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In this paper, we investigate a rate-independent model for hybrid laminates
described by a damage phase-field approach on two layers coupled with a
cohesive law governing the behaviour of their interface in a one-dimensional
set-up. For the analysis, we adopt the notion of energetic evolution, based on
global minimisation of the involved energy. Due to the presence of the cohesive
zone, as already emerged in literature, compactness issues lead to the intro-
duction of a fictitious variable replacing the physical one which represents the
maximal opening of the interface displacement discontinuity reached during
the evolution. A new strategy which allows to recover the equivalence between
the fictitious and the real variable under general loading–unloading regimes is
illustrated. The argument is based on time regularity of energetic evolutions.
This regularity is achieved by means of a careful balance between the convex-
ity of the elastic energy of the layers and the natural concavity of the cohesive
energy of the interface.
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1 INTRODUCTION

Composite fibre-reinforced materials are increasingly finding applications in the manufacturing industry due to their
capacity of offering high strength and stiffness with low mass density. Their only mechanical weakness is the brittleness.
Indeed, rapid failure occurs without sufficient warning, due to the intrinsic nature of the adopted materials. A possible
strategy to provide a ductile failure response is to consider novel composite architectures where fibres of different
stiffness and ultimate strain values are combined through cohesive interfaces (hybridisation). In this case, complex
rupture processes occur with diffuse crack pattern (fragmentation) and/or delamination. A deep analytical comprehen-
sion of the failure mechanisms of these kind of materials is thus needed in order to predict and control the appearance
and the evolution of the cracks.

Among the mathematical community, the variational approach to fracture, as formulated by Bourdin et al. and Francfort
and Marigo,1,2 is one of the most adopted viewpoints to deal with crack problems. It is based on the Griffith's idea3 that the
crack growth is governed by a reciprocal competition between the internal elastic energy of the body and the energy spent
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to increase the crack length. In the original theory, the energy associated with the fracture is proportional to the measure
of the fracture itself, while in the cohesive case (Barenblatt4), where the process is more gradual, the energy depends on
the opening of the crack.

Due to the complexity of the phenomenon and the technical difficulties of the related mathematical analysis, especially
from the numerical point of view, in the last 20 years, a phase-field damage approach has been developed to overcome
the aforementioned issues. Nowadays, it is a well-established and consolidated method to approximate both brittle (see
several studies5–7) and cohesive fractures (see Bonacini et al. and Iurlano8,9). It consists in the introduction of an internal
variable taking values in [0, 1] and representing the damage state of the material. Usually, values 0 and 1 mean a completely
sound and a completely broken state, respectively, while a value in between represents the case of a partial damage. The
presence of a fracture is thus ideally replaced by those parts of the body whose damage variable has reached the value 1.

In this work, a rigorous mathematical analysis is carried out for a one-dimensional model for hybrid laminates, which
was previously introduced and numerically investigated in Alessi and Freddi.10 Its description is given by coupling the
damage phase-field approach, which models the elastic–brittle behaviour of the layers, with a cohesive law in the interface
connecting the materials. The investigation is restricted to the case of incomplete damage in the sense that a reservoir of
elastic material stiffness is always maintained, even if the damage variable reaches the maximum value 1. This situation
can be concretely justified by considering materials formed by different components from which only a part can undergo
a damage (for instance, in composite materials obtained with a matrix and a reinforcement) and delamination may take
place; on the other side, it can be seen as a mathematical approximation of the complete damage setting in which the
material goes through full rupture. We refer, for instance, to Bouchitté et al. and Mielke and Roubíček11,12 for an analysis
of complete damage between two viscoelastic bodies, or to Bonetti et al13 for a complete damage model in elastic materials,
while we postpone the inspection of this model to future works, due to high mathematical difficulties related to the
cohesive zone.

Here, the model we want to analyse describes the evolution of a unidirectional hybrid laminate in hard device: A pre-
scribed time-dependent displacement ū(t) is applied on one side of the bar, whereas the other is fixed. We restrict our
attention to slow prescribed displacements, so that inertial effects can be neglected and the analysis can be included in a
quasi-static and rate-independent regime. For the sake of simplicity, we consider a bar composed by only two layers with
thickness 𝜌1 and 𝜌2, respectively, bonded together along the entire length by a cohesive interface. The thickness of the
interface is very thin compared with 𝜌1 and 𝜌2, which in turn are way smaller than the length of the laminate L> 0. Thus,
the model can be considered as one-dimensional.

As already mentioned, the brittle behaviour of the two elastic layers is modelled by a phase-field damage approach.
It suits with the rate-independent framework we are considering. For the reader interested instead in dynamic and
rate-dependent damage models, we refer, for instance, to Bonetti and Schimperna and Frémond et al.14,15 The unknowns
of the problem are thus the displacements of the two layers, denoted by u1 and u2, and their damage variables 𝛼1 and 𝛼2,
which are irreversible in time.

Despite its apparent simplicity, the model has considerable application potential for the study and analysis of different
failure phenomena in thin multilayered materials subject to membranal mechanical regime such as composite materials.
In Alessi and Freddi,10,16 it has been adopted to investigate the complex failure modes of hybrid laminates. The experi-
mental evidences have been successfully replicated in 1D and 2D settings. The model, suitably extended to anisotropic
materials and/or curvilinear geometries, can be an extremely powerful tool to analyse craquelure phenomena in artworks
as preliminarily highlighted in Negri.17

In the quasi-static setting, a huge variety of notions of solution can be considered (see, for instance, the monograph18).
In this paper, we focus our attention on the concept of energetic evolution, based on two ingredients: at every time the
solution is a global minimiser of the involved total energy, and the sum of internal and dissipated energy balances the
work done by the external prescribed displacement. The same kind of evolution in an analogous cohesive fracture model
between two elastic bodies is studied in Cagnetti and Toader and Dal Maso and Zanini19,20; other notions based on sta-
tionary points of the energy, always in the framework of cohesive fractures, are instead analysed in Negri and Scala and
Negri and Vitali.21,22

The choice of working with energetic evolutions is motivated by the future aim of analysing the complete dam-
age situation, for which the main tool usually adopted (see Bouchitté et al. and Mielke and Roubíček11,12) is given by
Γ-convergence,23 notion which fits well with global minimisers.

The total energy we consider is composed by a first part taking into account elastic responses of the layers and dissipation
due to damage and a second part reflecting the cohesive behaviour of the interface. The cohesive interface is governed
by the slip between the two layers 𝛿 = |u1 − u2| and its irreversible counterpart 𝛿h which represents the maximal slip
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achieved during the evolution. The presence of an irreversible history variable can be also found in different models than
cohesive fracture: We mention, for instance, the notion of fatigue, investigated in Alessi et al. and Crismale et al.24,25

The expression of the energy in the model under consideration is hence given by

where the symbol prime ′ denotes the one-dimensional spatial derivative, Ei : [0, 1]→ (0,+∞) is the elastic Young modu-
lus of the i-th layer (which is strictly positive since we are in the incomplete damage framework), wi : [0, 1]→ [0,+∞) is a
dissipation density and 𝜑 ∶ {(𝑦, z) ∈ R2|z ≥ 𝑦 ≥ 0} → [0,+∞) is the loading–unloading density of the cohesive interface.

As usual in the context of energetic evolutions, we follow a time-discretisation algorithm to show existence of solutions.
More precisely, we consider a fine partition of the time interval [0, T], and at each time step, we select a global minimiser
of the total energy; we then recover the time-continuous evolution by sending to zero the discretisation parameter. Due
to compactness issues regarding the maximal slip 𝛿h, the time-discretisation process leads to the introduction of a weaker
notion of solution where a fictitious history variable 𝛾 replaces the concrete one 𝛿h. We point out that this auxiliary variable
only appears when dealing with global minima of the energy; indeed, it can be found in Cagnetti and Toader and Dal
Maso and Zanini,19,20 but not in Negri and Scala and Negri and Vitali21,22 where stationary points are considered. The
issue has been partially overcome in Cagnetti and Toader and Dal Maso and Zanini19,20 with different approaches, but
assuming the hypothesis of constant unloading response, namely, when the loading–unloading density 𝜑 depends only
on the second variable z.

Here, an original strategy based on time-regularity properties of energetic evolutions in order to recover the equivalence
between the fictitious variable 𝛾 and the proper one 𝛿h under reasonable assumptions on the density 𝜑 is developed and
illustrated. In particular, we are able to cover all the general cases of density 𝜑 considered in Negri and Scala.21 We point
out, however, that the arguments here adopted steadily exploit the 1D setting since they rely on the embedding of the
Sobolev space H1 into the Hölder space C

1
2 . Hence, the proposed approach fits well with the one-dimensional model

under consideration; nevertheless, we believe that with suitable adjustments, the main idea may be also adapted to more
general situations and/or higher dimensions.

An alternative strategy to deal with cohesive problems can be found in literature, where adhesion is treated with the
introduction of a damage variable that macroscopically defines the bond state between two solids. Detachment corre-
sponds to full damage state. The problem has been investigated theoretically in several studies26–29 and numerically in
Freddi and Frémond and Freddi and Iurlano.30,31

The paper is organised as follows. In Section 2, we introduce in a rigorous way the variational problem, presenting
the global and history variables: the displacement field ui, the damage variables 𝛼i, the slip 𝛿 and the history slip 𝛿h.
Subsequently, details of the involved energies are given together with a precise notion of energetic evolution and of its
weak counterpart, here named generalised energetic evolution, including the fictitious variable 𝛾 .

Section 3 is devoted to the proof of existence of generalised energetic evolutions under very mild assumptions on the
loading–unloading cohesive density 𝜑. We first introduce the time-discretisation algorithm based on global minimisation
of the energy, and we provide uniform bounds on the sequence of discrete minimisers. Thanks to these bounds and by
means of a suitable version of Helly's selection theorem, we are able to extract convergent subsequences as the time step
vanishes. After the introduction of the fictitious history variable 𝛾 and by exploiting the fact that the discrete functions
selected by the algorithm are global minima of the total energy, we finally deduce that the previously obtained limit
functions actually are a generalised energetic evolution.

In Section 4, attention is focused on the equations that a generalised energetic evolution must satisfy; they are a
by-product of the global minimality condition together with the energy balance. It turns out that the displacements fulfil a
system of equations in divergence form (see (4.1a)), while the damage variables satisfy a Karush–Kuhn–Tucker condition
(see (4.1b)), assuming a priori certain regularity in time. Of course, these equations have to be meant in a weak sense. The
results of this third section are a first step in order to obtain the equivalence between 𝛾 and the concrete history variable 𝛿h.
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Section 5 illustrates the main result of the paper. We first adapt a convexity argument introduced in Mielke and
Thomas32 to our setting in which a cohesive energy (concave by nature) is present, in order to gain regularity in time
(absolute continuity) of generalised energetic evolutions. Once this regularity is achieved, we exploit the Euler–Lagrange
equations of Section 4 together with the monotonicity (in time) of 𝛾 and 𝛿h to deduce their equivalence under reasonable
assumptions on 𝜑. We thus obtain as a by-product that the generalised energetic evolution found in Section 3 is actually
an energetic evolution, since 𝛾 coincides with 𝛿h. We however stress that, even though we need to work in a convex set-
ting to complete the argument, our techniques do not necessarily imply uniqueness of energetic evolutions, which still
remains an open issue.

At the end of the work, we attach Appendix A in which we gather some definitions and properties we need throughout
the paper about absolutely continuous and bounded variation functions with values in Banach spaces.

2 SETTING OF THE PROBLEM

In this section, we present the variational formulation of the one-dimensional continuum model described in Section 1
of two layers bonded together by a cohesive interface in a hard device set-up. We list all the main assumptions we need
throughout the paper. We also introduce the two notions of energetic evolution and generalised energetic evolution in
our context (see Definitions 2.5 and 2.8).

For the sake of clarity, in this work, every function in the Sobolev space H1(a, b) is always identified with its continuous
representative. The prime symbol ′ is used to denote spatial derivatives, while the dot symbol ̇ is used to denote time
derivatives. In the case of a function f : [0, T]→H1(a, b), which thus depends on both time and space, we write f(t)′ to
denote the (weak) spatial derivative of f(t)∈H1(a, b), and with a little abuse of notation, we write f′(t, x) to denote its value
at a.e. x∈ [a, b]. If f is sufficiently regular in time, for instance, in C1([0, T]; H1(a, b)), for the time derivative, we instead
adopt the scripts

.
𝑓 ,

.
𝑓 (t) and

.
𝑓 (t, x), with the obvious meanings:

.
𝑓 is the function from [0, T] to H1(a, b),

.
𝑓 (t) is its value

as a function in H1(a, b), once t∈ [0, T] is fixed, and
.
𝑓 (t, x) is its value (as a real number) at x∈ [a, b]. By a∨ b and a∧ b,

we finally mean the maximum and the minimum between two extended real numbers a and b in [−∞,+∞].
We fix a time T> 0 and the length of the laminate L> 0. We also normalise the thickness of the two layers 𝜌1 and 𝜌2 to

1, since this does not affect the results.

2.1 The variables
To describe the evolution of the system, for i = 1, 2, we introduce the function ui ∶ [0,T] × [0,L] → R, where ui(t, x)
denotes the displacement at time t of the point x of the i-th layer; here, u(t, x) represents the vector in R2 with components
u1(t, x) and u2(t, x). For the structure of the model itself, at every time t∈ [0, T], the displacement ui(t) will belong to the
space H1(0, L). The function 𝛿 : [0, T]× [0, L]→ [0,+∞) defined as

𝛿(t, x) = 𝛿[u](t, x) ∶= |u1(t, x) − u2(t, x)|, (2.1a)

instead denotes the displacement slip on the interface between the two layers. Then, we introduce the non-decreasing
function 𝛿h : [0, T]× [0, L]→ [0,+∞) as

𝛿h(t, x) ∶= sup
𝜏∈[0,t]

𝛿(𝜏, x), (2.1b)

namely, the history variable which records the maximal slip reached at the point x in the interface till the time t. Internal
constraints, such as unilateral conditions (see Bonetti et al.27,28), are not necessary on the kinematics as this only permits
displacement slips between the two solids and interpenetration is prevented a priori.

Finally, for i = 1, 2, we consider the function 𝛼i : [0, T]× [0, L]→ [0, 1], where 𝛼i(t, x) represents the amount of damage
at time t of the point x of the i-th layer. It is non-decreasing in time with values in [0, 1]. The value 0 means completely
sound material, whereas the value 1 represents fully damaged state. We however point out that we confine ourselves to
the incomplete damage setting; namely, the fully damaged state does not describe the rupture of the layer, whose stiffness
indeed never vanishes; this will be clear in (2.3), in which we assume a strictly positive elastic modulus for both layers. As
for the displacement, the damage variable 𝛼i(t) will be in H1(0, L) for every t∈ [0, T]. In analogy with the previous setting,
𝜶(t, x) denotes the vector in R2 with components 𝛼1(t, x) and 𝛼2(t, x).
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2.2 The energies
We now present the energies involved in our model. Given a pair (u,𝜶) belonging to [H1(0, L)]2 × [H1(0, L)]2 and
representing an admissible displacement and damage, the stored elastic energy of the two layers is given by

[u,𝜶] ∶=
2∑

i=1

1
2 ∫

L

0
Ei(𝛼i(x))(u′

i(x))
2dx, (2.2)

where, for i = 1, 2, we assume that the elastic Young moduli Ei satisfy

Ei ∈ C0([0, 1]) such that Ei(𝑦) ≥ min
𝑦̃∈[0,1]

Ei(𝑦̃) =∶ 𝜀i > 0, for every 𝑦 ∈ [0, 1]. (2.3)

We define

𝜀 ∶= 𝜀1 ∧ 𝜀2 > 0, (2.4)

which is strictly positive by (2.3). This feature reflects the fact that we are considering the incomplete damage framework,
and it will be used to gain coercivity of  . This property of the energy is indeed missing in the complete damage setting
where the functions Ei can vanish, and a completely different notion of solution and strategy must be adopted. We refer
to Bouchitté et al. and Mielke and Roubíček11,12 or to Bonetti et al13 for the interested reader.

We can now introduce for i = 1, 2 the stress 𝜎i ∶ [0,T] × [0,L] → R, defined as

𝜎i(t, x) = 𝜎i[ui, 𝛼i](t, x) ∶= Ei(𝛼i(t, x))u′
i(t, x). (2.5)

As before, by 𝝈(t, x), we mean the vector with components 𝜎1(t, x) and 𝜎2(t, x).
Another energy term appearing in the model is the sum of the stored and the dissipated energy of the phase-field

variable 𝜶 ∈ [H1(0,L)]2 during the damaging process and expressed by

[𝜶] ∶=
2∑

i=1

(
1
2 ∫

L

0
(𝛼′i (x))

2dx + ∫
L

0
wi(𝛼i(x))dx

)
. (2.6)

In literature, there are very different choices of dissipation functions wi (see, for instance, several studies10,16,33–36). As
elementary examples, we can consider wi(𝑦) = 𝑦2+𝑦

2
or wi(y)= y.

In this work, we permit quite general assumptions on wi as follows:

wi ∈ C0([0, 1]) such that wi(𝑦) ≥ 0 for every 𝑦 ∈ [0, 1]. (2.7)

Remark 2.1. The dissipated damage density, usually a process dependent function (i.e., depending on the time deriva-
tive of the damage variable .

𝛼(t)), is here treated as a state function due to the underlying gradient damage model (see
also Alessi and Freddi10,16 and Mielke and Roubíček12).

We finally introduce the cohesive energy in the interface between the two layers:

[𝛿, 𝛾] ∶= ∫
L

0
𝜑(𝛿(x), 𝛾(x))dx, (2.8)

where 𝛿 and 𝛾 are two non-negative functions in [0, L] such that 𝛾 ≥ 𝛿 and representing, respectively, the slip and the
history slip of the displacement at a given instant. The non-negative function

𝜑 ∶  → [0,+∞), where  = {(𝑦, z) ∈ R
2 | z ≥ 𝑦 ≥ 0}, (2.9)

is the loading–unloading density of the cohesive interface; the variable y governs the unloading regime (usually convex),
while z the loading regime (usually concave).
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Since several assumptions on 𝜑 will be needed throughout the paper, we prefer listing them here. The first set of
assumptions, very mild, will be used in Section 3 to prove existence of (generalised) energetic evolutions (see
Definitions 2.5 and 2.8):

(𝜑1) 𝜑 is lower semicontinuous;
(𝜑2) 𝜑(0, ·) is bounded in [0,+∞);
(𝜑3) 𝜑(y, ·) is continuous and non-decreasing in [y,+∞), for every y≥ 0.

We also present here the specific—but often not suited for physical applications—assumption which has been used in
Cagnetti and Toader19 and Dal Maso and Zanini20 to deal with the fictitious variable 𝛾 (see Definition 2.8) and which in
this work we are able to avoid. We however include it in the list because we make use of it in Theorem 3.12, where we
employ the argument of Cagnetti and Toader19 in our context:

(𝜑4) there exist two functions 𝜑1,𝜑2 : [0,+∞)→ [0,+∞) such that 𝜑1 is lower semicontinuous, 𝜑2 is bounded,
non-decreasing and concave, and 𝜑(𝑦, z) = 𝜑1(𝑦) + 𝜑2(z).

We notice that (𝜑4) implies (𝜑1)–(𝜑3).

Remark 2.2. Actually, in Cagnetti and Toader and Dal Maso and Zanini,19,20 the function 𝜑1 appearing above is cho-
sen identically 0, so that the cohesive density 𝜑 depends only on the second variable z (constant unloading regime).
However, their argument can be easily adapted to the case depicted in (𝜑4), where 𝜑1 may also be different from the
null function.

To overcome the necessity of (𝜑4) in recovering the equality 𝛾 = 𝛿h (see and compare Definitions 2.5 and 2.8), in
Sections 4 and 5, we develop an alternative and new argument based on time regularity of solutions (we however point
out that condition (𝜑4) is completely unrelated with time regularity and in general does not imply it). The assumptions
we need to perform the whole strategy are listed just below. For the sake of brevity, given a non-negative function 𝜑 with
domain  , for z∈ [0,+∞), we define

𝜓(z) ∶= 𝜑(z, z),

namely, the restriction of 𝜑 on the diagonal. The function 𝜓 governs the loading regime. Moreover, we introduce the
constant

𝛿 ∶= inf{z > 0 | 𝜓 is constant in [z,+∞)}, (2.10)

with the convention inf{∅} = +∞; it represents the limit slip which triggers complete delamination. Indeed, according
to Alessi and Freddi,10,16 complete delamination may occur for finite or infinite slip value (see Remark 2.3).

We then set

𝛿 ∶= {(𝑦, z) ∈  | z < 𝛿}.

We thus require

(𝜑5) the function 𝜓 ∈C1([0,+∞)) is 𝜆-convex for some 𝜆> 0, namely, for every 𝜃 ∈ [0, 1] and za, zb ∈ [0,+∞), it holds

𝜓(𝜃za + (1 − 𝜃)zb) ≤ 𝜃𝜓(za) + (1 − 𝜃)𝜓(zb) + 𝜆

2
𝜃(1 − 𝜃)|za − zb|2;

(𝜑6) for every z∈ (0,+∞), the map 𝜑(· , z)∈C1([0, z]) is non-decreasing and convex;
(𝜑7) for every z∈ (0,+∞), there holds 𝜕𝑦𝜑(z, z) = 𝜓 ′(z) and 𝜕𝑦𝜑(0, z) = 0;
(𝜑8) the partial derivative 𝜕y𝜑 belongs to C0( ∖(0, 0)), and it is bounded in  ;
(𝜑9) for every 𝑦 ∈ [0, 𝛿), the map 𝜑(y, ·) is differentiable in [𝑦, 𝛿) and the partial derivative 𝜕z𝜑 is continuous and strictly

positive on 𝛿∖{(z, z) ∈ R2 | z ≥ 0}.

Condition (𝜑9) will be actually weakened in Section 5, where only a uniform strict monotonicity with respect to z will
be needed (see (5.17)).
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We want to point out that this set of assumptions includes a huge variety of mechanically meaningful loading–unloading
densities 𝜑, as precised in the next remark. We also notice that these conditions are similar to the one considered in Negri
and Scala.21

Remark 2.3 (Main example). The prototypical example of a physically meaningful loading–unloading density is
obtained reasoning in the opposite way of what we presented before, namely, firstly a function 𝜓 is given and then the
density 𝜑 is built from 𝜓 . As regards 𝜓 , which governs the loading regime, natural assumptions arising from appli-
cations are the following: 𝜓 ∈ C2([0, 𝛿)) ∩ C1([0,+∞)) is a non-decreasing, concave and bounded function such that
𝜓(0) = 0, 𝜓 ′ > 0 and 𝜓 ′′ is bounded from below in [0, 𝛿). In particular, (𝜑5) is satisfied with 𝜆 = sup

z∈[0,𝛿)
|𝜓 ′′(z)|. For

instance, one can consider

𝜓(z) =

{
cz(2k − z), if z ∈ [0, k),

ck2, if z ∈ [k,+∞),
or 𝜓(z) = c

(
1 − e−kz) , for c, k > 0.

In the first example, 𝛿 = k < +∞, while in the second one, 𝛿 = +∞.
The function 𝜑 is then defined by considering a quadratic unloading regime:

𝜑(𝑦, z) ∶=

{
1
2
𝜓 ′(z)

z
𝑦2 + 𝜓(z) − 1

2
z𝜓 ′(z), if (𝑦, z) ∈  ∖(0, 0),

0, if (𝑦, z) = (0, 0).
(2.11)

We refer to Figure 1 for the graphs of 𝜑. By construction, 𝜑 is continuous on  and (𝜑6), (𝜑7) and (𝜑8) are satisfied.
To verify also (𝜑9), we notice that it holds

𝜕z𝜑(𝑦, z) =
𝜓 ′(z) − z𝜓 ′′(z)

2

(
1 − 𝑦2

z2

)
, for every (𝑦, z) ∈ 𝛿.

Thus, we deduce that 𝜕z𝜑 is continuous in 𝛿∖(0, 0); if moreover z> y, since 𝜓 ′(z) is strictly positive in [0, 𝛿), we get
that 𝜕z𝜑(y, z)> 0, and so (𝜑9) is fulfilled.

We finally observe that by the boundedness of 𝜓 , we also obtain (𝜑2).

We now present a very simple lemma regarding the behaviour of 𝜑 in the case 𝛿 < +∞.

Lemma 2.4. Assume that 𝜑 satisfies (𝜑5)–(𝜑7), and assume that 𝛿 is finite. Then 𝜑 is constant in  ∖𝛿 , and in
particular:

𝜑(𝑦, z) = 𝜓(𝛿), for every (𝑦, z) ∈  ∖𝛿.

Proof. Since 𝜓 is C1[0,+∞), then by definition of 𝛿, it holds 𝜓 ′(z) = 0 for every z ∈ [𝛿,+∞). We now fix z ∈ [𝛿,+∞);
by (𝜑7), we deduce that 𝜕𝑦𝜑(z, z) = 0. Condition (𝜑6) thus yields 𝜕𝑦𝜑(𝑦, z) = 0 for every y∈ [0, z], and hence, we
conclude.

FIGURE 1 The
loading–unloading density 𝜑 of
example (2.11) in the cases
𝛿 < +∞ (left) and 𝛿 = +∞
(right)
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We finally introduce the function 𝜑𝛿 , defined as

𝜑𝛿(𝑦, z) ∶= 𝜑(𝑦 ∧ 𝛿, z ∧ 𝛿), for every (𝑦, z) ∈  .
Thanks to previous lemma, it is easy to deduce that if conditions (𝜑5), (𝜑6) and (𝜑7) are fulfilled, then actually 𝜑 and 𝜑𝛿
coincide; namely, it holds

𝜑(𝑦, z) = 𝜑𝛿(𝑦, z), for every (𝑦, z) ∈  . (2.12)

This last equality will be widely exploited in Section 5.

2.3 Energetic evolutions
We are now in a position to introduce the notion of solution we want to investigate in this work. Before presenting it,
we need to consider the prescribed displacement acting on the boundary x = L of the laminate, namely, a function
ū ∈ AC([0,T]); we also need to consider initial data for the displacements and damage variables, namely, functions u0

i , 𝛼
0
i ,

which must satisfy, for i = 1, 2, the following regularity and compatibility conditions:

u0
i , 𝛼

0
i ∈ H1(0,L), (2.13a)

u0
1(0) = u0

2(0) = 0, u0
1(L) = u0

2(L) = ū(0), (2.13b)

0 ≤ 𝛼0
i (x) ≤ 1, for every x ∈ [0,L]. (2.13c)

Once the initial displacements are given, we define the initial slip

𝛿0 ∶= |u0
1 − u0

2|.
For t∈ [0, T], we denote by H1

0,ū(t)(0,L) the set of functions v∈H1(0, L) attaining the boundary values v(0) = 0 and v(L) =
ū(t). We instead denote by H1

[0,1](0,L) the set of functions v∈H1(0, L) such that 0≤ v(x)≤ 1 for every x∈ [0, L].

Definition 2.5. Given a prescribed displacement ū ∈ AC([0,T]) and initial data u0, 𝜶0 satisfying (2.13), we say that
a bounded pair (u,𝜶) ∶ [0,T] × [0,L] → R2 ×R2 is an energetic evolution if

(CO) u(t) ∈ [H1
0,ū(t)(0,L)]

2, 𝜶(t) ∈ [H1
[0,1](0,L)]

2, for every t∈ [0, T];
(ID) u(0) = u0, 𝜶(0) = 𝜶0;
(IR) for i = 1, 2 the damage function 𝛼i is non-decreasing in time, namely,

for every 0 ≤ s ≤ t ≤ T, it holds: 𝛼i(s, x) ≤ 𝛼i(t, x), for every x ∈ [0,L];

(GS) for every t∈ [0, T], for every ũ ∈ [H1
0,ū(t)(0,L)]

2 and for every 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼̃i ≤ 1 in [0, L],
i = 1, 2, one has

 [u(t),𝜶(t)] +[𝜶(t)] + [𝛿(t), 𝛿h(t)] ≤  [
ũ, 𝜶̃

]
+[𝜶̃] + [

𝛿, 𝛿h(t) ∨ 𝛿
]
;

here, we mean 𝛿 = |ũ1 − ũ2|; and

(EB) the function 𝜏 →
.
ū(𝜏)

L
∫ L

0

2∑
i=1
𝜎i(𝜏, x)dx belongs to L1(0, T), and for every t∈ [0, T], it holds

 [u(t),𝜶(t)] +[𝜶(t)] + [𝛿(t), 𝛿h(t)] =  [
u0,𝜶0] +[𝜶0] + [

𝛿0, 𝛿0] + [u,𝜶] (t),

where
[u,𝜶](t) ∶= ∫

t

0

.
ū(𝜏)

L ∫
L

0

2∑
i=1
𝜎i(𝜏, x)dx d𝜏, (2.14)

is the work done by the external prescribed displacement.
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In the above definition, (CO) stands for compatibility, (ID) for initial data and (IR) for irreversibility (of the damage
variables); the main conditions which characterise this sort of solution are of course the global stability (GS) and the
energy balance (EB).

We notice that, by (GS), a necessary condition for the existence of such an evolution is the global minimality of the
initial data at time t = 0, namely:

[u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] ≤  [
ũ, 𝜶̃

]
+[𝜶̃] + [

𝛿, 𝛿0 ∨ 𝛿
]
, (2.15)

for every ũ ∈ [H1
0,ū(0)(0,L)]

2 and for every 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼0
i ≤ 𝛼̃i ≤ 1 in [0, L], i = 1, 2.

We also observe that the definition yields some very weak time regularity on the solution, namely, u and 𝜶 are bounded
in time with values in [H1(0, L)]2, as stated in the next proposition. As a by-product, we also obtain both time and space
regularities on the history variable 𝛿h, which actually is bounded in time with values in C1∕2

0 ([0,L]), namely, the space of
Hölder-continuous functions with exponent 1/2 vanishing at x = 0 and x = L.

Proposition 2.6. Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑2), and let (u,𝜶) be an energetic
evolution. Then there exists a positive constant C such that

sup
t∈[0,T]

||u(t)||[H1(0,L)]2 ≤ C√
𝜀
, and sup

t∈[0,T]
||𝜶(t)||[H1(0,L)]2 ≤ C, (2.16a)

where 𝜀> 0 has been introduced in (2.4). In particular, 𝛿h(t) belongs to C1∕2
0 ([0,L]) for every t∈ [0, T], and the following

estimate holds true:

sup
t∈[0,T]

|𝛿h(t, x) − 𝛿h(t, 𝑦)| ≤ C√
𝜀

√|x − 𝑦|, for every x, 𝑦 ∈ [0,L]. (2.16b)

Proof. Choosing as competitors in (GS), the functions

ũi(x) =
ū(t)

L
x, 𝛼i ≡ 1, for i = 1, 2,

and exploiting (2.3), (2.7) and (𝜑2), we deduce that

1
2

2∑
i=1

(
𝜀||ui(t)′||2L2(0,L) + ||𝛼i(t)′||2L2(0,L)

) ≤ [u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛿h(t)]

≤ [(ũ1, ũ2), (1, 1)] +[(1, 1)] +[0, 𝛿h(t)]

≤ C1

(||ū||2C0([0,T]) + 1
)
,

for every t∈ [0, T], where C1 is a suitable positive constant independent of t. Since ui(t, 0) = 0 and 0≤ 𝛼i(t, x)≤ 1, we
deduce (2.16a).

By (2.16a) and Sobolev embedding theorems, we now know that ui(t) are uniformly Hölder-continuous with expo-
nent 1/2, for every t∈ [0, T]. We thus fix t∈ [0, T] and x, y∈ [0, L]; by definition of 𝛿h(t, x), for every 𝜂 > 0, there exists
𝜏𝜂 ∈ [0, t] such that

𝛿h(t, x) − 𝜂 ≤ |u1(𝜏𝜂, x) − u2(𝜏𝜂, x)|.
Hence, we can estimate

𝛿h(t, x) − 𝜂 ≤ |u1(𝜏𝜂, x) − u1(𝜏𝜂, 𝑦)| + |u1(𝜏𝜂, 𝑦) − u2(𝜏𝜂, 𝑦)| + |u2(𝜏𝜂, 𝑦) − u2(𝜏𝜂, x)|
≤ C√

𝜀

√|x − 𝑦| + 𝛿h(t, 𝑦),

for any t∈ [0, T] and x, y∈ [0, L]. By the arbitrariness of 𝜂 and reverting the role of x and y, we deduce that 𝛿h(t) is
Hölder-continuous with exponent 1/2 and (2.16b) holds true. Trivially, 𝛿h(t, 0) = 𝛿h(t,L) = 0, and so we conclude.
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Remark 2.7. In the previous proposition, we stressed the dependence on 𝜀> 0 to point out the importance of
assumption (2.3), which ensures the coerciveness of the elastic energy. In the complete damage setting, where Ei can
vanish, one needs to consider the sequence of functions Ei + 𝜀, fulfilling (2.3), and then to perform an analysis of the
limit 𝜀→ 0+, usually via Γ-convergence.23 We refer, for instance, to Bouchitté et al. and Mielke and Roubíček11,12 for
a model of contact between two viscoelastic bodies, or to Bonetti et al.13

As we said in Section 1, the common procedure used to prove existence of energetic evolutions (and which we will
perform in Section 3) is based on a time discretisation algorithm and then on a limit passage as the time step goes to 0. Due
to lack of compactness for the history variable 𝛿h, one needs to weaken the notion of energetic evolution and to introduce
a fictitious variable 𝛾 replacing 𝛿h (see also Cagnetti and Toader and Dal Maso and Zanini19,20). Thanks to Proposition 2.6,
we however expect that 𝛾(t) should be at least continuous in [0, L]; we are thus led to the following definition:

Definition 2.8. Given a prescribed displacement ū ∈ AC([0,T]) and initial data u0, 𝜶0 satisfying (2.13), we say that
a triple (u,𝜶, 𝛾) ∶ [0,T] × [0,L] → R2 ×R2 × R is a generalised energetic evolution if

(CO′) u(t) ∈ [H1
0,ū(t)(0,L)]

2, 𝜶(t) ∈ [H1
[0,1](0,L)]

2, 𝛾(t)∈C0([0, L]), for every t∈ [0, T];
(ID′) u(0) = u0, 𝜶(0) = 𝜶0, 𝛾(0) = 𝛿0;
(IR′) for i = 1, 2, the damage function 𝛼i and the generalised history variable 𝛾 are non-decreasing in time, namely,

for every 0 ≤ s ≤ t ≤ T, it holds: 𝛼i(s, x) ≤ 𝛼i(t, x), for every x ∈ [0,L];

for every 0 ≤ s ≤ t ≤ T, it holds: 𝛾(s, x) ≤ 𝛾(t, x), for every x ∈ [0,L];

(GS′) for every t∈ [0, T], one has 𝛾(t)≥ 𝛿(t) in [0, L] and

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] ≤  [
ũ, 𝜶̃

]
+[𝜶̃] + [

𝛿, 𝛾(t) ∨ 𝛿
]
,

for every ũ ∈ [H1
0,ū(t)(0,L)]

2 and for every 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼̃i ≤ 1 in [0, L] for i = 1, 2; and

(EB′) the function 𝜏 →
.
ū(𝜏)

L
∫ L

0

2∑
i=1
𝜎i(𝜏, x)dx belongs to L1(0, T), and for every t∈ [0, T], it holds

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] = [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] +[u,𝜶](t),

where [u,𝜶](t) is defined as in (2.14).

Remark 2.9. If conditions (𝜑5), (𝜑6) and (𝜑7) are satisfied, then equality (2.12) allows us to replace the function 𝜑 in
the functional  (see (2.8)) by 𝜑𝛿 . This means that the functions which actually play a role in the cohesive energy are
𝛿 ∧ 𝛿, 𝛿h ∧ 𝛿 and 𝛾 ∧ 𝛿. This observation will be useful in Section 5.

From the very definition, it is easy to see that a pair (u,𝜶) is an energetic evolution if and only if the triple (u,𝜶, 𝛿h) is
a generalised energetic evolution. It is also easy to see that given a generalised energetic evolution (u,𝜶, 𝛾), it necessarily
holds 𝛾(t, x)≥ 𝛿h(t, x), for every (t, x)∈ [0, T]× [0, L]. Unfortunately, there are no easy arguments which ensure that 𝛾 = 𝛿h
in a general case. This will be the topic of Section 5 and the main outcome of the paper.

We finally notice that the same argument used to prove Proposition 2.6 leads to the bound (2.16a) also for a generalised
energetic evolution. However, (2.16b) only holds for 𝛿h due to its explicit definition (2.1b), and nothing can be said, in
general, about the generalised history variable 𝛾 .

3 EXISTENCE RESULT

In this section, we show existence of generalised energetic evolutions under very weak assumptions on the data, especially
on the density 𝜑. We indeed require (2.3), (2.7) and only (𝜑1)–(𝜑3) (see Theorem 3.11). Of course, we always assume that
the prescribed displacement ū belongs to AC([0, T]). We then prove the existence of an energetic evolution assuming the
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specific assumption (𝜑4), following the same approach of Cagnetti and Toader19 (see Theorem 3.12). We will overcome
the necessity of (𝜑4) in Section 5, recovering the existence of energetic evolutions in meaningful mechanical situations
(viz., assuming (𝜑5)–(𝜑9); see also Remark 2.3) and thus obtaining our main result, Theorem 5.8.

The classical tool used to prove existence of energetic evolutions is a time-discretisation procedure. Here, we combine
the ideas of Mielke and Roubíček12 to deal with the irreversible damage variables and of Cagnetti and Toader and Dal
Maso and Zanini19,20 to handle the history variable.

3.1 Time discretisation
We consider a sequence of partition 0 = tn

0 < tn
1 < … < tn

n = T such that

lim
n→+∞

max
k=1,… ,n

(
tn
k − tn

k−1

)
= 0, (3.1)

and for k = 1, … ,n, we perform the following implicit Euler scheme: Given (uk−1,𝜶k−1, 𝛿k−1
h ), we first select (uk,𝜶k) by

minimising the total energy among suitable natural competitors:

(uk,𝜶k) ∈ argmin
ũ∈[H1

0,ū(tnk )
(0,L)]2,

𝜶̃∈[H1(0,L)]2 s.t. 𝛼k−1
i ≤𝛼i≤1

{ [
ũ, 𝜶̃

]
+ [

𝜶̃
]
+[𝛿, 𝛿k−1

h ∨ 𝛿]
}
. (3.2a)

Here, we want to recall that we mean 𝛿 = |ũ1 − ũ2|.
We then define 𝛿k

h as

𝛿k
h ∶= 𝛿k−1

h ∨ |uk
1 − uk

2| = 𝛿k−1
h ∨ 𝛿k. (3.2b)

The initial values in the minimisation algorithm are functions (u0,𝜶0) satisfying the compatibility conditions (2.13);
moreover, we set 𝛿0

h ∶= 𝛿0 = |u0
1 − u0

2|.
Proposition 3.1. Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑1). Then there exists a solution to the
minimisation algorithm (3.2a).

Proof. We fix n ∈ N, and for every k = 1, … ,n, we prove the existence of a minimum by means of the direct method
of calculus of variations. For the sake of clarity, we denote by k−1 the functional we want to minimise, namely,

k−1 [ũ, 𝜶̃] =  [
ũ, 𝜶̃

]
+ [

𝜶̃
]
+[𝛿, 𝛿k−1

h ∨ 𝛿] + 𝜒Ak−1
[
ũ, 𝜶̃

]
, (3.3)

where 𝜒Ak−1 denotes the indicator function of the set of constraints Ak− 1, which is given by

Ak−1 ∶=
{(

ũ, 𝜶̃
)
∈
[

H1
0,ū(tn

k )
(0,L)

]2
× [H1(0,L)]2|𝛼k−1

i (x) ≤ 𝛼i(x) ≤ 1 for every x ∈ [0,L]
}
.

Weak (sequential) compactness in [H1(0, L)]4 for a minimising sequence fork−1 follows by means of uniform bounds
which can be obtained by reasoning as in the proof of Proposition 2.6.

As regards the (sequential) lower semicontinuity of k−1 with respect the considered topology, we exploit the com-
pact embedding H1(0, L)⊂⊂C0(0, L). By (𝜑1) and Fatou's lemma, we thus deduce that  is lower semicontinuous;
the same holds true for  by using again Fatou's lemma together with weak lower semicontinuity of the norm. To
prove lower semicontinuity of  , it is enough to show that, given weakly convergent sequences ũ𝑗i ⇀ ũi, 𝛼̃𝑗i ⇀ 𝛼̃i in

H1(0, L), we have that
√

Ei(𝛼̃𝑗i )(ũ
𝑗

i )′ weakly converges to
√

Ei(𝛼̃i)ũi′ in L2(0, L) as j→+∞, for i = 1, 2. To prove it, we
fix 𝜙∈L2(0, L) and we estimate by exploiting (2.3):
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|||||∫
L

0

√
Ei(𝛼̃𝑗i (x))(ũ

𝑗

i )′(x)𝜙(x)dx − ∫
L

0

√
Ei(𝛼̃i(x))ũi′(x)𝜙(x)dx

|||||
≤ ‖‖‖‖

√
Ei(𝛼̃𝑗i ) −

√
Ei(𝛼̃i)

‖‖‖‖C0([0,L])
||ũ𝑗i ||H1(0,L)||𝜙||L2(0,L)

+
|||||∫

L

0
(ũ𝑗i )′(x)

√
Ei(𝛼̃i(x))𝜙(x)dx − ∫

L

0
ũi′(x)

√
Ei(𝛼̃i(x))𝜙(x)dx

||||| .
The first term goes to zero as j→+∞ since 𝛼̃𝑗i uniformly converges to 𝛼̃i as j→+∞ and the function Ei is continuous.

The second term vanishes too as j→+∞ since
√

Ei(𝛼̃i)𝜙 belongs to L2(0, L) by the boundedness of Ei.
We conclude by noticing that, exploiting again the compactness of the embedding H1(0, L)⊂⊂C0(0, L), the set

Ak− 1 is (sequentially) closed with respect to the considered topology, and thus, its indicator function 𝜒Ak−1 is lower
semicontinuous as well.

To pass from discrete to continuous evolutions, we now introduce the (right-continuous) piecewise constant inter-
polants (un,𝜶n) of the discrete displacement and damage variables, and the piecewise constant interpolant 𝛿n

h of the
discrete history variable, namely:{

un(t) ∶= uk, 𝜶n(t) ∶= 𝜶k, 𝛿n
h (t) ∶= 𝛿k

h, if t ∈ [tn
k , t

n
k+1),

un(T) ∶= un, 𝜶n(T) ∶= 𝜶n, 𝛿n
h (T) ∶= 𝛿n

h .
(3.4a)

Of course, in the following, by the expression 𝛿n, we mean the piecewise constant slip, namely,

𝛿n(t, x) = |un
1(t, x) − un

2(t, x)|. (3.4b)

Analogously, we consider a piecewise constant version ūn of the prescribed displacement:{
ūn(t) ∶= ū(tn

k ), if t ∈ [tn
k , t

n
k+1),

ūn(T) ∶= ū(T).
(3.4c)

We also adopt the following notation:

𝜏n(t) ∶= max
{

tn
k |tn

k ≤ t
}
. (3.4d)

The next proposition provides useful uniform bounds on the just introduced piecewise constant interpolants. It is the
analogue of Proposition 2.6 in this discrete setting.

Proposition 3.2. Assume that Ei satisfies (2.3), wi satisfies (2.7) and𝜑 satisfies (𝜑1) and (𝜑2). Then there exists a positive
constant C independent of n such that

max
t∈[0,T]

||un(t)||[H1(0,L)]2 ≤ C√
𝜀
, max

t∈[0,T]
||𝜶n(t)||[H1(0,L)]2 ≤ C, (3.5a)

max
t∈[0,T]

(
sup

x,𝑦∈[0,L], x≠𝑦
|𝛿n

h (t, x) − 𝛿
n
h (t, 𝑦)|√|x − 𝑦|

)
≤ C√

𝜀
, (3.5b)

where 𝜀> 0 has been introduced in (2.4).

Proof. The result follows by using exactly the same argument of Proposition 2.6. We only notice that here, we need
to choose as competitors for (uk,𝜶k) in (3.2a) the functions

ũi(x) =
ū(tn

k )
L

x, 𝛼i ≡ 1, for i = 1, 2,

and then we argue in the same way.
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Since the piecewise constant interpolants are built starting from the minimisation algorithm (3.2a), they automatically
fulfil the following inequality, which is related to the energy balance (EB):

Lemma 3.3 (Discrete energy inequality). Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑1) and (𝜑2).
Then there exists a vanishing sequence of positive real numbers Rn such that for every t∈ [0, T] and for every n ∈ N, the
following inequality holds true:

[un(t),𝜶n(t)] +[𝜶n(t)] +[𝛿n(t), 𝛿n
h (t)]

≤ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] + ∫
t

0
W n(𝜏)d𝜏 + Rn,

where W n(𝜏) ∶=
.
ū(𝜏)

L

2∑
i=1

∫ L
0 Ei(𝛼n

i (𝜏, x))(u
n
i )

′(𝜏, x)dx.

Proof. We fix n ∈ N and k∈ {1, … , n}; for 𝑗 = 1, … , k, we then choose as competitors for (u𝑗 ,𝜶𝑗) in (3.2a) the
functions ũ, 𝜶̃, with components

ũi(x) = u𝑗−1
i (x) + (ū(tn

𝑗 ) − ū(tn
𝑗−1))x∕L, and 𝛼i = 𝛼

𝑗−1
i , for i = 1, 2.

We thus obtain

[u𝑗 ,𝜶𝑗] +[𝜶𝑗] +[𝛿𝑗, 𝛿𝑗h] ≤ [u𝑗−1 + v𝑗−1,𝜶𝑗−1] +[𝜶𝑗−1] +[𝛿𝑗−1, 𝛿
𝑗−1
h ],

where we denoted by v𝑗−1(x) the vector in R2 with both components equal to (ū(tn
𝑗 ) − ū(tn

𝑗−1))
x
L

. From the above
inequality, we now get

[u𝑗 ,𝜶𝑗] +[𝜶𝑗] +[𝛿𝑗, 𝛿𝑗h] − [u𝑗−1,𝜶𝑗−1] −[𝜶𝑗−1] −[𝛿𝑗−1, 𝛿
𝑗−1
h ]

≤ [u𝑗−1 + v𝑗−1,𝜶𝑗−1] − [u𝑗−1,𝜶𝑗−1]

=∫
tn
𝑗

tn
𝑗−1

.
ū(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼𝑗−1

i (x))

(
(u𝑗−1

i )′(x) +
ū(𝜏) − ū(tn

𝑗−1)
L

)
dxd𝜏.

Summing the obtained inequality from 𝑗 = 1 to j= k, we hence deduce

[uk,𝜶k] +[𝜶k] +[𝛿k, 𝛿k
h] − [u0,𝜶0] −[𝜶0] −[𝛿0, 𝛿0]

≤
k∑
𝑗=1

(
∫

tn
𝑗

tn
𝑗−1

W n(𝜏)d𝜏 + ∫
tn
𝑗

tn
𝑗−1

.
ū(𝜏)

L
ū(𝜏) − ūn(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼n

i (𝜏, x))dxd𝜏

)

=∫
tn
k

0
W n(𝜏)d𝜏 + ∫

tn
k

0

.
ū(𝜏)

L
ū(𝜏) − ūn(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼n

i (𝜏, x))dxd𝜏.

Recalling the definition of the interpolants un, 𝜶n and 𝜏n (see (3.4)), by the arbitrariness of k, we finally obtain for
every t∈ [0, T]:

[un(t),𝜶n(t)] +[𝜶n(t)] +[𝛿n(t), 𝛿n
h (t)]

≤ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] + ∫
t

0
W n(𝜏)d𝜏

+ ∫
𝜏n(t)

0

.
ū(𝜏)

L
ū(𝜏) − ūn(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼n

i (𝜏, x))dxd𝜏 − ∫
t

𝜏n(t)
W n(𝜏)d𝜏.
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We thus conclude by defining

Rn ∶= ∫
T

0

| .
ū(𝜏)|

L
|ū(𝜏) − ūn(𝜏)|

L

2∑
i=1

∫
L

0
Ei(𝛼n

i (𝜏, x))dxd𝜏 + sup
t∈[0,T]∫

t

𝜏n(t)
|W n(𝜏)|d𝜏. (3.6)

Indeed, we now show that lim
n→+∞

Rn = 0. First of all by the very definition of Wn and exploiting (3.5a), it is easy to

see that |W n(𝜏)| ≤ C| .
ū(𝜏)|, with C> 0 independent of n; hence, by the absolute continuity of the integral, the second

term in (3.6) vanishes as n→+∞ (we recall that by assumption, the sequence of partitions satisfies (3.1)). Then we
notice that the first term is bounded by

C|| .
ū||L1(0,T) sup

t∈[0,T]
|ū(t) − ūn(t)|,

which vanishes since ū is absolutely continuous and the sequence of partitions satisfies (3.1).

3.2 Extraction of convergent subsequences
By the uniform bounds obtained in Proposition 3.2, we are able to deduce the existence of convergent subsequences of
the piecewise constant interpolants un, 𝜶n and 𝛿n

h . We first need the following Helly-type compactness result:

Lemma 3.4 (Helly). Let {𝑓n}n∈N be a sequence of non-decreasing functions from [0, T] to C0([0, L]), meaning that for
every 0≤ s≤ t≤T, it holds fn(s, x)≤ fn(t, x) for all x∈ [0, L], such that

• the families {𝑓n(0)}n∈N and {𝑓n(T)}n∈N are equibounded, and
• the family {𝑓n(t)}n∈N is equicontinuous uniformly with respect to t∈ [0, T].

Then there exist a subsequence (not relabelled) and a function f : [0, T]→C0([0, L]) such that fn(t) converges uniformly
to f(t) as n→+∞ for every t∈ [0, T], and f is non-decreasing in time, in the above sense.

Moreover, for every t∈ [0, T], the right and left limits f± (t), which are well-defined pointwise by monotonicity, actually
belong to C0([0, L]), and it holds

𝑓±(t) = lim
h→0±

𝑓 (t + h), uniformly in [0,L]. (3.7)

Proof. The proof follows exactly the same lines of Lemma 4.6 of Dal Maso and Zanini20; we only stress two differences.
Here, the topology is the one inherited by uniform convergence and compactness is ensured by the Ascoli–Arzelá
theorem, thanks to the equiboundedness and equicontinuity assumptions. The additional requirement of uniform
equicontinuity with respect to t∈ [0, T] is finally used to deduce that the limit family {f(t)}t∈ [0, T ] is equicontinuous as
well, thus yielding (3.7).

Proposition 3.5. Assume that Ei satisfies (2.3), wi satisfies (2.7) and𝜑 satisfies (𝜑1) and (𝜑2). Consider the sequences of
functions un, 𝜶n, 𝛿n

h introduced in (3.4a). Then there exist a subsequence nj and, for every t∈ [0, T], a further subsequence
nj(t) (depending on time) such that

(a) un𝑗 (t)(t) ⇀ u(t) in [H1(0, L)]2 as nj(t)→+∞;
(b) 𝜶n𝑗 (t)(t) ⇀ 𝜶(t) in [H1(0, L)]2 as nj(t)→+∞;
(c) 𝛿

n𝑗
h (t) → 𝛾(t) uniformly in [0, L] as nj →+∞.

Moreover, the limit functions satisfy

(1) u(t) ∈ [H1
0,ū(t)(0,L)]

2, 𝜶(t) ∈ [H1
[0,1](0,L)]

2 and 𝛾(t) ∈ C1∕2
0 ([0,L]) for every t∈ [0, T];

(2) u(0) = u0, 𝜶(0) = 𝜶0 and 𝛾(0) = 𝛿0;
(3) 𝛼i and 𝛾 are non-decreasing in time;
(4) 𝛾(t) ≥ 𝛿h(t) = sup

𝜏∈[0,t]
|u1(𝜏) − u2(𝜏)| for every t∈ [0, T]; and

(5) the family {𝛾(t)}t∈ [0, T ] is equicontinuous.
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Remark 3.6. We want to point out that also the subsequence of the damage variable in (b) could be chosen independent
of time, since each term of the sequence is non-decreasing in time. This follows by means of a suitable version of
Helly's selection theorem (see, for instance, Mielke and Roubíček,18 Theorem B.5.13) and arguing as in Proposition 3.2
of Mielke and Roubíček.12 However, both for the sake of simplicity and since for (a) the same cannot be done, we
prefer to consider a time-dependent subsequence; this will be enough for our purposes.

The fact that the subsequence in (c) does not depend on time is instead crucial for the validity of (4), as the reader
can check from the proof.

Remark 3.7. For the sake of clarity, in order to avoid too heavy notations, from now on, we prefer not to stress the
occurrence of the subsequence via the subscript j; namely, we still write n instead of nj and n(t) instead of nj(t).

Proof of Proposition 3.5. The validity of (c) and (5), the Hölder-continuity of exponent 1/2 of the limit function 𝛾(t) and
the fact that 𝛾(t, 0) = 𝛾(t,L) = 0 are a by-product of (3.5b) and Lemma 3.4; (a) and (b) instead follow by (3.5a) together
with the weak sequential compactness of the unit ball in H1(0, L). Since H1(0, L)⊂⊂C0([0, L]), we also deduce (1)–(3).

We only need to prove (4). So let us assume by contradiction that there exists a pair (t, x)∈ [0, T]× [0, L] such that

𝛿h(t, x) > 𝛾(t, x) = lim
n→+∞

𝛿n
h (t, x). (3.8)

By (3.8) and the definition of 𝛿h, there exists a time 𝜏 t ∈ [0, t] for which |u1(𝜏 t, x)−u2(𝜏 t, x) |>𝛾(t, x); thus, we infer

|u1(𝜏t, x) − u2(𝜏t, x)| > lim
n→+∞

𝛿n
h (t, x) ≥ lim

n→+∞
𝛿n

h (𝜏t, x)

≥ lim sup
n→+∞

|un
1(𝜏t, x) − un

2(𝜏t, x)|
≥ lim

n(𝜏t)→+∞
|un(𝜏t)

1 (𝜏t, x) − un(𝜏t)
2 (𝜏t, x)| = |u1(𝜏t, x) − u2(𝜏t, x)|,

which is a contradiction.

3.3 Existence of generalised energetic evolutions
The aim of this subsection is proving that the limit functions obtained in Proposition 3.5 are actually a generalised ener-
getic evolution. We only need to show that global stability (GS′) and energy balance (EB′) hold true, being the other
conditions automatically satisfied due to Lemma 3.5. This first proposition deals with the global stability:

Proposition 3.8. Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑1)–(𝜑3). Assume that the initial data
u0, 𝜶0 fulfil the stability condition (2.15). Then the limit functions u, 𝜶 and 𝛾 obtained in Proposition 3.5 satisfy (GS′).

Proof. If t = 0 there is nothing to prove, so we consider t∈ (0, T], and we first notice that by (4) in Proposition 3.5, we
know 𝛾(t)≥ 𝛿(t). Then we fix ũ ∈ [H1

0,ū(t)(0,L)]
2 and 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼̃i ≤ 1 for i = 1, 2.

By weak lower semicontinuity of the energy, taking the subsequence n(t) obtained in Proposition 3.5 (see also
Remark 3.7), we get

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)]

≤ lim inf
n(t)→+∞

([un(t)(t),𝜶n(t)(t)] +[𝜶n(t)(t)] +[𝛿n(t)(t), 𝛿n(t)
h (t)]

)
=∶ (⋆).

Now, we can use the minimality properties of the discrete functions, considering as competitors the functions ûn(t)

and 𝜶̂
n(t) whose components are

ûn(t)
i (x) ∶= ũi(x) − (ū(t) − ū(𝜏n(t)(t)) x

L
, 𝛼

n(t)
i ∶= min

{
𝛼̃i + max

[0,L]
|||𝛼n(t)

i (t) − 𝛼i(t)
||| , 1

}
.

It is easy to see that they are admissible; moreover, since 𝜏n(t)(t)→ t and 𝛼n(t)
i (t) → 𝛼i(t) uniformly as n(t)→+∞, they

strongly converge to ũ and 𝜶̃ in [H1(0, L)]2 (see also Mielke and Roubíček,12 Lemma 3.5).
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By minimality, going back to the previous estimate, we obtain

(⋆) ≤ lim inf
n(t)→+∞

([ûn(t)
, 𝜶̂

n(t)] +[𝜶̂n(t)] + [
𝛿, 𝛿

n(t)
h (t) ∨ 𝛿

])
=  [

ũ, 𝜶̃
]
+[𝜶̃] + [

𝛿, 𝛾(t) ∨ 𝛿
]
,

where in the last equality, we exploited the strong convergence of ûn(t) and 𝜶̂
n(t) towards ũ and 𝜶̃, plus assumption

(𝜑3). Thus, we conclude.

To show the validity of (EB′), we prove separately the two inequalities. The first one follows from the discrete energy
inequality presented in Lemma 3.3:

Proposition 3.9 (Upper energy estimate). Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑1) and (𝜑2).
Then for every t∈ [0, T], the limit functions u, 𝜶 and 𝛾 obtained in Proposition 3.5 satisfy the following inequality:

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] ≤ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] +[u,𝜶](t).

Proof. We fix t∈ [0, T], and we again consider the subsequence n(t) obtained in Proposition 3.5 (see also Remark 3.7);
by lower semicontinuity of the energy and Lemma 3.3, we deduce

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)]

≤ lim inf
n(t)→+∞

([un(t)(t),𝜶n(t)(t)] +[𝜶n(t)(t)] +[𝛿n(t)(t), 𝛿n(t)
h (t)]

)
≤ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] + lim sup

n(t)→+∞ ∫
t

0
W n(t)(𝜏)d𝜏.

By means of the reverse Fatou's lemma (we recall that the whole sequence Wn is bounded from above by C| .
ū(𝜏)|),

we thus get

lim sup
n(t)→+∞ ∫

t

0
W n(t)(𝜏)d𝜏 ≤ ∫

t

0
lim sup
n(t)→+∞

W n(t)(𝜏)d𝜏 =∶ (∗).

In order to deal with (∗), we argue as follows (see also Cagnetti and Toader19, Section 4). We consider the subsequence
n (independent of time) obtained in Proposition 3.5 (see also Remark 3.7), and for every, 𝜏 ∈ [0, T], we first set

W(𝜏) ∶= lim sup
n→+∞

W n(𝜏), (3.9)

which belongs to L1(0, T) since we recall that |W n(𝜏)| ≤ C| .
ū(𝜏)|. Without loss of generality, we can assume that the

time-dependent subsequences further obtained in Proposition 3.5 also satisfy

W(𝜏) = lim
n(𝜏)→+∞

W n(𝜏)(𝜏), for every 𝜏 ∈ [0,T].

Thus, exploiting (a) and (b) in Proposition 3.5 for a.e. 𝜏 ∈ [0, T], we obtain

W(𝜏) = lim
n(𝜏)→+∞

W n(𝜏)(𝜏) = lim
n(𝜏)→+∞

.
ū(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼n(𝜏)

i (𝜏, x))(un(𝜏)
i )′(𝜏, x)dx

=
.
ū(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼i(𝜏, x))(ui)′(𝜏, x)dx.

(3.10)
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Combining (3.9) and (3.10), we finally get

(∗) ≤ ∫
t

0
W(𝜏)d𝜏 = [u,𝜶](t),

and we conclude.

The opposite inequality is instead a by-product of the global stability condition we proved in Proposition 3.8:

Proposition 3.10 (Lower energy estimate). Assume that Ei satisfies (2.3), wi satisfies (2.7) and 𝜑 satisfies (𝜑1)–(𝜑3).
Assume that the initial data u0, 𝜶0 fulfil the stability condition (2.15). Then for every t∈ [0, T], the limit functions u, 𝜶
and 𝛾 obtained in Proposition 3.5 satisfy

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] ≥ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] +[u,𝜶](t).

Proof. If t = 0, the inequality is trivial, so we fix t∈ (0, T], and we consider a sequence of partitions of [0, t] of the form
0 = sn

0 < sn
1 < … < sn

n = t (we stress that this sequence of partitions is completely unrelated with the one considered
at the beginning of Section 3.1 and used to perform the time-discretisation argument) satisfying

(i) lim
n→+∞

max
k=1,… ,n

|||sn
k − sn

k−1
||| = 0;

(ii) lim
n→+∞

n∑
k=1

||||(sn
k − sn

k−1)
.
ū(sn

k) − ∫ sn
k

sn
k−1

.
ū(𝜏)d𝜏

|||| = 0;

(iii) lim
n→+∞

n∑
k=1

(sn
k − sn

k−1)W(sn
k) = [u,𝜶](t), where W is the function introduced in (3.9) and (3.10). The existence

of such a sequence of partitions follows from Lemma 4.5 of Francfort and Mielke,37 since both
.
ū and W belong

to L1(0, T). In particular, by (i) and the absolute continuity of the integral, we can assume without loss of
generality that

(iv) for every n ∈ N, it holds ∫ sn
k

sn
k−1

| .
ū(𝜏)|d𝜏 ≤ 1

n
for every k = 1, … ,n.

For a given partition, we fix k = 1, … ,n, and recalling Proposition 3.8, we choose as competitors for u
(

sn
k−1

)
,

𝜶
(

sn
k−1

)
and 𝛾

(
sn

k−1

)
in (GS′) the functions ũ, 𝜶̃, with components

ũi(x) = ui(sn
k , x) +

(
ū
(

sn
k−1

)
− ū

(
sn

k

)) x
L
, 𝛼̃i = 𝛼i(sn

k), for i = 1, 2.

Recalling that 𝛾(sn
k−1) ∨ 𝛿(s

n
k) ≤ 𝛾(sn

k), and hence, [𝛿(sn
k), 𝛾(s

n
k−1) ∨ 𝛿(s

n
k)] ≤ [𝛿(sn

k), 𝛾(s
n
k)] by (𝜑3), arguing as in the

proof of Lemma 3.3, we thus deduce

[u(sn
k−1),𝜶(s

n
k−1)] +[𝜶(sn

k−1)] +[𝛿(sn
k−1), 𝛾(s

n
k−1)] − [u(sn

k),𝜶(s
n
k)] −[𝜶(sn

k)] −[𝛿(sn
k), 𝛾(s

n
k)]

≤ −∫
sn

k

sn
k−1

.
ū(𝜏)

L

2∑
i=1

∫
L

0
Ei(𝛼i(sn

k , x))
(

u′
i(s

n
k , x) +

ū(𝜏) − ū(sn
k)

L

)
dxd𝜏.

Summing the above inequality from k = 1 to k=n, we obtain

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] − [u0,𝜶0] −[𝜶0] −[𝛿0, 𝛿0]

≥
n∑

k=1
∫

sn
k

sn
k−1

.
ū(𝜏)

L ∫
L

0

2∑
i=1

Ei(𝛼i(sn
k , x))

(
u′

i(s
n
k , x) +

ū(𝜏) − ū(sn
k)

L

)
dxd𝜏 =∶ Jn
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Now, we easily notice that Jn can be written as

Jn =
n∑

k=1
(sn

k − sn
k−1)W(sn

k)

+
n∑

k=1
∫

sn
k

sn
k−1

.
ū(𝜏) −

.
ū(sn

k)
L

d𝜏 ∫
L

0

2∑
i=1

Ei(𝛼i(sn
k , x))u

′
i(s

n
k , x)dx

+
n∑

k=1
∫

sn
k

sn
k−1

.
ū(𝜏)

L
ū(𝜏) − ū(sn

k)
L

d𝜏 ∫
L

0

2∑
i=1

Ei(𝛼i(sn
k , x))dx =∶ J1

n + J2
n + J3

n.

By (iii), we know that lim
n→+∞

J1
n = [u,𝜶](t), so we conclude if we prove that lim

n→+∞
J2

n = lim
n→+∞

J3
n = 0. With this aim,

we estimate

|J2
n| ≤ C

n∑
k=1

|||||∫
sn

k

sn
k−1

(
.
ū(𝜏) −

.
ū(sn

k))d𝜏
|||||
( 2∑

i=1
||ui(sn

k)||H1(0,L)

)

≤ C
n∑

k=1

|||||(sn
k − sn

k−1)
.
ū(sn

k) − ∫
sn

k

sn
k−1

.
ū(𝜏)d𝜏

||||| ,
which goes to 0 by (ii). As regards J3

n, by using (iv), we get

|J3
n| ≤ C

n∑
k=1

∫
sn

k

sn
k−1

| .
ū(𝜏)||ū(𝜏) − ū(sn

k)|d𝜏 = C
n∑

k=1
∫

sn
k

sn
k−1

| .
ū(𝜏)| |||||∫

sn
k

𝜏

.
ū(s)ds

||||| d𝜏

≤ C
n∑

k=1

(
∫

sn
k

sn
k−1

| .
ū(𝜏)|d𝜏)2

≤ C
n

n∑
k=1

∫
sn

k

sn
k−1

| .
ū(𝜏)|d𝜏 = C

n
|| .

ū||L1(0,t),

and the proof is complete.

Putting together what we obtained in this section, we infer our first result of existence of generalised energetic
evolutions:

Theorem 3.11 (Existence of generalised energetic evolutions). Let the prescribed displacement ū belong to AC([0, T])
and the initial data u0, 𝜶0 fulfil (2.13) together with the stability condition (2.15). Assume that Ei satisfies (2.3), wi satis-
fies (2.7) and 𝜑 satisfies (𝜑1)–(𝜑3). Then the triplet composed by the functions u, 𝜶 and 𝛾 obtained in Proposition 3.5 is
a generalised energetic evolution.

We conclude this section by showing that, assuming in addition the specific condition (𝜑4), which we rewrite also here
for the sake of clarity:

(𝜑4) there exist two functions 𝜑1,𝜑2 : [0,+∞)→ [0,+∞) such that 𝜑1 is lower semicontinuous, 𝜑2 is bounded,
non-decreasing and concave, and 𝜑(𝑦, z) = 𝜑1(𝑦) + 𝜑2(z),

the functions u and 𝜶 obtained in Proposition 3.5 are actually an energetic evolution. The approach is exactly the same
of Cagnetti and Toader.19 We recall that (𝜑4) implies (𝜑1)–(𝜑3).

We however point out again that (𝜑4) does not include most of the cases of loading–unloading cohesive densities 𝜑
usually arising and adopted in real-world applications, like, for instance, the one presented in Remark 2.3. The analogous
result of Theorem 3.12 for more realistic densities from the physical point of view is obtained in our main result, contained
in Theorem 5.8, via an alternative strategy developed in the forthcoming sections.

Theorem 3.12. Let the prescribed displacement ū belong to AC([0, T]) and the initial data u0, 𝜶0 fulfil (2.13) together
with the stability condition (2.15). Assume that Ei satisfies (2.3), wi satisfies (2.7) and𝜑 satisfies (𝜑4). Then the pair (u,𝜶)
obtained in Proposition 3.5 is an energetic evolution.

If in addition 𝜑2 is strictly increasing, then the function 𝛾 obtained in Proposition 3.5 coincides with the history
variable 𝛿h.
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Proof. Thanks to Theorem 3.11, we only need to show the validity of (GS) and (EB) in Definition 2.5. We first focus
on (GS); so we fix t∈ [0, T] and two functions ũ ∈ [H1

0,ū(t)(0,L)]
2, 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼̃i ≤ 1 in [0, L] for

i = 1, 2. Since the triplet (u,𝜶, 𝛾) satisfies (GS′) we know that

[u(t),𝜶(t)] +[𝜶(t)] ≤  [
ũ, 𝜶̃

]
+[𝜶̃] + [

𝛿, 𝛾(t) ∨ 𝛿
]
−[𝛿(t), 𝛾(t)];

thus, we conclude if we prove

 [
𝛿, 𝛾(t) ∨ 𝛿

]
−[𝛿(t), 𝛾(t)] ≤  [

𝛿, 𝛿h(t) ∨ 𝛿
]
−[𝛿(t), 𝛿h(t)]. (3.11)

With this aim, exploiting (𝜑4), in particular the monotonicity and concavity of 𝜑2, and recalling that 𝛾(t)≥ 𝛿h(t),
we get

𝜑2(𝛾(t) ∨ 𝛿) = 𝜑2(𝛾(t) + [𝛿 − 𝛾(t)]+) ≤ 𝜑2(𝛾(t) + [𝛿 − 𝛿h(t)]+)

≤ 𝜑2(𝛾(t)) + 𝜑2(𝛿h(t) + [𝛿 − 𝛿h(t)]+) − 𝜑2(𝛿h(t))

= 𝜑2(𝛾(t)) + 𝜑2(𝛿h(t) ∨ 𝛿) − 𝜑2(𝛿h(t)).

The above inequality implies

 [
𝛿, 𝛾(t) ∨ 𝛿

]
− [

𝛿, 𝛿h(t) ∨ 𝛿
]
= ∫

L

0

(
𝜑2(𝛾(t, x) ∨ 𝛿(x)) − 𝜑2(𝛿h(t, x) ∨ 𝛿(x))

)
dx

≤ ∫
L

0
(𝜑2(𝛾(t, x)) − 𝜑2(𝛿h(t, x))) dx

= [𝛿(t), 𝛾(t)] −[𝛿(t), 𝛿h(t)],

which is equivalent to (3.11).
We now prove (EB). Since the triplet (u,𝜶, 𝛾) satisfies (EB′), it is enough to prove

[𝛿(t), 𝛾(t)] = [𝛿(t), 𝛿h(t)], for every t ∈ [0,T]. (3.12)

Since 𝛾(t)≥ 𝛿h(t), we easily deduce [𝛿(t), 𝛾(t)] ≥ [𝛿(t), 𝛿h(t)]. To get the other inequality we first observe that
arguing exactly as in the proof of Proposition 3.10, but replacing 𝛾 with 𝛿h (indeed we have just proved (GS)) we get:

[u(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛿h(t)] ≥ [u0,𝜶0] +[𝜶0] +[𝛿0, 𝛿0] +[u,𝜶](t).

Combining the above inequality with (EB′), we finally obtain

[𝛿(t), 𝛿h(t)] ≥ [𝛿(t), 𝛾(t)];

hence, (3.12) holds true.
If in addition 𝜑2 is strictly increasing, then (3.12) implies 𝛾(t) = 𝛿h(t) since both functions are continuous in [0, L].

Thus, we conclude.

4 PDE FORM OF ENERGETIC EVOLUTIONS

In this section, we compute the Euler–Lagrange equations coming from the global stability condition (GS′). More
precisely, we prove that any generalised energetic evolution (u,𝜶, 𝛾) must satisfy, in a suitable weak formulation, the
following system of equilibrium equations governing the stresses 𝜎i (see Proposition 4.3):
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−𝜎1(t)′ + 𝜕𝑦𝜑(𝛿(t), 𝛾(t))sgn(u1(t) − u2(t)) = 0, in [0,L],
−𝜎2(t)′ − 𝜕𝑦𝜑(𝛿(t), 𝛾(t))sgn(u1(t) − u2(t)) = 0, in [0,L],

for every t ∈ [0,T], (4.1a)

where sgn(·) denotes the signum function, together with a Karush–Kuhn–Tucker condition describing the evolution of
the damage variables (if regular in time, see Propositions 4.4 and 4.5):

⎧⎪⎨⎪⎩
.
𝛼i(t) ≥ 0, in [0,L],
−𝛼i(t)′′ + 1

2
E′

i (𝛼i(t))(ui(t)′)2 + w′
i(𝛼i(t)) ≥ 0, in [0,L],[

−𝛼i(t)′′ + 1
2

E′
i (𝛼i(t))(ui(t)′)2 + w′

i(𝛼i(t))
]

.
𝛼i(t) = 0, in [0,L],

for a.e. t ∈ [0,T]. (4.1b)

The results of this section will be crucial for the achievement of our goal, namely, the equivalence between the fictitious
history variable 𝛾 and the concrete one 𝛿h, under meaningful assumptions on 𝜑. The argument based on time regularity
of generalised energetic evolutions will be developed in Section 5.

We recall that, given the loading–unloading density 𝜑 ∶  → [0,+∞), we denote by 𝜓 its restriction to the diagonal,
namely, 𝜓(z) = 𝜑(z, z), for z∈ [0,+∞). Throughout the section, the main assumptions on 𝜑 (and 𝜓) are

the function 𝜓 belongs to C1([0,+∞)); (4.2a)

for every z ∈ (0,+∞), the map 𝜑(·, z) belongs to C1([0, z]); (4.2b)

for every z ∈ (0,+∞), there holds 𝜕𝑦𝜑(z, z) = 𝜓 ′(z) and 𝜕𝑦𝜑(0, z) = 0; (4.2c)

the partial derivative 𝜕𝑦𝜑 belongs to C0( ∖(0, 0)), and it is bounded in  . (4.2d)

We notice that the above conditions are slightly more general than properties (𝜑5)–(𝜑8) listed in Section 2, since we do
not require any convexity assumption (which will be instead employed in Section 5).

We start the analysis with a simple but useful lemma.

Lemma 4.1. Let 𝑓, g ∈ R such that f ≥ |g|, and assume that the function 𝜑 ∶  → [0,+∞) satisfies

the function z → 𝜑(z, z) =∶ 𝜓(z) is differentiable in [0,+∞); (4.3a)

for every z ∈ (0,+∞), the map 𝜑(·, z) is differentiable in [0, z]; (4.3b)

for every z ∈ (0,+∞), there holds 𝜕𝑦𝜑(z, z) = 𝜓 ′(z). (4.3c)

Then for every v ∈ R, one has

lim
h→0+

𝜑(|g + hv|, 𝑓 ∨ |g + hv|) − 𝜑(|g|, 𝑓 )
h

=

⎧⎪⎪⎨⎪⎪⎩

𝜕𝑦𝜑(|g|, 𝑓 )sgn(g)v, if 𝑓 > |g| > 0,
𝜓 ′(|g|)sgn(g)v, if 𝑓 = |g| > 0,
𝜕𝑦𝜑(0, 𝑓 )|v|, if 𝑓 > |g| = 0,
𝜓 ′(0)|v|, if 𝑓 = |g| = 0.

Proof. We denote by I the limit we want to compute, and we distinguish among all the different cases. We first assume
that f> |g|, so we get

• if g = 0, then I = lim
h→0+

𝜑(h|v|,𝑓 )−𝜑(0,𝑓 )
h

= 𝜕𝑦𝜑(0, 𝑓 )|v|;
• if g> 0, then I = lim

h→0+
𝜑(g+hv,𝑓 )−𝜑(g,𝑓 )

h
= 𝜕𝑦𝜑(g, 𝑓 )v = 𝜕𝑦𝜑(|g|, 𝑓 )sgn(g)v;

• if g< 0, then I = lim
h→0+

𝜑(|g|−hv,𝑓 )−𝜑(|g|,𝑓 )
h

= −𝜕𝑦𝜑(|g|, 𝑓 )v = 𝜕𝑦𝜑(|g|, 𝑓 )sgn(g)v.

If instead 𝑓 = |g|, we have
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• if g = 0, then I = lim
h→0+

𝜑(h|v|,h|v|)−𝜑(0,0)
h

= lim
h→0+

𝜓(h|v|)−𝜓(0)
h

= 𝜓 ′(0)|v|;
• if g> 0 and v≥ 0, then I = lim

h→0+
𝜑(g+hv,g+hv)−𝜑(g,g)

h
= 𝜓 ′(g)v = 𝜓 ′(|g|)sgn(g)v;

• if g> 0 and v< 0, then I = lim
h→0+

𝜑(g+hv,g)−𝜑(g,g)
h

= 𝜕𝑦𝜑(g, g)v = 𝜓 ′(g)v = 𝜓 ′(|g|)sgn(g)v;

• if g< 0 and v≥ 0, then I = lim
h→0+

𝜑(|g|−hv,|g|)−𝜑(|g|,|g|)
h

= −𝜕𝑦𝜑(|g|, |g|)v = 𝜓 ′(|g|)sgn(g)v;

• if g< 0 and v< 0, then I = lim
h→0+

𝜓(|g|−hv)−𝜓(|g|)
h

= −𝜓 ′(|g|)v = 𝜓 ′(|g|)sgn(g)v.

So we conclude.

As an immediate corollary, we deduce:

Corollary 4.2. Let f, g be two measurable functions such that f∈L∞(0, L) and f≥ |g| a.e. in [0, L], and assume that 𝜑
satisfies (4.2a)–(4.2c). Then for every v∈L∞(0, L), it holds

lim
h→0+

[|g + hv|, 𝑓 ∨ |g + hv|] −[|g|, 𝑓 ]
h

= ∫{|g|>0}
𝜕𝑦𝜑(|g(x)|, 𝑓 (x))sgn(g(x))v(x)dx + 𝜓 ′(0)∫{𝑓=0}

|v(x)|dx.

Proof. We notice that, by the explicit expression of  given by (2.8), the limit we want to compute can be written as

lim
h→0+ ∫

L

0

𝜑(|g(x) + hv(x)|, 𝑓 (x) ∨ |g(x) + hv(x)|) − 𝜑(|g(x)|, 𝑓 (x))
h

dx.

Assumptions (4.2a) and (4.2b) allow us to pass to the limit inside the integral; thus, we conclude by means of
Lemma 4.1 and exploiting (4.2c).

We are now in a position to state and prove the first result of this section, namely, a weak form of the Euler–Lagrange
equation for the displacement u, or better for the stress 𝝈.

Proposition 4.3. Let Ei ∈C0([0, 1]), and assume that 𝜑 satisfies (4.2a)–(4.2c). Let (u,𝜶, 𝛾) satisfy (CO′) and (GS′) of
Definition 2.8. Then for every t∈ [0, T] and for every v ∈ [H1

0(0,L)]
2, it holds

||||||∫
L

0

2∑
i=1
𝜎i(t)v′idx + ∫{𝛿(t)>0}

[
𝜕𝑦𝜑(𝛿(t), 𝛾(t))sgn(u1(t) − u2(t))

]
(v1 − v2)dx

|||||| ≤ 𝜓 ′(0)∫{𝛾(t)=0}
|v1 − v2|dx, (4.4)

where the stresses 𝜎i have been introduced in (2.5).

In particular, for every t∈ [0, T], the sum of the stresses
2∑

i=1
𝜎i(t) is constant in [0, L].

Proof. We fix t∈ [0, T], and by choosing 𝜶̃ = 𝜶(t) in (GS′), we get for every h> 0 and v ∈ [H1
0(0,L)]

2:

[u(t),𝜶(t)] +[𝛿(t), 𝛾(t)]

≤ [u(t) + hv,𝜶(t)] +[|u1(t) − u2(t) + h(v1 − v2)|, 𝛾(t) ∨ |u1(t) − u2(t) + h(v1 − v2)|].
Letting h→ 0+, we thus deduce

0 ≤ lim
h→0+

[u(t) + hv,𝜶(t)] − [u(t),𝜶(t)]
h

+ lim
h→0+

[|u1(t) − u2(t) + h(v1 − v2)|, 𝛾(t) ∨ |u1(t) − u2(t) + h(v1 − v2)|] − K[𝛿(t), 𝛾(t)]
h

.
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The first limit is trivially equal to ∫ L
0
∑2

i=1 𝜎i(t)v′idx, while for the second one, we employ Corollary 4.2, and we finally
obtain

0 ≤ ∫
L

0

2∑
i=1
𝜎i(t)v′idx + ∫{𝛿(t)>0}

[
𝜕𝑦𝜑(𝛿(t), 𝛾(t))sgn(u1(t) − u2(t))

]
(v1 − v2)dx

+ 𝜓 ′(0)∫{𝛾(t)=0}
|v1 − v2|dx.

By following the same argument with −v, we prove (4.4).
In particular, if v1 = v2 =∶ v, we deduce that

∫
L

0

( 2∑
i=1
𝜎i(t)

)
v′dx = 0, for every v ∈ H1

0(0,L),

and so
∑2

i=1 𝜎i(t) is constant in [0, L].

We want to point out that if 𝜓 ′(0) were equal to 0 (usually false in a cohesive setting, in which 𝜓 is concave and
strictly increasing; see Remark 2.3), then inequality (4.4) would actually be equivalent to system (4.1a). The simplifica-
tions brought by the assumption 𝜓 ′(0) = 0 can be also found in Alessi and Freddi,10 where it has been used for numerical
reasons, and in Negri and Vitali,22 where it has been exploited to perform an approximation argument.

In our work, however, we do not need that additional (and not mechanically justified) assumption; indeed, inequal-
ity (4.4) will be enough for our purposes.

The next proposition deals with the damage variable 𝜶:

Proposition 4.4. Assume that Ei, wi ∈C1([0, 1]), and let (u,𝜶, 𝛾) satisfy (CO′) and (GS′) of Definition 2.8. Then, for
every t∈ [0, T] and for every 𝜷 ∈ [H1(0,L)]2 such that 𝛽 i ≥ 0 for i = 1, 2, it holds

2∑
i=1

(
1
2∫{𝛼i(t)<1}

E′
i (𝛼i(t))(ui(t)′)2𝛽idx + ∫{𝛼i(t)<1}

w′
i(𝛼i(t))𝛽idx + ∫{𝛼i(t)<1}

𝛼i(t)′𝛽′i dx
)

≥ 0.

Proof. We fix t∈ [0, T], and by choosing ũ = u(t) in (GS′), we get

[u(t),𝜶(t)] +[𝜶(t)] ≤  [
u(t), 𝜶̃

]
+ [

𝜶̃
]
, for every 𝜶̃ ∈ [H1(0,L)]2 s.t.𝛼i(t) ≤ 𝛼i ≤ 1. (4.5)

We now fix 𝜷 ∈ [H1(0,L)]2 such that 𝛽 i ≥ 0, and given h> 0, we define 𝜶̃h(t, x) as the vector inR2 whose components
are (𝛼i(t, x)+ h𝛽 i(x))∧ 1. By plugging 𝜶̃

h(t) in (4.5) as a test function and letting h→ 0+, we thus deduce

0 ≤ lim inf
h→0+

 [
u(t), 𝜶̃h(t)

]
− [u(t),𝜶(t)] + [

𝜶̃
h(t)

]
−[𝜶(t)]

h

= lim inf
h→0+

2∑
i=1

(
1
2 ∫

L

0

Ei
(
𝛼h

i (t)
)
− Ei(𝛼i(t))

h
(ui(t)′)2dx + ∫

L

0

wi
(
𝛼h

i (t)
)
− wi(𝛼i(t))

h
dx

+1
2 ∫

L

0

(
𝛼h

i (t)
′)2 − (𝛼i(t)′)2

h
dx

)
= lim inf

h→0+
(Ih + IIh + IIIh).

(4.6)

We study the limits of Ih, IIh and IIIh separately. Since Ei, wi are in C1([0, 1]), we can pass the limit inside the integral
in both Ih and IIh. We also notice that given f∈C1([0, 1]), a∈ [0, 1] and b≥ 0, one has

lim
h→0+

𝑓 ((a + hb) ∧ 1) − 𝑓 (a)
h

=

{
𝑓 ′(a)b, if a ∈ [0, 1),
0, if a = 1.
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Thus, we deduce that

lim
h→0+

Ih =
2∑

i=1

1
2∫{𝛼i(t)<1}

E′
i (𝛼i(t))(ui(t)′)2𝛽idx, and lim

h→0+
IIh =

2∑
i=1

∫{𝛼i(t)<1}
w′

i(𝛼i(t))𝛽idx. (4.7)

To deal with IIIh, we first observe that 𝛼h
i (t)

′ =

{
𝛼i(t)′ + h𝛽′i , a.e. in {𝛼i(t) + h𝛽i < 1},
0, a.e. in{𝛼i(t) + h𝛽i ≥ 1},

and so

IIIh =
2∑

i=1

(
∫{𝛼i(t)+h𝛽i<1}

𝛼i(t)′𝛽′i dx + h
2∫{𝛼i(t)+h𝛽i<1}

(𝛽′i )
2dx − 1

2h∫{𝛼i(t)+h𝛽i≥1}
(𝛼i(t)′)2dx

)
≤

2∑
i=1

(
∫{𝛼i(t)+h𝛽i<1}

𝛼i(t)′𝛽′i dx + h
2 ∫

L

0
(𝛽′i )

2dx
)
.

By an easy application of dominated convergence theorem, we hence obtain

lim sup
h→0+

IIIh ≤
2∑

i=1
∫{𝛼i(t)<1}

𝛼i(t)′𝛽′i dx, (4.8)

and collecting (4.6)–(4.8), we conclude.

The last result of the section is a by-product of the energy balance (EB′), assuming a priori that a generalised energetic
evolution possesses a certain regularity in time. This kind of regularity will be in fact proved in Section 5 under suitable
convexity assumptions on the data; thus, this a priori requirement is not restrictive.

We refer to Appendix A for the definition and the main properties of absolutely continuous functions in Banach spaces,
concepts we use in the next proposition.

Proposition 4.5. Assume that Ei, wi ∈C1([0, 1]) and that𝜑 satisfies (4.2a)–(4.2d) and (𝜑3). Let (u,𝜶, 𝛾) be a generalised
energetic evolution such that

u,𝜶 ∈ AC([0,T]; [H1(0,L)]2), and 𝛾 ∈ C0([0,T],C0([0,L])).

Then for a.e. t∈ [0, T], one has

• 1
2 ∫

L

0
E′

i (𝛼i(t))(ui(t)′)2 .
𝛼i(t)dx + ∫

L

0
w′

i(𝛼i(t))
.
𝛼i(t)dx + ∫

L

0
𝛼i(t)′

.
𝛼i(t)′dx = 0, for i = 1, 2;

• lim
h→0∫

L

0

𝜑(𝛿(t), 𝛾(t + h)) − 𝜑(𝛿(t), 𝛾(t))
h

dx = 0.
(4.9)

Proof. First of all, we notice that the time regularity we are assuming on u and 𝜶 ensures that the maps t →
[u(t),𝜶(t)] and t → [𝜶(t)] are absolutely continuous in [0, T]. Moreover, for almost every time t∈ [0, T], the
following expressions for their derivatives can be easily obtained:

d
dt
[u(t),𝜶(t)] =

2∑
i=1

(
1
2 ∫

L

0
E′

i (𝛼i(t))(ui(t)′)2 .
𝛼i(t)dx + ∫

L

0
Ei(𝛼i(t))ui(t)′

.ui(t)′dx
)
; (4.10a)

d
dt
[𝜶(t)] =

2∑
i=1

(
∫

L

0
w′

i(𝛼i(t))
.
𝛼i(t)dx + ∫

L

0
𝛼i(t)′

.
𝛼i(t)′dx

)
. (4.10b)



24 BONETTI ET AL.

By (EB′), since the work of the prescribed displacement [u,𝜶] is absolutely continuous by definition, we now
deduce that also the map t → [𝛿(t), 𝛾(t)] is absolutely continuous in [0, T]. Moreover, we know that 𝛿 belongs to
AC([0,T];H1

0(0,L)); indeed, both u1 and u2 are absolutely continuous with values in H1(0, L) by assumption. Thus,
for almost every t∈ [0, T], there exists the derivative of [𝛿(t), 𝛾(t)], and we can compute

d
dt
[𝛿(t), 𝛾(t)] = lim

h→0∫
L

0

𝜑(𝛿(t + h), 𝛾(t + h)) − 𝜑(𝛿(t), 𝛾(t))
h

dx

= ∫
L

0
𝜕𝑦𝜑(𝛿(t), 𝛾(t))

.
𝛿(t)dx + lim

h→0∫
L

0

𝜑(𝛿(t), 𝛾(t + h)) − 𝜑(𝛿(t), 𝛾(t))
h

dx,
(4.11)

where we exploited the continuity assumption of both 𝜕y𝜑 and 𝛾 .
Differentiating (EB′), using (4.10) and (4.11), and recalling that the sum of the stresses 𝜎i is constant in [0, L] by

Proposition 4.3, we deduce, for almost every t∈ [0, T],

0 =
2∑

i=1

(
1
2 ∫

L

0
E′

i (𝛼i(t))(ui(t)′)2 .
𝛼i(t)dx + ∫

L

0
w′

i(𝛼i(t))
.
𝛼i(t)dx + ∫

L

0
𝛼i(t)′

.
𝛼i(t)′dx

)
+ ∫

L

0

2∑
i=1

Ei(𝛼i(t))ui(t)′
.ui(t)′dx + ∫

L

0
𝜕𝑦𝜑(𝛿(t), 𝛾(t))

.
𝛿(t)dx −

.
ū(t)

2∑
i=1
𝜎i(t, 0)

+ lim
h→0∫

L

0

𝜑(𝛿(t), 𝛾(t + h)) − 𝜑(𝛿(t), 𝛾(t))
h

dx.

(4.12)

The term in the third line of (4.12) is non-negative by means of (𝜑3) and the fact that 𝛾 is non-decreasing (in time).
We thus conclude if we show that also the sum of the terms in the second line and each of the two terms (for i = 1, 2)
in the sum in the first line are non-negative.

We first focus on the first line. We notice that for i = 1, 2, the function .
𝛼i(t) ∈ H1(0,L) is non-negative and vanishes

on the set {𝛼i(t) = 1}; indeed, 𝛼i is non-decreasing in time, and it is always less or equal than 1. This means that we
can use it as a test function in Proposition 4.4, getting for a.e. t∈ [0, T]:

1
2 ∫

L

0
E′

i (𝛼i(t))(ui(t)′)2 .
𝛼i(t)dx + ∫

L

0
w′

i(𝛼i(t))
.
𝛼i(t)dx + ∫

L

0
𝛼i(t)′

.
𝛼i(t)′dx ≥ 0.

As regards the sum of the terms in the second line in (4.12), we actually prove it is equal to zero. To this aim, we make
use of Proposition 4.3 choosing as test functions vi(x) =

.ui(t, x) −
.
ū(t)x∕L ∈ H1

0(0,L), so that |v1 − v2| = | .u1(t) −
.u2(t)|.

We indeed notice that |v1 − v2| = 0 on the set {𝛾(t) = 0}: If x belongs to that set, then u1(𝜏, x)=u2(𝜏, x) for every
𝜏 ∈ [0, t], and thus, .u1(t, x) =

.u2(t, x). So we deduce for a.e. t∈ [0, T]:

0 = ∫
L

0

2∑
i=1
𝜎i(t)

(
.ui(t)′ −

.
ū(t)

L

)
dx + ∫{𝛿(t)>0}

[
𝜕𝑦𝜑(𝛿(t), 𝛾(t))sgn(u1(t) − u2(t))

]
( .u1(t) −

.u2(t))dx

= ∫
L

0

2∑
i=1

Ei(𝛼i(t))ui(t)′
.ui(t)′dx + ∫

L

0
𝜕𝑦𝜑(𝛿(t), 𝛾(t))

.
𝛿(t)dx −

.
ū(t)

2∑
i=1
𝜎i(t, 0).

In the above equality, we first used the fact that by definition,

.
𝛿(t) = ( .u1(t) −

.u2(t))sgn(u1(t) − u2(t)), in {𝛿(t) > 0},

and then we exploited the assumption 𝜕𝑦𝜑(0, z) = 0 for z> 0.
So the proof is complete.
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5 TIME REGULARITY AND EQUIVALENCE BETWEEN 𝛾 AND 𝛿h

In this section, we finally develop the strategy which will allow to show that the fictitious history variable 𝛾 actually
coincides with the concrete one 𝛿h in some meaningful cases (see Theorems 5.7 and 5.8). The argument, which exploits
the results of Section 4, is based on the regularity in time of generalised energetic evolutions; this feature, as noticed in
Mielke and Thomas,32 is a peculiarity of systems governed by convex energies. For this reason, in this section, we need to
strengthen the assumptions on the data, requiring for i = 1, 2:

Ei ∈ C2([0, 1]) is convex and satisfies 1
2

E′′
i (𝑦)Ei(𝑦) − E′

i (𝑦)
2 > 0 for every 𝑦 ∈ [0, 1]; (5.1)

wi ∈ C1([0, 1]) satisfies (1.7) and is uniformly convex with parameter 𝜇i > 0, namely,

wi(𝜃𝑦a + (1 − 𝜃)𝑦b) ≤ 𝜃wi(𝑦a) + (1 − 𝜃)wi(𝑦b) − 𝜇i

2
𝜃(1 − 𝜃)|𝑦a − 𝑦b|2, for every 𝜃, 𝑦a, 𝑦b ∈ [0, 1].

(5.2)

We notice that (5.1) implies (2.3), while (5.2) is trivially satisfied, for instance, by the simple example wi(𝑦) = 𝑦2+𝑦
2

. We
also define

Mi ∶= max
𝑦∈[0,1]

E′′
i (𝑦), mi ∶= min

𝑦∈[0,1]

(1
2

E′′
i (𝑦)Ei(𝑦) − E′

i (𝑦)
2
)
, (5.3)

which are strictly positive by (5.1), and we finally denote by 𝜇 the minimum between 𝜇1 and 𝜇2, namely,

𝜇 ∶= 𝜇1 ∧ 𝜇2 > 0. (5.4)

Remark 5.1 (Hardening materials). Condition (5.1) is a characteristic of the so-called hardening materials, namely,
those materials for which the compliance S(𝑦) ∶= E(𝑦)−1 is strictly concave. Indeed, by simple calculations, one has

S′′(𝑦) = − 2
E(𝑦)3

(1
2

E′′(𝑦)E(𝑦) − E′(𝑦)2
)
,

from which S′′ < 0 if and only if (5.1) is satisfied. Time regularity of evolutions is expected only for this kind of mate-
rials; indeed, in the opposite framework of softening materials (with convex compliance S), discontinuous evolutions
are common due to snapback phenomena (see also the analysis of Pham et al.35).

Of course, we also need some sort of convexity for the loading–unloading density 𝜑. However, we recall that usually
it originates from a concave function 𝜓 (see Remark 2.3); thus, in order to keep that crucial property, we only require a
weak form of convexity assumption on 𝜓 , already adopted in Negri and Scala21:

the function 𝜓 is𝜆-convex for some 𝜆 > 0, namely, for every 𝜃 ∈ [0, 1] and za, zb ∈ [0,+∞)

𝜓(𝜃za + (1 − 𝜃)zb) ≤ 𝜃𝜓(za) + (1 − 𝜃)𝜓(zb) + 𝜆

2
𝜃(1 − 𝜃)|za − zb|2, (5.5a)

while for 𝜑 itself, in addition to (4.2a)–(4.2d), we assume

for every z ∈ (0,+∞), the map 𝜑(·, z) is non-decreasing and convex. (5.5b)

Remark 5.2. Coupling (4.2a)–(4.2d) with (5.5), we have thus recovered the assumptions (𝜑5)–(𝜑8) listed in Section 2.
We point out again that they are satisfied by the prototypical example of loading–unloading density 𝜑 given by (2.11).

A crucial condition on the involved parameters will be given by

m1

M1
∧ m2

M2
> 𝜆

L2

𝜋2 . (5.6)

It morally says that the convexity of the internal energy  , represented by m1
M1

∧ m2
M2

, is stronger than the concavity of ,
represented by 𝜆, and thus, the overall behaviour is the one of a convex energy.
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Remark 5.3. As already observed in Mielke and Thomas and Pham et al,32,35 a simple example of functions satisfy-
ing (5.1) is given by

Ei(𝑦) =
ai

(1 + 𝑦)bi
, with ai > 0 and bi ∈ (0, 1).

In this case, indeed, it holds

1
2

E′′
i (𝑦)Ei(𝑦) − E′

i (𝑦)
2 =

a2
i

2
bi(1 − bi)

(1 + 𝑦)2(1+bi)
≥ a2

i

2
bi(1 − bi)

41+bi
= mi.

Moreover, Mi = max
𝑦∈[0,1]

E′′
i (𝑦) = aibi(1 + bi), so that

mi

Mi
= ai

2
1 − bi

1 + bi

1
41+bi

.

In the particular case in which a1 = a2 =∶ a and b1 = b2 = 1∕2, we get m1
M1

= m2
M2

= a
48

, and so condition (5.6) can be
written as

a
𝜆L2 >

48
𝜋2 ,

and can be achieved by increasing the parameter a or by decreasing 𝜆 or the length of the bar L.

For convenience, in this section, we also introduce the notation of the ‘shifted’ energy (see also Mielke and Roubíček,12

Remark 3.2). For t∈ [0, T] and x∈ [0, L], we define the function ūD(t, x) ∶=
(

ū(t)
L

x, ū(t)
L

x
)

, and we present the shifted
variable v(t) = u(t)− ūD(t), which has zero boundary conditions, and hence, it belongs to [H1

0(0,L)]
2. We finally introduce

the shifted energy:

D[t, v(t),𝜶(t)] ∶= [v(t) + ūD(t),𝜶(t)] = [u(t),𝜶(t)],
and we want to highlight its explicit dependence on time given by the prescribed displacement and encoded by the func-
tion ūD. Written in this form, the energy allows us to recast the work of the external prescribed displacement (2.14) in the
following way:

[u,𝜶](t) = ∫
t

0
𝜕tD[𝜏, v(𝜏),𝜶(𝜏)]d𝜏. (5.7)

Moreover, by simple computations, it is easy to see that for almost every time 𝜏 ∈ [0, T] and for every t∈ [0, T], the
following inequality holds true:

|𝜕tD[𝜏, v(𝜏),𝜶(𝜏)] − 𝜕tD[𝜏, v(t),𝜶(t)]| ≤ C| .
ū(𝜏)|(||𝜶(𝜏) − 𝜶(t)||2[H1(0,L)]2 + ||v(𝜏)′ − v(t)′||2[L2(0,L)]2

) 1
2
, (5.8)

where C> 0 is a suitable positive constant.
Furthermore, we also notice that the global stability condition (GS′) of Definition 2.8 can be rewritten as

for every t∈ [0, T], one has 𝛾(t)≥ 𝛿(t) in [0, L], and

D[t, v(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)] ≤ D
[
t, ṽ, 𝜶̃

]
+[𝜶̃] + [

𝛿, 𝛾(t) ∨ 𝛿
]
,

for every ṽ ∈ [H1
0(0,L)]

2 and for every 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼̃i ≤ 1 in [0, L] for i = 1, 2.

We finally have all the ingredients to start the analysis regarding the time regularity of generalised energetic evolutions.
We first state a useful lemma, whose simple proof can be found, for instance, in Lemma 5.6 of Gidoni and Riva38 or in
Lemma 4.3 of Heida and Mielke.39
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Lemma 5.4. Let (X, ||· ||) be a normed space, and let f : [a, b]→X be a bounded measurable function such that

||𝑓 (t) − 𝑓 (s)||2 ≤ ∫
t

s
||𝑓 (t) − 𝑓 (𝜏)||g(𝜏)d𝜏, for every a ≤ s ≤ t ≤ b,

for some non-negative g∈L1(a, b). Then actually it holds

||𝑓 (t) − 𝑓 (s)|| ≤ ∫
t

s
g(𝜏)d𝜏, for every a ≤ s ≤ t ≤ b.

We are now in a position to state and prove the first result of this section, which yields time regularity of generalised
energetic evolutions under the convexity assumptions we stated before. The argument is based on the ideas of Mielke and
Thomas,32 adapted to our setting where also a cohesive energy (concave by nature) is taken into account.

Proposition 5.5 (Time regularity). Assume that Ei satisfies (5.1), wi satisfies (5.2) and 𝜑 ∈ C0( ) satisfies (𝜑3) and
(𝜑5)–(𝜑8). Let (u,𝜶, 𝛾) be a generalised energetic evolution related to the prescribed displacement ū ∈ AC([0,T]). If
condition (5.6) on the parameters is satisfied, then both the displacements u and the damage variables 𝜶 belong to
AC([0, T]; [H1(0, L)]2), and so one also has 𝛿 ∈AC([0, T]; H1(0, L)) and 𝛿h ∈AC([0, T]; C0([0, L])).

If in addition the family {𝛾(t) ∧ 𝛿}t∈[0,T], with 𝛿 introduced in (2.10), is equicontinuous and for every 𝑦 ∈ [0, 𝛿) the map
𝜑(y, ·) is strictly increasing in [𝑦, 𝛿), then the function 𝛾 ∧ 𝛿 belongs to C0([0, T]; C0([0, L]).

Remark 5.6. We want to point out that the additional requirement of equicontinuity of the family {𝛾(t) ∧ 𝛿}t∈[0,T],
although cannot be derived directly from the Definition 2.8 of generalised energetic evolutions, is automatically
satisfied by the limit function 𝛾 obtained in Proposition 3.5. Thus, it is not restrictive.

Proof of Proposition 5.5. We first consider, for i = 1, 2, the Hessian matrix of the function [0, 1]×R ∋ (𝛼, v) → 1
2

Ei(𝛼)v2,
denoted by Hi(𝛼, v), and its quadratic form, namely, the map:

(x, 𝑦) → ⟨(x, 𝑦),Hi(𝛼, v)(x, 𝑦)⟩ = 1
2

E′′
i (𝛼)v

2x2 + 2E′
i (𝛼)vx𝑦 + Ei(𝛼)𝑦2.

By (5.1), it must be E′′
i (𝛼) > 0 for every 𝛼 ∈ [0, 1], and so we can write

⟨(x, 𝑦),Hi(𝛼, v)(x, 𝑦)⟩ = 2
E′′

i (𝛼)

[(1
2

E′′
i (𝛼)vx + E′

i (𝛼)𝑦
)2

+
(1

2
E′′

i (𝛼)Ei(𝛼) − E′
i (𝛼)

2
)
𝑦2
]

≥ 2 mi

Mi
𝑦2.

Thanks to this estimate on the Hessian matrix, it is easy to infer that for every t∈ [0, T], for every 𝜃 ∈ [0, 1] and for
every va, vb ∈ [H1

0(0,L)]
2 and 𝜶a,𝜶b ∈ [H1

[0,1](0,L)]
2, it holds

D[t, 𝜃va + (1 − 𝜃)vb, 𝜃𝜶a + (1 − 𝜃)𝜶b]

≤ 𝜃D[t, va,𝜶a] + (1 − 𝜃)D[t, vb,𝜶b] − m1

M1
∧ m2

M2
𝜃(1 − 𝜃)||(va)′ − (vb)′||2[L2(0,L)]2 .

(5.9)

By means of (5.2), we also deduce that for every t∈ [0, T], for every 𝜃 ∈ [0, 1] and for every 𝜶a,𝜶b ∈ [H1
[0,1](0,L)]

2,
we have

[𝜃𝜶a + (1 − 𝜃)𝜶b] ≤ 𝜃[𝜶a] + (1 − 𝜃)[𝜶b] − 𝜇 ∧ 1
2

𝜃(1 − 𝜃)||𝜶a − 𝜶b||2[H1(0,L)]2 . (5.10)

Finally, by (4.2c), (5.5a) and (5.5b) (which are implied by (𝜑5)–(𝜑8)), we deduce that for every z∈ [0,+∞), the
function y →𝜑(y, z∨ y) is 𝜆-convex in [0,+∞); thus, for every t∈ [0, T], for every 𝜃 ∈ [0, 1] and for every non-negative
𝛿a, 𝛿b ∈ H1

0(0,L), it holds
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[𝜃𝛿a + (1 − 𝜃)𝛿b, 𝛾(t) ∨ (𝜃𝛿a + (1 − 𝜃)𝛿b)]

≤ 𝜃[𝛿a, 𝛾(t) ∨ 𝛿a] + (1 − 𝜃)[𝛿b, 𝛾(t) ∨ 𝛿b] + 𝜆

2
𝜃(1 − 𝜃)||𝛿a − 𝛿b||2L2(0,L).

(5.11)

We now fix t∈ [0, T], 𝜃 ∈ (0, 1), ṽ ∈ [H1
0(0,L)]

2, 𝜶̃ ∈ [H1(0,L)]2 such that 𝛼i(t) ≤ 𝛼i ≤ 1 for i = 1, 2, and we consider
as competitors in (GS′) the functions 𝜃ṽ+(1− 𝜃)v(t) and 𝜃𝜶̃+(1− 𝜃)𝜶(t); by means of (5.9)–(5.11), together with (𝜑3)
and (5.5b), we thus get

D [t, v(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)]

≤ D
[
t, 𝜃ṽ + (1 − 𝜃)v(t), 𝜃𝜶̃ + (1 − 𝜃)𝜶(t)

]
+ [

𝜃𝜶̃ + (1 − 𝜃)𝜶(t)
]

+[|𝜃(ṽ1 − ṽ2) + (1 − 𝜃)(v1(t) − v2(t))|, 𝛾(t) ∨ |𝜃(ṽ1 − ṽ2) + (1 − 𝜃)(v1(t) − v2(t))|]
≤ 𝜃D

[
t, ṽ, 𝜶̃

]
+ (1 − 𝜃)D[t, v(t),𝜶(t)] −

m1

M1
∧ m2

M2
𝜃(1 − 𝜃)||(ṽ

)′ − (v(t))′||2[L2(0,L)]2

+ 𝜃 [
𝜶̃
]
+ (1 − 𝜃)[𝜶(t)] − 𝜇 ∧ 1

2
𝜃(1 − 𝜃)||𝜶̃ − 𝜶(t)||2[H1(0,L)]2

+ 𝜃 [
𝛿, 𝛾(t) ∨ 𝛿

]
+ (1 − 𝜃)[𝛿(t), 𝛾(t)] + 𝜆

2
𝜃(1 − 𝜃)||𝛿 − 𝛿(t)||2L2(0,L).

(5.12)

We now exploit the well-known sharp Poincaré inequality:

∫
b

a
𝑓 (x)2dx ≤ (b − a)2

𝜋2 ∫
b

a
𝑓 ′(x)2dx, for every 𝑓 ∈ H1

0(a, b),

to deduce that

||𝛿 − 𝛿(t)||2L2(0,L) ≤ 2 L2

𝜋2 ||(ṽ
)′ − (v(t))′||2[L2(0,L)]2 . (5.13)

By plugging (5.13) in (5.12), dividing by 𝜃 and then letting 𝜃→ 0+, we finally deduce(
m1

M1
∧ m2

M2
− 𝜆L2

𝜋2

) ||(ṽ
)′ − (v(t))′||2[L2(0,L)]2 +

𝜇 ∧ 1
2

||𝜶̃ − 𝜶(t)||2[H1(0,L)]2

+ D[t, v(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(t)]

≤ D
[
t, ṽ, 𝜶̃

]
+ [

𝜶̃
]
+ [

𝛿, 𝛾(t) ∨ 𝛿
]
.

(5.14)

For the sake of simplicity, we denote by c the minimum between m1
M1

∧ m2
M2

− 𝜆 L2

𝜋2 and 𝜇∧1
2

, and we notice that c is
strictly positive by (5.6). We now fix two times 0≤ s≤ t≤T. Exploiting (5.14) at time s with ṽ = v(t) and 𝜶̃ = 𝜶(t), and
recalling (EB′) and (5.7), we obtain

c
(||𝜶(t) − 𝜶(s)||2[H1(0,L)]2 + ||v(t)′ − v(s)′||2[L2(0,L)]2

)
≤ D[s, v(t),𝜶(t)] +[𝜶(t)] +[𝛿(t), 𝛾(s) ∨ 𝛿(t)] − D[s, v(s),𝜶(s)] −[𝜶(s)] −[𝛿(s), 𝛾(s)]

≤ D[s, v(t),𝜶(t)] − D[t, v(t),𝜶(t)] +[u,𝜶](t) −[u,𝜶](s)

≤ ∫
t

s
|𝜕tD[𝜏, v(𝜏),𝜶(𝜏)] − 𝜕tD[𝜏, v(t),𝜶(t)]|d𝜏.

By using (5.8), we thus deduce

||𝜶(t) − 𝜶(s)||2[H1(0,L)]2 + ||v(t)′ − v(s)′||2[L2(0,L)]2

≤ C
c ∫

t

s
| .
ū(𝜏)|(||𝜶(𝜏) − 𝜶(t)||2[H1(0,L)]2 + ||v(𝜏)′ − v(t)′||2[L2(0,L)]2

) 1
2 d𝜏.
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By means of (2.16a), we can apply Lemma 5.4 getting

(||𝜶(t) − 𝜶(s)||2[H1(0,L)]2 + ||v(t)′ − v(s)′||2[L2(0,L)]2

) 1
2 ≤ C

c ∫
t

s
| .
ū(𝜏)|d𝜏,

and so we infer that 𝜶 belongs to AC([0, T]; [H1(0, L)]2) and v belongs to AC([0,T]; [H1
0(0,L)]

2). By construction, we
also have ||u(t) − u(s)||[H1(0,L)]2 ≤ ||v(t) − v(s)||[H1(0,L)]2 + ||uD(t) − uD(s)||[H1(0,L)]2

≤ ||v(t) − v(s)||[H1(0,L)]2 + C|ū(t) − ū(s)|,
so also u belongs to AC([0, T]; [H1(0, L)]2), and as a simple by-product, we obtain that 𝛿 is AC([0, T]; H1(0, L)).

Since H1(0, L)⊆C0([0, L]), in particular, there exists a non-negative function 𝜙∈L1(0, T) such that

||𝛿(t) − 𝛿(s)||C0([0,L]) ≤ ∫
t

s
𝜙(𝜏)d𝜏, for every 0 ≤ s ≤ t ≤ T. (5.15)

We now show that the same inequality holds true for 𝛿h in place of 𝛿. We thus fix 0≤ s≤ t≤T and x∈ [0, L]. If
𝛿h(t, x) = 𝛿h(s, x), there is nothing to prove, so let us assume 𝛿h(t, x)>𝛿h(s, x). By definition of 𝛿h and since now we
know that 𝛿 is continuous both in time and space, we deduce that

𝛿h(t, x) = max
𝜏∈[0,t]

𝛿(𝜏, x) = 𝛿(tx, x), for some tx ∈ [s, t].

So we have

𝛿h(t, x) − 𝛿h(s, x) ≤ 𝛿(tx, x) − 𝛿(s, x) ≤ ∫
tx

s
𝜙(𝜏)d𝜏 ≤ ∫

t

s
𝜙(𝜏)d𝜏.

We have thus proved the validity of (5.15) with 𝛿h in place of 𝛿, and hence, 𝛿h belongs to AC([0, T]; C0([0, L])).
We only need to prove that 𝛾 ∧ 𝛿 ∈ C0([0,T];C0([0,L]) under the additional assumptions that {𝛾(t) ∧ 𝛿}t∈[0,T] is an

equicontinuous family and𝜑(y, ·) is strictly increasing in [𝑦, 𝛿) for any given 𝑦 ∈ [0, 𝛿). For the sake of clarity, we prove
it only in the case 𝛿 = +∞; in the other situation, the result can be obtained arguing in the same way and recalling
equality (2.12). To this aim, we observe that, by equicontinuity, for every t∈ [0, T], the right and the left limits 𝛾+(t)
and 𝛾−(t) are continuous in [0, L]. By monotonicity and using classical Dini's theorem, we hence obtain

𝛾±(t) = lim
h→0±

𝛾(t + h), uniformly in [0,L]. (5.16)

So we conclude if we prove that 𝛾+(t) = 𝛾−(t).
Arguing as in the proof of Proposition 4.5, since u and 𝜶 are in AC([0, T]; [H1(0, L)]2), we deduce by (EB′) that the

map t → [𝛿(t), 𝛾(t)] is continuous in [0, T], and thus, for every t∈ [0, T], we have

lim
h→0+

[𝛿(t + h), 𝛾(t + h)] = lim
h→0−

[𝛿(t + h), 𝛾(t + h)].

By using (5.16), we can pass to the limit inside the integral getting

∫
L

0
𝜑(𝛿(t), 𝛾+(t))dx = ∫

L

0
𝜑(𝛿(t), 𝛾−(t))dx.

Since 𝜑(y, ·) is strictly increasing, we conclude.

Thanks to the time regularity obtained in the previous proposition, we are able to prove our main results. The first
theorem ensures the equality between 𝛾 and 𝛿h (actually between 𝛾 ∧ 𝛿 and 𝛿h ∧ 𝛿, which however are the meaningful
ones; see Remark 2.9) assuming a priori equicontinuity on the family {𝛾(t)}t∈ [0, T ], which is however not restrictive due
to Remark 5.6; a similar argument to the one adopted here, but in an easier setting, can be found in Proposition 2.7
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of Riva.40 The second theorem states that the generalised energetic evolution obtained in Section 3 as limit of discrete
minimisers is actually an energetic evolution. We thus reach our goal, avoiding the assumption (𝜑4) and considering the
list of reasonable assumptions (𝜑5)–(𝜑9) (actually, we replace (𝜑9) by the weaker (5.17)) which, for instance, are satisfied
by the example provided in Remark 2.3.

We finally point out that, even under the convexity assumptions of this section, the issue of uniqueness for energetic
evolutions cannot be easily inferred from our techniques, due to the presence of the history slip and of the cohesive energy
in the interface.

Theorem 5.7 (Equivalence between 𝛾 and 𝛿h). Let the prescribed displacement ū belong to the space AC([0, T]). Assume
that Ei satisfies (5.1), wi satisfies (5.2) and 𝜑 ∈ C0( ) satisfies (𝜑5)–(𝜑8), plus the following uniform strict monotonicity
with respect to z:

for every compact set K ∈ {z > 𝑦 ≥ 0} ∩ ̄𝛿̄, there exists a positive constant CK > 0 such that

𝜑(𝑦, z2) − 𝜑(𝑦, z1) ≥ CK(z2 − z1)

for every (z2, 𝑦), (z1, 𝑦) ∈ K satisfying z2 ≥ z1.

(5.17)

Assume also condition (5.6) on the parameters. Then, given a generalised energetic evolution (u,𝜶, 𝛾) such that the
family {𝛾(t) ∧ 𝛿}t∈[0,T] is equicontinuous, the function 𝛾 ∧ 𝛿 coincides with 𝛿h ∧ 𝛿.

Proof. For the sake of clarity, we prove the result only in the case 𝛿 = +∞, being the other situation analogous
by (2.12).

We know that 𝛾 ≥ 𝛿h and that 𝛾(0) = 𝛿h(0) = 𝛿0 and 𝛾(t, 0) = 𝛾(t,L) = 𝛿h(t, 0) = 𝛿h(t,L) = 0 for every t∈ [0, T].
Moreover, by Proposition 5.5, we know that both 𝛾 and 𝛿h are continuous on [0, T]× [0, L].

We thus assume by contradiction that there exists (t̄, x̄) ∈ (0,T] × (0,L) for which 𝛾(t̄, x̄) > 𝛿h(t̄, x̄); by continuity, we
thus deduce that there exists 𝜂 > 0 such that

𝛾(t, x) > 𝛿h(t, x) ≥ 𝛿(t, x), for every (t, x) ∈ [t̄ − 𝜂, t̄ ] × [x̄ − 𝜂, x̄ + 𝜂].

By assumption (5.17), we hence infer the existence of constant c𝜂 > 0 for which

𝜑(𝛿(s, x), 𝛾(t, x)) − 𝜑(𝛿(s, x), 𝛾(s, x)) ≥ c𝜂(𝛾(t, x) − 𝛾(s, x)),

for every t̄ − 𝜂 ≤ s ≤ t ≤ t̄ and x ∈ [x̄ − 𝜂, x̄ + 𝜂].
(5.18)

We now recall that by Proposition 5.5, we know the map t → [𝛿(t), 𝛾(t)] is absolutely continuous in [0, T]. So for
every 0≤ s≤ t≤T, we can estimate

∫
L

0
(𝜑(𝛿(s), 𝛾(t)) − 𝜑(𝛿(s), 𝛾(s)))dx

= [𝛿(t), 𝛾(t)] −[𝛿(s), 𝛾(s)] + ∫
L

0
(𝜑(𝛿(s), 𝛾(t)) − 𝜑(𝛿(t), 𝛾(t)))dx

≤ ∫
t

s

d
dt
[𝛿(𝜏), 𝛾(𝜏)]d𝜏 + C||𝛿(t) − 𝛿(s)||C0([0,L]) ≤ ∫

t

s
𝜙(𝜏)d𝜏,

(5.19)

where 𝜙∈L1(0, T) is a suitable non-negative function.
Combining (5.18) and (5.19), we now obtain

c𝜂 ∫
x̄+𝜂

x̄−𝜂
(𝛾(t) − 𝛾(s))dx ≤ ∫

t

s
𝜙(𝜏)d𝜏, for every t̄ − 𝜂 ≤ s ≤ t ≤ t̄;

hence, 𝛾 ∈ AC([t̄ − 𝜂, t̄ ];L1(x̄ − 𝜂, x̄ + 𝜂)).
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By means of (4.9), we now deduce that for a.e. t ∈ [t̄ − 𝜂, t̄ ], we have

0 = lim
h→0∫

L

0

𝜑(𝛿(t), 𝛾(t + h)) − 𝜑(𝛿(t), 𝛾(t))
h

dx ≥ c𝜂lim sup
h→0 ∫

x̄+𝜂

x̄−𝜂

𝛾(t + h) − 𝛾(t)
h

dx ≥ 0,

namely, for almost every t ∈ [t̄ − 𝜂, t̄ ], the function 𝛾 is strongly differentiable in L1(x̄ − 𝜂, x̄ + 𝜂) and .
𝛾(t) = 0. By

Proposition A.3, we now obtain

𝛾(t) = 𝛾(t̄ − 𝜂) + ∫
t

t̄−𝜂

.
𝛾(𝜏)d𝜏 = 𝛾(t̄ − 𝜂), for every t ∈ [t̄ − 𝜂, t̄ ], as an equality in L1(x̄ − 𝜂, x̄ + 𝜂).

In particular, since 𝛾 is continuous, we deduce that 𝛾(t̄, x̄) = 𝛾(t̄ − 𝜂, x̄).
We now show that, since 𝛿h is non-decreasing, we can iterate the previous argument getting 𝛾(t̄, x̄) = 𝛾(0, x̄). This

would lead to a contradiction, since it would imply

𝛿0(x̄) = 𝛾(0, x̄) = 𝛾(t̄, x̄) > 𝛿h(t̄, x̄) ≥ 𝛿h(0, x̄) = 𝛿0(x̄).

To check that 𝛾(t̄, x̄) = 𝛾(0, x̄), we consider t0(x̄) ∶= min
{

t ∈ [0, t̄ ]|𝛾(t, x̄) = 𝛾(t̄, x̄)
}

, which is well defined by the
continuity of 𝛾(·, x̄). Notice that there holds

𝛾(t0(x̄), x̄) = 𝛾(t̄, x̄) > 𝛿h(t̄, x̄) ≥ 𝛿h(t0(x̄), x̄).

Hence, if t0(x̄) > 0, by arguing exactly as before, we can find 𝜂 > 0 such that 𝛾(t0(x̄) − 𝜂, x̄) = 𝛾(t̄, x̄), contradicting the
minimality of t0(x̄). Thus, t0(x̄) = 0, and we conclude.

Theorem 5.8 (Existence of energetic evolutions). Let the prescribed displacement ū belong to the space AC([0, T]) and
the initial data u0, 𝜶0 fulfil (2.13) together with stability condition (2.15). Assume that Ei satisfies (5.1), wi satisfies (5.2)
and 𝜑 ∈ C0( ) satisfies (𝜑2), (𝜑5)–(𝜑8) and (5.17). Assume also condition (5.6) on the parameters. Then the pair (u,𝜶)
composed by the functions obtained in Proposition 3.5 is an energetic evolution, since it holds 𝛾 ∧ 𝛿 = 𝛿h ∧ 𝛿, with 𝛿
introduced in (2.10).

Moreover, u and 𝜶 belong to AC([0, T]; [H1(0, L)]2), and so in particular, the history slip 𝛿h is in AC([0, T]; C0([0, L])).

Proof. The result is a simple by-product of Theorem 3.11 together with Proposition 5.5 and Theorem 5.7 (we also
recall (2.12)). We indeed notice that the equicontinuity assumption on the family {𝛾(t) ∧ 𝛿}t∈[0,T] (actually on the
whole {𝛾(t)}t∈ [0, T ]) is automatically satisfied by the limit function 𝛾 obtained in Proposition 3.5.

6 CONCLUSIONS

The obtained results offer new insights for further investigations. The 2D numerical investigations presented in Alessi
and Freddi,16 where the complex failure modes of hybrid laminates are consistently reproduced, suggest to extend the the-
oretical investigation to higher dimensional settings whereby the introduction of the anisotropic behaviour of materials
allows the analysis of problems of interest for the conservation of cultural heritage17,41 and other microcracking phenom-
ena such.42 A second line of exploration could also be the analysis of the problem in case of complete damage, meant as
complete loss of material stiffness.

Moreover, it would be interesting to extend the proposed approach to classical problems of cohesive fracture mechanics.
In this case, dissipation combined with irreversible effects introduces difficulties, at least when dealing with global min-
imisers of the energy, in considering loading–unloading cohesive laws that reflect the real behaviour of materials rather
than hypotheses dictated by mere mathematical assumptions. The main difference provided by cohesive fracture models
with respect to the considered problem of cohesive interface relies in the reduced dimension of the fracture, which is a
(d− 1)-dimensional object in a d-dimensional material. This feature involves the use of weaker topologies, which cannot
be directly treated following our argument, and thus requires further adaptations in order to transfer our results.
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APPENDIX A: ABSOLUTELY CONTINUOUS AND BV VECTOR-VALUED FUNCTIONS

In this appendix, we briefly present the main definitions and properties of vector-valued absolutely continuous functions
and functions of bounded variation we used throughout the paper. A deeper and more detailed analysis can be found in
the Appendix of Brezis,43 to which we refer for all the proofs and examples. Here, (X, ||· ||) will denote a Banach space,
and by X∗, we mean its topological dual. The duality product between w∈X∗ and x∈X is finally denoted by ⟨w, x⟩.

Definition A.1. A function f : [0, T]→X is said to be

• a function of bounded variation (BV([0, T]; X)) if

• absolutely continuous (AC([0, T]; X)) if there exists a non-negative function 𝜙∈L1(0, T) such that

||𝑓 (t) − 𝑓 (s)|| ≤ ∫
t

s
𝜙(𝜏)d𝜏, for every 0 ≤ s ≤ t ≤ T;

• in the space W̃ 1,p(0,T;X), p∈ [1,+∞], if there exists a non-negative function 𝜙∈Lp(0, T) such that

||𝑓 (t) − 𝑓 (s)|| ≤ ∫
t

s
𝜙(𝜏)d𝜏, for every 0 ≤ s ≤ t ≤ T;

info:doi/10.1002/mma.7999
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• in the Sobolev space W1, p(0, T; X), p∈ [1,+∞], if there exists a function g∈Lp(0, T; X) such that

𝑓 (t) = 𝑓 (0) + ∫
t

0
g(𝜏)d𝜏, for every t ∈ [0,T].

As in the classical case X = R any function of bounded variation belongs to L∞(0, T; X), it admits right and left (strong)
limits at every t∈ [0, T] and the set of its discontinuity points is at most countable. To gain the well-known property of
almost everywhere differentiability also in the vector-valued framework, it is instead crucial to require X to be reflexive
(see the examples in Brezis43).

Proposition A.2. If X is reflexive, then any function f belonging to BV([0, T]; X) is weakly differentiable almost
everywhere in [0, T]. Moreover, || .

𝑓 (t)|| ≤ d
dt

VX ( 𝑓 ; 0, t) for a.e. t∈ [0, T] and in particular
.
𝑓 ∈ L1(0,T;X).

We now focus our attention on absolutely continuous and Sobolev functions. By the very definition, it is easy to see that
any absolutely continuous function is also of bounded variation; furthermore, the spaces AC([0, T]; X) and W̃ 1,1(0,T;X)
coincide, while W̃ 1,∞(0,T;X) is the space of Lipschitz functions from [0, T] to X. Moreover, for every p∈ [1,+∞], the
inclusion W 1,p(0,T;X) ⊆ W̃ 1,p(0,T;X) always holds but in general is strict.

The next proposition states that the Sobolev space W1, p(0, T; X) is actually characterised by the strong differentiability
of its elements.

Proposition A.3. Let p∈ [1,+∞], and let f be a function from [0, T] to X. Then the following are equivalent:

(i) f∈W1, p(0, T; X);
(ii) 𝑓 ∈ W̃ 1,p(0,T;X), and it is strongly differentiable for a.e. t∈ [0, T]; and

(iii) for every w∈X∗, the map t → ⟨w, f(t)⟩ is absolutely continuous in [0, T], f is weakly differentiable for a.e. t∈ [0, T]
and

.
𝑓 ∈ Lp(0,T;X).

If one of the above condition holds, then one has

𝑓 (t) = 𝑓 (0) + ∫
t

0

.
𝑓 (𝜏)d𝜏, for every t ∈ [0,T]. (A1)

In the reflexive case, as in Proposition A.2, we gain differentiability of absolutely continuous functions, and so we
deduce the equivalence between the two spaces W̃ 1,p(0,T;X) and W1, p(0, T; X).

Proposition A.4. If X is reflexive, then for every p∈ [1,+∞], the Sobolev space W1, p(0, T; X) coincides with W̃ 1,p(0,T;X).
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