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This article presents the development of a socially interactive industrial
robot. An Avatar is used to embody a cobot for collaborative industrial
assembly tasks. The embodied covatar (cobot plus its avatar) is introduced to
support Flow experiences through co-regulation, interactive emotion regulation
guidance. A real-time continuous emotional modeling method and an aligned
transparent behavioral model, BASSF (Boredom, Anxiety, Self-efficacy, Self-
compassion, Flow) is developed. The BASSF model anticipates and co-regulates
counterproductive emotional experiences of operators working under stress
with cobots on tedious industrial tasks. The targeted Flow experience is
represented in the three-dimensional Pleasure, Arousal, and Dominance (PAD)
space. We present how, despite their noisy nature, PAD signals can be used to
drive the BASSF model with its theory-based interventions. The empirical results
and analysis provides empirical support for the theoretically defined model, and
clearly points to the need for data pre-filtering and per-user calibration. The
proposed post-processing method helps quantify the parameters needed to
control the frequency of intervention of the agent; still leaving the experimenter
with a run-time adjustable global control of its sensitivity. A controlled empirical
study (Study 1, N = 20), tested the model’s main theoretical assumptions about
Flow, Dominance, Self-Efficacy, and boredom, to legitimate its implementation
in this context. Participants worked on a task for an hour, assembling pieces
in collaboration with the covatar. After the task, participants completed
questionnaires on Flow, their affective experience, and Self-Efficacy, and they
were interviewed to understand their emotions and regulation during the task.
The results from Study 1 suggest that the Dominance dimension plays a vital
role in task-related settings as it predicts the participants’ Self-Efficacy and
Flow. However, the relationship between Flow, pleasure, and arousal requires
further investigation. Qualitative interview analysis revealed that participants
regulated negative emotions, like boredom, also without support, but some
strategies could negatively impact wellbeing and productivity, which aligns
with theory. Additional results from a first evaluation of the overall system
(Study 2, N = 12) align with these findings and provide support for the use
of socially interactive industrial robots to support wellbeing, job satisfaction,
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and involvement, while reducing unproductive emotional experiences and their
regulation.

KEYWORDS

human-robot interaction, socially interactive agents, affective computing, affect
modeling, emotion (Co-)Regulation, social signals, pleasure, arousal

1 Introduction

The expanding market for collaborative robots (Cobots)
(Knudsen and Kaivo-Oja, 2020) presents a novel opportunity to
leverage Socially Interactive Agents (SIAs) to improve worker
wellbeing in production line settings. SIAs could be employed
to utilize co-regulation processes, where emotional regulation
exhibited by one individual influences another’s (Järvelä et al.,
2019). This approach has the potential to shift factory environments
from a paradigm centered on efficiency towards a value-driven
era (Schneiders and Papachristos, 2022) that prioritizes worker
wellbeing and participation, aligning with the tenets of the
“fifth industrial revolution” (Xu et al., 2021). By functioning as
social companions embodied within the physical workspace of
the production line, SIAs could mitigate negative experiences,
particularly those associated with robotic manipulators and
increased production demands.

Virtual SIA could act as mediators between cobots and
their operators, promoting a lifelike social experience. SIA
can move in human-like ways with sets of actions impossible
for today’s industrial robots, while presence and physical
embodiment may enhance the salience and perceived importance
of lifelike interactions, compared to interactions with two-
dimensional entities (Kawamichi et al., 2005).

However, the efficacy of SIAs hinges upon the development
of an Avatar-Cobot behavioral model capable of anticipating and
counteracting negative emotional states. Research by Nicora et al.
(2023) explored how integrating a robot’s physical capabilities with
an SIA’s verbal and non-verbal skills impacts user perception of the
system as a social entity. The combination of both is promising.

This paper describes some of the achievements of the European
project MindBot (Nicora et al., 2021) in applying a combination
of SIAs and cobots in an industrial working scenario. The main
contribution of this work is the description of amodel and strategies
to measure the PAD social signals (Pleasure, Arousal, Dominance)
of a worker, and apply them for piloting his/her interaction with a
pair of agents formed by a cobot (industrial collaborative robot) and
an avatar, whose behavior merges into a single covatar.

The top-level interaction cycle of a working cell
is shown in Figure 1, where a worker collaborates with a cobot
to perform a cyclical assembly task. The face and body motion of
the worker are analyzed by a selection of AI modules extracting
information about his/her PAD values, pain, and fatigue. The
development of such a complex architecture faced two main
challenges.

The first challenge relates to the explainability and control
of system interventions as a reaction to workers’ experience.
Research focusing on design principles for work cells using
Cobots that consider operator mental-health (Nicora et al., 2021).
We aim to establish theoretically grounded and transparent

principles for facilitating social interaction through the integration
of Socially Interactive Agents (SIAs) with robots, particularly
collaborative robots/Cobots, in industrial settings. A systematic
testing approach necessitates the ability to isolate and empirically
evaluate individual components of the human-agent interaction.
However, the inherent complexity of end-to-end systems precludes
such granular analysis. Furthermore, existing research lacks a
focus on dissecting these interaction aspects specifically for non-
humanoid robots commonly employed in industrial environments.
Therefore, this study represents a pioneering effort to address this
critical gap in the current knowledge base.

Building on this foundation, the primary objective of this
investigation is to develop and evaluate a transparent, theory-driven
method for real-time emotional modeling. The method will focus
on five key emotional states: boredom, anxiety, self-efficacy, self-
compassion, and flow, collectively referred to as the BASSF model.
In essence, BASSF aims to provide socially responsive interactions
that promote self-efficacy and flow experiences, thereby enhancing
worker wellbeing within production line settings (Nunnari et al.,
2023). Within this framework, we delve deeper to empirically
examine the specific relationship between Dominance and both
Self-Efficacy and Flow.

The second main challenge of the development concerns the
interpretation of human working experience from digital sensors.

While recent breakthroughs in AI (especially neural machine
learning) have made automatic activity recognition much more
precise, there are limitations to consider. For instance, research
suggests that AI can estimate emotions from facial expressions
with potential for real-world applications in fields that deal with
human affect (Toisoul et al., 2021a). However, this holds true
primarily in controlled settings. In real-time interactive situations,
AI models often struggle due to unexpected factors. These include
changes in lighting, camera quality, background noise, and user
behavior that deviates from expectations. Simple models relying
on pre-programmed thresholds and emotional triggers prove
unreliable, leading to unrealistic responses from AI agents. Facial
analysis data itself presents challenges. Raw PAD (valence, arousal,
dominance) signals can be erratic, with sudden spikes and gaps.
The data may not cover the entire predicted range [0-1], and its
distribution is uneven and non-normal. Additionally, data streams
can be interruptedwhenusersmove out of frame, turn away, orwhen
the image quality is compromised by blur or distance.

There’s a concerning trend in research papers: crucial details
are sometimes dismissed as mere “technicalities” and left out
in favor of broader theoretical discussions. These details, often
referred to as the “tricks” developers use to make their systems
function, are often critical for replicating the research and verifying
its findings.

In summary, this article provides two main contributions,
addressing the two above-described problems: i) it describes in
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FIGURE 1
Abstract view of the application setup.

detail the BASSF explainable model of worker’s experience and
the results of its validation, and ii) it describes strategies for post-
processing PAD signals in order to drive a believable activation of
the cobot + avatar interventions. The article also provides a first
evaluation of the overall system which helps to situate the results of
the BASSF evaluation within the goals of the system and understand
them in the context of enhancing industrial robots for worker
wellbeing.

The remainder of the paper is structured as follows. Section 2
presents state of the art work in social signal interpretation for
interactive robot and avatar interaction and on the regulation of flow.
Section 3 described the application domain and overall technical
setup. Section 4 presents the development of the BASSF model
and the definition of corresponding co-regulating interventions.
Section 5 presents the method to map raw Pleasure, Arousal,
and Dominance signals into the activation of cobot and avatar
interventions. The main theoretical assumptions underlying the
BASSF model are validated in Section 6. Section 7 presents a first
evaluation of the overall system. Finally, Sections 8, 9 summarize our
proposal and presents final observations.

2 Background and related work

In this section, we present work related to the creation of a
system able to interpret social signals and model people’s emotional
reactions. We first focus on the description of the PAD (Pleasure,
Arousal, Dominance) social signals, following with a survey on the
strategies to elaborate them. Then, we present work related to the
interpretation of such signals to extract explainable cues on people’s
emotion, and conclude with a few references on the control of
avatars and cobots behavior in hybrid robot/avatar-human working
environments.The last subsection highlights themain novelty of this
work with respect to the related work hereby presented.

2.1 Modeling emotions with pleasure,
arousal and dominance (PAD)

The PAD model postulates that all emotional experiences
can be represented and differentiated using a three-dimensional
framework (Pleasure - Displeasure, degree of arousal, and
Dominance - Submissiveness), with values ranging from −1 to
1 on each dimension (Russell and Mehrabian, 1977; Mehrabian
and Russell, 1974; Mehrabian, 1995). The dimensions are split
in positive and negative values, like + P and -P for pleasant
and unpleasant states Mehrabian (1996b) (Table 1). This divides
the PAD Space into 8 octants, known as Octant Space or Eight
States Model (Cao et al., 2008).

Despite its widespread application across various disciplines
Bakker et al. (2014), the PAD model has been criticised with
regard to the Dominance dimension. Some researchers question its
conceptual clarity of Dominance (Bakker et al., 2014).

Within the context of Flow, Gilroy et al. (2009) proposed a
representation using the PAD model. This framework positions
pleasure as a key predictor of Flow. Arousal represents the level
of stimulation experienced during a task or interaction with an
interface. Dominance relates to the skill-to-challenge ratio and
is typically associated with feelings of control and influence. A
situation where an individual lacks the necessary skills for a task
would likely induce a submissive state (-D). However, challenging
tasks can also be stimulating, potentially leading to a positive arousal
state. Consequently, Flow is depicted as existing within the PAD
space as a pleasurable (+P), aroused (+A), and dominant (+D) state,
situated within the octant characterized by these positive values.

2.2 Social signals processing

Research on using social signals (like PAD) for robot and avatar
interaction often lacks crucial details on how this information
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TABLE 1 The eight octants of the BASSF interventions space.

Activation code Mehrabian (1996a) Gilroy et al. (2009) This work

+P+A+D Exuberant Flow Flow

+P+A-D Dependent Impressed Awe

+P-A+D Relaxed Relaxed Relaxed

+P-A-D Docile Hopeful Hopeful

-P+A+D Hostile Hostile Hostile

-P+A-D Anxious Anxious Anxious

-P-A+D Disdainful Disdainful/Dismissive U-Boredom

-P-A-D Boredom Apathy O-Boredom

is actually used. A recent handbook on the topic (Lugrin et al.,
2022) provides tools for processing social signals (Chapter 20.6),
but neglects to explain how to “clean up” these signals for reliable
application in driving agent behavior. While some tools offer
“confidence” indicators, their role in improving system reliability
remains unclear. The interpretation of this metric seems left to
the specific needs of each development team, hindering overall
understanding and consistency.

There are, however, some cases where low confidence detection
is directly integrated into the behavior model. Carletto, for instance,
is an agent that guides museum visitors through multiple rooms
(Damiano et al., 2008). It infers the visitor’s location and if the
signal is unclear, proactively addresses them with an informative
message (“I cannot see you well. Can you move to the center
of the room?”). Similarly, popular voice-activated smart home
assistants like Alexa, Siri, andGoogle Assistant, despite experiencing
high rates of false detections (Kurz et al., 2021), mitigate user
frustration by directly acknowledging their inability to understand
the user’s intent [2]. However, this approach is not universally
applicable.

Dai et al. (2019) document the applications of pain detection
in robot-assisted rehabilitation. This study explored the use
of a humanoid robot to recognize pain in patients through
facial analysis. While their models achieved high accuracy
in detecting pain on individual, isolated images, real-time
application required additional processing. They implemented
a post-processing filter that analyzed a majority vote within a
buffer of N consecutive frames (with N being greater than M,
the number of votes needed for a pain flag). This filter helped
account for inconsistencies in the real-time data stream. The
study also highlighted the challenge of missing frames and the
need for subject-specific optimization of the post-processing
parameters.

EmmA, an agent designed by Gebhard et al. (2019), assists
therapists in treating burnout patients. It analyzes user behavior
through a mobile phone’s face camera, microphone, and other
sensors. The authors acknowledge the importance of recalibrating

models for individual users, but have not published further results
on this aspect yet.

Arora et al. (2022) introduced Gloria, a socially interactive agent
that supports patients during rehabilitation exercises. Gloria uses
real-time analysis of facial expressions, eye gaze, and heart rate
through a neural network to estimate the patient’s attentiveness,
stress, and pain levels. However, due to the instability of these
signals, Gloria does not react instantaneously. Instead, it analyzes
the patient’s behavior over the past few minutes, triggering the
avatar’s intervention at specific points within the therapy cycle. Our
application adopts a similar “checkpoint” mechanism for improved
reliability.

2.3 Flow, emotion (co-)regulation

Csikszentmihalyi (1975) described Flow as a highly engaging
and intrinsically rewarding state characterized by enjoyment and
effectiveness. This state is underpinned by six key components:
Merging of action and awareness, centering of attention, loss of
self-consciousness, feeling of control, coherent non-contradictory
demands, and autoletic nature.

Beyond the core components, Flow is further influenced by
the skill-to-challenge ratio, which is arguably the most critical
aspect with regard to Dominance, as it directly impacts feelings of
control (Massimini et al., 1987; Csikszentmihalyi, 1990). A balanced
skill-to-challenge ratio is believed to foster Flow experiences,
while a mismatch can lead to negative emotional states, for
instance, boredom or apathy, stress, anxiety, or shame. To effectively
respond to workers‘ emotional experiences of boredom and anxiety
in a personally relevant manner, a deeper understanding of
boredom itself is crucial. Boredom may exhibit diverse origins and
functions and its multifaceted character needs to be adequately
represented.

Within the production line context, boredom can manifest
in two distinct ways beyond the common perception of under-
stimulation.Thefirst type arises fromover-challenge, potentially due
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to time constraints or competitiveness amongworkers. Alternatively,
over-challenge boredom can be triggered by organizational-level
failures. A second form of over-challenge boredom, related to
task-focus, can emerge from repetitive and seemingly meaningless
tasks, characteristic of many assembly line environments (Feuchter
and Preckel, 2022). In contrast, self-focused boredom arises when
individuals become preoccupied, dissatisfied, or frustrated with
themselves. In that case, self-focused boredom serves as a defense
mechanism to prohibit chronic high-stress states (Feuchter and
Preckel, 2022). Individuals may subconsciously enter a state of
boredom to mitigate the experience of negative and self-threatening
emotions (Nathanson, 1994). This mechanism is depicted in the
known connection between over-challenge boredom, anxiety,
and identity threats (Csikszentmihalyi, 1990; Feuchter and
Preckel, 2022).

Negative emotions directed inwards (self-referential emotions)
can intensify self-focused attention, potentially leading to a state
of boredom (Bambrah et al., 2023). Furthermore, limited self-
awareness may lead to boredom, to avoid confronting potentially
negative emotions. Interestingly, there is a correlation between over-
challenge boredom and diminished Self-Efficacy when considering
self-regulation and achievement. However, the same association is
not encountered with under-challenge boredom (Tze et al., 2014).

Effective emotional regulation of negative emotions plays a
critical role in facilitating Flow experiences, as it can remove
obstacles that may impede Flow and can influence the perceived
skill-to-challenge ratio. Cognitive reappraisal, for instance, allows
individuals to reinterpret the demands of a situation, potentially
altering their appraisal of the skill-to-challenge balance (McRae and
Gross, 2020).

Emotion co-regulation offers a framework for providing
guidance on emotional regulation strategies (Gergely, 2004;
Järvelä et al., 2019). However, the effectiveness of this approach is
contingent on contextual factors, the individual’s specific emotional
state, and inherent individual differences. Implicit guidance is
less disruptive to the user’s experience (Heimbuch and Bodemer,
2017) and may be appropriate in situation requiring task-focus.
Conversely, explicit guidance, which may involve direct prompts
for action, has the potential to interrupt ongoing tasks (Loksa et al.,
2016). While real-world scenarios may involve a blend of both
implicit and explicit elements, this distinction is valuable for
informing design decisions within specific application contexts,
such as production line settings where maintaining focus on the
task at hand is paramount. The representation of such strategies in
the system allows personalising the co-regulation (Gergely, 2004;
Järvelä et al., 2019) to help the worker regulate themselves and
even possibly appropriate new regulation strategies. In order to
achieve co-regulation, the regulating partner needs to partake in the
emotional experience of the other, making themselves and the other
aware of the emotional experiences, containing it (Fonagy et al.,
2018), empathizing, and regulating if needed to support the other’s
emotion regulation and emotional development (Fonagy et al.,
2007). In the current context, this amounts to being able to monitor
and dynamically respond to the worker’s emotional experiences.
Such co-regulation processes have been researched in task-related
co-regulation before, especially in the context of collaborative group
work (e.g., Järvelä et al., 2019).

2.4 Cobot/avatar behavior

Virtual agents that provide emotional support specifically with
regard to Flow are limited but provide optimistic results. D’Mello
and Graesser (2013) presented AutoTutor and Affective AutoTutor,
two intelligent tutoring systems trace emotional states to increase
engagement and Flow for learning. Pagalyte et al. (2020) introduce
the idea of incorporating Dynamic Difficulty Adjustment (DDA)
through the use of Reinforcement Learning (RL) in turn-based
battle video games to induce game Flow. Samrose et al. (2020)
investigated the potential of an empathetic conversational agent
to alleviate boredom. These test different interaction settings and
deal with virtual agent behavior, but do not explicitly make
use of emotion co-regulation in a systematic way. Opportunities
for emotion co-regulation arise when combining avatars with
cobots who co-habit and work in the physical space of the
production line (Lugrin et al., 2022).

Analysis of human-human interaction highlights the
importance of verbal and non-verbal communication. In every
socially interactive scenario, motor correlates such as lip-syncing,
head nods, deictic gestures, and gaze movements are abundant
and play a great role in expressing emotions, intentions and
establishing common ground in communication (Mavridis, 2015).
However, such capabilities are missing in current industrial
cobot installations, increasing the risk for social isolation of their
operators. There is scarce knowledge regarding how industrial
robots can be adapted to improve the emotional experience and
reduce health risks. There is evidence that people project themselves
onto non-humanoid robotic devices (Aymerich-Franch et al.,
2017), and preliminary studies (Nicora et al., 2023) are trying
to understand how humans perceive them and what roles they
ascribe to them.

Research in manufacturing has established that a cobot’s speed
and acceleration significantly influence the experience of workers
collaborating directly with it (Ojstersek et al., 2023). Studies by
Kato et al. (2010) and Arai et al. (2010) demonstrate that worker
stress levels decrease as cobot speed is reduced or the distance
between cobot and operator increases. Following this guideline, in
our work, we modulate the robot speed to promote flow.

2.5 Main innovation points

With respect to the surveyed literature, this work presents four
main novelties.

First, our setting comprises three elements: (i) A collaborative
robot (cobot), which is (ii) embodied by an accompanying avatar
for (iii) the industrial manufacturing domain. None of the surveyed
work presents this combination of features all together.

Second, this is the only work known to us that uses the Pleasure,
Arousal, and Dominance combination to interpret social signals
and use them as input for the model that infers humans subjective
experience.

Third, we propose a novel model (BASSF, Section 4) that
classifies the experience of workers and defines theory-based
interventions of the Covatar behavior to promote workers’ flow.
The model relies on the explicit interpretation of the PAD
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signals of the workers, and, with respect to many current models
based on neural black boxes, it is based on transparent rules
following on psychological theories. This approach renders the
model explainable, which allows testing and making informed
adjustments. We have demonstrated here how the model can be
tested by scrutinizing the assumptions of the PAD representation of
the subjective user experiences.

Fourth, many of the surveyed works use several kinds of “social
signal” in the broad sense–i.e., of any measurable temporal signal
which can help inferring users’ experience–like body motion, facial
expressions, heart rate, skin inductance, and the like. However,
very few details are provided on how to carefully filter and
clean such signals. In this work, we present a careful description
of the PAD signals, performing statistical analyses, and provide
a method to post-process and calibrate such data in order
to make them useable in real-world settings; for example, to
better generalize among different users and reduce the effect of
environmental noises (Section 5).

3 Application overview

This section describes separately all of the hardware and software
components involved in the realization of the application already
depicted in Figure 1.

3.1 System setup

To simulate an industrial workcell, we built a replica in a
laboratory environment (see Figure 2). The setup features two L-
shaped tables creating separate workspaces for the operator and
the cobot. A Fanuc CRX10iA/L collaborative robot (cobot) is
positioned in front of the operator, along with a tablet displaying
the virtual agent (avatar). The system incorporates a front-facing
HD camera (described in Section 3.3) to analyze the user’s social
signals, including Ekman facial expressions, pleasure, and arousal.
Additionally, the face camera signal is used to estimate the
level of pain of the worker [using the method described by
Prajod et al. (2022a)], and twoKinect cameras usedwithin a separate
system to estimate user fatigue, as detailed by Brambilla et al.
(2022). These two last variables are part of the global system,
but unused by the emotion co-regulation approach presented in
this paper.

The entire setup is controlled by four interconnected machines
using the ROS framework (Quigley et al., 2009): (i) a Linux PC that
manages all robot control functions; (ii) aWindows PC that executes
the Social Signals Interpretation (SSI) module and the Visual Scene
Maker (VSM) program, which controls the covatar behaviors; (iii) a
Windows PC that analyzes data from the Kinect sensors to estimate
user fatigue; and (iv) a Windows Tablet that runs the avatar Unity
application.

3.2 Assembly task

The study focuses on a collaborative product assembly task
in an industrial setting. The robot handles assembling specific

components, while the humanoperator takes care of others.Thefinal
step involves them working together to join the two sub-assemblies,
as described by Mondellini et al. (2023). A description of the
assembly components is available at https://doi.org/10.5281/zenodo.
5675810.

One assembly cycle involves the robot putting together its
assigned parts before presenting the completed sub-assembly to
the operator. Our reference assembly task, which simulates realistic
conditions, lasts about 50 s when setting the speed of the Robot
to the maximum allowed by EU safety regulations. However,
the corresponding assembly task performed simultaneously by
the worker can be finished in about half of that time; thus
giving the operator significant idle time. Workers’ goal was to
complete as many assemblies as possible, but they had to wait
for the Cobot to be ready before starting a new assembly.
Hence, the extended waiting period could lead to boredom and
frustration over time.

In order to investigate the opposite effect, when the robot
finishes first, also realistic, which could result in stress for workers,
we configured also a faster, reduced version of the robot assembly.
We tested both possibilities and their effect on flow in Study 1
(Section 6), while the execution of the reference “slow speed” task
in conjunction with the intervention of the avatar is the subject
of Study 2 (Section 7).

3.3 Facial emotion detection

We deployed an SSI (Wagner et al., 2013) pipeline to capture a
view of the worker using the front camera, identify and crop the face
[usingMediaPipe (Bazarevsky et al., 2019)], and predict: i) 7 discrete
classes (Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger) and ii)
two continuous values (Valence and Arousal).The facial expressions
of the participants were captured using a front camera (Logitech
C920 Pro HD). The face-cropped images served as input to the deep
learningmodel trained using TensorFlow onNVIDIAGeForceGTX
1060 6 GB GPU.

The model was trained on the AffectNet dataset
(Mollahosseini et al., 2019), which was cleaned following the
procedure mentioned in Toisoul et al. (2021a). This step yields
218,827 images from 7 emotion classes, split into 85% for training
and 15% for validation.Weused the images indicated inToisoul et al.
(2021b) as the test set (2,457 images).

The system employed a pre-trained VGG16 model, originally
developed by Simonyan and Zisserman (2014). This model was
trained on themassive ImageNet image database (Russakovsky et al.,
2015). We then fine-tuned the entire VGG16 network using the
specific training data they collected for this project. Following the
VGG16 network, we added a fully connected layer. This layer then
connects to three separate prediction layers. The first layer predicts
one of seven emotions (using Softmax activation). The other two
layers predict the valence (using Tanh activation) and arousal (using
Tanh activation) levels.

All input images were scaled to the default VGG16 dimensions
(224 × 224) and were fed to the model in batches of 16. To introduce
more variances in training images, we used data augmentation
options provided by TensorFlow: width shift (range = 10%), height
shift (range = 10%), zoom (range = 10%), and horizontal flip. We
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FIGURE 2
Photos of the working space. The operator stands in front of his desk, where he joins his parts with the ones given by the cobot. The desk on his right is
the operating space where the cobot picks his components. The tablet showing the avatar stands on the operator desk, just in front of the cobot
rotating base. Left: phase 1 setup - The robot and the operator have completed their subassembly and the collaborative joining is ongoing. Right:
phase 2 setup - The robot has brought the subassembly towards the operator, who is still working on his parts.

used the SGD optimizer with an initial learning rate of 0.001 and
reduced it by a factor of 0.1 after 70,000 steps. Similar to Prajod et al.
(2022a); Prajod et al. (2022b), we use the focal loss function for the
discrete emotion classification. For valence and arousal, we used
the shake-shake loss function (Toisoul et al., 2021b), which is a
combination of CCC (Concordance Correlation Coefficient), PCC
(Pearson Correlation Coefficient), and MSE (Mean Squared Error)
losses. We employed the early-stopping mechanism (patience = 5)
to prevent over-fitting of the model, i.e., we stopped training the
model when the total loss on the validation set did not decrease for
5 consecutive epochs.

The system achieved a success rate of 76% on the test set, based
on both accuracy and F1-score, for the task of classifying distinct
emotions. This performance aligns with prior research in this area
(Mollahosseini et al., 2019; Toisoul et al., 2021b). To assess the
model’s ability to predict valence and arousal levels, we adopted
the same metrics used in similar studies: Concordance Correlation
Coefficient (CCC), Root Mean Squared Error (RMSE), and Sign
Agreement (SAGR). Our model’s performance on these metrics was
comparable to the best existing systems, achieving a CCC of 0.852,
RMSE of 0.266, and SAGR of 83.1% for valence prediction, and
a CCC of 0.763, RMSE of 0.277, and SAGR of 81.2% for arousal
prediction.

3.4 Dominance estimation

The system does not directly output dominance as a standalone
value. Instead, it infers dominance by combining the strengths of the
six Ekman facial expressions in a linear fashion.

This approach relies on a mapping established by Mehrabian
(1995), who assigned specific PAD values to various emotions.
We determine the dominance level associated with each Ekman
expression using the following coefficients: neutral (0.0), surprise
(−0.16), happiness (0.46), sadness (−0.33), disgust (−0.36), anger
(0.25), and fear (−0.43). In real-time, the system calculates
the user’s dominance level based on a linear combination
of these weighted coefficients applied to the actual strengths
(softmax distribution) of the detected Ekman expressions. More
formally:

D =∑
e
pe ∗ ce,with∑

e
pe = 1

Where e cycles through all the six Ekman expressions (plus neutral),
pe is the value of the softmax output for the emotion, and ce is the
coefficient described before (plus cneutral = 0.0).

3.5 Cobot control

Thesoftware architecture prioritizes expandability andhardware
independence. To achieve this, the system utilizes the Robotic
Operative System (ROS) framework (Quigley et al., 2009). This,
combined with the modular design (described below), allows
for deployment on various robotic cells. This flexibility makes
the system adaptable to a broad range of collaborative robotics
applications. The robot controller transmits information through
ROS. This information includes the robot’s current control state and
mode (updated at 1 Hz) and its position, velocity, and acceleration
(updated at a faster rate of 15 Hz). Additionally, the controller offers
various services that the behaviormanagement software can leverage
to control the robot and execute the assembly task. The main high-
level commands are:

• set_tcp_target - moves the gripper in a given position
and orientation.

• set_gripper_action - open/closes the gripper.
• set_detection - activates the on-gripper mounted camera

to find the required assembly piece.
• set_max_tcp_velocity - imposes a maximum

movement speed to the gripper.
• set_max_tcp_acceleration - imposes a maximum

acceleration to the gripper.

3.6 Avatar design, deployment and features

Figure 3 showcases concept art and screenshots of the cobot’s
virtual companion, the avatar. A graphic artist created the avatar,
drawing inspiration from well-known actresses and models. The
design prioritized two key aspects:

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1418677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nunnari et al. 10.3389/frobt.2024.1418677

FIGURE 3
Avatar design and implementation. Left: a sketch for the design of the face. Center: an early off-line rendering of the character in Blender. Right: A
screenshot of the real-time rendering in Unity.

1. Androgynous Appearance: The avatar avoids stereotypical
features of beauty and maintains a gender-neutral look to
minimize potential gender bias.

2. Work Environment Integration: The avatar is clad in work
clothes to blend seamlessly with the industrial setting and
foster a sense of connection with the human worker.

The artist used Blender 3D software (https://www.blender.
org) for character creation, aided by the MB-Lab character
generation plugin (https://github.com/animate1978/MB-Lab).
To enable real-time rendering and integration within a Unity
application, the character underwent further editing and adaptation
using the YALLAH framework (https://github.com/yallah-
team/YALLAH) (Nunnari and Heloir, 2019).

The Unity application runs on a portable Windows tablet and
establishes a Websocket network server that receives commands
from remote controllers. These commands allow the avatar to
perform various actions: speak out a given textmessage, look around
the environment, rotate its body, play pre-recorded animation
sequences, adjust the camera view distance.

3.7 Cobot and avatar behavior

The Visual Scene Maker (VSM) tool (http://scenemaker.dfki.
de) (Gebhard et al., 2012b) was used to design the overall interaction
between the cobot and the avatar. VSM’s user-friendly interface
allows non-programmers to visually configure the behavior logic for
these collaborative agents.

The top of Figure 4 depicts a high-level view of the VSM
scene flow managing the entire project. It consists of three primary
subprojects: top, Controls the cobot’s behavior; Center, Manages
the avatar’s behavior; Bottom, Calibrates the user’s facial expression
recognition. VSM is extended with a custom plugin that handles
several tasks:

• Communication with SSI Module: Receives data on fatigue,
PAD (pleasure/valence, arousal, dominance), and Ekman facial
expressions.

• Cobot & Avatar Communication: Facilitates communication
between the VSM system and both the cobot and avatar.

• Dominance Derivation: Calculates the dominance level based
on the detected Ekman expressions.

• Activation Code Strategy: Implements the strategy (described
in a following section) to generate an “activation code” from the
PAD data streams.

The bottom part of Figure 4 shows the main node implementing
the BASSF activation strategy.The squared red node at the top center
is the entry point. It performs the main tests to check for hardware
errors (missing parts on the robot table, or communication failure).
The following node (N6) is an explicit test on detected pain or
fatigue (not covered in this paper).Then, after a small increase in the
robot operation speed (velocity and acceleration), the yellow node
at the center acts as dispatching center: according to the value of
the activation code, it activates the node implementing the suitable
activation strategy. For example, code -0-1+2 (corresponding to
-P-A+D) triggers the activation of the U-Boredom node. All of
the activation nodes converge then into the execution of a delay
node that connect back to the starting node, thus closing the avatar
behavior waiting loop.

4 The BASSF/PAD co-regulation
model

The BASSF model co-regulation model allows making decisions
on personalised situation-based feedback to support flow. It is
implemented in VSM and is the controller of the cobot and
avatar behavior in combination (Figures 1, 4). It is designed to
track the worker’s affective experiences continuously. For this,
the PAD model of affect by Mehrabian and Russell (1974),
Cao et al. (2008), Gilroy et al. (2009) is used as data source.
Their model uses three dimensions (pleasure - displeasure;
aroused - unaroused; dominant - submissive) to differentiate
between every possible affect. These three dimensions can be
visualized as a three-dimensional space that is further subdivided
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FIGURE 4
Top: the top-level of the VSM project driving Cobot and Avatar behavior. Bottom: a view of the sub-node implementing the decision strategy of the
BASSF model.

at each axis. Those eight subspaces (Octants) can be labeled
by their axis and their sign (Table 1). Then, as part of the
BASSF model definition, from the PAD octants appropriate

interventions are selected through a decision algorithm to
assist. The interventions realise the co-regulation with the
participant and support Flow experiences.
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This research aims to improve the transparency, user-
adaptability, and testability of the BASSF model by exploring the
differential causes of boredom and its connections to stress and
anxiety, common workplace emotions that can also influence flow
(Massimini et al., 1987). The experiment focused on inducing
prolonged stress, which can potentially be regulated through
boredom (Feuchter and Preckel, 2022; Nathanson, 1994). We
operationalized prolonged stress caused by overwhelming time
pressure as a state of anxiety within the PAD space, characterized by
negative pleasure (-P), high arousal (+A), and low dominance (-D).
We then hypothesize that anxiety, an experience associated with low
dominance, might eventually lead to boredom that is also regulated
by low dominance. Building on Gilroy et al. (2009) definition of
boredom as -P, -A, -D, we define the entire low-pleasure, low-
arousal region of the PAD space as “regulated, overwhelming
boredom” (O-Boredom). To distinguish this from another type of
boredom, we introduce the concept of “underwhelming boredom”
(U-Boredom) (Fisher, 1987), associated with negative pleasure (-P),
low arousal (-A), and high dominance (+D).

The BASSFmodel defines covatar responses for emotional states
within the PAD space that are considered unfavorable for achieving
Flow. These covatar reactions provide guidance on how to regulate
emotions and are intended to co-regulate both boredom and anxiety
experiences. Each octant of the PAD space, representing a specific
emotional combination, has its own set of potential interventions.
However, the system prioritizes the user’s self-regulation efforts.
Interventions are only triggered if the user is not effectively
regulating their emotions towards a more productive state. To avoid
disrupting the user’s focus on work tasks, the covatar’s guidance is
delivered subtly and implicitly.

This system aims to support workers in achieving a state
of “flow.” Flow is a well-being-promoting state characterized by
enjoyment, productivity, and a sense of being completely absorbed in
the task at hand (Csikszentmihalyi, 1975; Csikszentmihalyi, 1990). A
key factor influencing flow is the balance between challenge and skill
level. When these two elements are mismatched, negative emotions
like anxiety, stress, and boredom can arise. These emotions hinder
flow if left unchecked. The BASSF model tackles this challenge
through both direct and indirect interventions:

• Indirect Assistance:
• Implicit Emotion Regulation Guidance: The model subtly

guides the worker towards regulating their emotions,
thereby reducing the impact of negativity (Heimbuch and
Bodemer, 2017).

• Error Prevention: By intervening when errors occur (from
either the worker or the cobot), the model helps prevent
negative emotions from arising in the first place.

• Direct Assistance:
• Challenge-Skill Balance Adjustment: The model directly

influences the worker’s perception of the challenge-skill
balance. This can involve, for example, influencing the
worker’s self-efficacy beliefs.

• Cobot Work Rate Adaptation:The model can directly adjust
the cobot’s work pace to better align with the worker’s
capabilities.

The research team configured 16 different interventions
based on a worker’s emotional state within the PAD space
(pleasure, arousal, dominance). Table 2 showcases 3 examples
of these pairings. When an intervention is triggered, the avatar
(the cobot’s virtual companion) performs two actions: Verbal
Feedback, the avatar turns towards the worker and delivers
a pre-selected message; Cobot Speed Adjustment, the cobot’s
speed and/or acceleration are modified based on the chosen
intervention. It is important to note that for situations where
multiple interventions are applicable, the system randomly selects
one to execute.

5 Mapping PAD signals to
interventions through the BASSF
model

This section focuses on how the system translates the continuous
PAD (pleasure, arousal, dominance) values coming from the facial
expression analysis (SSI module) into a discrete BASSF activation
code (refer to Table 1). This activation code ultimately determines
whether a cobot/avatar intervention is triggered.

A critical aspect of designing this mapping was managing the
frequency of avatar interventions. In other words, we needed to
establish thresholds defining how significantly the PAD values must
deviate from the center (neutral) state to activate an intervention.
Setting thresholds that are too low would lead to excessive
intervention, potentially becoming bothersome for the worker.
Conversely, thresholds that are too high would render the avatar
inactive, limiting its usefulness.

Our initial tests revealed that frequent interventions from the
covatar could be distracting or even annoying for the worker. To
minimize disruption and ensure the worker stays focused on the
task at hand, we decided to restrict feedback to specific points in
the assembly process - namely, after the completion of each sub-
assembly. While the avatar remains visible throughout the shift
as a companion, we aimed to limit interventions to around 5
over a typical 30-minute work session. This approach balances the
covatar’s supportive presence with avoiding interruptions to the
worker’s workflow.

5.1 Baseline data collection

To assess the system’s potential, we used the data recorded
from the participants to Study 1 (described later in Section 6).
For technical reasons, however, we were able to record the social
signals for only 14 of the 20 participants. Each participant repeatedly
performed the assembly task described in Section 3.2 over a 30-
minute period. It is important to note that this initial phase
was non-interactive: while we performed a calibration procedure
to gather statistical data, the cobot and avatar did not respond
dynamically to the workers’ emotions or actions. Instead, we
pre-programmed the interventions to occur at specific points
in time. This allowed us to collect preliminary feedback on
how users perceived the presence of a virtual agent during the
assembly task.
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TABLE 2 Examples for 3 of the 16 configured interventions.

Octant Intervention Avatar behavior Cobot behavior Theoretical justification

-P+A-D Self-Efficacy against Anxiety Surprised expression. Says: “Look at
that! We have already done so many
pieces!”

– Focus attention on the shared
achievement to increase
Skill-to-Challenge Ratio and ease
the pressure by reminding them
that they are a team Lackas (2021)

-P-A+D Self-Awareness against U-Boredom Head tilted to the right. Bending
hips. Says: “Are you okay over there?
Let me know if you need anything!”

Increase acceleration and velocity Increase Self-Conscious- ness and
Task-Awareness to reduce boredom
via socio-cognitive conflict and
increased challenge, while
remaining caring Chehayeb et al.
(2021); Bambrah et al. (2023)

-P-A-D Self-Compassion against
O-Boredom

Moderate zoom-in. Short
compassionate smile. Says: “You are
doing great! Everybody would be
stressed at this speed”

– Increases Self-Compassion to
facilitate self-regulation and
cognitive reappraisal Lackas (2021)

5.2 Initial tentative model

Our initial approach to activating interventions was based on
a simple distance check from a central neutral zone. Imagine each
PAD dimension (pleasure, arousal, dominance) as a spectrum with
a threshold value set at 2.0. This threshold divides each dimension
into three zones: low < 0.3 ≤ neutral ≤ 0.7 < high. An intervention
is triggered only when all PAD signals fall outside the neutral
zone simultaneously. This ensures the system does not intervene for
minor emotional fluctuations.

Such a simplistic model was based on the following
assumptions:

1. The PAD signals are continuous and accurate;
2. The PAD values span over the whole normalized range [0,1];
3. When a user has a neutral facial expression, then the P, A, and

D values are at 0.5;
4. Over an experiment session, the PAD signals have a normal

distribution; and
5. An intervention should be activatedwhen the three PADvalues

simultaneously exceed the neutral zone.

Upon reviewing the raw PAD data plots, it became clear that our
initial assumptions about emotional states and intervention timing
were inaccurate. This resulted in interventions firing erratically
and unevenly. In some cases, the avatar remained inactive for
extended periods, while in others, it provided repetitive feedback.
The following sections detail the strategies we implemented to create
a more reliable and natural intervention model.

5.3 Signal pre-filtering

The system initially relied on raw PAD signals from the emotion
prediction model. However, these signals suffered from two key
limitations:

• Jitter and Spikes. The data exhibited significant fluctuations,
particularly when a user’s face first entered the camera’s view.

• Missing Data. Due to factors like user movement or head
rotation, the face recognition system frequently lost track of the
user, resulting in gaps (holes) in the PAD data stream.

To address these issues, we implemented a two-
pronged approach:

• Median Filtering: We filter the incoming data by calculating the
median of the past 5 PAD samples (at a 5 Hz input frequency,
this smoothes the data over the last second). This helps mitigate
the impact of sudden spikes and data fluctuations.

• Time-Aware Buffer: We employ a buffer that discards any PAD
values older than 1 s.This prevents themedian calculation from
being skewed by outdated data points when the user’s face
reappears after a period of being out of view.

This combined filtering approach ensures the intervention
system relies on amore stable and reliable representation of the user’s
emotional state.

5.4 The need for calibration

We discovered a limitation in the model predicting pleasure,
arousal, and the Ekman expressions used to infer dominance.
This model does not have a universal “neutral” baseline. In other
words, even when different participants stared at the camera with
neutral expressions, themodel produced statistically different results
for each person (see Figure 5). To confirm this variation, we
performed Kruskal–Wallis tests (Kruskal and Wallis, 1952) and
found statistically significant differences in the medians for all
three variables (pleasure, arousal, and dominance) across the 14
participants (p-value < 1E-90). This implies we cannot assume a
single reference point for a neutral facial expression.

Therefore, the system requires calibration for each user. During
calibration, the system establishes a baseline specific to that
individual, allowing it to interpret subsequent emotional expressions
relative to their unique starting point. In essence, assumptions about
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FIGURE 5
Boxplots comparing the calibration data among users.

the user’s emotions are made in comparison to their own calibrated
neutral state.

To address the need for user-specific baselines, we implemented
a calibration process. At the start of each session, participants are
instructed to record 12 s of neutral facial expression, characterized
by relaxed muscles and closed lips. In more matematical terms,
the system calculates the median values (MP,MA,MD) for pleasure,
arousal, and dominance from each user’s calibration data. These
medians then serve as individual baselines for interpreting
subsequent emotional data acquired during the work session.

5.5 Overcoming data skewness

Our analysis revealed that the PAD signal distribution
throughout a 30-minute work session deviates from a normal
distribution and exhibits skewness.

This conclusion is supported by two findings. D’Agostino and
Pearson’s normality tests (D’Agostino, 1971;D’Agostino andPearson,
1973) were conducted for all 14 participants across the three PAD
variables (pleasure, arousal, dominance). In each case, we were
able to reject the null hypothesis that the data followed a normal
distribution. Fisher-Pearson skewness coefficients were calculated
for the data, indicating a strong skew in most cases. These results
imply that a single, symmetrical threshold centered around the
median value would not be effective.

To address this skewness, the systemadopts a two-step approach:

• Centering. The data is first centered based on the individual’s
calibration results (as described previously).

• Asymmetric Thresholds. Separate thresholds are then defined
for positive and negative deviations from the centered
values.

We calculated activation thresholds (denoted by T) for each
participant based on their calibration data.The process involved two
steps. First, centering: the data points (samples) Sd were first centered
around the individual’s calibration means for pleasure, arousal, and
dominance (d ∈ P,A,D). Second, threshold calculation: for each
centered data set S′d, we split positive values (S′+) and negative values
(S′−):

S′d = Sd −Md = S
′+
d ∪ S
′−
d

∀p ∈ S′+d → p ≥ 0

∀p ∈ S′−d → p < 0

and we then calculated the root mean squared error (RMSE)
separately for the positive values (S′+) and negative values (S′−)
w.r.t. zero:

E+d = √
∑p2

|S′+d |
,p ∈ S′+d

E−d =
√∑p2

|S′−d|
,p ∈ S′−d

The 6 different errors E+P,E
−
P,E
+
A,E
−
A,E
+
D,E
−
D, for high and low

activation, separately for the three PAD dimensions, computed on
our calibration data are the following:

Pleasure: E+P = 0.138 ;E
−
P = 0.098

Arousal: E+A = 0.071 ;E
−
A = 0.134

Dominance: E+D = 0.052 ;E
−
D = 0.020

Then, at run time, after the calibration, user-customized thresholds
will be computed as deviation from his/her median.

T+d =Md +E
+
d ;T
−
d =Md −E

−
d (1)

5.6 Overall control of avatar sensitivity

As mentioned earlier, a key objective of the system is to
control the cobot and avatar’s intervention frequency. Following
the calculation of six personalized thresholds (one for each
PAD dimension–pleasure, arousal, dominance) based on user
calibration, an additional control mechanism is implemented. This
involves defining a global multiplier K and using it to compute
modulated errors:

Ed′+ = E
+
d ∗K;E

d
′− = E

−
d ∗K

Reapplying Equation 1, we define 6 re-modulated thresholds
T′+P ,T′−P ,T′+A ,T′−A ,T′+D ,T′−D . From another perspective, the
inverse of K can be seen as a more intuitive measure of sensitivity
S = 1/K.

At run-time, when a triplet of samples pd is received,
an intervention is triggered if all the three PAD signals go
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TABLE 3 Top: average number of activations for P, A, D, and all signals.
Bottom: activations in a time window, normalized by its size (s−1).

K P A D ALL

2.0 557.14 657.29 479.29 10.79

2.1 484.71 577.93 429.14 4.07

2.2 418.21 518.00 389.50 2.29

2.3 362.57 473.50 351.43 1.21

2.4 313.29 427.07 314.93 0.21

2.5 267.79 381.07 280.29 0.00

2.6 223.57 323.57 250.86 0.00

2.7 187.86 259.86 223.50 0.00

2.8 159.93 187.93 201.29 0.00

2.9 127.71 118.29 179.36 0.00

3.0 102.93 70.71 161.71 0.00

3.1 78.14 43.14 144.50 0.00

3.2 56.14 33.14 127.64 0.00

3.3 43.64 30.79 111.07 0.00

3.4 32.00 27.86 99.07 0.00

3.5 22.29 26.29 87.07 0.00

3.6 14.07 23.71 77.21 0.00

3.7 7.86 21.71 66.50 0.00

3.8 6.00 20.21 60.07 0.00

3.9 4.36 19.00 53.79 0.00

Time window (W, secs)

K 5 30 60 120 300

2.0 20.56 25.25 21.87 17.57 10.28

2.1 14.84 20.66 18.73 14.98 9.17

2.2 9.77 15.88 16.07 13.72 8.46

2.3 6.83 12.34 12.88 12.23 8.09

2.4 4.71 9.61 9.58 8.92 6.59

2.5 4.06 9.11 9.11 8.37 6.34

2.6 3.44 7.83 7.29 6.67 5.51

2.7 3.06 6.75 6.73 6.21 4.94

2.8 2.57 5.30 5.78 5.35 4.63

2.9 2.11 3.93 4.95 4.88 4.23

(Continued on the following page)

TABLE 3 (Continued) Top: average number of activations for P, A, D, and
all signals. Bottom: activations in a time window, normalized by its size
(s−1).

Time window (W, secs)

K 5 30 60 120 300

3.0 1.50 3.00 3.89 3.74 3.10

3.1 0.97 2.23 3.43 3.42 2.84

3.2 0.94 1.89 2.89 2.77 2.34

3.3 0.44 1.35 1.51 1.66 1.78

3.4 0.03 0.73 0.99 1.49 1.45

3.5 0.03 0.66 0.95 1.35 1.32

3.6 0.00 0.12 0.36 0.62 0.63

3.7 0.00 0.00 0.00 0.00 0.00

either above pd > T
′+d or below pd < T

′−d . The combination of
low/high activations defines an activation code. For example,
+P+A-D denotes a combination of high pleasure, high arousal,
and low dominance.

5.7 Finding the ideal global sensitivity

After determining a set of thresholds for positive and negative
PAD triplets from a single S multiplier, the problem to address now
turns to be: “What would be the optimal sensitivity S for the cobot-
avatar system?”.

To determine an appropriate intervention frequency for the
covatar (around 5 interventions per 30-minute session), we analyzed
our system logs. We specifically examined how often interventions
would be triggered at various sensitivity levels based on individual
data samples. These intervention counts were then averaged across
all participants. The results (shown in Table 3) reveal that lowering
the sensitivity level reduces the average number of interventions for
each PAD dimension (pleasure, arousal, dominance). For example,
the average activation count for individual dimensions drops from
over 450 to less than 60 as sensitivity decreases. However, we also
investigated co-occurrences - how often all three PAD dimensions
would exceed their thresholds simultaneously. With a multiplier
value (K) of 2.0, the maximum average for these simultaneous
interventions was 10. This number significantly decreased to just
0.21 with a K value of 2.4, and then dropped to zero entirely. These
findings led us to reject our initial assumption that PAD channel
activations necessarily happen at the same time. In other words, the
system cannot rely solely on simultaneous threshold breaches across
all three dimensions to trigger interventions.

This concept is further supported by existing research in the
field. Studies have shown that emotions manifest differently on
people’s faces, exhibiting variations in activation delays, persistence,
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and relaxation times. This asynchronous nature is reflected in the
PAD signals, which can become misaligned.

To account for this, the system identifies an activation code at
time t by looking back in time within a defined window of size
W. Here, each PAD dimension (pleasure, arousal, dominance) is
evaluated separately. The scan progresses backward through the
time window, searching for a threshold exceedance in any given
dimension. If a threshold is crossed within the window, or the
entire window is exhausted without finding an activation, the search
concludes. The PAD activation code is only set if activations are
detected within the window for all three channels. In essence, the
system acknowledges that PAD activations may not always occur
simultaneously, and it adjusts its intervention logic accordingly.

Our final data analysis focused on identifying the ideal time
window size (W) for activation detection. To address this, we once
again employed simulations. We calculated the average number of
PAD activations across all users for various window sizes.The results
are presented in Table 3 (bottom). As anticipated, a larger window
size leads to an increase in the average number of activations.
This is because “older” activations remain within the window for a
longer duration as the reference point for comparison (current time)
advances. The table also reveals that the number of activations per
second increases steadily until a window size of 120 s is reached, and
then starts to decline. This can be explained by the fact that with an
excessively large window, newly activating samples begin to obscure
older ones. In other words, looking too far back in time does not
provide additional valuable information. Interestingly, consultations
with psychologists also suggest that a time window between 30 and
60 s is sufficient to capture facial expressions linked to emotions that
have not yet subsided.

Figure 6 depicts an example activation sequence for a single user.
The figure highlights that activations tend to occur in “clusters.”
This is because when examining the data on a sample-by-sample
basis, activations remain active until they exit the defined time
window. Interestingly, the figure also reveals five distinct clusters, a
pattern commonly observed acrossmost users.This suggests that the
combination of a timewindow size (W) of 30 s and amultiplier value
(K) of 2.0 is a well-suited configuration for our experiments.

5.8 Synchronization with the work task

Our final design decision focused on determining the most
appropriate timing for cobot and avatar interventions. Triggering
interventions immediately upon detecting an activation code could
lead to disruptive, consecutive interruptions, especially during
periods of high user concentration.

To address this concern, we opted to synchronize interventions
with the assembly cycle. The system discards any historical data
received from the emotion sensor (SSI) at the start of each cycle.
It then accumulates samples throughout the assembly task (lasting
approximately 50 s). Only after the user successfully completes their
assembly by joining it with the cobot’s (a moment of potentially high
focus), does the system evaluate the data for PAD activation codes
and potentially trigger an intervention. In essence, the system only
reacts to excessive PAD values measured during the assembly cycle
that was just concluded.

For our specific use case, the optimal time window range
of 30–60 s aligns well with the duration of the assembly task.
However, different application domainsmight necessitate alternative
intervention timing strategies.

6 Study 1: validation of the theoretical
assumptions of the BASSF model

6.1 Research questions and hypotheses,
study 1

We conducted a controlled study to systematically assess the
theoretical transparent assumptions underlying the BASSF Model.
We empirically tested the possibility of representing flow in the PAD
space, to be able to provide continuous input to the BASSF model
and enable socially interactive behavior for the covatar. To achieve
this, we needed to define the relationship between flow and PAD.
Hypotheses H1 to H3 test this relationship:

We conducted a controlled exeprimental study to assess the
theoretical underpinnings of the BASSF model. This investigation
focused on empirically testing the feasibility of representing Flow
within the PAD framework. We aim to enable continuous input
on the Flow levels of the user for the BASSF model and ultimately
facilitate the generation of socially interactive behaviors for the cobot
agent.This objective involves defining the relationship between Flow
and the PAD dimensions. Hypotheses H1 to H3 were formulated to
address this specific relationship:H1: Self-reported Self-Efficacywill
predict flow. H2: Dominance will predict Self-Efficacy. H3: There
will be a significant linear relationship between pleasure, arousal and
dominance as predictors and flow as outcome.

InH1, we examine the theoretical relation between Self-Efficacy
(Matthews et al., 2022) and flow. We consider the association
between Self-Efficacy’s and the subjective perception of challenge-
to-skill ratio. In H2, we test the relationship between Self-Efficacy
and dominance, which would validate representing self-efficacy
through the Dominance dimension in PAD (Gilroy et al., 2009).
Finally, following the prediction formulated by Gilroy et al. (2009),
we H3 test the relation of all three PAD dimensions to flow and its
representation in the PAD space.We test the specific assumption that
flow can be represented in the Octant Space as quadrant +P,+A,+D.

To gain deeper understanding of emotional experiences
associated with Flow in a production line setting, we employed
a semi-structured interview format. The interview focused on an
exploratory investigation guided by the following research question:
“What emotions do participants experience during the task, and
what strategies do they employ for emotional regulation?”

This study utilized a mixed-methods design to investigate
emotional experiences during assembly tasks. Participants
collaborated with an interactive cobot agent on the task, which
was manipulated to have two phases: slow (inducing boredom)
and fast (inducing stress). Following each work phase, participants
reviewed video clips from their experience and completed a battery
of six self-report questionnaires. These questionnaires assessed their
affective state (emotions), Flow experience, and perceived Self-
Efficacy during the task Section 6.3). A semi-structured interview
on their emotion regulation strategies was performed byNicora et al.
(2023) in between the questionnaires.
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FIGURE 6
Example of PAD streams over 30 min and their activations (vertical lines), for a single user, with W = 30 seconds and K = 2.

6.2 Participants and procedure, study 1

To ensure optimal task durations and system functionality,
a pilot test was conducted with two participants. Subsequently,
data collection proceeded with the final sample of 20 healthy
adult volunteers (12 male, 8 female; age range: 25–48 years). It is
important to note that the semi-structured interview component of
the study was only implemented with the initial four participants.

Following an introduction and task familiarization, individual
participated in the experimental sessions (50 min). The sessions
were structured as follows: Phase 1 - slow phase (30 min), followed
by Phase 2 - fast phase (20 min). To make the transition between
Phases 1 and 2 seemnatural, and evokemore pronounced emotional
responses, the transition between phases was implemented through
a staged system “failure.” 30 min after the beginning, and the Cobot
ceased working. The operator would then intervene, pretending
to be “fixing” the failure. The operator modified the setup and
instructed the participant to adapt to the robot’s increased pace.

At the end of Phase 2, participants were escorted to a
separate room. The experimenter and each participant reviewed
six video clips of the participant working with the Cobot. All
participants completed a questionnaire for each scene, while the
semi-structured interview was additionally conducted with the first
four participants. The total assessment time was approximately
20 min for questionnaires only and 45 min when the interview was
additionally conducted.

To isolate and evaluate specific assumptions of the BASSFmodel,
a simplified version of the model was employed in Study 1. Covatar
interventions were pre-programmed to address expected emotional
experiences at paricular times in a sequential order: Overwhelming
Boredom (O-Boredom), Anxiety, and Underwhelming Boredom
(U-Boredom). During the slow task phase, the first intervention

targeting Overwhelming Boredom (O-Boredom) commenced
15 min after the experiment began. The initial intervention for
Anxiety was introduced 5 min into the slow task phase, followed by
an Overwhelming Boredom (O-Boredom) intervention 7 min later
(12 min after the start).

6.3 Instruments and interview, study 1

To assess pleasure, arousal, and dominance, we used the
semantic differential (Mehrabian and Russell, 1974). This
comprises six adjective pairs with nine spaces in between for
each dimension. To indicate emotional experience, participants
mark position of on the line. Flow was measured using the flow
short scale (Engeser, 2012; Rheinberg et al., 2003), which includes
ten subcomponents. State Self-Efficacy was measured with a
single item (Matthews et al., 2022).

The semi-structured interview required participants to watch
the six recorded videos of the three pre-selected interventions.
Participants were guided to describe their emotions and thoughts
with regard to the task, the avatar, and effects of the intervention.
To analyze the transcripted reports, we performed a deductive-
category analysis (Mayring, 2014). Two category systems were used
to code the interviews, encompassing affective experience and
emotion regulation. To see whether the quantitative and qualitative
descriptions would align, the categories of affective experience were
related to the Octant Space. We added two categories to the Octant
Space to represent Shame and “not inferable” (NI), as we expected
shame and its regulation to arise.

The emotion regulation coding system included: cognitive
reappraisal, distraction, acceptance, rumination, and disengagement
(Elison et al., 2006; McRae and Gross, 2020), which are the
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most common regulation strategies, along with three out of four
additional strategies from the compass of shame: attack other,
attack self, and avoidance. The fourth strategy, withdrawal was
not possible in the experimental without droping out of the
experiment (Nathanson, 1994; Elison et al., 2006). We further
defined avoidance, disengagement, and distraction as follows.
Distraction defines an act where the participant is aware of a
negative stimuli, and refocuses attention to amore pleasant stimulus
(McRae andGross, 2020). Avoidance and behavioral disengagement
adjust the relevance of the stimuli for the individual, but behavioral
disengagement involves willful and conscious withdrawal of efforts
related to the task difficulty, whereas in avoidance there is no
acknowledging of the negative experience, and still the relevance
of the stimuli is reduced, for instance, by loosing interest
(Elison et al., 2006; Nathanson, 1994).

6.4 Experimental setup BASSF evaluation,
study 1

The experimental setup described in Section 3.1 was used. The
assembly task was modified for the purposes of the testing, to
isolate important aspects of the BASSF model. Two experimental
phases were prepared, in order to elicit different reactions by
the participants. The first boring phase made use of all assembly
capabilities of the cobot. The Cobot looked for the parts by use of a
detection camera, picked them up, and assembled them in order to
bring them to the operator for the final combined assembly. 50–60 s
are needed for this, and this time is more than enough for the
operator to complete their part of the assembly, which may lead to
boredom and frustration. A second fast phase was rather explicitly
aimed at eliciting stress. In the right handside of Figure 2 one can see
how the spare components on the cobot’s table are substituted by an
array of preassembled parts, so that the cobot can reach a predefined
position to get the preassembld part to bring it to the user. This lasts
10–15 s, and leaves no time for the operators to assemble their part.
Seeing how the Cobot has to wait on them is a result of this. Still
participants had to assemple as many complete parts as possible in
the available experiment time. They were required to have finished
one whole piece before working on a new one.

6.5 Quantitative results, study 1

Descriptive Statistics for all measured variables can be found
in Table 4. For hypotheses 1 and 2, the connection between
Dominance, Self-Efficacy, and Flowwas analyzed usingMixed Effect
Models with Random Intercept, due to the nested structure of the
data. The participant was used as a grouping variable to account
for the correlations between repeated measurements (Detry and
Ma, 2016). The tests were done with and without centering around
the group mean (Enders and Tofighi, 2007). Centering did not
affect the results on the relationship between Dominance and Self-
Efficacy. However, in the relationship between, Self-Efficacy and
Flow, centering had a significant impact on the results; Self-Efficacy
was a significant predictor of Flow, while centered Self-Efficacy was
no significant predictor of Flow (see Table 5).

TABLE 4 Summary statistics of all constructs measured with the
questionnaire. Round brackets in the “Min” and “Max” Columns denote
theoretically possible min and max values.

Summary statistics, study 1

Construct Mean Median SD Min Max

Pleasure 0.078 0.063 0.304 −0.833 (−1) 0.833 (1)

Arousal −0.099 −0.125 0.292 −0.75 (−1) 0.583 (1)

Dominance 0.134 0.167 0.31 −0.792 (−1) 0.833 (1)

Flow 4.995 5 0.687 2.9 (1) 6.5 (7)

Self-Efficacy 4.042 4 0.614 2 (1) 5 (5)

For hypothesis 3, several mixed effect models were used to
examine the relationship between PAD and Flow (for a visualization
see Figure 7). Multiple regression was not useable due to the nested
structure of the data. Centering did not affect the significance of the
results. The mixed effect models showed no significance for any one
of the predictors when used together (see Table 6). However, strong
correlations between the predictors were found (Pleasure &Arousal:
r = −0.59; Pleasure & Dominance: r = −0.55, Arousal & Dominance:
r = 0.54). When the predictors were on their own, Dominance was a
significant predictor (see Table 6).

An in-depth investigation of the relationship of PAD and Flow
for each time frame was attempted, but the statistical power for n =
20 data points was too low (below 0.8).

6.6 Qualitative results, study 1

After performing deductive category assignment on the dataset,
we calculated several descriptive statistics to better understand the
results of the two main category systems: “Affective Experience” and
“Emotion Regulation” (see Table 7).

The high SD in the Affective Experience column indicates that
the distribution of observations across categories within each system
is centered around some variables, which is unsurprising since all
participants participated in the same experimental setup.

The affective experience and regulation strategies will be
summarized here: participantA (also calledAV_C4QPF as reference
for Figure 7) felt relaxed at first during the slow phase. When the
speed increased at the start of the fast phase, the participant started
feeling many different feelings such as anxiety, o-boredom, hostility,
shame, and hopefulness. The participant felt stressed because they1

are slowing the assembly down. They decided to reduce their efforts
and to go at their own rhythm. “It is enough for it to be repetitive; I
do not need it also to be to be fast.” This behavioral disengagement
did not, however, instantly alleviate the pressure. Before it caused
relaxation, it caused feelings of shame for not being able and not
willing to keep up with the robot.

1 To protect the privacy of the participants, only gender-neutral pronouns

will be used.
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TABLE 5 Note: Se = self-efficacy, D = Dominance, ID = participant; sig: p < 0.001 ‘∗∗∗’; p < 0.01 ‘∗∗’; p < 0.05 ‘∗’; p < 0.1 ‘.’

Results of hypothesis 1 & 2, study 1

Formula SE ∼ D (Cent.) + (1 — ID) Flow ∼ SE (Cent.) + (1— ID) Flow ∼ SE + (1— ID)

REML criterion 135 175.7 171.5

N observations 120 120 120

N groups 20 20 20

Fixed effects

Intercept

Estimate 4.042 4.995 3.976

SE 0.118 0.133 0.421

t-stat t (19) = 34.14 t (19) = 37.678 t (106) = 9.437

p p < 0.001∗∗∗ p < 0.001∗∗∗ p < 0.001∗∗∗

Coeff

Estimate 0.686 0.099 0.252

SE 0.181 0.112 0.101

t-stat t (99) = 3.8 t (99) = 0.881 t (115) = 2.512

p p < 0.001∗∗∗ p = 0.381 p = 0.013∗

Method of t-test Satterthwaite’s method Satterthwaite’s method Satterthwaite’s method

AIC 143.039 183.719 179.511

BIC 154.189 194.869 190.661

Participant B (AV_GC4V6) felt relaxation and u-boredom.They
unintentionally distracted themselves by thinking about their work,
which led to them doing a mistake while assembling. When the fast
phase started, the participant started to feel stressed by the speed
of the robot. The participant then tried to reappraise the situation:
“I was like, no, this is my job and the robot is just a robot. So he
has no feeling he can wait. […] Also because I was kind of telling
myself that I had to do the most difficult part like matching the
gears going, with the clips and stuff.”2 The participant kept their
speed and reported feeling more relaxed after half of the “fast phase”
had passed.

Participant C (AV_LB695) described only feeling relaxed and
no boredom in the beginning because they felt they were doing
a purposeful commitment that would eventually end. In the “fast
phase”, the participant described not feeling rushed: “I thought
that since the number of movements that the machine had to do
was smaller then what I had to do was just completing the task
earlier than I. […] It was just waiting for me, but it was not a
problem.” Notably, when asked how they dealt with unsolvable tasks,
the participant believed that in such a case, the blame lies with
the person who gave them the task, not them. (“Yeah, probably,

2 Multiple words, fillers, and incomplete sentences have been removed

from all the participant’s citations.

especially if it was in a real situation then I would have thought that
thewhole planning of the operationwas bad because even if I strived,
I would not have managed to be so quick and be always on time
for the robot. So yeah, I would be angry in case it would always be
like that.”)

Finally, Participant D (AV_ZBB6K) described themselves as
being relaxed. However, they distracted themselves by thinking
about how to improve the work cell and the task. This tactic ended
around the middle of the “slow phase” when Participant D started to
feel bored. This was coupled with some short interruptions where
the system experienced errors that needed to be fixed. When the
“fast phase” started, the participant did not increase their speed.
When asked about the reason for this, the participant said they
did not care anymore. Further investigation no reason for this
could be found as the participant said they did not know why
they felt that way. Therefore, we categorized this as a case of
avoidance.

While the self-ascribed feelings of the participants
usually matched the results of the semantic differential.
13 times one of the self-ascribed states matched the
result of the semantic differential. However, six times
there was a mismatch. Most often (4 of 6) it involved
the ascription of awe and hopefulness from the semantic
differential. In the interviews, they were described as
relaxation (2 of 4) but also as anxiety.
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FIGURE 7
Flow and PAD values over time for each participant, Study 1. The dotted vertical line represents the change from the slow to the fast phase.

6.7 Discussion on the BASSF evaluation,
study 1

Based on the mixed results on H1, a clear conclusion could
not be reached; further research is necessary (see below for an in-
depth discussion). H2 showed significant results and is therefore
accepted. H3 showed no evidence of a connection between PAD
as a whole and Flow. The hypothesis will be rejected. However,
the connection between Dominance and Flow is significant
and will be investigated further.

Uncentered Self-Efficacy predicted Flow, which strengthens
the association between Self-Efficacy and the challenge-to-skill
ratio, which was known to be a predictor of Flow (Moneta,
2021). However, group-centered Self-Efficacy is not. One possible
explanation for this would be that Self-Efficacy remained relatively
stable, and the centering thereby caused many zero values. While
the scale was validated (Matthews et al., 2022) it contained only
one item, and therefore only integer values were possible. A possible
solution to this would be to use a scale that contains more than one
item or increase the sample size.
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TABLE 6 Note: P = pleasure, A = Arousal, D = Dominance, ID = participant; sig: p < 0.001 ‘∗∗∗’; p < 0.01 ‘∗∗’; p < 0.05 ‘∗’; p < 0.1 ‘.’

Results of Hypothesis 3, Study 1

Formula Flow ∼ P + A + D + (1 — ID) Flow ∼ P + (1 — ID) Flow ∼ A + (1 — ID) Flow ∼ D + (1 — ID)

REML criterion 171.1 171.6 175.4 170.5

N observations: 120 120 120 120

N groups 20 20 20 20

Fixed effects:

Intercept

Est. 4.995 4.995 4.995 4.995

SE 0.133 0.133 0.133 0.133

t-stat. t(19) = 37.678 t(19) = 37.678 t(19) = 37.678 t(19) = 37.678

p p < 0.001∗∗∗ p < 0.001∗∗∗ p < 0.001∗∗∗ p < 0.001∗∗∗

Coeff.

Est.

P: 0.274

0.400 -0.002 0.461A: 0.003

D: 0.367

SE

P: 0.274

0.209 0.199 0.211A: 0.254

D: 0.269

t-stat.

P: t(97) = 1.001

t(99) = 1.913 t(99) = -0.011 t(99) = 2.182A: t(97) = 0.016

D: t(97) = 1.364

p

P: p = 0.319

p = 0.059 . p = 0.992 p = 0.032∗A: p = 0.988

D: p = 0.176

Random effects:

Intercept
Est. 0.326 0.325 0.324 0.326

SD 0.571 0.570 0.570 0.571

Res. Var.
Est. 0.156 0.157 0.163 0.155

SD 0.395 0.396 0.403 0.394

Method of t-test Satterthwaite’s method Satterthwaite’s method Satterthwaite’s method Satterthwaite’s method

AIC 183.055 179.622 183.352 178.535

BIC 199.780 190.772 194.503 189.685

VIF

P: 1.73

A: 1.70

D: 1.61
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TABLE 7 Descriptive Results for Deductive Category Assignment, Study 1. Note that the proportion of observation is an estimation. Timestamps, Ids,
comments, translated passages, and multiple codings have not been removed.

Affective Experience Emotion Regulation

Mean Obs. per Category 3.7 1

SD 4.27 1.12

Min. Obs. per Category 0 (“Flow”, “Awe”) 0 (“Attack Self ”, “Acceptance”, “Rumination”, “NI”)

Max. Obs. per Category 14 (“Relaxation”) 3 (“Cognitive Reappraisal”)

Proportion of Obs. 33.72% 9.45%

Dominance predicted Self-Efficacy. This stresses the role of
Dominance in the PAD model, especially for task-related settings.
Continuous monitoring of Dominance could capture how workers
feel about a task and whether they see themselves as capable
of handling the task or if they feel overwhelmed by it and
plan interventions for wellbeing. Additionally, Dominance has the
strongest connection to Flow from all models tested. The model that
only used Dominance had the lowest AIC and BIC and therefore
seem to offer the best fit to the data. From all known variables in
this experiment, Dominance is best suited for Flow estimation and
should be included in its modeling.

The results on the connection between Flow and PAD are
mixed. Surprisingly, and against previous theoretical definitions
(Engeser et al., 2021; Abuhamdeh, 2021), the results show that
pleasure and arousal were not connected to Flow in this experiment.
Our results suggest that the presence of pleasure in the model
strongly influences the estimations for Dominance, which is not
unlikely due to the strong correlation between pleasure, arousal, and
Dominance.

The lack of significance of pleasure on Flow contributes to the
discussion of enjoyment in Flow (Abuhamdeh, 2021). Given the
assumption that Flow is an enjoyable experience, an increase in Flow
should have also led to an increase in pleasure.We foundno evidence
for this claim. However, we can also not rule it out based on our
results, as it only describes a partial one-directional relationship,
which our model cannot test. Increases in Flow predict increases
in enjoyment; however, increases in enjoyment do not predict the
Flow level.

In the literature, high arousal was associated
with Flow (Engeser et al., 2021). In our scenario, this would
association would be hard to support, as high levels of arousal
can be associated with stress, which is more likely to occur in shifts
of up to 8 h.

6.8 Discussion of qualitative results, study 1

All participants described the tasks as relaxing andpositivewhile
acknowledging their repetitiveness. This positive feeling faded in
the fast phase when the task became more stressful for 3 of the 4
participants.

After the introduction of the fast phase, none of the participants
were able to keep up with the robot. A fluctuation of different

emotions was noticed by 3 of the 4 four participants, which may
indicate that they were not sure how to properly adapt to the
situation and is an indicator of stress. However, all participants
found a way to deal with the stress and reached a constant state
towards the end of the experiment. This was relaxation for three of
them and hostility and boredom for one of them. All participants
that felt stressed by the speed of the covatar reduced its intensity
by regulating their emotions through reappraisal, avoidance, or
disengagement. However, two reduced their performance, and one
did not enjoy their affective state towards the end.This indicates that
while participants were able to deal with stressors, their strategies
used did not always yield the most optimal results in terms of
productivity and wellbeing in the production line.

Boredom was regulated less often than stress and anxiety.
However, this might have been because participants knew about
the length of the experiment and thereby did not feel any pressure
to regulate boredom. Still, all regulation strategies used were not
optimal as they distracted themselves from the task, leading to
errors, and were not sustainable for longer periods. This highlights
the importance of positive guidance in emotion co-regulation.

7 Study 2: first lab evaluation of the
overall system

7.1 Experimental setup, study 2

In a first lab evaluation of the overall system, Study 2, 12
volunteers where recruited among the employees of the CNR
institution in Italy, or among students of the near-byUniversity, both
in Lecco, Italy. They aged from 19 to 33 and were approximately
balanced by gender. The volunteers worked with the covatar
for 1 week, approximately 3.5 h a day. Seven vollunteers had
previously worked with the basic cobot (without the Avatar and
the BASSF model), and five were new volunteers and had no
previous experience with cobots. A few days later (no longer
than a week), they completed the Mental Health Continuum
(MHC-SF) (Keyes, 2005), to assess their emotional, social and
psychological wellbeing. In addition, participants completed a newly
designed questionnaire to assessed their work, experiences and
the covatar on a Likert-type scale from never (1) to always (5).
They were also asked, in open questions, to list positive and
negative sides of the MindBot platform and suggestions for possible
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FIGURE 8
Sum of the number of events over all users, grouped by event type.

enhancements. At the end, the participants assessed their attituded
toward robots, filling out the Negative Attitude toward Robots
Scale (NARS) (Nomura et al., 2006).

7.2 Log analysis, user-experience and
discussion, study 2

A log analysis of the 12 participants showed somefirst promising
results. Figure 8 shows that (besides pain, which is external to
the Flow space) productive challenge (productive Anxiousness and
Flow), as well as over-challenge boredom were detected in the
PAD space. Flow experiences are rare (Bartholomeyczik et al.,
2023) and heavily dependent not only on individual differences,
but also on situational characteristics (Fullagar and Kelloway, 2009),
this is a considerable achievement. High productive Anxiousness
aligns with the theoretical basis of the BASSF model, that consider
the perceived skill-to-challenge ratio (McRae and Gross, 2020)
to reduce perceived high challenge through self-compassion and
transform it into manageable and welcome challenge. With regard
to over-challenge boredom, this results constitutes extra support for
symptoms of boredom relating rather to over-challenge, as discussed
above. Reacting with interventions to motivate the workers to
perform better would be counterproductive for their wellbeing.

7.3 Assessment of workers’ experience,
study 2

The assessment of the workers’ experience also supports
these preliminary results. Participants reported overall good
levels of mental health, especially psychological and emotional
wellbeing. Specifically, five participants had complete mental health

- flourishing in life (Keyes, 2002), - five were moderately mentally
healthy and two of themhad lowmental health - languishing (Keyes,
2002). Working with the covatar was evaluated as a positive
experiences during real time job tasks, including Flow, but also task
efficiency.

Quantitative analyses showed that workers did not find it
difficult to complete the task. They experienced high levels of
competence and autonomy, felt mostly safe, relaxed, and reported
average levels of satisfaction, being concerned or irritated and
realised that they did not have control over the covatar. The workers
also noticed that the covatar collaborated with them, enabled them
to work fluently and improved their effectiveness. Feeling safe
and competent may have contributed to psychological wellbeing.
Participants with more negative emotions toward robots felt more
tensed. They subjectively perceived fewer covatar reactions to their
behavior and less support during deadlocks, and concluded that
covatar did not increase their efficiency.

In addition most of the workers noticed and liked that the
covatar was trying to adjust the work speed with operator’s fatigue
and that it warned when it could not find the parts. Common
negative experiences with the covatar rather relate to operating
errors of the system that led to feeling tensed and perceiving reduced
effectiveness, which may undermine positive experiences of high
competence and autonomy. Some participants reported that the
covatar occasionally made incorrect conclusion about their physical
state (fatigue). They also complained about the figure of the Avatar,
as well as about the lack of diversity in Avatar messages and
interventions.

Finally, an analysis using the Experience Sampling
Method (ESM) (Csikszentmihalyi and Larson, 1987) showed
slightly increased self-reported emotional experiences related
to higher challenge including Flow, and less low-challenge
experiences, including relaxation, for workers using the covatar.
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Most importantly, when considering fluctuations over the total
period of interaction with the covatar for each Flow dimension,
these effects are higher than average, and workers also reported
more satisfaction, but less under-challenge boredom and constraint.
An analysis of real-timephysiological data (heart rate andmovement
data: steps, activity, accelerometer data) collected by a commercial
wearable and connected to Mindstretch platform developed by
BioRICS N.V., estimated the mental energy used during Flow and
Control experiences with the covatar and associated it with more
mental energy use.

7.4 Discussion of the overall BASSF
evaluation, study 2

Overall, the higher Flow and productive Anxiousness
automatically detected during the interaction with the covatar by
the BASSF model can be positively contrasted to the self-reported
under-challenge boredomwhen not using the cobot, and aligns both
with the results of the ESM and the energy level use. This contrasts
point to a healthy reduction of under-challenge while not increasing
stress. Moreover, Flow and Control were the two ESM variables that
showed higher energy use levels.This is an interesting result because
Control is associated with Self-Efficacy and, hence, the Dominance
dimension of the PAD space. As such, this supports the results from
the BASSF model evaluation, namely, that the Dominance is the
best predictor of Flow independent of the other two dimensions
(pleasure and arousal).

The results in general provide a validation for the modelling
of the Flow space in the PAD space for continuous monitoring,
however, Flow experience should be measured through Dominance
alone, whereas Pleasure and Arousal are useful for the prediction of
the other states in the PAD space that point to the right intervention
in order to support Flow. At the same time, the results support these
interventions that were theoretically conceived for the BASSFmodel
and concentrate on fostering the perception of a balanced skill-to-
challenge ratio through awareness interventions that support the
workers’ focus on, or away from aspects related to the skill-to-
challenge perception. In combination with lower energy levels use
in anxiety states and without the covatar, the result point to higher
wellbeing when using the covatar which fosters a balanced skill-
to-challenge ratio, despite subjective self-reports among workers
with negative perceptions of robots. Since workers also reported not
controlling the Avatar although they found the task boring, it seems
like the feeling of productive challenge can be rather put down to the
socially interactive covatar.

With regard to the Avatar figure, the perception of it as
agreeable or not, much as it aligns with diversity considerations,
it is possibly related to cultural preferences. Nevertheless, there
were no differences in worker experiences with regard to gender,
that might be due to the gender-neutral avatar. Also, diversity of
messages is an easy thing to accomplish, as the system developed
an interactive agent based on theoretical constructs. Hence, the
interventions defined in the BASSF are not scripted and can be
verbalised in a variety of ways, while taking systemic and cultural
needs of companies into account. VSM (Gebhard et al., 2012a)
can be used also by non-programmers to this end. Finally, cobot
errors should undoubtedly be avoided, but the addition of the avatar

improves the overall emotional experience despite the high number
of cobot failures.

8 General discussion

The presented method shows the advantages of: i) combining
avatars and cobots through using the BASSFmodel, and ii) the post-
processing technique for social signals interpretation that feed the
collaborative interaction with the covatar system.

8.1 Technical implications

The method tackles several technical challenges:

• Inconsistent Signal Quality: it addresses issues like missing data
points and fluctuations within the PAD signals.

• Personalized Baselines: it accounts for individual user
differences by requiring a calibration process for each person.

• Threshold Definition: it establishes a framework for defining
activation thresholds that trigger specific behavioral responses
from cobot and avatar.

• Temporal Misalignment: it addresses the potential for
misalignment between the PAD data streams.

A key advantage of this method is its domain-specific
customization. By collecting data from a relatively small group
of users (14 participants in Study 1 were used for system tuning
in this case), the system can be adapted to a particular domain.
This data collection requirement is significantly less expensive
compared to the vast amount of labeled data needed for training
neural network-based, end-to-end approaches. The described post-
processing method played a crucial role in the overall system
evaluation.

We believe the post-processing strategy developed for PAD
predictions presented in this work can be valuable for future
research. This method and the results we’ve shared can help
researchers more efficiently address similar challenges that are likely
to arise when analyzing user emotions using hardware sensors.

Furthermore, we hope to encourage future research in social
signal interpretation to move beyond simply extracting “raw” data.
By incorporating post-processing strategies like the one described
here, the social signal processing community can make significant
advancements in developing real-world applications. In general, we
provided a round and detailed account on how to create a more
sociable industrial environments using socially interactive cobots,
and how this can help to support workers’ wellbeing and Flow, that
can at the same time maintain or even increase worker involvement
in a safe and enjoyable manner.

8.2 Studies implications

Somewhat surprisingly, the findings of Study 1 suggest that the
Dominance dimension of the PAD model plays a crucial role in
predicting Flow. Furthermore, the results of Study 1 highlight the
importance of guidance in emotion co-regulation, as some strategies

Frontiers in Robotics and AI 22 frontiersin.org

https://doi.org/10.3389/frobt.2024.1418677
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nunnari et al. 10.3389/frobt.2024.1418677

used by participants negatively impacted their wellbeing and
productivity. This is the first attempt to reevaluate the significance
of the Dominance dimension of PAD.

The results of the evaluation of the overall system, Study
2, support the BASSF model, provide insights into the effects
enhancing industrial cobots with socially interactive avatars, and
support their use for wellbeing. Concretely, Flow experiences
are highly dependent on individual workers, their day-to-
day experience and situational characteristics. Since situational
characteristics are very hard to adjust in industrial settings, it is very
important to apply adaptive and personalised socially interactive
systems like the one developed here. Such systems can monitor
the workers’ wellbeing and escort them through their emotional
fluctuations like a co-worker would do. They may provide a social
context that is missing in the highly automatised industrial world.

Personalised avatars depicting higher external similarity
to workers were beyond the scope of this project, but may
be an alternative to using gender-neural Avatars that were
negatively assessed by users. Avatar similarity is being investigated
with regard to increased affinity and self-compassion with
positive results (Alves da Silva et al., 2023). Moreover, it is very
important to be able to test the differential effects of the different
interventions of the covatar and even tear them apart from the
verbalisations. We reported here how the BASSF model allowed us
to test and understand the results of the socially interactive covatar
and also relate them to other results and to theory. Still, the results
point to the need to include explicit Covatar feedback to workers
about their productivity and comparing that to the current implicit
co-regulation.

In general, the results from Study 1 align with and are validated
by the results of the evaluation of the overall systems in Study
2, and show an improvement of the user emotional experience
as a whole.

Finally, both studies have limitations. The small sample size and
the predictor correlation limited the statistical exploration of the
Flow-PAD relationship in detail. The interviews provide qualitative
insights into participants’ experience, that helps to understand the
quantitative results. Similarly, the results in Study 2 give a detailed
view into the user experience with regard to the specific task.
It uses an exemplary approach assessing user wellbeing through
the combination of objective and subjective measures, situative
evaluations, and overall perceptions. Furthermore, the avatar was
mainly responsible for delivering the BASSF model through the
defined interactions, and as such the current positive results show
a clear promise for the added value of the covatar. However, the
results of the subjective experiences of the participants, in particular,
do not allow drawing conclusions on whether the experience is
improved when using the system with versus without the avatar,
since only seven from 12 participants had used the system without
the avatar. However, the results of subjective experiences of the
users in both studies, although precious for design considerations,
should be interpreted with caution as cannot be generalized due
to the small samples. Also cobot failures that also influence
the user experience should be reduced in order to evaluate the
Avatar alone.

On the whole, further validation is needed to consolidate
the results and theory-based interpretations. This can look into

concrete interventions, and provide insight into differential co-
regulation reactions, e.g., based on the dichotomous cause of
boredom (overwhelming versus underwhelming experiences). Also,
future work may test replicability and scrutinize the relations of
the main concepts in the model, e.g., explore mediation effects
between Self-Efficacy, Dominance, and Flow. A comparative study
may directly test the effects of the Avatar.

9 Conclusion and future work

This article described a model and a method for the
configuration of an industrial collaborative robot (cobot) with social
interaction abilities thanks to its embodiment in an interactive
virtual agent (avatar). Combined in a covatar, they can support
workers in emotion co-regulation and Flow experiences during
collaboration. The systematic conceptualisation of the BASSF
model and its evaluation adds to the growing body of research
on the use of technology to support emotion co-regulation in the
workplace.

The results provide valuable insights into the assumptions
underlying the BASSF Model, the real-time continuous emotional
modeling method, and the aligned behavioral model to
support emotion regulation through co-regulation agents. The
article introduces a post-processing technique that enables
reliable utilization of Pleasure, Arousal, and Dominance
(PAD) social signals to activate BASSF-driver interventions
from a covatar.

On the whole, future studies may test the difference between
subjective user experiences and objective measures, and identify
reasons of any discrepancies, and evaluate these effects in the
long-term. Insights from such an approach, can point to which
improvements are necessary to the BASSF model, as they do not
serve the goal of the system to increase user-wellbeing long term.
This is different from improvements at the perceptual level that need
to be treated, for instance, by changing how the BASSF model is
communicated at the surface level. Future work may also explore
the effect ofmore complex anddemandingwork task and employ co-
design approaches to tailor the approach to the needs of the workers,
and their employers.
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