 − ξ1

[
(1− βB)

∫ xb

ξ2

sx,tdx+ (1− βC)

∫ ξ1

xa

sx,tdx

]}
ix,t, x ∈ [ξ1, ξ2]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsx,tix,t − δ[1 + βBωτsx,t]ix,t, x ∈ [ξ2, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

sx,t = nx,t − ix,t
∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ1, ξ2}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ1, ξ2}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

By following the same approach we have adopted in our baseline two-regions framework, we can ana-

lytically determine the optimality conditions by taking the boundary points ξ1 and ξ2 as given and then

numerically determine the optimal boundary points which minimize the social cost associated with the epi-

demic management program. Similar to what earlier discussed, the following theorem states the optimality

conditions for the model above.

Theorem 3. Assuming that ξ1, ξ2 are fixed, xa < ξ1 < ξ2 < xb. The optimal pair (ix,t, ux,t) solving problem

(54) satisfies the following optimality conditions:

• ix,t : [xa, xb]× [0, T ] → R+ and it is defined as ix,t = iCx,tχ[xa,ξ1] + iAx,tχ[ξ1,ξ2] + iBx,tχ[ξ2,xb]

• ux,t : [xa, xb]× [0, T ] → R+ and it is defined as ux,t = uAx,tχ[ξ1,ξ2]

• The function iBx,t solves the following boundary value problem:
∂iBx,t
∂t = d

∂2iBx,t
∂x2 + (α− δβτω)iBx,t(n

B
x,t − iBx,t)− δiBx,t, x ∈ [ξ2, xb]

∂iBx,t
∂x = 0, x ∈ {ξ2, xb}
ix,0 = i0(x) x ∈ [ξ2, xb]

(55)

where:

nBx,t =
∑
n≥0

Bne
−
(

nπ
xb−ξ2

)2
dt
cos

[
nπ(x− ξ2)

xb − ξ2

]
(56)

B0 =
1

xb − ξ2

∫ xb

ξ2

nx,0dx, Bn =
2

xb − ξ2

∫ xb

ξ2

nx,0 cos

[
nπ(x− ξ2)

xb − ξ2

]
dx (57)
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• The function iCx,t solves the following boundary value problem:
∂iCx,t
∂t = d

∂2iCx,t
∂x2 + (α− δβτω)iCx,t(n

C
x,t − iCx,t)− δiCx,t, x ∈ [xa, ξ1]

∂iCx,t
∂x = 0, x ∈ {xa, ξ1}
ix,0 = i0(x) x ∈ [xa, ξ1]

(58)

where:

nCx,t =
∑
n≥0

Bne
−
(

nπ
ξ1−xa

)2
dt
cos

[
nπ(x− xa)

ξ1 − xa

]
(59)

B0 =
1

ξ1 − xa

∫ ξ1

xa

nx,0dx, Bn =
2

ξ1 − xa

∫ ξ1

xa

nx,0 cos

[
nπ(x− xa)

ξ1 − xa

]
dx (60)

• The pair (iAx,t, u
A
x,t) solves the following optimality conditions:

∂iAx,t
∂t = d

∂2iAx,t
∂x2 + (α− δτω)iAx,t(n

A
x,t − iAx,t)(1− uAx,t)

−δ
[
1 + ωτ

ξ2−ξ1

(
(1− βB)

∫ xb

ξ2
sBx,tdx+ (1− βC)

∫ ξ1
xa
sCx,tdx

)]
iAx,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2 − iAx,t

−λAx,t
[
(α− δτω)(nAx,t − 2iAx,t)− δ − ωτ

ξ2−ξ1

(
(1− βB)

∫ xb

ξ2
sBx,tdx+ (1− βC)

∫ ξ1
xa
sCx,tdx

)]
uAx,t =

λA
x,t(α−δτω)

(nA
x,t−iAx,t)i

A
x,t

∂iAx,t
∂x = 0, x ∈ {ξ1, ξ2}
∂λA

x,t

∂x = 0, x ∈ {ξ1, ξ2}
iAx,0 = i0(x) x ∈ [ξ1, ξ2]

λAx,T = ϕiAx,T x ∈ [ξ1, ξ2]

(61)

where λAx,t is the costate variable and

nAx,t =
∑
n≥0

Bne
−
(

nπ
ξ2−ξ1

)2
dt
cos

[
nπ(x− ξ1)

ξ2 − ξ1

]
(62)

B0 =
1

ξ2 − ξ1

∫ ξ2

ξ1

nx,0dx, Bn =
2

ξ2 − ξ1

∫ ξ2

ξ1

nx,0 cos

[
nπ(x− ξ1)

ξ2 − ξ1

]
dx (63)

In order to illustrate the implications of a third non-lockdown region on the partition of the whole spatial

economy, we rely on the same parameter values employed in our Italian COVID-19 calibration by setting

βB = βC = 0.2. Figure 7 shows the spatio-temporal evolution of the lockdown intensity (left panels) and

infectives share (right panel) in a situation in which the initial disease prevalence distribution is linear (top

panels) and sinusoidal (bottom panels). We can note that in both scenarios the results are qualitatively

similar to those discussed in the previous section, that is disease prevalence decreases in the lockdown region

while it tends to increase in the non-lockdown areas. It is interesting to observe that the possibility to

partition the spatial economy in a further region decreases the size of the lockdown area such that a lower

number of locations is subject to lockdown measures, which turn out to be more (less) stringent than in a

two-regions setting at the beginning (at the end) of the planning horizon.

6.2 An Extra Lockdown Region

We now consider a situation in which the third region (i.e., region C) is subject to lockdown measures.

As before, the planner needs to choose how to split the entire spatial economy in three regions in which
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Figure 7: Spatio-temporal evolution of ux,t (left) and ix,t (right) with either ix,0 = −0.2
2 (x + 1) + 0.21

(top) or ix,0 = k(sin(πx)2e−x−1 + 0.01) where k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

(bottom) in the case of two non-

lockdown regions, Optimal boundary points: ξopt1 = 0.1125 and ξopt2 = 0.4151 (top), with Copt = 0.1112 and

ξopt1 = −0.3467 and ξopt2 = 0.0520 (bottom), with Copt = 0.0235.

different combinations of the pharmaceutical and non-pharmaceutical interventions will be implemented. In

two regions (region A = [xa, ξ1] and C = [ξ2, xb]) both treatment and lockdown will be used, while in the

other (region B = [ξ1, ξ2]) only treatment will be used (with xa < ξ1 < ξ2 < xb). In regions A and C,

which develop from xa to ξ1 and from ξ2 to xb respectively, output net of lockdown measures is given by:

yx,t = (1−ux,t)qx,t, while the tax revenue, τyx,t, is entirely used to finance treatment locally, and some extra

resources from treatment are collected from region B, rx,t, such that vx,t = τyx,t+rx,t. The disease dynamics

is described by a SIS equation as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 + α(1− ux,t)sx,tix,t − δ(1 + ωvx,t)ix,t. In region B,

which develop from ξ1 to ξ2, output in each location is determined by the unconstrained supply: yx,t = qx,t,

while a part of the tax revenue, βτyx,t is employed locally to finance treatment and the remaining part is

allocated to finance extra treatment in regions A and C. The disease dynamics is described by a SIS equation

as follows:
∂ix,t
∂t = d

∂2ix,t
∂x2 +αsx,tix,t− δ(1+ωvx,t)ix,t, where vx,t = βτqx,t. The total amount of tax revenues

diverted from region B, (1 − β)τ
∫
B qx,tdx, is split between regions A and C in proportions 0 < θ < 1 and

1 − θ respectively, and within in each region the amount received is equally split between locations, thus

each location x ∈ [xa, ξ1] receives an amount equal to rAx,t =
(1−β)θτ
ξ1−xa

∫
B qx,tdx, while each location x ∈ [x2, xb]

an amount equal to rCx,t =
(1−β)(1−θ)τ

xb−ξ2

∫
B qx,tdx. The social planner needs to determine the size of the three

regions in order to minimize the social cost of the epidemic management program, accounting also for the

instantaneous loss in region C. In region C, exactly as in region A, as there is lockdown the instantaneous

loss function depends on the spread of the disease and the output lost due to the lockdown measure as

follows: ℓ(ix,t, ux,tqx,t) =
i2x,t(1+u2

x,tq
2
x,t)

2 . Since in region B the public health intervention is rather limited and
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some of its resources are diverted to regions A and C, the instantaneous losses in this regions are weighted

by its size-adjusted importance with respect to regions A and C’s, given by µ
ξ1−xa+xb−ξ2

. The planner’s

optimization problem reads thus as follows: Find ξ1, ξ2 ∈ (xa, xb) with ξ2 > ξ1 which minimizes the optimal

value:

C(ξ1, ξ2) = min
ux,t

∫ T

0

∫ ξ1

xa

i2x,t[1 + u2x,ts
2
x,t]

2
e−ρtdxdt+

µ

ξ1 − xa + xb − ξ2

∫ T

0

∫ ξ2

ξ1

i2x,t
2
e−ρtdxdt

+

∫ T

0

∫ xb

ξ2

i2x,t[1 + u2x,ts
2
x,t]

2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (64)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)sx,tix,t

−δ

[
1 + ωτ(1− ux,t)sx,t +

(1− β)ωτθ

ξ1 − xa

∫ ξ2

ξ1

sx,tdx

]
ix,t, x ∈ [xa, ξ1]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ αsx,tix,t − δ[1 + βωτsx,t]ix,t, x ∈ [ξ1, ξ2]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)sx,tix,t

−δ

[
1 + ωτ(1− ux,t)sx,t +

(1− β)ωτ(1− θ)

xb − ξ2

∫ ξ2

ξ1

sx,tdx

]
ix,t, x ∈ [ξ2, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

x ∈ [xa, xb]

sx,t = nx,t − ix,t
∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ1, ξ2}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ1, ξ2}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

Exactly as before, it is possible to analytically derive the optimality conditions taking the boundary

points as given (Theorem 4) and numerically derive the optimal boundary points (Figure 8),

Theorem 4. Assuming that ξ1, ξ2 are fixed and xa < ξ1 < ξ2 < xb. Under the regularity assumptions on the

state and the control variables, then the optimal pair (ix,t, ux,t) solving problem (46) satisfies the following:

• ix,t : [xa, xb]× [0, T ] → R+ and it is defined as ix,t = iAx,tχ[xa, ξ1] + iBx,tχ[ξ1,ξ2] + iCx,tχ[ξ2,xb]

• ux,t : [xa, xb]× [0, T ] → R+ and it is defined as ux,t = uAx,tχ[xa,ξ1] + uCx,tχ[ξ2,xb]

• The function iBx,t solves the following boundary value problem:
∂iBx,t
∂t = d

∂2iBx,t
∂x2 + (α− δβτω)iBx,t(n

B
x,t − iBx,t)− δiBx,t, x ∈ [ξ1, ξ2]

∂iBx,t
∂x = 0, x ∈ {ξ1, ξ2}
ix,0 = i0(x) x ∈ [ξ1, ξ2]

(65)

where:

nBx,t =
∑
n≥0

Bne
−
(

nπ
ξ2−ξ1

)2
dt
cos

[
nπ(x− ξ1)

ξ2 − ξ1

]
(66)

B0 =
1

ξ2 − ξ1

∫ ξ2

ξ1

nx,0dx, Bn =
2

ξ2 − ξ1

∫ ξ2

ξ1

nx,0 cos

[
nπ(x− ξ1)

ξ2 − ξ1

]
dx (67)
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• The pair (iAx,t, u
A
x,t) solves the following optimality conditions:

∂iAx,t
∂t = d

∂2iAx,t
∂x2 + (α− δτω)iAx,t(n

A
x,t − iAx,t)(1− uAx,t)− δ

[
1 + (1−β)τωθ

ξ1−xa

∫ ξ2
ξ1
(nBx,t − iBx,t)dx

]
iAx,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2 − iAx,t − λAx,t

[
(α− δτω)(nAx,t − 2iAx,t)− δ − (1−β)τωθ

ξ1−xa

∫ ξ2
ξ1
(nBx,t − iBx,t)dx

]
uAx,t =

λA
x,t(α−δτω)

iAx,t(n
A
x,t−iAx,t)

∂iAx,t
∂x = 0, x ∈ {xa, ξ1}
∂λA

x,t

∂x = 0, x ∈ {xa, ξ1}
iAx,0 = i0(x) x ∈ [xa, ξ1]

λAx,T = ϕiAx,T x ∈ [xa, ξ1]

(68)

where λAx,t is the costate variable and

nAx,t =
∑
n≥0

Bne
−
(

nπ
ξ1−xa

)2
dt
cos

[
nπ(x− xa)

ξ1 − xa

]
(69)

B0 =
1

ξ1 − xa

∫ ξ1

xa

nx,0dx, Bn =
2

ξ1 − xa

∫ ξ1

xa

nx,0 cos

[
nπ(x− xa)

ξ1 − xa

]
dx (70)

• The pair (iCx,t, u
C
x,t) solves the following optimality conditions:

∂iCx,t
∂t = d

∂2iCx,t
∂x2 + (α− δτω)iCx,t(n

C
x,t − iCx,t)(1− uCx,t)− δ

[
1 + (1−β)τω(1−θ)

xb−ξ2

∫ ξ2
ξ1
(nBx,t − iBx,t)dx

]
iCx,t

∂λC
x,t

∂t = ρλx,t − d
∂2λC

x,t

∂x2 − iCx,t − λCx,t

[
(α− δτω)(nCx,t − 2iCx,t)− δ − (1−β)τω(1−θ)

xb−ξ2

∫ ξ2
ξ1
(nBx,t − iBx,t)dx

]
uCx,t =

λC
x,t(α−δτω)

(nC
x,t−iCx,t)i

C
x,t

∂iCx,t
∂x = 0, x ∈ {ξ2, xb}
∂λC

x,t

∂x = 0, x ∈ {ξ2, xb}
iCx,0 = i0(x) x ∈ [ξ2, xb]

λCx,T = ϕiCx,T x ∈ [ξ2, xb]

(71)

where λCx,t is the costate variable and

nCx,t =
∑
n≥0

Bne
−
(

nπ
xb−ξ2

)2
dt
cos

[
nπ(x− ξ2)

xb − ξ2

]
(72)

B0 =
1

xb − ξ2

∫ xb

ξ2

nx,0dx, Bn =
2

xb − ξ2

∫ xb

ξ2

nx,0 cos

[
nπ(x− ξ2)

xb − ξ2

]
dx (73)

Figure 8 shows the outcome of our analysis in the case of our Italian COVID-19 calibration by setting

θ = 0.5 and β = 0.2. Also in this case the results are qualitative similar to those discussed in a two-regions

context, that is disease prevalence decreases in the two lockdown regions while it tends to increase in the

non-lockdown area. The two lockdown areas are subject to different lockdown intensities, which intuitively

results to be higher (on average) in the region in which the level of disease prevalence is higher. It is

interesting to observe that also in this case, the possibility to partition the spatial economy in a further

region (despite this additional region is a lockdown region) decreases the size of the lockdown area such that

a lower number of locations is subject to lockdown measures, which are again more (less) stringent than in

a two-regions setting at the beginning (at the end) of the planning horizon.
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Figure 8: Spatio-temporal evolution of ux,t (left) and ix,t (right) with either ix,0 = −0.2
2 (x+1)+0.21 (top) or

ix,0 = k(sin(πx)2e−x−1+0.01) where k = 0.1(4π2+1)
(1−e−2)π2+0.01(4π2+1)

(bottom) in the case of two lockdown regions,

Optimal boundary points: ξopt1 = 0.5055 and ξopt2 = 0.5384 (top), with Copt = 0.0502 and ξopt1 = −0.1837

and ξopt2 = 0.0968 (bottom), with Copt = 0.0101.

6.3 How Many Regions subject to Lockdown?

Figures 7 and 8 show that by increasing the number of regions it is possible to decrease the size of the area

subject to the more stringent policy measures (i.e., lockdowns). This suggests that by allowing the spatial

economy to be partitioned in a larger number of regions allows to intervene with more precision in the areas

which are more in need of policy support. However, we cannot assess whether it may be most convenient to

partition the spatial economy in one or two lockdown areas, thus in order to comment on this we need to

quantify the social cost associated with the epidemic management program.

One lockdown area Two lockdown areas

Linear initial conditions 0.1112 0.0502

Nonlinear initial conditions 0.0235 0.0101

Table 1: Social cost of disease containment strategies in different scenarios,

Table 1 reports the social cost of the epidemic management program in our three-regions setup in different

scenarios, associated with a different number of lockdown areas (one or two) and different initial prevalence

conditions (linearly decreasing or nonlinear sinusoidal). We can straightforwardly note that independently

of the initial spatial distribution of disease prevalence the social cost is significantly lower when the spatial

economy is partitioned in two lockdown areas: the possibility to split the economy in two distinct areas

where the most severe policy intervention tools are applied allows to cater the lockdown intensity for the
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specific needs of such areas, resulting in a most effective way to reverse to disease growth pattern in specific

areas and in the entire spatial economy as well.

7 Extensions

We now return to our two-regions baseline setup to extend it to account for some of the epidemiological

peculiarities of COVID-19 and the effects of some policy measures implemented in order to control its

spread, which we have not considered in our baseline model for the sake of analytical tractability. We

first consider how results change if mobility patterns captured by the diffusion term are different between

regions and between population sub-groups, then whether the possibility to adjust fiscal policy changes

our conclusions, and finally how a more rigorous characterization of the COVID-19 epidemics modifies our

analysis. As in the previous section, we focus only on an advanced epidemic setting, and for the sake

of expositional simplicity we present only the results of our numerical simulations while the optimality

conditions and further technicalities can be found in appendix C. As in the previous section, we will not

stress the technical mathematical assumptions but we will focus on the economic and policy implications of

the different model extensions. Once again, precise definitions of the set of admissible controls as well as the

regularity hypotheses on the state and the control variables can be easily stated similar to those presented

for our benchmark model.

7.1 The Economic Setting

An important consequence of the policy measures implemented to contain the spread of COVID-19 worldwide

consists of affecting heterogeneously individual mobility across different population groups and regions.

Indeed, since infectives have been subject to either hospitalized or self-imposed confinement rules their

spatial mobility has been much lower than susceptibles’ who instead have been able to freely circulate

within the national or regional borders, thus the speed of diffusion cannot be simply assumed to be the

same between the two population sub-groups. Moreover, due to lockdown regulations the mobility patterns

of both susceptibles and infectives have largely reduced in lockdown regions compared to those occurring in

non-lockdown ares, thus the speed of diffusion cannot be assumed to be the same between regions. Therefore,

we modify our baseline model along two directions: (i) we allow for the population groups to be characterized

by different diffusion parameters, dI and dS for infectives and susceptibles respectively, with dI ≤ dS ; (ii)

and we allow for the two regions to be characterized by different diffusion coefficients, dA and dB in regions

A and B respectively, with dA ≤ dB.

By abstracting from mitigation policy and denoting with dji ≥ 0 the diffusion parameter for group

i = {I, S} in region j = {A,B}, our extended model in each region j can be described by the following

system of partial differential equations:

∂sx,t
∂t

= djS
∂2sx,t
∂x2

+ δix,t − αsx,tix,t (74)

∂ix,t
∂t

= djI
∂2ix,t
∂x2

+ αsx,tix,t − δix,t (75)

It is straightforward to observe that the above equations are no longer symmetric and thus the equation for

the share of population in location x, nx,t = sx,t + ix,t, turns out to take the following form:

∂nx,t
∂t

= djS
∂2nx,t
∂x2

+ (djI − djS)
∂2ix,t
∂x2

, (76)

which clearly does no longer coincide with the classical heat equation but rather depends endogenously

on the share of infectives. Therefore, it is not possible to substitute sx,t = nx,t − ix,t in (75) in order to

obtain a unique endogenous state equation paired with an exogenously given variable as we have done in
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the previous sections, but we need to carry on in our analysis both the equations for the susceptibles and

infectives shares, given by (74) and (75) respectively. This makes the model slightly more complicated than

the previous formulation due to the presence of two endogenous state variables for each region. Note that

whenever dj = djI = djS (76) returns being the classical heat equation and thus we can follow the same

approach we have employed in the previous sections.

Taking this complication into account, in our extended model with heterogeneous diffusion between

groups and regions, the social planner’s problem can be stated as follows: Find ξ ∈ (xa, xb) which minimizes

the following functional:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,ts
2
x,t]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (77)

s.t.
∂sx,t
∂t

= dAS
∂2sx,t
∂x2

− α(1− ux,t)sx,tix,t + δ

[
1 + ωτ(1− ux,t)sx,t

+
(1− β)ωτ

ξ − xa

∫ xb

ξ

sx,tdx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂t

= dAI
∂2ix,t
∂x2

+ α(1− ux,t)sx,tix,t − δ

[
1 + ωτ(1− ux,t)sx,t

+
(1− β)ωτ

ξ − xa

∫ xb

ξ

sx,tdx

]
ix,t, x ∈ [xa, ξ]

∂sx,t
∂t

= dBS
∂2sx,t
∂x2

− αsx,tix,t + δ[1 + βωτsx,t]ix,t, x ∈ [ξ, xb]

∂ix,t
∂t

= dBI
∂2ix,t
∂x2

+ αsx,tix,t − δ[1 + βωτsx,t]ix,t, x ∈ [ξ, xb]

∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂sx,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

sx,0 = s0(x) ≥ 0 x ∈ [xa, xb]

In an advanced epidemic setting we can determine the optimal size of the lockdown area and the opti-

mal lockdown intensity only numerically, exactly as in the previous sections. We continue relying on the

same parameter values we have employed in our COVID-19 Italian calibration, and in order to allow for

heterogeneity in the speed of diffusion between groups we set djI = 0.01 and djS = 0.05 while to allow

for heterogeneity between regions we set dAi = 0.01 and dBi = 0.1, showing how such a lack of diffusion

homogeneity affects our results. Figure 9 shows the spatio-temporal evolution of the lockdown intensity

(left panels), susceptibles share (central panels) and disease prevalence (right panels) under homogeneity

between groups and regions (top panels), homogeneity between groups but heterogeneity between regions

(mid panels), and heterogeneity between groups but homogeneity between regions (bottom panels). We can

observe that in all three scenarios the results are qualitatively identical: the lockdown intensity monotoni-

cally decreases over time in order to allow disease prevalence to decrease within the lockdown region, while

the absence of lockdown in the non-lockdown region does not allow for a reduction in prevalence within

the region.8 Heterogeneity in the mobility patterns affects quantitatively the results, and in particular the

lockdown intensity and the size of the lockdown area are reduced by the presence of heterogeneity either

between regions or between groups. This is due to the fact that a faster diffusion of a population group

or within a region increases the speed at which the disease naturally tends to die out in a single location

by spreading geographically across locations, reducing thus the need to employ stringent and widely spread

8Note that we cannot compare our results with those presented earlier in Figure 4 since the evolution of the share of population

residing in a given location (and thus that of the share of susceptibles) is different in the two frameworks.
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lockdown measures.

Figure 9: Spatio-temporal evolution of ux,t (left), sx,t (center) and ix,t (right) with ix,0 = −0.2
2 (x+1)+ 0.21

and sx,0 = 0.2
2 (x + 1) + 0.29 with dAI = dBI = dAS = dBS = 0.01 (top) or dAI = dBI = 0.01, dAS = dBS = 0.05

(mid) and dAI = dAS = 0.01, dBI = dBI = 0.1 (bottom). Optimal boundary point: ξopt = 0.3409 (top), with

C = 0.0530, ξopt = 0.0298 (center), with C = 0.0561 and ξopt = −0.369 (bottom), with C = 0.0846.

Note also that in order to visualize the effects of heterogeneity we have analyzed what happens when

the degree of heterogeneity (i.e., the gap between the diffusion parameters) is substantially large. In fact,

it is possible to show that if the gap between the diffusion parameters is small differences in the degree of

heterogeneity will not lead to noticeable differences in the evolution of the main variables (unless one of

the two diffusion parameters becomes particularly large, at least one order of magnitude larger than the

other epidemiological parameters). This suggests that under realistic parameter values we can safely analyze

the implications of our economic-epidemiological framework under the assumption of homogeneous mobility

patterns between groups and between regions.

7.2 The Role of Fiscal Policy

Given our previous conclusion regarding the limited role of heterogeneity in mobility patterns under a realistic

model parametrization, we now return to our baseline setup with homogeneous mobility between groups and

between regions to extend it to account for the possibility to optimally determine fiscal policy, which provides

policymakers with an additional mitigation instrument. Indeed, in our analysis thus far we have assumed

that fiscal policy is exogenously given and the tax rate takes a constant value such that lockdowns are the only
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form of policy intervention. In reality policymakers can try to mitigate the health-economic consequences

of infectious diseases through fiscal policy adjustments, as confirmed by the experience of several countries

during the ongoing COVID-19 epidemic in which different tax cuts, subsidies and other fiscal measures

have been implemented to support households and firms’ income. We now try to reassess our previous

conclusions in the light of these considerations, and specifically we do so by endogeneizing the tax rate

which now represents an additional control variable. By optimally determining the tax rate, policymakers

can apply heterogenous tax rates between the lockdown and the non-lockdown regions choosing whether

financing the extra treatment needs of the lockdown region through additional taxation either in the same

region or in the non-lockdown region.

In a setting in which fiscal policy is endogenous, the policymaker needs to choose the optimal tax rate

τx,t accounting for its social cost since a higher tax rate increases the instantaneous losses (in both regions

A and B) associated with the epidemic management program. In particular, in region A, the instantaneous

loss function depends no longer only on the spread of the disease and the output lost due to the lockdown

measure but also on the tax rate, and by maintaining our quadratic formulation assumption it reads as

follows: ℓ(ix,t, ux,tqx,t, τx,t) =
i2x,t(1+u2

x,tq
2
x,t)+τ2x,t

2 , where the last term penalizes deviations from the no-tax

scenario. Similarly, in the non-lockdown region B the instantaneous loss function depends not only on the

level of disease prevalence but also on the tax rate as follows: ℓ(ix,t, τx,t) =
i2x,t+τ2x,t

2 . Note that even if in

region B there is no lockdown, the social planner needs to determine the intensity of the tax rate in the

region, thus also in region B they face an optimal control problem. And by optimally choosing the tax rate

in each location within the two regions the social planner determines not only how many resources to employ

locally in a specific location to finance treatment, but also how many resources to divert from region B to

finance extra treatment in region A. Specifically, the total amount of tax revenues diverted from region B,

(1−β)
∫
B τx,tqx,tdx, is equally split within region A thus each location x ∈ [xa, ξ] receives a share 1

ξ−xa
of the

total: rt =
(1−β)
ξ−xa

∫
B τx,tqx,tdx. In this more complicated setting, the social planner’s optimization problem

becomes: Find ξ ∈ (xa, xb) which minimizes the following functional:

C(ξ) = min
ux,t,τx,t

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,t(nx,t − ix,t)
2] + τ2x,t

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t + τ2x,t
2

e−ρtdxdt+

+ϕ

∫ xb

xa

i2x,T
2
e−ρT dx (78)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)(nx,t − ix,t)ix,t − δ

[
1 + ωτx,t(1− ux,t)(nx,t − ix,t)

+
(1− β)ω

ξ − xa

∫ xb

ξ

τx,t(nx,t − ix,t)dx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(nx,t − ix,t)ix,t − δ[1 + βωτx,t(nx,t − ix,t)]ix,t, x ∈ [ξ, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

In an advanced epidemic setting we can numerically determine not only the optimal size of the lockdown

area and the optimal lockdown intensity as in the previous sections, but also the optimal intensity of the

tax rate. We continue relying on the same parameter values we have employed in our COVID-19 Italian

calibration, and our results are illustrated in Figure 10, which shows the spatio-temporal evolution of the
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lockdown intensity (left panels), disease prevalence (central panels) and tax rate (right panels) whenever

either β = 0.2 (top panels) or β = 0.8 (bottom panels).

Figure 10: Spatio-temporal evolution of ux,t (left), ix,t (center) and τx,t (right) with ix,0 = −0.2
2 (x+1)+0.21

and either β = 0.2 (top) or β = 0.8 (bottom). Optimal boundary point: ξopt = 0.6750 with Copt = 0.0909

(top) and ξopt = 0.7897 with Copt = 0.1106 (bottom).

We can observe that the results are qualitatively similar to those we have discussed in our baseline

model: the lockdown intensity monotonically decreases over time in order to allow disease prevalence to

decrease within the lockdown region, while the absence of lockdown in the non-lockdown region does not

allow for a reduction in prevalence within the region. The tax rate instead shows a different pattern in the

lonckdown and non-lockdown regions: in the non-lockdown region it is monotonically decreasing mimicking

the behavior of the lockdown intensity, while in the lockdown area it is non-monotonic (increasing first and

decreasing then) and highly heterogeneous (being initially higher in the central locations of the region than

in the lateral ones). Compared to what we have discussed in our baseline setup where we have assumed the

tax rate being homogeneous across space and constant over time (i.e., τx,t = 0.3, ∀x, t), its optimal value

results to be lower everywhere in space and time generating a slower reduction in disease prevalence along

with a reduction in the size of the lockdown area (see Figure 4). A higher β generates a rightward shift

of the optimal boundary point, that is when the amount of resources diverted from region B to region A

decreases, it is convenient to increase the tax rate within region A to allow for effective treatment and for a

larger size of the lockdown area. Comments similar to those presented in our baseline setup apply, thus apart

from some quantitative difference in the optimal values of the boundary point and the lockdown intensity,

qualitatively speaking the endogenous determination of the optimal local tax rate does not modify our main

conclusions and thus can be safely ignored in our following analysis.

7.3 The Epidemiological Setting

Given our previous conclusion regarding the limited role of the optimal determination of the tax rate on our

qualitative results, we now return to our baseline setup with a constant and homogeneous tax rate to extend

it to account for some of the epidemiological peculiarities of COVID-19 which we have not considered

thus far for the sake of analytical tractability. Indeed, since recovery from COVID-19 infection provides
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temporary immunity from the disease its dynamics cannot be simplistically described by a SIS model.

Moreover, the spatial spread of the disease seems to be much faster than the spatial pace of the demographic

changes associated with migration, thus diffusion cannot be the only element of spatial propagation of the

disease. Therefore, we modify our baseline model along two directions: (i) we consider a SIRS framework in

which upon recovery individuals become immune before returning susceptible to the disease again when the

acquired temporary immunity dies out; (ii) we introduce local effects conveyed by a spatial integral term

which captures short-lived individuals’ spatial movements due to personal and business trips.

By abstracting from mitigation policy, our extended SIRS epidemiological model can be described as

follows. Every individual in the population in each location can be suceptible, infective, or recovered, Rx,t.

Susceptibles become infectives by interacting with other infectives within the entire spatial economy (and

not only those located in the same venue, as in our baseline framework); infectives become immune after

recovering from the disease; recovereds return being susceptible again after the temporary immunity gained

from recovery dies out, and ϵ > 0 measures the speed of immunity loss. In each location the evolution of

the susceptibles, infectives and recovereds shares where rx,t =
Rx,t

N can be described through the following

system of partial differential equations:

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ ϵrx,t − α

∫
Ω
sx′,tix′,tψx′,xdx (79)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α

∫
Ω
sx′,tix′,tψx′,xdx− δix,t (80)

∂rx,t
∂t

= d
∂2rx,t
∂x2

+ δix,t − ϵrx,t (81)

In the equations above, the spatial integral term
∫
Ω sx′,tix′,tψx′,xdx captures the infections generated by the

social interactions generated by commuting and business trips which take place on a daily basis (La Torre

et al., 2022). Because of such intra-day movements individuals get in contact with a number of individuals

originally located even far away from their origin location, thus all the contacts between infectives and

susceptibles contribute to determine the spread of the disease in a given location. The kernel φx′,x where∫
Ω φx′,xdx = 1 measures the extent to which these cross-locations contacts determine the level of disease

prevalence in a given location. While the diffusion term captures the effects of migration and thus describes

a dynamic externality affecting disease dynamics over time, the integral term represents a static externality

affecting disease dynamics instantaneously (La Torre et al., 2022).

Similar to what we have discussed in our baseline SIS model, it is possible to show that in the absence

of the integral term the system above admits two homogeneous equilibria, one of which is disease-free,

EF = (i
F
, sF , rF ), and the other endemic, EE = (i

E
, sE , rE), characterized as follows:

EF : i
F
= 0, sF = 1, rF = 0

EE : i
E
= ϵ(α−δ)

α(δ+ϵ) , sE = δ
α , rE = δ(α−δ)

α(δ+ϵ)

(82)

Exactly as in our baseline SIS framework, the disease-free equilibrium exists for all parameter values while

the endemic one only whenever α > δ, and the system converges to a disease-free situation whenever α ≤ δ

or to an endemic situation whenever α > δ. Therefore, also in this case the basic reproduction number

is given by (14), thus the same comments discussed in our baseline model still apply. However, note that

these conclusions hold true only whenever the integral term is absent (i.e., the kernel takes the form of the

Dirac’s delta function), while whenever the integral term is present the results will be partially different.

In particular, a disease-free and an endemic equilibrium will still exist and will still represent alternative

outcomes, but these equilibria will become spatially heterogeneous (i.e., no longer homogeneous) and will be

no longer possible to characterize them explicitly. Despite these differences, most our qualitative conclusions

still apply and according to the intensity of mitigation policies it may be possible to achieve a disease-free

or a endemic outcome, either locally or globally within the spatial economy.
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Such an extended SIRS epidemiological framework with local effects requires us to take into account also

the role of recovereds in our economic framework. Indeed, since they are healthy individuals we now assume

that production depends linearly not only on susceptibles but also on recovereds as follows: qx,t = sx,t+rx,t.

Taking this into account and recalling that sx,t = nx,t − ix,t − rx,t, it follows that the social planner’s

optimization problem becomes: Find ξ ∈ (xa, xb) which minimizes the following functional:

C(ξ) = min
ux,t

∫ T

0

∫ ξ

xa

i2x,t[1 + u2x,t(nx,t − ix,t)
2]

2
e−ρtdxdt+

µ

ξ − xa

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt+ ϕ

∫ xb

xa

i2x,T
2
e−ρT dx

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− ux,t)

∫ ξ

xa

(nx′,t − ix′,t − rx′,t)ix′,tψx′,xdx
′

−δ
[
1 + ωτ(1− ux,t)(nx,t − ix,t − rx,t) +

(1− β)ωτ

ξ − xa

∫ xb

ξ

(nx,t − ix,t)dx

]
ix,t, x ∈ [xa, ξ]

∂rx,t
∂t

= d
∂2rx,t
∂x2

+ δ

[
1 + ωτ(1− ux,t)(nx,t − ix,t − rx,t) +

(1− β)ωτ

ξ − xa

∫ xb

ξ

(nx,t − ix,t)dx

]
ix,t

−ϵrx,t x ∈ [xa, ξ] (83)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α

∫ xb

ξ

(nx′,t − ix′,t − rx′,t)ix′,tψx′,xdx− δ[1 + βωτ(nx,t − ix,t)]ix,t, x ∈ [ξ, xb]

∂rx,t
∂t

= d
∂2rx,t
∂x2

+ δ[1 + βωτ(nx,t − ix,t)]ix,t − ϵrx,t x ∈ [ξ, xb]

∂nx,t
∂t

= d
∂2nx,t
∂x2

sx,t = nx,t − ix,t − rx,t
∂ix,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂rx,t
∂x

= 0, x ∈ {xa, xb, ξ}

∂nx,t
∂x

= 0, x ∈ {xa, xb, ξ}

ix,0 = i0(x) > 0 x ∈ [xa, xb]

rx,0 = r0(x) > 0 x ∈ [xa, xb]

nx,0 = n0(x) > 0 x ∈ [xa, xb]

In an advanced epidemic setting we can numerically determine the optimal size of the lockdown area

and the optimal lockdown intensity exactly as in the previous sections. We continue relying on the same

parameter values we have employed in our COVID-19 Italian calibration, and in order to model temporary

immunity and local effects we set ϵ = 0.0056 and φx,x′ = 1
σ
√
2π
e−

1
2
(x

′−x
σ

)2 where σ ≥ 0 measures the standard

deviation of the kernel and we consider different values of this parameter to understand how it affects our

results (La Torre et al., 2022).

Figure 11 shows the spatio-temporal evolution of the lockdown intensity (left panels), infectives share

(mid panels) and recovereds share (right panels) under a monotonically decreasing initial disease prevalence

distribution in the case in which σ = 0.5 (top panels) or σ = 1 (bottom panels). While the evolution of the

infectives resembles what we have already discussed in the previous sections and that of the recovereds is

intuitive, the most noticeable difference with respect to what we have seen in our baseline model is related to

the behavior of the lockdown intensity. Indeed, we can observe that despite the initial condition is linear, the

lockdown intensity is highly nonlinear to account for the effects of the integral term, which quantifies how

cross-location proximity effects impact disease prevalence in a specific location. In particular, the central

(lateral) locations within the lockdown area are the ones which are affected by the influence of prevalence

from a larger (smaller) number of surrounding locations. However, the extent to which such cross-location

effects impact prevalence in a specific location x depends on the value of σ. A higher standard deviation

increases the total number of locations with non-negligible impact on x, but only those within the lockdown
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Figure 11: Spatio-temporal evolution of ux,t (left), ix,t (center) and rx,t (right) with ix,0 = −0.2
2 (x+1)+0.21

and rx,0 = 0.5ix,0 with either σ = 1.5 (top) or σ = 2 (bottom). Optimal boundary point: ξopt = 0.2343

(top), with C = 0.0536 and ξopt = 0.2434 (bottom), with C = 0.0532.

area effectively matter (there is no flow in and out of the boundary point ξ), thus the higher σ the smaller

the number of relevant proximity effects for the epidemic dynamics in location x. This is the reason why

the lockdown intensity is on average higher and the lockdown area is smaller when the standard deviation

is smaller. A smaller standard deviation by increasing the number of relevant proximity effects requires

to reduce the size of the lockdown area and to increase the lockdown intensity in order to account for the

augmented disease incidence induced by cross-location proximity effects.

8 Conclusions

The ongoing COVID-19 pandemic has shown more clearly than ever that the consequences of infectious

diseases on macroeconomic activity may be particularly dramatic. It has also shown that such effects are to

a large extent heterogeneous between and within countries, which thus requires policymakers to differentiate

the intensity and the type of intervention tools employed at local levels in order to contain the spread of

the disease without excessively compromising economic activity. In order to shed some light on how such

a policy differentiation may need to be implemented, our paper characterizes from a normative perspective

the optimal regional policy to contain the spread of a communicable disease in a spatial framework with

endogenous determination of the regional borders characterizing which policy regime will prevail in a given

region. Specifically, the social planner needs to choose how to split the entire spatial economy in a number

of regions in which a different combination of lockdown and treatment measures will be employed: in some

region the only mitigation instrument will be treatment, while in some other treatment will be accompanied

by a partial lockdown. We characterize the optimal solution both in an early and an advanced epidemic

setting in which the disease prevalence in the total population is and is not negligible, respectively. We show

that according to the specific circumstances, it may be convenient either to partition the spatial economy in

multiple regions with differentiated policies or to consider it as a unique region subject to the same policy

measures. Moreover, we show that from a normative perspective it is rather difficult to understand how to

effectively determine the optimal size of a lockdown area (and thus the optimal lockdown intensity in the
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area) since this critically depends on a number of factors, including the initial spatial distribution of disease

prevalence, the amount of resources diverted from one region to the other, and the possible spatio-temporal

evolution of the disease. We present a calibration based on the COVID-19 experience in Italy during its

first epidemic wave showing how the prescribed solution may change under alternative initial distributions

of the disease prevalence across space.

To the best of our knowledge, this is the first paper characterizing analytically the optimal lockdown

area in a spatial setting and also the first paper analyzing the optimal determination of the borders between

regions in a spatial setting. Given the complexity of the problem under investigation we have tried to

maintain the setup as simple as possible in order to understand the mechanisms underlying the formation of

such optimal choices. However, this has precluded us the possibility to account for some important features

observed in the real world during the COVID-19 epidemic. In particular, lockdown measures have generated

important effects not only on disease prevalence and economic activity but also on the natural environment,

thus introducing some mutual links among epidemics, economies and pollution may allow us to describe

more accurately different dimensions of the COVID-19 experience in industrialized countries. Moreover,

lockdown decisions have often been made not at a centralized national level but at a decentralized regional

level giving often rise to free-riding behavior between regions, thus introducing some strategic interactions

between different geographical units may allow us to characterize the externalities imposed by free riding

on disease and macroeconomic dynamics and thus to determine how to eventually decentralize the social

optimum. Extending the analysis along these directions is left for future research.

A Proofs of the Main Results

A.1 Proof of Lemma 1

The proof is a straightforward application of Sylvester’s formula (see Bhatia, 1997).

A.2 Proof of Theorem 1

For any fixed ξ ∈ (xa, xb), the model can be analyzed via a two-stage approach. First, we determine the

solution in region B which is independent of region A’s, and then we plug this solution into region A’s

problem determining its solution. The share of infectives ix,t over the region [ξ, xb] solves the boundary

value problem: 
∂ix,t
∂t = d

∂2ix,t
∂x2 + (αs− δ − δβτsω) ix,t x ∈ [ξ, xb]

∂ix,t
∂x = 0 x ∈ {ξ, xb}
ix,0 = i0(x) x ∈ [ξ, xb]

(84)

The above problem admits a closed-form solution given by:

ix,t = e(αs−δ−δβτωs)thx,t, (85)

where hx,t is the well-known classical solution of the heat equation with Neumann boundary conditions,

given by the following expression:

hx,t =
∑
n≥0

Cne
−d

(
nπ

xb−xa

)2
t
cos

[
nπ(x− ξ)

xb − xa

]
(86)

where:

C0 =
1

xb − ξ

∫ xb

ξ
i0(x)dx (87)

Cn =
2

xb − ξ

∫ xb

ξ
i0(x) cos

[
nπ(x− ξ)

xb − ξ

]
dx (88)
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It is then straightforward to show the following:

ix,t =
∑
n≥0

Cne
−d

(
nπ

xb−ξ

)2
t
e(αs−δ−δβτωs)t cos

[
nπ(x− ξ)

xb − ξ

]
, (89)

from which, with some algebraic computations and the integration term by term of the Fourier series of i2x.t,

it is possible to determine the value of the following terms:

Ω1 =

∫ T

0

∫ xb

ξ

i2x,t
2
e−ρtdxdt =

1

2

∑
n≥0

C2
n

∫ T

0
e
2

[
−d

(
nπ

xb−ξ

)2
+(αs−δ−δβτωs)

]
t
dt

=
∑
n≥0

C2
n

1− e
2

[
−d

(
nπ

xb−ξ

)2
+αs−δ−δβτωs

]
T

−d
(

nπ
xb−ξ

)2
+ α− δ − δβτωs

 (90)

Ω2 =

∫ xb

ξ

i2x,T
2
dx =

1

2

∑
n≥0

C2
ne

2

[
−d

(
nπ

xb−ξ

)2
+(αs−δ−δβτωs)

]
T

(91)

Once the solution over the region [ξ, xb] has been determined and plugged into, the model in the region

[xa, ξ] can be restated as follows:

min
ux,t∈U

∫ T

0

∫ ξ

xa

i2x,t[1 + s2u2x,t]

2
e−ρtdxdt+

µ

ξ − xa
Ω1 + ϕΩ2 + ϕ

∫ ξ

xa

i2x,T
2
e−ρTdx (92)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ (1− ux,t)six,t(α− δτω)− δ

(
1 +

(xb − ξ)(1− β)τωs

ξ − xa

)
ix,t, x ∈ [xa, ξ]

∂ix,t
∂x

= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ]

where:

U = {ux,t : [xa, ξ]× [0, T ] → R : ux,t is continuous, 0 < ux,t < 1} (93)

By noticing that µ
ξ−xa

Ω1 + ϕΩ2 is just a translation term, the above model is totally equivalent to the

following:

min
u∈U

∫ T

0

∫ ξ

xa

i2x,t + (sux,tix,t)
2

2
e−ρtdxdt+ ϕ

∫ ξ

xa

i2x,T
2
e−ρTdx (94)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+

[
s(α− δτω)− δ − δ

(
(xb − ξ)(1− β)τωs

ξ − xa

)]
ix,t − sux,tix,t(α− δτω), x ∈ [xa, ξ]

∂ix,t
∂x

= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ]

In order to determine the optimality conditions we rely on the method based on the current value Hamiltonian

function in (x, t) (Troltzsch, 2010), which reads as follows:

H =
i2x,t + (sux,tix,t)

2

2
+ λx,t

[
d
∂2ix,t
∂x2

+

[
s(α− δτω)− δ − δ

(
(xb − ξ)(1− β)τωs

ξ − xa

)]
ix,t − sux,tix,t(α− δτω)

]
,
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The FOCs for a minimum are given by the following expressions:

∂ix,t
∂t = d

∂2ix,t
∂x2 +

[
s(α− δτω)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
ix,t − sux,tix,t(α− δτω)

∂λx,t

∂t = ρλx,t − d
∂2λx,t

∂x2 − ix,t − λx,t

[
s(α− δτω)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
ux,t =

λx,t(α−δτω)
six,t

∂ix,t
∂x = 0, x ∈ {xa, ξ}
∂λx,t

∂x = 0, x ∈ {xa, ξ}
ix,0 = i0(x) x ∈ [xa, ξ]

λx,T = ϕix,T x ∈ [xa, ξ]

(95)

By replacing the control variable ux,t, the system of FOCs reads as follows:

∂ix,t
∂t = d

∂2ix,t
∂x2 +

[
s(α− δτω)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
ix,t − λx,t(α− δτω)2

∂λx,t

∂t = −d∂2λx,t

∂x2 − ix,t − λx,t

[
−ρ+ s(α− δτω)− δ − δ

(
(xb−ξ)(1−β)τωs

ξ−xa

)]
∂ix,t
∂x = 0, x ∈ {xa, ξ}
∂λx,t

∂x = 0, x ∈ {xa, ξ}
ix,0 = i0(x) x ∈ [xa, ξ]

λx,T = ϕix,T x ∈ [xa, ξ]

(96)

By recalling the definition of the matrix Θ and by introducing the matrix D as it follows:

Θ :=

 s(α− δτω)− δ − δ
(
(xb−ξ)(1−β)τωs

ξ−xa

)
−(α− δτω)2

−1 ρ− s(α− δτω) + δ + δ
(
(xb−ξ)(1−β)τωs

ξ−xa

)  (97)

D :=

[
d 0

0 −d

]
(98)

and the vector:

zx,t :=

[
ix,t
λx,t

]
(99)

the optimality conditions in vector form can be restated as:

∂zx,t
∂t = D

∂2zx,t
∂x2 +Θzx,t

∂zx,t
∂x = 0, x ∈ {xa, ξ}
z1x,0 = i0(x) zx ∈ [xa, ξ]

z2x,T = ϕz1x,T x ∈ [xa, ξ]

(100)

By introducing the exponential matrix eΘt and the variable z̃x,t = e−Θtzx,t, we get:

∂z̃x,t
∂t

= D
∂2z̃x,t
∂x2

, (101)

where z̃x,t is the solution to the classical heat equation given by:

z̃x,t =

 ∑
n≥0Ane

−d
(

nπ
ξ−xa

)2
t
cos
(
nπ
[
x−xa
ξ−xa

])
∑

n≥0Bne
−d

(
nπ

ξ−xa

)2
(T−t)

cos
(
nπ
[
x−xa
ξ−xa

])
 (102)
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We now wish to determine the expressions of An and Bn. If we plug t = 0 we get that eΘ0 = I and then

z̃x,0 = Izx,0, thus the first component of z boils down to:

z̃1x,0 = i0(x) =
∑
n≥0

An cos

(
nπ

[
x− xa
ξ − xa

])
,

which implies that A0 and An are the Fourier coefficients of i0, that is:

A0 =
1

ξ − xa

∫ ξ

xa

i0(x)dx

An =
2

ξ − xa

∫ ξ

xa

i0(x) cos

(
nπ

[
x− xa
ξ − xa

])
dx

In order to determine the expression of Bn as function of An, let us consider the terminal condition. By

plugging t = T into the expression of zx,t we obtain:

zx,T = eΘT

[
z̃1x,T
z̃2x,T

]
= eΘT

 ∑n≥0Ane
−d

(
nπ

ξ−xa

)2
T
cos
(
nπ
[
x−xa
ξ−xa

])
∑

n≥0Bn cos
(
nπ
[
x−xa
ξ−xa

])
 ,

and by using the terminal condition:

z2x,T = ϕz1x,T

we get the following system:

1

ϕ
=
eΘT
11 (

∑
n≥0Ane

−d
(

nπ
ξ−xa

)2
T
cos
(
nπ
[
x−xa
ξ−xa

])
) + eΘT

12 (
∑

n≥0Bn cos
(
nπ
[
x−xa
ξ−xa

])
)

eΘT
21 (

∑
n≥0Ane

−d
(

nπ
ξ−xa

)2
T
cos
(
nπ
[
x−xa
ξ−xa

])
) + eΘT

22 (
∑

n≥0Bn cos
(
nπ
[
x−xa
ξ−xa

])
)

which can be transformed into

1

ϕ
=

∑
n≥0

(
eΘT
11 Ane

−d
(

nπ
ξ−xa

)2
T
+ eΘT

12 Bn

)
cos
(
nπ
[
x−xa
ξ−xa

])
∑

n≥0

(
eΘT
21 Ane

−d
(

nπ
ξ−xa

)2
T
+ eΘT

22 Bn

)
cos
(
nπ
[
x−xa
ξ−xa

])
and then: ∑

n≥0

(
eΘT
21 Ane

−d
(

nπ
ξ−xa

)2
T
+ eΘT

22 Bn

)
cos

(
nπ

[
x− xa
ξ − xa

]) =

ϕ

∑
n≥0

(
eΘT
11 Ane

−d
(

nπ
ξ−xa

)2
T
+ eΘT

12 Bn

)
cos

(
nπ

[
x− xa
ξ − xa

]) ,

from which we finally get the expressions of Bn in terms of An by noticing the following:

Bn =

[
eΘT
21 − ϕeΘT

11

ϕ2eΘT
12 − eΘT

22

]
Ane

−d
(

nπ
ξ−xa

)2
T

(103)

From this we easily get the expression of iAx.t which is given by:

iAx,t =
∑
n≥0

(
eΘt
11Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

12Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos

(
nπ

[
x− xa
ξ − xa

])
, (104)
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and by using the expression linking the control ux,t with the costate variable λx,t we obtain:

uAx,t =

∑
n≥0(α− δτω)

(
eΘt
21Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

22Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos
(
nπ
[
x−xa
ξ−xa

])
∑

n≥0

(
eΘt
11Ane

−d
(

nπ
ξ−xa

)2
t
+ eΘt

12Bne
−d

(
nπ

ξ−xa

)2
(T−t)

)
cos
(
nπ
[
x−xa
ξ−xa

]) (105)

A.3 Proof of Corollary 1

The proof of this result is quite straightforward and it follows by classical results in Fourier series theory. In

fact, it is enough to use Parseval’s identity applied to iAx,t and i
B
x,t over the two separate regions A = [xa, ξ]

and B = [ξ, xb] and then recombine the two L2 norms to get the thesis.

A.4 Proof of Proposition 1

The proof is straightforward and it follows by taking the spatial integrals of both sides, by using Neumann’s

conditions, and by using classical comparison results for ordinary differential equations.

A.5 Proof of Corollary 2

The proof follows by replacing i0 into the Fourier coefficients and recalling that the cosine basis is orthogonal.

A.6 Proof of Corollary 3

The proof is quite straightforward and it follows by taking the classical first order derivative of

C(ξ) = C1(ξ) + C2(ξ) + C3(ξ) (106)

with respect to ξ. The hypothesis on β, β = 1, makes most of the terms involved in the expression of C(ξ)

to be independent from ξ. In particular, this is true for η1 and η2. The condition on the parameters implies

that ξ < xb and standard calculus arguments allow to conclude that ξ is an internal minimizer.

A.7 Proof of Theorem 2

The problem can be analyzed by following the same steps discussed in the early epidemic setting. However,

in this case, it is possible to provide only a characterization of the optimal solution in terms of optimality

conditions as the nonlinearity prevents the possibility to determine a closed-form solution. The share of

infectives ix,t over [ξ, xb] solves the equation:
∂iBx,t
∂t = d

∂2iBx,t
∂x2 + (α− δβτ)iBx,t(n

B
x,t − iBx,t)− δiBx,t, x ∈ [ξ, xb]

∂iBx,t
∂x = 0, x ∈ {ξ, xb}
iBx,0 = i0(x) x ∈ [ξ, xb]

(107)

This equation admits a unique solution iBx,t which is defined over the interval [ξ, xb]. By plugging this

expression into the integral and the objective function, we can determine the value of the two terms:

Ω1 =
1

2

∫ T

0

∫ xb

ξ

(iBx,t)
2

2
e−ρtdxdt (108)

Ω2 =

∫ xb

ξ

(iBx,T )
2

2
e−ρTdx (109)
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We need thus to solve the following problem:

min

∫ T

0

∫ ξ

ξa

i2x,t[1 + (1− iAx,t)
2(uAx,t)

2]

2
e−ρtdxdt+ ϕ

∫ ξ

xa

(iAx,T )
2

2
e−ρTdx+

µ

ξ − xa
Ω1 + ϕΩ2 (110)

s.t.
∂iAx,t
∂t

= d
∂2iAx,t
∂x2

+ (α− δτω)(1− uAx,t)ix,t(n
A
x,t − iAx,t) +

−δ
[
1 +

(1− β)τω

s− a

∫ xb

ξ
(nBx,t − iBx,t)dx

]
iAx,t, x ∈ [xa, ξ]

∂nAx,t
∂t

= d
∂2nAx,t
∂x2

∂iAx,t
∂x

= 0, x ∈ {xa, ξ}

∂nAx,t
∂x

= 0, x ∈ {xa, ξ}

iAx,0 = i0(x) x ∈ [xa, ξ]

nAx,0 = n0(x) x ∈ [xa, ξ]

Note that the expression of nx,t over the interval [xa, xb] is known and its closed-form is provided by:

nx,t =


∑

n≥0B
1
ne

−
(

nπ
ξ−xa

)2
dt
cos
[
nπ(x−xa)

ξ−xa

]
x ∈ [xa, ξ]∑

n≥0B
2
ne

−
(

nπ
xb−ξ

)2
dt
cos
[
nπ(x−ξ)
xb−ξ

]
x ∈ [ξ, xb]

(111)

where B1
0 = 1

ξ−xa

∫ ξ
xa
nx,0dx and B1

n = 2
ξ−xa

∫ ξ
xa
nx,0 cos

[
nπ(x−xa)

ξ−xa

]
dx and B2

0 = 1
xb−ξ

∫ xb

ξ nx,0dx and B2
n =

2
xb−ξ

∫ xb

ξ nx,0 cos
[
nπ(x−ξ)
xb−ξ

]
dx.

By dropping the translation term, the model reads as:

min

∫ T

0

∫ ξ

xa

i2x,t + (nx,t − ix,t)
2u2x,ti

2
x,t

2
e−ρtdxdt+ ϕ2

∫ ξ

xa

i2x,T
2
e−ρTdx (112)

s.t.
∂ix,t
∂t

= d
∂2ix,t
∂x2

+ (α− δτω)ix,t(nx,t − ix,t)(1− ux,t) +

−δ
[
1 +

(1− β)τω

ξ − xa

∫ xb

ξ
(nx,t − ix,t)dx

]
ix,t, x ∈ [xa, ξ]

∂ix,t
∂x

= 0, x ∈ {xa, ξ}

ix,0 = i0(x) x ∈ [xa, ξ]

The current value Hamiltonian function in (x, t) reads as:

H =
i2x,t + (nx,t − ix,t)

2u2x,ti
2
x,t

2
+ λx,t

{
d
∂2ix,t
∂x2

+ (α− δτω)ix,t(nx,t − ix,t)(1− ux,t)+

− δ

[
1 +

(1− β)τω

ξ − xa

∫ xb

ξ
(nx,t − ix,t)dx

]
ix,t

}
The optimal solution over the region [xa, ξ] can be characterized by means of the FOCs which read as

(roltzsch, 2010):

45





∂ix,t
∂t = d

∂2ix,t
∂x2 + (α− δτω)ix,t(nx,t − ix,t)(1− ux,t)− δ

[
1 + (1−β)τω

ξ−xa

∫ xb

ξ (nx,t − ix,t)dx
]
ix,t

∂λx,t

∂t = ρλx,t − d
∂2λx,t

∂x2 − ix,t − λx,t

[
(α− δτω)(nx,t − 2ix,t)− δ − δ (1−β)τω

ξ−xa

∫ xb

ξ (nx,t − ix,t)dx
]

ux,t =
λx,t(α−δτω)
ix,t(nx,t−ix,t)

∂ix,t
∂x = 0, x ∈ {xa, ξ}
∂λx,t

∂x = 0, x ∈ {xa, ξ}
ix,0 = i0(x) x ∈ [xa, ξ]

λx,T = ϕ2ix,T x ∈ [xa, ξ]

(113)

A.8 Proof of Proposition 2

The proof is straightforward. It follows by taking the spatial integrals of both sides, by using Neumann’s

conditions, and by using classical comparison results for ordinary differential equations.

A.9 Proof of Theorem 3

The proof is very similar to the one presented for Theorem 2. For any fixed pair of ξ1 and ξ2, the first

step is to determine the amount of infectives over the regions B and C which can be done by solving two

logistic-type partial differential equations. After substituting both of them into the model for the region A,

the second step involves the characterization of the optimal solution by means of the FOCs.

A.10 Proof of Theorem 4

The proof is very similar to the one presented for Theorem 2. For any fixed pair of ξ1 and ξ2, the first step is

to determine the amount of infectives over the region B which can be done by solving a logistic-type partial

differential equation. After substituting it into the model for the regions A and C, the second step involves

the characterization of the optimal solutions over A and C by means of the FOCs.

B The Numerical Method

The first order optimality conditions for problem (46) give rise to a system of forward-backward ordinary

differential equations in the state and costate variables. Specifically, the state variable has an initial condition

while the costate variable has a final condition, and one of most widely used algorithm to deal with this

forward-backward setting is the so-called sweep algorithm (McAsey et al., 2012). We implement the forward-

backward sweep method for the system of first order optimality conditions. For a fixed ξ, we compute:

1. Focusing of the first equation of (128), we start by adopting an initial guess λ0 = λ0t .

2. Iteration for j ≥ 0: by employing the spectral method, we solve:

∂ij+1
x,t

∂t
= d

∂2ij+1
x,t

∂x2
+ (α− δτω)(ij+1

x,t (nx,t − ij+1
x,t )− νx,t)− δ

[
1 +

(1− β)τω

ξ − xa

∫ xb

ξ
(nx,t − ij+1

x,t )dx

]
ij+1
x,t

with the initial condition:

i0 = i0

We reverse the second equation of (128) in time, via the change of variable t̄ = T − t, turning the

problem into a forward problem. Notably the initial condition in the time-reversed equation depends
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on T . Then, we solve:

∂λj+1
x,t

∂t
= ρλj+1

x,t − d
∂2λj+1

x,t

∂x2
− ij+1

x,t − λj+1
x,t

[
(α− δτω)(nx,t − 2ij+1

x,t )− δ − (1− β)τω

ξ − xa

∫ xb

ξ
(nx,t − ij+1

x,t )dx

]
with initial condition in 0 given by:

λ0 =
ϕ

T
e−ρT

Finally we check for convergence by computing the difference between the values of it and λt in two

subsequent iterations (i.e. j+1 and j). If the L2-norm of the difference is negligibly small, we display

the current function as solution, otherwise we continue iterating.

3. Once we get a satisfactory numerical approximation of it and λt and hence of ut, we evaluate the cost

function we evaluate the cost function (53) for different values of ξ. We then select the cost-function

minimizing value of ξ.

The accuracy of our algorithm has been tested against the analytical solution determined in the early

epidemic setting (see Theorem 1) as in La Torre et al. (2019b, 2021a). In this setting we can prove that

the numerical and the analytical solutions perfectly coincide, confirming the reliability of our numerical

approach.

C Optimality in the Extended Models

C.1 The Economic Setting

Problem (77) can be analyzed by following the same steps as in the previous section to obtain a result that

closely mimics Theorem 2. Specifically, the share of infectives iBx,t and susceptibles sBx,t over B = [ξ, xb] solves

the equation:

∂sBx,t
∂t = dBS

∂2sBx,t
∂x2 − (α− δβτ)iBx,ts

B
x,t + δiBx,t, x ∈ [ξ, xb]

∂iBx,t
∂t = dBI

∂2iBx,t
∂x2 + (α− δβτ)iBx,ts

B
x,t − δiBx,t, x ∈ [ξ, xb]

∂sBx,t
∂x =

∂iBx,t
∂x = 0, x ∈ {ξ, xb}

iBx,0 = i0(x) x ∈ [ξ, xb]

sBx,0 = s0(x) x ∈ [ξ, xb]

This equation admits a unique pair of solutions iBx,t and i
B
x,t which is defined over the interval [ξ, xb]. By

plugging this expression into the integral and the objective function, we can determine the value of the two

terms:

Ω1 =
1

2

∫ T

0

∫ xb

ξ

(iBx,t)
2

2
e−ρtdxdt (114)

Ω2 =

∫ xb

ξ

(iBx,T )
2

2
e−ρTdx (115)

Over the region A, we need thus to solve the following problem:
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min

∫ T

0

∫ ξ

ξa

i2x,t[1 + (sAx,t)
2(uAx,t)

2]

2
e−ρtdxdt+ ϕ

∫ ξ

xa

(iAx,T )
2

2
e−ρTdx+

µ

ξ − xa
Ω1 + ϕΩ2 (116)

s.t.
∂sAx,t
∂t

= dAS
∂2sAx,t
∂x2

− (α− δτω)(1− uAx,t)i
A
x,ts

A
x,t +

+δ

[
1 +

(1− β)τω

s− a

∫ xb

ξ
sBx,tdx

]
iAx,t, x ∈ [xa, ξ]

∂iAx,t
∂t

= dAI
∂2iAx,t
∂x2

+ (α− δτω)(1− uAx,t)ix,t(n
A
x,t − iAx,t) +

−δ
[
1 +

(1− β)τω

s− a

∫ xb

ξ
sBx,tdx

]
iAx,t, x ∈ [xa, ξ]

∂sAx,t
∂x

=
∂iAx,t
∂x

= 0, x ∈ {xa, ξ}

iAx,0 = i0(x) x ∈ [xa, ξ]

sAx,0 = s0(x) x ∈ [xa, ξ]

By dropping the translation term, the model reads as:

min

∫ T

0

∫ ξ

xa

(iAx,t)
2 + (sAx,tu

A
x,ti

A
x,t)

2

2
e−ρtdxdt+ ϕ2

∫ ξ

xa

(iAx,T )
2

2
e−ρTdx (117)

s.t.
∂sAx,t
∂t

= dAS
∂2sAx,t
∂x2

− (α− δτω)iAx,ts
A
x,t(1− uAx,t) +

+δ

[
1 +

(1− β)τω

ξ − xa

∫ xb

ξ
sBx,tdx

]
ix,t, x ∈ [xa, ξ]

∂iAx,t
∂t

= dAI
∂2iAx,t
∂x2

+ (α− δτω)iAx,ts
A
x,t(1− uAx,t) +

−δ
[
1 +

(1− β)τω

ξ − xa

∫ xb

ξ
sBx,tdx

]
iAx,t, x ∈ [xa, ξ]

∂sAx,t
∂x

=
∂iAx,t
∂x

= 0, x ∈ {xa, ξ}

iAx,0 = i0(x) x ∈ [xa, ξ]

sAx,0 = s0(x) x ∈ [xa, ξ]

The optimal solution over the region [xa, ξ] can be characterized by means of the FOCs which read as:

∂sAx,t
∂t = dAS

∂2sAx,t
∂x2 − (α− δτω)iAx,ts

A
x,t(1− uAx,t) + δ

[
1 + (1−β)τω

ξ−xa

∫ xb

ξ sBx,tdx
]
ix,t, x ∈ [xa, ξ]

∂iAx,t
∂t = dAI

∂2iAx,t
∂x2 + (α− δτω)iAx,ts

A
x,t(1− uAx,t)− δ

[
1 + (1−β)τω

ξ−xa

∫ xb

ξ sBx,tdx
]
iAx,t, x ∈ [xa, ξ]

uAx,t =
(λA

x,t−γA
x,t)(α−δτω)

sAx,ti
A
x,t

∂γA
x,t

∂t = ργAx,t − dAS
∂2γA

x,t

∂x2 + (γAx,t − λAx,t)(α− δτω)iAx,t
∂λA

x,t

∂t = ρλx,t − dAI
∂2λA

x,t

∂x2 − iAx,t + (γAx,t − λAx,t)
[
(α− δτω)sAx,t − δ − δ (1−β)τω

ξ−xa

∫ xb

ξ sBx,tdx
]

∂sAx,t
∂x =

∂iAx,t
∂x = 0, x ∈ {xa, ξ}

∂γA
x,t

∂x =
∂λA

x,t

∂x = 0, x ∈ {xa, ξ}
sAx,0 = s0(x), iAx,0 = i0(x), x ∈ [xa, ξ]

γx,T = 0, λx,T = ϕ2ix,T , x ∈ [xa, ξ]

(118)
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The equations above determine the system of backward-forward partial-differential equations that we need

to simulate in order to determine numerically the solution presented in the main text.

C.2 The Role of Fiscal Policy

Problem (78) can be solved in two steps. Over the region [ξ, xb], the social planner faces the following

sub-problem:

min
τBx,t

∫ T

0

∫ xb

ξ

(iBx,t)
2 + (τBx,t)

2

2
e−ρtdxdt+ ϕ

(
ξ − xa
µ

)∫ xb

ξ

(iBx,T )
2

2
e−ρTdx (119)

s.t.
∂iBx,t
∂t

= d
∂2iBx,t
∂x2

+
{
α(nBx,t − iBx,t)− δ[1 + βωτBx,t(n

B
x,t − iBx,t)]

}
iBx,t, x ∈ [ξ, xb]

∂nBx,t
∂t

= d
∂2nBx,t
∂x2

∂iBx,t
∂x

= 0, x ∈ {xb, ξ}

∂nBx,t
∂x

= 0, x ∈ {xb, ξ}

iBx,0 = i0(x) > 0 x ∈ [ξ, xb] (120)

nBx,0 = n0(x) > 0 x ∈ [ξ, xb]

and the optimality conditions read as:

∂iBx,t
∂t = d

∂2iBx,t
∂x2 +

{
α(nBx,t − iBx,t)− δ[1 + βωτBx,t(n

B
x,t − iBx,t)]

}
iBx,t,

∂λB
x,t

∂t = ρλx,t − d
∂2λB

x,t

∂x2 − iBx,t − λx,t
[
α(nBx,t − 2iBx,t)− δ[1 + βωτBx,t(n

B
x,t − 2iBx,t)]

]
τBx,t = δβωλBx,t(n

B
x,t − iBx,t)i

B
x,t

∂nB
x,t

∂t = d
∂2nB

x,t

∂x2

∂iBx,t
∂x = 0, x ∈ {ξ, xb}
∂nB

x,t

∂x = 0, x ∈ {ξ, xb}
∂λB

x,t

∂x = 0, x ∈ {ξ, xb}
iBx,0 = i0(x) x ∈ [ξ, xb]

nBx,0 = n0(x) x ∈ [ξ, xb]

λx,T = ϕ
(
ξ−xa

µ

)
ix,T x ∈ [xa, ξ]

(121)

Once the optimal pair (iBx,t, τ
B
x,t) is known, then the optimal control problem for the region A reads as:
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min
uA
x,t,τ

A
x,t

∫ T

0

∫ ξ

xa

(iAx,t)
2[1 + (uAx,t)

2(nAx,t − iAx,t)
2] + (τAx,t)

2

2
e−ρtdxdt+ ϕ

∫ ξ

xa

(iAx,T )
2

2
e−ρTdx (122)

s.t.
∂iAx,t
∂t

= d
∂2iAx,t
∂x2

+ α(1− uAx,t)(n
A
x,t − iAx,t)i

A
x,t − δ

[
1 + ωτAx,t(1− uAx,t)(n

A
x,t − iAx,t)

+
(1− β)ω

ξ − xa

∫ xb

ξ
τBx,t(n

B
x,t − iBx,t)dx

]
iAx,t, x ∈ [xa, ξ]

∂nAx,t
∂t

= d
∂2nAx,t
∂x2

∂iAx,t
∂x

= 0, x ∈ {xa, ξ}

∂nAx,t
∂x

= 0, x ∈ {xa, ξ}

iAx,0 = i0(x) > 0 x ∈ [xa, ξ] (123)

nAx,0 = n0(x) > 0 x ∈ [xa, ξ]

The optimality conditions are given by:



∂iAx,t
∂t = d

∂2iAx,t
∂x2 + (α− δτAx,tω)i

A
x,t(n

A
x,t − iAx,t)(1− uAx,t)− δ

[
1 + (1−β)ω

ξ−xa

∫ xb

ξ τBx,t(n
B
x,t − iBx,t)dx

]
iAx,t

∂λA
x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2 − iAx,t − λAx,t

[
(α− δτAx,tω)(n

A
x,t − 2iAx,t)− δ − (1−β)ω

ξ−xa

∫ xb

ξ τBx,t(n
B
x,t − iBx,t)dx

]
uAx,t =

λA
x,t(α−δτAx,tω)

(nA
x,t−iAx,t)i

A
x,t

τAx,t = δωλAx,t(n
A
x,t − iAx,t)i

A
x,t(1− uAx,t)

∂iAx,t
∂x = 0, x ∈ {xa, ξ}
∂λA

x,t

∂x = 0, x ∈ {xa, ξ}
iAx,0 = i0(x) x ∈ [xa, ξ]

nAx,0 = n0(x) x ∈ [xa, ξ]

λAx,T = ϕiAx,T x ∈ [xa, ξ]

(124)

The equations above determine the system of backward-forward partial-differential equations that we

need to simulate in order to determine numerically the solution presented in the main text.

C.3 The Epidemiological Setting

Problem (83) can be solved in two steps. Over the region B = [ξ, xb] the value of uBx,t = 0 and the optimal

solution (iBx,t, r
B
x,t) satisfies the following system of partial differential equations:
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∂iBx,t

∂t = d
∂2iBx,t

∂x2 + α
∫ xb

ξ
(nBx′,t − iBx′,t − rBx′,t)i

B
x′,tψx′,xdx− δ[1 + βωτ(nBx,t − iBx,t)]i

B
x,t, x ∈ [ξ, xb]

∂rBx,t

∂t = d
∂2rBx,t

∂x2 + δ[1 + βωτ(nBx,t − iBx,t)]i
B
x,t − ϵrBx,t x ∈ [ξ, xb]

∂nB
x,t

∂t = d
∂2nB

x,t

∂x2

sBx,t = nBx,t − iBx,t − rBx,t
∂iBx,t

∂x = 0, x ∈ {xb, ξ}
∂rBx,t

∂x = 0, x ∈ {xb, ξ}
∂nB

x,t

∂x = 0, x ∈ {xb, ξ}
iBx,0 = i0(x) > 0 x ∈ [ξ, xb]

rBx,0 = r0(x) > 0 x ∈ [ξ, xb]

nBx,0 = n0(x) > 0 x ∈ [ξ, xb]

where:

nBx,t =
∑
n≥0

Bne
−
(

nπ
xb−ξ

)2
dt
cos

[
nπ(x− ξ)

xb − ξ

]
(125)

B0 =
1

xb − ξ

∫ xb

ξ

nx,0dx, Bn =
2

xb − ξ

∫ xb

ξ

nx,0 cos

[
nπ(x− ξ)

xb − ξ

]
dx (126)

Over the region A instead the problem reads as:

min
uA
x,t

∫ T

0

∫ ξ

xa

iAx,t
2[1 + uAx,t

2(nAx,t − iAx,t)
2]

2
e−ρtdxdt+ ϕ

∫ ξ

xa

iAx,T
2

2
e−ρT dx

s.t.
∂iAx,t
∂t

= d
∂2iAx,t
∂x2

+ α(1− uAx,t)

∫ ξ

xa

(nAx′,t − iAx′,t − rAx′,t)i
A
x′,tψx′,xdx

′ (127)

− δ

[
1 + ωτ(1− uAx,t)(n

A
x,t − iAx,t − rAx,t) +

(1− β)ωτ

ξ − xa

∫ xb

ξ

(nBx,t − iBx,t)dx

]
iAx,t, x ∈ [xa, ξ]

∂rAx,t
∂t

= d
∂2rAx,t
∂x2

+ δ

[
1 + ωτ(1− uAx,t)(n

A
x,t − iAx,t − rAx,t) +

(1− β)ωτ

ξ − xa

∫ xb

ξ

(nBx,t − iBx,t)dx

]
iAx,t − ϵrAx,t x ∈ [xa, ξ]

∂nAx,t
∂t

= d
∂2nAx,t
∂x2

sAx,t = nAx,t − iAx,t − rAx,t

∂iAx,t
∂x

= 0, x ∈ {xa, ξ}

∂rAx,t
∂x

= 0, x ∈ {xa, ξ}

∂nAx,t
∂x

= 0, x ∈ {xa, ξ}

iAx,0 = i0(x) > 0 x ∈ [xa, ξ]

rAx,0 = r0(x) > 0 x ∈ [xa, ξ]

nAx,0 = n0(x) > 0 x ∈ [xa, ξ]

while the optimality conditions to be satisfied by the optimal pair (iAx,t, u
A
x,t) over the region A as:
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∂iAx,t

∂t = d
∂2iAx,t

∂x2 + α(1− uAx,t)
∫ ξ

xa
(nAx′,t − iAx′,t − rAx′,t)ix′,tψx′,xdx

′

−δ
[
1 + ωτ(1− uAx,t)(n

A
x,t − iAx,t − rAx,t) +

(1−β)ωτ
ξ−xa

∫ xb

ξ
(nBx,t − iBx,t)dx

]
iAx,t, x ∈ [xa, ξ]

∂rAx,t

∂t = d
∂2rAx,t

∂x2 + δ
[
1 + ωτ(1− uAx,t)(n

A
x,t − iAx,t − rAx,t) +

(1−β)ωτ
ξ−xa

∫ xb

ξ
(nBx,t − iBx,t)dx

]
iAx,t − ϵrAx,t x ∈ [xa, ξ]

uAx,t =
1

(iAx,t)
2(nA

x,t−iAx,t)
2

(
αλAx,t

∫ ξ

xa
sAx′,ti

A
x′,tψx′,xdx

′ − δλAx,tωτs
A
x,ti

A
x,t + ηAx,tδωτs

A
x,ti

A
x,t

)
∂λA

x,t

∂t = ρλx,t − d
∂2λA

x,t

∂x2 − iAx,t − (uAx,t)
2
(
iAx,t(n

A
x,t − iAx,t)

2 + (iAx,t)
2(nAx,t − iAx,t)

)
−α(1− uAx,t)(n

A
x,t − 2iAx,t − rAx,t)

∫ ξ

xa
λAx′,tψx′,xdx

′ + δλAx,t

[
1 + ωτ(1− uAx,t)s

A
x,t +

(1−β)ωτ
ξ−xa

∫ xb

ξ
(nBx,t − iBx,t)dx

]
−δλAx,tωτ(1− uAx,t)i

A
x,t − ηAx,tδ

[
1 + ωτ(1− uAx,t)s

A
x,t +

(1−β)ωτ
ξ−xa

∫ xb

ξ
(nBx,t − iBx,t)dx

]
+ ηAx,tδωτ(1− uAx,t)i

A
x,t

∂ηA
x,t

∂t = ρηx,t − d
∂2ηA

x,t

∂x2 + α(1− uAx,t)i
A
x,t

∫ ξ

xa
λAx′,tψx′,xdx

′ − δλAx,tωτ(1− uAx,t)i
A
x,t

+ηAx,t
[
δωτ(1− uAx,t)i

A
x,t + ϵ

]
∂iAx,t

∂x = 0, x ∈ {xa, ξ}
∂rAx,t

∂x = 0, x ∈ {xa, ξ}
∂λA

x,t

∂x = 0, x ∈ {xa, ξ}
∂ηA

x,t

∂x = 0, x ∈ {xa, ξ}
iAx,0 = i0(x) x ∈ [xa, ξ]

rAx,0 = r0(x) > 0 x ∈ [xa, ξ]

nAx,0 = n0(x) > 0 x ∈ [xa, ξ]

λAx,T = ϕiAx,T x ∈ [xa, ξ]

where λAx,t and η
A
x,t are the costate variables, and

nAx,t =
∑
n≥0

Bne
−( nπ

ξ−xa
)
2
dt cos

[
nπ(x− xa)

ξ − xa

]
(128)

B0 =
1

ξ − xa

∫ ξ

xa

nx,0dx, Bn =
2

ξ − xa

∫ ξ

xa

nx,0 cos

[
nπ(x− xa)

ξ − xa

]
dx (129)

The equations above determine the system of backward-forward partial-differential equations that we need

to simulate in order to determine numerically the solution presented in the main text.
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