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A B S T R A C T   

Cancer therapy is based on the selective clearance of malignant cells without severely damaging healthy tissues, 
and current clinical practice is constantly in need for new therapeutic targets in tumor management. The atypical 
protein kinase Haspin is conserved among most eukaryotes, and it has been shown to be particularly active in 
cycling cells. Along the years, several reports ascribed this protein the role to monitor chromosomal dynamics, 
primary cilia regulation and cellular polarization. Recently, an increasing amount of literature has depicted 
Haspin as a promising target to tackle tumors, as highlighted by its overexpression in malignant tissues and its 
requirement for cancer cell proliferation. In this work, we provide a detailed description on the current 
knowledge on Haspin, its physiological roles, the mechanisms underlying its regulation and its potential 
contribution to carcinogenesis.   

1. Structure and regulation of Haspin kinase 

The atypical protein kinase Haspin (Haploid germ cell-specific nu
clear protein kinase) was originally identified in murine testis in 1999 
[1], and was later found to be coded by an intron-less gene with 
transposon-like features located within an intron of integrin αE [2,3], 
named GSG2. Haspin paralogues have been found in most eukaryotes 
investigated so far [4–6], suggesting a conserved, prominent role in 
eukaryotic organisms. An initial characterization of Haspin sequence 
revealed a moderate conservation through evolution, with 66% of 
overall identity between the murine and human paralogues, which rises 
to 83% in the C-terminus [2,4], and a similar pattern of conservation in 
the C-terminus has been observed in other eukaryotes [7]. 

Under a structural point of view, Haspin kinase domain shows poor 
sequence homology with eukaryotic protein kinases (ePKs), bearing 
several peculiar inserts [7,8] including an atypical activation segment 
that specifically recognizes the basic histone tail. Moreover, Haspin 
lacks typical elements of ePKs such as the Asp-Phe-Gly ATP/Mg2+
binding motif, which is replaced by Asp-Tyr-Thr, and the presence of an 
Ala-Pro-Glu motif at the end of the activation segment [8]. Although 
expressed throughout the cell-cycle, Haspin activity peaks at mitosis [6] 
and is regulated by the presence of an autoinhibitory loop which folds on 
the catalytic domain. Multiple phosphorylation events by Cdk1 and 
Polo-like kinase in M remove the autoinhibition releasing the intrinsi
cally active kinase activity [9,10]. 

Haspin localization, mainly studied by overexpression experiments, 

revealed it as a nuclear protein [11,12]. When cells enter mitosis, Haspin 
associates with condensing chromosomes, with a higher concentration 
in the centromeric region [11,13]. In prometaphase, it shows up at the 
centrosomes and in telophase at the midbody [11]. Unscheduled activity 
of Haspin is also prevented by modulating its localization, as a robust 
recruitment of this kinase to the chromatin only occurs following 
interaction with SUMOylated Topoisomerase IIα [14,15]. Still, basal 
levels of Haspin activity have been reported both in interphase cells, by 
Fresán et al. [16], and in quiescent cells, by us [17], thus suggesting the 
existence of other mechanisms subtly modulating Haspin activity out of 
mitosis. 

2. Evidence for a pro-tumorigenic role for Haspin 

As a central modulator of cell proliferation and chromosome segre
gation, Haspin is well positioned to be implicated in cancer. Multiple 
lines of evidence, recapitulated in Table 1, suggest that Haspin might 
indeed play a relevant role in tumorigenesis. Haspin was shown to be 
overexpressed in several transformed cell types compared to healthy 
counterparts, ranging from models of skin, lung, colon and bone cancers 
[18,19], to primary malignancies of the pancreas [20], gallbladder [21], 
prostate [22], bladder [23], ovaries [24], breast [25] and chol
angiocarcinoma [26]. A direct correlation between Haspin expression 
levels and the grade of the malignancy [20–24,26] and an anti
correlation with patients' survival were reported [20,23,24,27]. 
Remarkably, this paradigm has been questioned by the observation that, 

* Corresponding authors. 
E-mail addresses: roberto.quadri@unimi.it (R. Quadri), marco.muzifalconi@unimi.it (M. Muzi-Falconi).  

Contents lists available at ScienceDirect 

Cellular Signalling 

journal homepage: www.elsevier.com/locate/cellsig 

https://doi.org/10.1016/j.cellsig.2022.110303 
Received 8 February 2022; Received in revised form 4 March 2022; Accepted 4 March 2022   

mailto:roberto.quadri@unimi.it
mailto:marco.muzifalconi@unimi.it
www.sciencedirect.com/science/journal/08986568
https://www.elsevier.com/locate/cellsig
https://doi.org/10.1016/j.cellsig.2022.110303
https://doi.org/10.1016/j.cellsig.2022.110303
https://doi.org/10.1016/j.cellsig.2022.110303
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cellsig.2022.110303&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cellular Signalling 93 (2022) 110303

2

in several breast cancer cell lines, Haspin expression levels do not 
correlate with malignancy grade but rather with the proliferative rate of 
the cells [28]. Up to now no efforts have been made to discriminate 
whether increased Haspin expression is ascribable to a faster prolifera
tion or to peculiar tumor-specific pathways; yet, this upregulation is 
likely not due to an amplification of the GSG2 gene, as GSG2 loss of 
heterozygosity is often observed in cancers [8,29], and no differences in 
Haspin expression levels were observed in breast tumors with a deletion 
of one GSG2 allele compared to diploid counterparts [25]. 

Whatever the case, along the years several studies have shown an 
intimate connection between Haspin activity and tumor development. 
The first finding proposing Haspin as a target for cancer treatment came 
from Huertas and colleagues, who showed how treatment with Haspin 
inhibitor CHR-6494 led to mitotic catastrophe and apoptosis in breast, 
colon and ovary tumor models [30]. This concept was then extended by 
a plethora of studies conducted exploiting different chemical and 
silencing approaches to deprive the cells of Haspin activity in several 
cellular models: CHR-6494 was shown to trigger apoptosis in multiple 
melanoma cell lines [31] and decreased polyp formation in a familial 
colorectal cancer murine model [32], coumestrol has been reported to 
inhibit growth of melanoma, lung and colon tumoral models [18], 3H- 
pyrazolo[4,3-f]quinoline reduces growth of malignant colon, skin and 
cervix cell lines [33], and, more in general, loss of Haspin activity has 
been reported to cause an accumulation of G2/M cells and enhanced 
apoptosis in gallbladder [21], prostate [20,22,27], bladder [23], ovarian 
[24], skin [34] and breast [28] cancer models. In agreement with this, 
and supporting its requirement for carcinogenesis, loss of Haspin ac
tivity results in delayed tumor growth in multiple models of mouse 
xenograft [20–23,26,27,30,34]. On top of this, Haspin activity has been 
shown to sustain cellular migration in several cellular models 
[20,26,27,31]. Though we are still missing a clear mechanism by which 

Haspin contributes to tumor development, literature data on its function 
allow to draw several speculations on how this might occur, as described 
below. 

3. Haspin functions and potential tumor-supportive effects 

3.1. Impact of Haspin on mitotic chromosomal dynamics 

Cancer cells often exhibit chromosomal aberrations and aneu
ploidies, with about 90% of human tumors being aneuploid [35], rep
resenting the most recurrent genetic alteration of malignant tissues. 
Although the exact contribution of aneuploidies to cancer development 
has not been fully comprehended, aneuploidy has been observed to 
often correlate with pro-oncogenic features [35–37]. It is thought to 
promote genomic instability, favoring the insurgence of DNA mutations, 
karyotype evolution and an overall improved fitness of malignant cells 
[38]. Thus, understanding and tackling the mechanism regulating 
chromosome segregation and, hence, aneuploidy insurgence, is a para
mount goal for an improved management of tumors. 

3.1.1. H3-Thr3p as a local landmark to recruit the chromosomal passenger 
complex 

The first functional characterization of Haspin came from Higgins' 
group in 2005, when Dai et al. reported the presence of histones in a 
human Haspin immunoprecipitate and the direct phosphorylation of 
human H3-Thr3 by Haspin [11], a modification reverted at the end of 
mitosis by the activity of RepoMan-PP1 [39]. In the same work, Dai and 
colleagues showed that loss of Haspin also causes failures in chromo
some alignment on the metaphase plate hence promoting chromosome 
missegregation events [11]; this study first established a contribution of 
Haspin activity to a successful mitosis. In the next few years, other works 

Table 1 
Effects of Haspin loss on tumors. Haspin expression levels (second column, either measured as protein or transcript 
abundance) and given Haspin-related phenotypes (third to seventh columns) are reported as measured on indicated primary 
tumors or models (first column). *: upon loss of Haspin activity; n.s.: not statistical correlation detected; grey cells: given 
phenotype has not been assessed in the corresponding biological sample. 
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further extended the number of processes impacted by a downregulation 
of Haspin, and begun to draw a connection between Haspin and the 
chromosome passenger complex (CPC) [40], a protein complex made up 
of Aurora B, Survivin, Borealin and INCENP able to drive the response to 
chromosome misattachments to the mitotic spindle and prevent aneu
ploidies [11,41]. However, it was not until 2010 that the mechanism 
linking Haspin-mediated phosphorylation of H3-Thr3 with chromosome 
segregation was unveiled by three distinct groups led Higgins, Funabiki 
and Watanabe. Working independently in human, Xenopus or yeast 
models respectively, they came to the same conclusion that Survivin 
directly binds H3-Thr3p to direct CPC at inner centromeric regions in 
mitosis [13,42,43] (while a distinct pool of the CPC is recruited to 
kinetochore-proximal centromeric regions through Bub1-dependent 
H2A-Thr120p [13,44–46]); a milestone that has been extended in the 
upcoming years leading to a deep comprehension of the intimate 
interplay between Haspin, CPC and mitotic chromosome segregation. 

Given its delicate role, the activity of Haspin must be tightly regu
lated so that unscheduled H3-Thr3 is prevented. This occurs thanks to 
the presence of the aforementioned autoinhibitory domain that prevents 
the interaction between the catalytic core and its substrate during 
interphase. The inhibitory domain is displaced as cells approach mitosis, 
via a cascade of phosphorylation events by mitotic kinases. Haspin 
mitotic activation is thus a tripartite process consisting of an initial 
activation in early mitosis by CycB-CDK1, followed by the phosphory
lation of Haspin-Thr128 by PLK1 and a concomitant recruitment of the 
CPC to the chromatin, where Aurora B can further phosphorylate Haspin 
[9,10,41]. This generates a feedback loop that, also thanks to the 
contribution of the Bub1/Shugoshin pathway, leads to the buildup of a 
consistent CPC pool at inner centromeres, where it targets multiple 
kinetochore subunits that trigger activation of the spindle assembly 
checkpoint and the consequent cell-cycle arrest in presence of spindle 
misattachments preventing errors in chromosome segregation and the 
insurgence of aneuploidies (Fig. 1). 

3.1.2. Haspin prevents unscheduled cohesin cleavage 
Loss of Haspin activity was also shown to lead to a general loss of 

sister chromatids cohesion, though the underlying mechanism was not 
initially undisclosed [40]. 

Following DNA replication, a tight cohesion of sister chromatids is 
ensured by the cohesin complex, a ring-shaped protein complex whose 
core subunits are Smc1, Smc3, Scc1 and Scc3/SA [47–51]. Removal of 
cohesin is a tightly regulated process in the cell-cycle. Before mitosis, 
cohesin is stably associated to sister chromatids. In prometaphase and 
metaphase most cohesin complexes are phosphorylated by Wapl and 
removed from chromosome arms, accounting for the detachment of a 
sister's pair along their arms [52–56]. Yet, to sustain the amphitelic 
attachment and alignment of chromosomes on the metaphase plate, the 
sister chromatids must maintain a robust connection at centromeric 
regions, which is ensured by the localized persistence of a cohesion pool 
until anaphase [57,58]. This balance of local cohesin maintenance/ 
removal is guaranteed by a delicate mechanism based on a competition 
between accessory cohesin stabilizers and dissociation factors. 

Among these, the essential cohesin-binding protein PDS5 is partic
ularly relevant to both the function and regulation of the cohesin com
plex [59]. Indeed, PDS5 promotes the establishment, maintenance and 
resolution of sister chromatid cohesion by differential recruitment of 
accessory proteins according to the cell-cycle stage. In S-phase, PDS5 
interaction with ESCO1 and ESCO2 leads to cohesin stabilization 
through Smc3 acetylation [60–65]. Then, loss of sister cohesion through 
G2 is prevented by binding of Sororin to Pds5, which competes with and 
impedes binding of the cohesin dissociation factor Wapl [51]. Later in 
the cell cycle, Sororin is displaced following phosphorylation by mitotic 
kinases [66,67], allowing binding of Wapl to Pds5 and cohesin removal 
from chromosome arms. Centromeric regions maintain cohesion thanks 
to the recruitment of Shugoshin [68], which competes with Wapl for 
binding with Pds5 [69–71], protecting centromeric cohesion from 
phosphorylation. 

Haspin recruitment to centromeric regions was shown to rely on 

Fig. 1. Haspin is required for proper maintenance of chromosome stability – Haspin plays a pivotal role throughout mitosis through inhibition of Wapl (both by 
direct physical interaction with Pds5 and through phosphorylation of Wapl itself) and recruitment of the CPC through phosphorylation of H3-Thr3. These two effects, 
combined, ensure proper chromosomal dynamics and a correct mitosis. 
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Pds5 in S.pombe [13] and this, along with its impact on sister chromatid 
cohesion [40], strongly suggested a functional impact of Haspin in the 
regulation of the Wapl/Sororin competition for Pds5 binding. Moreover, 
the initial accumulation of both Haspin and H3-Thr3 on chromosome 
arms in early mitosis, followed by relocalization towards centromeric 
regions in metaphase [11] was consistent with the timing of cohesin 
removal, further corroborating the hypothesis of an involvement of 
Haspin in such process. 

Indeed, it was later found that Haspin Pds5-interacting domain and 
Pds5 Haspin-interacting domain are both required for localization of 
Haspin to centromeric regions in a Topoisomerase II dependent manner 
[72] and that Pds5 domains involved in Haspin recruitment are the same 
that mediate centrosomal localization of Wapl [72,73], clearly demon
strating a competition of the two proteins for recruitment at these 
regions. 

In agreement with this, loss of Haspin results in a weaker cohesion at 
centromeres during mitosis [73]. Remarkably, in human Haspin-KO 
cells, expression of the N-terminal Haspin domain (Haspin1–50) is 
enough to support a functional shielding of cohesin from Wapl-mediated 
displacement [73], demonstrating a structural, kinase-independent role 
for Haspin in this process. On top of this, Liang et al. later found that 
Haspin directly interacts with and phosphorylates the N-terminus of 
Wapl preventing Wapl interaction with Pds5 [74]. Such findings show a 
direct role for Haspin in the prevention of unscheduled cohesin removal 
through inhibition of Wapl (Fig. 1). 

Thus, Haspin orchestrates the delicate process of chromosome 
segregation by both overseeing CPC functionality and cohesin stability, 
overall promoting euploidy maintenance and preventing detrimental 
loss/gain of genetic material. Given its roles in mitosis, the need for 
Haspin for the cell survival is expected to scale with the proliferation 
rate of the cell itself, rendering it particularly relevant to cancer cells. 
Accordingly, as mentioned above, Haspin levels highly correlate to the 
proliferative rate of breast cancer cells and loss of CPC subunits has been 
reported to reduce tumor growth [75–79]. 

3.2. Haspin promotes primary cilia-resorption 

Remarkably, regulation of chromosome segregation is not the only 
role exerted by Haspin, but rather, multiple other pathways regulated by 
Haspin activity with a putative tumorigenic potential are rapidly 
emerging. 

Apart from the aforementioned “direct” roles of H3-Thr3 phos
phorylation, this histone modification comes with a “side-effect” con
sisting in the displacement of a multitude of proteins from the adjacent 
H3-Lys4me3 [80,81], so that a loss or an increase of Haspin activity 
might lead to complex, at first unexpected, phenotypes. An example 
relevant for this review is the displacement from the chromatin of the 
isoform 3 of the Death Induced Obliterator (DIDO3) and the role this 
protein plays on cilia dynamics [82]. 

Primary cilia are tubulin-based organelles present in virtually all 
non-cycling cells, with a plethora of roles [83–87], which are nucleated 
from a matured version of the centrosome, known as the basal body, 
incapable to sustain a mitotic apparatus [88]. Thus, given that the 
number of centrosomes in the cell is tightly regulated to never exceed 1 
outside of mitosis, the maturation of the centrosome into a basal body 
acts as a wall against unscheduled cell proliferations and cancers 
[89,90], and accordingly most human tumors do not show any primary 
cilium on the surface of their cells [91,92], while normal resting cells 
present cilia on their surface. When needed, however, the tubulin in the 
cilium is deacetylated following activation of the histone deacetylase 
HDAC6 [93,94], the cilium is resorbed and the basal body is reverted to 
a centrosome to fulfill its essential mitotic function. 

The localization of HDAC6 relies on direct binding to DIDO3 [82], 
which normally decorates H3Lys4me3 residues in non-mitotic cells. We 
have recently showed, both in human cell cultures and D.rerio embryos, 
that the length of the primary cilium and its resorption are both 

controlled by Haspin [17]. In fact, we showed that Haspin phosphory
lates H3-Thr3 even in quiescent cells, and that this in turn promotes cilia 
resorption likely acting on the DIDO3-HDAC6 axis, as a DIDO3 mutant 
that does not bind H3-Lys4me3 bypasses the requirement for Haspin 
activity [17]. This pathway is likely relevant in the context of carcino
genesis, as elevated expression of Haspin would lead to increased H3- 
Thr3p levels, thus promoting the recruitment of DIDO3-HDAC6 to the 
basal body and driving the final cilia resorption and priming the cell for 
cell-cycle commitment (Fig. 2). 

Besides this potent effect, loss of Haspin activity might lead to more 
subtle defects in cilia functionality still strongly relevant to malignant 
processes, as several pivotal signaling pathways in tumorigenesis (e.g. 
Hedgehog, WNT, Hippo) act in a cilia-dependent manner [91], but 
further works will be required to assess this point. 

3.3. Haspin is required for remodulation of cellular polarity 

Further extending the comprehension of Haspin and its functions, we 
recently unveiled a novel role for this kinase in regulating cellular po
larization [95–98], defined as the non-random, uneven positioning of 
landmarks, molecules and organelles within the cell. Cellular polariza
tion is common to virtually all living cells, as they need specialized 
compartments to fulfill the different metabolic processes essential to 
their growth. Besides its essential function to cell growth and functions, 
cellular polarization also acts as a barrier against tumorigenesis [99], 
and indeed loss of basal-apical polarity is a frequent event at preinvasive 
stages of carcinogenesis, as it favors the epithelial to mesenchymal 
transition [100–103]. Thus, mechanisms aiming at the dispersal of po
larity clusters might be relevant for tumorigenesis. 

We established a first connection between cellular polarity and yeast 
Haspin paralogues, Alk1 and Alk2 [104] in 2013, when we showed that 
Haspin mutants exhibited a defective nuclear segregation, with both 
nuclei being inherited by the daughter cell upon mitotic delays, due to 
aberrant accumulation of actin and polarity factors [95]. We have later 
elucidated the underlying mechanism by showing tthat ScHaspin pro
motes a reprogramming of secretory routes from a polarized to a 
distributed delivery of vesicles containing GTP-loaded Ras [96,97]. In 
turn, this triggers a cascade of events that ultimately leads to a redis
tribution of Cdc42 activity to the whole plasma membrane through 
relocalization of its GEF Cdc24 [105–107], driving the dispersion of the 
pre-existent polarity cap [95–97] (Fig. 3). The small GTPase Cdc42 is 
conserved to all eukaryotes with the essential role to promote and 
modulate cellular polarization during the cell cycle [108–112]. This 
protein is particularly relevant to the maintenance of the apical-basal 
polarity [113,114], so that its loss results in tissue hyperplasia [115]. 
Moreover, ScHaspin is relevant for the maintenance of a mitotic 
checkpoint upon failures in polarization, further corroborating a tight 
link between this kinase and cellular polarity [98]. Remarkably, even 
though the molecular mechanisms are still missing, these phenotypes 
are not ascribable to loss of H3-Thr3p [98], suggesting the existence of 
other, hypothetically non-nuclear, targets of this kinase with the po
tential to uncouple nuclear and cytoplasmic Haspin functions. 

Overall, considering the conservation of all the proteins involved, 
our observations from budding yeast suggest that an overexpression of 
Haspin (as observed in tumors) might promote an unscheduled remod
ulation of physiological polarity clusters, thus favoring the EMT. 

4. Concluding remarks 

A major goal in treating cancer is to selectively kill transformed cells 
while sparing normal ones; a way to achieve this is by interfering with 
processes only active in cycling cells, in an organism mainly made up of 
non-proliferating ones [116]. The data reviewed in this work thus depict 
Haspin as an amenable target for antitumoral therapy, as this kinase is at 
the center of multiple pathways that are particularly relevant for cycling 
tissues and that collectively exhibit pro-tumoral potential (Fig. 4). First, 
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Haspin mediated downregulation of ciliogenesis [17] replenishes the 
cells of centrosomes ready to sustain the mitotic apparatus, favoring cell 
cycle commitment and progression. Second, the loss of cellular polarity 
induced by Haspin [95,96] would promote the EMT and contribute to 
cellular migration, favoring malignant cell proliferation and spread to 
the whole organism. Third, the sustainment of chromosome segregation 
both through CPC recruitment [13,42,43] and cohesin stabilization 
[72,73] ensures the maintenance of the genetic material, particularly 
jeopardized by the frequent and rapid mitotic events typical of cancer 
cells. 

Some considerations, though, are needed on the impact of Haspin on 
genome instability, that is per se a tumorigenic process [117]. Given its 

role in preventing aneuploidies, Haspin is an important barrier to tumor 
development, accordingly, several tumors show a loss of heterozygosity 
in GSG2 [8,29]. Decreased Haspin levels favor genome instability along 
with a propensity for malignant transformation. At later stages, how
ever, tumors need Haspin activity to prevent excessive genetic material 
aberrancies, which would be incompatible with cellular survival, to 
promote mitotic events and to modulate cell polarity, thus promoting 
tumor expansion. At this stage, unknown molecular mechanisms ensure 
increased Haspin expression levels even in cells with a single copy of the 
GSG2 gene [25]. Such a dual mechanism is not uncommon in tumors as 
highlighted, for example, by components of the DNA damage response, 
whose loss initially favors tumorigenesis, but that are later needed for 

Fig. 2. Haspin favors cilia resorption through H3-Thr3 phosphorylation in quiescent cells. H3-Lys4me3 acts as a hub for DIDO3/HDAC6 recruitment, accounting for 
physiological dynamics and functionality of primary cilia. Haspin activity counteracts this by phosphorylating H3-Thr3, which, by displacing DIDO3 from the 
chromatin, causes its accumulation at the basal body, along with a downregulation of the cilium. 

Fig. 3. Haspin promotes an isotropic vesicle delivery to evenly distribute Cdc42 activity at the PM – Haspin is required for an even delivery of Ras-GTP containing 
vesicle to the PM of daughter cells in budding yeast. Once there, GTP-loaded Ras acts as a hub for the recruitment of Cdc24, which in turn leads to a local activation of 
Cdc42. This ultimately leads to an isotropic polarization of the cell. 

R. Quadri et al.                                                                                                                                                                                                                                  



Cellular Signalling 93 (2022) 110303

6

cancer cell survival and accordingly exploited as therapeutic targets in 
several chemotherapeutic approaches [118]. 

To conclude, although a lot of effort is still needed to understand the 
exact mechanisms underlying Haspin contribution to tumors, the 
mentioned impact of its loss on malignant cells, its peculiar kinase 
domain that supports selectivity of chemical inhibitors, and the con
siderations on its suitability as a therapy target are strong prerequisite 
making Haspin amenable for further studies with the final aim to exploit 
it as a target to specifically kill tumor cells. A potential caveat to this 
comes from over a decade of unsuccessful clinical trials on mitotic kinase 
inhibitors, that were ultimately rejected due to the fact that such 
treatments “selectively” kill cells based on their proliferative rate, but 
the human body hosts normal tissues (eg: bone marrow) that proliferate 
several times faster than any tumor and that would be killed as well 
generating a high toxicity (reviewed in: [119]). That being said, the 
notions that CHR-6494 did not cause any toxicity in murine models [30] 
and viable Haspin KO mutants have been obtained several organisms 
[16,95,120] make Haspin an ideal candidate for translational ap
proaches leading to clinical trials. 
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