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Abstract

Modeling Semantic Change through Large Language Models

Francesco Periti

In recent years, Natural Language Processing has gained increasing attention due to the unprecedented
capabilities of large language models in facilitating linguistic analyses of human language. Among these
analyses, the digitization of text corpora has recently prompted the use of language models to support and
automate the study of language from a diachronic perspective. Language is viewed as a dynamic entity over
time where words can undergo semantic change, i.e., changes in their meaning and interpretation.

This thesis is about the modeling of semantic change over text corpora using large language models.
Specifically, it primarily addresses a type of semantic change known in Linguistics as lexical semantic
change, where individual words change in meaning over time. In this regard, we explore the following
research questions.

• Large language models represent state-of-the-art solutions in nearly all Natural Language Processing
downstream tasks. Thus, how can lexical semantic change be modeled using large language models?

• Lexical semantic change is typically modeled across two time periods. Thus, how can the existing
modeling be expanded to handle multiple time periods?

• The current modeling of semantic change focuses on word-level granularity (i.e., lexical semantic
change). Thus, how can the existing modeling be extended to address text-level semantic change?
Specifically the phenomenon known in Linguistics as historical resonance.

First, we comprehensively review the state-of-the-art research on lexical semantic change and propose a
framework for classifying different approaches that use large language models. We outline the effectiveness
and limitations of these approaches and identify several open challenges in the current modeling. Throughout
this thesis, we extend the existing computational task of detecting lexical semantic change by integrating it
with other relevant, related tasks, such as modeling semantic judgments of words in-context (also known as
Word-in-Context) and modeling the meaning of words (also known as Word Sense Induction). To this end,
we explore different semantic representations of word meaning, including word embeddings, lexical replace-
ments, and sense definitions. We evaluate state-of-the-art approaches and propose multiple solutions, each
with distinct benefits and limitations. Considering word embeddings, we find that monolingual pre-trained



BERT models outperform multilingual pre-trained models such as mBERT and XLM-R for modeling seman-
tic change. Additionally, we discovered that the standard practice of using word embeddings generated by
the last layer of these models is typically not the most effective option for modeling semantic change. Instead,
we found that other layers consistently achieve higher performance. Furthermore, we find that approaches
that quantify semantic change based on features such as polysemy and dominant word meaning prove to be
more powerful than those attempting to model each meaning of a word individually before modeling se-
mantic change. Finally, given that word embeddings often pose interpretability issues, we also demonstrate
that lexical replacements and sense definitions automatically generated by Llama and Flan-T5 models are
interpretable and promising solutions for modeling lexical semantic change.

Considering the second research question, we extend the current modeling of lexical semantic change
from two time periods to multiple time periods. This extension allows us to capture the evolution of each
individual sense of a word over time. In this regard, we outline different strategies for extending the current
modeling and present a novel, scalable, and evolutionary clustering algorithm for modeling word meaning
over time. Through rigorous experimentation, we demonstrate the effectiveness of this algorithm in general
clustering settings. We then integrate it into a novel approach for modeling lexical semantic change and
evaluate its use against established benchmarks and across different languages. Finally, we illustrate its
application by analyzing target words across two Italian datasets containing Italian parliamentary speeches
and Vatican publications.

In the last part of this thesis, we extend the current modeling of semantic change from lexical semantic
change to historical resonance. Thus far, historical resonance has been modeled by merely considering
the detection of text reuse excerpts (e.g., literary quotations). However, we observe that these approaches
do not focus on recontextualization, i.e., how the new context(s) of a reused text differs from its original
context(s). We thus define historical resonance as text-reuse re-contextualization and introduce a novel
evaluation framework to evaluate computational methods in capturing the recontextualization of text-reuse.
This framework relies on the notion of topic relatedness for evaluating the diachronic change of context in
which text is reused. We conduct a human-annotation campaign to create an evaluation benchmark with
gold labels of topic relatedness. Then, we comprehensively evaluate a set of SBERT models to assess their
suitability for modeling historical resonance through topic relatedness of text reuse. Our experiments show
that these models exhibit greater sensitivity to textual similarity rather than topic relatedness, and that fine-
tuning these models can mitigate such a kind of sensitivity.

Overall, this thesis contributes to the growing field of Natural Language Processing and Computational
Linguistics, advancing the state-of-the-art in computational modeling of semantic change. By addressing
key research questions and proposing innovative methodologies, we provide valuable insights and tools for
modeling the dynamic nature of word and text semantics, and its evolution over time.
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Chapter 1

Introduction

“The semantic fabric of the text, like the fabric of
the universe, can be theorized as a space-time con-
tinuum, alive with memory of probabilities, mem-
ory of alternatives, and memory of change”

Wai Chee Dimock, A Theory of Resonance

Computer Science and Linguistics intersect in the field of Natural Language Processing (NLP), where
algorithms and computational models are employed to analyze, interpret, and generate human language. In
recent years, NLP has gained increasing attention due to the unprecedented capabilities of language mod-
els in facilitating linguistic analyses. Among these analyses, the digitization of historical text corpora has
recently prompted the use of language models to support and automate the study of language from a di-
achronic perspective. Language is viewed as a dynamic entity subjected to semantic change in meaning and
interpretation over time and among its users (Campbell, 2020).

Semantic change has long been studied by linguists and other scholars in the humanities through time-
consuming manual activities (Blank, 1997; Bloomfield, 1933). For instance, conventional methods for de-
tecting, interpreting, and assessing semantic change primarily rely on “close reading” and require arranging
hypotheses and testing procedures to build extensive catalogs of word descriptions. These analyses keep
humans “in-the-loop” and have thus been narrowed in terms of the volume, genres, and time frame that can
be manually considered.

Modeling semantic change through the novel advancements in NLP presents a new opportunity to expand
and scale up the analysis. Such computational modeling of semantic change is the central focus of this PhD
thesis. Given the expansive range of computational solutions, my PhD specifically targets the modeling of
semantic change through the very cutting-edge solution at its starting time, i.e., Large Language Models
(LLMs) based on the Transformer architecture (Vaswani et al., 2017).

Addressing research problems in a systematic manner often involves progressing step by step, moving
from smaller, more manageable units to larger and more complex components. In the context of language
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analysis, the smallest meaningful unit is generally considered to be a word token. Therefore, the primary
focus of this thesis lies in modeling semantic change at the word level – i.e., modeling how words change
meaning over time, a linguistic phenomenon commonly referred to as “lexical semantic change” (Geeraerts,
2020; Grondelaers et al., 2010; Bloomfield, 1933). An example of this phenomenon can be observed in the
Italian words presidente and presidentessa that changed from meaning male president and wife of
the president to encompass broader meanings of president of either sex and female president, respectively. 1

This transformation was prompted by 20th-century movements that advocated for women’s rights to exercise
professional roles with full legal and economic equality, while criticizing the derivation of female profes-
sional names from their male counterparts. Modeling such lexical semantic change represents a significant
challenge that involves both distinguishing all the senses of a word and tracing their evolution over time.

As such, modeling the semantic change of a small language unit like a word token has proven to be
complex, intricate, and time-consuming. As a result, during this PhD, the majority of the focus has been on
word level. In the last chapter, however, we have expanded from the modeling of lexical semantic change to
the modeling of “historical resonance”, i.e., the linguistic phenomenon of how well-known text (e.g., literary
text, quotes, idioms) sounds when it is read twenty years, two hundred years, or two thousand years after
it was written (Dimock, 1997). An example of this phenomenon can be observed in the quote To be or

not to be where Hamlet originally reflected on the struggles of existence and the fear of the unknown,
contemplating the existential question of life and death. Over the centuries, the phrase has become deeply
embedded in various languages and cultures, often improperly referenced, quoted, and parodied in diverse
literary works, contexts, and topics (Bate, 1985). While the modeling of such kind of semantic change takes
up only one chapter of this thesis, this work serves as an initial, but substantial, foundation for furthering the
modeling of the NLP research community.

1.1 Motivations
From a computational perspective, an initial question that may arise is: why engage in the modeling of se-
mantic change? The immediate motivation behind employing computational methods for studying semantic
change lies in their ability to support text-based researchers. A reliable computational approach that effi-
ciently analyzes vast amounts of text with limited human intervention would be an extremely useful tool
to assist researchers such as linguists, historians, and lexicographers. Such a tool would assist in creating
and updating linguistic resources (e.g., lexicons, vocabularies, and thesauri) while also enhancing our under-
standing of historical and societal change reflected in language. For instance, consider the current attention to
topics like “politically correct”: the word retarded has undergone semantic change over time, originally
describing a neutral medical condition, but later acquiring offensive connotations when used as a derogatory
insult (Halmari, 2011; O’Neill, 2011). This also highlights the importance of understanding and modeling
semantic change to guide future changes in culture and society.

1accademiadellacrusca.it/it/consulenza/la-presidente-dellaccademia-della-crusca-
ancora-sul-femminile-professionale/250
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Computational modeling of semantic change plays a crucial role in supporting lexicographers in creating
and updating linguistic resources such as lexicons, vocabularies, and thesauri. Traditionally, these resources
are “synchronic”, offering a perspective on language at a particular point in time, due to the meticulous
manual efforts involved in their creation and updating. The adoption of computational solutions facilitates
the development of more comprehensive “diachronic” resources, offering a perspective on language evolution
over time, space, and communities.

Moreover, modeling semantic change represents a significant challenge in NLP. Modeling lexical seman-
tic change, for example, serves as an important testing scenario to assess the capability of state-of-the-art
language models in accurately capturing meaning in text (Periti and Montanelli, 2024). While contemporary
LLMs are pre-trained on expansive all-purpose corpora, often emphasizing web corpora, researchers and
practitioners employ them for diverse text applications, irrespective of the alignment between the informa-
tion and language in the studied text and the pre-training text. As a matter of fact, these models serve as the
interpretative lens through which we analyze the studied texts. Thus, when they are applied to study histori-
cal or other out-of-domain corpora, there could be a gap of arbitrary size that negatively impacts follow-up
studies. For example, a modern, “gender-inclusive” LLM trained on contemporary text might misinterpret
the Italian expression il presidente e la presidentessa in historical documents, interpreting
it as two presidents (one male and one female) rather than as the president and his wife.

Finally, methods for modeling semantic change prove useful for several real-world applications. For
example, integrating these methods into information retrieval and question-answering systems could enhance
the user experience in information search. Traditional approaches to information retrieval rely on strategies
such as adding, dropping, and substituting query terms, assuming static word meanings. However, such
approaches can impact the scope and meaning of original research when users’ queries or corresponding
answers are affected by semantic change (Engerer, 2017). Modeling semantic change has also relevance in
biomedical and clinical NLP and studies (Preiss, 2024; Xiao et al., 2023; Peterson and Liu, 2021; Yan and
Zhu, 2018; Kay, 1979). For example, Preiss (2024) leverages computational models of semantic change
to identify drugs suitable for repurposing. Specifically, they analyze temporal changes in word contexts to
uncover new therapeutic applications for existing drugs and their compounds.

1.2 Research questions

The computational modeling of semantic change has witnessed a rapid evolution in the scientific literature
throughout the composition of this thesis. Over the last five 5 years, the advent of the first ACL work-
shops on Historical Language Change (Tahmasebi et al., 2024, 2023, 2022b, 2021b, 2019) and the design of
new shared tasks on LSC (Zamora-Reina et al., 2022b; Kutuzov and Pivovarova, 2021c; Basile et al., 2020;
Schlechtweg et al., 2020) have sparked increasing interest among researchers and practitioners in the field
of NLP. Despite this notable progress, significant open questions and challenges remain. In this regard, this
thesis aims to address the following research questions (RQs) (Periti, 2023):
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RQ1: How can lexical semantic change be modeled using LLMs?

When the work on this thesis started, computational modeling of lexical semantic change was still
in its early stage. Less than a year had passed since the introduction of the first evaluation framework
at the SemEval-2020 challenge (Schlechtweg et al., 2020). Advances in NLP were also younger: word
embeddings generated by encoder-based LLMs (e.g., BERT) were considered the most powerful tool
for representing word meanings in NLP, despite concerns about the size and number of parameters
in these models. A comprehensive study of these LLMs for modeling lexical semantic change was
of paramount importance to extend previous surveys on static word embeddings (Tahmasebi et al.,
2021a; Kutuzov et al., 2018).
Thus, we systematically review the computational modeling of lexical semantic change using encoder-
based LLMs. While exploring solutions based on these models, a novel and deeper class of generative
LLMs emerged (e.g., GPT-4), showing even more interesting and promising capabilities. However,
the rapid advancements in the field of NLP (Torfi et al., 2021) mean that the life of a PhD student (mine
is 3 years) is too short to explore deeply and extensively every new solution. To remain current with
these advancements, we dedicate three chapters to investigate the use of more recent generative LLMs.

RQ2: How can the existing modeling be expanded to handle multiple time periods?

With the SemEval-2020 challenge, the complexity of modeling lexical semantic change was simplified
to its core due to the substantial annotation efforts required to create reliable benchmarks. Specifically,
given a word, the evaluation framework involved quantifying the extent to which that word changed
in meaning over two time periods. While this simplification served as a foundational building block
of the modeling, a more complete modeling requires considering each individual meaning of a word
across multiple time periods of interest.
Thus, we first connect the current LSC modeling over two time periods with other established NLP
problems, such as assessing the similarity between word usages (also known as “Word-in-Context”, Cas-
sotti et al., 2023b; Martelli et al., 2021; Liu et al., 2021a; Loureiro et al., 2022; Raganato et al., 2020;
Pilehvar and Camacho-Collados, 2019), and distinguishing between different word meanings (also
known as “Word Sense Induction”, Aksenova et al., 2022; Manandhar et al., 2010; Agirre and Soroa,
2007). Then, we propose various theoretical approaches to advance the current LSC modeling over
multiple time periods and implement a new solution based on one of these approaches.

RQ3: How can the existing modeling be extended to model historical resonance?

While an evaluation framework for LSC has been established since 2020, there is no well-established
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evaluation framework or modeling of historical resonance in the present scientific literature. This
complex form of text-level semantic change beyond the word level has thus far been operationalized
and referred to as “text reuse”, i.e. the reuse of prior text in different sources over time (MacLaughlin
et al., 2021; Smith et al., 2014; Clough et al., 2002). Although several approaches have been proposed
to detect text-reuse instances, they are mostly confined to lexical matching and do not focus on se-
mantic change. As a result, the modeling of text reuse is merely approached from a computational
perspective, without exploring linguistic phenomena related to variations in semantics or interpreta-
tion. These gaps render the computational modeling of text reuse in NLP a significant open problem.
Thus, in this thesis, we define historical resonance as text-reuse re-contextualization – i.e., how the new
context(s) of a reused text resonates (i.e., differs) compared to its original context(s) – and introduce
a novel evaluation framework and benchmark to advance current NLP modeling of semantic change.

1.3 Thesis outline

For the sake of simplicity, Table 1.1 offers a comprehensive overview illustrating the discourse surrounding
the defined research questions throughout the entire thesis. The structure of the thesis is as follows.

Chapter 1 has so far presented the perspective and motivation that underpin this thesis.

Chapter 2 provides an original review of computational modeling of lexical semantic change at the be-
ginning of this thesis following the advent of LLMs. In this chapter, we first define the adopted terminology
and formalize the modeling. Then, we introduce a novel classification framework to survey and compare
the existing state-of-the-art approaches. Finally, we discuss the main challenges and issues related to the
presented modeling.

Chapter 3 offers a very first evaluation of the most recent ChatGPT model available at the time, in order
to elucidate its potential as off-the-shelf model for modeling lexical semantic change. In this chapter, we first
evaluate ChatGPT to detect semantic change in Word-in-Context settings under various conditions. Then,
we compare its performance against a pre-trained BERT model.

Chapter 4 discusses the extension of the current modeling of lexical semantic change. In this chapter, we
first outline the simplification of the existing models over two time periods and then propose approaches to
advance the modeling by considering the semantics of individual words at all the relevant time points.

Chapter 5 follows the previous discussion and proposes a novel incremental clustering algorithm to dis-
tinguish the different meanings of a word by considering the temporal nature of language. In this chapter,
we first present our novel algorithm, called A-Posteriori affinity Propagation (APP). Then, we evaluate its
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performance against conventional algorithms on standard clustering benchmarks.

Chapter 6 introduces the proposed APP algorithm for modeling lexical semantic change. In this chapter,
we first outline the integration of APP into a novel incremental model for lexical semantic change, called
What is Done is Done (WiDiD). Then, we illustrate the application of WiDiD in two distinct real-world sce-
narios spanning multiple time periods. Finally, we assess WiDiD’s performance against existing benchmarks
for lexical semantic change across two time periods and in various languages.

Chapter 7 outlines several limitations of existing approach comparisons, potentially leading to mislead-
ing conclusions in the scientific literature. In this chapter, we first point out the diverse conditions under
which existing experiments have been conducted. Then, we systematically evaluate different state-of-the-art
LLMs and approaches for modeling lexical semantic change under equal conditions across various language
and NLP evaluation tasks. This allows us to establish a reliable comparison of LLMs for modeling LSC.

Chapter 8 introduces a replacement schema to study the effects of lexical semantic change in LLMs. In
this chapter, we first investigate the use of lexical replacements derived from lexical resources to analyze
LLMs when words undergo semantic change. Then, we propose using lexical replacements and lexical sub-
stitutes automatically generated by LLMs to model lexical semantic change.

Chapter 9 investigates the use of automatically generated sense definitions and their utility for modeling
word meaning. In this chapter, we first evaluate the use of generative LLMs for generating sense definitions.
Then, we propose using sense definitions as intermediate word-meaning representations, subsequently en-
coded as sentence embeddings to model lexical semantic change.

Chapter 10 proposes a novel evaluation framework for the modeling of historical resonance. In this chap-
ter, we first introduce the novel evaluation framework in relation to existing scientific literature. Then, we
evaluate a set of LLMs in modeling historical resonance, operationalized as topical relatedness of text-reuse
instances.

Finally, Chapter 11 concludes this thesis with an overall summary and a discussion of the implications
of our main contributions.

1.4 Publications
As this thesis was progressing, parts of it were either published as peer-reviewed papers or submitted to
prestigious venues. The published papers were presented at ACL-sponsored conferences (i.e., ACL, EACL,
NAACL, EMNLP) and their affiliated workshops (i.e., LChange), as well as in scientific journals (i.e., ACM
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overview RQ1 RQ2 RQ3 Publications
Chapter 1 ◦ ◦ ◦ -Chapter 2 ∙ ◦ ◦ Periti and Montanelli, 2024Chapter 3 ∙ ◦ ◦ Periti et al., 2024dChapter 4 ◦ ∙ ◦ Periti and Tahmasebi, 2024bChapter 5 ◦ ∙ ◦ Castano et al., 2024Chapter 6 ◦ ∙ ◦ Castano et al., 2024; Periti et al., 2024e, 2022Chapter 7 ∙ ◦ ◦ Periti and Tahmasebi, 2024aChapter 8 ∙ ◦ ◦ Periti et al., 2024bChapter 9 ∙ ◦ ◦ Periti et al., 2024aChapter 10 ◦ ◦ ∙ Periti et al., 2024cChapter 11 ◦ ◦ ◦ -

Table 1.1: Overview of the discourse surrounding the defined research questions (RQs) across the entire
thesis. For each chapter, we provide the publication references upon which it is based.

Computing Surveys, Language Resources and Evaluation). The paper under review is currently being con-
sidered for publication in a computer science journal. Each chapter of this thesis draws partially from one or
more of these papers, where we collaborated with other scholars. Therefore, at the beginning of each chapter,
we provide a reference directing the reader to the corresponding paper(s). See Table 1.1 for an overview.

To offer a more comprehensive overview, we present here the list of publications upon which this thesis
is largely based:

Francesco Periti and Stefano Montanelli. 2024. Lexical Semantic Change through Large Lan-
guage Models: a Survey. ACM Comput. Surv., 56(11).

Francesco Periti, Haim Dubossarsky, and Nina Tahmasebi. 2024d. (Chat)GPT v BERT: Dawn
of Justice for Semantic Change Detection. In Findings of the Association for Computational
Linguistics: EACL 2024, pages 420–436, St. Julian’s, Malta. Association for Computational
Linguistics.

Francesco Periti and Nina Tahmasebi. 2024b. Towards a Complete Solution to Lexical Seman-
tic Change: an Extension to Multiple Time Periods and Diachronic Word Sense Induction. In
Proceedings of the 5th Workshop on Computational Approaches to Historical Language Change,
pages 108–119, Bangkok, Thailand. Association for Computational Linguistics.

Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Francesco Periti. 2024. Incremen-
tal Affinity Propagation based on Cluster Consolidation and Stratification. eprint 2401.14439,
arXiv. Under review.

Francesco Periti, Alfio Ferrara, Stefano Montanelli, and Martin Ruskov. 2022. What is Done is
Done: an Incremental Approach to Semantic Shift Detection. In Proceedings of the 3rd Work-
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Chapter 2

Modeling lexical semantic change

“Innovations which change the lexical meaning
rather than the grammatical function of a form,
are classed as change of meaning or semantic
change”

Leonard Bloomfield, Language

2.1 Introduction

The modeling of lexical semantic change involves the automatic identification, interpretation, and assessment
of words that change in meaning over time. Distributional word representations (i.e., word embeddings)
generated by LLMs emerged as an effective solution to capture the possible change over time in the meanings
of a target word. Any embedding-based approach relies on the well-known distributional hypothesis in
Linguistics: “You shall know a word by the company it keeps” (Firth, 1957; Harris, 1954) and the foundational
premise is that words (and word occurrences) that have similar meanings are encoded closely each other in
the embedding space (Chiang and Yogatama, 2023; Mikolov et al., 2013a).

The initial excitement for word embeddings prompted researchers and practitioners to model lexical
semantic change by using static Language Models (LMs) (Shoemark et al., 2019). These models have been
widely adopted and the main approaches have been reviewed in three survey papers (Tahmasebi et al., 2021a;
Tang, 2018; Kutuzov et al., 2018). Typically, approaches based on static LMs encode a word into a single
semantic embedding, which is then used to detect change in the dominant sense (i.e., word meaning) of
the word, without considering its potential additional subordinate senses. However, subordinate senses can
change on their own, regardless of their dominant sense. For example, considering the word rock, the
music meaning evolved over time to encompass both music and a particular lifestyle, while the stone
meaning remained unchanged (Hengchen et al., 2021). Thus, the recent introduction of more advanced
Transformer architectures (Vaswani et al., 2017) has established the use of LLMs as the preferred tool for
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modeling semantic change. In contrast with static LMs, approaches based on LLMs typically rely on different
word representations according to the context in which a word occurs. For instance, different semantic vectors
are generated when the word rock in the input sequence is used with the music connotation or with the
stone meaning. This capability facilitates the modeling of linguistic colexification phenomena such as
homonymy (Sato and Heffernan, 2020) and polysemy (Garí Soler and Apidianaki, 2021). However, although
more and more approaches based on LLMs are emerging, a classification framework and a corresponding
survey of existing approaches are still missing.

Chapter outline.

This chapter includes materials originally published in the following publication:

Francesco Periti and Stefano Montanelli. 2024. Lexical Semantic Change through Large Lan-
guage Models: a Survey. ACM Comput. Surv., 56(11).

In this chapter, we survey the main approaches based on LLMs to model the linguistic phenomenon of lexical
semantic change through a corresponding NLP task called Lexical Semantic Change (LSC) (also known as
Semantic Shift Detection), emphasizing a computational perspective over a linguistic one. The chapter is
organized as follows. In Section 2.2, we define the problem of modeling semantic change using LLMs and
outline the related workflow and formalization. In Section 2.3, we present a classification framework based
on three dimensions of analysis, namely meaning representation, time-awareness, and learning modality, to
effectively describe the featuring properties of both form- and sense-based approaches in which solutions are
typically distinguished. We then discuss the classification of state-of-the-art approaches in Section 2.4. Ex-
isting assessment methods and metrics are surveyed to examine how existing approaches measure, interpret,
and quantify the semantic change of a word. We provide a comparative analysis of approach performance
in Section 2.5. We discuss issues related to the scalability, interpretability, and robustness of computational
modeling in Section 2.6. Finally, in Section 2.7, we outline open challenges and relevant considerations.

2.2 Problem statement
Consider a diachronic document corpus  =

⋃𝑛
𝑖=1 𝐶𝑖 where 𝐶𝑖 denotes a set of documents (e.g., sentences,

paragraphs) at time 𝑡𝑖; and a set of target words  occurring in the corpus  across the entire time span
[𝑡1,… , 𝑡𝑛].

Modeling lexical semantic change typically involves:

• word sense induction: modeling the meaning(s) of each word𝑤 ∈  in each time period 𝑡1, 𝑡2,… , 𝑡𝑛;

• semantic change detection: identifying the words 𝑤 ∈  that change in meaning across all the con-
tiguous time intervals, namely the pairs of time periods ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩,… , ⟨𝑡𝑛−1, 𝑡𝑛⟩.
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For the sake of readability, in the following, we consider the LSC problem on a corpus  = 𝐶1 ∪ 𝐶2

and the change assessment of a given target word 𝑤 ∈  on a single time interval ⟨𝑡1, 𝑡2⟩, from time period
𝑡1 to time period 𝑡2. This simplification enables to review the current state-of-the-art in a clear and concise
fashion, while being easily extendable to the general case. As a matter of fact, the extension to the whole set
of target words  as well as to all the multiple time periods and contiguous time intervals can be obtained
by re-executing a considered approach as many times as needed (Giulianelli et al., 2020). We will focus on
the modeling of LSC over multiple time periods in Chapter 4.

Different formulations of the problem are possibly depending on various research and assessment ques-
tions. The most popular are:

1. Graded Change Detection: the goal is to quantify the extent to which a word 𝑤 change in meaning
between 𝐶1 and 𝐶2 (Schlechtweg et al., 2020).

2. Binary Change Detection: the goal is to classify a word𝑤 as “stable” (without lost or gained senses)
or “changed” (with lost or gained senses) between 𝐶1 and 𝐶2 (Schlechtweg et al., 2020).

3. Sense Gain Detection: the goal is to recognize whether a word𝑤 gained meanings or not between 𝐶1

and 𝐶2 (Zamora-Reina et al., 2022b).
4. Sense Loss Detection: the goal is to recognize whether a word 𝑤 lost meanings or not between 𝐶1

and 𝐶2 (Zamora-Reina et al., 2022b).

2.2.1 The general workflow
The approaches to LSC typically follow the four-step workflow presented in Table 2.1. The initial extraction
stage aims to select all the documents in the corpora containing occurrences (i.e., one or more) of the target
word. We refer to these documents as word usages. The second representation stage has the goal to generate
a semantic representation for each word occurrence. An optional aggregation stage can be then enforced to
group multiple word representations into a single one for detecting similar usages and/or reducing the overall
computational complexity. The final assessment stage consists in the application of a semantic measure to
evaluate how the meanings of the word changed over time.

word usage
extraction ⟶

word occurrence
representation ⟶

word vector
aggregation ⟶

semantic change
assessment

Table 2.1: A general workflow for modeling lexical semantic change through LLMs.

Word usage extraction. Consider the corpora 𝐶1 and 𝐶2 and the target word𝑤. The goal of this stage is to
extract all the contextual usages of 𝑤 from 𝐶1 and 𝐶2. As the word meanings are influenced by morphology
and syntax (Wysocki and Jenkins, 1987), the extraction has to capture the occurrences of𝑤 in all its linguistic
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forms (e.g., singular/plural and gender forms, different verb tenses). For instance, a word may change in
meaning only in one of its forms. An example is the Italian word lucciola that was historically used with
a euphemism for prostitute, a meaning that has now become obsolete. Nonetheless, the plural form
lucciole has consistently retained the more stable sense of fireflies (Kutuzov et al., 2021a).

Word occurrence representation. The goal of this stage is to generate a word representation for each
occurrence of the word 𝑤 in 𝐶1 and 𝐶2. Ideally, the word representations of 𝑤 should be similar for seman-
tically similar word occurrences (i.e., usages) across different documents. A LLM is used to represent each
occurrence according to its context. Different types of representations can be used. Possible options are:

• word embeddings: a semantic vector in a multi-dimensional space that is directly generated by the
Encoder of LLMs, such as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), or ELMo (Peters
et al., 2018).

• lexical substitutes: a bag of words that is generated by a Masked LLM such as BERT and RoBERTa to
substitute a specific occurrence of𝑤 in a document (Card, 2023). These substitutes are supposed to re-
place a word without introducing grammatical errors or significantly changing its meaning. For exam-
ple, suitable substitutes for the word fly in the sentence a noisy fly sat on my shoulder

are bug, beetle, or butterfly; while suitable substitutes in the sentence we will fly to

London are walk, run, or bike (Kudisov and Arefyev, 2022). Alternatively, Causal LLMs such
as GPT (Brown et al., 2020) and LLaMA (Touvron et al., 2023a) can be prompted to generate the
substitutes (Periti et al., 2024b; Baez and Saggion, 2023). A word embedding vector for each occur-
rence of 𝑤 can be computed over the substitutes (i.e., bag-of-substitutes) using measures like Term
Frequency-Inverse Document Frequency (Tf-Idf).

• sense definitions: a descriptive interpretation that is generated by a Causal LLM to represent the
occurrence of the word 𝑤 in a particular document (Giulianelli et al., 2023). For example, an occur-
rence of the word bank may correspond to the definition of a financial institution, while
another occurrence may correspond to the edge of a river. Alternatively, when available,
lexical resources like WordNet (Miller, 1994) can be leveraged to obtain sense definitions. Sense def-
initions can be further processed by the Encoder of LLMs to generate less noisy sense embedding
representations (Kong et al., 2022), or by Natural Language Generation (NLG) metrics such as BLEU,
NIST, ROUGE-L, METEOR, or MoverScore (Huang et al., 2021).

Currently, at the time of this thesis, contextualized word embeddings are the most widespread tool in
LSC, with very few approaches using the other representations. Thus, we will use word embeddings as a
reference for word occurrence representation. In the following, we denote the representation of the word 𝑤
in the 𝑖-th document of a corpus 𝐶𝑗 as 𝑒𝑗,𝑖, where 𝑗 ∈ 1, 2. Then, the representation of the word𝑤 in a corpus
𝐶𝑗 is defined as: Φ𝑗 = {𝑒𝑗,1,… , 𝑒𝑗,𝑧}, with 𝑧 being the cardinality of 𝐶𝑗 , namely the number of documents
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in 𝐶𝑗 containing 𝑤. Finally, the sets of representation vectors generated for the word 𝑤 at time 𝑡1 and 𝑡2 are
denoted as Φ1 and Φ2, respectively. We will focus on the use of lexical substitutes and sense definitions in
Chapter 8 and Chapter 9, respectively.

Word vector aggregation. This stage is optionally executed and it has two main goals: i) to recognize
when different word occurrences convey a similar meaning, and ii) to reduce the number of elements to
consider for change detection. To this end, clustering and averaging techniques are proposed for aggregating
the generated word embeddings.

i) Clustering techniques are employed to group similar word embeddings in a cluster, each one loosely
denoting a specific word meaning. In some approaches, it is assumed that the corpus is static, meaning
that all the documents in 𝐶1 and 𝐶2 are available as a whole. Then, a joint clustering operation is exe-
cuted over the embeddings of Φ1 ∪Φ2 (e.g., Martinc et al., 2020b). In other approaches, it is assumed
that the corpus is dynamic, meaning that documents become available at different time periods and a
separate clustering operation is performed over the embeddings of Φ1 and Φ2, individually (i.e., one
exclusively on Φ1 and another exclusively on Φ2 embeddings). When a separate clustering is exe-
cuted, the resulting clusters need to be aligned in order to recognize similar word meanings at different
consecutive time periods (e.g., Kanjirangat et al., 2020). To overcome the need for aligning clusters,
an incremental clustering operation is employed to progressively group the embedding available at the
different time steps (e.g., Periti et al., 2024e). The result of clustering is a set of 𝑘 clusters where the
𝑖-th cluster is denoted as 𝜙𝑖 and it can fall into one of the following cases (see Figure 2.1):

Figure 2.1: Possible cluster composition for modeling word senses over time.

– (A): 𝜙𝑖 contains only embeddings from 𝐶1;
– (B): 𝜙𝑖 contains a mixture of embeddings from both 𝐶1 and 𝐶2;
– (C): 𝜙𝑖 contains only embeddings from 𝐶2.

As a result, a cluster 𝜙𝑖 = 𝜙1,𝑖 ∪𝜙2,𝑖 is composed by the union of two partitions 𝜙1,𝑖 and 𝜙2,𝑖 denoting
the embeddings from Φ1 and Φ2, respectively. When a joint or incremental clustering is applied, the
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resulting clusters can belong to any of the above cases (i.e., A, B, and C). When a separate clustering
is applied, the resulting clusters can just belong to A and C cases, meaning that 𝜙2,𝑖 = ∅ and 𝜙1,𝑖 = ∅,
respectively.

ii) Averaging techniques consist in determining a prototypical representation of the word 𝑤. As an op-
tion, a word-prototype can be computed by averaging all its embedding. In this case, word-prototypes
𝜇1 and 𝜇2 are created as the average embeddings of Φ1 and Φ2, respectively (e.g., Kutuzov and Giu-
lianelli, 2020). As an alternative option, averaging can be executed on top of the results of clustering.
For each cluster, averaging is used to create a prototypical representation of all the cluster elements
(i.e., the centroid of the cluster). In particular, sense-prototypes 𝑐1,𝑖, 𝑐2,𝑖 can be created for each cluster
𝜙𝑖 as the average embedding of its cluster partitions 𝜙1,𝑖, 𝜙2,𝑖, respectively (e.g., Periti et al., 2022).

Semantic change assessment. This stage has the goal to measure the change on the meanings of the word
𝑤 across the corpora 𝐶1 and 𝐶2 by considering the sets Φ1 and Φ2. In the literature, a number of functions
are proposed for semantic change assessment. Distinctions can be made between measures that assess the
change by considering the whole set of embedding representations Φ𝑖, by those that exploit the prototypi-
cal representations 𝑐𝑖 and/or 𝜇𝑖 generated during the aggregation step through clustering and/or averaging.
According to Kutuzov et al. (2018), the definition of a rigorous, formal, mathematical model for represent-
ing the assessment functions used in LSC approaches is a challenging issue. In the following, we provide
a formal definition of an abstract function 𝑓 , with the goal of encompassing all existing assessment measures.

The semantic change assessment 𝑠 = 𝑓 (⋅, ⋅, ⋅) is defined as follows:

𝑓 ∶ {ℝ𝐷}(𝑝1+𝑧1⋅𝛿), {ℝ𝐷}(𝑝2+𝑧2⋅𝛿), 𝑐 → 

where𝐷 is the dimension of the word vectors in Φ1 and Φ2; 𝑝1, 𝑝2 are the number of prototypical embeddings
under consideration for 𝐶1, 𝐶2, respectively; 𝑧1, 𝑧2 are the number of vectors in Φ1 and Φ2, respectively;
𝛿 ∈ {0, 1} is a flag that allows to distinguish the approaches according to the kind of embedding used (i.e.,
original and/or prototypical); 𝑐 is a counting function that determines the normalized number of embeddings
in the cluster partitions 𝜙1,𝑖 and 𝜙2,𝑖, respectively.

The counting function 𝑐 is defined as:

𝑐 ∶ {ℝ𝐷}𝑧1 , {ℝ𝐷}𝑧2 → ℝ𝑘,ℝ𝑘

where 𝑘 denotes the comprehensive number of 𝑘 clusters obtained when a clustering operation is enforced
during the aggregation stage. If a cluster𝜙𝑖 contains embeddings only fromΦ1, then the corresponding count
for 𝐶2 will be equal to 0, and vice versa. When the clustering operation is not enforced, each embedding is
mapped to a singleton group (i.e., 𝑘 = 𝑧1 + 𝑧2).
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The signature of 𝑓 depends on the possible execution of an aggregation technique:
• Clustering. When the clustering operation is executed, then 𝑝1 = 𝑝2 = 0 and 𝛿 = 1. This means that

all the 𝑧1 + 𝑧2 embeddings in Φ1 ∪ Φ2 are exploited for semantic change assessment (e.g., Martinc
et al., 2020b).

• Averaging. When the averaging operation is executed, then 𝑝1 = 𝑝2 = 1. In some approaches,
𝛿 = 0 and this means that the function 𝑓 is defined as a distance measure over prototypical representa-
tions (e.g., Martinc et al., 2020a). In some other approaches, 𝛿 = 1 and this means that 𝑓 is defined as
a distance measure over the original embeddings Φ and their prototypical representations (e.g., Pömsl
and Lyapin, 2020).

• Clustering + Averaging. When both clustering and averaging are performed, 𝑝1, 𝑝2 > 0 and 𝛿 can be
both 0 or 1 as in the previous case (e.g., Castano et al., 2024).

The output  , is generally defined according to the formulation of the LSC problem.
• Graded Change Detection:  = ℝ, with 𝑠 quantifying the change of 𝑤 between 𝐶1 and 𝐶2.
• Binary Change Detection:  = {0, 1}, with 𝑠 representing a binary score for “stable” (i.e., 0) and

“changed” (i.e., 1), respectively.
• Sense Gain Detection:  = {0, 1}, with 𝑠 representing a binary score for not-gained (i.e., 0) and gained

(i.e., 1), respectively.
• Sense Loss Detection:  = {0, 1}, with 𝑠 representing a binary score for not-lost (i.e., 0) and lost (i.e.,

1), respectively.
Graded Change Detection is the most commonly considered formulation. Thus, in this chapter, we focus
on approaches that address LSC considering Graded Change Detection. It is worth noting that conceptually
Binary Change Detection is not the binarization of Graded Change Detection. Indeed, even if a word does
not gain/lose meanings (i.e., “stable” word), it can be associated with a high value of 𝑠 due to other forms of
semantic change, such as amelioration (change to positive connotation) and pejoration (change to negative
connotation) (Goworek and Dubossarsky, 2024). However, in practice, Binary Change Detection is derived
from Graded Change Detection by binarizing the graded 𝑠 through a threshold 𝜃 (e.g., Zhou and Li, 2020).
We do not address Sense Gain and Sense Loss Detection as they are relatively novel formulations.

For the sake of clarity, a summary of the notation used throughout this chapter is provided in Table 2.2.

2.3 An original classification framework
A consolidated and widely-accepted classification framework of approaches is not available. A basic frame-
work is focused on the meaning representation of the words by distinguishing between form- and sense-based
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Notation Definition
 Diachronic document corpus
𝑡𝑗 Time period 𝑗-th
𝑤 Target word
𝐶𝑗 Set of documents at time 𝑡𝑗 containing a word 𝑤
 Set of target words
𝑒𝑗,𝑖 Representation (i.e., embedding) of the word 𝑤 in the 𝑖-th document of a corpus 𝐶𝑗
Φ𝑗 Set of the representations of 𝑤 in the corpus 𝐶𝑗
𝜙𝑖 𝑖-th cluster containing the representations of the word 𝑤
𝜙𝑗,𝑖 Subset of representations Φ𝑗 in the cluster 𝜙𝑖
𝜇𝑗 Prototypical representation of 𝑤 for Φ𝑗
𝑐𝑗,𝑖 Prototypical representation of 𝑤 for 𝜙𝑗,𝑖

Table 2.2: Summary of notation used in this chapter.

approaches (Giulianelli et al., 2020; Qiu and Yang, 2022). However, such a distinction is not universally rec-
ognized with a unique interpretation. Sometimes, these two categories are referred as type- and token-based,
where averaging and clustering are enforced to aggregate embeddings, respectively (Laicher et al., 2020;
Schlechtweg et al., 2020). More recently, average- and cluster-based categories have been proposed to re-
name form and sense ones to highlight the method used for embedding aggregation (Periti et al., 2022).

In the following, we propose a comprehensive classification framework that extends the basic distinction
between form- and sense-based approaches by introducing three dimensions of analysis, namely meaning
representation, time-awareness, and learning modality (see Table 2.3).

Meaning representation Time-awareness Learning modality
form-based time-oblivious supervised
sense-based time-aware unsupervised

Table 2.3: A classification framework for modeling lexical semantic change.

Meaning representation. Borrowing the distinction proposed by Giulianelli et al. (2020), this dimension
focuses on the meaning representation of a word. Two categories are defined:

• form-based: the meaning representation concerns the high-level properties of the target word 𝑤, such
as its degree of polysemy or its dominant sense. When the polysemy is considered, the employed ap-
proaches do not enforce any aggregation stage and the semantic change of𝑤 is assessed by measuring
the degree of change on the embeddings Φ1 and Φ2 (i.e., change on the degree of polysemy). When the
dominant sense is considered, all the meanings of𝑤 are collapsed into a single one on which the change
is assessed. Typically, the embeddings Φ1 and Φ2 are averaged into corresponding word prototypes 𝜇1
and 𝜇2, respectively. In this case, the approaches focus on one meaning of𝑤 that can be considered as
an approximation of the dominant sense since, generally, it is the most frequent in the corpus, and thus
the one most represented in the word prototype. We stress that form-based approaches are not able to
represent how minor meanings compete and cooperate to change the dominant sense (Hu et al., 2019).
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• sense-based: the meaning representation concerns the low-level properties of the target word 𝑤, such
as its different context usages (i.e., its multiple meanings). All the senses of a word 𝑤 are represented
and considered in the change assessment, namely the dominant sense and the minor ones. Typically,
the embeddings Φ1 and Φ2 are aggregated into clusters, each one loosely representing a different
meaning of 𝑤. Sense-based approaches allow to capture the changes over the different meanings of 𝑤
as well as to interpret the word change (e.g., a new/existing meaning has gained/lost importance).

Time awareness. This dimension focuses on how the time information of the documents is considered by
the employed LLM. Two categories are defined:

• time-oblivious: this category is based on the assumption that a document of time 𝑡 adopts linguistic
patterns that are known by the LLM and already characterize the language at the time 𝑡 by its own.
Thus, it is not needed that the LLM is aware of the time in which a document is inserted in the corpus.
A time-oblivious approach is based on the contextual nature of embeddings generated by the model,
which by definition are dependent on the context that is always time-specific (Martinc et al., 2020b).

• time-aware: this category is based on the assumption that the LLM is not capable of adapting to time
and generalizing temporally since they are usually pre-trained on corpora derived from a snapshot of
the web crawled at a specific moment in time (Rosin et al., 2022). Thus, it is needed that the LLM
is aware of the time in which a document is inserted in the corpus. As a result, a time-aware LLM
encodes the time information as well as the linguistic context of a document while generating the word
representations.

Learning modality. This dimension is about the possible use of external knowledge for describing and
learning the word meanings to recognize. Two categories are defined:

• supervised: a form of supervision is enforced to inject external knowledge to support the change
assessment. In addition to the text in the corpora 𝐶1 and 𝐶2, a lexicographic/manual supervision is
employed. Lexicographic supervision refers to the use of dictionaries, vocabularies, or thesauri to
support word sense induction and recognize the meaning of each word occurrence. This solution
can be considered as an alternative to aggregation by clustering for meaning identification. Manual
supervision involves using a human-annotated dataset (e.g., Word-in-Context dataset) with gold labels
for training or fine-tuning the LLM (Arefyev et al., 2021).

• unsupervised: the change assessment is exclusively based on the text of the corpora 𝐶1, 𝐶2 without
any external knowledge support. As a result, the word meanings to recognize emerge from the corpora
and the change is completely assessed by exploiting unsupervised learning techniques. The use of
aggregation by clustering is an example of unsupervised learning for meaning detection.
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2.4 A comprehensive review of the state-of-the-art
In this section, the existing approaches in literature are reviewed according to the classification framework
discussed in Section 2.3. In particular, the solutions are presented in Sections 2.4.1 and 2.4.2 according
to the meaning representation of the considered target word, namely form- and sense- based approaches,
respectively. Moreover, Section 2.4.3 describes the so-called ensemble approaches, namely approaches that
are based on a combination of multiple form- and/or sense-based solutions.

For the sake of comparison, in each category (i.e., form, sense, ensemble), a summary table is provided to
frame the literature papers according to the classification framework as well as to report additional descriptive
features about the following aspects:

• LLM: the large language model used (e.g., BERT);
• Training language: the language of the dataset used for training the model. The possible options are

monolingual to denote when training is executed on a single language, or multilingual when more than
one language is considered.

• Type of training: how the model is trained. Five categories are distinguished:
– trained: the model is trained from scratch through a typical objective function(s);
– pre-trained: the model has been pre-trained on a large dataset by other researchers, and it is

directly used as an off-the-shelf solution instead of being trained from scratch;
– fine-tuned for domain-adaptation: the model has been pre-trained on a large dataset by other

researchers, then it is fine-tuned on new data through the same objective function;
– fine-tuned for incremental domain-adaptation: the model is fine-tuned on the corpus of the first

time period𝐶1. Then, it is re-tuned separately on the corpus𝐶2. The model at time 𝑡2 is initialized
with the weights from the model at time 𝑡1, so that both models are inherently related the one to
the other;

– fine-tuned: the model has been pre-trained on a large dataset by other researchers, then it is
fine-tuned on new data through a different objective function.

• Layer: the architecture’s layer(s) from which word representations are extracted;
• Layer aggregation: the type of aggregation used to synthesize the word representations extracted from

different layers into a single embedding;
• Clustering algorithm: the clustering algorithm used in the aggregation stage;
• Change function: the function 𝑓 used to detect/assess the semantic change;
• Corpus language: the natural language of the corpus in the considered experiments of change assess-

ment (e.g., English, Italian, Spanish).
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2.4.1 Form-based approaches

Ref. Time
awareness

Learning
modality LLM Training

language
Type of
training Layer Layer

aggregation
Clustering
algorithm

Change
function

Corpus
language

Arefyev et al.
2021 time-oblivious supervised XLM-R-large multilingual fine-tuned last - - APD Russian

Beck
2020 time-oblivious unsupervised mBERT-base multilingual pre-trained last two average K-Means CD

English,
German,

Latin,
Swedish

Martinc et al.
2020a time-oblivious unsupervised BERT-base,

mBERT-base
monolingual,
multilingual domain-adaptation last four sum - CD English,

Slovenian
Horn
2021 time-oblivious unsupervised BERT-base,

RoBERTa-base monolingual domain-adaptation,
pre-trained - - - CD English

Hofmann et al.
2021 time-aware unsupervised BERT-base monolingual fine-tuned last - - CD English

Zhou and Li
2020 time-aware unsupervised BERT-base monolingual domain-adaptation last four sum - CD

English,
German,

Latin,
Swedish

Rosin et al.
2022 time-aware unsupervised BERT-base,

BERT-tiny monolingual fine-tuned
all,
last,

last four
average - CD,

TD
English,

Latin

Rosin and Radinsky
2022 time-aware unsupervised

BERT-base,
BERT-small,
BERT-tiny

monolingual fine-tuned
all,
last,

last four,
last two

average - CD
English,
German,

Latin

Kutuzov and Giulianelli
2020 time-oblivious unsupervised

BERT-base,
ELMo,

mBERT-base
monolingual,
multilingual

domain-adaptation,
incremental domain-adaptation,

pre-trained,
trained

all,
last,

last four
average -

APD,
CD,
PRT

English,
German,

Latin,
Swedish

Giulianelli et al.
2020 time-oblivious unsupervised BERT-base monolingual pre-trained all sum - APD English

Keidar et al.
2022 time-oblivious unsupervised RoBERTa-base monolingual domain-adaptation

all,
first,
last

sum - APD English

Pömsl and Lyapin
2020 time-aware unsupervised BERT-base,

mBERT-base
monolingual,
multilingual fine-tuned last - - APD

English,
German,

Latin,
Swedish

Kudisov and Arefyev
2022 time-oblivious unsupervised XLM-R-large multilingual pre-trained - - - APD Spanish

Laicher et al.
2021 time-oblivious unsupervised BERT-base monolingual pre-trained

first,
first + last,
first four,

last,
last four

average -
APD,

APD-OLD/NEW,
CD

English,
German,
Swedish

Wang et al.
2020 time-oblivious unsupervised mBERT-base multilingual pre-trained last - - APD,

HD Italian

Kutuzov
2020 time-oblivious unsupervised

BERT-base,
BERT-large,

ELMo,
mBERT-base

monolingual,
multilingual

domain-adaptation,
pre-trained

all,
last,

last four
average -

APD,
DIV,
PRT

English,
German,

Latin,
Swedish,
Russian

Ryzhova et al. time-oblivious unsupervised
ELMo,

RuBERT
Kuratov and Arkhipov

2019
multilingual pre-trained,

trained - - - APD Russian

Rodina et al.
2021 time-oblivious unsupervised ELMo,

RuBERT
monolingual,
multilingual domain-adaptation last - - PRT Russian

Liu et al.
2021b time-oblivious unsupervised

BERT-base,
LatinBERT

Bamman and J. Burns
2020

multilingual,
monolingual domain-adaptation last four sum - CD

English,
German,

Latin,
Swedish

Giulianelli et al.
2022 time-oblivious unsupervised XLM-R-base multilingual domain-adaptation all average - APD,

PRT

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Laicher et al.
2020 time-oblivious unsupervised mBERT-base multilingual pre-trained all,

last four average - APD Italian
Qiu and Yang

2022 time-oblivious unsupervised BERT-base monolingual domain-adaptation
pre-trained last four sum - CD English

Periti et al.
2022 time-oblivious unsupervised BERT-base

mBERT-base
monolingual,
multilingual pre-trained last four sum - CD,

DIV
English,

Latin

Montariol et al.
2021 time-oblivious unsupervised BERT-base

mBERT-base
monolingual,
multilingual domain-adaptation last four sum - CD

English,
German,

Latin,
Swedish

Table 2.4: Summary view of form-based approaches. Missing information is denoted with a dash.

According to Table 2.4, we note that most form-based approaches are time-oblivious. A few time-aware
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approaches have been recently appeared and they are all characterized by the adoption of a specific fine-
tuning operation to inject time information into the model. All the current work leverage unsupervised
learning modalities with the exception of Arefyev et al. (2021). The aggregation stage is mostly based on
averaging, while clustering is only enforced by Beck (2020) where a cluster represents the dominant sense
of the word 𝑤. In particular, Beck (2020) consider a word as changing when clustering the embeddings Φ1

and Φ2 via K-means with 𝑘 = 2 generates two groups where one of the two clusters contains at least 90% of
the embeddings from one corpus only (i.e., 𝐶1 or 𝐶2).

In form-based approaches, the following change functions are proposed for measuring the semantic
change 𝑠.

Cosine distance (CD). The change 𝑠 is measured as the cosine distance (CD) between the word proto-
types 𝜇1, 𝜇2 as follows:

𝐶𝐷(𝜇1, 𝜇2) = 1 − 𝐶𝑆(𝜇1, 𝜇2) (2.1)
where 𝐶𝑆 is the cosine similarity between the prototypes. Intuitively, the greater the 𝐶𝐷(𝜇1, 𝜇2), the greater
the change in the dominant sense of 𝑤.

Typically, the prototypes 𝜇1 and 𝜇2 are determined through aggregation by averaging over Φ1 and Φ2,
respectively (e.g., Martinc et al., 2020a). As a difference, Horn (2021) compute the prototype embedding 𝜇2
at time step 𝑡 = 2 by updating the prototype embedding 𝜇1 at time step 𝑡 = 1 through a weighted running
average (e.g., Finch, 2009).

Martinc et al. (2020a) employ the CD metric in a multilingual experiment where the change is measured
across a diachronic corpus with texts of different languages. This is the only example of cross-language
change detection.

CD is also used in time-aware approaches. The integration of extra-linguistic information into word em-
beddings, such as time and social space, has been proposed in previous work based on static LMs (Rudolph
and Blei, 2018; Zeng et al., 2018). Recently, this integration has been also applied to contextualized em-
beddings (Huang and Paul, 2019; Röttger and Pierrehumbert, 2021). Hofmann et al. (2021) fine-tune a
pre-trained LLM to encapsulate time and social space in the generated embeddings. Then, the change 𝑠 is
assessed by computing the CD between embeddings generated by the original pre-trained model and the
embeddings generated by the time-aware, fine-tuned model. In particular, Zhou and Li (2020) adopt a tem-
poral referencing mechanism to encode time-awareness into a pre-trained model. Temporal referencing is
a pre-processing step of the documents that tags each occurrence of 𝑤 in 𝐶1 and 𝐶2 with a special marker
denoting the corpus/time in which it appears (Ferrari et al., 2017; Dubossarsky et al., 2019). The embeddings
of a tagged word are learned by fine-tuning the LLM for domain-adaptation. In this case, 𝑠 is assessed by
computing the CD between 𝜇[1] and 𝜇[2], where [𝑖] denotes𝑤 with the temporal marker 𝑡𝑖. Similarly to Zhou
and Li (2020), a time-aware approach is proposed by Rosin et al. (2022) where a time marker is added to
documents instead of words and the LLM is fine-tuned to predict the injected time information (i.e., time
masking). This way, there is no need to add a tag for each target word and its various forms (e.g., singular,
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plural), thereby avoiding the inclusion of additional new tokens in the LLM’s vocabulary. As an alternative,
Rosin and Radinsky (2022) adopt a temporal attention mechanism to generate the embeddings Φ1 and Φ2

for calculating CD.

Inverted similarity over word prototype (PRT). This measure is proposed as an alternative to CD for
improving the effectiveness of the change detection (Kutuzov and Giulianelli, 2020). The inverted similarity
over word prototypes (PRT) measure is defined as:

𝑃𝑅𝑇 (𝜇1, 𝜇2) =
1

𝐶𝑆(𝜇1, 𝜇2)
. (2.2)

Time-diff (TD). This measure is designed for time-aware approaches and it works on analyzing the
change of polysemy of a word over time. It is based on the model’s capability to predict the time of a document
and it calculates the change 𝑠 by considering the probability distribution of the predicted times (Rosin et al.,
2022). Intuitively, a uniform distribution means that the association document-time is not strong enough to
clearly entail a change. Instead, a non-uniform distribution means that there is evidence to predict the time of
a document. Consider a document 𝑑, let 𝑝𝑗(𝑑) be the probability of 𝑑 to belong to the time 𝑡𝑗 . The function
time diff (TD) is defined as the average difference of the predicted time probabilities:

𝑇𝐷(𝐶1, 𝐶2) =
1

|𝐶1 ∪ 𝐶2|

∑

𝑑1∈𝐶1,𝑑2∈𝐶2

|𝑝1(𝑑1) − 𝑝2(𝑑2)| . (2.3)

The experiments conducted by Rosin et al. (2022) demonstrate that TD outperforms CD in short-term se-
mantic change when their performance is compared on the task of Graded Change Detection across various
benchmarks. On the contrary, CD outperforms TD over long-term semantic change. Rosin et al. (2022)
argue that TD is less effective on long-term periods since major differences in writing style emerge and the
prediction of document-time associations is less reliable.

Average pairwise distance (APD). This measure exploits the variance of the contextualized represen-
tations Φ1, Φ2 to compute the semantic change assessment (i.e., variance on the word polysemy). As a
difference from the previous measures, APD directly works on word embeddings without requiring any ag-
gregation stage, namely clustering nor averaging. The average pairwise distance (APD) is defined as follows:

𝐴𝑃𝐷(Φ1,Φ2) =
1

|Φ1||Φ2|
⋅

∑

𝑒1,𝑖∈ Φ1, 𝑒2,𝑖∈ Φ2

𝑑(𝑒1,𝑖, 𝑒2,𝑖) , (2.4)

where 𝑑 is an arbitrary distance measure (e.g., cosine distance, euclidean distance, canberra distance). Ac-
cording to the experiments performed by Giulianelli et al. (2020), APD better performs when the euclidean
distance is employed as 𝑑. Keidar et al. (2022) use APD over the embeddings Φ1 and Φ2 by applying a
dimensionality reduction through the Principal Component Analysis (PCA). Experiments on both slang and
non-slang words are performed through causal analysis to study how distributional factors (e.g., polysemy,
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frequency shift) influence the change 𝑠. The results show that slang words experience fewer semantic change
than non-slang words.

Kudisov and Arefyev (2022) use lexical substitutes to assess 𝑠. A set of lexical substitutes is generated
by leveraging a masked LLM (e.g., XLM-R) and word representations Φ1, and Φ2 are computed as bag-of-
substitutes. Then, APD is finally computed over Φ1, and Φ2 to assess 𝑠.

APD is also used in a time-aware approach described by Pömsl and Lyapin (2020), where a pre-trained
BERT model is fine-tuned to predict the time period of a sentence. APD is finally used to measure the change
between the embeddings extracted from the fine-tuned LLM.

Arefyev et al. (2021) employ APD to measure the change 𝑠 over the embeddings Φ1 and Φ2 extracted
from a supervised Word-in-Context model (WiC, Pilehvar and Camacho-Collados, 2019). This LLM is
trained to reproduce the behavior of human annotators when they are asked to evaluate the similarity of the
meaning of a word 𝑤 in a pair of given sentences from 𝐶1 and 𝐶2, respectively. The embeddings Φ1 and Φ2

are extracted from the trained WiC model for calculating the final APD measure.
Average of average inner distances (APD-OLD/NEW). The APD-OLD/NEW measure is presented

by Laicher et al. (2021) as an extension of APD and it estimates the change 𝑠 as the average degree of poly-
semy of𝑤 in the corpora𝐶1 and𝐶2, respectively. The average of average inner distances (APD-OLD/NEW)
is defined as:

𝐴𝑃𝐷-𝑂𝐿𝐷∕𝑁𝐸𝑊 (Φ1,Φ2) =
𝐴𝐼𝐷(Φ1) + 𝐴𝐼𝐷(Φ2)

2
. (2.5)

where AID is the average inner distance and it measures the degree of polysemy of 𝑤 in a specific time
frame by relying on the APD measure, namely 𝐴𝐼𝐷(Φ1) = 𝐴𝑃𝐷(Φ1,Φ1) and 𝐴𝐼𝐷(Φ2) = 𝐴𝑃𝐷(Φ2,Φ2),
respectively.

Hausdorff distance (HD). The change 𝑠 is measured as the Hausdorff distance (HD) between the word
embeddings Φ1 and Φ2. Similarly to APD, HD directly works on word embeddings without requiring any
aggregation stage. HD relies on the euclidean distance 𝑑 to measure the difference between the embeddings
of𝑤 in 𝐶1 and 𝐶2 and it returns the greatest of all the distances 𝑑 from one embedding 𝑒1 ∈ Φ1 to the closest
embedding 𝑒2 ∈ Φ2, or vice-versa. The HD measure is defined as follows:

𝐻𝐷(Φ1,Φ2) = max

(

sup
𝑒1∈Φ1

inf
𝑒2∈Φ2

𝑑(𝑒1, 𝑒2), sup
𝑒2∈Φ2

inf
𝑒1∈Φ1

𝑑(𝑒2, 𝑒1)

)

. (2.6)

The experiments performed by Wang et al. (2020) show that HD is sensitive to outliers since it is based on
infimum and supremum, thus an outlier embedding may largely affect the final 𝑠 value.

Difference between token embedding diversities (DIV). Similar to APD, this measure assesses the
change 𝑠 by exploiting the variance of the contextualized representation Φ1 and Φ2. As a difference with
APD, the difference between token embedding diversities (DIV) leverages a coefficient of variation calcu-
lated as the average of the cosine distances 𝑑 between the embeddings Φ1 and Φ2, and their prototypical
embeddings 𝜇1 and 𝜇2, respectively (Kutuzov, 2020). The intuition is that when 𝑤 is used in just one sense,
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its embeddings tend to be close to each other yielding a low coefficient of variation. On the opposite, when
𝑤 is used in many different senses, its embeddings are distant to each other yielding to a high coefficient of
variation. DIV is defined as the absolute difference between the coefficient of variation in 𝐶1 and 𝐶2:

𝐷𝐼𝑉 (Φ1,Φ2) =
|

|

|

|

|

∑

𝑒1∈Φ1
𝑑(𝑒1, 𝜇1)

|Φ1|
−

∑

𝑒2∈Φ2
𝑑(𝑒2, 𝜇2)

|Φ2|

|

|

|

|

|

(2.7)

The experiments of Kutuzov (2020) show that when the coefficient of variation is low, the prototypical
embeddings 𝜇1 and 𝜇2 successfully represent the meanings of the given word 𝑤. On the opposite, when the
coefficient of variation is high, the prototypical embeddings𝜇1 and𝜇2 do not provide a relevant representation
of the 𝑤 meanings.

2.4.2 Sense-based approaches
According to Table 2.5, we note that all the sense-based approaches are time-oblivious and that fine-tuning is
sometimes adopted, but mainly for domain-adaptation purposes. Most papers leverage unsupervised learning
modalities. Only a few exceptions employ a lexicographic supervision (i.e., Hu et al., 2019; Rachinskiy and
Arefyev, 2021, 2022). As a difference with form-based, sense-based approaches usually enforce clustering
in the aggregation stage. The aggregation by averaging is only exploited by Periti et al.; Hu et al.; Montariol
et al. (2022; 2019; 2021), where sense prototypes are computed on top of the results of a clustering operation.

When clustering is adopted, the function 𝑓 that calculates the change 𝑠 can be directly defined over
the embeddings Φ1 and Φ2. As an alternative, the function 𝑓 can be defined over the distribution of the
embeddings in the resulting clusters (i.e., cluster distribution). In this case, as a result of the clustering
operation, a counting function 𝑐 is used to determine two cluster distributions 𝑝1 and 𝑝2 that represent the
normalized number of embeddings in the cluster partitions 𝜙1,𝑖 and 𝜙2,𝑖, respectively (see Section 2.2). The
𝑖-th value 𝑝𝑗,𝑖 in 𝑝𝑗 (with 𝑗 ∈ {1, 2}) represents the number of embeddings of 𝜙𝑗,𝑖 in the 𝑖-th cluster, namely:
𝑝𝑗,𝑖 =

|𝜙𝑗,𝑖|
|Φ𝑗 |

. Finally, the function 𝑓 is defined as a compound function 𝑓 = 𝑔 ◦ 𝑐, where the result of the 𝑐
function is exploited by a change function 𝑔 which works on the cluster distributions 𝑝1 and 𝑝2.
In sense-based approaches, the following change functions are proposed for measuring the semantic change
𝑠.

Maximum novelty score (MNS). This measure exploits the cluster distributions 𝑝1 and 𝑝2 by leveraging
the idea that the higher is the ratio between the number of embeddings Φ1 and Φ2 in a cluster, the higher is
the semantic change of the considered word 𝑤. The maximum novelty score (MNS) is defined as:

𝑀𝑁𝑆(𝑝1, 𝑝2) = max{𝑁𝑆(𝑝1,1, 𝑝2,1), ..., 𝑁𝑆(𝑝1,𝑘, 𝑝2,𝑘)} , (2.8)

where 𝑁𝑆(𝑝1,𝑖, 𝑝2,𝑖) = 𝑝1,𝑖∕𝑝2,𝑖 is the novelty score proposed by Cook et al. (2014), and 𝑘 is the number of
clusters produced as a result of the aggregation stage.

Hu et al. (2019) employ MNS as a change measure in a supervised learning approach. In particular, a
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Ref. Time
awareness

Learning
modality LLM Training

language
Type of
training Layer Layer

aggregation
Clustering
algorithm

Change
function

Corpus
language

Hu et al.
2019 time.-obl. supervised BERT-base monol. pre-trained last - - MNS English

Rachinskiy and Arefyev
2021 time.-obl. supervised XLM-R-base multil. fine-tuned,

pre-trained - - - APD Russian
Rachinskiy and Arefyev

2022 time.-obl. supervised XLM-R-base multil. fine-tuned,
pre-trained last - - APD,

JSD Spanish

Periti et al.
2022 time.-obl. unsuperv. BERT-base,

mBERT-base
monol.,
multil. pre-trained last four sum

AP,
APP,

IAPNA

JSD,
PDIS,
PDIV

English,
Latin

Montariol et al.
2021 time.-obl. unsuperv. BERT-base,

mBERT-base
monol.,
multil. dom.-ada. last four sum K-Means,

AP
JSD,
WD

English,
German,

Latin,
Swedish

Rodina et al.
2021 time.-obl. unsuperv. mBERT-base,

ELMo
monol.,
multil. dom.-ada. last - K-Means,

AP
JSD
MS Russian

Kanjirangat et al.
2020 time.-obl. unsuperv. mBERT-base multil. pre-trained last four concatenation K-Means CSC,

JSD

English,
German,

Latin,
Swedish

Giulianelli et al.
2020 time.-obl. unsuperv. BERT-base monol. pre-trained all sum K-Means ED,

JSD English

Arefyev and Zhikov
2020 time.-obl. unsuperv. XLM-R-base multil. dom.-ada. - - AGG CDCD

English,
German,

Latin,
Swedish

Kashleva et al.
2022 time.-obl. unsuperv. BERT-base monol. dom.-ada. all sum K-Means APDP Spanish

Martinc et al.
2020c time.-obl. unsuperv. BERT-base,

mBERT-base
monol.,
multil. dom.-ada. last four sum K-Means,

AP JSD
English,
German,

Latin,
Swedish

Kutuzov and Giulianelli
2020 time.-obl. unsuperv.

BERT-base,
ELMo,

mBERT-base
monol.,
multil.

dom.-ada.,
in. dom.-ada.,

pre-trained

all,
last,

last four
average AP JSD

English,
German,

Latin,
Swedish

Giulianelli et al.
2022 time.-obl. unsuperv. XLM-R-base multil. dom.-ada. all average AP JSD

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Wang et al.
2020 time.-obl. unsuperv. mBERT-base multil. dom.-ada. last - GMMs,

K-Means JSD Italian

Keidar et al.
2022 time.-obl. unsuperv. RoBERTa-base monol. dom.-ada.

all,
first,
last

sum
AP,

K-Means,
GMMs

ED,
JSD English

Karnysheva and Schwarz
2020 time.-obl. unsuperv. ELMo,

mELMo
monol.,
multil. pre-trained all - K-Means,

DBSCAN JSD
English,
German,

Latin,
Swedish

Cuba Gyllensten et al.
2020 time.-obl. unsuperv. XLM-R-base multil. pre-trained last - K-Means JSD

English,
German,

Latin,
Swedish

Rother et al.
2020 time.-obl. unsuperv. mBERT-base,

XLM-R-base multil. pre-tuned last -
BIRCH,

DBSCAN,
GMMs,

HDBSCAN
JSD

English,
German,

Latin,
Swedish

Table 2.5: Summary view of sense-based approaches. Missing information is denoted with a dash.

lexicographic supervision (i.e., the Oxford English dictionary) is employed to provide the meanings of the
target word 𝑤. Each word occurrence in Φ1 and Φ2 is associated with the closest meaning of the dictionary
according to the cosine distance. As a result, for each word/dictionary meaning, a cluster of word embeddings
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is defined and MNS is exploited to calculate the overall change.
Maximum square (MS). This measure is an alternative to MNS to assess the change of 𝑠. The intuition

of MS is that slight changes in cluster distributions 𝑝1 and 𝑝2 may occur due to noise and do not represent a
real semantic change (Rodina et al., 2021). The maximum square (MS) aims at identifying strong changes
in the cluster distributions. As a difference with MNS, the square difference between 𝑝1,𝑖 and 𝑝2,𝑖 is used to
capture the degree of change instead of the novelty score (NS):

𝑀𝑆(𝑝1, 𝑝2) = max
𝑖

(

𝑝1,𝑖 − 𝑝2,𝑖
)2 (2.9)

Jensen-Shannon divergence (JSD). This measure extends the Kullback-Leibler (KL) divergence, which
calculates how one probability distribution is different from another. The Jensen-Shannon divergence (JSD)
calculates the change 𝑠 as the symmetrical KL score of the cluster distributions 𝑝1 from 𝑝2, namely:

𝐽𝑆𝐷(𝑝1, 𝑝2) =
1
2
(

𝐾𝐿(𝑝1||𝑀) +𝐾𝐿(𝑝2||𝑀)
)

, (2.10)

where KL is the Kullback-Leibler divergence and 𝑀 = (𝑝1 + 𝑝2)∕2.
JSD is also used in approaches where aggregation by clustering is performed separately over the em-

beddings Φ1 and Φ2 (Kanjirangat et al., 2020). As a result, the clusters need to be aligned to determine the
distributions 𝑝1 and 𝑝2 before the JSD calculation. As a difference with Kanjirangat et al. (2020), an evolu-
tionary clustering algorithm is employed by Periti et al. (2022) to apply the JSD measure without requiring
any alignment step over the resulting clusters.

As a final remark, JSD can be employed to measure the change 𝑠 over more than two time periods.
However, the experiments of Giulianelli et al. (2020) show that the JSD effectiveness over a single time
period outperforms the version over more time periods since JSD is insensitive to the order of the temporal
intervals.

Coefficient of semantic change (CSC). This measure is proposed as an alternative to JSD where the
difference over the weighted number of elements in 𝜙1,𝑖 and 𝜙2,𝑖 for each cluster 𝑖 is employed to replace KL
in measuring the change (Kanjirangat et al., 2020). The coefficient of semantic change (CSC) is defined as
follows:

𝐶𝑆𝐶(𝑝1, 𝑝2) =
1

𝑃1 ⋅ 𝑃2

𝐾
∑

𝑘=1
|𝑃2 ⋅ 𝑝1,𝑘 − 𝑃1 ⋅ 𝑝2,𝑘| , (2.11)

where 𝑃𝑗 = ∑𝑘
𝑖=1 𝑝𝑗,𝑖 is the weight of each cluster distribution and 𝑘 is the number of clusters.

Cosine distance between cluster distributions (CDCD). As a further alternative of JSD, this measure
assesses the change 𝑠 by considering the cluster distributions 𝑝1 and 𝑝2 as vectors and by applying the co-
sine distance over them to assess the semantic change 𝑠. The cosine distance between cluster distributions
(CDCD) is defined as follows:

𝐶𝐷𝐶𝐷(𝑝1, 𝑝2) = 1 −
𝑝1 ⋅ 𝑝2

‖𝑝1‖ × ‖𝑝2‖
(2.12)

43



In Arefyev and Zhikov (2020), CDCD is calculated between the cluster distributions 𝑝1 and 𝑝2 obtained
by enforcing clustering over bag-of-substitutes (see the description of Arefyev and Zhikov, 2020 in Sec-
tion 2.4.1).

Entropy difference (ED). This measure is based on the idea that the higher is the uncertainty in the
interpretation of a word occurrence due to the𝑤 polysemy in 𝐶1 and 𝐶2, the higher is the semantic change 𝑠.
The intuition is that high values of ED are associated with the broadening of a word’s interpretation, while
negative values indicate a narrowing interpretation (Giulianelli et al., 2020). The entropy difference (ED) is
defined as follows:

𝐸𝐷(𝑝1, 𝑝2) = 𝜂(𝑝1) − 𝜂(𝑝2) , (2.13)
where 𝜂(𝑝𝑗) is the degree of polysemy of 𝑤 in the corpus 𝐶𝑗 , which is calculated as the normalized entropy
of its cluster distribution 𝑝𝑗 :

𝜂(𝑝𝑗) = log𝐾

( 𝐾
∏

𝑘=1
𝑝𝑗,𝑖

−𝑝𝑗,𝑖

)

.

As shown by Giulianelli et al. (2020), ED is not capable of properly assessing 𝑠 when new usage types of 𝑤
emerge, while old ones become obsolescent at the same time, since it may lead to no entropy reduction.

Cosine distance between semantic prototypes (PDIS). This measure is presented by Periti et al. (2022)
as an extension of the CD measure adopted by form-based approaches. The idea of PDIS is that the aggre-
gation by averaging over cluster prototypes can be employed to produce summary descriptions of the cluster
contents (i.e., semantic prototypes). The cosine distance between semantic prototypes (PDIS) is defined as
the CD between 𝑐1, 𝑐2, that is:

𝑃𝐷𝐼𝑆(𝑐1, 𝑐2) = 1 −
𝑐1 ⋅ 𝑐2

‖𝑐1‖ × ‖𝑐2‖
(2.14)

where 𝑐1 and 𝑐2 are semantic prototypes defined as the average embeddings of all the sense prototypes 𝑐1,𝑖
and 𝑐2,𝑖, respectively.

Difference between prototype embedding diversities (PDIV). This measure is presented by Periti
et al. (2022) as an extension of the DIV measure adopted by form-based approaches. PDIV leverages the
same intuition of PDIS, namely the semantic prototypes can be employed to calculate the coefficient of am-
biguity of𝑤 by measuring the difference between a semantic prototype 𝑐𝑗 and each sense prototype 𝑐𝑗,𝑖. The
difference between prototype embedding diversities (PDIV) is defined as the absolute difference between
these ambiguity coefficients:

𝑃𝐷𝐼𝑉 (Ψ1,Ψ2) =
|

|

|

|

|

|

∑

𝑐1,𝑘∈Ψ1
𝑑(𝑐1,𝑘, 𝑐1)

|Ψ1|
−

∑

𝑐2,𝑘∈Ψ2
𝑑(𝑐2,𝑘, 𝑐2)

|Ψ2|

|

|

|

|

|

|

, (2.15)

where Ψ1 and Ψ2 denote the set of sense prototypes of 𝑐1,𝑖 and 𝑐2,𝑖, respectively.
Average pairwise distance (APD). In addition to form-based approaches (see Section 2.4.1), the APD
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measure is exploited to assess 𝑠 also in sense-based approaches. Rachinskiy and Arefyev; Rachinskiy and
Arefyev (2021; 2022) apply APD to the contextualized embeddings Φ1 and Φ2 extracted from a fine-tuned
XLM-R model. In particular, an English corpus is used to fine-tune the pre-trained LLM to select the most
appropriate WordNet’s definition for each word occurrence (Blevins and Zettlemoyer, 2020). As a result of
the fine-tuning, both WordNet’s definitions and word occurrences are embedded in the same vector space
and the meaning of any word occurrence can be induced by selecting the closest definition in the vector
space. In Rachinskiy and Arefyev (2021), the zero-shot, cross-lingual transferability property of XLM-R is
exploited to obtain word representations for the Russian language and APD is finally applied (Chang et al.,
2008; Choi et al., 2021). Rachinskiy and Arefyev (2021) claim that the approach is useful to overstep the
lack of lexicographic supervision for low-resource languages and that most concept definitions in English
also hold in other languages, such as Russian. However, this claim is not completely satisfied, since some
words can drastically change their meaning across languages. For example, the Russian word “пионер”
(i.e., pioneer, scout) is strongly connected to the Communist ideology in the Soviet Period, but it isn’t in the
English language.

Average pairwise distance between sense prototypes (APDP). This measure is an extension of APD
and it considers all the pairs of sense prototypes 𝑐1,𝑖 and 𝑐2,𝑖 instead of all the original embeddings in Φ1 and
Φ2 (Kashleva et al., 2022). The average pairwise distance between sense prototypes (APDP) is defined as:

𝐴𝑃𝐷(Ψ1,Ψ2) =
1

|Ψ1||Ψ2|
⋅

∑

𝑐1,𝑘∈Ψ1, 𝑐2,𝑘∈Ψ2

𝑑(𝑐1,𝑘, 𝑐2,𝑘) (2.16)

Wassertein distance (WD). This measure models the change assessment as an optimal transport prob-
lem and it is exploited as an alternative to cluster alignment when aggregation by clustering is performed
separately over the embeddingsΦ1 andΦ2 (Montariol et al., 2021). WD quantifies the effort of re-configuring
the cluster distribution of 𝑝1 into 𝑝2, namely minimizing the cost of moving one unit of mass (i.e., a sense
prototype) from Ψ1 to Ψ2. The Wassertein distance (WD) is defined as:

𝑊𝐷(𝑝1, 𝑝2) = min
𝛾

𝑘1
∑

𝑖

𝑘2
∑

𝑗
𝐶𝐷(𝑐1,𝑖, 𝑐2,𝑗) 𝛾𝑐1,𝑖→𝑐2,𝑗 (2.17)

such that: 𝛾𝑐1,𝑖→𝑐2,𝑗 ≥ 0
∑

𝑖
𝛾𝑐1,𝑖→𝑐2,𝑗 = 𝑝1

∑

𝑗
𝛾𝑐1,𝑖→𝑐2,𝑗 = 𝑝2

where all 𝛾𝑐1,𝑖→𝑐2,𝑗 represents the (unknown) effort required to reconfigure the mass distribution 𝑝1 into 𝑝2; 𝑘1
and 𝑘2 are the number of clusters obtained by clustering Φ1 and Φ2, respectively; 𝐶𝐷 is the cosine distance
computed over the sense prototypes 𝑐1,𝑖 ∈ Ψ1 and 𝑐2,𝑗 ∈ Ψ2 (Bonneel et al., 2011).
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2.4.3 Ensemble-based approaches

In this section, we review the approaches that rely on an ensemble mechanism, namely the combination of
two or more assessment functions to determine the semantic change score. Ensembling can mean that more
than one form- and/or sense-based measure is adopted in a given approach. Ensembling can also mean that
a disciplined use of both static and large LMs is used. A final semantic change score is then returned by the
whole ensemble process.

Ref. Time
awareness

Learning
modality

Language
model

Training
language

Type of
training Layer Layer

aggregation
Clustering
algorithm

Change
function

Corpus
language

Pömsl and Lyapin
2020 time-aware unsupervised BERT-base,

mBERT-base
monolingual,
multilingual fine-tuned last - - APD

English,
German,

Latin,
Swedish

Teodorescu et al.
2022 time-oblivious unsupervised XLM-large multilingual trained last four sum - APD Spanish

Martinc et al.
2020c time-oblivious unsupervised BERT-base,

mBERT-base
monolingual,
multilingual domain-adaptation last four sum AP CD,

JSD

English,
German,

Latin,
Swedish

Wang et al.
2020 time-oblivious unsupervised mBERT-base multilingual pre-trained last - GMMs,

K-Means
APD,
HD,
JSD

Italian

Giulianelli et al.
2022 time-oblivious unsupervised XLM-R-base multilingual domain-adaptation all average - APD,

PRT

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Ryzhova et al.
2021 time-oblivious unsupervised ELMo,

RuBERT
monolingual,
multilingual

pre-trained
trained - - - APD Russian

Kutuzov et al.
2022b time-oblivious unsupervised BERT-base,

ELMo
monolingual,
multilingual domain adaptation last - - APD,

PRT

English,
German,

Latin,
Swedish

Rachinskiy and Arefyev
2021 time-oblivious supervised XLM-R-base multilingual fine-tuned,

pre-trained - - - APD Russian

Rosin and Radinsky
2022 time-aware unsupervised BERT-base monolingual fine-tuned - - - CD

English,
Latin,

German

Table 2.6: Summary view of ensemble approaches. Missing information is denoted with a dash.

According to Table 2.6, we note that all the ensemble approaches are time-oblivious with the excep-
tion of Pömsl and Lyapin (2020) and Rosin and Radinsky (2022). We also note that unsupervised learning
modalities are adopted with the exception of Rachinskiy and Arefyev (2021). As a further remark, most of
the ensemble solutions exploit LLMs trained over different languages.

Some ensemble approaches combine form-based and sense-based measures to improve the quality of
results. On the one hand, form-based measures are exploited to better capture the dominant sense of the
target word 𝑤. On the other hand, sense-based measures are exploited to represent all the meanings of 𝑤,
including the minor ones. The combination of CD (see form-based approaches in Section 2.4.1) and JSD
(see sense-based approaches in Section 2.4.2) is proposed by Martinc et al. (2020c). As a further ensemble
experiment, the results of combining APD, HD, and JSD are discussed by Wang et al. (2020). The APD
measure is also considered by Rachinskiy and Arefyev (2021), where multiple change scores are calculated
by using different distance metrics (e.g., Manatthan distance, CD, euclidean distance) and these scores are
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exploited to train a regression model as an ensemble.
Ensemble approaches based on two form-based measures are also proposed. For instance, Giulianelli

et al. (2022) obtain the final semantic change 𝑠 by averaging APD and PRT scores. This is motivated by
experimental results where sometimes APD outperforms PRT, while some other times PRT outperforms
APD (Kutuzov and Giulianelli, 2020).

Some other ensemble approaches are based on the idea to combine static and contextualized embeddings.
The intuition is that static embeddings can capture the dominant sense of the target word 𝑤, better than
form-based, contextualized embeddings. In Pömsl and Lyapin; Teodorescu et al. (2020; 2022), the semantic
change 𝑠 is assessed by leveraging both static and contextualized embeddings. In particular, 𝑠 is determined
by the linear combination of the scores obtained by two approaches: i) the APD measure over contextualized
embeddings (see form-based approaches in Section 2.4.1); ii) the CD measure over static embeddings aligned
according to the approach described by Hamilton et al. (2016). Similarly, in Martinc et al. (2020c), instead
of directly using the APD measure, JSD is exploited over clusters of contextualized embeddings (see sense-
based approaches in Section 2.4.2). As a further difference, the scores obtained by static and contextualized
approaches are combined by multiplication. The intuition is that, since the score distributions of the two
approaches are unknown, multiplication prevents an approach from contributing more than the other one in
the final score.

Approaches can be also combined with grammatical profiles under the intuition that grammatical changes
are slow and gradual, while lexical contexts can change very quickly (Kutuzov et al., 2021a; Giulianelli
et al., 2022). Grammatical profile vectors 𝑔𝑝1 and 𝑔𝑝2 are associated with the times 𝑡1 and 𝑡2, respectively,
to represent morphological and syntactical features of the considered language in the time period. Ryzhova
et al. (2021) combine the contextualized embeddings of the word 𝑤 occurrences with the grammatical vec-
tors. A linear regression model with regularization is trained by using as features the cosine similarities over
Φ1 and Φ2, and over the grammatical vectors 𝑔𝑝1 and 𝑔𝑝2.

As a further ensemble approach, the combination of different time-aware techniques such as temporal
attention and time masking was tested by Rosin and Radinsky (2022) in order to better incorporate time into
word embeddings.

2.4.4 Discussion

According to Section 2.4.1, 2.4.2, and 2.4.3, we note that form-based approaches are more popular than
sense-based ones. Most papers are characterized by time-oblivious approaches and only a few time-aware
approaches have recently appeared (e.g., Rosin and Radinsky, 2022). All approaches leverage unsupervised
learning modalities with few exceptions (e.g., Hu et al., 2019). We argue that the motivation is due to the re-
cent introduction of a reference evaluation framework for semantic change assessment proposed at SemEval-
2020 Shared Task 1, where participants were asked to adopt an unsupervised configuration (Schlechtweg
et al., 2020).

All papers are featured by contextualized word embeddings extracted from BERT-like models. Regard-
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less of their version (i.e., tiny, small, base, large), BERT and XLM-R are the most frequently used LLMs,
and only a few experiments rely on ELMo and RoBERTa. As a matter of fact, the size of data needed to
train or fine-tune an XLM-R model is several orders of magnitude greater than BERT. Moreover, even if
less frequently employed than BERT, ELMo seems to be promising for LSC and outperform BERT, while
being much faster in training and inference (Kutuzov and Giulianelli, 2020). As a further interesting remark,
the use of static document embeddings extracted from a Doc2Vec (Le and Mikolov, 2014) model has been
proposed to provide pseudo-contextualized word embeddings as an alternative to BERT (Periti et al., 2022).

Monolingual and multilingual LLMs are both popular. The BERT models are the most frequently used
monolingual models. XLM-R models are generally preferred to mBERT (i.e., multilingual BERT) models,
since the former are trained on a larger amount of data and languages, thus the intuition is that they can better
encode the language usages. Multilingual models are used both in multilingual settings, where corpora
of different languages are considered (e.g., Martinc et al., 2020a), and monolingual settings, where just
corpora of one language are given (e.g., Giulianelli et al., 2022). In a monolingual setting, the use of a
multilingual model is motivated by two reasons: i) a model pre-trained on a specific language is not available
(e.g., Kutuzov and Giulianelli, 2020), ii) multilingual models are employed to exploit their cross-lingual
transferability property (e.g., Rachinskiy and Arefyev, 2021).

Considering the type of training, most of the papers directly use pre-trained LLMs or fine-tune them for
domain adaptation. Only a few papers propose to exploit a specific fine-tuning (e.g., Pömsl and Lyapin, 2020)
or to incrementally fine-tune a pre-trained LLM (e.g., Kutuzov and Giulianelli, 2020). Experiments indicate
that fine-tuning a pre-trained LLM for domain adaptation consistently boosts the quality of results when
compared against pre-trained LLMs (e.g., Qiu and Yang, 2022). The impact of fine-tuning on performance
is analyzed by Martinc et al. (2020b), where it is shown that optimal results are achieved by fine-tuning a pre-
trained LLM for five epochs and that, after five epochs, performance decreases due to over-fitting. However,
we argue that the fine-tuning effectiveness strictly depends on the size and domain of the considered corpora.
In many papers, a different number of epochs is proposed with varying results (e.g., Kutuzov and Giulianelli,
2020).

When a LLM is used, contextualized word embeddings are typically extracted from the last one or the
last four layers of the model. Experiments show that the semantic features of text are mainly encoded in the
last four encoder layers of BERT (Jawahar et al., 2019; Devlin et al., 2019). In some papers, contextualized
embeddings are extracted by aggregating the output of the first and the last encoded layers. In this case, the
idea is to combine surface features (i.e., phrase-level information, Jawahar et al., 2019) encoded in the first
layer with the semantic features from the last one. Only Laicher et al. (2021) propose the standalone use
of lower layers of BERT. Middle layers of BERT are usually excluded since they mainly encode syntactic
features (Jawahar et al., 2019). When contextualized embeddings are extracted from more than one layer,
they are generally aggregated by average or sum (e.g., Periti et al., 2022). As an alternative, the use of
concatenation is proposed by Kanjirangat et al. (2020).

As a further note, when a LLM is used, some words may be split into word pieces by a subword-based
tokenization algorithm (Wu et al., 2016; Sennrich et al., 2016). In this case, word piece representations are
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generally synthesized into a single word representation 𝑒𝑗,𝑘 through averaging (e.g., Martinc et al., 2020a),
or concatenating (e.g., Martinc et al., 2020c). As an alternative to avoid such a problem, the pre-trained
vocabulary associated with the LLM can be extended by adding some words of interest. Then, a fine-tuning
step is performed in order to learn the weights associated with the added words (e.g., Rosin et al., 2022).

Clustering operations are typically exploited in sense-based approaches to perform Word Sense Induc-
tion (Aksenova et al., 2022; Lau et al., 2012; Manandhar et al., 2010; Agirre and Soroa, 2007). The only
form-based approach that relies on clustering is presented by Beck (2020) (see Section 2.4.1 for details).
The clustering algorithms that are most frequently employed are K-Means and Affinity Propagation (AP).
Further considered clustering algorithms are Gaussian Mixture Models (GMMs) (e.g., Rother et al., 2020),
agglomerative clustering (AGG) (e.g., Arefyev and Zhikov, 2020), DBSCAN (e.g., Karnysheva and Schwarz,
2020), HDBSCAN (e.g., Rother et al., 2020), Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) (e.g., Rother et al., 2020), A-Posteriori affinity Propagation (APP) (e.g., Periti et al., 2022), and
Incremental Affinity Propagation based on Nearest neighbor Assignment (IAPNA) (e.g., Periti et al., 2022).
Since K-Means, GMMs, and AGG require to define the number of clusters in advance, the use of a silhouette
score is generally employed to determine the optimal number of clusters (Rousseeuw, 1987). As an alter-
native, the AP algorithm is employed to let emerge the number of clusters without prefixing it. DBSCAN
is proposed due to its capability of reducing noise by specifying i) the minimum number of embeddings of
each cluster, and ii) the maximum distance 𝜖 between two embeddings in a cluster. HDBSCAN is the hier-
archical version of DBSCAN and it can manage clusters of different sizes. As a difference with DBSCAN,
HDBSCAN can detect noise without the 𝜖 parameter. APP and IAPNA are incremental extensions of AP,
and their use is proposed for LSC when more than one time interval is considered. In Rother et al. (2020),
different clustering algorithms are compared and the experiments show that i) DBSCAN is very sensitive to
scale since 𝜖 is predefined, and ii) BIRCH tends to find a lot of small clusters that are marginal with respect
to word meanings.

Considering the change functions, a detailed presentation of possible alternatives has been provided in
Sections 2.4.1 and 2.4.2. As a final remark, we note that CD and APD are frequently exploited in form-based
approaches, while JSD is commonly employed in sense-based approaches.

Finally, as for the language of considered corpora, most papers consider the shared benchmark datasets
taken from competitive evaluation campaigns (e.g., LSCDiscovery, Zamora-Reina et al., 2022b). Commonly
considered languages are English, German, Latin, and Swedish that appeared in 2020 at SemEval Task
1 (Schlechtweg et al., 2020). Russian appeared in 2021 at RuShiftEval (Kutuzov and Pivovarova, 2021b,c).
Spanish appeared in 2022 at LSCDiscovery (Zamora-Reina et al., 2022b). The Italian language was intro-
duced in 2020 at DIACRIta (Basile et al., 2020). The approach described by Martinc et al. (2020a) represents
a novel attempt to consider a diachronic corpus containing texts of different languages, namely English and
Slovenian.
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2.5 Comparison of approaches on performance

In this section, we propose a comparison of the reviewed approaches based on their performance, consider-
ing the evaluation framework adopted in LSC tasks of shared competitions. The framework is based on a
reference benchmark which contains a diachronic textual corpus in a given language. The framework is also
characterized by a test-set of target words, where each word is associated with a continuous change score
(i.e., gold score), typically calculated based on manual annotation following the established Word Usage
Graph (WUG) paradigm (Schlechtweg et al., 2021).1 Different metrics are also defined in the framework to
evaluate the performance of the approaches according to the kind of assessment question that the task aims
to address, namely Grade/Binary Change, Sense Gain/Loss (see Section 2.2).

In Table 2.7, we compare the reviewed approaches by considering the experiments on Graded Change
Detection task performed and reported in the corresponding literature papers. In such a kind of task, the
Spearman’s correlation score is typically employed for assessing the performance of a given experiment
by measuring the correlation between the predicted change scores and the gold scores.2. The Spearman’s
correlation evaluates the monotonic relationship between the rank order of the predicted scores and the gold
ones. When multiple experiments are discussed in a paper, the best Spearman’s correlation score obtained
is reported in Table 2.7.

In the comparison, twelve diachronic corpora are exploited. In particular, we consider: i) the four Se-
mEval datasets (Schlechtweg et al., 2020) for English (SemEval English), German (SemEval German), Latin
(SemEval Latin), and Swedish (SemEval Swedish); ii) the English dataset proposed by Gulordava and Ba-
roni (2011) (GEMS English); iii) the English LiverpoolFC dataset proposed by Del Tredici et al. (2019)
(LivFC English); iv) the COHA English dataset (COHA English); v) the LSCDiscovery dataset (Zamora-
Reina et al., 2022b) for Spanish (LSCD Spanish); vi) the DURel dataset for German (DURel German)
(Schlechtweg et al., 2018); vii) the RuShiftEval dataset for Russian (RSE Russian) (Kutuzov and Pivovarova,
2021c); and viii) the NorDiaChange dataset for Norwegian (NOR Norwegian) (Kutuzov et al., 2022a). In
Table 2.7, for each corpus, we highlight when a single time interval𝐶1−𝐶2 or two consecutive time intervals
𝐶1−𝐶2 and 𝐶2−𝐶3 are considered, respectively. As a further remark, we note that the RSE Russian corpus
is the only case where a test set for the time interval 𝐶1 − 𝐶3 as a whole is provided.

For the sake of readability, the performance according to the Spearman’s correlation scores shown in
Table 2.7 is labeled with the semantic change function of the considered approach and the corresponding
framing with respect to form-based, sense-based, and ensemble-based categories (see Section 2.4).

As a general remark, we cannot find an approach outperforming all the others on all the considered cor-
1In the WUG annotation paradigm, human annotators provide semantic proximity judgments for pairs of word usages sampled

from a diachronic corpus spanning two time periods. Word usages and judgments are represented as nodes and edges in a weighted,
diachronic graph called diachronic WUG. This graph is then clustered with the correlation clustering algorithm (Bansal et al.,
2004), and the resulting clusters are interpreted as word senses. Finally, for a given word, a ground truth score of semantic change is
computed by comparing the probability distributions of clusters across different time periods, e.g., a cluster with most of its usages
from one time period indicates a substantial semantic change.

2In Gonen et al. (2020), as an alternative to the Spearman’s correlation score, the Discount Cumulative Gain is proposed. How-
ever, most papers still use Spearman’s, since it is currently employed in competitive shared tasks.
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SemEval
Englsh

SemEval
German

SemEval
Latin

SemEval
Swedish

GEMS
English

LivFC
English

COHA
English

LSCD
Spanish

DURel
German

RSE
Russian

NOR
Norwegian

Ref. 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3

Teodorescu et al.
2022 - - - - - - -

ensemble
APD
.573

- - - - - -

Zhou and Li
2020

form
CD
.392

form
CD
.392

form
CD
.392

form
CD
.392

- - - - - - - - - -

Montariol et al.
2021

sense
AP+WD

.456

sense
AP+JSD

.583

form
CD
.496

sense
K-Means+WD

.332

sense
AP+JSD

.510
- - -

sense
AP+JSD

.712
- - - - -

Periti et al.
2022

sense
AP+JSD

.514*
-

sense
APP+JSD

.512*
- - - - - - - - - - -

Pömsl and Lyapin
2020

ensemble
APD
.246

ensemble
APD
.725

ensemble
APD
.463

ensemble
APD
.546

- - - -
ensemble

APD
.802

- - - - -

Rachinskiy and Arefyev
2021 - - - - - - - - -

ensemble
APD
.781

ensemble
APD
.803

ensemble
APD
.822

- -

Rachinskiy and Arefyev
2022 - - - - - - -

sense
APDP
.745

- - - - - -

Rodina et al.
2021 - - - - - - - - -

form
PRT
.557

sense
AP+JSD

.406
- - -

Rosin et al.
2022

form
CD
.467

-
form
CD
.512

- -
form
TD
.620

- - - - - - - -

Rosin and Radinsky
2022

form
CD
.627

form
CD
.763

form
CD
.565

- - - - - - - - - - -

Rother et al.
2020

sense
HDBSCAN

.512

sense
GMMs

.605

sense
GMMs

.321

sense
HDBSCAN

.308
- - - - - - - - - -

Ryzhova et al.
2021 - - - - - - - - -

ensemble
regression

.480*

ensemble
regression

.487*

ensemble
regression

.560*
-

Kudisov and Arefyev
2022 - - - - - - -

form
APD
.637

- - - - - -

Kutuzov
2020

form
APD
.605

form
PRT
.740

form
PRT
.561

form
APD
.610

sense
AP+JSD

.456*
- - - - - - - - -

Laicher et al.
2021

form
APD
.571*

form
CD

.755*
-

form
APD
.602*

- - - - - - - - - -

Liu et al.
2021b

form
CD
.341

form
CD
.512

form
CD
.304

form
CD
.304

form
CD
.286

form
CD
.561

- - - - - - - -

Martinc et al.
2020c

ensemble
AP+JSD

.361

ensemble
AP+JSD

.642

form
CD
.496

ensemble
AP+JSD

.343
- - - - - - - - - -

Giulianelli et al.
2020 - - - -

form
APD
.285*

- - - - - - - - -

Giulianelli et al.
2022

form
APD
.514

ensemble
PRT
.354

ensemble
PRT
.572

ensemble
APD
.397

- - - - -
ensemble

APD+PRT
.376

form
APD
.480

form
APD
.457

ensemble
APD+PRT

.394

ensemble
APD
.503

Hu et al.
2019 - - - - - -

sense
MNS
.428*

- - - - - - -

Kanjirangat et al.
2020

sense
K-Means+JSD

.028*

sense
K-Means+JSD

.173*

sense
K-Means+JSD

.253*

sense
K-Means+CSC

.321*
- - - - - - - - - -

Karnysheva and Schwarz
2020

sense
K-Means+JSD

-.155*

sense
DBSCAN+JSD

.388*

sense
DBSCAN+JSD

.177*

sense
K-Means+JSD

-.062*
- - - - - - - - - -

Kashleva et al.
2022 - - - - - - -

sense
APDP
.553

- - - - - -

Keidar et al.
2022

form
APD
.489

- - - - - - - - - - - - -

Arefyev et al.
2021 - - - - - - - - -

form
APD
.825

form
APD
.821

form
APD
.823

- -

Arefyev and Zhikov
2020

sense
AGG+CD

.299

sense
AGG+CD

.094

sense
AGG+CD

-.134

sense
AGG+CD

.274
- - - - - - - - - -

Beck
2020

form
CD

.293*

form
CD

.414*

form
CD

.343*

form
CD

.300*
- - - - - - - - - -

Cuba Gyllensten et al.
2020

form
CD

.209*

form
CD

.656*

form
CD

.399*

form
CD

.234*
- - - - - - - - - -

Kutuzov et al.
2022b

form
APD
.605

form
PRT
.740

form
PRT
.561

form
APD
.569

form
APD
.394

- - - - - - - - -

Table 2.7: The Spearman’s correlation score of reviewed approaches in selected experiments. For each
corpus, the top performance is reported in bold. Asterisks denote experiments based on a pre-trained model.
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pora. This can suggest that an approach is language-dependent, namely it works well on one language and it
is not appropriate for others. By relying on the experiments presented by Kutuzov and Giulianelli (2020), the
performance of an approach is influenced by the employed assessment measure in relation to the distribution
of the gold scores in the considered test set. The experiments by Kutuzov and Giulianelli (2020) show that
when the distribution of the gold scores is skewed, namely some words are highly changed and some others
are barely changed, the APD measure achieves better performance on Spearman’s correlation than the PRT
measure. On the contrary, when the distribution of the gold scores is almost uniform, namely most of the
words are similarly changed, the PRT measure achieves better performance than the APD measure.

As a further remark, we note that the approaches characterized by fine-tuning achieve greater perfor-
mance. This is also confirmed in the experiments of Martinc et al. (2020b) where fine-tuning a LLM boosts
the performance when the LLM is not affected by under or over-fitting.

On average, form-based approaches outperform sense-based approaches in Graded Change Detection
tasks. We argue that such a result is motivated by the structure of the test sets, where just one semantic
change score is provided for each target word. Form-based approaches benefit from this structure since they
work on measuring the change over one general word property (i.e., the dominant sense, or the degree of
polysemy). On the opposite, sense-based approaches are disadvantaged by this structure since they work on
measuring the change over multiple word meanings and they need to produce a single, comprehensive change
value that summarises all the single-meaning changes for the comparison against the gold score. As a result,
capturing some (minor) meanings can negatively affect the comprehensive change value, and to address this
issue, small clusters are usually considered as possible noise and filtered out (Martinc et al., 2020c).

Table 2.7 shows that form-based approaches based on APD, CD, or PRT measures tend to obtain higher
performance than sense- and ensemble-based approaches. GEMS English, COHA English, and LSCD Span-
ish are the only benchmarks where sense-based approaches outperform form-based ones. This can be mo-
tivated by the small number of experiments performed. Indeed, for COHA English experiments with form-
based approaches have not been tested (Hu et al., 2019), while only a few experiments and a limited number
of configurations with form-based approaches have been tested on GEMS English. For LSCD Spanish, the
top performance is .745 and the corresponding approach leverages the APDP measure, which is an extension
of APD characterized by the use of an average-of-average operation. This result is in line with the intuition
presented by Periti et al. (2022), where the use of averaging on top of clustering contributes to reduce the
noise in the contextualized embeddings of the target word.

We also note that ensemble approaches are on average characterized by high performance. In particular,
top performances are provided by ensemble approaches on SemEval Latin (.572), DURel German (.802), and
NOR Norwegian (.394 and .503). Notably, the performance on SemEval Latin is obtained by combining con-
textualized embeddings and grammatical profiles, thereby confirming that word meanings are influenced by
morphology and syntax, especially in some languages. It is also interesting to observe that the performance
on DURel German is obtained through an approach combining static and contextualized word embeddings,
thus highlighting that such a kind of combination can be effective. For NOR Norwegian in the time interval
𝐶1 − 𝐶2, the best approach exploits both APD and PRT; this is a further confirmation that APD and PRT
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are top-performing measures in semantic change detection. For the subsequent time interval 𝐶2 − 𝐶3, the
best result on NOR Norwegian is obtained with a combination of APD with grammatical profiles. This is
a confirmation of the intuition presented by Giulianelli et al. (2022), which suggests that ensembling gram-
matical profiles with contextualized embeddings can enhance performance by incorporating morphological
and syntactic features not fully captured by LLMs.

For SemEval English, SemEval German, the top performance are .627, .763, respectively, and they are
obtained by the time-aware approach proposed by Rosin and Radinsky (2022). Also for LivFC English
(.620), the top performance is obtained by leveraging a time-aware approach (Rosin et al., 2022). We argue
that extra-linguistic information (e.g., time information) can have a positive impact on performance. The in-
jection of extra-linguistic information can contribute to increase the performance also when small-size LLMs
are employed, since they are less affected by noise than larger models. As a confirmation, in contrast to the
widespread belief that the larger the models the higher the performance, the best result for SemEval English
is obtained by exploiting contextualized embeddings generated from a BERT-tiny model (Turc et al., 2019;
Rosin and Radinsky, 2022). This is also true for SemEval Swedish (.610), where the top performance is ob-
tained by calculating the APD measure over contextualized embeddings extracted from an ELMo model (Ku-
tuzov, 2020), which is far smaller than LLMs.

Finally, we note that also the use of supervised learning modalities contributes to achieve high perfor-
mance. As an example, the top performances for RSE Russian are .825 on 𝐶1−𝐶2, .821 on 𝐶2−𝐶3, and .823
on 𝐶1 − 𝐶3 and they are obtained by a form-based, supervised approach (Arefyev et al., 2021). This is also
confirmed by the recent introduction of a novel LLM called XL-LEXEME (Cassotti et al., 2023a), which
has demonstrated exceptional performance across multiple benchmarks (Periti and Tahmasebi, 2024a).

2.6 Scalability, interpretability, and robustness issues
In this section, we analyze the LSC approaches by considering possible scalability, interpretability, and
reliability issues.

2.6.1 Scalability issues

In the LSC approaches, any occurrence of the target word considered for change assessment is represented by
a specific embedding. As a basic implementation, all the contextualized embeddings are stored in memory
for processing. The higher the number of occurrences of a target word, the higher the number of embeddings
to manage. As a result, when the size of the diachronic corpus grows, possible issues arise both in terms of
memory and computation time. Similar issues occur when multiple target words are considered for change
assessment. In this case, a possible workaround for addressing the memory issue is to process one target
word at a time. However, in this way, the memory issue changes to a computation time issue. For feasibility
convenience, most experiments work on a small set of target words. This kind of limitations inhibits the
possibility to address tasks like the detection of the most changed word in a corpus. The need to work on so-
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lutions capable of dealing with such a kind of scalability issues has recently been promoted in LSCDiscovery,
where participants were asked to assess the semantic change on all the words of the dictionary (Zamora-Reina
et al., 2022b).

Some possible solutions to the scalability issues have been proposed in literature. For instance, ap-
proaches based on measures that enforce aggregation by averaging (e.g., CD, PRT) are time-scalable, since
only the prototypes are considered for change assessment instead of the whole set of embeddings. Also ap-
proaches based on APD or JSD measures can be adjusted to become time-scalable. In particular, the number
of embeddings to store and process can be reduced by random sampling the occurrences of the target word
𝑤. This means that i) a smaller number of similarity scores needs to be calculated with APD (e.g., Ryzhova
et al., 2021), and ii) JSD works on top of clustering algorithms that converge faster (e.g., Rodina et al., 2021).
As an alternative to random sampling, an online aggregation by summing method is proposed by Montariol
et al. (2021), where a predefined number of contextualized embeddings 𝑛 is stored in memory. An embed-
ding 𝑒 is stored when the number of embeddings in memory is less than 𝑛 and 𝑒 is strongly dissimilar from
all the other embeddings previously stored. If 𝑒 is not stored, it is aggregated to the most similar embedding
stored in memory through sum.

The dimensionality reduction of the embeddings is proposed as a further alternative to enforce scalability.
For example, in Rother et al. (2020), the embedding dimensionality is reduced to 10 (from 768) by combining
an autoencoder with the UMAP (Uniform Manifold Approximation and Projection) algorithm (McInnes
et al., 2020). In Keidar et al. (2022), UMAP and PCA are used to project contextualized embedding into
ℎ ∈ {2, 5, 10, 20, 50, 100} dimensions. With respect to this solution, we argue that, although it can improve
the memory scalability, time scalability is negatively affected since dimensionality reduction takes time.
However, in (Rother et al., 2020), it is shown that the dimensionality reduction can still contribute to time
scalability when the goal is to test and compare the effectiveness of different clustering algorithms and the
reduced embeddings are saved and re-used. As a further option, the use of small LLMs, such as TinyBert
or ELMo, is gaining more and more attention since the dimension of the generated embeddings is far lower
(e.g., Rosin and Radinsky, 2022).

Scalability issues can also arise when the change needs to be assessed on a corpus 𝐶 =
⋃𝑛
𝑖 𝐶𝑖 defined

over more than one time interval (𝑛 > 2). Typically, existing approaches calculate the change score 𝑠 over
each pair of time intervals (𝑡𝑖, 𝑡𝑖+1) by iteratively re-applying the same assessment workflow. As a difference,
an incremental approach based on a clustering algorithm called A Posteriori affinity Propagation (APP) is
proposed by Castano et al. (2024) and Periti et al.; Periti et al. (2024e; 2022) to speed up the aggregation stage.
In each time interval, clustering is incrementally executed by considering the prototypes of the previous time
period (i.e., aggregation by averaging) and the incoming embeddings of the current time period.

2.6.2 Interpretability issues

Interpretability issues arise when it is not possible to determine which meaning(s) have changed among all
the meanings of a target word, namely the meaning(s) that mainly caused the change score assessed by a
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considered approach. Definitely, form-based approaches are affected by such a kind of issues, since they
model the change as the change in the dominant sense or in the degree of polysemy of a word, without
considering the possible multiple meanings. On the opposite, sense-based approaches aim at providing an
interpretation of the word change, since they attempt to model the change by considering the multiple word
senses. However, interpretability issues can arise also when sense-based approaches are employed due to
three main motivations.

Word meaning representation. Sense-based approaches mostly rely on clustering techniques to represent
word meanings. The K-Means and the AP clustering algorithms are usually employed to this end. K-Means
requires that the number of target clusters is predefined, and this can be inappropriate to effectively represent
the meanings of a target word that are not known beforehand. AP lets the number of target clusters emerge, but
experimental results show that the association of a cluster with a word meaning can be imprecise. We argue
that this can be due to the distributional nature of LLMs that tends to capture changes in contextual variance
(i.e., word usages) rather than changes in lexicographic senses (i.e., word meanings) (Kutuzov et al., 2022b).
As an example, sometimes AP produces more than 100 clusters, which is rather unrealistic if we assume that
a cluster represents a word meaning (Periti et al., 2022). As a matter of fact, a word may completely change
its context without changing its meaning (Martinc et al., 2020b).

Word meaning description. Each cluster obtained during the aggregation stage of a sense-based approach
needs to be associated with a description that denotes the corresponding word meaning. This can be done
by human experts on the basis of the cluster contents. However, this is time-consuming, given that a cluster
can consist of several hundreds/thousands of elements. As an alternative, clustering analysis techniques have
been proposed to label clusters by summarizing their contents. As a possible option, a cluster description
can be extracted from the content by considering the top featuring keywords based on lexical occurrences
(e.g., Tf-Idf) (Kellert and Mahmud Uz Zaman, 2022; Montariol et al., 2021) or substitutes (Card, 2023).
In (Giulianelli et al., 2020), the sense-prototype of a cluster is proposed as a cluster exemplar and the corpus
sentences that are closest to the prototype are adopted as cluster/meaning description. However, when a
cluster contains outliers, these sentences could not provide an effective description. More recently, the use
of Causal LLMs has been proposed to generate descriptive cluster interpretations (Castano et al., 2024) or
word usage definitions (Giulianelli et al., 2023).

Word meaning evolution. When a corpus 𝐶 =
⋃𝑛
𝑖 defined over more than one time interval is considered,

the clusters defined at a time step 𝑡𝑖 need to be linked to the clusters of the previous time step 𝑡𝑖−1 to trace
the evolution of the corresponding meaning over time (i.e., cluster/meaning history). Since the clustering
executions at each time step are independent, the capability of recognizing corresponding clusters/meanings
at different time steps can be challenging. As a possible solution, alignment techniques can be employed
to link similar word meanings in different, consecutive time periods (Kanjirangat et al., 2020; Montariol
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et al., 2021). As a further option, evolutionary clustering algorithms can be exploited without requiring any
alignment mechanism across time periods (Castano et al., 2024; Periti et al., 2024e, 2022).

2.6.3 Robustness issues

Robustness issues arise when the assessment score is not reliable due to data imbalance, model stability, and
model bias.

Data imbalance. The diachronic corpus  must equally reflect the presence of the target word 𝑤 in both
the time steps 𝑡1 and 𝑡2. This means that the frequency of 𝑤 must not strongly change in the considered time
period. However, in common scenarios, more documents are available for the most recent time step 𝑡2 and
“it may not be possible to achieve balance in the sense expected from a modern corpus” (Tahmasebi et al.,
2021a). As a consequence, the frequency of𝑤 can be strongly higher in 𝑡2 than in 𝑡1 and the embeddings Φ𝑗

can produce a distorted representation of the target word when the LLM is trained/fine-tuned (e.g., Wend-
landt et al., 2018; Zhou et al., 2021). As a further remark, data imbalance issues can occur when some word
meanings are more frequent than others. For instance, the dominant sense is usually more represented than
other senses in the corpus . As a result, when a sense-based approach is adopted, the embedding distri-
butions 𝑝1, 𝑝2 can be skewed, meaning that a larger number of embeddings is associated with the dominant
sense rather than with the other minor senses. In sense-based approaches, the word meanings are repre-
sented by clusters, and the number of clusters consistently reflects word frequency (Kutuzov, 2020). When
a meaning is associated with a few embeddings/clusters, its contribution to the overall assessment score is
marginally leading to an inflated or underestimated assessment score. In this respect, a qualitative analysis
of “potentially erroneous” outputs of reviewed approaches is presented by Kutuzov et al. (2022b). Some
examples of potentially erroneous assessment scores occur when i) a word with strongly context-dependent
meanings is considered, whose embeddings are mutually different; ii) a word is frequently used in a very
specific context in only one time step 𝑡1 or 𝑡2; iii) a word is affected by a syntactic change, not a semantic
one. Liu et al. (2021b) propose a solution to reduce the false discovery rate and to improve the precision of
the change assessment by leveraging permutation-based statistical tests and term-frequency thresholding.

Model stability. Pre-trained LLMs are usually trained on modern text sources. For example, the original
English BERT model is pre-trained on Wikipedia and BooksCorpus (Zhu et al., 2015). As a result, pre-
trained LLMs are prone to represent words from a modern perspective, and thus they tend to ignore the
temporal information of a considered corpus. This way, when historical corpora are considered, the possible
obsolete word usages cannot be properly represented. This problem has been investigated in the literature
by comparing the performance of pre-trained against fine-tuned LLMs (Kutuzov and Giulianelli, 2020; Qiu
and Yang, 2022). In line with the considerations of Section 2.4.4, the results show that fine-tuning the LLM
on the whole diachronic corpus improves the quality of word representations for historical texts. Since fine-
tuning the LLM can be expensive in terms of time and computational resources, a measure for estimating the
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model effectiveness for historical sources is presented by Ishihara et al. (2022). In particular, this measure is
used to decide whether a model should be re-trained or fine-tuned.

Model bias. Contextualized embeddings can possibly be affected by biases on the encoded information.
For instance, a possible bias can arise from orthographic information, such as the word form and the position
of a word in a sentence, since they influence the output of the top BERT layers (Laicher et al., 2021). Text pre-
processing techniques are proposed as a solution to reduce the influence of orthography in the embeddings,
thus increasing the robustness of encoded semantic information. To this end, lower-casing the corpus text
is a commonly employed solution. However, the lower-casing of words often conflates parts of speech, thus
another possible bias can arise. For example, the proper noun Apple and the common noun apple become
identical after lower-casing (Hengchen et al., 2021). The possible bias introduced by Named Entities and
proper nouns is investigated by Laicher et al.; Martinc et al. (2021; 2020c). In Qiu and Yang (2022), text
normalization techniques are proposed based on the removal of accent markers. In some languages, such
a kind of normalization can introduce a bias since different words can be conflated. For example, papà
(e.g., the Italian word for dad) and papa (e.g., the Italian word for pope) cannot be distinguished after
the accent removal. Further text pre-processing techniques can be employed to reduce the possible bias
due to orthographic information. In Schlechtweg et al. (2020), lemmatization and punctuation removal are
proposed. Experimental results on lemmatization for reducing the model bias on BERT embeddings are
presented by Laicher et al. (2021). Further experiments show that lemmatizing the target word alone is more
beneficial than lemmatizing the whole corpus (Laicher et al., 2021). Filtering out content-light words, such as
stop words and low-frequency words, can be also beneficial (Zhou and Li, 2020). As an alternative solution
to reduce word-form biases, the embedding of a word occurrence can be computed by averaging its original
embedding and the embeddings of its nearest words in the input sentence (Zhou and Li, 2020).

When aggregation by clustering is enforced, the possible word-form biases can affect the clustering re-
sult (Laicher et al., 2021). As a solution, clustering refinement techniques have been proposed. As an option,
the removal of the clusters containing only one or two instances is adopted, since they are not considered
significant (Martinc et al., 2020c). As a further option, in Martinc et al. (2020b), clusters with less than two
members are considered as weak clusters and they are merged with the closest strong cluster, i.e. cluster
with more than two members. In Periti et al. (2022), clusters containing less than 5 percent of the whole set
of embeddings are assumed to be poorly informative and are thus dropped. However, we argue that the use
of clustering refinement techniques must be carefully considered since also small clusters can be important
when the corpus is unbalanced in the number of meanings of a word.

2.7 Challenges and considerations
In this chapter, we analyzed the LSC task by providing a formal definition of the problem, and a reference clas-
sification framework based on meaning representation, time awareness, and learning modality dimensions.
The literature approaches are surveyed according to the given framework by considering the assessment func-
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tion, the employed LLM, the achieved performance, and the possible scalability/interpretability/robustness
issues.

While we provide a solid framework for classification LSC approaches, we acknowledge that the NLP
research on semantic change is rapidly evolving with new papers continually emerging. For example, various
models such as LLaMA (Periti et al., 2024b), GPT (Periti and Tahmasebi, 2024a), and ChatGPT (Periti et al.,
2024d) are being considered for LSC. Approaches based on lexical substitutes are gaining popularity to ana-
lyze both the modern and the historical bias of LLMs (Cuscito et al., 2024). Further supervised (Tang et al.,
2023) and unsupervised (Aida and Bollegala, 2023) approaches, along with different change functions (Aida
and Bollegala, 2024) are appearing. Additionally, new benchmarks for a larger gamma of languages are
becoming available, including Chinese (Chen et al., 2022a, 2023a), Japanese (Ling et al., 2023), and Slove-
nian (Pranjić et al., 2024).

In Hengchen et al.; Kutuzov et al. (2021; 2018), an overview of open challenges for LSC is presented. In
the following, we extend such an overview by focusing on those challenges that are specific to the existing
approaches in relation to the issues discussed in Section 2.6.

Scalability. The trend in LSC is to adopt increasingly larger models with the idea that they better represent
language features. As a consequence, scalability issues arise, and they are being addressed as discussed in
Section 2.6.1. However, contrary to this trend, we argue that the use of small-size models, such as those
introduced by Rosin and Radinsky; Rosin et al. (2022; 2022), needs to be further explored since they are
competitive in terms of performance.

Word meaning representation. In Section 2.5, we show that form-based approaches outperform sense-
based approaches in the Graded Change Detection assessment. However, we argue that sense-based ap-
proaches are promising since they focus on encoding word senses and they can enrich the mere degree of
semantic change of a word 𝑤 with the information about the specific meaning of 𝑤 that changed. In this di-
rection, LSC should be considered as a temporal/diachronic extension of other problems such as Word Sense
Induction (Alsulaimani et al., 2020), Word Meaning Disambiguation (Godbole et al., 2022), and Word-in-
Context (Loureiro et al., 2022).

In this regard, we will connect LSC to other problems in Chapter 3 (LSC through Word-in-Context),
Chapter 4 (LSC through Word Sense Induction), and more formally in Chapter 7 and Chapter 9 (LSC as
Word-in-Context + Word Sense Induction + Graded Change Detection).

So far, word senses have been represented through aggregation by clustering under the idea that each
cluster represents a specific word meaning. However, according to the interpretability issues of Section 2.6,
clustering techniques are often affected by noise and they are typically capable of representing word usages
rather than word meanings. Thus, further investigations are required to represent lexicographic meanings in
a more faithful way.
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Word meaning description. According to Section 2.6, current solutions to meaning description are fo-
cused on determining a representative label taken from the cluster contents (e.g., Tf-Idf, sentence(s) featuring
the sense-prototype). Such solutions are mostly oriented to highlight the lexical features of the cluster/mean-
ing without considering any element that reflects the cluster’s semantics. As a consequence, open challenges
are based on the need of comprehensive description techniques capable of capturing both lexical and seman-
tic aspects such as position in text, semantics, or co-occurrences across different documents. In a very recent
work, (Giulianelli et al., 2023) propose interpreting the meaning of word usages by generating sense defi-
nitions through novel generative models. A main drawback is that different definitions can be generated for
usages related to the same meaning. Nonetheless, we strongly suggest a change towards the latter solution,
given that the new generative models have demonstrated extraordinary capabilities.

In this regard, we will preliminarily investigate the use of generative LLMs in Chapter 3 and Chapter 7,
and more extensively in Chapter 8 and Chapter 9.

Word meaning evolution. In shared competitions, the reference evaluation framework for LSC is based
on one/two time periods that are considered for LSC. The extension of the evaluation framework to consider
more time periods is an open challenge. In particular, methods and practices of LSC approaches need to
be tested/extended for detecting both short- and long-term semantic changes as well as for promoting the
design of incremental techniques able to handle dynamic corpora (i.e., corpora that become progressively
available).

In this context, a further challenge is about the capability to trace the change of a meaning over multiple
time steps (i.e., meaning evolution). As mentioned in Section 2.2, alignment techniques can be used to link
similar word meanings in different, consecutive time periods. However, such a solution is not completely
satisfactory due to possible limitations (e.g., scalability, robustness of alignment), and further research work
is needed to better track the meaning evolution over time (e.g., Periti et al., 2022).

In this regard, we will further discuss this challenge in Chapter 4 and present a novel incremental ap-
proach to LSC in Chapter 5.

Model stability. Most of the approaches surveyed in this chapter are time-oblivious and face the problem
of model stability through fine-tuning. Since this practice can be expensive in terms of time and resources,
we argue that further research on the development of time-aware approaches is needed, in that, they do not
suffer the model stability problem.

In this regard, in Chapter 8 we will leverage lexical replacements to evaluate the contextualization ca-
pability of LLMs when lexical semantic change occurs.
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Model bias. The solutions to model bias issues presented in Section 2.6 are language-dependent and they
are mainly exploited in approaches based on monolingual models. Further research work is needed to test
the effectiveness of existing solutions also in approaches based on multilingual LLMs. In addition, we argue
that future work should concern the application of denoising and debiasing techniques to both monolingual
and multilingual LLMs (e.g., Kaneko and Bollegala, 2021) with the aim to improve LSC performance by
reducing orthographic biases regardless of the language(s) on which the models were trained.

Further challenges not strictly related to the issues of Section 2.6 are the following:

Semantic Change Interpretation. Most of the literature does not investigate the nature of the detected
change, meaning that they do not classify the semantic change according to the existing linguistics theory
(e.g., amelioration, pejoration, broadening, narrowing, metaphorization, metonymization, and metonymy)
(Campbell, 2020; Hock and Joseph, 2019). Further studies on the causes and types of semantic changes
are needed (de Sá et al., 2024). These studies could be crucial to detect “laws” of semantic change that
describe the condition under which the meanings of words are prone to change. For example, some laws are
hypothesized or tested by Xu and Kemp (2015); Dubossarsky et al. (2015); Hamilton et al. (2016), but later
the validity of some of them has been questioned (Dubossarsky et al., 2017). Contextualized embeddings
could contribute to test the validity of current laws and to propose new ones. To the best of our knowledge,
some steps in this direction are only moved by (Hu et al., 2019) for modeling the word change from an
ecological viewpoint (similar to the dynamics of species populations over time).

Computational models of meaning change. Almost all experiments on LSC are based on BERT embed-
dings. Although there are open questions about how to maximize the effectiveness of BERT embeddings in
different language setups, the effectiveness of BERT for LSC has been extensively investigated. We believe
that LSC should be extended by considering a wider range of models. Some work explored the effective-
ness of ELMo (Kutuzov and Giulianelli, 2020; Rodina et al., 2021). However, the performance of ELMo in
different contexts and setups should be analyzed in more detail. Furthermore, it might be worth investigat-
ing smaller versions of BERT, like ALBERT (Lan et al., 2019) and DistilBERT (Sanh et al., 2019). Further
models can also be considered like seq2seq and generative models, which recently showed interesting results
in the field of temporal Word-in-Context problem (Lyu et al., 2022).

In this regard, we will evaluate the use of GPT-3.5 in Chapter 3, compare the use of BERT, mBERT,
XLM-R, XL-LEXEME, and GPT-4 in the systematic evaluation presented in Chapter 7, and investigate the
use of LLaMA in Chapter 8- 9 and Flan-T5 in Chapter 9.

Multilingual models. In LSC shared competitions, monolingual models have generally been preferred to
multilingual ones. We believe that a systematic comparison of monolingual vs. multilingual models is re-
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quired to determine scenarios and conditions where the former type of models provides better performance
than the latter type or vice-versa. Multilingual embeddings can also contribute to LSC since they could
enable a language-independent semantic change assessment, meaning that the gold scores of different lan-
guages can be exploited as a whole for the evaluation of a given approach.

In this regard, we will thoroughly compare the use of monolingual models against multilingual models
for LSC in the systematic evaluation presented in Chapter 7.

Cross-language change detection. As introduced by Martinc et al. (2020a), further investigations are re-
quired to address the problem of cross-language change detection. We argue that solutions to such a kind
of problem can be also useful for LSC since they can detect semantic change of cognates and borrowings
(e.g., Fourrier and Montariol, 2022), as well as contact-induced semantic changes (e.g., Miletic et al., 2021)3.

Use cases. So far, LSC through contextualized embeddings is still a theoretical problem not yet integrated
into real application scenarios like historical information retrieval, lexicography, linguistic research, or social
analysis. Among the existing use cases, semantic change has been examined by Bonafilia et al. (2023)
to investigate sudden events that radically alter public opinion on a topic, and by Menini et al.; Paccosi
et al. (2022; 2023) to explore shifts in olfactory perception and changes in the descriptions of smells over
time. We expect that further use cases and experiences will developed and shared in the future.

Context change over different domains. The attention gained by diachronic semantic change detection
through the use of word embeddings paved the way for modeling other linguistics issues such as the identi-
fication of diatopic lexical variation (Seifart, 2019), the detection of semantic changes of grammatical con-
structions (Fonteyn et al., 2020), or the comparison of how speakers who disagree on a subject use the same
words (Garí Soler et al., 2022). The reviewed approaches can be tested and possibly extended to cope with
such a kind of linguistics issues.

3In linguistics, cognates are sets of words in different languages that have been inherited in direct descent from an etymological
ancestor in a common parent language. Borrowings (or loanwords) are words adopted by the speakers of one language from a
different language. Contact-induced semantic changes are diachronic changes within a recipient language that are traceable to
languages other than the direct ancestor of the recipient language and that have spread and are conventionalized within a community
speaking the recipient language.
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Chapter 3

A very first evaluation of ChatGPT

“The Answer to the Great Question... Of Life, the
Universe and Everything... Is... Forty-two”
Douglas Adams, The Hitchhiker’s Guide to the Galaxy

3.1 Introduction
The recent introduction of Transformer-based (Vaswani et al., 2017) language models has led to significant
advances in NLP. These advances are exemplified in Pre-trained Foundation LLMs like BERT and GPT,
which “are regarded as the foundation for various downstream tasks” (Zhou et al., 2023a).

In the previous chapter, we reviewed the current state-of-the-art for LSC, presenting approaches mainly
based on encoder-based LLMs. Among them, BERT has experienced a surge in popularity over the last
few years, and the family of BERT models has repeatedly provided state-of-the-art (SOTA) results for LSC.
However, with the introduction of ChatGPT, research attention began shifting towards generative models,
particularly ChatGPT due to its impressive ability to generate fluent and high-quality responses to human
queries. Within just five days of its release on November 30, 2022, ChatGPT attracted 1 million users.
This rapid adoption continued, surpassing 100 million users by January 2023, making it the fastest-growing
application in history. As of 2024, its user base has now exceeded 180.5 million.

Several recent research studies have assessed the language capabilities of ChatGPT by using a wide range
of prompts to solve popular NLP tasks (Laskar et al., 2023; Kocoń et al., 2023). However, current evaluations
generally (a) overlook that the output of ChatGPT is nondeterministic,1 (b) rely only on contemporary and
synchronic text, and (c) consider predictions generated by the ChatGPT2 web interface, whose parameter
settings were initially unknown at the time of this thesis. As a result, these evaluations provide valuable
insights into the generative, pragmatic, and semantic capabilities of ChatGPT (Kocoń et al., 2023), but fall

1platform.openai.com/docs/guides/gpt/faq
2chat.openai.com
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short when it comes to assess the potential of ChatGPT to solve NLP tasks and specifically to handle historical
and diachronic text, which constitutes a unique scenario for testing models’ capability to generalize.

Chapter outline.
This chapter includes materials originally published in the following publication:

Francesco Periti, Haim Dubossarsky, and Nina Tahmasebi. 2024d. (Chat)GPT v BERT: Dawn
of Justice for Semantic Change Detection. In Findings of the Association for Computational
Linguistics: EACL 2024, pages 420–436, St. Julian’s, Malta. Association for Computational
Linguistics.

In this chapter, we propose to evaluate the use of both ChatGPT Web and ChatGPT API3 - to recognize lexical
semantic change. Our goal is not to comprehensively evaluate ChatGPT in dealing with semantic change but
rather to evaluate its potential as off-the-shelf model with a reasonable prompts from a human point of view,
which may not necessarily be optimized for the model. The chapter is organized as follows. Section 3.2
frames our evaluation within the relevant literature of its time. Section 3.3 outlines our evaluation setup and
introduces the considered evaluation questions. The results of our evaluation are presented in Section 3.4.
Finally, we discuss our experimental evaluation in Section 3.5.

3.2 Background and related work
As this thesis progresses, a continuous stream of research has been published in parallel and continues to
emerge, given that ChatGPT has become a hot topic. In light of this, we provide a concise overview that
reflects the current landscape at the time of our evaluation study. Our intention is not to present an exhaustive
review, but rather to highlight central concerns observed in prior evaluations.

3.2.1 Related work
The significant attention garnered by ChatGPT has led to a large number of studies being published imme-
diately after its release. Early studies mainly focused on exploring the benefits and risks associated with
using ChatGPT in expert fields such as education (Lund and Wang, 2023), medicine (Antaki et al., 2023), or
business (George and George, 2023). Evaluation studies are currently emerging for assessing (Chat)GPT’s
generative and linguistic capabilities across a wide range of downstream tasks in both monolingual and mul-
tilingual setups (Bang et al., 2023; Shen et al., 2023; Lai et al., 2023). Most evaluations focus on ChatGPT
and involve a limited number of instances (e.g., 50) for each task considered (Weissweiler et al., 2023; Zhong
et al., 2023; Alberts et al., 2023; Khalil and Er, 2023). When the official API is used to query ChatGPT, this
limit is imposed by the hourly token processing limit4 and the associated costs.5 When the web interface

3Throughout the text, we represent instances of both ChatGPT Web and API as ChatGPT.
4help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
5openai.com/pricing
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is used instead of the API, the limit is due to the time-consuming process of interacting with ChatGPT that
keeps humans “in the loop”. Thus far, even systematic and comprehensive evaluations (Kocoń et al., 2023;
Laskar et al., 2023) rely on the repetition of a single experiment for each task. However, while individual
experiments provide valuable insights into ChatGPT’s capabilities, they fall short in assessing the potential
of capabilities to solve specific tasks given its nondeterministic nature. Multiple experiments need to be
conducted to validate its performance on each task. In addition, current evaluations generally leverage tasks
that overlook the temporal dimension of text, leaving a gap in our understanding of ChatGPT’s capability to
handle diachronic and historical text.

3.2.2 Evaluating ChatGPT through Word-in-Context

The LSC modeling presented in Chapter 2 involves considering all occurrences (potentially several thousand)
of a set of target words to assess their change in meaning within a diachronic corpus. As a result, this
setup is currently not suitable for evaluating ChatGPT, due to the limited size of its prompts and answers,
as well as accessibility limitations such as an hourly character limit and economic constraints. In light of
these considerations, we chose to evaluate the potential of ChatGPT through the Word-in-Context (WiC)
task, which has recently demonstrated a robust connection with LSC (Cassotti et al., 2023a; Arefyev et al.,
2021). Considering the remarkable performance of contextualized BERT models in addressing WiC and
LSC tasks (Periti and Montanelli, 2024; Periti and Dubossarsky, 2023; Periti et al., 2024e), we compare the
performance of ChatGPT to those obtained using BERT.

Our evaluation of ChatGPT focuses on a diachronic extension of the original WiC setting. In particular,
we evaluate ChatGPT to determine whether a word carries the same meaning in two different contexts of
different time periods, or conversely, whether those contexts exemplify a semantic change. Our aim is to
assess the potential of ChatGPT for LSC, offering the first investigation into the application of ChatGPT for
historical linguistic purposes. Prior to our evaluation, only the use of ChatGPT for a conventional WiC task
has been evaluated by Laskar et al. (2023) and Kocoń et al. (2023), who reported low accuracy under a single
setup. Our evaluation challenges their performance by considering diachronic text and different setups.

3.3 Evaluation setup
In the following, we first present the WiC problem and the diachronic benchmarks used for our evaluation.
Then, we outline our evaluation questions (EQs) along with the various setups we considered.

Problem statement. The original WiC task is framed as a binary classification problem, where each in-
stance is associated with a target word 𝑤, either a verb or a noun, for which two contexts, 𝑐1 and 𝑐2, are
provided (Pilehvar and Camacho-Collados, 2019). The task is to identify whether the occurrences of𝑤 in 𝑐1
and 𝑐2 correspond to the same meaning or not. Both TempoWiC and HistoWiC rely on the same definition
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of the task, while being specifically designed for semantic change detection in diachronic text.

Benchmarks. In our evaluation, we consider two diachronic WiC benchmarks, namely temporal WiC
(TempoWiC, Loureiro et al., 2022) and historical WiC (HistoWiC). While TempoWiC has been designed
to evaluate LLMs ability to detect short-term change in social media, HistoWiC is our adaptation of the Se-
mEval benchmark of historical text to a WiC task for evaluating LLMs ability to detect long-term change in
historical corpora.

TempoWiC HistoWiC
Trial Train Test Trial Train Test

True 8 86 73 11 137 79
False 12 114 127 9 103 61
Total 20 200 200 20 200 140

Table 3.1: Datasets used in our evaluation.

• Temporal Word-in-Context. NLP models struggle to cope with new content and trends. TempoWiC
is designed as an evaluation benchmark to detect short-term semantic change on social media, where
the language is extremely dynamic. It uses tweets from different time periods as contexts 𝑐1 and 𝑐2.
Given the limits on testing ChatGPT, we followed Zhong et al. (2023); Jiao et al. (2023) and randomly
sampled a subset of the original TempoWiC datasets. While the original TempoWiC framework pro-
vides Trial, Train, Test, and Dev sets, here we did not consider the Dev set. Table 3.1 shows the
number of positive (i.e., same meaning) and negative (i.e., different meanings due to semantic change)
examples we considered for each set.

• Historical Word-in-Context. Given that NLP models also struggle to cope with historical content
and trends, we designed HistoWiC as a novel evaluation benchmark for detecting long-term seman-
tic change in historical text, where language may vary across different epochs. HistoWiC sets the
two contexts, 𝑐1 and 𝑐2, as sentences collected from the two English corpora of the LSC detection
task (Schlechtweg et al., 2020).
Similar to the original WiC (Pilehvar and Camacho-Collados, 2019), the annotation process for the
SemEval-English benchmark involved usage pair annotations where a target word is used in two dif-
ferent contexts. Thus, we directly used the annotated instances of LSC to develop HistoWiC. Since
LSC instances were annotated using the DURel framework (Schlechtweg et al., 2024) and a four-
point semantic-relatedness scale (see Table 3.2), we only binarized the human annotations. As with
TempoWiC, we randomly sampled a limited number of instances to create Trial, Train, and Test sets.
Table 3.1 shows the number of positive and negative examples for each set.

In particular, for HistoWiC, we shifted from the LSC to the WiC setting as follows. First, we selected
only the annotated LSC instances containing contexts from different time periods. We then filtered out all the
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instances annotated by a single annotator6 and all the instances that are associated with an average score, 𝑠,
such that 1.5 < 𝑠 < 3.5, which represents ambiguous cases even for humans. Finally, we binarized the LSC
annotations by converting each 𝑠 ≤ 1.5 to False (i.e. different meanings) and each 𝑠 ≥ 3.5 to True (i.e. same
meaning). We report in Table 3.2 the scale used to annotate the LSC instances through the DURel framework.

As an example, consider the following word usage pair ⟨𝑤, 𝑐1, 𝑐2⟩ extracted by the SemEval-English
benchmark for the word 𝑤 =plane.
𝑐1: But we are most familiar with the exhibitions of gravity in bodies descending inclined planes, as in the avalanche

and the cataract.
𝑐2: Over the next several years, he said, the Coast Guard will get 60 more people, two new 270-foot vessels and al

twin-engine planes.
Following the DURel scale, the pair has been annotated with an average judgment of 1 by human annotators.
We thus converted this judgment to False.

↑⏐⏐⏐⏐⏐⏐⏐⏐⏐

4: Identical
3: Closely related
2: Distantly related
1: Unrelated

Table 3.2: The DURel relatedness scale used in Schlechtweg et al.; Schlechtweg; Schlechtweg et al.;
Schlechtweg et al.; Schlechtweg et al.; Schlechtweg and Schulte im Walde; Schlechtweg et al. (2024; 2023;
2021; 2020; 2018; 2020; 2018).

3.3.1 Evaluation questions

In our experiments, we evaluated the performance of ChatGPT-3.5 over the TempoWiC and HistoWiC Test
sets using both the official OpenAI API (API)7 and the web interface (Web).8 Of the GPT-3.5 models avail-
able through the API, we assessed the performance of gpt-3.5-turbo. Following Loureiro et al. (2022), we
employed the Macro-F1 for multi-class classification problems as evaluation metric.

Different prompts. Current ChatGPT evaluations are typically performed manually (Laskar et al., 2023).
When automatic evaluations are performed, they are typically followed by a manual post-processing proce-
dure (Kocoń et al., 2023). As manual evaluation and processing may be biased due to answer interpretation,
we addressed the following evaluation question:

EQ1: Can we evaluate ChatGPT in WiC tasks in a completely automatic way?

6Different instances were annotated by varying numbers of annotators.
7version 0.27.8.
8The August 3 Version.
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Furthermore, as current evaluations generally rely on a zero-shot prompting strategy, we addressed the
following evaluation question:

EQ2: Can we enhance ChatGPT’s performance in WiC tasks by leveraging its in-context learning
capabilities?

To address EQ1 and EQ2, we designed a prompt template (see Table 3.3) to explicitly instruct ChatGPT
to answer in accordance with the WiC label format (i.e., True, False). We then used this template (see
Table 3.4) with different prompt strategies:

• zero-shot prompting (ZSp): ChatGPT was asked to address the WiC tasks (i.e., Test sets) without any
specific training, generating coherent responses based solely on its pre-trained knowledge.

• few-shot prompting (FSp): since LLMs have recently demonstrated in-context learning capabilities
without requiring any fine-tuning on task-specific data (Brown et al., 2020), ChatGPT was presented
with a limited number of input-output examples (i.e., Trial sets) demonstrating how to perform the task.
The goal was to leverage the provided examples to improve the model’s task-specific performance.

• many-shot prompting (MSp): similar to FSp, but with a greater number of input-output examples (i.e.,
Train sets).

Description Template
task explanation Task: Determine whether two given sentences use a target word with the same meaning or different meanings

in their respective contexts.

explicit behavioral
guidelines

I’ll provide some negative and positive examples to teach you how to deal with the task before testing you.
Please respond with only "OK" during the examples; when it’s your turn, answer only with "True" or "False"
without any additional text. When it’s your turn, choose one: "True" if the target word has the same meaning in
both sentences; "False" if the target word has different meanings in the sentences. I’ll notify you when it’s your
turn.

example instance

This is an example. You have to answer "OK":
Sentence 1: [First sentence containing the target word]
Sentence 1: [First sentence containing the target word]
Target: [Target word]
Question: Do the target word in both sentences have the same meaning in their respective contexts?
Answer: [True/False]

task instance

Now it’s your turn. You have to answer with "True" or "False":
Sentence 1: [First sentence containing the target word]
Sentence 1: [First sentence containing the target word]
Target: [Target word]
Question: Do the target word in both sentences have the same meaning in their respective contexts?
Answer: [The model is expected to respond with "True" or "False"]

Table 3.3: Sections of the prompt template used for testing (Chat)GPT.

Varying temperature. The temperature is a hyper-parameter of ChatGPT that regulates the variability of
responses to human queries. According to the OpenAI FAQ, the temperature parameter ranges from 0.0
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ID Strategy Prompt

ZSp zero-shot prompting

task explanation
explicit behavioral guidelines

task instance
...

task instance

FSp few-shot prompting

task explanation
explicit behavioral guidelines

example instance
...

example instance
task instance

...
task instance

MSp many-shot prompting like FSp

Table 3.4: Prompt template for each employed prompting strategy.

to 2.0, with lower values making outputs mostly deterministic and higher values making them more ran-
dom.9 To counteract the non-determinism of ChatGPT, we focused only on TempoWiC and HistoWiC and
conducted the same experiment multiple times with progressively increasing temperatures. This approach
enabled us to answer the following evaluation questions:

EQ3: Does ChatGPT demonstrate comparable effectiveness in detecting short-term change in con-
temporary text and long-term change in historical text?

EQ4: Can we enhance ChatGPT’s performance in WiC tasks by raising the “creativity” using the
temperature value?

To address EQ3 and EQ4, we evaluated ChatGPT API in TempoWiC and HistoWiC using eleven tem-
peratures in the range [0.0, 2.0] with 0.2 increments. For each temperature and prompting strategy, we
performed two experiments and considered the average performance.

Comparing ChatGPT API and Web. Current evaluations typically prompt ChatGPT through the web
interface instead of the official OpenAI API. This preference exists because the web interface is free and
predates the official API. However, there are differences between using ChatGPT through the web interface
and the official API. First of all, the official API enables control over a set of parameters, while the web
interface does not. For example, ChatGPT API can be set to test at varying temperatures, but the temperature
value on ChatGPT Web cannot be controlled. However, while ChatGPT API allows a limited message
history, ChatGPT seems to handle an unlimited message history. We used the following evaluation question

9platform.openai.com/docs/api-reference/chat
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to compare the performance of ChatGPT API and Web:

EQ5: Does ChatGPT API demonstrate comparable performance to ChatGPT Web in solving WiC
tasks?

Testing ChatGPT API with the MSp strategy would be equivalent to testing it with the FSp strategy due
to the limited message history. Thus, we evaluated ChatGPT Web with MSp, aiming to address the following
evaluation question:

EQ6: Can we enhance ChatGPT’s performance in WiC tasks by providing it with a larger number
of in-context examples?

To address these evaluation questions, we tested ChatGPT using a single chat for each prompting strategy
considered. Since testing ChatGPT Web is extremely time-consuming, we conducted one experiment for
each prompting strategy.

Comparing ChatGPT and BERT. The initial introduction of ChatGPT has prompted the belief that Chat-
GPT is a jack of all trades that makes previous technologies somewhat outdated. Drawing upon Kocoń
et al. (2023), we believe that, when used for solving downstream tasks as off-the-shelf model, ChatGPT is
currently a master of none. It works on a comparable level to the competition, but does not outperform any
major SOTA solutions.

By relying on multiple experiments on TempoWiC and HistoWiC, we aimed to empirically assess the
potential of ChatGPT for WiC and LSC tasks. In particular, we addressed the following evaluation question:

EQ7: Does ChatGPT outperform BERT embeddings in detecting semantic change?

To address EQ7, we evaluated bert-base-uncased on TempoWiC and HistoWiC over different layers.
Recent research has exhibited better results when utilizing earlier layers rather than the final layers for solv-
ing downstream tasks such as WiC (Periti and Dubossarsky, 2023; Ma et al., 2019; Reif et al., 2019; Liang
and Shi, 2023). For each layer, we extracted the word embedding for a specific target word 𝑤 in the con-
text 𝑐1 and 𝑐2. Since the focus of our evaluation was the off-the-shelf use of ChatGPT, we did not fine-tune
BERT and simply used the similarity between the embeddings of 𝑤 in the context 𝑐1 and 𝑐2. In particular,
we followed Pilehvar and Camacho-Collados (2019), and trained a threshold-based classifier using the co-
sine distance between the two embeddings of each pair in the Train set. The training process consisted of
selecting the threshold that maximized the performance on the Train set. We trained a distinct threshold-
based classifier for each BERT layer and for each WiC task (i.e., TempoWiC and HistoWiC). Then, in our
evaluation, we applied these classifiers to evaluate BERT over the TempoWiC and HistoWiC Test sets.

Finally, we addressed the following evaluation question:
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EQ8: Can we rely on the pre-trained knowledge of ChatGPT API to solve the Graded Change De-
tection (GCD) task?

Since ChatGPT API has demonstrated awareness of historical lexical semantic change when manually
asked about the lexical semantic change of some words (e.g., plane), our goal with EQ8 was to automatically
test ChatGPT’s pre-trained knowledge of historical semantic change covered in the English LSC bench-
mark. In addressing this evaluation question we relied on the GCD ranking task as defined by Schlechtweg
et al. (2018). Thus, we specifically asked ChatGPT to rank the set of 37 target words in the English LSC
benchmark according to their degree of change between two time periods, T1 (1810–1860) and T2 (1960–
2010). For each temperature, we repeated the same experiment ten times, totaling 110 experiments. Then,
for each temperature, we evaluated ChatGPT’s performance by computing the Spearman correlation using
gold scores derived from human annotation and the average ChatGPT score for each target (see Table 3.5).

Strategy Template

ZSp

Consider the following two time periods and target word. How much has the meaning of the target word
changed between the two periods? Rate the lexical semantic change on a scale from 0 to 1. Provide only a score.
Target: [Target word]
Time period 1: 1810–1860
Time period 2: 1960–2010
Answer: [The model is expected to respond with a continuous score 𝑠, with 0 ≤ 𝑠 ≤ 1 ]

Table 3.5: Prompt template for LSC.

Message history. Although one of the many features of ChatGPT is its ability to consider the history
of preceding messages within a conversation while responding to new input prompts, ChatGPT API and
Web handle message history differently. In ChatGPT API, the message history is limited to a fixed number
of tokens (i.e., 4,096 tokens for gpt-3.5-turbo); however, we are not aware of how the message history is
handled in ChatGPT Web, where an unlimited number of message for chat seems to be supported.

In our experiments, we use a single chat for each considered prompting strategy, both for ChatGPT API
and Web. However, in ChatGPT Web, we considered the full message history for the ZSp, FSp, and MSp
strategies. Instead, to avoid exceeding the token limit set by the OpenAI API, we tested ChatGPT API for the
ZSp and FSp strategies by considering a message history of 33 messages. Note that due to the token limit,
testing the MSp strategy for ChatGPT API wasn’t possible, as the limited message history would make MSp
equivalent to FSp. The 33-message history was organized as a combination of a fixed and a sliding window.
We set the fixed window to ensure the model is always aware of the task we asked it to answer in the early
prompts; instead, we set the sliding window to emulate the flow of the conversation as in ChatGPT Web.
In particular, i) in ZSp, the fixed window covers our first prompt (i.e., task explanation) and the ChatGPT
answer, while the sliding window covers the 𝑖-th prompts and the last 30 messages (i.e., 15 prompts and
15 ChatGPT answers); ii) in FSp, the fixed window covers the first 26 messages (i.e., task explanation and
example instances), while the sliding window covers the i-th prompts and the last 6 messages. Figure 3.1
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summarizes the message history we set for testing GPT.

Figure 3.1: Message history used for ChatGPT API in the zero-shot prompting (ZSp) and few-shot prompt-
ing (FSp) strategies. The message history is organized as a combination of a fixed and a sliding window,
encompassing a total of 33 messages. The fixed window ensures that the model remains constantly aware of
the task we have asked it to address in the initial prompts and the given examples (if any). Conversely, we
establish the sliding window to emulate the conversational flow of ChatGPT Web.

3.4 Evaluation results

In this section, we report the results of our experiments, while discussing the findings in regard to each
evaluation question.10

EQ1: ChatGPT consistently followed our template in nearly all cases, thereby allowing us to evaluate its
answers without human intervention. For ChatGPT API, however, we noticed that the higher the temperature,
the larger the tendency for deviations from the expected response format (see Figure 3.2). ChatGPT Web only

10We provide all our data, code, and results at https://github.com/FrancescoPeriti/ChatGPTvBERT
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once answered with an incorrect format. To ensure impartiality, we classified the few ChatGPT responses
that did not adhere to the required format as incorrect answers.

Figure 3.2: Average number of wrongly formatted answers (WFAs) over the temperature values considered.
Background lines correspond to each experiment.

Figure 3.3: Performance of ChatGPT API (Macro-F1) as temperature increases.

EQ2: Figure 3.3 shows the rolling average of the performance of ChatGPT API across different tempera-
tures, prompting strategies, and WiC tasks. By using a window size of 4, we were able to consider 8 different
experiments per temperature (for each temperature, we conducted two experiments).11 Figure 3.4 shows the
performance of ChatGPT Web across different prompting strategies and WiC tasks. Further results are re-
ported in Appendix A.

Figure 3.3 and 3.4 show that ZSp consistently outperforms FSp on HistoWiC. By contrast, FSp con-
sistently outperforms ZSp in TempoWiC when the ChatGPT API is used. This result suggests that the
in-context learning capability of ChatGPT API is more limited for historical data. In Figure 3.4, ChatGPT’s
performance with ZSp outperforms that obtained with FSp for both TempoWiC and HistoWiC, although the
discrepancy is smaller.

11Except for the first and last two temperatures.
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Figure 3.4: Performance of ChatGPT (Macro-F1). Temperature is unknown.
Macro-F1

Chen et al. (2022b) .770
Loureiro et al. (2022) .703
Loureiro et al. (2022) .670

Lyu et al. (2022) .625
ChatGPT API .689
ChatGPT Web .580

BERT .743
Table 3.6: Macro-F1 scores obtained by SOTA systems, ChatGPT (best score), and BERT (last layer).

EQ3: Figures 3.3 and 3.4 show that ChatGPT’s performance on TempoWiC is consistently lower than
its performance on HistoWiC. In particular, in our experiments we observe that ChatGPT’s performance
ranges from .551 to .689 on TempoWiC and from .552 to .765 on HistoWiC. This suggests that ChatGPT
is significantly more effective for long-term change detection than for short-term change detection. For the
sake of comparison, we report SOTA performance in Table 3.6. Results from this research are in italics.

EQ4: Figure 3.3 shows that, on average, higher performance is associated with lower temperatures for both
TempoWiC and HistoWiC, with accuracy decreasing as temperature values increase. Thus, we argue that
high temperatures do not make it easier for ChatGPT API to solve WiC tasks or identify semantic change
effectively.

EQ5: ChatGPT Web results are presented in Table 3.7, along with the average performance we obtained
through the ChatGPT API across temperature values ranging from 0.0 to 1.0 (API 0–1), from 1.0 to 2.0 (API
1–2), and from 0.0 to 2.0 (API 0–2). As with ChatGPT API, the performance of ChatGPT Web is higher for
HistoWiC than for TempoWiC. In addition, our evaluation indicates that ChatGPT Web employs a moderate
temperature setting, for we obtained consistent results when using a moderate temperature setting through
ChatGPT API. This suggests that the ChatGPT API should be preferred for solving downstream tasks like
WiC. It also suggests that the current SOTA evaluations may achieve higher results if the official API were
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used instead of the web interface. Thus, this implies that previous results using the web interface should be
interpreted with caution.

TempoWiC HistoWiC
API API API web API API API web

Temp. 0–1 1–2 0–2 - 0–1 1–2 0–2 -
ZSp .609 .589 .600 .580 .713 .665 .688 .686
FSp .636 .606 .622 .569 .693 .626 .657 .674
MSp - - - .500 - - - .565
all .622 .598 .611 .550 .703 .645 .672 .642

Table 3.7: Comparison of ChatGPT API and Web performance (Macro-F1).

EQ6: As shown in Figure 3.4, the performance of ChatGPT decreases as the number of example messages
increases (from ZSp to MSp). This suggests that improving the performance of ChatGPT requires a more
complex training approach than simply providing a few input-output examples. Furthermore, it indicates
that the influence of message history is extremely significant in shaping the quality of conversations with
ChatGPT. Indeed, a limited message history proved to be beneficial for the evaluation of ChatGPT API
through FSp.

EQ7: Figure 3.5 shows Macro-F1 scores obtained on TempoWiC and HistoWiC over the 12 BERT layers
(see Table 3.8).

Layers
1 2 3 4 5 6 7 8 9 10 11 12 avg

TempoWiC .669 .631 .635 .627 .604 .627 .704 .749 .744 .730 .737 .751 .684
HistoWiC .650 .678 .739 .782 .828 .801 .806 .771 .771 .749 .722 .744 .753

Table 3.8: Comparison of BERT Performance (Macro-F1) for TempoWiC and HistoWiC tasks at different
embedding layers.

When considering the final layer, which is conventionally used in downstream tasks, BERT obtains
Macro-F1 scores of .750 and .743 for TempoWiC and HistoWiC, respectively. Similar to Periti and Du-
bossarsky (2023), BERT performs best on HistoWiC when embeddings extracted from middle layers are
considered. However, BERT performs best on TempoWiC when embeddings extracted from the last layers
are used.

We compared the performance of ChatGPT API and BERT across their respective worst to best scenarios
by sorting the Macro-F1 scores obtained by BERT and ChatGPT in ascending order (bottom x-axis). For
ChatGPT API, we consider the results obtained through FSp and ZSp prompting for TempoWiC and His-
toWiC, respectively. As shown in Figure 3.6, even when considering the best setting, ChatGPT API does not
outperform the Macro-F1 score obtained by using the last layer of BERT, marked with a black circle. How-
ever, although it exhibits lower performance, the results obtained from ChatGPT API are still comparable to
BERT results on HistoWiC when embeddings extracted from the last layer of BERT are used.
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Figure 3.5: Comparison of BERT Performance (Macro-F1) for TempoWiC and HistoWiC tasks across layers

Figure 3.6: ChatGPT API v BERT (Macro-F1). Performance is sorted in ascending order regardless of
temperatures and layers. A black circle denotes the use of the last layer of BERT.

Since our goal is to evaluate the potential of ChatGPT for recognizing lexical semantic change, we an-
alyzed the true negative rate and false negative rate scores, because negative examples represent semantic
change in TempoWiC and HistoWiC datasets. As shown in Figure 3.7, regardless of the temperature and
layer considered, ChatGPT falls short in recognizing semantic change for both TempoWiC and HistoWiC
compared to BERT. However, it produces fewer false negatives than BERT for TempoWiC.

EQ8: In our experiment, ChatGPT API achieved low Spearman’s correlation coefficients for each temper-
ature when ranking the target word of the LSC English benchmark by degree of lexical semantic change.
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Figure 3.7: True Negative Rate v False Negative Rate. Each cross represents a ChatGPT experiment. Each
dot represents the use of a specific layer of BERT.

Higher correlations were achieved by using low temperatures rather than high ones (see Table 3.9).

Temperature
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

SemEval-English .251 .200 .207 .279 .008 .012 .230 .154 .011 .194 .004
Table 3.9: Comparison of ChatGPT API performance (Spearman’s correlation) for LSC on SemEval-
English at various temperature values.

Table 3.10 shows the ChatGPT API correlation for the temperature 0. For comparison, we report cor-
relations obtained by BERT-based systems that leverage pre-trained models (see Chapter 2 for additional
performances). Note that, when BERT is fine-tuned, it generally achieves even higher correlation scores.

Spearman’s correlation
Periti et al. (2024e) .651
Laicher et al. (2021) .573
Periti et al. (2022) .512

Rother et al. (2020) .512
ChatGPT API .251

Table 3.10: LSC comparison: correlation obtained by SOTA, pre-trained BERT systems and ChatGPT API
(temperature=0).

As shown in Table 3.9 and 3.10, the system relying on pre-trained BERT models largely outperforms
ChatGPT API, suggesting that an off-the-shell use of ChatGPT is not currently well-adapted for solving LSC
downstream tasks.
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BERT for Semantic Change Detection. There are notable differences between the Macro-F1 for Tem-
poWiC and HistoWiC in terms of how the results increase and decrease across layers (see Figure 3.5). For
TempoWiC the results increase until the 8th layer,12 after which they remain almost stable. Conversely, for
HistoWiC the BERT performance rapidly increases until the 5th layer, after which it linearly decreases until
the 12th layer. As regards Tempo WiC, we hypothesize that BERT is already aware of the set of word mean-
ings considered for evaluation as it was pre-trained on modern and contemporary texts. As regards HistoWiC,
we hypothesize that BERT is not completely aware of the set of word meanings considered for evaluation and
that word representations adopted for the historical context of HistoWiC13 might be slightly tuned. Thus,
using medium embedding layers could prove beneficial in detecting semantic change, as these layers are
less affected by contextualization (Ethayarajh, 2019). In other words, for HistoWiC, we hypothesize that the
performance diminishes in the later layers due to the increasing contextualization of the medium and final
embedding layers, which reduces the presence of noise in untuned word representations. This prompts us
to question the appropriateness of using the last embedding layers to recognize historical lexical semantic
change. We will address this question in Chapter 7.

3.5 Discussion and considerations
In the study presented in this chapter, we empirically investigated the capability of ChatGPT to detect seman-
tic change. We used the TempoWiC benchmark to assess ChatGPT to detect short-term semantic change,
and introduced a novel benchmark, HistoWiC, to assess ChatGPT’s ability to recognize long-term change.
When considering the standard 12 layer of BERT, our experiments show that ChatGPT achieves comparable
performance to BERT (although slightly lower) in regard to detecting long-term change, but performs signif-
icantly worse in regard to recognizing short-term change. We find that BERT’s contextualized embeddings
consistently provide a more effective and robust solution for capturing both short- and long-term change in
word meanings.

There are two possible explanations for the discrepancy in ChatGPT’s performance between TempoWiC
and HistoWiC: i) HistoWiC might involve word meanings not explicitly covered during training, potentially
aiding ChatGPT in detecting anomalies; ii) TempoWiC involves patterns typical of Twitter (now X), such as
abbreviations, mentions, or tags, which may render it more challenging than HistoWiC.

However, there are limitations we had to consider in the making of this evaluation. Firstly, a limitation
arises when working with temporal HistoWiC benchmarks. While we ensure the utilization of diachronic
data, we cannot guarantee that if the meaning of a word differs across contexts, it unequivocally indicates
either the presence of stable polysemy (existing stable multiple meanings) or exemplifies a semantic change
(either a new sense that it did not previously possess or a lost sense that it no longer has).

Other limitations are about the use of language models. We could not evaluate ChatGPT across different
languages due to both price and API limitations. This means that while the results hold for English, we do

12We will observe similar results in Chapter 7.
131810–1860, as referenced in Schlechtweg et al. (2020).
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not know how ChatGPT will behave for the other languages. Although we are aware of recent open-source
solution such as LLaMA, it still necessitates expensive research infrastructure, and we thus chose to focus
on ChatGPT. We will investigate LLaMA in Chapter 8 and 9.

Like all research on ChatGPT (Laskar et al., 2023; Kocoń et al., 2023; Zhong et al., 2023), our work has a
significant limitation that we cannot address: our ChatGPT results are not entirely reproducible as ChatGPT
is inherently nondeterministic. In addition, like Zhong et al. (2023) and Jiao et al. (2023), we found that time
and economic constraints when using ChatGPT dictated that our evaluation of the software had to be based
on only a subset of the TempoWiC and HistoWiC dataset.

In our study, we utilized ChatGPT-3.5. This could be considered a limitation, given the availability of
its foundational or more recent chat versions. However, we opted for ChatGPT instead of its foundational
version as it has already undergone instruction tuning. In addition, we chose ChatGPT-3.5 based on the
guidance provided in the OpenAI documentation at the time of this study.14 Additionally, we argue that
ChatGPT-3.5 is a cheaper alternative than the current models, making the investigation of ChatGPT-3.5 still
significant for researchers with limited economic resources. We acknowledge that OpenAI continues to train
and release new models, which could potentially affect the reproducibility of our results.

One of the many features of ChatGPT is its ability to incorporate the history of preceding messages
within a conversation while responding to new input prompts. However, there remain several unanswered
questions regarding how this history influences the model’s answers. This holds true even for the zero-shot
prompting strategy, where a general setting is lacking. Multiple prompts can be provided as part of the same
chat or across different chats. For simplicity, and similar to previous research, we assigned only one chat for
each ZSp experiment.

Finally, as highlighted by Laskar et al. (2023), since the instruction-tuning datasets of OpenAI models are
unknown (that is, not open source), the datasets used for evaluation may or may not be part of the instruction-
tuning training data of OpenAI. Additionally, Balloccu et al. (2024) raised concerns about indirect data
leaking due to models being iteratively improved using data from users.

Despite these limitations, we argue that our work is significant as it may prompt new discussion on the
use of LLMs such as BERT and ChatGPT, while also dispelling the expanding belief that the use of ChatGPT
as off-the-shelf model already makes BERT an outdated technology.

Nonetheless, during the course of our research, updates to ChatGPT became available and gained popu-
larity, leading researchers and practitioners to conduct new experiments on these updated models. Particu-
larly noteworthy is a recent study by Karjus (2023), which showcased remarkable performance on LSC using
the GPT-4 model. Inspired by this research, we focused on further exploring the capabilities of GPT-4 for
modeling semantic change and word meaning in context. Our results indicate that GPT-4 is more powerful
than GPT-3. However, the mentioned limitations still apply and must be considered when interpreting our
results. We will further investigate the use of GPT-4 in Chapter 7.

14https://platform.openai.com/docs/guides/gpt/which-model-should-i-use
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Chapter 4

Extending the modeling to multiple time
periods

“Whilst this planet has gone cycling on accord-
ing to the fixed law of gravity, from so simple a
beginning endless forms most beautiful and most
wonderful have been, and are being, evolved.”

Charles Darwin, On the Origin of Species

4.1 Introduction

Since the LSC shared tasks proposed at SemEval-2020 (Schlechtweg et al., 2020), there is an established
evaluation framework for LSC to compare the performance of various models and approaches. However,
given the substantial annotation efforts required to create reliable benchmarks over multiple time periods,
the framework is typically adopted to create simplified benchmarks over two time periods, with gold labels for
semantic change without diachronic sense labels (Ling et al., 2023; Chen et al., 2023a; Kutuzov et al., 2022a;
Zamora-Reina et al., 2022b; Kutuzov and Pivovarova, 2021c; Basile et al., 2020).1 With such benchmarks,
the research community has focused its efforts on a simplified modeling of semantic change between two
time periods. We reviewed this simplified view of LSC in Chapter 2. However, while this view has served as
a foundational block of modeling, we believe that more comprehensive efforts are crucial to address research
questions posed in the humanities and social sciences over multiple time periods.

Conceptually, the LSC problem implicitly involves a fundamental step of diachronic word sense induc-
tion to distinguish each individual sense of a word over all the multiple time periods of interest (Periti et al.,
2024e; Alsulaimani and Moreau, 2023; Alsulaimani et al., 2020; Emms and Jayapal, 2016). However, the

1Kutuzov and Pivovarova (2021c) introduced a benchmark encompassing two time intervals. However, these intervals have been
treated independently, leading to their consideration as two distinct sub-benchmarks over a single time interval.
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computational challenges in handling large corpora and the absence of comprehensive benchmarks have in
practice led to a simplified modeling focused on two time periods 𝑡1 and 𝑡2 only. These are either modeled
separately 𝑡1, 𝑡2 or in a single time interval ⟨𝑡1, 𝑡2⟩ considering all the data jointly.

Typically, approaches over two time periods are assumed to be directly extendable to real scenarios
involving multiple time periods. For example, approaches designed for a single interval ⟨𝑡1, 𝑡2⟩, can be
iteratively re-executed across multiple, contiguous intervals ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, … , ⟨𝑡𝑛−1, 𝑡𝑛⟩ (Giulianelli et al.,
2020). However, multiple re-executions present a computational challenge that significantly escalates as the
number of considered periods increases. Procedures that were initially considered optional steps to expedite
modeling in two time periods become fundamental over multiple time periods. For instance, since words
can occur thousands of times in a diachronic corpus, it becomes imperative to randomly sample a limited
number of occurrences and to leverage hardware components, such as GPU processor units.

Due to the absence of diachronic lexicographic resources (e.g., dictionaries, thesauri), and the gap be-
tween a general resource and specific data, the modeling of word sense is commonly approached in an un-
supervised manner. Clustering techniques are generally employed to aggregate usages of a specific word
into clusters, with the idea that each cluster denotes a specific word meaning that can be recognized in the
considered documents. However, clusters of usages (regardless of method of clustering) do not necessar-
ily correspond to precise senses (Martinc et al., 2020b), but typically represent noisy projections related to
specific context (Kutuzov et al., 2022b). As a result, manual activity is always required to translate the auto-
matically derived clusters into a diachronic sense inventory. This sense inventory is the basis for interpreting
the identified semantic change and modeling sense evolution (see Figure 4.1). While automatic methods,
such as keywords extraction (Kellert and Mahmud Uz Zaman, 2022), or generating definitions for word us-
ages (Giulianelli et al., 2023), have been proposed to support cluster interpretation, a reliable interpretation
still needs manual supervision. Therefore, when multiple time periods are considered, interpretability chal-
lenges increase several orders of magnitude, making the direct re-execution of existing approaches unsuitable
for effectively detecting semantic change.

We thus argue that the diachronic word sense induction over multiple time periods inherent to LSC
requires more careful considerations compared to the simplified modeling over two time periods. More
efforts should be devoted to develop approaches for assisting text-based researchers like linguists, historians
and lexicographers as much as possible.

Chapter outline.
This chapter includes materials originally published in the following publication, which is currently under
review:

Francesco Periti and Nina Tahmasebi. 2024b. Towards a Complete Solution to Lexical Seman-
tic Change: an Extension to Multiple Time Periods and Diachronic Word Sense Induction. In
Proceedings of the 5th Workshop on Computational Approaches to Historical Language Change,
pages 108–119, Bangkok, Thailand. Association for Computational Linguistics.
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Figure 4.1: Word usages and their corresponding representations, for time period 𝑡1, 𝑡2, and 𝑡3 are denoted
with ■, △, ⬖, respectively. Typically, the clustering of representations is done for individual time intervals
(i.e., two time periods jointly) and manual supervision is required to translate the clusters of each time interval
to a diachronic sense inventory. The amount of manual supervision increases with the number of considered
time intervals.

In this chapter, we discuss the complexities inherent in modeling semantic change for each word sense in-
dividually over multiple time periods. We challenge the general assumption that conventional approaches
designed to address LSC over two time periods are easily extendable over multiple time periods. Currently,
contextualized embeddings represent the preferred tool for addressing LSC; hence, we will use these as an
example. Our discussions, however, are more general and can be applied regardless of which model is used to
represent individual word usages – such definitions (Giulianelli et al., 2023), co-occurrence vectors (Schütze,
1998), or bag-of-substitutes (Kudisov and Arefyev, 2022; Arefyev and Zhikov, 2020) – or sense clusters in
general, as presented in Tahmasebi and Risse (2017). Specifically, in this chapter, we advocate for an alterna-
tive modeling of LSC over multiple time periods and discuss significant implications for both computational
modeling and the creation of benchmarks.

The chapter is organized as follows. In Section 4.2, we extend the state-of-the-art presented in Chapter 2
by further discussing the modeling of word senses through clustering. In Section 4.3, we address the limita-
tions of the current LSC and propose five distinct approaches to trace semantic change and the evolution of
word meanings. Additionally, in Section 4.4, we outline three distinct settings for assessing semantic change
over multiple time periods. Finally, in Section 4.5, we discuss relevant considerations for modeling LSC.
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4.2 Modeling senses through clusters

The clustering of representations via word sense induction serves as a tool to operationalize word senses in an
unsupervised fashion through unstructured text (Lake and Murphy, 2023). On one hand, this operational-
ization offers a flexible adaptation to the data under consideration and allows to derive senses that do not
necessarily need to be aligned with available static lexicographic resources (Kilgarriff, 1997). For instance,
senses derived from youth slang (Keidar et al., 2022), or scientific texts are unlikely to align with a general
lexicon meant to cover the whole spectrum of a given language.

On the other hand, as computational models derive information from the contexts surrounding word
tokens, sense modeling tends to emphasize word usages rather than word meanings (Tahmasebi and Du-
bossarsky, 2023; Kutuzov et al., 2022b). Thus, while ideally we would like each cluster to correspond to
one, and only one sense, in practice, multiple clusters may correspond to different nuances of the same sense.
This effect is further amplified when considering data from diverse time, domains, or genres, where distinct
linguistic registers, styles, or co-occurrence patterns may result in different senses.

Additionally, the interpretation of clusters as senses requires a notion of (word) “meaning” that can both
differ in the mind of humans according to social or cultural background and age, as well as in the varying
usages of a word in context. Thus, the mapping of clusters to senses involves i) identifying commonalities
on the usages of each cluster that may be judged differently, as well as ii) mapping these commonalities to
word meanings. The outcome results in a sense inventory.

4.2.1 Approaches to LSC over multiple time periods

Modeling LSC involves computationally deriving word senses progressively over time. This entails re-
executing the following steps multiple times:

1) extraction of the word occurrences from both 𝑡1 and 𝑡2;
2) computational representation of each occurrence (the current standard is to leverage pre-trained con-

textualized embeddings);
3) word sense induction by aggregating embeddings with a clustering algorithm;
4) assessment of semantic change by leveraging a distance measure on the embeddings from 𝑡1 and 𝑡2.

When form-based are employed, individual senses are not induced (3), thus there is no easy way to dis-
cern individual senses from the change score without integrating “close reading” by humans. Sense-based
approaches remedy this by relying on all steps (1-4) but generally induce senses (3) in a synchronic way,
without considering the temporal nature of the documents (Ma et al., 2024a; Periti et al., 2022). That is, they
consider all the documents from 𝑡1 and 𝑡2 available as a whole and perform a single clustering activity over
the entire set of generated embeddings, regardless of their time origin.

At each execution 𝑖, a set of clusters is generated and humans are needed to identify and update the sense
inventory. This involves mapping the clusters generated at the 𝑖-th execution to senses and aligning senses
temporally (see Figure 4.1).
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The way senses align over time gives us important insights into how word meanings change. Classifying
types of semantic change has been long studied and different schema have been proposed (Blank, 1997;
Ullmann, 1957; Bloomfield, 1933; Stern, 1931; Bréal, 1904; Darmesteter, 1893; Paul, 1880; Reisig, 1839).
Among others, common types of change include:

1. broadening: when the meaning of a word becomes more inclusive or general over time. For example,
dog was used to refer not to any old dog, but to some specific large and strong breeds;

2. narrowing: when the meaning of a word becomes more specific or limited over time. For example,
girl was used to refer to people of either gender;

3. novel senses: when entirely new meanings or senses of a word emerge over time. For example, rock
as a music genre;

4. metaphorical extensions: when a word’s meaning is extended metaphorically to represent something
different from its original sense. For example, the use of surfing web searches.

The result is a diachronic sense inventory with temporal information on the active senses at each time, as
well as potential relationships between senses.

To facilitate the interpretation of semantic change and the evolution of word meaning, the current, syn-
chronic modeling of senses can benefit from diachronic modeling encompassing both incremental word sense
induction and cluster alignment (Kanjirangat et al., 2020). Aligning clusters computationally will allow the
simultaneous interpretation of multiple clusters, thereby reducing the burden of manual supervision at each
time period. Clusters aligned over time can potentially suggest the continuation of an active sense, as well
as the broadening and narrowing of meanings. In contrast, clusters not aligned over time can reveal both the
continuation of different senses, as well as types of substantial change, like metaphoric extension.

Thus far, word meanings have been modeled through conventional clustering algorithms such as Affinity
Propagation (Martinc et al., 2020b) or K-Means (Kobayashi et al., 2021). However, these algorithms were
originally designed for one-time data clustering and are not inherently suited to handle temporal dynamics.
Specifically, clusters generated at 𝑡𝑖−1 can become mixed up when re-executing the algorithm with both
previous data and new data points at time ⟨𝑡𝑖−1, 𝑡𝑖⟩. Consequently, objects that were previously clustered
together at time 𝑡𝑖−1 may either remain in the same cluster or be reassigned to different clusters based on the
updated data at time 𝑡𝑖. This dynamic nature complicates the task of tracking the history of specific clusters
across different time periods, and can lead to the creation of noisy clusters, especially when new data points
arrive according to a skewed distribution.

4.2.2 Diachronic sense clustering.

Conventional unsupervised clustering algorithms do not incorporate the faithfulness properties typical in
incremental clustering literature, where clustering activities at any given point in time should remain faithful
to the already existing clusters as much as possible (Chakrabarti et al., 2006) while at the same time be
flexible to fit the new data. This would avoid dramatic change in clusters from one time-step to the next that
do not derive from semantic change, but from differences in the underlying documents over time.
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To this end, we argue that, for each target word, modeling LSC over time should involve monitoring the
evolution of each individual sense across all the time periods under consideration, as well as tracing the types
of each change. However, this extension is not straightforward; instead, it requires crucial time series analysis
to mitigate potential noise introduced by the predictions of computational approaches (Kulkarni et al., 2015).

Monitoring and tracing word meaning evolution and semantic change require careful consideration in the
current four-step pipeline of sense-based approaches. As for scalability and interpretability issues related to
(1-3), suggestions and workaround are discussed in Periti and Montanelli (2024) and Montariol et al. (2021).
We further discuss the extension of steps (3) and (4) when considering multiple time points. In particular,
we discuss diachronic word sense induction in Section 4.3, and semantic change assessment in Section 4.4.

4.3 Diachronic word sense induction

For the sake of simplicity, consider a diachronic corpus  spanning three general, consecutive time periods
𝑡1, 𝑡2, 𝑡3, not necessarily contiguous. This simplification does not lead to any loss of information, but serves
to aid the discussion in a clear and concise fashion. At the same time, three time points are easily extendable
to the general case of tens or hundreds of time periods. Word usages, and their corresponding representations
(i.e., contextualized embeddings), for time period 𝑡1, 𝑡2, and 𝑡3 are denoted with ■, △, ⬖, respectively. In the
following, we present five different approaches for monitoring the evolution of word meanings and discuss
suitability, and drawbacks.

4.3.1 Clustering over consecutive time intervals

Clustering algorithms used for jointly modeling senses over two time periods 𝑡1 and 𝑡2 can be progressively
re-executed over consecutive pairs of time periods ⟨𝑡1, 𝑡2⟩ and ⟨𝑡2, 𝑡3⟩. To facilitate the interpretation of
sense evolution, a cluster alignment step is thus required between consecutive re-executions. For instance,
in Figure 4.2, the clusters generated in step (B) are linked to those generated in step (A) through a cluster
alignment step (C) (Deng et al., 2019).

When clustering over consecutive time intervals ⟨𝑡1, 𝑡2⟩,… , ⟨𝑡𝑛−1, 𝑡𝑛⟩, the embeddings from 𝑛 − 2 time
periods (all time periods but first and last) are clustered twice. For instance, consider the embeddings △ from
𝑡2 in Figure 4.2: (A) they are first clustered with the embeddings ■ from 𝑡1, and (B) then re-clustered with
the embeddings ⬖ from 𝑡3. When a limited number of word usages is available, this approach can potentially
enhance the emergence of certain senses, as patterns of embeddings from 𝑡𝑖−1 are reinforced by additional
evidence (if present) from 𝑡𝑖. However, this compromises the faithfulness property, as embeddings from 𝑡𝑖
can be clustered differently when considered jointly with 𝑡𝑖−1 compared to when considered jointly with 𝑡𝑖+1
(from a past and future perspective respectively).
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Figure 4.2: Clustering over consecutive time intervals.

4.3.2 Clustering over consecutive time periods
When a substantial number of documents is available for each time period, there is no need to cluster the
embeddings of a time interval as a whole. Instead, the embeddings of each time period can be clustered
individually, and a cluster alignment algorithm can be applied progressively to link the clusters across time
periods (Kanjirangat et al., 2020; Montariol et al., 2021). This approach is represented in Figure 4.3. Step
(A), (B), and (D) represents the application of a conventional clustering algorithm over the embeddings of
time period 𝑡1, 𝑡2, 𝑡3, respectively. Step (C) and (E) represent cluster alignment steps to link the clusters
generated through step (B) to the cluster generated through step (A), and in turn, the clusters generated
through step (D) to the cluster generated through step (B) (Deng et al., 2019).

Clustering over time periods involves a similar number of clustering activities and cluster alignment steps
as clustering over time intervals. However, each clustering activity is more scalable, as it involves a smaller
number of embeddings.

4.3.3 One-time clustering over all time periods
Embeddings from all the considered time periods can be clustered jointly in one single execution. For in-
stance, in Figure 4.4 step (A), embeddings ■, △, ⬖ are clustered together as a whole. This single clustering
activity results in clusters that may include embeddings from various combinations of time periods. For
example, a cluster may include embeddings from a single, all, or selected time periods. A cluster alignment
step (B) can be further executed to enable the modeling of sense evolution and change type.
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Figure 4.3: Clustering over consecutive time periods.

When dealing with hundreds of time periods and a significant number of embeddings at once, clustering
can be unfeasible due to scalability issues. In real scenarios, a diachronic corpus can be dynamic (Castano
et al., 2024; Periti et al., 2024e, 2022), where documents from subsequent time periods are not available as a
whole but are progressively added (e.g., posts from social networks, Kellert and Mahmud Uz Zaman, 2022;
Noble et al., 2021). In such scenarios, this approach is thus not suitable as it would require re-execution of
the clustering from scratch when new documents are added.

Furthermore, the use of conventional clustering algorithms is generally insensitive to the order of time
periods, allowing embeddings of later time periods to influence the patterns of the earlier time periods. This
risks leading to a global view of word meaning while precluding a local view where smaller and gradual
variations of individual senses as well as small sense clusters are missed. These issues can be mitigated by
considering the temporal order of documents in the clustering activity (Smyth, 1996).

4.3.4 Incremental clustering over time periods
Incremental clustering algorithms are designed to effectively address the temporal nature of data (Kulkarni
and Mulay, 2013). These algorithms operate under the assumption that objects arrive progressively, and
clustering is performed incrementally as new data becomes available. Thus, they are a suitable option to
model the dynamic nature of language where temporal progression is key. When employed for diachronic
word sense induction, they can efficiently and directly update the prior clustering results by processing and
assimilating new data into existing clusters. The word usages observed in past time periods are consolidated
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Figure 4.4: One-time clustering over all time periods.

into a set of clusters that constitute the memory of the word meanings observed thus far (Periti et al., 2022).
This memory then serves as a foundation for understanding subsequent word usages in the current time
period. Like Figure 4.4, Figure 4.5 represents similar steps (A-C) without alignment as clusters generated in
step (A-C) are directly and consecutively updated.

Some of the incremental algorithms implement the faithfulness property in an evolutionary way: once a
cluster has been created, it can only gain new members (i.e, word usages) but can never lose any members
that have already been assigned to it. Meanwhile, the word usages observed in the present must be stratified
or integrated over those from the past, that is, either be placed in existing clusters, or create new clusters.
Other algorithms implement the faithfulness property in a more flexible way and enable small changes in
past clusters when more evidence is available.

4.3.5 Scaling up with form-based approaches
Regardless of the complexity of each presented method, it is difficult to scale an approach to the level of whole
vocabulary in a large corpus. In addition, some senses remain stable for a long time before they potentially
change meaning, others never change. Therefore, clustering the senses during the stability periods of words
is superfluous. To reduce computational needs and scale to the entire vocabulary, form-based approaches
(without sense-induction) can be used to monitor stability allowing the use of more powerful sense-based
approaches only when there is indication of change.
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Figure 4.5: Incremental clustering over time periods.

By considering change only in the general usage of a word, form-based approaches reduce the semantic
change problem significantly. Thus, they serve for two important purposes: first, they can be used to quantify
the degree of change at the vocabulary level, and thus give us the opportunity to quantify change during
different time periods (e.g., before and after WWI v. WWII); secondly, they can be used to find words and
periods of interest.

Such a kind of stability monitoring can be done via change point detection (Kulkarni et al., 2015) and be
integrated with diachronic sense modeling as shown in Figure 4.6. In particular, step A involves quantifying
semantic change through form-based assessment to detect change points across the entire time span covered
by the corpus. Step B involves modeling each individual sense of the word around the detected change
point(s) through approaches presented in Section 4.3.1-4.3.4.

4.4 Semantic change assessment
The diachronic word sense induction is independent from the assessment of change at the level of senses or
words. While the modeling of word meaning relies on the notion of word senses, the assessment of change
depends on the research questions that we want to investigate. E.g., considering a perfect sense inventory we
may want to ask how many meanings have been lost and gained, and if change is more evident in some time
intervals compared to others. The answer to these depends on the way we assess change.

Assessment of change, like sense induction, has focused on two time intervals which is the smallest unit
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Figure 4.6: Scaling up with form-based approaches.

over which we can quantify change. However, generalizing from two intervals to multiple intervals is not
trivial and needs considerations that depend heavily on the kind of research question that is being asked, as
well as the kind of data available. Short-term data versus long-term data, or small contra large data require
different strategies for quantifying change. Here we present some possible strategies that extend to multiple
time periods.

4.4.1 Assessment over consecutive time intervals

represents a general way to assess semantic change over time ⟨𝑡1, 𝑡2⟩, ⟨𝑡2, 𝑡3⟩, … , ⟨𝑡𝑛−1, 𝑡𝑛⟩. This kind of
assessment can be affected by i) (random) fluctuations in the underlying corpus, where the coverage of topics
can be heavily influenced by real-life events; and ii) noisy artifacts of the computational modeling, e.g.,
influenced by frequency. The use of time series analysis or statistical tests can reduce the effect of potential
artifacts from the data and capture only significant changes evident in the time series (Liu et al., 2021b;
Kulkarni et al., 2015).

This assessment represents a useful solution for scenarios where the focus is on detecting immediate
changes, such as in rapidly evolving fields or during specific events that might impact language usage. When
comparing ⟨𝑡𝑖−1, 𝑡𝑖⟩, the assumption is that all the active word meanings in 𝑡𝑖, except for the new or changed
ones, are active also in 𝑡𝑖−1. However, some senses are periodic and an undesirable side-effect is that they
may be detected as change each time they appear and disappear as they are not represented in 𝑡𝑖−1.

4.4.2 Pairwise assessment over time periods

Sometimes research questions may be tailored to specific time intervals (e.g, before and after the time period
𝑡𝑖 of the corona pandemic). Thus, this assessment aims to quantify the change across specific time intervals
⟨𝑡𝑖−1, 𝑡𝑖⟩ and ⟨𝑡𝑗 , 𝑡𝑗+1⟩ such that 𝑖 < 𝑗. This assessment is also useful for identifying changes in periodic
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senses when the periodicity of the sense is known. For example, the meaning of the term gold is related to
the Olympic games that take place every fourth year.

This assessment is also useful when research questions are tailored to a specific type of change irrespec-
tively when the change occurs. For example, when a diachronic sense inventory is available, broadening or
narrowing can be investigated regardless of their time-specific appearance.

When all possible time intervals are considered, this assessment is associated with a computational com-
plexity of (𝑛2) where 𝑛 is the number of considered periods. However, it provides a broader view of how
meaning evolves over different spans, capturing trends that may not be apparent in consecutive intervals. For
example, gradual changes over time would not appear with assessment over consecutive time intervals as too
little evidence would be present, but will appear as radical changes with larger gaps between intervals.

By considering all the possible time intervals is also possible to quantify the global level of change over
the whole corpus. This method is insensitive to the order of the time periods and is useful for capturing
overarching trends and patterns in semantic change across the entire timeline.

4.4.3 Cumulative assessment over time

When research questions focus on the novel senses gained at time period 𝑡𝑖, the comprehensive overview of
active sense from the past must be considered ⋃𝑖−1

𝑗=1 𝑡𝑗 . Instead of considering only consecutive or specific
time intervals, each new time period should be compared with the full diachronic sense inventory. Cumulative
assessment emphasizes the overall evolution of meaning, providing a holistic view of changes from the
beginning to the end of the timeline. It is useful for consolidating the evidence across multiple time periods
which would not suffice on their own. For example, when research questions focus on the novelty introduced
in time period 𝑡𝑖 compared to the past periods, the assessment of change should consider the cumulative
evidence of the past as a single, large time period. A similar assessment can be employed when research
questions want to compare a past time period 𝑡𝑖 with respect to the following ⋃𝑛−1

𝑗=𝑖+1 𝑡𝑗 .

4.5 Discussion and considerations
Computational modeling of semantic change has long been done in a simplified way due to the challenges
related to modeling senses across multiple time periods. However, sense inventories and the type of change a
word exhibits, are fundamental aspects for text-based researchers like historians, linguists and lexicographers,
and therefore, the full complexity of semantic change must be taken into consideration in the computational
modeling. Now that we have powerful language models like XL-LEXEME (Cassotti et al., 2023a) and
GPT (OpenAI, 2023) there are no excuses for taking a simplistic view on the modeling of semantic change.

In this chapter, we have presented possible extensions to expand on the simplistic view. These extensions
have equal implications both for the computational modeling as for the generation of manually annotated
benchmarks which has also been done over two time periods due to the sheer volume of required annotations.

Crucial for the usefulness of semantic change studies is a diachronic sense inventory where the different
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senses are linked together to capture semantic change type and linguistic relation. It is by using the diachronic
sense inventory that the majority of the research questions can be answered. These pertain both to linguistic,
language-level questions, but also to societal and cultural enquiries where text can be used as evidence.
How to best frame and store the diachronic sense inventory is still an open issue and requires involvement
from the communities around computational modeling of semantic change, word sense induction and lexical
semantics in general, as well as the text-based researchers that will use the outcome.

Human supervision is necessary to develop a reliable sense inventory. As diachronic corpora can span
multiple time periods and contain millions of documents, automatic supervision support is mandatory to
reduce manual efforts as much as possible. In this regard, aligning similar clusters and detecting change
types to speed up the interpretation process is as crucial as it is difficult. Employing different kinds of
diachronic word sense induction and assessment as outlined here, will lead to different amounts of manual
interaction.

Aligning clusters over time poses a very challenging task, as some clusters may represent outliers, time
intervals may be characterized by different numbers of clusters, and multiple noisy (or nuanced) clusters
denoting the same meaning may emerge. As a result, the cluster alignment often involves the discretization
of a fuzzy problem (Kianmehr et al., 2010), that is the creation of new global clusters that encompass sets of
fuzzy clusters. Furthermore, when clusters are aligned through a posteriori step rather than being linked and
updated directly, the alignment process (worst case) involves comparing each cluster with every other cluster
across all time periods. This risks amplifying the potential level of noise and requires intricate decisions
typically taken without any theoretical basis.

Thus far, the research community has focused more on the quantification of semantic change rather than
the underlying word sense induction because form-based approaches consistently outperformed sense-based
approaches. However, the clustering algorithms that have been employed do not take the temporal nature of
documents into consideration, and we thus argue that they are not optimal for modeling word meaning over
time.

In this chapter, we have outlined several possible paths forward, both in terms of diachronic word sense
induction and assessment of change. Each proposed path is suitable for different kinds of research questions
and data. For example, by clustering embeddings over a whole corpus, smaller senses that would not appear
in sequential modeling can gain sufficient evidence in global clustering. Such a method is however compu-
tationally expensive. Other methods suffer from the problem that when only consecutive time periods are
considered, slow and gradual shift risks being missed and over long time periods other strategies are more
suitable. Among these methods, we strongly advocate for a shift towards incremental methods as these are
currently the best fit to the LSC problem.
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Chapter 5

A novel, evolutionary clustering algorithm:
A-Posteriori affinity Propagation

“Birds of a feather flock together”
English proverb

5.1 Introduction
In the previous chapter, we have outlined that the capability to perform text clustering by considering the
temporal nature and progression of data is a crucial aspect for modeling lexical semantic change. Thus far,
word meanings have been modeled through conventional clustering algorithms. Among these algorithms,
Affinity Propagation has gotten more and more popular over standard algorithms like K-Means (Park et al.,
2022; Martinc et al., 2020b; Alagic et al., 2018). However, Affinity Propagation (Frey and Dueck, 2007), as
well as K-Means (MacQueen et al., 1967) and other conventional clustering algorithms, is mostly conceived
to deal with static datasets, where all the objects are available as a whole and clustering is performed offline
over the entire set of data (Sun and Guo, 2014). Extensions based on incremental solutions are proposed to
deal with dynamic datasets, where objects continuously arrive, and clustering is performed by processing new
data as they appear. Instead of recomputing the clustering from scratch every time new objects are received,
incremental clustering algorithms aim to efficiently update the clustering by processing and assimilating the
new objects into the existing clusters.

Scalability issues become relevant in designing incremental clustering algorithms for dynamic datasets,
as they have to cope with high data volumes, sequential access, and the dynamically evolving nature of the
data to be classified. To support temporal evolution analysis and to trace cluster changes over time, evolu-
tionary incremental clustering algorithms have been proposed, generating a sequence of clustering results,
one for each time period (Beringer and Hüllermeier, 2006; Hruschka et al., 2009). Two main issues become
relevant in evolutionary clustering. A first issue regards the faithfulness property, that is, the clustering at any
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point in time should remain faithful to the current data as much as possible, thus avoiding resulting clusters
to dramatically change from one time step to the next (Chakrabarti et al., 2006). This property facilitates the
exploitation of clustering results over time, namely the capability to trace the cluster history, since users get
progressively familiar with results and can compare clustering of different time periods in a more effective
way. A second issue regards the so-called stability-plasticity dilemma, that is, the phenomenon by which
“some patterns may be lost to learn new knowledge, and learning new patterns may overwrite previously ac-
quired knowledge” (Yang et al., 2013). Thus, faithfulness is enforced in evolutionary clustering to learn new
information without forgetting what has been previously learned. As an additional property, forgetfulness is
required to discard information that become obsolete, thus reducing memory usage and enforcing scalability.

Chapter outline.
This chapter includes materials originally published in the following publication:

Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Francesco Periti. 2024. Incremen-
tal Affinity Propagation based on Cluster Consolidation and Stratification. eprint 2401.14439,
arXiv. Under review.

In this chapter, we propose an incremental extension of the Affinity Propagation (AP) algorithm, which
has been extensively used for LSC and various linguistic tasks such as word sense induction (Alagic et al.,
2018; Kutuzov et al., 2017). Our extension is called A-Posteriori affinity Propagation (APP) and is based
on cluster consolidation and cluster stratification to achieve faithfulness and forgetfulness. Although APP
is designed for application in LSC, benchmarks with diachronic sense labels spanning multiple time periods
do not currently exist at the time of this thesis. Thus, we decided to first evaluate its performance against
benchmark algorithms in a standard clustering setting and then assess its applicability to LSC. This chapter
will focus on the formal definition of APP and its evaluation against benchmark AP algorithms. We will
address its applicability to LSC in the next chapter.

The chapter is organized as follows. In Section 5.2, the traditional AP algorithm as well as its main
incremental extensions are over-viewed. We introduce the APP algorithm in Section 5.3. In Section 5.4
and 5.5, we present the evaluation setup and results of our evaluation, respectively. Finally, we provide a
brief summary of this chapter in Section 5.6, and we refer to the next chapter for a thorough illustration and
discussion about the applicability of APP to LSC.

5.2 Background and related work
Work related to incremental clustering over dynamic datasets and temporal/stream-based data aggregation
techniques is widely discussed in the literature (e.g., Mansalis et al., 2018; Silva et al., 2013; Mei and Zhai,
2005). In this chapter, the APP algorithm we are proposing is conceived as an extension of the original AP
algorithm (Frey and Dueck, 2007). For this reason, in the following, we first recall the main features of AP,
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and then we review the main incremental extensions of this algorithm, by also highlighting the distinctive
features of our APP algorithm with respect to the considered solutions.

5.2.1 Affinity Propagation
Affinity Propagation (AP) is a clustering algorithm based on “message passing" between data points rep-
resented as connected nodes on a bipartite graph, in which edges represent the similarity between pairs of
points. The main advantage is that, unlike other clustering algorithms such as K-Means or K-Medoids, it
does not require the number of clusters to be determined beforehand since they are formed around exem-
plary nodes, namely exemplars, which are representative nodes of the clusters. The objective function is to
maximize

𝑧 =
𝑛
∑

𝑖=1
𝑠(𝑖, 𝑐𝑖) +

𝑛
∑

𝑘=1
𝛿𝑘(𝐜) (5.1)

where 𝑠(𝑖, 𝑐𝑖) denotes similarity between a node 𝐱𝑖 and its nearest exemplar 𝐱𝑐𝑖 , and 𝛿𝑘(𝐜) has the form

𝛿𝑘(𝐜) =
{

−∞ if 𝑐𝑘 ≠ 𝑘 but ∃𝑖 ∶ 𝑐𝑖 = 𝑘
0 otherwise (5.2)

and penalises invalid configurations where a node 𝐱𝑖 chooses another nodes 𝐱𝑘 as its exemplar without 𝐱𝑘 be-
ing labelled as an exemplar. The optimization problem is implemented by exchanging two kinds of messages
between nodes on the graph:

1. responsibility 𝑟(𝑖, 𝑘), sent from node 𝐱𝑖 to the candidate exemplar 𝐱𝑘 indicates to what extent 𝐱𝑘 is a
good exemplar for 𝐱𝑖.

2. availability 𝑎(𝑖, 𝑘), sent from the candidate exemplar 𝐱𝑘 to node 𝐱𝑖 indicates to what extent it would be
for 𝐱𝑖 to choose 𝐱𝑘 as its exemplar taking into account the accumulated evidence obtained from other
nodes about the suitability of 𝐱𝑘 as an exemplar.

According to Frey and Dueck (2007), 𝑟(𝑖, 𝑘) and 𝑎(𝑖, 𝑘) can be computed as follows:

𝑟(𝑖, 𝑘) ← 𝑠(𝑖, 𝑘) − max
𝑘′, 𝑘′≠𝑘

{

𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)
} (5.3)

𝑎(𝑖, 𝑘) ← min

{

0, 𝑟(𝑘, 𝑘) +
∑

𝑖′, 𝑖′∉{𝑖,𝑘}
max

{

0, 𝑟(𝑖′, 𝑘)
}

}

(5.4)

Unlike the other pairs, the so called self-availability 𝑎(𝑘, 𝑘) is computed as

𝑎(𝑘, 𝑘) =
∑

𝑖′,𝑖′≠𝑘
max

{

0, 𝑟(𝑖′, 𝑘)
}

. (5.5)

In the beginning, all messages are initialized to 0. Then, AP iteratively updates responsibilities and
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availabilities until convergence. The number of resulting clusters is determined by the clustering algorithm.
However, it was argued by Frey and Dueck (2007) that it is influenced by the self-similarity value 𝑠(𝑖, 𝑖),
which is called preference, and by the damping factor which damps the responsibility and availability of
messages to avoid numerical oscillations in the updates.

As a general remark, Frey and Dueck (2007) suggest preference 𝑝 should be the median, or minimum
value of similarities and point out that a larger 𝑝 generates a larger number of clusters. The damping factor 𝑑
should be at least 0.5 and less than 1. In particular, the responsibility and availability messages are “damped”
as follows

𝐦𝐬𝐠𝑛𝑒𝑤 = 𝑑 ⋅𝐦𝐬𝐠𝑜𝑙𝑑 + (1 − 𝑑) ⋅𝐦𝐬𝐠𝑛𝑒𝑤 (5.6)
where 𝐦𝐬𝐠𝑜𝑙𝑑 and 𝐦𝐬𝐠𝑛𝑒𝑤 are the values of 𝑎(𝑖, 𝑘) and 𝑟(𝑖, 𝑘) before and after the update, respectively.

5.2.2 Incremental extensions of Affinity Propagation

AP was designed for discovering patterns in static data. Several extensions have been proposed to cope
with data appearing in a dynamic manner. Incremental extensions of AP have been successfully employed
in a series of problems such as text clustering (Shi et al., 2009), robot navigation (Ott and Ramos, 2012),
and multi-spectral images classification (Yang et al., 2013). Moreover, we also consider incremental AP
extensions where a notion of clustering history is somehow supported, that is the capability to trace the
object membership over time or to compare clusters related to different time steps. A comparative overview
of the considered AP extensions is provided in Table 5.1.

STRAP: Streaming AP. Zhang et al. (2008) propose an incremental AP clustering algorithm (STRAP) for
data streaming settings that reduces the time complexity of AP by limiting the number of its re-computations.
The idea is to assign new objects to previously generated clusters only if they satisfy a similarity requirement
with respect to the current exemplars. On the contrary, a reservoir is leveraged to detain too dissimilar
objects. When the size of the reservoir exceeds a threshold, or some changes in the rate of acquisition are
detected, the AP is re-executed over the current exemplars and the objects in the reservoir. An additional
step is employed to merge the exemplars independently learned from subsets of the whole dataset.

I-APC: Incremental AP clustering. Shi et al. (2009) propose a semi-supervised incremental AP (I-APC)
which injects some supervision in the clustering by adjusting the similarity matrix of the AP algorithm. They
set much larger distances for objects with the same label and much smaller distances for objects with different
labels. At each time step, after each AP run, the labeled dataset is extended with the most similar objects to
the current clusters, and the similarity matrix is reset according to the newly labeled data. However, this step
affects computational time and it makes I-APC cost more CPU time than AP.

ID-AP: Incremental and Decremental Affinity Propagation. Similarly to Shi et al. (2009), Yang et al. (2013)
propose a semi-supervised incremental algorithm, called Incremental and Decremental AP (ID-AP), that in-
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Work Learning Basic algorithms Clustering history Efficiency Description

STRAP
(Zhang et al., 2008) Unsupervised AP No faster than AP

STRAP assigns new objects to
previously generated clusters based

on their similarity.

I-APC
(Shi et al., 2009) Semi-supervised AP No slower than AP I-APC injects supervision in AP by

adjusting the similarity matrix.

ID-AP
(Shi et al., 2009) Semi-supervised AP No slower than AP

ID-AP injects supervision in AP by
adjusting the similarity matrix, and

discard useless labeled objects at each
time step.

IAPKM
(Sun and Guo, 2014) Unsupervised AP

K-Medoids No faster than AP
IAPKM adjusts the current clustering
results according to new objects by

combining AP and K-Medoids.

IAPNA
(Sun and Guo, 2014) Unsupervised AP

Nearest Neighbors No faster than AP
In IAPNA, responsibilities and

availabilities of the new objects are
assigned referring to their Nearest

Neighbor among the previous objects.

EAP
(Arzeno and Vikalo, 2021, 2017) Unsupervised AP Yes faster than AP

EAP trace the clustering history by
introducing consensus nodes and

factors into the AP graph.

SED Stream-AP
(Sunmood et al., 2018) Unsupervised AP

SED-Stream Yes slower than AP
SED Stream-AP trace the clustering history

by combining the SED-Stream and AP
clustering algorithms.

APP
(Castano et al., 2024)

(Periti et al., 2024e, 2022)
Unsupervised AP Yes faster than AP

APP traces the cluster history by
consolidating past clustering results through

the use of cluster centroids, and discards
obsolete objects at each time step by

enforcing cluster pruning.

Table 5.1: Summary view of incremental extensions of AP.

corporates a small number of labeled samples to guide the clustering process of the conventional AP algo-
rithm. At each time step the labeled samples are used as prior information to adjust the similarity matrix of
the AP algorithm. Furthermore, the algorithm deals with the stability-plasticity dilemma by using an incre-
mental and a decremental learning approach for selecting the most informative unlabeled data and discarding
useless labeled samples, respectively. The intrinsic relationship between the labeled samples and unlabeled
data improves the clustering performance. On the other hand, the learning phase of ID-AP method is several
times higher than that required from the conventional AP since the selection/discard phases involve repeated
execution of the clustering algorithm.

IAPKM: Incremental Affinity Propagation based on K-Medoids. Sun and Guo (2014) present an In-
cremental Affinity Propagation based on K-Medoids (IAPKM). The goal of this extension is to adjust the
current clustering results according to new incoming objects, rather than recomputing AP clustering on the

99



whole data set. IAPKM combines AP and K-Medoids in an incremental clustering task, that is: AP clustering
is executed on the initial bunch of objects, and K-Medoids is employed to modify the current clustering result
according to the new arriving objects. As a result, IAPKM achieves comparable clustering performance and
can save a great deal of time compared to the conventional AP algorithm. However, the number of clusters
cannot be adjusted according to the new incoming objects since the traditional K-Medoids can’t adjust the
number of clusters automatically.

IAPNA: Incremental Affinity Propagation based on Nearest Neighbor Assignment. As an alternative
to IAP-KM, Sun and Guo (2014) discuss an Incremental version of Affinity Propagation based on Nearest
Neighbor Assignment (IAPNA). The intuition under IAPNA is that objects added at different time steps are
at different statuses: pre-existing objects have established certain relationships (nonzero responsibilities and
nonzero availabilities) between each other after AP, while new objects’ relationships with other objects are
still at the initial level (zero responsibilities and zero availabilities). The idea of IAPNA is to put all the
data points at the same status before proceeding with the AP procedure till convergence. According to this
idea, responsibilities and availabilities of the new incoming objects are assigned referring to their nearest
neighbors. Similarly to IAPKM, IAPNA achieves higher performance than traditional AP clustering while
reducing computational complexity. In addition, it preserves the AP feature of automatically discovering
new clusters.

EAP: Evolutionary Affinity Propagation. An Evolutionary Affinity Propagation (EAP) is presented by
Arzeno and Vikalo; Arzeno and Vikalo (2021; 2017). Compared to previous incremental extensions of AP,
EAP is the first algorithm that can automatically trace the clustering history and temporal changes in cluster
memberships across time. EAP introduces consensus nodes and factors into the AP graph with the aim to
encourage objects to select a consensus node, rather than another object, as their exemplar. Clusters are
traced by observing the positions of consensus nodes in the clustering history. Basically, the creation and the
disappearance of consensus nodes indicate cluster birth and death, respectively. In EAP, the computational
time is also reduced since messages need to be passed between consensus nodes and not between all pairs of
objects.

SED Stream-AP: Evolutionary Affinity Propagation. Sunmood et al. (2018) propose the evolutionary
clustering SED-Stream-AP as an integration of the SED-Stream (Waiyamai et al., 2014) and the AP clustering
algorithms. SED-Stream-AP adopts a two-stage process phases, called online and offline phase, respectively.
In the online phase, the clustering history is continuously monitored and detected. The evolution-based clus-
tering of SED-Stream enables SED-Stream-AP to support different evolving structures (e.g., appearance,
merge). In the offline phase, the AP clustering is used to automatically determine the number of clusters and
deliver the final clustering without any need for user intervention.
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5.2.3 Framing APP with respect to the existing solutions

• Inspired by STRAP, APP performs clustering over exemplars created in past aggregation stages and
new incoming objects. In contrast to STRAP, new incoming objects are a posteriori clustered and not
a priori assigned to a previously generated cluster. In addition, APP replaces the use of a reservoir
with the assumption of “group evolution”, meaning that a new cluster for a new kind of objects can be
detected only if there is a relevant number of incoming exemplar objects associated with it.

• In contrast to I-APC, APP is completely unsupervised and does not inject supervision in the similarity
between objects.

• Similarly to ID-AP, APP is an incremental extension of AP conceived for dealing with the stability-
plasticity dilemma by enforcing faithfulness and forgetfulness in evolutionary scenarios.

• In contrast to IAPKM, APP relies entirely on the AP algorithm, enabling the number of clusters to be
adjusted automatically.

• Similar to IAPNA, APP considers the relationships established by pre-existing objects. However,
while IAPNA considers all these relationships individually, APP consolidates them into cluster exem-
plars, which will represent the entire clusters in the following iterations.

• Like EAP and SED-Stream-AP, APP can trace the clustering history by supporting different kinds of
cluster stratifications.

Specifically, APP enforces incremental clustering where i) new arriving objects at time 𝑡 are dynamically
consolidated into previous clusters at time 𝑡 − 1 without the need to re-execute clustering over the entire
dataset of objects, and ii) a faithful sequence of clustering results is produced and maintained over time,
while allowing to forget obsolete clusters with decremental learning functionalities. Cluster consolidation
means that APP keeps the memory of clustering results at time 𝑡−1 by collapsing each cluster into a summary
representation, namely the centroid, which is considered as an additional object to cluster at time 𝑡. Cluster
stratification means that the new clusters at time 𝑡 are obtained from clusters at time 𝑡−1 by i) creating a new
cluster including new objects arriving at time 𝑡 (stratification-by-creation), ii) inserting new objects arriving
at time 𝑡 into an existing 𝑡 − 1 cluster (stratification-by-enrichment), iii) merging two or more 𝑡 − 1 clusters
into a new one at time 𝑡 (stratification-by-merge).

APP can be used for discovering concepts in incremental scenarios under the assumption of “group
evolution”, in contrast to the “individual evolution”. A new incoming object dissimilar from the past obser-
vations tends to be considered by APP as an outlier of a previously generated cluster rather than a unique
exemplar of a new cluster. This means that a new cluster can be detected only if there is a relevant number of
incoming exemplars associated with it. Finally, to enforce forgetfulness, a decremental learning functionality
is defined in APP to allow the selective pruning of aged, obsolete clusters, similarly to the forgetful property
of human mind (Yang et al., 2013).
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5.3 A-Posteriori affinity Propagation
Using the conventional AP algorithm to cluster dynamic datasets is not suitable to cope with the stability-
plasticity dilemma (Yang et al., 2013). In particular, clusters generated at time 𝑡 − 1 can be mixed up due
to a new bunch of objects that arrive at time 𝑡 (see Chapter 4). This means that previously clustered objects
at time 𝑡 − 1 can remain in the same cluster at time 𝑡, but they can also be moved to another cluster due
to the updated object picture from time 𝑡 − 1 to time 𝑡. In this situation, tracing the history of a specific
cluster across different time periods becomes arduous, and a number of noisy clusters could be created when
different kinds of objects arrive according to a skewed distribution (Martinc et al., 2020b).

Figure 5.1 shows an example of AP clustering illustrating such a problem. The conventional AP clus-
tering is implemented on the initial bunch of objects (𝑡 = 0), represented by white circles. The clustering
result is shown in Figure 5.1 (A), where the black objects denote the cluster exemplars. The new objects
represented by gray diamonds and triangles arrive at time 𝑡 = 1 and 𝑡 = 2, respectively. After the arrival of
new objects, the clustering result of the second and third AP run is shown in Figure 5.1 (B-C). By comparing
Figure 5.1 (A-B-C), we note that some objects change cluster in the various AP rounds and several clusters
are generated (𝑡 = 2).

Figure 5.1: Example of AP with an incremental scenario. (A) shows the clustering result over the initial
bunch of objects (𝑡 = 0) represented by white circles. The black objects denote the cluster exemplars and
dashed lines connect the objects of each cluster. (B) show the clustering result after the second AP run (𝑡 = 1).
New incoming objects at time 𝑡 = 1 are represented by gray diamonds. Similarly to (B), the clustering result
after the third AP run (𝑡 = 2) is shown in (C). New incoming objects at time 𝑡 = 2 are represented by gray
triangles.

In the following, we present APP. The objects to cluster become progressively available at different time
steps 𝑡 = {0,… , 𝑛}. At each time step 𝑡, APP clusters the new incoming objects a-posteriori by considering
a consolidated version of the clusters created at time 𝑡 − 1. For each cluster, the AP notion of exemplar is
replaced by centroid and it is defined as a summary representation of the associated objects with the aim to
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consolidate the cluster observed until 𝑡 − 1. In particular, we work with objects that are data points, namely
vectors of numerical features. In this context, a cluster centroid is computed as an average representation of
the associated object vectors. As a main difference with AP, in APP, the objects previously clustered do not
change cluster when new objects arrive and clusters generated in a certain time step are consolidated/stratified
over the past ones.

5.3.1 The APP algorithm

Algorithm 1 provides the pseudo-code of the proposed APP.
Algorithm 1 The APP algorithm

Input
𝑡: time step
𝑋: objects at time step 𝑡
𝑋1: objects at time step 𝑡 − 1
𝐿1: labels at time step 𝑡 − 1
𝑡ℎ𝛾 : pruning threshold

Output
𝐿,𝑋: at time step 𝑡

1: if t == 0 then
2: L ← 𝐴𝑃 (X)
3:
4: else
5: 𝜇X1 ← 𝑃𝑎𝑐𝑘(L1, X1)
6: L2 ← 𝐴𝑃 ( 𝜇X1 ∪ X )
7: 𝜇L1, L ← Split(L2)
8: L1 ← 𝑈𝑛𝑝𝑎𝑐𝑘𝐴𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒(𝜇L1, 𝜇X1, L1, X1)
9: L, X ← 𝑃𝑟𝑢𝑛𝑖𝑛𝑔( L1 ∪ L, X1 ∪ X, 𝑡ℎ𝛾 )

10: end if
11:
12: yield L, X

Let’s call 𝑋 and 𝑋1, and 𝐿 and 𝐿1 the objects and the cluster labels at time 𝑡 and 𝑡 − 1, respectively. At
time 𝑡 = 0, the execution of APP coincides with the conventional AP algorithm. At each time 𝑡 > 0, for each
existing cluster computed at time 𝑡 − 1, the objects 𝑥𝑖 ∈ 𝑋1 are packed into a single representation called
cluster centroid 𝜇. The set of the centroids for 𝑋1 is denoted 𝜇𝑋1. Then, the conventional AP algorithm
is executed on 𝜇𝑋1 ∪ 𝑋, with the aim to obtain a new set of temporary labels 𝐿2, i.e., the new assignment
of objects to clusters. Such labels are then split into two subsets, 𝜇𝐿1 and 𝐿, which contain labels for each
average representation in 𝜇𝑋1 and for each object in𝑋, respectively. Given 𝜇𝐿1, 𝜇𝑋1, 𝐿1, 𝑋1, APP unpacks
the centroids of 𝜇𝐿1 into the corresponding objects𝑋1 mapping the previous labels𝐿1 into the new labels of
their respective centroids 𝜇𝐿1. Finally, APP returns 𝐿1 ∪𝐿, which is the union of the unpacked and updated
𝐿1 and 𝐿.
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The APP algorithm enforces faithfulness and forgetfulness as described in the following.

Faithfulness is the capability to preserve clustering history possibly enriched with new objects. At time 𝑡,
the execution of APP ensures that the objects𝑋1 arrived in previous time steps do not change cluster. Indeed,
each cluster existing at time 𝑡 − 1 is summarised by a centroid defined as an average representation of the
cluster objects associated with it through 𝐿1. The centroids are not changed by the APP execution at time 𝑡,
thus also the objects arrived until 𝑡 − 1 cannot change cluster. As a result, the clusters of time 𝑡 − 1 and the
associated centroids constitute the “memory” of the objects observed in the past. In APP, the centroids of
clusters at time 𝑡 − 1 are exploited as additional objects to cluster together with the new incoming objects at
time 𝑡 > 0. The new objects are stratified over the existing clusters according to one of the following criteria:

• stratification-by-creation: a new cluster is created containing a subset of the new incoming objects
𝑋̄ ⊆ 𝑋 when all the objects in 𝑋̄ are found to be too dissimilar from all the existing cluster centroids
𝜇𝑋1.

• stratification-by-enrichment: a previously created cluster is enriched with a subset of the new incoming
objects 𝑋̄ ⊆ 𝑋 when all the objects in 𝑋̄ are found to be similar to a cluster centroid in 𝜇𝑋1.

• stratification-by-merge: a new, unique cluster is created by merging two or more centroids in 𝜇𝑋1 and
a subset of the new incoming objects 𝑋̄ ⊆ 𝑋 when the objects in 𝑋̄ are found to be similar to all the
merged centroids.

Forgetfulness is the capability to recognize obsolete clusters and discard them. At a certain time 𝑡, it is
possible that a cluster represents the memory of a group of obsolete objects, namely a group emerged in past
time steps, but disappeared in recent observations. To enforce forgetfulness, APP allows to drop the clusters
that represent obsolete groups of objects. Each cluster is associated with an aging index 𝛾 ≤ 𝑡 that denotes
the last time step 𝑡 in which the cluster has been created/changed. For instance, a cluster enriched by new
objects at time 𝑡 has an aging index 𝛾 = 𝑡. A pruning threshold 𝑡ℎ𝛾 ∈ [1, +∞] is defined in APP to define
when a cluster can be considered obsolete. The threshold specifies the maximum number of APP rounds that
can be executed without any change on a cluster contents. At each time step, each cluster defined by 𝐿 is
evaluated for possible pruning with respect to 𝑡ℎ𝛾 . Given a cluster with aging index 𝛾 , the cluster is pruned
when 𝑡 − 𝛾 > 𝑡ℎ𝛾 . When 𝑡ℎ𝛾 ≥ 𝑡, it means that forgetfulness is not enforced and all the clusters created at
any time step is maintained. Otherwise, forgetfulness is enforced and the pruning condition is applied. For
instance when 𝑡ℎ𝛾 = 1 and 𝑡ℎ𝛾 < 𝑡, all the clusters not enriched at the last time 𝑡 are considered obsolete,
and then pruned.

Figure 5.2 is an example of APP execution with pruning threshold 𝑡ℎ𝛾 = 1. The initial bunch of objects
(𝑡 = 0) is shown in Figure 5.2 (A). The clustering result at time 𝑡 = 0 is represented in Figure 5.2 (B). Black
objects denote the cluster exemplars. In Figure 5.2 (C), centroids are calculated as average representations
of cluster objects (𝑡 = 1) and they are denoted as bold circles. New objects at time (𝑡 = 1) are represented
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as gray diamonds in Figure 5.2 (D). After the cluster consolidation, the clustering result of the APP run is
shown in Figure 5.2 (E) (𝑡 = 1). In particular, Figure 5.2 (E) shows an example of stratification-by-creation
(i.e., cluster on the bottom-left corner) and an example of stratification-by-enrichment (i.e., cluster on the
bottom-middle part). In Figure 5.2 (F), each centroid is unpacked and its cluster label is associated to each
object it had previously packed. The consecutive round of APP (𝑡 = 2) is presented in Figure 5.2 (G-H-J).
In particular, Figure 5.2 (I) shows an example of stratification-by-merge where two previously generated
clusters are merged into a single one. The final clustering result at time 𝑡 = 2 is shown in Figure 5.2 (J).
As a result of the stratification-by-pruning, the cluster on the right-top corner in Figure 5.2 (I) is pruned in
Figure 5.2 (J) since it is unchanged for two iterations. As a difference with AP (see Figure 5.1), objects do
not change cluster in Figure 5.2 and a lower number of clusters is generated.

Figure 5.2: Example of APP. (A) shows the objects available at time 𝑡 = 0. The first clustering result
coincides with AP and it is represented in (B). The black objects denote the cluster exemplars. For the sake
of clarity, dashed lines fully connect the objects of each cluster. (C) shows the cluster centroids as bold circles
generated by averaging the objects of each cluster on the background. (D) shows the input objects of APP at
time 𝑡 = 1. Gray diamonds represent the new incoming objects. The clustering result is represented in (E).
In (F), cluster centroids are unpacked and their cluster labels are associated with each object they previously
packed. The second APP run at time 𝑡 = 2 is shown in (G)-(H)-(J). New incoming objects are represented
by gray triangles. (J) denotes the final clustering result. Note that the cluster on the right-top corner of (I)
disappears in (J) due to a pruning threshold 𝑡ℎ𝛾 = 1.
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5.3.2 Complexity and Memory Usage Analysis

Since APP leverages AP for object clustering, the complexity of APP and AP are related. In AP, the time
complexity of message-passing iteration according to Equations 5.3 and 5.4 is(𝑁2), where𝑁 is the number
of all the current available objects. Therefore, the time complexity is (𝑁2𝑇 ), where 𝑇 is the number of
iterations until convergence. Further, the memory complexity is in the order (𝑁2) if a dense similarity
matrix is used.

Similarly, the time complexity of APP is(𝑀2𝑇1), where𝑀 = (𝜇𝑡−1+𝑛𝑡), and 𝜇𝑡−1, 𝑛𝑡 are the number of
previous centroids and the number of the new incoming objects, respectively. At each iteration, the memory
complexity of APP is (𝑀2), in that, there is no need to keep in memory previously clustered objects during
the AP execution of APP (Algorithm 1, row 6). By definition 𝑀 << 𝑁 and 𝑇1 << 𝑇 , thus a lot of time
and memory is saved, making APP a scalable solution in incremental scenarios. Moreover, when 𝑡ℎ𝛾 > 0,
time and memory complexity are further reduced to (𝑀2

𝛾 𝑇2), (𝑁𝛾 ), respectively; where𝑀𝛾 = (𝜇(𝛾)𝑡−1+𝑛𝑡)
and 𝜇(𝛾)𝑡−1 is the number of previous centroids that were not affected by pruning, and 𝑇2 < 𝑇1. Basically, the
smaller 𝛾 , the more 𝜇(𝛾)𝑡−1 < 𝜇𝑡−1, since more clusters will be pruned.

5.4 Experimental setup

The goal of our experimentation is to compare the results of APP against benchmark clustering algorithms.
We note that official implementations of incremental AP algorithms are not available for comparison. We
thus selected AP since it is the baseline clustering algorithm on which APP relies upon, and IAPNA since
it is a well-known and top-cited incremental extension of AP, being also straightforward to implement at
the same time. In the evaluation, we first focus on two evaluation experiments called uniform-incremental
and variable-incremental experiments. Both the experiments are based on a dynamic scenario where the
objects to cluster arrive as separated bunches at different time steps. In the uniform-incremental experiment,
we define the number and the set of objects arriving at the various time steps without any constraint on the
category. The idea is to analyze the behavior of the considered clustering algorithms on a pure incremental
setting like the one proposed in Sun and Guo (2014) (see Section 5.4.1). In the variable-incremental ex-
periment, the category of the objects arriving at each time step is constrained according to a given schema.
The idea is to analyze the capability of the considered clustering algorithms to recognize the categories of
the incoming objects when they appear over time according to a specific incremental schema, that can be
growing, shrinking, or stable (see Section 5.4.1).

All the experiments are implemented in Python 3.10 and they are conducted on a PC with 1.80GHz Intel
Core i7 processor and 16GB of RAM. Our code is based on the implementation of AP by scikit-learn (Pe-
dregosa et al., 2011).1 The APP code is available at https://github.com/umilISLab/APP.

1scikit-learn.org/stable/
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Datasets and pre-processing. In the evaluation, four popular labeled datasets are considered. In particular,
we selected Iris, Wine, and Car datasets from Newman et al. (1998) since they are used in the evaluation of
AP and IAPNA by Sun and Guo (2014). Moreover, we added the KDD-CUP dataset since it is characterized
by a high number of categories (Sunmood et al., 2018), and thus it is appropriate for clustering evaluation in
incremental experiments. In all the datasets, the objects are described as feature vectors; a different number
of features per object is defined for each dataset.

A summary view of the benchmark datasets used in the evaluation is provided in Table 5.2.

Dataset Number of
objects

Number of
features

Number of
categories

Usage of
dataset

Iris 150 4 3 whole
Wine 178 13 3 whole
Car 260 6 4 partly
KDD-CUP 2904 41 11 partly

Table 5.2: A summary description of the benchmark datasets.

Some datasets (Car and KDD-CUP) are characterized by a highly unbalanced number of objects per
category. As in Sun and Guo (2014), we select and use only part of them. In particular, we consider 65
objects taken from the top 4 most numerous categories in the Car dataset, and 264 objects taken from the top
11 most numerous categories in the KDD-CUP dataset.

A pre-processing stage is enforced to normalize the dataset objects. Since the experiments are performed
in a dynamic scenario, a single normalization stage on the whole dataset is not appropriate. Instead, at each
time step of the experiments, we perform normalization on the 𝑁𝑡 objects of the dataset available at time 𝑡 .
For the sake of comparison, we use the same normalization used by Sun and Guo (2014).

Evaluation metrics. As in Sun and Guo (2014), for clustering objects, we calculate the similarity between
pairs of objects through the negative euclidean distance where we do not leverage the preference coefficients
described by Sun and Guo (2014). For each dataset, the preference 𝑝 (self-similarity) is set to the median of
the input similarities at a given time (see Section 5.2 for further details about the 𝑝 parameter).

The clustering results are evaluated according to Purity (PUR) and Normalized Mutual Information
(NMI). To compute PUR, each cluster is assigned to the category that is most frequent in the cluster, and
then the accuracy of this assignment is measured by counting the number of correctly assigned objects and
by dividing by 𝑁𝑡, that is the number of objects of the dataset available at time 𝑡. Formally:

𝑃𝑈𝑅(Ω,) = 1
𝑁𝑡

∑

𝑘
max
𝑗

𝜔̄𝑘 ∩ 𝑐𝑗 , (5.7)

where Ω = {𝜔1, ..., 𝜔𝐾} is the set of clusters,  = {𝑐, ..., 𝑐𝐽} is the set of categories, and 𝜔̄𝑘 and 𝑐𝑗 are the
set of objects in 𝜔𝑘 and 𝑐𝑗 , respectively. High PUR values are frequently achieved when a high number of
clusters is generated. For instance, PUR is 1 when each object is placed in a corresponding singleton cluster.
Thus, we also exploit NMI to estimate the quality of the clustering by considering the number of generated
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clusters. NMI is defined as:
𝑁𝑀𝐼(Ω,) = 𝐼(Ω,)

[𝐻(Ω) +𝐻()]∕2
, (5.8)

where 𝐼(Ω,) is the mutual information between the set of clusters Ω and the set of categories , and the
normalization [𝐻(Ω) +𝐻()]∕2 is introduced to penalise large cardinalities of Ω with respect to , in that,
the entropy 𝐻(Ω) tends to increase with the number of clusters.

As in Sun and Guo (2014), three metrics are employed to evaluate the scalability of the considered
clustering algorithms, namely the Number of Iterations until convergence (NI), the Computation Time (CT)
in seconds, and the Memory Usage (MU) in MB. Furthermore, we also consider the Number of Clusters
(NC) generated at each time step.

5.4.1 Experimental settings

The uniform-incremental and variable-incremental settings are discussed in the following.
As a general remark, we stress that the experiments are repeated 100 times for each dataset; each time, the

order of incoming objects is randomly defined. For each dataset, the settings of the 100 executions are stored
and used for each considered algorithm (i.e., AP, IAPNA, and APP). We analyze the results by considering
the median score of the 100 obtained values at each time step.

The hyper-parameters of the AP algorithm are configured as follows: the maximum number of iterations
is set to 200, the damping factor is set to 0.9, and 15 iterations without changes in the exemplars at the last
time step are required before declaring convergence.

About IAPNA, since the implementation used in the evaluation of Sun and Guo (2014) is not available,
we developed a Python IAPNA implementation for the sake of our experiments.

About the APP configuration, we define a pruning threshold 𝑡ℎ𝛾 = 1.2

Uniform-incremental setting

In the uniform-incremental setting, we borrow the evaluation setup proposed by Sun and Guo (2014). A fixed
(i.e., uniform) number of objects is scheduled for arrival at any time step without considering the category.
Each dataset is shuffled and split through sampling into six bunches (one for each time step). For each dataset,
we define i) the number of incoming objects at the first time step (𝑡 = 0), and ii) the number of incoming
objects at any subsequent time steps (𝑡 > 0). In this experiment, most of the objects become available at time
step 0-th, while few objects are introduced in the subsequent time steps. The details about dataset sampling
in the incremental setting are provided in Table 5.3. For instance, considering the IRIS dataset, 100 objects
are sampled for clustering at the first time step, and 10 by 10 objects are sampled in the subsequent time
steps.

2As pruning threshold, we chose the value that provided the best trade-off between APP performance and scalability in all the
considered experiments.
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Dataset
Number of objects

(first time step)
objects

Number of objects
(subsequent time steps)

Iris 100 10
Wine 128 10
Car 210 10
KDD-CUP 1904 200

Table 5.3: The number of objects in the uniform-incremental setting (first and subsequent time steps).

Variable-incremental setting

In the variable-incremental experiment, the number of incoming objects at each time step is not fixed/uni-
form. The goal is to analyze the behavior of clustering algorithms when a larger number of incoming objects
is scheduled for arrival at each time step with respect to the uniform-incremental experiment. Moreover, the
category of the objects arriving at each time step is chosen according to a specific incremental schema. Each
dataset is shuffled and split through sampling into six bunches (one for each time step). The object sampling
from each category in a given time step is defined according to one of the following schema/behavior:

1. growing, the objects of a category are sampled by scheduling the order of arrival to be ascending in
size across the time steps. The category reproduces the behavior of a growing group of objects over
time.

2. shrinking, the objects of a category are sampled by scheduling the order of arrival to be decreasing in
size across the time steps. The category reproduces the behavior of a shrinking group of objects over
time.

3. stable, an equal number of objects of a category is scheduled for arrival in any time step. The category
reproduces the behavior of a stable group of objects over time.

In each of the 100 iterations, each category of the datasets is associated with a certain schema with a 33%
probability (i.e., the three schemas are equally probable over the categories). The arrival of objects of growing
and shrinking categories can be focused in a subset of the time steps. This means that the objects of a growing
category can start to appear in a time step 𝑡 > 0, as well as the objects of a shrinking category can be consumed
before the last time step. As a consequence, in a given time step, the objects of a category can be missing.
Otherwise, according to the “group evolution” assumption, a minimum number of objects 𝑞 of a category
is scheduled for arrival in any time step 𝑡 according to the associated schema. The aim is that any category
appearing in a certain time step has enough objects for being recognized by the clustering algorithms. As a
final constraint, we define that the incoming objects at each time step are taken from two different categories
as a minimum.

In the experiment, for each category, we define 𝑞 as the 10% of the dataset size divided by the number of
dataset categories. A summary of 𝑞 values for the categories of each dataset is provided in Table 5.4.
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Dataset 𝑞
parameter

Iris 5
Wine 6
Car 7
KDD-CUP 26

Table 5.4: The minimum number of objects 𝑞 per dataset category in the variable-incremental setting.

5.5 Experimental results
All the considered algorithms (i.e., AP, IAPNA, and APP) are based on AP for clustering objects in the first
time step. Thus, the results of the three algorithms coincide with the first clustering execution at time 𝑡 = 0.
For this reason, the results on the 0-th bunch of objects are not shown/considered in the analysis.

Results on the uniform-incremental experiment

Experimental results with the uniform-incremental settings are shown in Tables 5.5, 5.6, 5.7, 5.8, 5.9, 5.10.
Dataset Method 1th 2th 3th 4th 5th

Iris
AP

IAPNA
APP

0.964*
0.882
0.873

0.975*
0.950
0.867

0.954*
0.877
0.862

0.957*
0.957*
0.864

0.967*
0.953
0.667

Wine
AP

IAPNA
APP

0.754
0.884*
0.710

0.750*
0.365
0.655

0.747*
0.620
0.665

0.732*
0.613
0.661

0.730*
0.624
0.663

Car
AP

IAPNA
APP

0.814*
0.791
0.727

0.830*
0.796
0.604

0.812*
0.804
0.704

0.816
0.828*
0.514

0.812
0.823*
0.550

KDD-CUP
AP

IAPNA
APP

0.863
0.349
0.816

0.812*
0.515
0.806

0.853
0.512
0.780

0.858
0.983*
0.741

0.862
0.981*
0.748

Table 5.5: Uniform-incremental experiment: comparison on Purity. The highest score is denoted with an
asterisk; the APP score is denoted in bold.

The results show that APP achieves comparable/higher clustering performance than the conventional AP
and IAPNA algorithms. On average by considering all the time steps and datasets, APP achieves a PUR
score of 0.724, which is comparable but lower than the PUR score of AP (0.846) and IAPNA (0.755). This
result can be explained by considering the number of clusters 𝑁𝐶 created by the three algorithms, where
we note that APP always returns the lowest value (see Table 5.10). As a matter of fact, a high number of
clusters positively affects the PUR metric without considering the possible noisiness of the created groups.
On the opposite, APP achieves a higher NMI score compared to AP and IAPNA. On average, APP obtains
a NMI score of 0.553, while AP and IAPNA obtain 0.511 and 0.536, respectively. By considering the Wine
and the Car datasets, we note that the NMI score of all three algorithms is quite low. This is probably due
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Dataset Method 1th 2th 3th 4th 5th

Iris
AP

IAPNA
APP

0.600
0.616
0.707*

0.660
0.658
0.740*

0.586
0.658
0.712*

0.561
0.648
0.718*

0.568
0.594
0.734*

Wine
AP

IAPNA
APP

0.346
0.582*
0.363

0.339
0.000
0.444*

0.335
0.484*
0.444

0.329
0.489*
0.445

0.326
0.565*
0.417

Car
AP

IAPNA
APP

0.427
0.415
0.466*

0.432*
0.409
0.391

0.417*
0.403
0.221

0.403
0.406*
0.236

0.392
0.406*
0.362

KDD-CUP
AP

IAPNA
APP

0.713
0.564
0.739*

0.700
0.668
0.743*

0.696
0.665
0.738*

0.693
0.754*
0.719

0.692
0.743*
0.714

Table 5.6: Uniform-incremental experiment: comparison on Normalized Mutual Information. The highest
score is denoted with an asterisk; the APP score is denoted in bold.

Dataset Method 1th 2th 3th 4th 5th

Iris
AP

IAPNA
APP

0.128
0.241

0.009*

0.117
0.221
0.008*

0.319
0.131
0.010*

0.321
0.260
0.009*

0.156
0.238
0.008*

Wine
AP

IAPNA
APP

0.199
0.184

0.052*

0.182
0.123
0.047*

0.204
0.117
0.051*

0.221
0.153
0.050*

0.278
0.364
0.051*

Car
AP

IAPNA
APP

0.332
0.200

0.074*

0.406
0.678
0.058*

0.563
0.282
0.028*

0.842
0.844
0.048*

0.867
0.231
0.035*

KDD-CUP
AP

IAPNA
APP

18.523
44.656
0.294*

26.752
43.041
0.210*

34.037
36.304
0.209*

42.068
83.318
0.211*

46.151
68.759
0.192*

Table 5.7: Uniform-incremental experiment: comparison on Computation Time. The highest score is de-
noted with an asterisk; the APP score is denoted in bold.

Dataset Method 1th 2th 3th 4th 5th

Iris
AP

IAPNA
APP

0.303
0.308

0.020*

0.359
0.366
0.023*

0.420
0.428
0.024*

0.486
0.496
0.026*

0.556
0.569
0.028*

Wine
AP

IAPNA
APP

0.492
0.507

0.046*

0.563
0.581
0.059*

0.639
0.659
0.062*

0.719
0.742
0.066*

0.804
0.831
0.070*

Car
AP

IAPNA
APP

1.215
1.227

0.050*

1.325
1.340
0.055*

1.440
1.458
0.058*

1.559
1.581
0.037*

1.684
1.709
0.034*

KDD-CUP
AP

IAPNA
APP

108.287
108.928
2.207*

129.658
130.381
2.850*

153.012
153.819
3.029*

178.233
179.128
3.207*

205.425
206.408
3.400*

Table 5.8: Uniform-incremental experiment: comparison on Memory Usage. The highest score is denoted
with an asterisk; the APP score is denoted in bold.
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Dataset Method 1th 2th 3th 4th 5th

Iris
AP

IAPNA
APP

59.0
62.0

43.0*

49.0
51.0
40.0*

164.0
15.0*
50.0

156.0
43.0*
43.0*

57.0
37.0*
39.0

Wine
AP

IAPNA
APP

60.0
53.0

39.0*

55.0
24.0*
40.0

63.0
15.0*
41.0

61.0
15.0*
39.0

65.0
70.0
41.0

Car
AP

IAPNA
APP

83.0
15.0*
58.0

88.0
127.0
43.0*

119.0
34.0
15.0*

161.0
166.0
41.0*

154.0
15.0*
33.0

KDD-CUP
AP

IAPNA
APP

103.0
167.0
73.0*

115.0
81.0
77.0*

133.0
15.0*
70.0

142.0
172.0
74.0*

139.0
79.0
68.0*

Table 5.9: Uniform-incremental experiment: comparison on the Number of Iterations. The highest score is
denoted with an asterisk; the APP score is denoted in bold.

Dataset Method 1th 2th 3th 4th 5th

Iris3
AP

IAPNA
APP

10.0
5.0
4.0*

8.0
6.0
3.0*

10.0
5.0
3.0*

11.0
7.0
3.0*

12.0
9.0
2.0*

Wine3
AP

IAPNA
APP

11.0
9.0
4.0*

12.0
1.0
2.0*

12.0
2.0
3.0*

12.0
2.0*
2.0*

12.0
2.0
3.0*

Car4
AP

IAPNA
APP

27.0
25.0
8.0*

28.0
26.0
4.0*

26.0
25.0
2.0*

31.0
29.0
50.0*

31.0
28.0
3.0*

KDD-CUP11

AP
IAPNA

APP

74.0
4.0*
26.0

82.0
6.0*
21.0

72.0
6.0*
18.0

78.0
63.0
16.0*

84.0
72.0
20.0*

Table 5.10: Uniform-incremental experiment: comparison on the Number of Clusters. The highest score is
denoted with an asterisk; the APP score is denoted in bold. The subscript denotes the number of categories
in each dataset.

to the categorical features in such datasets that have been converted to numeric values by using one-hot
encoding for vector representation. If we exclude the Wine and the Car dataset, the NMI average score of
APP achieves the value of 0.726, while the AP and IAPNA scores are 0.647 and 0.657, respectively. As a
further consideration, we note that the best results of APP in terms of NMI are reached on the KDD-CUP
dataset where the average score is 0.731, while those of AP and IAPNA are 0.699 and 0.679, respectively.
This is a particularly interesting result since KDD-CUP is the dataset with the highest number of objects and
categories among those considered.

As a main result, due to the faithfulness property of APP that reduces the number of objects considered
for clustering in each time step, we observe that APP is far more scalable than AP and IAPNA in terms of CT,
MU, and NI. On average by considering all the time steps and datasets, APP achieves a CT score of 0.083,
while AP and IAPNA achieve 8.633 and 14.017, respectively. Also about MU, we note that AP consumes
0.768 MB, while AP and IAPNA consume 39.359 MB and 39.573 MB, respectively. Furthermore, the av-
erage NI score of APP is 48.350, while AP and IAPNA obtain the score 101.300 and 62.800, respectively.
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According to the above results on the uniform-incremental experiment, we observe that APP is much faster
than AP and IAPNA, while consuming much less memory than the two considered baselines. Furthermore,
we note that the 𝑁𝐶 values of APP represent the best approximation among the considered clustering algo-
rithms with respect to the number of categories contained in the datasets. Usually, the 𝑁𝐶 value of APP is
slightly higher and sometimes equal to the number of dataset categories.

Results on the variable-incremental experiment

In the variable-incremental experiment, we performed the same tests of the uniform-incremental experiment
on PUR, NMI, CT, MU, NI, and NC. For the sake of simplicity, we report in Table 5.11 only the scores of
APP on all the tests and datasets of the variable-incremental experiment. The whole set of results for AP and
IAPNA on the variable-incremental experiment is available online. As a general remark, we observe that the

Dataset Metric 1th 2th 3th 4th 5th

Iris3

PUR
NMI
CT
MU
NI
NC

1.000*
0.616
0.051
0.016*

59.0
4.0

0.988*
0.696
0.048

0.020*
45.0
4.0

0.938*
0.751*
0.051
0.025
51.0
4.0

0.897*
0.754*
0.048
0.027
46.0
4.0

0.887*
0.718
0.058
0.038
50.0
5.0

Wine3

PUR
NMI
CT
MU
NI
NC

0.816*
0.412*
0.058
0.036*
44.0*

5.0

0.823*
0.518*
0.044*
0.048*
39.5*
4.0

0.842*
0.581*
0.054

0.057*
39.5*
4.0

0.834*
0.604*
0.047*
0.067
37.0*
3.0*

0.742*
0.572*
0.047*
0.079
43.0
5.0

Car4

PUR
NMI
CT
MU
NI
NC

0.770*
0.364
0.055*
0.046*
51.0*
10.0

0.677*
0.323

0.048*
0.072
43.0*
11.0

0.578
0.278*
0.037
0.088
46.0
9.0

0.604*
0.315*
0.034*
0.084
45.0
10.0*

0.535
0.213
0.032*
0.100
15.0*
4.0

KDD-CUP11

PUR
NMI
CT
MU
NI
NC

0.849*
0.719
1.804
3.006
87.5
30.0

0.838*
0.732
1.352
3.629
67.0*
28.0

0.831*
0.737
1.500
4.054
71.0
28.0

0.806*
0.732*
1.451
4.584
72.0*
27.0

0.744
0.691
1.479
5.405
64.0*
25.0

Table 5.11: Variable-incremental experiment: results of APP on all the considered datasets. The asterisks
denote the APP scores higher than the corresponding ones in the uniform-incremental experiment.

APP results on the variable-incremental experiment confirm the observations on the uniform-incremental
experiment. APP achieves comparable/higher clustering performances than AP and IAPNA algorithms. As
a difference with the uniform-incremental experiment, in Table 5.11 we note that the PUR scores for APP
are improved. This is in relation to the fact that also a slightly higher number of clusters 𝑁𝐶 are generated
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by APP in the variable-incremental experiment.

Ablation study APP is designed to work under the “group evolution” assumption, namely the idea that
a new incoming object that differs from past observations is more likely to be considered as an outlier of
a previously created cluster rather than as a singleton new cluster. To this end, in the variable-incremental
experiment, we inserted a 𝑞 parameter to specify the minimum number of incoming objects per category at
a time step 𝑡.

In the following, we present an ablation study, where the “group evolution” assumption is replaced by
an “individual evolution” assumption. In particular, the constraint on the 𝑞 parameter is removed and it
is possible that just one or a few objects per category are incoming at a certain time step 𝑡. The goal of
this experiment is to analyze whether and how APP is capable of successfully recognizing the category of
incoming objects also when a few elements of that category appear at a certain time step.

In Table 5.12, we show the APP results in terms of PUR and NMI when a minimum number of incoming
objects per category 𝑞 is not specified/considered. With respect to the scores on PUR and NMI of Table 5.11,

Metric Dataset 1th 2th 3th 4th 5th

PUR
Iris

Wine
Car

KDD-CUP99’

0.923
0.835*
0.702
0.586

0.900
0.881*
0.624
0.182

0.882
0.881*
0.577
0.165

0.882
0.889*
0.602
0.135

0.880
0.888*
0.596*
0.410

NMI
Iris

Wine
Car

KDD-CUP99’

0.647*
0.481*
0.337
0.529

0.677
0.585*
0.280
0.000

0.659
0.629*
0.240
0.000

0.693
0.642*
0.288
0.414

0.640
0.615*
0.300*
0.000

Table 5.12: Ablation study: PUR and NMI scores of APP when the 𝑞 parameter is not considered and a
minimum number of incoming objects per category is not employed. The APP scores that are higher with
respect to Table 5.11 are denoted with an asterisk; the scores on the KDD-CUP dataset are denoted in bold.

we note that the APP scores are slightly lower on Iris and Car datasets and they are slightly higher on the
Wine dataset. We also note that the APP scores on the KDD-CUP dataset are dramatically lower than those
shown in Table 5.11.

As a result, we argue that the “group evolution” assumption implemented through the 𝑞 parameter does
not significantly affect the APP scores on small datasets like Iris, Car, and Wine where few categories are
defined. On the opposite, on large datasets like KDD-CUP where a number of categories are defined, not
using the 𝑞 parameter has a strong negative impact on PUR and NMI scores. This means that the “group evo-
lution” assumption implemented through the 𝑞 parameter positively affects the correct recognition of object
categories especially when datasets with several categories are considered, while not negatively affecting the
PUR and NMI scores on datasets with few categories.

114



Analysis of clustering results over time As a further test, we consider a specific execution of APP and
the related clustering results over six time steps. The goal is to analyze the capability of APP to correctly
cluster objects according to the corresponding categories when different incremental schemas are used (i.e.,
growing, shrinking, stable). In Figure 5.3, we show the results of an APP execution on the Iris dataset. In

Figure 5.3: Variable-incremental experiment: example of APP results by time step over the Iris dataset.

the dataset, the objects are distinguished in three different categories each one constituted by 50 elements,
namely gold-0, gold-1, and gold-2. In the test, the objects of the three categories follow a different incremental
schema of arrival. The objects of the gold-0 category are scheduled for arrival according to the stable schema
(i.e., 9 gold-0 objects at 0-th and 1-th time steps; 8 gold-0 objects at subsequent time steps). The objects of
the gold-1 category follow a shrinking schema focused on time steps from 0-th to 2-th. In particular, 19, 16,
and 15 gold-1 objects are scheduled at 0-th, 1-th, and 2-th time steps, respectively. Finally, the objects of the
gold-2 category follow a growing schema focused on time steps from 3-th to 5-th. In particular, 12, 13, and
25 gold-2 objects are incoming at 3-th, 4-th, and 5-th time steps, respectively.

In Figure 5.3, for each time step, we compare the clusters created by APP against the expected gold
clusters based on the category of the incoming objects. We observe that APP works very well in clustering
objects of stable and shrinking schema. Indeed, the cluster-0 of APP always succeeds in correctly clustering
the gold-0 objects in all the time steps. Similarly, we note that the cluster-1 of APP perfectly reproduces the
group of gold-1 objects in all the time steps from 0-th to 2-th where the gold-1 objects are incoming. We
also note that some incorrect clustering results are produced by APP on the gold-2 objects that arrive with
a growing schema from 3-th to 5-th time steps. In particular, in 3-th and 4-th time steps, the gold-2 objects
are distributed in two APP clusters, namely cluster-1 and cluster-2. Cluster-2 represents the APP cluster that
better fits to the gold-2 category. A part of the gold-2 objects are wrongly recognized as gold-1 objects and
placed in cluster-1. In the 5-th time step, the gold-2 objects are spread over five APP clusters. Again, a (small)
part of gold-2 objects are placed in cluster-1 since they are wrongly recognized as gold-1 objects. Coherently

115



with the results of 3-th and 4-th time steps, the cluster-2 of APP seems to be the group that better fits the
gold-2 category. The remaining cluster-3, cluster-4, and cluster-5 represent noisy groups with respect to the
expected gold categories of Iris. According to the above observations, we argue that clustering errors mostly
occur when the incoming objects follow a growing incremental schema. This is due to the fact that the new
category appears with a low number of objects in the first time step and this schema challenges the correct
recognition of the new cluster to create.

5.6 Discussion and considerations
In this chapter, we propose A-Posteriori affinity Propagation (APP) as an extension of Affinity Propagation
(AP). APP is conceived to work in incremental scenarios by enforcing faithfulness and forgetfulness through
cluster consolidation/stratification. Evaluation results on popular benchmark datasets are provided to assess
the performance of APP in two different incremental settings. The results show that APP obtains compa-
rable results on cluster quality with respect to AP and IAPNA algorithms, while achieving high scalability
performances at the same time. Our results show that APP is suitable for application scenarios where the
“group evolution” assumption holds.

However, it is important to consider some limitations when interpreting our evaluation. Specifically,
while we thoroughly evaluated APP against popular benchmarks, we did not assess its performance in real
case-study datasets that might better represent real-world application scenarios. Since this thesis focuses
on modeling semantic change, we limited our first evaluation of APP to these benchmarks. We will further
expand and illustrate the applicability of APP for LSC in the next chapter.

Moreover, a more comprehensive evaluation for general real-world scenarios should involve benchmark-
ing APP against other evolutionary clustering algorithms. In our evaluation, we considered only AP exten-
sions, as AP is generally regarded as an established baseline in word meaning modeling. Specifically, we
compared APP only with the standard AP and the incremental IAPNA, as other evolutionary AP extensions
lack official implementations available for evaluation.
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Chapter 6

The What is Done is Done approach

“How now, my lord! Why do you keep alone,
Of sorriest fancies your companions making,
Using those thoughts which should indeed have died
With them they think on? Things without all remedy
Should be without regard. What’s done is done.”

William Shakespeare, Macbeth

6.1 Introduction

In the previous chapter, we proposed a novel clustering algorithm called A-Posteriori affinity Propagation
(APP) and evaluated its effectiveness against standard clustering benchmarks. We now turn our attention to
its potential application in LSC. In this chapter, we employ APP to incrementally cluster word embeddings,
aiming to capture semantic change and the evolution of word meanings across a diachronic corpus.

Initially, we presented this sense-based approach to LSC at the 3rd Workshop on Computational Ap-
proaches to Historical Language Change (Tahmasebi et al., 2022c). We originally referred to this approach
as What is Done is Done (WiDiD, Periti et al., 2022). The idea underlying WiDiD is that the word contexts
observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings
observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the mean-
ings observed in the present are stratified over the past ones. In particular, the idea of WiDiD is that the
clusters of word meanings previously created cannot be changed (what is done is done), and the word mean-
ings that are observed in the present must be stratified/integrated over the past ones. In each consecutive time
period, the word embeddings of that time period are compared to the already existing clusters. They either
get assigned to an existing cluster or are allowed to form a new cluster, and thus the memory gets updated at
each time period. As a result, the stratified layers of clusters over time allow assessment of the quantity of
semantic change as well as reconstruction of the evolution of a word’s meanings.
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Chapter outline.

This chapter includes materials originally published in the following publications:

Francesco Periti, Alfio Ferrara, Stefano Montanelli, and Martin Ruskov. 2022. What is Done is
Done: an Incremental Approach to Semantic Shift Detection. In Proceedings of the 3rd Work-
shop on Computational Approaches to Historical Language Change, pages 33–43, Dublin, Ire-
land. Association for Computational Linguistics.

Francesco Periti, Sergio Picascia, Stefano Montanelli, Alfio Ferrara, and Nina Tahmasebi. 2024e.
Studying Word Meaning Evolution through Incremental Semantic Shift Detection. Language
Resources and Evaluation.

Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Francesco Periti. 2024. Incremen-
tal Affinity Propagation based on Cluster Consolidation and Stratification. eprint 2401.14439,
arXiv. Under review.

This chapter is organized as follows. In Section 6.2, we present the WiDiD approach for LSC. In Section 6.3,
we expand the discussion on the set of techniques employed by WiDiD for analyzing and detecting semantic
change. In Section 6.4, we illustrate two exemplary applications of WiDiD in real-world scenarios. In
Section 6.5, we evaluate WiDiD over seven LSC benchmarks across multiple languages. Empirical results
show that WiDiD is at least comparable to state-of-the-art approaches, while outperforming the state-of-the-
art for certain languages. Finally, in Section 6.6, we discuss the use of APP for LSC by examining both its
benefits and drawbacks.

6.2 WiDiD: What is Done is Done

Consider a dynamic, diachronic document corpus  =
⋃

𝑡=0 𝐶
𝑡 where𝐶 𝑡 denotes a set of documents added at

time 𝑡𝑖. Given a target word𝑤, our goal is to analyze how the meaning(s) of𝑤 changed along . Documents
in  are considered as a data stream segmented into a sequence of time periods. As shown in Figure 6.1,
WiDiD consists of a four-step pipeline that is repeatedly applied to the progressively added documents in :
1) Document Selection, 2) Embedding Extraction, 3) Incremental Clustering, 4) Clustering Analysis.

At the first time step (i.e., 𝑡 = 0), only the documents in 𝐶0 are considered. As a result, only a synchronic
analysis of clustering is possible, as there is no knowledge available about the meaning of𝑤 in the past. Then,
for each subsequent step 𝑡 = 1...𝑛, the knowledge of the 𝑤 meaning(s) detected in the past time periods (i.e.,
time periods 0...𝑡 − 1) is exploited by the step 3) to cluster the documents in 𝐶 𝑡. This diachronic analysis of
clustering can provide insights into the semantic change that has occurred.
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Notation Definition
𝑤 Target word
𝐶 𝑡 Set of documents at time 𝑡
𝐶 𝑡𝑤 Subset of documents of 𝐶 𝑡 containing the word 𝑤
𝑒𝑡𝑤,𝑖 Embedding of the word 𝑤 in the 𝑖-th document of 𝐶 𝑡𝑤
Φ𝑡
𝑤 Set of the embeddings of 𝑤 in the corpus 𝐶 𝑡𝑤

𝐾 𝑡
𝑤 Set of clusters obtained at the 𝑡-th iteration for 𝑤

𝜙𝑤,𝑘 𝑘-th cluster containing the embeddings of the word 𝑤
𝜙𝑡𝑤,𝑘 Subset of embeddings from time 𝑡 in the cluster 𝜙𝑤,𝑘
𝜇𝑡𝑤,𝑘 Prototypical representation of 𝑤 for 𝜙𝑡𝑤,𝑘
𝑀 𝑡

𝑤 Set of prototypes 𝜇𝑡𝑤,𝑘 available at time 𝑡
𝜋𝑡𝑤 Polysemy of the word 𝑤 at time 𝑡
 𝑡𝑤 Semantic shift of the word 𝑤 at time 𝑡
𝜌𝑡𝑤,𝑘 Prominence of the cluster 𝜙𝑡𝑤,𝑘 at time 𝑡
 𝑡
𝑤,𝑘 Sense shift of the cluster 𝜓𝑤,𝑘 at time 𝑡

Table 6.1: A reference table of notation used in the chapter.

Figure 6.1: WiDiD: an incremental approach to LSC.

The documents in 𝐶 𝑡 are processed via WiDiD as follows. For the sake of clarity, the notation used
throughout this chapter is summarized in Table 6.1.

Document Selection (DS). In this step, WiDiD selects the subset of documents 𝐶 𝑡𝑤 ⊆ 𝐶𝑡 that contains an
occurrence of the word 𝑤. Since semantic change is often accompanied by morphosyntactic drift (Kutuzov
et al., 2021a), we consider any derived form of the lemma of 𝑤 (e.g., plural) as an occurrence of 𝑤.
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Embedding Extraction (EE). In this step, WiDiD encodes each occurrence of the target word 𝑤 in 𝐶 𝑡𝑤
with a different representation. Because currently, contextualized embeddings represent the preferred tool
for addressing SSD (Periti and Montanelli, 2024), we will use embeddings generated by standard BERT-like
models (i.e., BERT, mBERT, XLM-R). The WiDiD approach is however more general and can be applied
regardless of the specific model used to represent individual word occurrences.

In particular, to extract contextualized embeddings for a specific target word 𝑤, we fed the considered
model with individual text sequences containing an occurrence of𝑤. For each occurrence of𝑤, we extracted
a contextualized embedding from the last hidden layer of the model. Due to the byte-pair input encoding
scheme employed by BERT models, some word occurrences may not correspond to words but rather to word
pieces (Sennrich et al., 2016). Therefore, if a word was split into more than one sub-word, we built a single
word embedding by averaging the corresponding sub-word embeddings. The final output of this step is the
set Φ𝑡

𝑤 containing all the embeddings of the word 𝑤 generated for the corpus 𝐶 𝑡. Formally,

Φ𝑡
𝑤 = {𝑒𝑡𝑤,1,… , 𝑒𝑡𝑤,𝑚} ,

where 𝑒𝑡𝑤,𝑗 is the embedding of 𝑤 in the 𝑗-th document and 𝑚 is the number of documents in 𝐶 𝑡𝑤.

Incremental Clustering (IC). WiDiD first (𝑡 = 0) uses the standard AP algorithm over Φ0
𝑤. This results

in a set of clusters denoted as 𝐾0
𝑤. For 𝑡 > 0, clustering is performed using the APP algorithm to cluster

the embeddings Φ𝑡
𝑤 in groups representing sense nodules, “lumps of (word) meaning with greater stability

under contextual changes” (Kutuzov et al., 2022b). We denote the set of resulting clusters as 𝐾 𝑡
𝑤. At each

time step, APP creates an additional sense prototype embedding 𝜇𝑡−1𝑤,𝑘 for each cluster 𝑘 ∈ 𝐾 𝑡−1
𝑤 by averaging

all its enclosed embeddings, meaning that 𝜇𝑡−1𝑤,𝑘 is the centroid of the 𝑘-th cluster. The resulting sense proto-
types constitute the “memory” of the word meanings observed so far. This memory is then exploited as the
basis for subsequent word observations in the current time period. In particular, we denote as 𝑀 𝑡−1

𝑤 the set
of sense prototypes 𝜇𝑡−1𝑤,𝑘 available at time 𝑡 − 1. Hence, APP consists of performing the standard AP over
the set of embeddings Φ𝑡

𝑤 ∪𝑀 𝑡−1
𝑤 . As a final step of APP, each sense prototype 𝜇𝑡−1𝑤,𝑘 is removed, and the

original embeddings compressed into 𝜇𝑡−1𝑤,𝑘 are assigned to its corresponding cluster. This ensures that all the
embeddings associated with a sense prototype at time 𝑡−1 are grouped together within the same cluster at the
time 𝑡. This way, clusters of word meanings previously created cannot be changed, and the word meanings
that are observed in the present must be stratified/integrated over the past ones.

Incremental clustering represents a significantly more scalable solution than existing approaches (Mon-
tariol et al., 2021; Kanjirangat et al., 2020). Since clusters formed in previous steps are considered as unique
prototypes, in each clustering step we work with a significantly smaller set of embeddings, while at the same
time eliminating the need for cluster alignment techniques.
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Clustering analysis (CA) In this step of WiDiD, each clustering result obtained as an IC output is analyzed
to interpret the meaning of words from both a synchronic and diachronic perspective. This step of WiDiD
is presented in further detail in Section 6.3, where we introduce a comprehensive set of metrics specifically
designed to describe both a target word and its sense nodules over time.

6.3 Cluster analysis
For each time period 𝑡, the incremental clustering (IC) results in a set of 𝑘 clusters 𝐾 𝑡

𝑤 = 𝜙𝑤,1, ..., 𝜙𝑤,𝑘. In
particular, we denote the set of embeddings from Φ𝑡

𝑤 enclosed in the 𝑘-th cluster as 𝜙𝑡𝑤,𝑘. Formally, we
define 𝜙𝑡𝑤,𝑘 = 𝜙𝑤,𝑘 ∩ Φ𝑡

𝑤. This implies that 𝜙𝑡𝑤,𝑘 ⊂ Φ𝑡
𝑤 is the subset of embeddings extracted at time 𝑡 that

are members of the cluster 𝜙𝑤,𝑘 during that specific time step.
To be able to analyze the sequence of clustering results for a word 𝑤, we propose a set of metrics that

characterize 𝑤 both from a synchronic and diachronic perspective. Regardless of the perspective, these
metrics are also conceived to inspect a particular clustering result by considering two linguistic targets:

1. word: when all clusters are considered overall, we analyze the target word 𝑤;
2. sense nodules: each cluster is considered individually. Ideally, when focusing on a target cluster, our

aim is to analyze the particular word meaning associated with that cluster. However, since clusters are
derived from vector representations generated by distributional models, each cluster loosely represents
a sense of the word 𝑤. As a result, when considering a cluster individually, our analysis centers on a
specific sense nodules or cluster of corpus usage. (Kutuzov et al., 2022b).

6.3.1 Synchronic perspective
From a synchronic perspective, words and sense nodules are considered within a specific time period, with-
out taking into account their evolution in meaning. We define two metrics to describe the status of words
and sense nodules, respectively.

Polysemy, denoted as 𝜋𝑡𝑤, describes the status of a word at a particular time period 𝑡. Polysemy is defined
as the number of “active” sense nodules present at time 𝑡, i.e., sense nodules from earlier periods integrated
with new elements as well as newly identified sense nodules. Intuitively, the more clusters there are, the
more polysemous the word is.

𝜋𝑡𝑤 = |𝐾 𝑡
𝑤| (6.1)

Prominence, denoted as 𝜌𝑡𝑤,𝑘, describes the status of a sense nodule at a particular time period 𝑡. Prominence
is defined as the prevalence of an active sense 𝜙𝑡𝑤,𝑘 at time 𝑡 relative to the other active sense nodules.
Intuitively, the more members in a cluster, the more prominent the sense nodule is.

𝜌𝑡𝑤,𝑘 =
|𝜙𝑡𝑤,𝑘|

|Φ𝑡
𝑤|

(6.2)
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6.3.2 Diachronic perspective

From a diachronic perspective, words and sense nodules are considered across time periods, taking into ac-
count their evolution in meaning. The clusters at the last iteration are used in the analysis and are traced over
time, thus avoiding a complex analysis of potential mergers across all time periods. We define two metrics
to describe the evolution of words and sense nodules, respectively.

Semantic shift, denoted as 𝑤, describes the degree of lexical semantic change of a word over two consec-
utive time periods. Semantic shift is defined as the degree of dissimilarity in the prominence of active sense
nodules between these time periods. Intuitively, the greater the dissimilarity between time periods 𝑡 and
𝑡 − 1, the higher the degree of semantic shift a word has undergone. Following Giulianelli et al. (2020), we
formally define semantic shift as the Jensen-Shannon divergence (JSD) over the prominence distributions
𝑃 𝑡−1𝑤 and 𝑃 𝑡𝑤, where the 𝑘−th value of a distribution 𝑃 𝑖𝑤 is the prominence 𝜌𝑖𝑤,𝑘 associated with the 𝑘−th
sense nodule resulting from the last enforced clustering step.

𝐽𝑆𝐷(𝑃 𝑡−1𝑤 , 𝑃 𝑡𝑤) =
1
2
(

𝐾𝐿(𝑃 𝑡−1𝑤 ||𝑀) +𝐾𝐿(𝑃 𝑡𝑤||𝑀)
)

,

where 𝑀 = (𝑃 𝑡−1𝑤 +𝑃 𝑡𝑤)∕2, and KL represents the Kullback-Leibler divergence, as JSD is a symmetrization
of KL.

Sense shift, denoted as 𝑤,𝑘, describes the degree of lexical semantic change of a specific word’s sense nodule
over two consecutive time periods. Sense shift is defined as the degree of distance in the sense prototypes
𝜇𝑡𝑤,𝑘 and 𝜇𝑡−1𝑤,𝑘 for these time periods. Intuitively, the greater the difference between time periods 𝑡 and 𝑡− 1,
the greater the degree of sense shift a sense nodule undergoes. Unlike 𝑤, 𝑤,𝑘 aims to capture lexical
semantic change specific to sense nodules. This score quantifies how a cluster changes over time, aiding in
the identification of semantic changes other than sense loss and acquisition (e.g., amelioration, pejoration,
broadening, or narrowing).

We formally define the sense shift of the 𝑘−th sense nodule as the cosine distance between the sense
prototypes 𝜇𝑡𝑤,𝑘 and 𝜇𝑡−1𝑤,𝑘.

𝑤,𝑘(𝜇𝑡𝑤,𝑘, 𝜇
𝑡−1
𝑤,𝑘) =

𝜇𝑡𝑤,𝑘 ⋅ 𝜇
𝑡−1
𝑤,𝑘

‖𝜇𝑡𝑤,𝑘‖ ‖𝜇𝑡−1𝑤,𝑘‖

6.3.3 Clustering visualization

To facilitate the analysis and interpretation of the evolution of a word’s meaning, we propose a new visual-
ization that supports the synchronic and diachronic metrics enforced in cluster analysis. Unlike the visualiza-
tion methods for diachronic semantic change presented in Kazi et al. (2022), this visualization is particularly
suited to a posteriori analysis (see Section 6.3.1) of the last clustering result of WiDiD. Our visualization
provides valuable insights into the different sets of sense nodules held by a word over time, as well as clearly
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Figure 6.2: Clustering visualization: prototype visualization of word meaning evolution. Subfigure (a)
represents the polysemy and semantic shift of a word over time. Subfigure (b) represents the prominence
and sense shift of the sense nodules of that word over time.

representing the evolution of those sense nodules.
For the sake of clarity, we describe the rationale of the visualization by considering the prototype of an

arbitrary word 𝑤 illustrated in Figure 6.2. The figure consists of two subfigures (a) and (b), representing
the synchronic and diachronic metrics for (a) a target word and (b) its sense nodule, respectively. In both
subfigures, the 𝑥 -axis represents time.

In subfigure (a), each square represents a snapshot of a specific word at a particular time period 𝑡. The size
of each square reflects the polysemy 𝜋𝑡𝑤 of the word at time 𝑡. Semantic shift values over time are reported
on the 𝑦-axis.

In subfigure (b), each circle in the figure represents a snapshot of a specific sense nodule at a particular
time period 𝑡. The evolution of different sense nodules (i.e., 𝑘1, ..., 𝑘𝑗) is illustrated on the 𝑦-axis using
different colors. Intuitively, the presence/absence of a circle at time 𝑡 indicates the active/inactive state of the
related sense nodule. The size of each circle reflects the prominence 𝜌𝑡𝑤 of the corresponding sense nodule
at time 𝑡. Sense shift values over time are reported on the links connecting the snapshots of sense nodules
with their respective immediately subsequent snapshots.
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6.4 Real applications of WiDiD
We now report on two practical applications of WiDiD.

1. The first application is presented in Section 6.4.1 and involves a large corpus of Vatican publications
from 1431 to 2020. This application was originally presented in Castano et al. (2024), when the cluster
visualization techniques were still in development. It serves as an illustrative example of potential
mergers due to cluster consolidation and stratification across consecutive time periods (see Chapter 5).

2. The second application is presented in Section 6.4.2 and involves a large corpus of Italian parliamen-
tary speeches from 1948 to 2020. This application was originally presented in Periti et al. (2024e).
It complements the preceding one and investigates, through the cluster visualization techniques intro-
duced earlier in this chapter, the clusters obtained in the final APP iteration to trace sense evolution
over time.

The domains of these applications represent relevant cases for detecting semantic change, as they concern
prominent issues in public and social contexts. Our main goal is to demonstrate a practical LSC application of
WiDiD to trace the evolution of clusters over time. Hence, the APP pruning threshold 𝑡ℎ𝛾 is set to ∞, as our
experiment aims to focus on cluster evolution over time rather than analyze the effects of the forgetfulness
property on irrelevant clusters. Although a quantitative evaluation is not possible due to the lack of an
annotated benchmark (i.e., gold scores for a set of target words), we provide a qualitative analysis of the
results to assess the effectiveness of WiDiD in LSC.

In both applications, the first sub-corpus is used in the initial run of AP, followed by the incremental
addition of the remaining sub-corpora in subsequent APP iterations.

6.4.1 Vatican publications

Setup. In this application, we consider a corpus of Vatican publications. Our corpus contains 29k doc-
uments extracted from the digital archive of the Vatican website and it consists of all the web-available
documents, spanning from the papacy of Eugene IV to Francis (1431-2023). Although the documents are
available in various languages, including Italian, Latin, English, Spanish, and German, we downloaded the
Italian corpus since the largest number of documents are available in this language.

To set-up this illustrative application, we first define a target word𝑤we aim to detect its semantic change
within the Vatican corpus. Then, we split the corpus into six sub-corpora, each one denoting a specific
time period. It is worth noting that for most of the earlier pontificates, a few documents are available (e.g.,
Eugene IV) or none at all (e.g., Nicholas V). To address the skewed distribution of documents over time,
we aggregated popes and related documents to ensure that each sub-corpus contains at least 50 occurrences
of the target word 𝑤. Furthermore, we performed a random sampling of 100 occurrences of 𝑤 from each
sub-corpus when more occurrences are available to ensure that the number of occurrences are comparable
across the sub-corpora.
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We exploit the Italian pre-trained BERT model (i.e., bert-base-italian-cased) to represent each occur-
rence of the target word 𝑤 as a word embedding vector.

As a target word, we consider 𝑤 = novità (novelty). The Vatican corpus is split into the following sub-
corpora: before Leo XIII, with documents prior to 1878; from Leo XIII to Pius XI, with documents in the range
1878–1939; from Pius XII to John XXIII, with documents in the range 1939–1963; Paul VI, with documents
in the range 1963–1978; Benedict XVI, with documents in the range 2005–2013; Francis I, with documents
up to 2023. It is worth noting that we do not include the pontificate of John Paul II in this analysis. The
richness and the variety of documents of John Paul II is significantly higher than the other pontificates and
we note that it has been used in several different contexts and meanings, thus introducing a really challenging
LSC task. So, we decided to exclude the documents of John Paul II since the goal of our application is to
show the behavior of WiDiD on cluster evolution and not to discuss the WiDiD effectiveness on a custom
LSC task.

Results. In Figure 6.3, we provide an example of cluster evolution according to the stratification criteria
presented in Chapter 5. Each cluster contains a set of contextual embeddings of the target word novelty and
it denotes a corresponding meaning of novelty at a certain time by considering the documents of the Vatican
corpus until that moment.

A cluster k is represented as a box with an associated identifier. The cluster size denotes the cumulative
number of elements in the cluster at each iteration: the larger the cluster box, the greater the number of
cluster elements. In the example, we use the same cluster identifier across different iterations when the
cluster is the result of a stratification-by-enrichment, while we assign new identifiers to clusters resulting
from stratification-by-creation and stratification-by-merge.

The example of Figure 6.3 shows that just one meaning of the word novelty could be recognized in the
1𝑠𝑡 WiDiD iteration; and further meanings appeared in subsequent executions, especially in the iterations
from 4𝑡ℎ to 6𝑡ℎ, where the use of the word novelty becomes strongly polysemous.

The cluster k0 in the 1𝑠𝑡 WiDiD iteration is an example of stratification-by-creation and it describes
the use of the word novelty as a negative, dangerous concept, since new ideas and novel practices were
considered as a threat to the traditional teachings of the Church by the earlier pontificates. The cluster k0

is populated with new elements in the 2𝑛𝑑 iteration (stratification-by-enrichment), when a new cluster k1

is also introduced with embeddings of the novelty occurrences from the documents of the 2𝑛𝑑 sub-corpus
(stratification-by-creation). The clusters k0 and k1 are joined in the 3𝑟𝑑 iteration to generate the cluster k2

(stratification-by-merge). The cluster k2 remains unchanged in subsequent iterations from 4𝑡ℎ to 6𝑡ℎ (no
more documents are found similar to k2), confirming that such a conservative, right-wing position of the
Church has been abandoned after the Second Vatican Council (1962–1965).

In this example, the clusters k0–k2 are equipped with a textual description that has the goal to summarize
the cluster contents and the related meaning of the word novelty in the cluster. Since cluster labeling is not
the focus of this study, we leverage ChatGPT1 to generate the cluster summaries of our examples. To label a

1https://openai.com/blog/chatgpt/
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cluster, we collect the text sources in the Vatican corpus that are associated with the occurrences of the word
novelty in the cluster and we ask ChatGPT to summarize the common topic.

As a further example, in Figure 6.4, we show the evolution/stratification over time of those clusters
that are finally merged into the cluster k26 at the 6𝑡ℎ iteration of WiDiD in Figure 6.3. The example of
Figure 6.4 is about the usage of the word novelty in relation to societal, cultural, and religious change. In
particular, we focus on the period from 1939 to 2023 (iterations from 3𝑟𝑑 to 6𝑡ℎ), although this meaning of
novelty appeared in the 2𝑛𝑑 iteration with the clusters k3 and k4 as examples of stratification-by-creation.
According to Figure 6.3, the 3𝑟𝑑 iteration is characterized by the emergence of new relevant clusters such as
k5 and k6 through stratification-by-creation, while the cluster k3 increases its importance with new elements
through stratification-by-enrichment. The cluster k4 remains unchanged, and a new marginal cluster called
k7 is created. In the 4𝑡ℎ iteration, the number of clusters about this meaning of novelty is strongly increased
(stratification-by-creation), probably due to the dynamism of ideas introduced by the Second Vatican Council
and reflected in the Vatican documents. Such a variety of positions at the 4𝑡ℎ iteration is represented in
Figure 6.4 by the clusters k6, k8, and k17. The 5𝑡ℎ iteration is mostly characterized by stratification-by-
merge operations and the clusters k20, k21, and k22 represent the main result of WiDiD on this meaning of
novelty. About the cluster k21, we note that it is the result of a merge operation that involves a number of
clusters of the previous iteration (i.e., the 4𝑡ℎ one), and it is also strongly increased in importance due to the
insertion of several elements (i.e., novelty occurrences) of the current 5𝑡ℎ iteration.

126



Figure 6.3: The WiDiD application on the Vatican corpus for the word novelty.
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Figure 6.4: The evolution/stratification of clusters that are finally merged into the cluster k26 of Figure 6.3. For the sake of readability, the
cluster description is provided only for k3, k6, k8, k17, k20, k21, k22, k26.
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The result at the 5𝑡ℎ iteration also includes the (minor) cluster k16 that remains unchanged with respect
to the previous iteration (no elements of the 5𝑡ℎ iteration are inserted in this cluster). The summary descrip-
tions of clusters k20, k21, and k22 are provided in Figure 6.4. This meaning of novelty is finally reconciled
in a unique cluster k26 at the 6𝑡ℎ iteration through a final stratification-by-merge operation.

A final example of evolution/stratification is provided in Figure 6.5 about the clusters k19, k23, and k27

of Figure 6.3. This example is about the usage of novelty in relation to the innovation of Christianity, a new

Figure 6.5: The evolution/stratification of clusters k19, k23, and k26 of Figure 6.3.

understanding of the Church’s teaching, and effects on the followers. In this example, we focus on the 5𝑡ℎ
and 6𝑡ℎ iterations where most of the clusters about this meaning of novelty appear, thus highlighting the
very recent emergence of such a discussion in the Church debate. In Figure 6.5, we show the descriptions
of clusters k19 and k23 that are the most representative at the 5𝑡ℎ iteration and that are finally merged into
cluster k27 at the 6𝑡ℎ iteration.

It is worth stressing that WiDiD allows to represent all the various meaning/interpretations associated
with the word novelty at each iteration. Furthermore, the stratification criteria are able to track the transfor-
mations of clusters over time, as well as to reconcile all the branches of a certain meaning into a summary
cluster at the last iteration, thus providing a convenient picture to the scholar/analyst that aims to explore the
evolution of novelty in the whole Vatican corpus.
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6.4.2 Parliamentary speeches from the Italian Chamber of Deputies

Setup. In this application, we consider a corpus of parliamentary speeches from the Italian Chamber of
Deputies. Our corpus spans a period of 72 years, from the 1st legislature of the Italian Republic after the
Constituent Assembly (1948) to February of the 18th Republican Legislature (2020). This corpus was cre-
ated by collecting all the available plenary session transcripts at the time of downloading from the Italian
Parliament website2.

Time periods
Legislature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Start date 1948 1953 1958 1963 1968 1972 1976 1979 1983 1987 1992 1994 1996 2001 2006 2008 2013 2018
End date 1953 1958 1963 1968 1972 1976 1979 1983 1987 1992 1994 1996 2001 2006 2008 2013 2018 2020
# Tokens 13.0 M 13.8 M 18.3 M 18.6 M 10.1 M 8.0 M 6.0 M 11.7 M 9.6 M 11.3 M 5.2 M 4.5 M 12.8 M 12.3 M 4.3 M 12.4 M 14.3 M 5.5 M

Table 6.2: Summary of the case study corpus of Italian Parliamentary speeches.

To set-up this WiDiD application, we first define a set of target words we aim to detect its semantic
change within the Italian parliamentary corpus. Since the corpus was produced by OCR scanning, it included
numerous spurious characters where words had been incorrectly recognized and introduced into the text,
degrading the quality of the data. To address this issue, we performed an additional processing step to exclude
speech with purely procedural content (e.g., The MP [SURNAME NAME] asks to speak) and filtered out
speech associated with a high level of noise (e.g., spurious characters and other artifacts introduced during
the OCR scanning process). To enhance scalability in this study, we reduced the number of embeddings to
store and process by randomly sampling a fixed number of occurrences of each target word (i.e., 100).

We exploit the Italian pre-trained BERT model (i.e., bert-base-multilingual-cased) to represent each
occurrence of the target word 𝑤 as a word embedding vector. Although we initially experimented with a
monolingual pre-trained BERT model (bert-base-italian-uncased), the empirical results revealed poor qual-
ity. Empirical results obtained with the multilingual model indicated a higher level of quality. We hypothesize
that multilingual models can leverage their larger, cross-lingual contextualization and pre-trained knowledge
to better handle the various text quality issues present in our OCR-corrupted data.

For the sake of simplicity, we consider 𝑤 = pulityo (clean) as the main target word. We thus provide
only a few illustrative examples for other words. However, the comprehensive list of words, including their
polysemy and semantic shifts as well as their sense nodules with associated prominence and sense shifts, are
available online for further reference.

The legislatures provide a natural criterion for splitting the corpus over time, meaning that a separate
sub-corpus 𝐶𝑖 is defined for each legislature 𝑖 (see Table 6.2).

Manually examining sentences in a specific cluster to interpret the clusters and the semantic change be-
tween two time periods is laborious and time-consuming. It involves a meticulous process of close-reading
because multiple sentences are present within each cluster. Thus, like Montariol et al. (2021), we automat-
ically extracted the most discriminating words for each cluster to minimize human effort. In particular, we
first lemmatized each sentence within the clusters. Then, we treated each cluster as an individual document

2https://dati.camera.it/it/dati/
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and considered all the clusters as a corpus. For each cluster, we calculated the Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) score of every word. To ensure the selection of the most meaningful keywords,
we eliminated stopwords and excluded parts of speech other than nouns, verbs, and adjectives. Thus, we
obtained a ranked list of keywords for each cluster, and the top-ranked keywords were then used for clus-
ter interpretation. Similar to the previous application, we also leverageg ChatGPT to generate the cluster
summaries of our examples.

Note that recent work has demonstrated that the geometry of BERT’s embedding space exhibits anisotropy,
meaning that the contextualized embeddings occupy a narrow cone within the vector space, leading to very
small values of cosine distance (Ethayarajh, 2019). Thus, for the sake of readability, we normalized the shift
scores of our experiment by the maximum shift value we obtained.

Results. As an example, Figure 6.6 (a) and 6.6 (b) are a visual representation of the result of the cluster
analysis for the Italian word pulito (clean). This word holds particular significance in the Italian context
as it represents an adjective commonly associated with cleanliness. However, it gained a specific historical
connotation during the early ’90s owing to its association with the fight against corruption.

Figure 6.6: Clustering visualization: (a) semantic shift and polysemy of the Italian word “pulito” (e.g.,
clean); (b) sense shift and prominence of the sense nodules of the Italian word “pulito” (e.g., clean).

Figure 6.6 (a) summarizes Figure 6.6 (b), providing insights into the polysemy of the word and its overall
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semantic shift across different time periods. The greatest semantic shifts occur in the time intervals 7–8, 13–
14, and 17–18. The first time interval is associated with the acquisition of a new sense nodule (i.e., corruption
in Italian politics). The second time interval is associated with a change in the distribution of sense nodule
prominence; for example, in the 14th legislature, the sense nodule environment, renewable energy exhibits
its maximum prominence. The third time interval is characterized by the emergence of several new sense
nodules. Interestingly, the algorithm validates our expectations by capturing the emergence of new sense
nodules related to the environment and renewable energy. Indeed, recent years have shown increasing global
attention to environmental issues due to factors such as concerns about climate change.

In the discussion of Figure 6.6 (b) we adopt the ecological view of word change proposed by Hu et al. (2019).
They suggest that word sense nodules can compete for dominance and cooperate for mutual benefit (i.e., re-
main active), similar to organisms in an ecosystem. As a complementary view of Figure 6.6, Table 6.3 shows
the proportion of documents (i.e., prominence) assigned to each sense nodule.

The cluster analysis in Figure 6.6 (b) captures examples of semantic shifts of the word over time. For
instance, we observe an evergreen sense nodule (i.e., always present across all considered time periods) as-
sociated with the label hygiene, purity, and integrity. This sense nodule represents the predominant meaning
of the word until the 9th legislature. However, from the 10th legislature onwards, its prominence decreases
due to competition with sense nodules justice, investigation and corruption in Italian politics. As in Hu
et al. (2019), we find that similar senses join forces and cooperate against others while also competing inter-
nally.

cluster: label Legislatures
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

hygiene, purity, integrity 100 72 55 70 34 60 33 58 33 36 16 10 8 12 2 4 11 2
justice, investigation - - - - - - 2 1 7 17 36 44 66 18 4 11 17 1
environment, sustainability - - - - - - - - - - - - - - - 3 3 1
environment, ecology - - - - - - - - - - - - - - - - - 6
renewable energy - - - - - - - - - - - - - - - - - 3
corruption in Italian politics - - - - - - - 21 8 47 38 10 18 48 20 73 55 10
environment - - - - - - - - - - - - - - - - - 3
environment, renewable energy - - - - - - - - - - - - 8 18 2 9 8 5
energy, technology - - - - - - - - - - - - - - - - 6 12
sustainability - - - - - - - - - - - - - - - - - 3

word frequency 100 72 55 70 34 60 35 80 48 100 90 64 100 96 28 100 100 46

Table 6.3: Prominence of the word clean over time. Additionally, we provide the total frequency of the word
over time. A dash indicates that no documents (i.e., 0) are present in that cluster at a specific time.

On average, sense shift values are very low, indicating that sense nodules are enriched with documents
that are very similar to those already existing. However, we also notice some exceptional cases with high shift
scores, for example, 0.56 and 0.59 for the cluster justice, investigation in the time interval 7–8 and 8–9. By
examining the prominence values in Table 6.3, we find that these cases are sometimes associated with a very
small number of documents (e.g., fewer than 10 documents) rather than indicating a true sense shift, while
at other times these values can be attributed to misclassification due to the quality of the considered dataset.
The former observation aligns with our previous intuition that computing sense prototypes of large sets of
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embeddings helps to reduce noise (Periti et al., 2022). Indeed, we observe a negative correlation between
sense shift and the number of documents within a given time interval, meaning that the smaller the number
of documents in a specific time interval, the more sense shift is affected by noise since the impact of outliers
becomes more significant in the process of averaging multiple embeddings (i.e. computing sense prototypes).
Thus, we argue that the most significant shifts are related to medium-low sense-shift values. For example,
we examined the sentences associated with cluster 0 for legislatures 11 and 12, where a sense shift of 0.11 is
predicted. In the 10th legislature, the term clean is metaphorically used in the context of honesty, integrity,
moral correctness and cleaning up criminality. The presence of comparable sentences in the 11th legislature,
with a slightly different connotation emphasizing the removal of corruption, old practices, and dishonesty,
suggests a broadening of meaning. For instance, within the 10th legislature, expressions such as “piazza
pulita” (clean sweep), “mani pulite” (clean hands), “coscienza pulita” (clean conscience) are present. On
the other hand, in the 11th legislature, expressions like “paese pulito” (clean country) and “ambiente pulito”
(clean environment) are also present.

Further intriguing results from our analysis of various word and sense nodules are presented in Tables
6.4 and 6.5, respectively.

word time-interval polysemy semantic shift description
clean

(pulito) 7–8 2–3 0.15 The term is used in the context of corruption in Italian politics in
addition to its original associations with hygiene, purity and integrity.

violence
(violenza) 17–18 8–14 0.53

The term is used to encompass not just physical violence, sexual assault,
and domestic violence, but also gender-biased violence, indicating a

broadening in meaning and context.
abuse

(abuso) 12–13 1–2 0.00 The term is used in the context of child abuse in
addition to its original associations with power abuse.

abuse
(abuso) 15–16 2–3 0.15 The term is used in the context of sexual abuse in addition to its

original associations with power abuse and child abuse.

climate
(clima) 11–12 3–3 0.08

The term is mainly used for environmental and climate issues in
addition to its previous usages for a type of atmosphere

(e.g., political tension) or a particular situation (e.g., festive
atmosphere).

woman
(donna) 8–9 2–3 0.28 In the 9th legislature, the term appears in relation to the bill for the

establishment of voluntary military service for women in the Italian Armed Forces.

gender
(genere) 15–16 5–6 0.08

The term has evolved beyond its original usage as a means to denote a
kind or type of something and has acquired a

new connotation related to gender identity and sexual gender.
seizure

(sequestro) 5–6 1–2 0.03
The term underwent a semantic shift, expanding from its original meaning

of seizure to also refer to the act of person kidnapping, due to the
first kidnapping for extortion on December 18, 1972.

Table 6.4: Example of semantic shift associated with the corresponding word, time interval, polysemy, and
a short description.

6.5 Evaluation on reference benchmarks
As a final test for assessing the effectiveness of WiDiD on LSC, we considered the evaluation framework
defined at SemEval-2020 (Schlechtweg et al., 2020). Specifically, we rely on two of the LSC tasks presented
in Chapter 2:
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word label time-interval prominence sense shift description

clean
(pulito)

hygiene, purity,
integrity 7–8 16–10 0.11

The sense nodule has undergone a “broadening” shift. In the 7th legislature, it was related to
concepts like honesty, moral correctness, fighting criminality. In the 8th legislature, its scope
expanded to include eliminating deception and pollution, and cleaning up the old regime.
In the 8th legislature, expressions like clean sweep, clean country, and clean environment
emerge. This shift can be attributed to investigations such as “The Mani Pulite” and
“Tangentopoli” scandals that revealed a fraudulent and corrupt system.

environment
(ambiente)

environmental
administration;
environmental
management;
environmental

protection

8–9 100–100 0.15

The sense nodule exhibited a“broadening” shift. In the 8th legislature, it was related to con-
cepts like political environment, work environment. In the 9th legislature its scope expanded to
include ministerial issues and environmental bodies for environmental protection. This shift
can be attributed to the establishment of the Ministry of the Environment during the 9th legis-
lature.

right
(diritto)

law, human right;
international right 7–8 26–33 0.17

The sense nodule exhibited a broadening shift. During the 7th legislature, it was primarily
associated with concepts such as law, legal norms, and human rights. In the 8th legislature, its
scope expanded specifically in relation to human rights. This shift can be attributed to the
international agreement known as the Vienna Convention on the Law of Treaties. Indeed,
expressions like Vienna Convention and international law emerged during the 7th legislature,
while in the 8th legislature, expressions like right of emerged.

party
(partito)

political parties;
Left parties 11–12 96–97 0.11

The sense nodule exhibited a shift in meaning. During the 11th legislature, it was primarily
associated with concepts such as Left parties, political party, and transparency. In the 12th
legislature, its contextual scope expanded to include the idea of coalition. This shift
can be attributed to the birth of the Italian People’s Party. Terms
like Socialist Party and Democratic Party emerged in the 8th legislature, while the 12th
legislature witnessed the emergence of the expression Italian People’s Party.

violence
(violenza)

violence in
social contexts 12–13 28–48 0.21 The sense nodules shifted, expanding from physical violence in the 12th legislature to also

include sexual assault in the 13th legislature.

opposition
(opposizione)

social opposition;
political

opposition
8–9 48–34 0.15

The sense nodule exhibited a narrowing shift in meaning. In the 8th legislature, it primarily
pertained to the concept of political opposition. In the 9th legislature, its contextual expansion
included a specific emphasis on the role of political opposition and its significance as a critical
voice.

abortion
(aborto)

numerical
incidence
and social

implications of
abortion

16–17 13–16 0.20

The sense nodule exhibited a narrowing shift, a shift in focus. In the 16th legislature, it was
primarily associated with concepts such as forced, illegal, and clandestine abortions, as
well as women’s healthcare. During the 17th legislature, attention turned towards concern
regarding the rising number of medical staff who were conscientious objectors to providing
abortion and its potential impact on increasing forced, illegal, and clandestine abortions.

Table 6.5: Example of sense shift associated with the corresponding word, time interval, prominence and a
short description.

1. Binary Change Detection - binary classification (Subtask 1): For a set of target words, decide which
words lost or gained usage(s) between C1 and C2, and which did not. A binary label (𝑙 ∈ {0, 1})
is assigned to each target word via manual annotation. Then the semantic change word classification
computed by a model is evaluated by the Accuracy over the human-annotated test data.

2. Graded Change Detection - ranking (Subtask 2): Rank a set of target words according to their degree
of semantic change between C1 and C2. A continuous score is assigned to each target word via manual
annotation. Then the semantic change word ranking computed by a model is evaluated by Spearman’s
rank-order correlation over the human-annotated test data.

We evaluate WiDiD on seven benchmarks that contain a textual diachronic corpus in a given language
and test-set of target words, where each word is associated with a change score derived by manual annota-
tion. Table 6.6 summarizes the benchmarks considered. It is worth noting that the evaluation for DIACRIta
was executed only on Subtask 1, since no continuous labels are provided. Conversely, the evaluation for
RuShiftEval2021 was executed only on Subtask 2, since no binary labels are provided. Furthermore, the
Russian corpus of RuShiftEval2021 spans three historical periods, allowing a further demonstration of Wi-
DiD’s effectiveness and robustness in detecting semantic change over time. Note that no benchmarks are
currently available over more than two multiple, consecutive time intervals.
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Periods Tokens Reference Target
Words

SemEval
English 𝐶1

𝐶2

1810–1860
1960–2010

6 M
6 M (Schlechtweg et al., 2020) 37

Latin 𝐶1
𝐶2

-200–0
0–2000

65 k
253 k (Schlechtweg et al., 2020) 40

German 𝐶1
𝐶2

1800–1899
1946–1990

70.2 M
72.3 M (Schlechtweg et al., 2020) 48

Swedish 𝐶1
𝐶2

1790–1830
1895–1903

71.0 M
110.0 M (Schlechtweg et al., 2020) 31

DIACRIta
Italian 𝐶1

𝐶2

1945–1970
1990–2014

52 M
196 M (Basile et al., 2020) 18

RuShiftEval

Russian
𝐶1
𝐶2
𝐶3

1700–1916
1918–1990
1992–2016

94 M
123 M
107 M

(Kutuzov and Pivovarova, 2021b) 99

LSCDiscovery
Spanish 𝐶1

𝐶2

1810–1906
1994–2020

13.0 M
22.0 M (Zamora-Reina et al., 2022b) 100

Table 6.6: Period, size in tokens, reference, and number of target words for the evaluation benchmark con-
sidered.

6.5.1 Preliminary results

In this section, we present the results obtained from a preliminary evaluation of WiDiD focusing solely on
Subtask 2. Our preliminary evaluation was conducted using the English and Latin corpora of SemEval-2020.
The goal of this evaluation was to compare the use of APP within WiDiD with the use of AP and IAPNA
clustering, as well as comparing contextualized BERT embeddings with pseudo-contextualized Doc2Vec
embeddings. BERT-like models generate dynamic embeddings for a word based on their contextual se-
quences, whereas Doc2Vec (Le and Mikolov, 2014) produces a static lookup table of word and sequence
embeddings only for words and sequences seen during training. We leverage Doc2Vec by computing pseudo-
contextual word embeddings under the assumption that word occurrences within similar sequences share the
same meaning. This implies that, given a target word 𝑤 in the corpus 𝐶𝑗 , we consider Φ𝑗

𝑤 as the set of
sequence embeddings related to sequences where 𝑤 occurs. For training Doc2Vec models, we utilize the
Gensim library (Rehurek and Sojka, 2011). Specifically, we train word and sequence embeddings of size 100
for 15 epochs, with a window size of 10. As for BERT, we use a specific model for each language, namely
bert-base-uncased for English and bert-base-multilingual-uncased for Latin.

For the sake of comparison, we also test various evaluation metrics presented in Chapter 2, namely
JSD, PDIS, and PDIV, applied to the clusters of contextual embeddings obtained by using AP, IAPNA, and
APP, respectively. Since PDIS and PDIV are extensions of the CD and DIV measures, we consider them as
additional baselines.

However, in this preliminary evaluation, we only consider instances of the lemma form of target words.
This means that we did not perform lemmatization to capture the different occurrences of a target word in
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various forms (e.g., plural, singular).

Latin (Spearman’s coefficients) English (Spearman’s coefficients)
Clustering Training Model JSD PDIS PDIV JSD PDIS PDIV

trained Doc2Vec 0.485* 0.229 -0.023 0.514* 0.139 0.134AP pre-trained BERT 0.394* 0.347* 0.236 0.356* 0.326* 0.406*
trained Doc2Vec 0.462* 0.354* -0.005 0.199 0.322* 0.336*IAPNA pre-trained BERT 0.411* 0.356* -0.148 0.336* 0.499* 0.213
trained Doc2Vec 0.5120* 0.3370* 0.3280* 0.3330* 0.0770 -0.0780APP pre-trained BERT 0.3610* 0.2100 0.0360 0.3020° 0.5125* 0.3705*

CD DIV CD DIV
trained Doc2Vec 0.258° 0.138 - 0.092 0.010 -

pre-trained BERT 0.306* -0.017 - 0.486* 0.168 -

Table 6.7: Spearman’s correlation coefficients over different setups with Latin and English corpora. The
asterisks denote statistically significant correlations (𝑝 ≤ 0.05), while degree symbols denote low-level cor-
relations with (0.05 ≤ 𝑝 ≤ 0.1). The subscript index indicates the value adopted for the aging index. We
report in bold the highest scores for each clustering-based method considering BERT and Doc2Vec.

Preliminary results of our evaluation are shown in Table 6.7. Surprisingly, Doc2Vec proved to be a
suitable model for LSC, in both incremental and non-incremental clustering contexts. It performs well,
while being smaller and faster than contextualized models. In particular, Doc2Vec-based methods achieve
the highest result in our experiments on both Latin and English, with correlation coefficient of .512 and
.514, respectively. APP provides top results on both Latin and English, although AP has a slightly higher
performance on English.

On average, both incremental clustering algorithms IAPNA and APP perform well in LSC compared to
the conventional AP clustering. We note that IAPNA and APP have opposite behavior on Latin and English:
IAPNA has higher results with BERT embeddings on Latin and Doc2Vec embeddings on English, while
APP has higher results with Doc2Vec embeddings on Latin and BERT embeddings on English, respectively.
The fact that IAPNA and APP perform differently on different languages is consistent with the literature
results (Kutuzov and Giulianelli, 2020).

As a further remark, we note that APP produces a smaller and more reasonable number of clusters com-
pared to both AP and IAPNA. For instance, we observed situations where both AP and IAPNA produce more
than 100 clusters, which is rather unrealistic if we assume that a cluster represents a word meaning. On the
opposite, in our experiments, the number of APP clusters generally varies between 0 and 30. We also note
that APP is sensitive to the aging index. In Table 6.7, we present the top results obtained with two different
values of the aging index (i.e., 0 and 5). Removing clusters containing less than 5% of the embeddings has
a positive impact just in some experiments with English, but not with Latin. We plan to further investigate
the effects of the aging index in our future work.

About the measures for LSC, we note that they always perform better than the baselines CD and DIV.
We also note that the CD baseline does not work well on Doc2Vec embeddings, while DIV does not work
well in all our experiments. On Latin, the highest results are achieved by JSD on both Doc2Vec and BERT
embeddings. On English, the top JSD and PDIS results are on Doc2Vec and BERT embeddings, respectively.
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More experiments are required on PDIV since it performs very differently in the various experiments we
performed, and it achieves statistical significance only in four out of twelve experiments (six on Latin, six on
English).

All in all, we note that both IAPNA and APP are competitive when compared to the considered literature
approaches.

6.5.2 Detailed results

In this section, we present further results obtained from a detailed evaluation of WiDiD focusing on both
Subtask 1 and Subtask 2. This evaluation was conducted on seven benchmarks by considering all the possible
forms in which the target words appear.

We used a monolingual BERT model for each language, namely bert-base-uncased for English, simple-
latin-bert-uncased for Latin, bert-base-german-cased for German, bert-base-swedish-cased for Swedish,
bert-base-spanish-wwm-uncased for Spanish, bert-base-italian-cased for Italian, and rubert-base-cased for
Russian. The models are base versions of BERT with 12 attention layers and 12 hidden layers of size 768.
Furthermore, we compared the use of BERT models with two different multilingual models, both with 12
attention layers and 12 hidden layers of size 768, that is, mBERT bert-base-multilingual-cased and XLM-R
xlm-roberta-base.

Furthermore, going with the intuition that sense prototypes can be beneficial in limiting noise in the vector
representations, we compared the use of JSD with the measure based on sense nodules proposed by Kashleva
et al. (2022). Following Kashleva et al. (2022), we define the semantic change 𝑤 as the average pairwise
distance (APDP) between all pairs of the sense prototypes 𝜇𝑡𝑤,1..𝑘 ∈𝑀 𝑡

𝑤 and 𝜇𝑡−1𝑤,1..𝑘 ∈𝑀 𝑡−1
𝑤 . Intuitively, the

higher 𝑤, the more the word 𝑤 has changed in meaning. This decision stemmed from empirical results in
our initial experiments, which consistently demonstrated the superiority of using the canberra distance over
the cosine distance.

In line with previous work, for Subtask 1, we binarized the score of a word by using the threshold 𝜃 that
maximizes the overall result on the test set. Intuitively, the label 0 is assigned to a word if its JSD/APDP
score is lower than 𝜃, otherwise the label 1 is assigned to the word. It is worth noting that, development and
training sets are not available for the majority of the benchmark, as LSC is typically framed in an unsupervised
scenario (Schlechtweg et al., 2020). Therefore, the evaluation of Subtask 1 only provides an indication of the
models’ capability to recognize semantic change. Indeed, the threshold is set based on the test set. This is
also the reason why Subtask 2 is far more popular than Subtask 1 (Periti and Montanelli, 2024). For Subtask
2, we directly used the JSD and APDP scores as the degree of semantic change.

For the sake of comparison, we report the top state-of-the-art results achieved using contextualized em-
beddings for Subtask 1 and Subtask 2 in Table 6.9 and Table 6.8, respectively. To ensure a fair comparison,
we exclusively report results obtained by unsupervised approaches leveraging contextualized embeddings.
In addition, it is worth noting that we are reporting the best result achieved in multiple experiments (e.g.,
using different models and measures). Accordingly, we have compared our best results with the provided
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state-of-the-art results.
SemEval DiacrIta

References English
𝐶1 - 𝐶2

Latin
𝐶1 - 𝐶2

German
𝐶1 - 𝐶2

Swedish
𝐶1 - 𝐶2

Italian
𝐶1 - 𝐶2

Unsupervised
Kanjirangat et al., 2020 .541 .375 .708 .742 -

Martinc et al., 2020c .703* .700 .667* .710* -
Karnysheva and Schwarz, 2020 .568 .650 .583 .645 -

Rother et al., 2020 .622 .575 .729 .742 -
Cuba Gyllensten et al., 2020 .568 .675 .562 .710 -

Wang et al., 2020 - - - - .610*
Giulianelli et al., 2022 .459* .500* .521* -.516* .389*

Supervised
Ma et al., 2024a .784 .700 .813 .806 -

WiDiD .757 .750 .729 .774 .944

Table 6.8: Subtask 1: accuracy scores achieved from various state-of-the-art experiments. Asterisks denote
scores obtained via fine-tuning contextualized models, while hyphens indicate unavailable experimental re-
sults. Bold denotes the best unsupervised scores.

SemEval LSCDiscovery RuShiftEval
References English

𝐶1 - 𝐶2
Latin
𝐶1 - 𝐶2

German
𝐶1 - 𝐶2

Swedish
𝐶1 - 𝐶2

Spanish
𝐶1 - 𝐶2

Russian
𝐶1 - 𝐶2

Russian
𝐶2 - 𝐶3

Russian
𝐶1-𝐶3

Unsupervised
Kanjirangat et al., 2020 .159 .231 .525 .141 - - - -

Martinc et al., 2020c .436* .481 .528* .238* - - - -
Karnysheva and Schwarz, 2020 .155 .177 .388 .062 - - - -

Rother et al., 2020 .306 .321 .605 .268 - - - -
Cuba Gyllensten et al., 2020 .209 .399 .656 .234 - - - -

Montariol et al., 2021 .456* .488* .561* .561* - - - -
Giulianelli et al., 2022 .127* .318* .287* -.108* - .247* .267* .362*
Kashleva et al., 2022 - - - - .553* - - -

Supervised
Aida and Bollegala, 2024 .774 .124 .902 .656 - .805 .811 .846

Cassotti et al., 2023a .757 -.056 .877 .754 - .799 .833 .842
WiDiD .651 .433 .527 .499 .544 .273 .393 .407

Table 6.9: Subtask 2: Spearman’s correlation coefficients achieved from various state-of-the-art experi-
ments. Asterisks denote scores obtained via fine-tuning contextualized models, while hyphens indicate un-
available experimental results. Bold denotes the best unsupervised scores.

Table 6.10 presents the results of our evaluation for both Subtask 1 and 2. For Subtask 1, we note that
our results have the potential to outperform the results shown in Table 6.8 across all evaluated benchmarks.
Specifically, for the DIACRIta benchmark, which is relevant for our study due to the shared language of our
case study corpus, both BERT+JSD and mBERT+JSD exhibit equal effectiveness by correctly labeling 17
out of 18 words. For Subtask 2, our results outperform state-of-the-art results for English and Russian, while
being comparable with the state-of-the-art results for the other benchmarks.

As a general remark, and in line with the finding of Kutuzov and Giulianelli (2020), we note that the
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measure that produces a more uniform predicted score distribution (APDP) works better for the test sets with
skewed gold distributions, and the measure that produces a more skewed predicted score distribution (JSD)
works better for the uniformly distributed test sets.

As for the model comparison, we observed that, on average, different models achieve similar results
for Subtask 1. However, the selection of the model is crucial for Subtask 2. For instance, both BERT and
XLM-R demonstrate good performance for English, while the use of mBERT leads to significantly worse
results. Interestingly, contrary to the widespread belief that monolingual models are more suitable than
multilingual ones, we found that only for English (Subtask 2) and Spanish (Subtask 1 and 2) did employing
a monolingual BERT model prove more effective than using a multilingual model. Additionally, despite the
expectation that XLM-R would outperform mBERT due to the larger amount of training data and parameters
it uses, we observed that mBERT is the most suitable model for Latin (Subtask 1) and Russian (Subtask 2).

SemEval LSCDiscovery RuShiftEval DiacrIta
JSD / APDP English

𝐶1 - 𝐶2
Latin
𝐶1 - 𝐶2

German
𝐶1 - 𝐶2

Swedish
𝐶1 - 𝐶2

Spanish
𝐶1 - 𝐶2

Russian
𝐶1 - 𝐶2

Russian
𝐶2 - 𝐶3

Russian
𝐶1-𝐶3

Italian
𝐶1 - 𝐶2

Ac
c

Su
b.

1 BERT .622 / .730 .675 / .625 .729 / .708 .742 / .774 .688 / .688 - - - .944 / .833
mBERT .649 / .676 .750 / .675 .729 / .646 .742 / .774 .675 / .638 - - - .944 / .722
XLM-R .622 / .757 .725 / .650 .729 / .708 .774 / .774 .675 / .625 - - - .889 / .833

C
or

r
Su

b.
2 BERT .256 / .651 .334 / .165 .407 / .363 .012 / .155 .429 / .544 .198 / .204 .265 / .238 .271 / .177 -

mBERT .244 / .237 .410 / -.093 .397 / .280 .015 / .132 .450 / .420 .263 / .273 .348 / .393 .398 / .407 -
XLM-R .291 / .635 .433 / -.096 .225 / .527 .087 / .499 .463 / .322 .021 / .132 .328 / .250 .292 / .256 -

Table 6.10: Evaluation scores for Subtask 1 and Subtask 2 achieved via accuracy (Acc) and Spearman’s
correlation coefficients (Corr), respectively, over different benchmarks and setups. For each benchmark,
we report our results obtained by using different contextualized models (i.e, BERT, mBERT, XLM-R) and
different semantic shift measures (i.e., JSD / APDP). We report in bold the highest scores for each benchmark
and subtask.

6.6 Discussion and considerations

Data quality. One crucial aspect of diachronic corpora is that the number of documents is often imbal-
anced, and the presence of a target word is not equally reflected in all the time points considered. In common
scenarios, more documents are available for more recent time periods and it may not be possible to achieve
balance in the sense expected from a modern corpus (Tahmasebi and Dubossarsky, 2023). Furthermore,
the quality of the analyzed data can significantly influence the results. Similar to the imbalance issue, the
quality of the data is generally higher for recent documents than for past documents. Old documents are
often digitized as images using an OCR scanning process to convert them into text. However, this procedure
can introduce OCR errors that contribute to degrading the quality of the analysis.

In our application of WiDiD, the imbalance was also caused by the inherent varying duration of papacies
and legislatures in addition to the availability of documents. For example, a legislature is usually associated
with a time period of up to 5 years, which corresponds to the duration of an election cycle. However, in
cases where the Parliament withdraws its support from the government through a vote of no confidence, the
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duration can be shorter.
In terms of data quality, the documents in our Parliament corpus were originally stored as images and

digitized through an OCR scanning process. As a result, several characters were misrecognized, omitted, or
erroneously inserted, distorting the original text across all the legislatures. Although a precise estimation of
the extent of these errors is currently unavailable, we enforced heuristics to mitigate OCR errors and retain
only the highest-quality sentences in the corpus. Despite the efforts to remove highly corrupted sentences,
some errors persist and the processing has further increased the existing imbalance in the corpus.

These issues affect the quality of contextualized embeddings generated by BERT-like models. Thus far,
only a few studies have explored the influence of OCR errors on contextualized embeddings (Todorov and
Colavizza, 2022; Jiang et al., 2021). As a result, the impact of OCR errors on contextualization remains
unclear, and quantifying their effect is challenging. Nevertheless, we hypothesize that there might be sig-
nificant side effects. For instance, one common problem caused by OCR errors is the inconsistent use of
punctuation, resulting in longer or shorter sentences that degrade the quality of the embeddings. Addition-
ally, OCR often introduces or removes spaces, which disrupts sentence segmentation. For example, the word
aperitivo (i.e., happy hour) may become a three-word expression like ape re timo (in English, bee
king thyme), thus affecting the correct interpretation of the sentence. The meaning of words can be also
altered by OCR errors that remove accents. For instance, papa and papà have different meanings (pope
and father, respectively).

In a study on diachronic word sense discrimination (Tahmasebi et al., 2013), the authors showed that
due to the design of the algorithm, the quality of the clusters did not degrade with decreasing quality of the
corpus, but the number of clusters was radically reduced. When using contextualized embeddings this is not
the case, since we can produce embeddings for each occurrence of a target word regardless of the quality of
the sentence. As long as the word we are interested in is correctly spelled, its contextual representation will
contribute to the meaning of the word, however, with reduced quality. Thus, with contextualized embeddings,
the quality of the output inherently depends on the quality of the input data. Due to the significant number
of OCR errors in our case study, our empirical results may be less accurate and reliable. However, we expect
the OCR errors to affect the corpus at each time period roughly evenly, and thus all senses of a word should
be affected to the same degree in any given time period. As a result, small clusters may not be detected
and some clusters could show up later than expected. Nevertheless, the case study serves its purpose in
demonstrating the functionality of WiDiD but is not meant as an in-depth, exploratory social science or
linguistics study of the Italian parliament.

There are limitations that must be considered in the context of this case study. Specifically, we pre-
defined a set of target words for analysis without applying the WiDiD approach to the entire vocabulary.
Since this case study focuses on a specific domain, it potentially limits the contexts in which some of the
targets are typically used. Furthermore, limitations also arise when working with language models such as
BERT, which may be trained on a corpus that differs significantly in topics and time periods from our domain.

In this work, we have provided a link to the original website from which our data was collected, as well
as a repository link where the dataset used in our study can be accessed. However, we have chosen not to

140



release the complete dataset in its current form. As discussed, the complete dataset contains a significant
number of spurious characters and OCR errors, and we are currently undertaking an extensive post-OCR
cleaning process to ensure its accuracy for future release, along with comprehensive analytical insights. This
cleaning process poses considerable challenges, even with the assistance of advanced generative language
models. While these models can aid in correcting OCR errors, they tend to paraphrase or creatively recon-
struct sentences (Boros et al., 2024), potentially introducing artifacts that could affect the analysis of lexical
semantic changes and the overall reliability of our historical, societal, and political corpus.

Incremental LSC. Incremental LSC enables a more fine-grained analysis of semantic change by tracing
the evolution of different word meanings over time. However, semantic change is not uniform across all words
or domains. Some words may experience rapid changes in meaning, while others can change gradually or
remain relatively stable. Therefore, computational approaches to LSC need to be flexible enough to handle
both short- and long-term semantic changes. In addition, word meanings do not necessarily change in a linear
way. They are not strictly limited to increasing, decreasing, or remaining stable in prominence. Instead,
word meanings can be influenced by various circumstances, leading to both regular and irregular trends that
can activate or deactivate meanings in different time periods. These properties make a complete modeling
of semantic change extremely complex. While we are advancing existing state-of-the-art change detection
methods significantly, we have reduced the complexity in several ways and made several design choices that
can affect the results. We discuss a few of these choices below.

First, we chose not to perform online clustering of elements (i.e., sentences with a target word) one-by-
one but instead to consider all elements stemming from a time period at the same time. Conducting the
clustering step of WiDiD after adding a single new element would enforce clustering on a small number of
elements, namely the newly added element and the previous 𝑛 sense prototypes. Such a procedure, which
does not correspond to our typical research scenario, is unlikely to result in converging clusters and can
lead to erroneously merged clusters, thus losing the“memory” already gathered. We thus opted to cluster
all elements from a time period together with the previous sense prototypes all at once, leading to more
robust clustering results. While this procedure increases the overall amount of data while clustering, it does
not handle gradual semantic change, where only a few elements of a new cluster may initially be present.
Consequently, recognition of a semantic change is likely to occur at a later stage, when a consistent amount
of evidence supporting the change is considered. To overcome this issue, an approach that combines WiDiD
with global evolutionary clustering can be considered. Specifically, if the evidence for establishing a new
sense is insufficient within a specific time period, WiDiD will misclassify it. However, because of the What
is done is done-paradigm, an assignment will never be reconsidered even if additional evidence becomes
available in later time periods. This means that, in order to recognize a new sense, the evidence for that
sense must be substantial within a specific time period, rather than cumulative across all processed periods.
A similar issue may occur when evidence for the establishment of a new sense is sufficient within a certain
time period, but some word occurrences denoting the new sense are incorrectly associated by WiDiD with
another active sense. This misclassification can lead to a downsample of evidence for the new sense, causing
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it to be underrepresented and not recognized until more supporting evidence becomes available in later time
periods. Thus, the iteration frequency of WiDiD, along with the characteristics of the data under analysis
must be carefully considered, taking into account both the risk of disambiguation errors and the possibility
of overlooking emerging senses. To overcome this issue, an approach that combines WiDiD with global
evolutionary clustering can be considered to review previous assignments and potentially reverse them as
necessary.

In WiDiD each sense nodule is currently represented by a single-sense prototype representation, with
the same importance as a new element (i.e., contextualized embedding of a word). This approach leads to a
higher risk of sense nodules being merged or confused over time. Empirical results indicate that while some
clusters persist over time even without the integration of new elements, the majority tend to merge with other
clusters over time. In the final step this results in an increase in the number of clusters stemming from the last
time period and a decrease in the number of clusters stemming from earlier periods (since in the earlier time
periods there were more opportunities for merging). While the aggregation of sense nodules may sometimes
aid in focusing on lexicographic meaning (rather than just on sense nodules), at other times it results only
in noise representations. This problem could possibly be solved by using a different weighting schema for
sense nodules and new elements, but manually annotated ground truth data is needed to perform large-scale
evaluation so as to choose the best weighting schema.

Moreover, WiDiD currently considers all occurrences of a word without additional pre- and post-processing.
Additional processing techniques could be employed to initially discard ambiguous word occurrences (e.g.,
where the context is too limited to understand the meaning), or to refine the memory of active meanings at
the end of each Incremental Clustering step. For instance, applying a threshold over cluster integrations can
distinguish between valid updates (e.g., active clusters enriched with at least 𝑛 elements) and invalid updates
(e.g., active clusters enriched with fewer than 𝑛 elements), which should be discarded. A similar threshold
can also be applied to cluster merging. Yet another threshold can be employed to classify sense clusters as
“lost” or no longer active. Specifically, each cluster can be associated with an aging index to measure how
recently it has been updated during incremental clustering, with the threshold determining when it should
be considered lost and removed from memory (Castano et al., 2024; Periti et al., 2022). Nevertheless, im-
plementing such thresholds requires careful consideration of the data (e.g., size, domain, time periods, style)
and the nature of semantic change under analysis. For example, in studies with limited or high-quality data,
a cluster integration of one or a few elements might be a valid update, whereas in studies with extensive or
medium-quality data, such minor updates could be considered noisy and disregarded. Similarly, in scenarios
where the focus is on detecting immediate changes, such as in rapidly evolving fields, a few intervals without
cluster integrations may suffice to deem a sense cluster as lost; conversely, when the focus is on periodic
senses a few intervals may not suffice and prematurely pruning those senses from the memory could lead to
the undesirable detection of change each time they appear and disappear from memory.

When it comes to interpreting semantic change across multiple time points, two different approaches
can be adopted: a evolutionary analysis (first application) and a posteriori analysis (second application). In
a posteriori analysis, the snapshot associated with the clustering result of the last iteration is used. Thus,
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the cluster membership distribution across different time points is considered with respect to the clustering
result of the final iteration. That is, we do not consider two clusters individually in previous time periods
if they have been merged by the last time period. This analysis focuses on examining how the clusters are
distributed and assigned across time, providing insights into the temporal patterns of semantic change and is
a simplification of the full LSC problem. Evolutionary analysis, on the other hand, emphasizes the behavior
of the clusters themselves rather than their specific distribution across time. It investigates the evolution
of clusters, such as their merging or integration over time. Observing changes in cluster composition and
structure can yield valuable information regarding the dynamic nature of semantic change (Hu et al., 2019).

In our applications, we have prioritized a posteriori analysis over evolutionary analysis. We chose not
to implement any processing thresholds in our WiDiD application, as it was convenient for illustrating the
applicability of WiDiD and the complete history of each cluster during the considered time periods. We are
currently working on developing more advanced measures and techniques to present the patterns captured
by evolutionary analysis (i.e., incremental analysis of new sense nodules, their merging and integration),
with the aim of constructing a diachronic and hierarchical sense inventory. However, such analysis requires
large-scale evaluation across multiple time points and is significantly more complex (see Chapter 4). To be
a useful research tool, evolutionary analysis also requires ways to represent the results without overloading
the user. We are currently working on creating evaluation data for such a scenario.

Finally, recent research has demonstrated that embeddings lie in an anisotropic space, indicating that all
vectors are within a narrow cone. The consequence is that even embeddings of unrelated words may be close
together in distributional space and thus exhibit very high similarity. As a result, if a sense prototype is even
slightly distorted, one or more sense prototypes may be incorrectly clustered and the algorithm’s results may
exhibit a large degree of randomness. A way to overcome this issue might be to project the embeddings onto
a larger part of the space (i.e., making the cone wider), thus creating more distance between elements.

Possible Applications of WiDiD. Both historical linguistics and lexicography involve the direct applica-
tion of LSC. The former compares change patterns across time and languages, and the latter needs to update
dictionary entries on the basis of new information from modern or historical texts. Much of this work re-
quires manually labeling and interpreting each cluster, which can be a time-consuming task, especially when
there are large sets of clusters or when many words are considered at once.

We envision a Query Answering system based on WiDiD as a solution to facilitate the interpretation of
semantic change and the analysis of specific word meanings over time. WiDiD allows for intelligent filtering,
both on the word level and the sense level. For example, one could study particular words in certain periods
of time (pre- and post-war, or pre- and post-pandemic are typical periods of study). Alternatively, one could
investigate all documents that use a word in a specific sense.

Such fine-grained analysis across temporal dimensions and all senses of a word is an extremely useful
tool in research fields where diachronic analysis of word meaning is central. It is, however, important to
couple the outcome of an approach like WiDiD with confidence values that reflect the level of certainty
associated with an unsupervised model trained on text of varying quality.
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Chapter 7

A systematic evaluation of word embeddings

“Sometimes when you innovate, you make mis-
takes. It is best to admit them quickly and get on
with improving your other innovations.”

Steve Jobs

7.1 Introduction
In the previous chapter, we introduced a novel approach to LSC called WiDiD and framed it with respect to
the existing literature. As discussed in Chapter 2, the emergence of LLMs has established contextualized em-
beddings as the preferred tool for addressing LSC tasks (Periti and Montanelli, 2024; Kutuzov et al., 2022b),
specifically the task of Graded Change Detection (GCD). Contextualized embedding models differentiate
the meanings of words by contextualizing each occurrence with a distinct embedding. However, the gen-
eration and processing of contextualized embeddings across entire corpora present scalability challenges in
terms of time and memory consumption (Periti et al., 2022; Montariol et al., 2021). Different strategies have
been adopted to tackle these challenges, leading to a proliferation of evaluations across diverse settings (e.g.,
limited samples of benchmarks) and conditions (e.g., pre-trained vs. fine-tuned models). We observed, as a
result, that these evaluations on GCD hinder a fair comparison among the performance of different models
and approaches.

Moreover, while the GCD task is attracting more and more evaluations, we also observed that it addresses
only a partial complexity inherent to the LSC framework established at SemEval-2020 (Schlechtweg et al.,
2020). Notably, the framework includes three distinct aspects:

i) semantic proximity judgments of word in-context;
ii) word sense induction based on proximity judgments;

iii) quantification of semantic change from induced senses
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As a matter of fact, when contextualized embedding models are used to address GCD, cosine similarities
among word embeddings serve as surrogate for (i), without evaluation focused on this aspect. Additionally,
most approaches to GCD are form-based and pass from (i) to (iii), sidestepping the intermediate aspect
(ii). That is, they quantify semantic change as overall proximity variation, without inducing word senses.
Consequently, while these approaches can be evaluated through GCD, they preclude the interpretation of
which meaning(s) have changed.

Following Chapter 4, in this chapter, we argue that (i) and (ii) are equally relevant aspects as (iii), con-
stituting a fundamental aspect of the LSC problem. Their evaluation can provide valuable insights into the
current state of LSC modeling, while offering a broader perspective on contextualized embedding models in
Natural Language Processing (NLP).1

Chapter outline.
This chapter includes materials originally published in the following publication:

Francesco Periti and Nina Tahmasebi. 2024a. A Systematic Comparison of Contextualized
Word Embeddings for Lexical Semantic Change. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Pa- pers), pages 4262–4282, Mexico City, Mexico. Association
for Computational Linguistics.

In this chapter, we systematically evaluate and compare various models and approaches for GCD under equal
settings and conditions. Our evaluation for GCD spans eight different languages. Our results show superior
performance of a recent state-of-the-art model called XL-LEXEME (Cassotti et al., 2023a), over various
approaches. Additionally, we conduct a novel and comprehensive evaluation of contextualized models, en-
compassing aspects (i) and (ii), by leveraging two well-established tasks in NLP: Word-in-Context (WiC)
and Word Sense Induction (WSI). Through this evaluation we assess the efficacy of various models as com-
putational annotators.

This chapter is organized as follows. In Section 7.2, we provide background information on benchmark
construction for LSC while also discussing issues in existing evaluations. In Section 7.3, we outline the setup
established for our evaluation. In Section 7.4, we present a comparison of models and approaches for solving
GCD. In Section 7.5, we evaluate contextualized models for WiC, WSI, and GCD by considering them as
annotators. Finally, in Section 7.6, we discuss the implications and limitations of our evaluation.

7.2 Background and related work
The established LSC framework adheres to the novel annotation paradigm for word senses and encompasses
(i-iii) (Schlechtweg et al., 2021). (i) Human annotators provide semantic proximity judgments for pairs of

1https://github.com/FrancescoPeriti/CSSDetection
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Figure 7.1: DWUG for the German word Eintagsfliege. Nodes represent word usages. Edges represent the
relatedness between usages. Colors indicate clusters (senses) inferred from the full graph (Laicher et al.,
2021).

word usages sampled from a diachronic corpus spanning two time periods. (ii) Word usages and judgments
are represented as nodes and edges in a weighted, diachronic graph, known as Diachronic Word Usage
Graph (DWUG). This graph is then clustered with a graph clustering algorithm and the resulting clusters are
interpreted as word senses (see Figure 7.1), thus sidestepping the need for explicit word sense definitions.
Finally, (iii) given a word, a ground truth score of semantic change is computed by comparing the probability
distributions of clusters in different time periods, e.g., a cluster with most of its usages from one time period
indicates a substantial semantic change.

Originally, the framework was proposed in a shared task at SemEval-2020, including benchmarks for
four languages, namely English (EN), German (DE), Swedish (SV), and Latin (LA) (Schlechtweg et al.,
2020). Benchmarks for Italian (Basile et al., 2020), Russian (RU) (Kutuzov and Pivovarova, 2021b), Spanish
(ES) (Zamora-Reina et al., 2022b), Norwegian (NO) (Kutuzov et al., 2022a), and Chinese (ZH) (Chen et al.,
2023a, 2022a) have recently been introduced. Each benchmark consists of a diachronic corpus and a set of
target words over which the human annotation was conducted. The evaluation over a benchmark is typically
conducted through the GCD task where the goal is to rank the targets by degree of semantic change across
the corpus. The Spearman correlation between predicted and ground truth scores is used to evaluate models
and approaches.

Approaches to Graded Change Detection. As presented in Chapter 2, GCD is typically addressed using
two kinds of approaches for modeling word meanings: form- and sense-based (Periti and Montanelli, 2024;
Giulianelli et al., 2020). The former captures signals of change by analyzing how the dominant meaning, or
the degree of polysemy of a word, changes over time (e.g., Giulianelli et al., 2020; Martinc et al., 2020a).
The latter cluster word usages according to their meanings and then estimate the semantic change of a word
by comparing the cluster distribution of its usages over time (e.g., Periti et al., 2024e; Martinc et al., 2020b).
Form- and sense-based approaches can be further distinguished into supervised, which leverage external
knowledge (e.g., dictionaries, Rachinskiy and Arefyev, 2022) or other forms of supervision (e.g., Word-in-
Context datasets, Cassotti et al., 2023a), and unsupervised, which rely solely on the knowledge encoded in
pre-trained models (e.g., Aida and Bollegala, 2023).
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Comparison of approaches. Models and approaches for GCD have been evaluated under different settings
and conditions. For example, some studies utilized the entire diachronic corpus to estimate the change of each
target (e.g., Periti et al., 2022), while others relied on smaller samples (e.g., Rodina et al., 2021), or solely
on the annotated word usages (e.g., Laicher et al., 2021). Also, different versions of the ground truth, each
containing a different number of targets, are used (e.g., Schlechtweg et al., 2022a). In the current literature,
some studies fine-tune the models on the corpus (e.g., Rosin et al., 2022), while others directly use pre-
trained models (e.g., Kudisov and Arefyev, 2022). Performance comparisons are conducted across different
models such as BERT (e.g., Laicher et al., 2021), mBERT (e.g., Beck, 2020), and XLM-R (e.g., Giulianelli
et al., 2022). However, even when the same model is employed, different layer aggregations are used, such as
concatenating the output of the last four encoder layers (e.g., Kanjirangat et al., 2020), or summing the output
of all the encoder layers (e.g., Giulianelli et al., 2022). Moreover, sense-based approaches are compared with
different clustering algorithms such as Affinity Propagation (e.g., Martinc et al., 2020b), A Posteriori affinity
Propagation (e.g., Periti et al., 2022), and K-Means (e.g., Montariol et al., 2021).

As a result, comparing Spearman correlation across different evaluations is often misleading.

Current modeling of LSC. Current modeling of LSC overlooks the procedure (i-iii) used to generate the
ground truth. Mostly, only (iii) is evaluated by relying on form-based approaches. However, these approaches
capture only the degree of semantic change, preventing its interpretation. Sense-based approaches could fill
this gap by explaining how and what has changed, but currently suffer from lower performance on (iii) and are
therefore less pursued. As a result, it is not clear which meanings these models and approaches are capturing.
There is thus a need to carefully evaluate their ability in both (i) and (ii).

The evaluation of the shared task participants relied solely on the change values derived from the anno-
tations. In particular, in the shared tasks, the annotated usages were mixed with additional usages to create
the training corpora, possibly introducing noise on the derived change scores. The annotated usages were re-
leased at a later stage, but they are generally not used for evaluation purposes. To the best of our knowledge,
only Laicher et al. (2021) evaluate the aspect (ii) through the WSI task by using these annotated usages.
This evaluation needs to be extended beyond a single model, using the same procedure used to generate
the ground truth. This way, we can comprehensively assess contextualized models by juxtaposing human
judgments with embedding similarities, as well as clustering derived from human judgments with clustering
derived from embeddings.

A systematic comparison under equal settings and conditions is necessary to evaluate different models and
approaches. Thus, we first evaluate standard form- and sense-based approaches to provide a fair performance
comparison on GCD across eight languages. We then assess different models as computational annotators
by evaluating them on (i-iii) through WiC, WSI, and GCD. Aligning with Karjus (2023), if computational
models perform close to human-level, their usage would represent an unprecedented opportunity to scale up
semantic change studies in the humanities and social sciences.
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7.3 Evaluation setup
We consider benchmarks for eight different languages: EN, LA, DE, SV, ES, RU, NO, and ZH (see Ta-
ble 7.1). For each benchmark, we evaluate four different models: BERT (Devlin et al., 2019), mBERT,
XLM-R (Conneau et al., 2020), and XL-LEXEME (Cassotti et al., 2023a). Aligning with the unsupervised
nature of the LSC framework, we compare pre-trained models without performing additional fine-tuning (see
Table 7.2). For each model and each target word in a benchmark, we collect contextualized embeddings for
all its word usages in both time periods. Specifically, we generate the sets of embeddings Φ1 = {𝑎1, ..., 𝑎𝑛}
and Φ2 = {𝑏1, ..., 𝑏𝑚} for the word usages associated to time periods 𝑡1 and 𝑡2, respectively.

EN LA DE SV ES RU NO ZH
𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2

Time
periods

𝐶1: 1810 – 1860
𝐶2: 1960 – 2010

𝐶1: 200 – 0
𝐶2: 0 – 2000

𝐶1: 1800 – 1899
𝐶2: 1946 – 1990

𝐶1: 1790 – 1830
𝐶2: 1895 – 1903

𝐶1: 1810 – 1906
𝐶2: 1994 – 2020

𝐶1: 1700 – 1916
𝐶2: 1918 – 1990

𝐶2: 1918 – 1990
𝐶3: 1992 –2016

𝐶1: 1700 – 1916
𝐶3: 1992 –2016

𝐶1: 1929 –1965
𝐶2: 1970 – 2013

𝐶1: 1980 – 1990
𝐶2: 2012 – 2019

𝐶1: 1954 – 1978
𝐶2: 1979 – 2003

Diachronic
Corpus

𝐶1: CCOHA
𝐶2: CCOHA

𝐶1: LatinISE
𝐶2: LatinISE

𝐶1: DTA
𝐶2: BZ+ND

𝐶1: Kubhist
𝐶2: Kubhist

𝐶1: PG
𝐶2: TED2013,

NC
MultiUN
Europarl

𝐶1: RNC
𝐶2: RNC
𝐶3: RNC

𝐶1: RNC
𝐶2: RNC
𝐶3: RNC

𝐶1: RNC
𝐶2: RNC
𝐶3: RNC

𝐶1: NBdigital
𝐶2: NBdigital

𝐶1: NBdigital
𝐶2: NAK

𝐶1: People’s Daily
𝐶2: People’s Daily

# targets 46 40 50 44 100 111 111 111 40 40 40
Benchmark

version
version 2.0.1

Schlechtweg et al.
version 1

McGillivray et al.
version 2.3.0

Schlechtweg et al.
version 2.0.1

Tahmasebi et al.
version 4.0.0

Zamora-Reina et al.
version 1

Kutuzov and Pivovarova
version 1

Kutuzov et al.
version 1

Chen et al.

Table 7.1: LSC benchmark for Graded Change Detection. Overview of time periods, diachronic corpus
composition, number of targets, and benchmark versions used in this study.

BERT mBERT XLM-R XL-LEXEME
English bert-base-uncased bert-base-multilingual-cased xlm-roberta-base xl-lexeme
Latin - bert-base-multilingual-cased xlm-roberta-base xl-lexeme

German bert-base-german-cased bert-base-multilingual-cased xlm-roberta-base xl-lexeme
Swedish bert-base-swedish-uncased bert-base-multilingual-cased xlm-roberta-base xl-lexeme
Spanish bert-base-spanish-wwm-uncased bert-base-multilingual-cased xlm-roberta-base xl-lexeme
Russian rubert-base-cased bert-base-multilingual-cased xlm-roberta-base xl-lexeme

Norwegian nb-bert-base bert-base-multilingual-cased xlm-roberta-base xl-lexeme
Chinese bert-base-chinese bert-base-multilingual-cased xlm-roberta-base xl-lexeme

Table 7.2: BERT, mBERT, XLM-R, and XL-LEXEME models employed in our evaluation. All the models
are base versions with 12 encoder layers and are available at huggingface.co.

Setting 1: standard Graded Change Detection We compare the use of different models with four stan-
dard approaches to GCD, specifically two form-based and two sense-based. Similar to Laicher et al. (2021),
we consider the raw data originally used to derive ground truth scores, instead of considering the associated
corpora. This ensures an accurate evaluation under a controlled setting.

Setting 2: Computational annotators We assess different models as computational annotators by using
cosine similarities between embeddings as a surrogate of human judgments. In our evaluation, we consider
word usage pairs where human judgments are available, instead of considering all potential usage pairs (as
in Setting 1). Specifically, we adhere to the framework (i-iii) and evaluate different models through the WiC,
WSI, and GCD tasks.
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GPT-4 evaluation. Inspired by Laskar et al.; Kocoń et al.; Karjus (2023; 2023; 2023), we evaluate GPT-4
and compare its use to contextualized models. However, the limited accessibility and high associated cost
constraint our extension only to the EN benchmark. We evaluate GPT-4 as computational annotator (i.e.,
Setting 2) by relying on computational proximity judgments gathered through the following method.

We initialized the model with the following system prompt (guideline):

Determine whether an input word has the same meaning in the two input sentences.

Answer with ’Same’, ’Related’, ’Linked’, or ’Distinct’. This is very important

to my career.

Notably, we combine and refine two different prompts used in previous works. We drew inspiration from
the prompt utilized by Karjus (2023) to assess GPT-4 in addressing the Graded Change Detection task.
Additionally, we drew inspiration from the prompt utilized by Li et al. (2023), called EmotionPrompt, which
combines the original prompt with emotional stimuli to enhance the performance of LLMs.

For each word usage pair, we used the following instruction prompt:

Determine whether [Target word] has the same meaning in the following sentences.

Do they refer to roughly the Same, different but closely Related, distant/figu-

ratively Linked or unrelated Distinct word meanings?

Sentence 1: [Context 1]

Sentence 2: [Context 2]

Notably, drawing inspiration from the OpenAI documentation2 and the prompts utilized in previous work
for the Word-in-Context task (Periti et al., 2024d; Kocoń et al., 2023; Laskar et al., 2023), we structured our
prompt in a format that facilitates parsing and comprehension. For each usage pair ⟨𝑤, 𝑐1, 𝑐2⟩ of a word𝑤, we
substitute [Target word] with the actual target𝑤 and [Context 1] and [Context 2] with 𝑐1 and 𝑐2, respectively.

We prompt GPT-4 without providing any message history. This means that, for each usage pair ⟨𝑤, 𝑐1, 𝑐2⟩,
we re-initialize the model with the initial prompt (guideline) and subsequently prompt the model to gather a
semantic proximity judgment for the pair ⟨𝑤, 𝑐1, 𝑐2⟩. This approach ensures that the model relies solely on
its pre-trained knowledge, preventing potential biases stemming from previously prompted pairs.

7.4 Comparison of approaches to LSC

We evaluate different approaches for GCD using the Spearman correlation between computational predic-
tions and ground truth scores. Specifically, we process the embeddings of each target using the following

2platform.openai.com/docs/guides/prompt-engineering
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approaches. We direct the reader to Chapter 2 for further details.

Form-based approaches. In our most recent survey on LSC Periti and Montanelli (2024), we observed
that cosine distance over word prototype (PRT) and the average pairwise distance (APD) consistently demon-
strated superior performance compared to alternative approaches. Thus, we employ these approaches:

1. PRT computes the degree of change of a word 𝑤 as the cosine distance between the average embed-
dings 𝜇1 and 𝜇2 (also know as prototype embeddings) of𝑤 in the time periods 𝑡1 and 𝑡2 (Martinc et al.,
2020a; Kutuzov and Giulianelli, 2020). Formally, given a word 𝑤, we compute its degree of change
by computing:

PRT(Φ1,Φ2) = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒(𝜇1, 𝜇2) (7.1)
The intuition behind PRT is that a prototype embedding encodes the dominant meaning of a word, and
as such, the semantic change is computed as a shift in the dominant meaning over time.

2. APD computes the degree of change of a word 𝑤 as the average pairwise distance between the word
embeddings in Φ1 and Φ2 (Giulianelli et al., 2020; Kutuzov and Giulianelli, 2020). Formally, given a
word 𝑤, we compute its degree of change, where 𝑑 is cosine distance, as follows:

APD(Φ1,Φ2) = 1
|Φ1

||Φ2
|

⋅
∑

𝑎∈ Φ1, 𝑏∈ Φ2

𝑑(𝑎, 𝑏) (7.2)

The intuition behind APD is that different word embeddings encode the polysemy of a word, and as
such, the semantic change is computed as a shift in the word’s degree of polysemy.

Sense-based approaches. We choose two state-of-the-art sense-based approaches. The first utilizes the
unsupervised clustering algorithm Affinity Propagation (AP) combined with the Jensen Shannon divergence
(JSD). Additionally, we employ the evolutionary extension of Affinity Propagation, called A Posteriori affin-
ity Propagation (APP), combined with the average pairwise distances between sense prototypes (APDP). As
discussed in the previous chapter, we refer to this approach as WiDiD (Periti et al., 2022).

1. AP+JSD leverages the AP clustering to distinguish the different contextual usages of a given word𝑤.
Specifically, the embeddings Φ1, and Φ2 are jointly clustered to generate clusters comprising embed-
dings from both time periods (i.e., 𝑡1 and 𝑡2), or embeddings exclusive from a time period (i.e., 𝑡1 or
𝑡2). The semantic change of 𝑤 is computed as the JSD between the probability distributions 𝑝1 and 𝑝2
of clusters in time periods 𝑡1 and 𝑡2. These distributions represent the relative number of embeddings
from Φ1 and Φ2 grouped in each cluster, respectively (Martinc et al., 2020b,c). Formally, the degree
of semantic change is:

JSD(𝑝1, 𝑝2) =
1
2
(

𝐾𝐿(𝑝1||𝑀) +𝐾𝐿(𝑝2||𝑀)
) (7.3)
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where 𝐾𝐿 stands for Kullback-Leibler divergence and 𝑀 = (𝑝1+𝑝2)
2 . The intuition behind AP+JSD is

that different clusters encode nuanced word meanings, and as such, the semantic change is computed
as an overall measure of the differences in the prominence of each sense over time.

2. WiDiD leverages the APP clustering to distinguish the usages of a given word 𝑤. Specifically, the
embeddings Φ1, and Φ2 are individually clustered to generate incremental clusters of embeddings
that evolve with each clustering iteration. The semantic change of 𝑤 is computed as the average
pairwise distances between the sense prototypes Ψ1 and Ψ2 of 𝑤 in the time periods 𝑡1 and 𝑡2, where
Ψ1 and Ψ2 are the set of embeddings obtained by averaging the embeddings Φ1 and Φ2 in each cluster,
respectively (Periti et al., 2024e; Kashleva et al., 2022). Formally, given a word 𝑤, the degree of
semantic change is computed as follows:3

APDP(Φ1,Φ2) = APD(Ψ1,Ψ2) (7.4)

The intuition behind WiDiD is similar to AP+JSD. However, while the latter considers change as
the difference between the amount of probability for a sense over time, WiDiD is similar to APD in
computing the shift in prototypical word meanings.

EN LA DE SV ES RU NO ZH Avg𝑤
𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2 𝐶𝑖 − 𝐶𝑗

fo
rm

-b
as

ed

APD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.563

.363

.444
.886*
.757
.706

-
.102
.151
.231
-.056
.443

.271

.398

.264
.839*
.877
.731

.270

.389

.257
.812*
.754
.602

.335

.341

.386
.665*
n.a.
n.a.

.518

.368

.290
.796*
.799
.372

.482

.345

.287
.820*
.833
.480

.416

.386

.318
.863*
.842
.457

.441

.279

.195

.659

.757

.389

.466

.488

.379
.640*
.757
.387

.656

.689

.500
.731*
n.a.
n.a.

.449

.371

.316
.751*

PRT

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.457

.270

.411

.676

.531

.467

-
.380
.424
.506*
n.a.
.561

.422

.436

.369

.824
n.a.
.755

.158

.193

.020

.696
n.a.
.392

.413

.543

.505

.632
n.a.
n.a.

.400

.391

.321

.704
n.a.
.294

.374

.356

.443

.750
n.a.
313

.347

.423

.405

.727
n.a.
313

.507

.219

.387
.764*
n.a.
.378

.444

.438

.149

.519
n.a.
.270

.712

.524

.558

.699
n.a.
n.a.

.406

.395

.381

.693

se
ns

e-b
as

ed

AP+JSD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.289

.181

.278

.493
n.a.
.436

-
.277
.398
.033
n.a.
.481

.469

.280

.224

.499
n.a.
.583

- .090
.023
-.076
.118
n.a.
.343

.225

.067

.224

.392
n.a.
n.a.

.069

.017
- .068
.106
n.a.
n.a.

.279

.086

.209

.053
n.a.
n.a.

.094
- .116
.130
.117
n.a.
n.a.

.314

.035
- .100
.297
n.a.
n.a.

.011
- .090
.030
.381
n.a.
n.a.

.165

.465

.448

.308
n.a.
n.a.

.179

.077

.142

.223

WiDiD

BERT
mBERT
XLM-R

XL-LEXEME
SOTA: sup.
SOTA: uns.

.385

.323

.564

.652
n.a.
.651

-
- .039
- .064
.236
n.a.

-.096

.355

.312

.499

.677
n.a.
.527

.106

.195

.129

.475
n.a.
.499

.383

.343

.459

.522
n.a.
.544

.135
- .068
.268
.178
n.a.
.273

.102

.160

.216

.354
n.a.
.393

.243

.142

.342

.364
n.a.
.407

.233

.241

.226

.561
n.a.
n.a.

.087

.290

.349

.457
n.a.
n.a.

.533

.338

.382

.563
n.a.
n.a.

.239

.181

.314

.422

Table 7.3: Evaluation of standard approaches to GCD in terms of Spearman correlation. Top score for
each approach and benchmark in bold. The top score of each benchmark is marked with an asterisk (*). We
include state-of-the-art performance achieved by supervised (sup.) and unsupervised (uns.) approaches in
italic. Avg is the weighted average score based on the number of targets in each benchmark. Results not
available denoted as n.a.

3Following Periti et al. (2024e), we use the Canberra distance instead of the cosine distance
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7.4.1 Evaluation results

Evaluation results- Table 7.3 We present the results of our evaluation in Table 7.3 for both form- and
sense-based approaches. For the sake of comparison, we include state-of-the-art (SOTA) results in Ta-
ble 7.4.4 As a general remark, we note instances where our results surpass SOTA (e.g., XL-LEXEME+APD
for EN). We attribute this to the controlled setting established in our experiments. We note also instances
where our results are lower than SOTA (e.g., BERT+APD for SV). This discrepancy may be influenced by
various factors such as different versions of the benchmarks (e.g., 37 vs 46 targets for EN in DWUG version
2.0.1, Schlechtweg et al., 2020). Additionally, variations in text pre-processing can play a beneficial role. For
instance, Laicher et al. (2021) demonstrate the effectiveness of lemmatization to mitigate word form biases,
while Martinc et al. (2020c) suggest that filtering Named Entities can help models avoid inflating semantic
change. Moreover, some studies fine-tune or utilize different embedding layers, whereas we adhere to the
standard, generally adopted procedures without fine-tuning, considering embeddings generated from the last
(i.e., 12th) layer of the models. Finally, there are sometimes significantly different results reported by differ-
ent studies under similar conditions. For instance, Zhou et al. (2023b) achieve a correlation of .706 using
pre-trained BERT and APD, whereas others typically report correlations ranging between .400 and .600 (e.g.,
.489, Keidar et al., 2022; .514, Giulianelli et al., 2020; .546, Kutuzov and Giulianelli, 2020; .571, Laicher
et al., 2021). This disparity cannot currently be explained.

EN LA DE SV ES RU NO ZH
𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2

fo
rm

-b
as

ed AP
D XL-L. : .757

Cassotti et al.
BERT: .706
Zhou et al.

XL-L. : -.056
Cassotti et al.
mBERT: .443

Pömsl and Lyapin

XL-L. : .877
Cassotti et al.
BERT: .731
Laicher et al.

XL-L. .754
Cassotti et al.
BERT: .602
Laicher et al.

n.a.
n.a.

XL-L. : .799
Cassotti et al.
XLM-R: .372

Giulianelli et al.

XL-L. : .833
Cassotti et al.
XLM-R: .480

Giulianelli et al.

XL-L. : .842
Cassotti et al.
XLM-R: .457

Giulianelli et al.

XL-L. : .757
Cassotti et al.
XLM-R: .389

Giulianelli et al.

XL-L. : .757
Cassotti et al.
XLM-R: .387

Giulianelli et al.

n.a.
n.a.

PR
T BERT: .531

Zhou et al.
BERT: .467
Rosin et al.

n.a.
mBERT: .561

Kutuzov and Giulianelli

n.a.
BERT: .755
Laicher et al.

n.a.
BERT: .392
Zhou and Li

n.a.
n.a.

n.a.
XLM-R: .294

Giulianelli et al.

n.a.
XLM-R: .313

Giulianelli et al.

n.a.
XLM-R: .313

Giulianelli et al.

n.a.
XLM-R: .378

Giulianelli et al.

n.a.
XLM-R: .270

Giulianelli et al.
n.a.
n.a.

se
ns

e-b
as

ed AP
+J

SD

n.a.
BERT: .436

Martinc et al.

n.a.
mBERT: .481
Martinc et al.

n.a.
BERT: .583

Montariol et al.

n.a.
BERT: .343

Martinc et al.
n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

W
iD

iD n.a.
BERT: .651
Periti et al.

n.a.
XLM-R: - .096

Periti et al.

n.a.
XLM-R: .527

Periti et al.

n.a.
XLM-R: .499

Periti et al.

n.a.
BERT: .544
Periti et al.

n.a.
mBERT: .273

Periti et al.

n.a.
mBERT: .393

Periti et al.

n.a.
mBERT: .407

Periti et al.
n.a.
n.a.

n.a.
n.a.

n.a.
n.a.

Table 7.4: State-of-the-art performance for GCD: Top Spearman correlations obtained across bench-
marks by form- and sense-based approaches. For each approach, we report correlation for both supervised
(above the line) and unsupervised (below the line) settings.

Languages. We obtain strong correlations with all benchmarks but LA. Our results show a weighted aver-
age correlation of .751 when employing XL-LEXEME + APD. In this calculation, we assign weights based
on the number of targets in each benchmark, considering larger sets more reliable than smaller ones. For LA,
it can be argued that the models were not directly tailored or fine-tuned for Latin. However, XL-LEXEME
demonstrates optimal performance in GCD in SV and medium performance in SP and NO without specific

4Our comparison includes results from different benchmarks using the same approaches. However, some benchmarks might
have been assessed using other approaches.
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training on either. This leads us to consider that the quality of the LA benchmark potentially is lower than
other benchmarks, as it was developed using a different procedure (Schlechtweg et al., 2020).

Form-based vs Sense-based. We note that form-based approaches significantly outperform sense-based
approaches. Our results consistently highlight APD as the most effective approach, regardless of the skewness
in the distribution of judgments, as previously argued by Kutuzov and Giulianelli (2020). In addition, WiDiD
consistently demonstrates superior performance over AP+JSD. This can be attributed to the use of i) an
evolutionary clustering algorithm, which enables to consider the time dimension of text in a dynamic way;
or, alternatively ii) APD over sense-prototypes, as APD has demonstrated high effectiveness.

Our leaderboard is as follows: APD, PRT, WiDiD, AP+JSD. Although form-based approaches exhibit
superior effectiveness, they fall short in capturing word meanings and interpreting detected semantic changes.
In contrast, although sense-based approaches theoretically facilitate such modeling and interpretation, they
obtain poor results in GCD, raising concerns about their reliability and whether they capture meaningful
patterns or produce noisy aggregation. We will investigate this in Section 7.5.

Supervised vs Unsupervised. We note that the use of supervision significantly improves the modeling of
semantic change for both form- and sense-based approaches. While Cassotti et al. (2023a) have previously
evaluated XL-LEXEME + APD, we extend the evaluation to sense-based approaches, demonstrating that
supervision enhances the performance of AP+JSD and WiDiD.

Models. We note that the use of XL-LEXEME significantly improves the modeling of LSC compared to
standard BERT, mBERT, and XLM-R. However, we observe a pattern in performance, indicating that on
average, BERT performs better than mBERT, which, in turn, performs better than XLM-R for form-based
approaches. This suggests that the use of XLM-R models is not more effective than BERT models for LSC,
confirming the medium-low correlation coefficients obtained by Giulianelli et al. (2022) using XLM-R.

Layers. As different works employ different embedding layers, we repeat our evaluation by considering
embeddings generated by each layer of BERT, mBERT, and XLM-R (see Table B.1). Our evaluation aligns
with recent findings on other downstream tasks (Ma et al., 2019; Reif et al., 2019; Liang and Shi, 2023) and
shows that using early layers consistently results in higher performance. For example, we note a correlation
of .747 for ZH by using layer 4, compared to .656 obtained by using the last layer of BERT. On average, and
in line with Periti and Dubossarsky (2023), we find that the best results for each language are obtained by
leveraging embeddings from layers 8 – 10.

Furthermore, since previous studies aggregated outputs from different layers, we also use aggregated
embeddings extracted from different layers through sum and concatenation. Specifically, our evaluation
covers all possible layer combinations with lengths of 2 (e.g., layers 1 and 2), 3 (e.g., layers 6, 7, and 8), and
4 (e.g., layers 9, 10, 11, 12). We find no improvement in aggregating the output of the last four layers for
addressing GCD. By employing alternative layer combinations, we obtain a higher correlation compared to

154



both the last layer and the last four layers. For instance, for EN, using the sum of layers 2, 4, 5, and 8 for
APD+BERT, or the concatenation of layers 4, 5, 6, and 11 for WiDiD+BERT, results in a correlation of
.692 and .760, respectively; compared to .563 (APD) and .385 (WiDiD) by using the last BERT layer (see
Appendix B for further results). However, no combination consistently emerges as the optimal choice across
various benchmarks or models. Instead, we observe that using a middle layer, such as layer 8, tends to be
advantageous across benchmarks and models compared to the last layer or the aggregation of the last four
layers (see Figure 7.2 and 7.3).
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Figure 7.2: Score distribution for GCD obtained by using all possible layer combinations of length 2
(e.g., Layer 1 and 2), length 3 (e.g., Layer 10, 11, 12), and length 4 (e.g., Layer 1, 10, 11, 12) for BERT,
mBERT, and XLM-R. The y-axis represents the Spearman correlation. We highlight the performance for
GCD obtained using Layer 8, Layer 12, and the sum of the last 4 layers (i.e., ⨁ 9-12).
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Figure 7.3: Score distribution for GCD obtained by using all possible layer combinations of length 2
(e.g., Layer 1 and 2), length 3 (e.g., Layer 10, 11, 12), and length 4 (e.g., Layer 1, 10, 11, 12) for BERT,
mBERT, and XLM-R. The y-axis represents the Spearman correlation. We highlight the performance for
GCD obtained using Layer 8, Layer 12, and the sum of the last 4 layers (i.e., ⨁ 9-12).
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7.5 Computational annotation
We evaluate different models on reproducing human judgments (i), the inferred word senses (ii), and the
resulting change scores (iii).

We leverage models as annotators, hence the term computational annotator, using the same procedure
employed for benchmark construction (Schlechtweg, 2023; Schlechtweg et al., 2021, 2020, 2018). However,
we cannot evaluate LA as the benchmark was developed differently nor (ii) for the RU benchmark since no
word senses were provided (Kutuzov and Pivovarova, 2021b).

7.5.1 (i) - Word-in-Context
Given a benchmark, a word usage pair is associated with two contexts, 𝑐1 and 𝑐2, along with the average
judgment of multiple annotators. We thus use the cosine similarity between the embeddings of 𝑤 in the
contexts 𝑐1 and 𝑐2 as computational proximity judgment.

Our evaluation is grounded in the Word-in-Context (WiC) task (Loureiro et al., 2022; Raganato et al.,
2020; Pilehvar and Camacho-Collados, 2019). In contrast to the original WiC definition, our WiC evalu-
ation aligns with the continuous framework introduced by Armendariz et al. (2020a) in the Graded Word
Similarity in Context task. Specifically, we evaluate the quality of computational predictions by computing
the Spearman correlation with human judgments.

7.5.2 (ii) - Word Sense Induction
We first create a DWUG using the computational annotations in Section 7.5.1. Then, we derive sense clusters
through a variation of correlation clustering (Bansal et al., 2004) on the DWUG.

Our evaluation is grounded in the Word Sense Induction (WSI) task (Aksenova et al., 2022; Manand-
har et al., 2010; Agirre and Soroa, 2007). We evaluate the quality of clusters from computationally anno-
tated DWUGs against clusters from human-annotated DWUGs. Specifically, we use Adjusted Rand Index
(ARI, Hubert and Arabie, 1985) and Purity (PUR, Manning, 2009) as metrics to quantify the cluster agree-
ment. ARI comprehensively evaluates the similarity among clustering results. However, it may yield low
scores when a clustering result contains numerous small, yet coherent clusters. This does not necessarily
indicate poor clustering quality, especially when the clusters are semantically meaningful. PUR assigns each
cluster to the class that is most frequent in the cluster, measuring the accuracy of this assignment by counting
the relative number of correctly assigned elements.

7.5.3 (iii) - Graded Change Detection
Given a word 𝑤, we split its DWUG into two subgraphs representing nodes from the two time periods (see
Figure 7.1) and quantify the semantic change of 𝑤 by computing the √

𝐽𝑆𝐷 between the two time-specific
cluster distributions. In contrast, for RU, we adhere to the RuShiftEval procedure and quantify semantic
change through the application of the COMPARE metric that directly measures the mean relatedness of
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annotated word usage pairs as semantic change scores (Schlechtweg et al., 2018). Our evaluation is based
on the GCD task and thus we the use Spearman correlation as evaluation metric between predicted ranking
and ground truth rankings.

EN DE SV ES RU NO ZH Avg𝑤
𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2 𝐶𝑖 − 𝐶𝑗

W
iC

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

Agreement

.503

.332

.352

.626

.606

.633

.350

.344

.289

.628
-

.666

.221

.284

.255

.631
-

.672

.319

.289

.288

.547
-

.531

.314

.280

.212

.549
-

.531

.344

.273

.250

.558
-

.567

.350

.293

.251

.564
-

.564

.429

.283

.317

.484
-

.761

.406

.333

.261

.521
-

.667

.516

.413

.392

.630
-

.602

.358

.301

.272

.568
-

.593

W
SI

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

.136 / .700

.067 / .644

.068 / .737

.273 / .834

.340 / .877

.047 / .662

.054 / .679

.024 / .725

.300 / .788
- / -

.023 / .596

.024 / .648

.031 / .680

.249 / .766
- / -

.189 / .695

.228 / .700

.164 / .755

.400 / .820
- / -

- / -
- / -
- / -
- / -
- / -

- / -
- / -
- / -
- / -
- / -

- / -
- / -
- / -
- / -
- / -

.251 / .771

.241 / .759

.179 / .775

.337 / .806
- / -

.247 / .758

.159 / .753

.183 / .715

.304 / .808
- / -

.279 / .759

.172 / .713

.279 / .806

.448 / .836
- / -

.166 / .702

.146 / .696

.133 / .743

.339 / .810
- / -

GC
D

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4.0

.425

.120

.219

.801

.818

.116

.205

.069

.799
-

.148

.234

.143

.721
-

.284

.394

.464

.655
-

.487

.372

.284

.780
-

.452

.325

.301

.824
-

.469

.408

.375

.851
-

.571

.290

.395

.620
-

.521

.454

.345

.567
-

.808

.737

.557

.716
-

.422

.357

.324

.754
-

Table 7.5: Evaluation of contextualized models as computational annotators: Spearman correlation for
WiC and GCD, Adjusted Random Index and Purity (ARI / PUR) for WSI. Top score for each approach and
benchmark is highlighted in bold. Avg is a weighted average based on the number of targets in each bench-
mark test set. For the sake of comparison, we report the Krippendorff’s 𝛼 score for inter-human annotator
agreement in WiC (italic).

Evaluation results – Table 7.5

(i) - Word-in-Context Our evaluation reveals that pre-trained models such as BERT, mBERT, and XLM-R
demonstrate a low average correlation with human judgments (.358, .301, .272). In contrast, XL-LEXEME
and GPT-4 emerge as powerful solutions for scaling up and aiding human annotations. For EN, they obtain
a moderately strong correlation (.626, .606) with human judgments, only marginally lower than the Krip-
pendorf 𝛼 human agreement (.633). In particular, XL-LEXEME slightly outperforms a considerably larger
model like GPT-4 in terms of parameters, at a considerably lower cost. In contrast to previous cross-lingual
evaluation (Conneau et al., 2020) and in line with the finding in Table 7.3, mBERT consistently outper-
forms XLM-R. However, our results highlight the advantageous use of monolingual BERT models over the
multilingual ones, for assessing (i) - WiC.

We consider the WiC evaluation to be the most valuable as it involves a direct comparison between
computational predictions and human judgments.

(ii) - Word Sense Induction Our evaluation indicates that moderate performance in (i)-WiC leads to mod-
erately low performance in inferring word sense. We obtain low ARI scores across all models and bench-
marks, with XL-LEXEME and GPT-4 exhibiting the highest values. Specifically, GPT-4 outperforms XL-
LEXEME (with .340 compared to .273) in ARI for EN. However, we highlight that even such low scores
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represent a moderately high result, given an inter-annotator agreement of .633.
XL-LEXEME consistently demonstrates high PUR scores across all benchmarks, while other models

yield slightly lower PUR scores, suggesting that some word sense patterns are captured when using contex-
tualized models. Previous studies highlight that contextualized models tend to produce a large number of
clusters (Martinc et al., 2020b; Periti et al., 2022), thereby influencing PUR scores. Therefore, it is crucial
to interpret PUR in conjunction with ARI.

(iii) - Graded Change Detection As for GCD, we obtain average results for BERT, mBERT, XLM-R, and
XL-LEXEME equal to .422, .357, .324, .754, respectively. These results are consistent with those presented
in Table 7.3, when compared to form-based approaches (.316 – .751). We observe that employing more
word usage pairs, as in Table 7.3, proves beneficial for certain benchmarks in the GCD tasks (e.g., XL-
LEXEME+APD for EN and DE). However, we note that these results for (ii) - WSI are significantly higher
than those obtained by sense-based approaches (.077 – .422). This can likely be attributed the fact that here
we are using the same clustering algorithm that was used for obtaining the ground truth clusters, or to the fact
that the clustering algorithm is more able to capture nuanced word meaning than AP and APP. In contrast, for
RU, following the RuShiftEval procedure does not improve the performance and results between Table 7.3
and 7.5 are somewhat comparable.

7.6 Discussion and considerations
We have performed a first-ever evaluation of models and approaches for modeling LSC under equal settings
and conditions, over eight different languages. First, we evaluated different models combined with standard
approaches to the popular GCD task. In particular, we consider BERT, mBERT, XLM-R, XL-LEXEME as
pre-trained models, APD and PRT as form-based approaches, and AP+JSD and WiDiD as sense-based ap-
proaches. We find that the XL-LEXEME consistently outperforms other models across all approaches, and
thus should be used as the de facto standard. We also find that form-based approaches significantly outper-
form sense-based approaches, with APD as the best approach for GCD. Among the sense-based approaches,
we find that evolutionary clustering is advantageous in contrast to static clustering and should be a focus
of future work. We additionally extended the evaluation to include the WiC and WSI tasks, both inherently
crucial to solve the complex task of LSC. We compare GPT-4 to the previous models and find that GPT-4 and
XL-LEXEME both perform close to human-level while the other models obtain only low-moderate perfor-
mance. However, due to the considerable costs associated with utilizing GPT-4, extending its evaluation to
additional languages is not affordable. In particular, our evaluation reveals that GPT-4 obtains comparable
performance to XL-LEXEME. In contrast to the limited accessibility5 and high associated cost6 of GPT-
4, XL-LEXEME is a considerably smaller, open-source model. Thus, since XL-LEXEME obtains results
close to those of GPT-4, even beating it for the WiC task, we argue that the use of GPT-4 is not justified

5https://platform.openai.com/docs/guides/rate-limits
6https://openai.com/pricing
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for modeling the LSC problem and that XL-LEXEME can be used for LSC tasks as a affordable, scalable
solution.

All in all, considering the current state of the LSC modeling, we argue that only obtaining state-of-
the-art performance on GCD does not solve the LSC problem, as there is a clear need to distinguish
the different senses of a word and how these evolve over time. As stated in Chapter 4, GCD maintains
relevance for identifying words that have changed across multiple time periods in need of further sense-
based modeling. GCD also serves to quantify the change on the level of vocabulary. In conclusion, in this
chapter, we provide a first comparable evaluation of contextualized word embeddings for LSC and establish
clear settings that should be used for future comparison and evaluation. With this work, we want to raise
awareness of the current trend of the community in modeling only the GCD task. Our aim is to shift the focus
from merely assessing how much to how, when, and why, prompting the development of both unsupervised
and supervised approaches for addressing the full spectrum of LSC.
Limitations. There are limitations we had to consider in the making of our evaluation. Firstly, we could not
evaluate GPT-4 across all languages due to both price and API limitations. This means that while the results
are comparable with XL-LEXEME for EN, we do not know how GPT-4 will behave for the other languages.
Our decision to use GPT-4 over the cheaper GPT-3 is based on recent studies showing conflicting results
across different tasks. Notably, Karjus (2023) reported high scores for GPT-4 in the GCD task. However,
Periti et al.; Laskar et al.; Kocoń et al. (2024d; 2023; 2023), as well as ourselves in Chapter 3, reported low
scores for the WiC task when employing GPT-3. As a result, we opted for GPT-4 to ensure relevance and
accuracy in our evaluations.

In our comparison, we evaluate different contextualized models utilizing the popular Transformers library
for deep learning maintained by Hugging Face (Wolf et al., 2020). We specifically excluded the evaluation of
a BERT model for Latin, opting instead to focus on mBERT, XLM-R, and XL-LEXEME. At the beginning
of our evaluation, we were not aware of any experiments using Latin BERT models to address GCD, nor
were we aware of an open BERT version for Latin on the Hugging Face platform. As we have only recently
become aware of novel BERT models that are exclusively trained and fine-tuned for Latin (Riemenschneider
and Frank, 2023; Lendvai and Wick, 2022), we plan to further test and utilize these models in future work.

To make a fair comparison between different contextualized models, we employed the same procedure
across all benchmarks and languages. However, different languages have different structures and hence
different requirements. It would be equally fair to have different processing of the different benchmarks (e.g.,
lemmatization for German, Laicher et al., 2021). We opted to reduce the number of open variables to be able
to make this first evaluation. Future work could optimize each language and then compare performance.

Lastly, the models compared in this study, despite sharing similar architectures, tokenize text sequences
differently based on their reference vocabulary. Consequently, a word may be split into different sub-tokens
by one model and represented as a single token by another (Jenkins et al., 2023). Additionally, when contexts
exceed the maximum input size, different models may truncate them at various points. Adhering to standard
procedures in the field of LSC, we use the average embeddings of sub-words when a word is split into multiple
sub-words. However, the impact of different tokenization and truncation methods was not evaluated.
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Chapter 8

Analyzing semantic change through lexical
replacements

“For example, the male/female relationship is au-
tomatically learned, and with the induced vector
representations, King - Man + Woman results in
a vector very close to Queen.”

Mikolov et al., In Proc. of NAACL 2013

8.1 Introduction

The major advancement that novel LLMs have brought is the ability to dynamically generate contextualized
representations (i.e., embeddings) based on specific usage contexts. When words are used in contexts similar
to those encountered during training, LLMs can easily differentiate, in a computational way, between word
meanings. Like in the case of rock in the sentences sitting on a rock and listening to rock.

However, when an existing word in our vocabulary gains a new meaning through semantic change, LLMs’
ability to differentiate that meaning can be affected. This stems from the fact that semantic change is evi-
denced through new contexts that were previously unknown for the word. Sometimes, the new meaning is
novel to the dictionary, for example, the metaphorical Web-meaning of surfing. Other times, the meaning is
already in existence and gets the word as a new referent. This is, for example, the case for happy. It used to
mean exclusively to be lucky and then gained the meaning of happiness. In an inverse process, the
word gay lost its meaning of happiness and began to refer exclusively to homosexuality. One can
think of this process of semantic change to be a lexical replacement of the word happy into the context of
gay, like in the following sentence.
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“The heart is sportive, light, and gay, life seems a long glad summer’s day”1

When using LLMs, the representation of a word 𝑤 is based on
• (i) the pre-trained knowledge that the model has about 𝑤 given its position in the context, and
• (ii) the context 𝑐 in which 𝑤 is used.

Thus, when this replacement happens, LLMs experience a tension between the existing sense/s of happy
(which do not includehappiness) and the meaning of the new context (which does indicatehappiness).
Due to semantic change, LLMs do not know the relationship between the new context 𝑐 and the replacement
word 𝑟. As a consequence, the representation of 𝑟 (i.e., happy in the sense to be lucky) and the repre-
sentation of 𝑐 (i.e., the context of gay in the sense of happiness) pull in different directions challenging
the LLMs’ ability to contextualize (Ethayarajh, 2019).

The tension increases as the gap between the data used for training the model, and the data on which the
model is applied grows larger. Indeed, the LLMs we use serve as the lens through which we view the studied
texts: if our texts are contemporary with the pre-training, the gap is likely to be minimal. If, however, we
intend to study historical or other out-of-domain corpora through LLMs trained on modern text, this gap can
be arbitrarily large and have major effects on follow-up studies. Thus, using LLMs for modeling relationships
beyond their pre-trained knowledge will likely result in an underestimation of semantic change.

Chapter outline.

This chapter includes materials originally published in the following publication:

Francesco Periti, Pierluigi Cassotti, Haim Dubossarsky, and Nina Tahmasebi. 2024b. Analyzing
Semantic Change through Lexical Replacements. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4495–4510,
Bangkok, Thailand. Association for Computational Linguistics.

In this chapter, we propose a replacement schema to study the tension experienced by LLMs when words
undergo semantic change. Such schema involves replacing a word 𝑤 in the context 𝑐 with a replacement 𝑟
to analyze how the representation of 𝑟 differs from the original representation of 𝑤.

Given a word 𝑤, our experiments systematically show that LLMs (i.e., BERT, mBERT, XLM-R) expe-
rience a tension between the pre-trained knowledge of 𝑤 and the new context of a gained meaning. This
tension differs across linguistic relations, namely synonymy, antonymy, and hypernymy.

We then use the introduced schema for detecting semantic change. Our experiments show that, when
random replacements are used to simulate synthetic semantic change, the use of a clustering algorithm (i.e,
Affinity Propagation) falls short to differentiate meanings and detect such change. Furthermore, we use

1Manchester Times, Wednesday 03 May 1854, found via https://discovery.nationalarchives.gov.uk.
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the replacement schema to introduce a new interpretable model for semantic change detection, while being
comparable with state-of-the-art for English.

Finally, we evaluate the use of a predefined set of lexical replacements derived from lexicographic re-
sources (i.e., WordNet and Wiktionary) through the LSC task.

In Chapters 5, 6, and 7, we investigated the use of word embeddings for LSC. With more computational
resources available and the increasing attention on open, generative LLMs such as LLaMa (Touvron et al.,
2023a), we decided to compare LLaMa 2 (Touvron et al., 2023b) to BERT for modeling semantic change
through automatically generated lexical substitutes. Our experiments show that LLaMa 2 significantly out-
performs a model like BERT, which is specifically trained to provide lexical substitutes through masked
language modeling.

The chapter is organized as follows. Section 8.2 frames our study within the relevant literature of its time.
Section 8.3 introduces the replacement schema and the data used in our study. Section 8.4 discusses tension
caused by semantic change in LLMs. The implications of this tension for the computational modeling of
semantic change are discussed in Section 8.5. In Section 8.6, we present a novel approach to LSC through
lexical replacements and compare it with a more approach based on lexical substitutes. Finally, a concluding
discussion of our experiments is provided in Section 8.7.

8.2 Related work
For this chapter, relevant work pertains both to the contextualization of modern LLMs and the field of lex-
ical semantic change. Modern contextualized LLMs leverage the Transformer architecture to capture the
semantics of words (Vaswani et al., 2017). Their success in solving NLP tasks has prompted numerous
studies to explore the nature and characteristics of their contextualization ability. Ethayarajh (2019); Reif
et al. (2019); Cai et al. (2021); Jawahar et al. (2019) shed light on the geometry of the embedding space.
Serrano and Smith (2019); Bai et al. (2021); Guan et al. (2020) investigate the interpretability of the at-
tention mechanism. Yenicelik et al. (2020); Garí Soler and Apidianaki (2021); Kalinowski and An (2021);
Haber and Poesio (2021) examine the clusterability of word representations. Abdou et al. (2022); Hessel
and Schofield (2021); Mickus et al. (2020); Wang et al. (2021a) analyze the impact of word position in the
embeddings generation. Reif et al. (2019); Levine et al. (2020); Pedinotti and Lenci (2020) study how word
meanings are represented in the embedding space.

Most of the current work involves probing tasks, as proposed by Hewitt and Liang (2019). These tasks
consist of training an auxiliary classifier on top of a model, where the contextualized embeddings serve as fea-
tures to predict syntactic (e.g. part-of-speech) and semantic (e.g. word relations) properties of words (Clark
et al., 2019; Lin and Ng, 2022; Wallat et al., 2023; Lin and Ng, 2022; Ravichander et al., 2020). If the
auxiliary classifier accurately predicts a linguistic property, the property is assumed to be encoded in the
model.
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Recent work has focused on a related aspect, namely adapting LLMs to improve their temporal con-
textualization. This challenge has been addressed across various applications such as named entity recogni-
tion (Rijhwani and Preotiuc-Pietro, 2020), fake news detection (Hu et al., 2023), text summarization (Cheang
et al., 2023), and lexical semantic change (Su et al., 2022; Rosin et al., 2022; Rosin and Radinsky, 2022).
Nonetheless, while temporal domain adaptation can improve performance across various tasks, Agarwal and
Nenkova (2022) demonstrated that temporal contextualization may not always be a concern.

In this chapter, we complement existing research by using lexical replacements as a proxy to analyze
how language models contextualize words that have undergone lexical semantic change. Specifically, our
work is related to the novel substitute-based approaches to LSC, which interpret word meaning by generating
substitutes of words in context (Kudisov and Arefyev, 2022; Arefyev and Zhikov, 2020; Card, 2023). On one
hand, word substitutes represent relevant keywords to aid the interpretation of senses. On the other hand, the
generation process can only provide substitutes according to training data.

To this end, we propose a novel interpretable approach based on a pre-defined set of lexical replacements
rather than generated substitutions.

8.3 Methodology
In our experiments, we leverage a replacement schema to investigate the tension experienced by pre-trained
LLMs due to semantic change. This involves analyzing the variations in embedding representations when a
target replacement is introduced. For instance, by replacing a target like cat with a replacement like chair in
a specific context like:

The cattarget ← chairreplacement was purring loudly .

8.3.1 The replacement schema
We use WordNet to generate different classes of replacements for a specific word (Fellbaum, 1998), which
correspond to a varying degree of plausibility (i.e. suitability of a specific replacement) between the target
word and its replacement. Thus, we hypothesize that each class is associated with a different impact on
contextualization. Each class of replacements also has diachronic relevance, as the synchronic, semantic
relation can be considered to have a parallel in semantic change (de Sá et al., 2024; Wegmann et al., 2020). To
ensure accurate linguistic replacements, we maintain part of speech (PoS) agreement with the target words;
e.g., nouns are replaced with nouns and so forth. Examples are given in the form (target ← replacement) in
Table 8.1.

• synonyms (e.g. sadness ← unhappiness) are used to evaluate the stability in contextualization; that
is, we hypothesize similar embeddings between target and replacement words. Indeed, synonyms are
considered equally likely alternatives in LM’s pre-trained knowledge. On the diachronic level, they
emulate the absence of any semantic change of the replacement word;
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• antonyms (e.g. hot ← cold) are used to evaluate a light change in contextualization; that is, we hypoth-
esize slightly less similar embeddings between target and replacement words. Indeed, antonyms are
sometimes equally plausible alternatives, for example: “I love/hate you”. Other times they are likely
to surprise the model. For example: “I burned my tongue because the coffee was too hot/cold”. On the
diachronic level, they emulate a contronym change. A contronym change occurs when a word’s new
meaning is the opposite of its original meaning (e.g. sanction in English) of the replacement word;

• hypernyms (e.g. animal ← bird) are used similarly to antonyms. However, on the diachronic level,
they emulate a broadening semantic change of the replacement word;

• random words (e.g. sadness ← eld) are used to evaluate a change in contextualization. If LLMs
place high importance on the context, then the replacement should receive a similar representation
to the target word. Otherwise, if LLMs heavily rely on its pre-trained knowledge, the replacement
will exhibit dissimilarity to the target word despite the identical context, as well as dissimilarity to
the typical replacement representations. On the diachronic level, random emulates the presence of
strong semantic change of the replacement word, that is, the emergence of a homonymic sense.

Lexical Replacement 𝑤−4 𝑤−3 𝑤−2 𝑤−1 𝑤 ∕ 𝑤(𝑟) 𝑤+1 𝑤+2 𝑤+3 𝑤+4

Target Word moments of regret and sadness and guilty relief .
Synonym moments of regret and unhappiness and guilty relief .
Hypernym moments of regret and feeling and guilty relief .
Antonym moments of regret and happiness and guilty relief .
Random moments of regret and eld and guilty relief .

Table 8.1: Different classes of replacements.

8.3.2 Data

To avoid introducing noise into our experiments resulting from the conflation of senses, we replace words
with contextually appropriate replacements based on the intended sense of the word within a specific sentence
(e.g, stone and music for sitting on a rock and listening to rock, respectively). We therefore leverage the
SemCor dataset (Miller et al., 1993), still the largest and most commonly used sense-annotated corpus for
English. To select candidate replacements, we consider different PoS tags, namely verbs, nouns, adjectives
and adverbs, and semantic classes, namely synonyms, hypernyms and antonyms. We randomly sample a set
of synsets for each PoS tag occurring in SemCor, and for a specific synset, we extract a subset of contexts
(i.e., sentences) where a word is annotated with that synset. We sample a maximum of 10 sentences per
synset to prevent oversampling of high-frequency synsets. We control for the position of the replaced target
has in the sentence, and the length of the sentence, to confirm that these aspects will not bias our experiments
differently across PoS. For each sentence, we generate the synonym and antonym replacements for all PoS,
and hypernym replacements only for nouns and verbs because WordNet lacks hypernym information for other
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PoS (see Table 8.2).

PoS N. target words
Avg. N.

of sampled senteces
per target word

N. examples

noun 360 3.55 1277
verb 433 3.45 1494

adjective 393 3.39 1334
adverb 158 3.46 546

Table 8.2: Data statistics over PoS, sampled from SemCor.

Experimental setup We begin by studying the tension that occurs as a consequence of replacement focus-
ing on the word contextualization in Section 8.4. Next, we the use of replacements as a proxy for semantic
change in Section 8.5 and 8.6. In our experiments, we use monolingual BERT2, mBERT3, and XLM-R4.
Our code and data are available at https://github.com/ChangeIsKey/asc-lr/.

8.4 Tension caused by semantic change
We analyze the tension experienced by LLMs by comparing the embedding of a target word𝑤 in the original
sentence 𝑐 to the embedding of the replacement word 𝑟 in the same sentence 𝑐. To perform this comparison,
we rely on the cosine distance between the embeddings of 𝑤 and 𝑟. We refer to this as the self-embedding
distance (SED).

Concretely, if 𝑤 and 𝑟 are split into multiple sub-words by the model, we calculate the average embed-
dings of the corresponding sub-words. This approach ensures the preservation of the same number of tokens
in the original and synthetic sentences and enables accurate distance calculations.

The less plausible the relationship between the context 𝑐 and the replacement word 𝑟 for LLMs, the higher
the SED, leading them to rely on the pre-trained knowledge of 𝑟 to contextualize 𝑟 in context. When there is
a large mismatch between the meanings of the replacement word 𝑟 and the context 𝑐, as is the case with the
random replacement, then the SED is the highest.

8.4.1 Self-embedding distance
For each pair of original and synthetic sentences, we computed SED across each layer. We then analyzed the
average SED for each class of replacement and PoS across the layers of LLMs. It is known that contextualized
embeddings experience an anisotropic nature, that is, the embeddings occupy an increasingly narrow cone
within the vector space (Ethayarajh, 2019). This means that embeddings, and thus SED scores across layers,
are not comparable. To address this issue and thus compare SED both across layers and PoS, we use a
layer-specific normalization factor.

2bert-base-uncased
3bert-base-multilingual-cased
4xlm-roberta-base
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Figure 8.1: Average SED over layers.

Specifically, for normalization, we randomly sampled an additional set of 3864 sentences independent
from the sets in Table 8.2. For each sentence, we randomly choose a target word and replace it with arandom
replacement regardless of the PoS agreement. Then, for each layer, we computed the average SED over this
set of replacements. We use the resulting SED scores as a normalization factor for each layer that represents
an upper-bound approximation. Thus, for each layer, the same normalization factor is used across all PoS
and semantic classes of replacement. This way, the normalization cannot influence the discrepancies among
different classes for a specific layer but serves to make the scores in different layers somewhat comparable.5

Like Ethayarajh (2019), we observe that the contextualization increases across layers as the SED de-
creases, the context thus has a larger effect in determining the representation of a word in the higher layers.
For adverbs, adjectives and nouns the synonym and antonym classes are associated with a SED of
around 0.6–0.8 in the first layer. The SED then decreases to between 0.5–0.6. For adverb the synonym and
antonym class remain similar also in the later layers, while for adjectives and nouns we find that the
synonyms have lower SED than do antonyms. For nouns, the hypernym class has consistently higher SED
than synonyms and antonyms, despite being a more general concept where the subconcept of the target word

5We have tested with different normalization factors – e.g., replacing a word with a special token (“[REPL]”) outside the LLMs
vocabulary – and found that the conclusions remain.
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should be contained (e.g., fruit as a hypernym of banana). This aligns with the recent findings of Hanna and
Mareček (2021), suggesting that BERT’s understanding of noun hypernyms is limited.

The SED score for random is fairly stable across all layers, meaning that when a word gains a completely
novel sense, LLMs fall short in contextualizing beyond the pre-trained knowledge it has of the word. That is,
the representation of the random word does not mimic the representation of the target word that it replaces.
The context thus has little or no effect in determining the representation of the replacement word.

For verbs, we note a higher SED for antonyms and synonyms in comparison to other PoS, comparable
to the noun hypernyms, starting around 0.9. However, they all drop to 0.6–0.7 by the last layers. Addi-
tionally, there is a narrower gap between the SED for the random class and those for antonyms, synonyms,
and hypernyms. These observations suggest that, in the earlier layers, the contextualization of verbs is less
pronounced for verbs and that the model relies more on pre-trained knowledge.

All in all, our results suggest that models exhibit varying tension for different PoS, and for different
linguistic relationships between the target and the replacement word. Conversely, we interpret these findings
in the following way: there is a low degree of contextualization, and thus a high degree of tension, when
there is no relationship between the word and its replacement.

8.5 Semantic change
We argue that our findings in Section 8.4 regarding the tension between a word and its context have important
implications when pre-trained LLMs are used for modeling semantic change as we will show in this section.

8.5.1 LCS through synthetic dataset

Form-based approaches can still detect this semantic change to a certain degree (as an estimate of model
confusion), despite using contextualized word embeddings that do not correctly capture a word’s meaning in
a novel context. However, sense-based approaches fall short in accurately detecting the same change. This
is because sense-based approaches require modeling meanings outside the model’s pre-trained knowledge
before detecting the change. Since these meanings cannot be adequately modeled when semantic change has
occurred, the performance of sense-based approaches is reduced compared to that of form-based approaches.

We further tested these implications in the LSC task by comparing PRT (based on averaging contex-
tualized embeddings) and JSD (based on clustering contextualized embeddings) on an artificial diachronic
corpus spanning two time periods (see details in Appendix B). Essentially, we introduced random replace-
ments in 𝐶2 with varying probabilities to emulate different degrees of change for a set of 46 target words.
Subsequently, we compared the Spearman Correlation between the scores obtained with PRT and JSD with
the artificially graded score of emulated semantic change. Results using BERT are presented in Figure 8.2
(see Appendix C for additional results). Our hypothesis is that while PRT can predict changes to a fairly high
degree, JSD falls short because it can only model the meanings that BERT is already aware of.

As shown in the figure, using PRT, we can model artificial semantic changes already from layer 3. This is
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Figure 8.2: Spearman Correlation over layers for artificial semantic change.

not the case for JSD, where we observe statistically significant correlations for only a few layers. However, the
significance of performance for JSD is an artifact of BERT embeddings and does not authentically represent
the simulated change. We verify this by examining the modeled clusters. While, in general, the number of
clusters of AP is large (Periti et al., 2022; Martinc et al., 2020b), representing sense nodules6 rather than
word meanings (Kutuzov et al., 2022b), we find that the injected confusion in the model due to the random
replacements results in a very low number of clusters (typically 2, maximum of 4). We report similar results
in Figure 8.3 for other languages (i.e. German, Swedish, Spanish)

8.6 A novel approach to LSC through replacements
We propose a novel supervised approach to Graded Change Detection building upon the replacement schema.
Our approach leverages a curated set of word replacements from WordNet and Wiktionary.

We denote 𝑇 = {𝑤1, 𝑤2, ..., 𝑤𝑁} as the set of target words. For each target word, we extract a set of
possible replacements 𝜌(𝑤𝑖) = {𝑟1, 𝑟2, ..., 𝑟𝑀}, resulting in𝑁 ⋅𝑀 replacement pairs. The set of replacements
is obtained by considering the lemmas of synonyms and hypernyms associated with the target word 𝑤𝑖 in
WordNet and words extracted from the Wiktionary page corresponding to the target word. For each target
word 𝑤𝑖, we sample up to 200 sentences from each period that remain stable regardless of the replacement

6“Lumps of meaning with greater stability under contextual changes” (Cruse, 2000)
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Figure 8.3: PRT and JSD performance on the artificial LSC dataset

word 𝑟𝑗 . For each replacement pair (𝑤𝑖, 𝑟𝑗), we denote the set of sentences for a time period 𝑡 ∈ {1, 2} as
𝑆 𝑡(𝑤𝑖, 𝑟𝑗).

For each sentence 𝑠 ∈ 𝑆 𝑡(𝑤𝑖, 𝑟𝑗) we measure the self-embedding distance 𝑠𝑒𝑑(𝑠)of the target and re-
placement word. The average self-embedding distance of a target-replacement pair is defined as

𝑎𝑤𝑑𝑡(𝑤𝑖, 𝑟𝑗) =
1

|𝑆 𝑡(𝑤𝑖, 𝑟𝑗)|
∑

𝑠∈𝑆𝑡(𝑤𝑖,𝑟𝑗 )
𝑠𝑒𝑑(𝑠)

The absolute difference in 𝑎𝑤𝑑 over time is denoted TD(𝑤𝑖, 𝑟𝑗). Finally, we rank the replacements 𝜌(𝑤𝑖)
according to their degree of time difference:

𝑅(𝜌(𝑤𝑖)) = {𝑟1, 𝑟2, ..., 𝑟𝑀 | TD(𝑤𝑖, 𝑟𝑖+1, ) ≤ TD(𝑤𝑖, 𝑟𝑖)}

and we compute a semantic change score 𝑙𝑠𝑐𝑤 as the average TD considering the top 𝑘 replacements:

𝑙𝑠𝑐𝑤 = 1
𝑘

∑

𝑟∈𝑅(𝜌(𝑤𝑖))𝑘

TD(𝑤𝑖, 𝑟)

We evaluate our approach on the SemEval-2020 Task 1, Subtask 2 dataset for English. We compute the
Spearman Correlation between the graded score reported in the gold truth and the 𝑙𝑠𝑐 scores. Figure 8.4
reports the correlation computed for different values of 𝑘. The highest correlation of 0.741 is achieved
when considering the first 22 replacements, while the lowest correlation of 0.600 is obtained using only the
first replacement (see Table 8.4). Interestingly, the minimum correlation obtained using the replacements
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Figure 8.4: Top-k replacements vs Spearman Correlation.

is competitive with SOTA results. Moreover, on average, the correlation is higher than the SOTA model’s
performance. The replacements are reported in Table 8.3.

By replacing the target words with different semantically related words, we generate contextual variations
that enable the detection of semantic shifts. In the case of words like record (attainment, track record ⟶

evidence, document) and land (real estate, real property ⟶ realm, country) that have undergone semantic
change through narrowing and generalisation, respectively, linguistically aware replacements can provide
valuable insights. The replacement process generates a list of replacements that can be used as labels for
the types of semantic change observed. By associating each replacement with a specific semantic category
or change type, it becomes possible to analyze and quantify the semantic shifts experienced by words over
time. The method can also be combined with a priori clustering to get changes specific to a sense.

Random replacements Here, we focus on the results using randomly selected words with the same PoS
as the target word, i.e. random replacement as introduced in Section 8.3. This approach generates a list
of replacement words contextually unrelated to the target word. Some interesting patterns emerge when
these results are compared with those obtained using synonym replacement. In the case of semantic change
detection, the use of synonyms can provide more contextually relevant replacements, as they share semantic
relationships with the target word. However, using random replacements can still yield reasonable results,
as evidenced by an average correlation of 0.542. These results is in line with the finding of Section 8.5.

In this approach, although random replacements tend to perform worse than synonym replacements, they
have one distinct advantage: they do not rely on external lexical resources and are thus suitable for unsuper-
vised scenarios. While synonym replacements can improve contextualization and semantic relevance, they
are not always readily available or reliable for languages with limited linguistic resources. In such cases, ran-
dom replacements can still provide reasonable results and serve as a practical, resource-efficient approach
for tasks where synonym information is scarce or unavailable.
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Word Time span (Ranked) Farthest replacements 𝑙𝑠𝑐𝑤 (k=1)
attack T1 physical, degeneration, blast, crime, disease, death,

condition, plane, affliction, birthday attack
-0.036

T2 approach, force, onslaught, assault, exploit, chal-
lenge, commencement, aim, worth, signal

0.059

bit T1 nominative case, accusative case, cryptography, in-
formation theory, bdsm, time,point, binary digit, so-
ciologic, sublative

-0.018

T2 saddlery, chard, illative case, iron, bevelled, tack,
small, gun, cut, elative case

0.067

circle T1 wicca, circumlocution, encircle, astronomy, tavern,
semicircle, around, logic, go,wand

0.002

T2 pitch, place, graduated, figure, disk, territorial, en-
force, worship, line, bagginess

0.064

edge T1 brink, cricket, instrument, margin, polytope, side,
edge computing, verge, demarcation line, demarca-
tion

-0.015

T2 data, production, climax, division, superiority, or-
ganization, sharpness, graph, win, geometry

0.047

graft T1 lesion, bribery, felony, politics, bribe, corruption,
autoplasty, surgery, nautical, illicit

-0.047

T2 branch, stock, tree, fruit, shoot, join, cut, graft the
forked tree, stem, portion

0.103

head T1 headland, head word, capitulum, syntactic, peda-
gogue, fluid dynamics, hip hop, headway, pedagog,
word

0.004

T2 leader, organs, implement, top, tail, foreland, chief,
bolt, axe, forefront

0.084

land T1 real estate, real property, surface, property,build,
physical object, Edwin Herbert Land, electronics,
landing, first person

-0.032

T2 realm, country, kingdom, province, domain, peo-
ple, homeland, territory, nation, region

0.076

lass T1 sweetheart, girl, missy, woman, yorkshire, lassem,
lasst, lassie, loss, miss

0.014

T2 fille, dative case, jeune fille, loose, lasses,
unattached, young lady, young woman, north
east england, past participle

0.099

plane T1 airplane, aeroplane, pt boat, heavier-than-air craft,
glide , boat, lycaenidae, lift, bow, hand tool

-0.197

T2 geometry, point, shape, surface, flat, degree, form,
range, anatomy, smooth

0.205

player T1 media player, idler, soul, thespian, person, individ-
ual, trifler, performer, somebody, histrion

-0.065

T2 contestant, performing artist, actor, musician, mu-
sical instrument, music, gamer, theater, player pi-
ano, play the field

0.042

prop T1 props, airscrew, astronautics, actor, airplane pro-
peller, seashell, stagecraft, stage, property, art

-0.042

T2 around, rugby, imperative mood, about, singular,
scrum, ignition, roughly, ballot, manually

0.088

rag T1 ragtime, nominative case, accusative case, rag
week, terminative case, inflectional, sublative, piece
of material, tag, sanitary napkin

-0.049

T2 clothes, exhaustion, university, society, silk, ragged,
journalism, haze, ranking, torment

0.071

record T1 attainment, track record, achievement, accomplish-
ment, struct, number, intransitive, record book,
criminal record, disc

-0.036

T2 evidence, document, information, audio, recollec-
tion, storage medium, memory, electronic, sound
recording, data

0.089

stab T1 thread, staccato, feeling, nominative case, sheet,
chord, bacterial, culture, twinge, sensation

-0.046

T2 wound, tool, knife thrust, weapon, plaster, criticism,
wire, pierce, thrust, try

0.029

thump T1 clunk, throb, clump, thud, pound, thumping, rhyth-
mic, sound, blow, hit

-0.036

T2 muffled, hit, blow, sound, rhythmic, thumping,
pound, thud, clump, throb

0.033

tip T1 gratuity, first person, forty, bloke, singular, over-
turn, stringed instrument, unbalanced, taxi driver,
sated

-0.031

T2 brush, tap, strike, gift, tram, flex, tumble, heap, full,
hint

0.070

Table 8.3: Words annotated as changed in SemEval 2020 Task 1: Binary Subtask and retrieved farthest
replacements for each time span.
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Model Spearman Correlation
Rosin and Radinsky 0.629

Kutuzov and Giulianelli 0.605
Laicher et al. 0.571
Periti et al. 0.512

Cassotti et al. (XL-LEXEME) 0.757
Synonym

Replacement
Replacement Min. Corr. 0.600
Replacement Max. Corr. 0.741
Replacement Avg. Corr. 0.674

Random
Replacement

Replacement Min. Corr. 0.495
Replacement Max. Corr. 0.622
Replacement Avg. Corr. 0.542

Table 8.4: Spearman Correlation on SemEval-2020 Task 1 (Eng).

In Section 8.4.1, when using SemCor, we effectively account for the nuances of different word senses,
thereby improving the contextualization and semantic relevance of synonym replacements. This approach is
more targeted as synonyms are selected based on their association with a particular sense, leading to higher
quality contextualization in the context of that sense. As a result, synonym replacements are more finely
tuned to the specific meaning of the target word, reducing noise and improving correlation with semantic
change labels.

8.6.1 Addressing LSC through substitutions

Finally, we assess the use of lexical substitutes generated by LLMs for LSC. By asking LLMs’ to gener-
ate substitutions, we probe them for their information about the target word given the context. Similar to
Card (2023); Arefyev and Zhikov (2020), we use monolingual BERT. We additionally compared the use of
a larger, generative model such as LLaMa 2 7B (Touvron et al., 2023b)7.

For BERT, we use the masking strategy, meaning that we mask a target word with the special token and
generate possible substitutes. For LLaMa 2, we fine-tune the model to enable it to predict the target word.
Specifically, we fine-tune LLaMa 2 by inputting the original sentence, adding two asterisks at the beginning
and end of the target word. Following the sentence we provide the list of substitutes found in ALaSCA (Lac-
erra et al., 2021), the largest existing dataset for lexical substitution:

During the siege, George Robertson had appointed Shuja ul-Mulk, who was a **bright** boy only 12 years old and
the youngest surviving son of Aman ul-Mulk, as the ruler of chitral. |answer| intelligent |s| clever |s| smart |end|

where |answer|, |s|, and |end| are added as special tokens in the model. For efficiency reasons, we train the
model using the QLoRA paradigm (Dettmers et al., 2023). We fine-tuned for one epoch using a learning rate
of 2e-4, and set the LoRA configuration with a rank of 8 and an alpha of 16.

The data used for the evaluations is the same in Section 8.6. In Table 8.5 we report an example of the
generated substitutions.

7Llama-2-7b-hf
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T1 T2
remember that it be only such line as
be nearer the ground plane than the eye
that be draw under the horizon line

as his plane cross north carolina and
head south over the atlantic it pick up
a small convoy of escort military craft
that try to make radio contact but fail

BERT there, be, where, here, and planes, over, out, boats, aircraft
LLaMa 2 level,surface,flat plane,horizontal plane aircraft,airplane,jet,plane

model,propeller-driven vehicle

Table 8.5: Generated substitutions for usages of plane extracted by SemEval 2020 Task 1 English.
Model Spearman Correlation

Arefyev and Zhikov, 2020 0.299
Card, 2023 0.547

LLaMa 2 7B 0.731
BERT 0.450

Table 8.6: Spearman Corr. on SemEval-2020 Task 1 (EN)

To calculate the degree of semantic change, we consider all uses of a word in time periods 𝑡1 and 𝑡2.
We consider the substitutes generated for each usage and calculate the distance between all possible pairs of
uses between 𝑡1 and 𝑡2. To calculate the distance, we use the Jaccard Distance between the sets of generated
substitutes. Lastly, the Jaccard distances are averaged, and we use the average as a score for LSC. In Table
8.6 we show the result on the SemEval 2020 Task 1 - Subtask 2 (other comparable results in Table 8.4). Our
results for BERT are somewhat comparable with SOTA results, while being lower to those obtained through
lexical replacements, likely because the replacements are of higher quality when found using WordNet, while
the substitutions are generated by the model with its limited knowledge of the context. In contrast, our
results for LLaMa 2 are even higher than the results obtained with lexical replacements achieving comparable
performance to the one obtained with the recent XL-LEXEME model. We attributed this higher performance
to the fact that both LLaMa and XL-LEXEME have been fine-tuned on generating lexical substitutes and
WiC task, respectively which, rather than using all of the model’s pre-trained knowledge, forces the model
to focus on the semantic aspect specifically.

8.7 Discussion and considerations
In this chapter, we study semantic change using lexical replacement. From the point of view of the replaced
word, a semantic change takes place as the word gains contexts which it has not encountered previously.
When the replacement is closely related to the target word, for example by synonymy, the novelty of the
context for the replacement word should be low. However, novelty will increase as the relation between the
target and replacement becomes more distant. We are assuming that the replacements based on synchronic
relations will offer insights into semantic change diachronically.

To test this hypothesis, we used self-embedding distance (SED) when the context stays the same, using
all layers of BERT, mBERT, and XLM-R across four PoS. Not surprising, we found that the self-embedding
distance is smallest for synonym replacements and highest for the random replacements. And like Etha-
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yarajh (2019), we found that more contextualization happens across the last layers. For different LLMs, we
also find slightly different behaviors. However, consistently, adverbs and adjectives have lower SED scores
than verbs and nouns. We show that hypernymy is a more distant relation for LLMs than antonymy and
synonymy

We then employ replacements for measuring the degree of semantic change. For this, we generate syn-
onym replacements using WordNet, for each word in the English portion of the SemEval-2020 Task 1 bench-
mark. We assume that if a word has not experienced semantic change, the SED between the replacements
and the target word are similar across time. If however, a word has experienced semantic change resulting
in context changes, SED scores will be different over time as the replacements will be more distantly related
to the contexts. This method offers a novel interpretable semantic change detection. Finally, we ask the
LLMs themselves to generate substitutions for a target word in the English SemEval data. This experiment
shows the LLMs knowledge of the target words and the semantic change they have experienced. All in all,
the lexical replacement schema offers a good way to approach semantic change detection, but also to learn
more about our LLMs and their ability to handle semantic change.

Limitations. A potential limitation of our study lies in the use of the replacement schema in conjunction
with lexical replacements generated from WordNet: inherent limitations of WordNet, such as potential gaps,
inaccuracies, or ambiguities in the semantic relationships may influence our analysis. WordNet also limits the
data sources from which we can draw sentences, since we need a corpus with sense annotations corresponding
to a lexicon.

Furthermore, in our first experiment, the lexical replacement process involves replacing a word occur-
rence in the original sentence with a related lemma extracted from WordNet. As a result, providing the model
with synthetic sentences containing the lemma instead of the inflected word may influence the generation of
word embeddings and the contextualization of every word in the sentences. However, we assume that this
limitation equally affects every class we consider and all models. For example, while the lemma of a verb
may reduce the third singular verb form, the plural forms of adjectives and nouns can also be simplified to
singular lemma forms. Additionally, to mitigate these issues and ensure that all PoS are equally affected by
the replacement procedure, we replaced both the target and replacement words with lemmas in the original
and synthetic sentences, respectively. We did not analyze semantic change in Section 5 with respect to dif-
ferent PoS because there are no available LSC benchmarks with a substantial number of targets for different
PoS, nor any sense-tagged benchmarks except for a small subset for German.

Finding the correct form of a replacement requires advanced morphological analysis and carries the risk
of leading to errors. For now, we therefore opted to circumvent this by replacing targets and lemmas alike.
Furthermore, we would like to highlight a relevant study by Laicher et al. (2021) that delves into the influence
of various linguistic variables on the use of BERT embeddings for the LSC task. This research demonstrates
that by reducing the influence of orthography through lemma usage, significant enhancements in BERT’s
performance were observed for German and Swedish, while maintaining comparable results for English.
This underscores the potential benefits of lemma-based contextualization and that linguistic features like
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orthography can sometimes be minimized without substantial loss of performance.
Unlike our initial experiments using SemCor sentences, the word occurrences considered in the LSC

experiments are not associated with manually sense-annotated information. For this reason, we rely on a
lexical replacement process at a different level of granularity, which involves replacing all occurrences of a
word with a related lemma extracted from WordNet (rather than replacing a specific word occurrence).

We used LLaMa 2 only for our last experiment. This stems from the difficulty to generate contextualized
representation of a single word in context in LLMs. We also do not exhaustively test LLMs as this lies
outside the scope of the paper, while requiring a lot more resources. Instead, we use one open LLM to test
the knowledge of a LLM when trained on significantly more data compared to BERT-like models.

Finally, in the introduction, we use the example of gay and happy to illustrate that word happy is replaced
in contexts of gay for the meaning of happiness. We are however aware that happy gained the meaning
of happiness several hundred years before gay lost its sense of happiness, and only use the example
for illustrative purposes.
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Chapter 9

Automatically generated definitions and
their utility for modeling word meaning

“Defeated by those practices of consolation, José
Arcadio Buendía then decided to build the mem-
ory machine that he had desired once in order to
remember the marvelous inventions of the gypsies.
The artifact was conceived as a dictionary, so that
in a very few hours there would pass before his
eyes the notions most necessary for life.”
Gabriel G. Marquez, One Hundred Years of Solitude

9.1 Introduction

Modeling lexical semantics using unstructured text has a longstanding history in NLP due to its crucial
role in both Natural Language Understanding and Natural Language Generation (Karanikolas et al., 2024;
Pustejovsky and Boguraev, 1993). Over the past decades, there have been many relevant technological devel-
opments: from count-based (Naseem et al., 2021) to static (Mikolov et al., 2013a) and contextualized (Peters
et al., 2018) language models, and most recently, generative models (Hadi et al., 2023). Each of these ad-
vancements has contributed significantly to the goal of modeling the meaning of words.

Modern language models are based on the Transformer (Vaswani et al., 2017) architecture. Given a word,
these models generate semantic representations for each occurrence of the word based on its surrounding con-
text (Apidianaki, 2023). Ideally, these representations should be similar for semantically related word usages
and different for semantically distinct ones. Typically, contextualized vectors (i.e., embeddings, Pilehvar and
Camacho-Collados, 2021) or lexical substitutes (i.e., bag-of-words, Arefyev and Zhikov, 2020) are employed
to represent word usages. However, recent advancements in text generation are shifting the attention towards
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representing word usages through generated sense definitions (Giulianelli et al., 2023).
Automatically generated sense definitions provide a dual advantage. Firstly, they distill the information

stored in a sentence by abstracting away from the context. Their use potentially condenses various word
usage representations pertaining to the same underlying meaning. Secondly, generated definitions provide a
means to directly interpret word meaning from unstructured text, thereby enabling language models to serve
as surrogate for dictionaries when encountering unfamiliar words (Malkin et al., 2021), or known words in
unfamiliar settings (Weiland et al., 2023).

Chapter outline.

This chapter includes materials originally published in the following publications:

Francesco Periti, David Alfter, and Nina Tahmasebi. 2024a. Automatically Generated Defini-
tions and their utility for Modeling Word Meaning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing (to appear), Miami, Florida. Association
for Computational Linguistics.

In this chapter, we automatically generate definitions for words in-context by relying on two fine-tuned vari-
ants of the Llama chat models (Touvron et al., 2023a) refined through instruction tuning (Zhang et al., 2024)
on lexicographic resources. We call the models LlamaDictionary and assess their performance in Def-
inition Generation, achieving new state-of-the-art results on multiple datasets.

We further extend our evaluation by using LlamaDictionary and the Flan-T5-Definition
model fine-tuned by Giulianelli et al. (2023) for large-scale modeling of word meaning. Specifically, we
employ the generated sense definitions as intermediate sense representations. These representations are
encoded using a pretrained sequence embedding model rather than using standard token embeddings. We
assess the use of LlamaDictionary and Flan-T5-Definition with thirteen SBERT models and
evaluate our approach on three popular Natural Language Processing tasks, namely Word-in-Context, Word
Sense Induction, and Lexical Semantic Change, achieving new state-of-the-art results on all three tasks.

This chapter is organized as follows. In Section 9.2, we provide background information on word rep-
resentations commonly used in modeling word meaning and an overview of the current state-of-the-art in
generating word sense definitions. In Section 9.3, we introduce our LlamaDictionary models for auto-
matically generating definitions. In Section 9.4, we present the setup of our evaluation, which encompasses
four distinct NLP tasks: Definition Generation, Word-in-Context, Word Sense Induction, and Lexical Se-
mantic Change. In Section 9.5, we discuss the results obtained from each of these evaluation tasks. Finally,
in Section 9.6, we discuss the utility of automatically generated definitions for modeling word meaning, as
well as the limitations of our work.
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9.2 Background and related work

Word usage representations. With the advent of Transformers, we have witnessed the emergence of large
language models capable of contextualizing words within diverse contexts. Unlike static models (Pennington
et al., 2014), we now rely on a multitude of contextualized embeddings per word. On one hand, this capabil-
ity represents an invaluable tool for modeling lexical semantics (Petersen and Potts, 2023), as distances be-
tween embeddings have proven to be excellent discriminators of word meaning. On the other hand, it poses
interpretability challenges, as embeddings tend to represent contextual variance rather than lexicographic
senses (Kutuzov et al., 2022b). Further challenges arise from the broad and heterogeneous distribution of
semantic structure across embedding dimensions (Senel et al., 2018).

Lexical substitutes are often employed as alternative representations to raw embeddings (Alagic et al.,
2018). These representations consist of sets of automatically generated replacements for specific occur-
rences of words in-context. Unlike embeddings, lexical substitutes can be directly inspected to infer word
meaning. However, the interpretation process requires more time and effort compared to the conventional
practice of consulting a dictionary for satisfying meaning definitions. Additionally, interpreting the meaning
of a word remains challenging, as lexical substitutes can include stopwords and partial word pieces (Card,
2023), equally plausible alternatives with different meanings (Chiang and Lee, 2023), and even contradictory
replacements (Justeson and Katz, 1991).

With the recent advancements in text generation, automatically generated sense definitions become a
viable approach for word usage representation, as these definitions offer descriptive interpretations of words
in-context, providing a valuable tool with a level of interpretability comparable to manually curated vocab-
ularies (Gardner et al., 2022).

Generating word sense definitions. Generating word sense definitions has initially gained attention to
enhance the interpretability of static embeddings (Mickus et al., 2022; Gadetsky et al., 2018). Originally, the
task involved generating a natural language definition given a single embedding of a target word (Noraset
et al., 2017). However, since words can carry multiple meanings, advancements in contextualized modeling
have shifted the focus to the generation of appropriate sense definitions for words in context (Zhang et al.,
2022; Huang et al., 2021; Mickus et al., 2019; Ishiwatari et al., 2019).

Generated definitions are useful in a multitude of applications such as the generation of lexicographic
resources for low-resource languages (Bear and Cook, 2021), explaining register- or domain-specific vocab-
ulary (Ni and Wang, 2017; August et al., 2022), or language learning scenarios (Zhang et al., 2023; Kong
et al., 2022; Yuan et al., 2022).

While early works use sequence-to-sequence models for definition modeling (Ni and Wang, 2017; Gadet-
sky et al., 2018; Mickus et al., 2019), later works utilize pretrained language models such as BART (Bevilac-
qua et al., 2020; Segonne and Mickus, 2023; Lewis et al., 2020) and T5 (Huang et al., 2021; Tseng et al.,
2023; Raffel et al., 2020).

More recently, Giulianelli et al. (2023) has proposed using generated definitions as interpretable word us-
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Figure 9.1: LlamaDictionary is a Llama chat model fine-tuned with lexicographic resources to generate
a sense definition from an input word usage.

age representation for the analysis of lexical semantic change and fine-tuned a new model called Flan-T5-
Definition based on Flan-T5 (Chung et al., 2024). Inspired by this work, we follow the idea that def-
initions can be used as interpretable representations and also position our work with a focus on modeling
word meaning and meaning change. Inspired by Bevilacqua et al. (2020), we encode definitions as sentence
embeddings. However, we model the meaning of words in-context with a single sense definition rather than
a set.

9.3 Automatic definition generation

In this chapter, we fine-tuned two popular open-source generative models through instruction tuning, namely
Llama2chat1 and Llama3instruct2. We specifically chose to fine-tune chat models because they were al-
ready optimized to generate responses adhering to specific instruction prompts. We call the models re-
sulting from fine-tuning LlamaDictionary. In the following, we refer to Llama2Dictionary and
Llama3Dictionary for the fine-tuned versions of Llama2chat and Llama3instruct, respectively.

Using Llama2Dictionary and Llama3Dictionary, we complement the existing Flan-T5-
Definition 3B model by Giulianelli et al. (2023) with two larger Llama 7B and 8B, chat-based versions.

1Llama-2-7b-chat-hf
2Meta-Llama-3-8B-Instruct
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9.3.1 Data

We fine-tune Llama2chat and Llama3instruct on the same English data used by Giulianelli et al. (2023).
The data consists of word usages ⟨𝑤, 𝑒, 𝑑⟩, where 𝑤 represents a target word, 𝑒 denotes an example context
where 𝑤 occurs, and 𝑑 is a human-curated definition for the lexicographic sense of the word 𝑤 in the ex-
ample 𝑒. The considered word usages span three benchmarks previously extracted from the Oxford English
Dictionary (Gadetsky et al., 2018), WordNet (Ishiwatari et al., 2019), and Wiktionary (Mickus et al., 2022),
respectively. However, while Giulianelli et al. (2023) use all the Train-Dev-Test partitions during fine-tuning,
we use only Train and Dev and reserve Test for evaluation purposes. Table 9.1 reports the main statistics of
these benchmarks.

Oxford WordNet Wiktionary Tot.
Train # words

# definitions
# def. per word

33,128
97,802
2.95

7,935
13,854

1.75

18,030
31,142

1.73

45,070
142,798

3.17
Dev # words

# definitions
# def. per word

8,863
12,222
1.38

998
1,748
1.75

2,561
4,525
1.77

11,666
18,495

1.59
Test # words

# definitions
# def. per word

8,848
12,228
1.38

1,001
1,774
1.77

2,361
4,436
1.69

11,718
18,438

1.57
Table 9.1: Train-Dev-Test partitions of the considered benchmarks. For each partition, we report the number
of unique words, the number of unique definitions, and the average number of definitions per target word.

9.3.2 Fine-tuning

Llama2chat and Llama3instruct with 7 and 8 billion parameters, respectively, are large, decoder-only archi-
tectures trained on extensive amounts of data, followed by supervised fine-tuning through instruction tun-
ing (Zhang et al., 2024) and iterative refinement using reinforcement learning from human feedback (Kauf-
mann et al., 2024). We further fine-tuned these models through instruction tuning for sense definition gen-
erations.

Given the high costs associated with fine-tuning large language models, we employed a parameter-
efficient fine-tuning (Han et al., 2024) that enables efficient adaptation by only fine-tuning a small number
of additional model parameters instead of the entire model. This approach significantly reduces computa-
tional and storage costs. Specifically, we fine-tuned using Low-rank Adaptation (LoRA, Hu et al., 2021). 3

Experimented hyper-parameters are reported in Table D.1 and D.2.
For fine-tuning, we used cross-entropy loss calculated on all tokens over 4 epochs, with a batch size

of 32, a maximum sequence length of 512, and packing to train efficiently on multiple samples simultane-
ously (Kosec et al., 2021).

3We provide all our data, code, and results at https://github.com/FrancescoPeriti/LlamaDictionary.
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In line with Huerta-Enochian (2024), who demonstrated that prompt loss can be safely ignored for many
datasets, we observed lower preliminary results in the evaluation tasks for models chosen based on validation
performance. Therefore, we selected the final model based on the checkpoint at the last training epoch.

9.3.3 Instruction-tuning

We fine-tuned Llama2chat and Llama3instruct using the prompt shown in Figure 9.1. For each word us-
age ⟨𝑤, 𝑒, 𝑑⟩, we substituted TARGET with the actual target 𝑤, and EXAMPLE and DEFINITION with the
example 𝑒 and the definition 𝑑, respectively.

For our prompt, we drew inspiration from prompts used in previous work, specifically, we employed a
prompt similar to those used by Giulianelli et al. (2023). In line with Li et al. (2023), we incorporated an
emotional stimulus (in Figure 9.1, Please) to enhance the performance. Additionally, similarly to Kocoń
et al. (2023); Laskar et al. (2023); Periti et al. (2024d), we structured our prompt in a format that facilitates
parsing and comprehension.

9.4 Evaluation setup

Our evaluation is structured into two parts. First, we assess the quality of definitions generated by Llama
Dictionary and Flan-T5-Definition through the Definition Generation (DG) task. For this eval-
uation, we directly utilize the generated sense definitions.

Next, we explore their utility in three popular Natural Language Processing tasks, namely Word-in-
Context (WiC), Lexical Semantic Change (LSC), and Word Sense Induction (WSI). Specifically, instead
of using standard token embeddings, we view sense definitions as intermediate sense representations and
encode these as embeddings through a pretrained sequence embedding model. Formally, this means that:
given an occurrence of a word𝑤, we employ a generative model 𝑔 (i.e., LlamaDictionary orFlan-T5-
Definition) to generate a definition 𝑑, which we subsequently encode as a vector 𝑣 using a sentence
embedding model 𝑚, i.e., 𝑣 = 𝑚(𝑑) = 𝑚(𝑔(𝑤)).

Following Giulianelli et al. (2023), we used the all-distilroberta-v1 sentence SBERT model (Reimers
and Gurevych, 2019) to encode definitions as contextualized sentence embeddings. To validate our results,
we also evaluate twelve other SBERT models which show comparable results. Furthermore, we extend our
evaluation by also considering generated definitions by the Flan-T5-Definition model recently fine-
tuned by Giulianelli et al. (2023)4 as this model has not been evaluated on the WiC, WSI, and LSC tasks
previously.

4flan-t5-definition-en-xl
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Target 𝑤 Example 𝑒 Definition 𝑑 LlamaDictionary
revitalize This food revitalized the patient Restore strength Give new life or energy to

glove
Maxwell gloved his hand so that he
would n’t leave fingerprints ,
then pulled the trigger

To put a glove or gloves on . Wear a glove to protect the hand
when performing an activity

Table 9.2: Examples of pertinent definitions generated by LlamaDictionary for two word usages. The
generated definitions are unfairly penalized by standard evaluation metrics.

9.4.1 Definition generation (DG)

Given a target word 𝑤 and an example usage 𝑒, the task is to generate a natural language definition 𝑑
that is grammatical, fluent, and faithful to the meaning of the target word 𝑤 as used in the example
usage 𝑒 (Giulianelli et al., 2020).

We assess the models in generating sense definitions for both familiar (Seen during training) and unfa-
miliar (Unseen) domains and styles.

For Seen evaluation, we use the WordNet, Oxford, and Wiktionary Test sets (see Table 9.1).
For Unseen evaluation, we consider the Test sets of two additional benchmarks comprising word usages

from The Urban Dictionary (the largest online slang dictionary) (Ni and Wang, 2017) and Wikipedia (with
rare words and phrases) (Ishiwatari et al., 2019). The Train set of these benchmarks were not considered
during training.

Urban Wikipedia
Test # words

# definitions
# def. per word

25,909
34,974
1.35

56,008
8,193
6.84

Table 9.3: Test partitions of Unseen DG benchmarks.

The decision to exclude Urban and Wikipedia from training was threefold. Firstly, their exclusion
broadens the scope of our evaluation by considering familiar and unfamiliar usages. Secondly, it enabled
a direct comparison with Flan-T5-Definition, a T5-based (Raffel et al., 2020) model. Finally, we
refrained from fine-tuning the model with bad, slang, or offensive words, and with numerous erroneous
entries (e.g., definitions comprising single Arabic numerals or part-of-speech tags) in Urban (Huang et al.,
2021). Table 9.3 reports the main statistics of these benchmarks.

For comparison with previous work, we evaluatedLlamaDictionary andFlan-T5-Definition
by considering standard Natural Language Generation metrics such as BLEU (Papineni et al., 2002), NIST
(Doddington, 2002), SacreBLEU (Post, 2018), ROUGE-L (Lin, 2004), METEOR (Banerjee and Lavie,
2005), and EXACT MATCH. Since some pertinent definitions may be unfairly penalized due to missing
lexical overlap (see Table 9.2), we follow Giulianelli et al. (2023) and consider BERT-F1 Score (Zhang
et al., 2020), which represents a semantic and thus valuable metric for this task.
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9.4.2 Word-in-Context (WiC)

Given a target word 𝑤 and two contexts 𝑐1 and 𝑐2 where 𝑤 occurs, the task is to identify whether
the occurrences of 𝑤 in 𝑐1 and 𝑐2 correspond to the same meaning or not (Pilehvar and Camacho-
Collados, 2019).

We evaluate the utility of sense definitions using sequence embeddings 𝑣 = 𝑚(𝑔(𝑤)) on the original WiC
benchmark (Pilehvar and Camacho-Collados, 2019). We refrain from using the Train set and instead generate
two embeddings, 𝑣, for each context pair (one for 𝑐1 and one for 𝑐2) within the Dev and Test partitions (see
Table 9.4). To address the WiC task, we then train a threshold-based classifier, for each tested model, using
the cosine distance between the two embeddings of each pair in the Dev set. The training process involves
selecting the threshold that maximizes the performance on the Dev set. Finally, we apply this classifier to
conduct our evaluation over the Test set. We utilize accuracy as the assessment metric for comparison with
previous work (Pilehvar and Camacho-Collados, 2019).

WiC
Partition
# pairs
# words

Dev
638
599

Test
1,400
1,184

Table 9.4: Test-Dev partitions for Word-in-Context.

9.4.3 Lexical Semantic Change (LSC)

Given a set of target words 𝑤 and two corpora 𝐶1 and 𝐶2 of different time periods, the task is to rank
the targets according to their degree of lexical semantic changea between 𝐶1 and 𝐶2 (Schlechtweg
et al., 2020).

a “Innovations which change the lexical meaning rather than the grammatical function of a form” (Bloomfield, 1933)

We evaluate our approach on the original SemEval-English LSC benchmark (Schlechtweg et al., 2020).
The dataset consists of two corpora and a test set of 46 target words (see Table 9.5). Train and Dev sets are
not available as the task is set in an unsupervised scenario. To address the LSC task, we leverage popular
methods generally applied using word embeddings rather than sentence embeddings (Periti and Tahmasebi,
2024a). In particular, we evaluate two different approaches:

Average Pairwise Distance (APD) is defined as form-based method, meaning that it quantifies change
without modeling the underlying meanings of the words. Given a word 𝑤, APD computes the degree of
change as the average pairwise distance between the embeddings of 𝑤 generated for 𝐶1 and 𝐶2 (Giulianelli
et al., 2020).
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Average Pairwise Distance Between Sense Prototypes (APDP) is defined as sense-based method, mean-
ing that it quantifies change after modeling the underlying meanings of the words via clustering. Following
previous work (Rother et al., 2020) and the recent BERTopic pipeline (Grootendorst, 2022), we consider the
HDBSCAN algorithm (McInnes et al., 2017). Given a word𝑤, APDP computes the degree of change as the
average pairwise distances between the sense prototypes of 𝑤 in the time periods 𝐶1 and 𝐶2, where sense
prototypes are the set of embeddings obtained by averaging the embeddings of 𝐶1 and 𝐶2 in each cluster,
respectively (Kashleva et al., 2022).

For comparison with previous work, we utilize the Spearman rank correlation between gold scores and
predictions as the assessment metric.

Test LSC - WSI
# words
# clusters per word
max # of clusters
min # of clusters

46
9.4
55
1

Table 9.5: Test set for Lexical Semantic Change and Word Sense Induction, EN portion of SemEval-2020
Task 1.

9.4.4 Word Sense Induction (WSI)

Given a set of occurrences for a target word 𝑤, the task is to automatically determine the different
senses of 𝑤 without relying on predefined sense inventories (Agirre and Soroa, 2007).

For simplicity, we follow the recent comparison by Periti and Tahmasebi (2024a) and perform a WSI
evaluation on the same benchmark used for the LSC evaluation, as it also includes gold scores for WSI.
Thus, we evaluate the clustering result obtained by using HDBSCAN against labels provided for clusters in
the LSC data.

As assessment metrics, we utilize Rand Index (RI) (Rand, 1971) and its Adjusted version (ARI) (Hubert
and Arabie, 1985) as well as Purity (Manning, 2009). RI/ARI evaluate the similarity among two clustering
results. ARI can yield low scores when a clustering result contains numerous small, yet coherent clusters.
This does not necessarily indicate poor clustering quality, especially when the clusters are semantically mean-
ingful. PUR assigns each cluster to the class that is most frequent in the cluster, measuring the accuracy of
this assignment by counting the relative number of correctly assigned elements.
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9.5 Evaluation results
In our evaluation, we used Llama2Dictionary5 and Llama3Dictionary6 with the parameters re-
ported in Table D.2 and Flan-T5-Definition. See Table D.5 for specific parameters for each task.

9.5.1 Definition Generation (DG)

For the Seen benchmark evaluation, we consider the average performance over WordNet and Oxford (see
Table 9.6). Note that, for Wiktionary, we do not compare with Flan-T5-Definition as the entire
benchmark (i.e., Train-Dev-Test) has been used for training. Further details and comparisons with state-of-
the-art methods across multiple benchmarks are reported in Table D.6.

For Flan-T5-Definition, we report the original score presented by Giulianelli et al. (2023) (re-
ported) and the score we obtain in our evaluation (observed). We believe that slight differences, where the
observed results consistently under-perform compared to the reported results, are likely due to different pa-
rameter settings (e.g., temperature or greedy decoding). Nonetheless, the results are very similar.

Compared to Flan-T5-Definition observed, LlamaDictionary obtains higher results in all
considered metrics. In addition, for reported, we achieve higher results for all metrics except BERT-F1,
where our result is comparable (0.889 compared to 0.909). This is an interesting result considering that
Flan-T5-Definition has been fine-tuned on more data than LlamaDictionary, i.e., all Train-Dev-
Test sets of Wiktionary.

For the Unseen benchmarks, previous works have typically also used the data during training and are thus
not fairly comparable. We report these results in Table D.2. Thus we can evaluate onlyLlama2Dictionary
and Llama3Dictionary and find that the latter consistently outperforms the former, unlike for the Seen
benchmarks where the models were more even. This can be attributed to the fact that the Llama3-based
model is larger than Llama2 in terms of parameters and training data.

For the Unseen benchmarks, the BERT-F1 scores, which rely on semantic similarity, are comparable to
the Seen benchmarks. For the remaining scores, which rely on lexical overlap, the results for the Unseen
benchmark are consistently, and significantly lower. We believe that this drop stems both from the issues
discussed in Table 9.2 as well as the fact that the base Llama chat models, which have undergone safety
tuning, are likely restricted from generating foul language, malicious, and toxic content that can be found in
the Urban dictionary. Compared to the Seen benchmarks, the Unseen benchmarks also contain multi-word
phrases for which the models have not been trained.

9.5.2 Word-in-Context (WiC)

Our results are reported in Table 9.7. Results using different SBERT models are summarized in Figure 9.2.
Notably, we achieve a new state-of-the-art performance of .731 for the WiC task leveraging the definitions

5Llama2Dictionary
6Llama3Dictionary
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WordNet - Oxford Seen Urban - Wikipedia Unseen
Llama2Dict.
Llama3Dict.

Flan-T5-D. rep.
Flan-T5-D. obs.

Llama2Dict.
Llama3Dict.

-
Flan-T5-D. obs.

ROUGE-L .481
.400

.454

.364
.161
.184

-
.173

BLEU .402
.283

.257

.266
.089
.100

-
.095

BERT-F1 .880
.889

.909

.885
.764
.849

-
.849

NIST .938
.956

-
.828

.346

.405
-

.339
SACREBLEU 22.356

21.975
-

18.851
4.823
5.484

-
5.186

METEOR .370
.426

-
.333

.151

.184
-

.165
EX. MATCH 50.161

50.093
-

.110
.000
.000

-
.000

Table 9.6: Average results for the Definition Generation task. The best results are highlighted in bold.

generated by Flan-T5-Definition + SBERT. The result by Bevilacqua et al. (2020) is particularly
interesting for comparison, as it has also been obtained by relying on generated definitions. However, unlike
our approach, they use multiple definitions per word usage. In contrast, we use a single definition per word
usage, achieving higher results by employing both LlamaDictionary and Flan-T5-Definition.

As the WiC task requires distinguishing the underlying meaning of word occurrences, the high perfor-
mance of both Flan-T5-Definition and LlamaDictionary indicates that the use of definitions is
a reasonable approach to capturing the intended sense while offering interpretability.

WiC Accuracy
Levine et al. (2020) .721

Bevilacqua et al. (2020) .711
Peters et al. (2019) .709

Chang and Chen (2019) .692
Flan-T5-Definition + SBERT .731
Llama2Dictionary + SBERT .729
Llama3Dictionary + SBERT .705

Table 9.7: Evaluation results for the Word-in-Context task. The best result is highlighted in bold.

9.5.3 Lexical Semantic Change (LSC)
During our evaluation, we noticed that some of the annotated sentences present in the LSC benchmark
were too long to be processed by our generative models (e.g., long word usages containing multiple sen-
tences). This prompted us to evaluate the results by considering different sentence lengths, specifically 50,
100, 150, and 200 characters as well as the full sentence length. Our results are reported in Figure 9.3 and
are consistently statistically significant. However, since we needed to discard up to 30% of sentences for
LlamaDictionary, we proceeded with our experiments using up to 200 characters from each sentence.

Recent findings show that form-based approaches typically outperform sense-based approaches for the
LSC task (Periti et al., 2024b) and that training models on WiC tasks enhance the modeling of lexical se-
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Figure 9.2: Left: Accuracy distribution on the base WiC task, using thirteen SBERT models. Right: ARI,
PUR, and RI distribution on the WSI task, by considering our settings for the LSC task.

Figure 9.3: Avg. Spearman correlation by addressing LSC on different settings: different sentence length
(left) and short word removal (rigth).
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mantics (Arefyev et al., 2021). Similarly, we obtain higher performance for the form-based approach (APD,
i.e., .662 – .682) than the sense-based one (APDP, i.e., .575 – .667), see Table 9.8. Although our results
are lower than the established WiC-trained baselines, they are, on average, higher than those obtained using
pretrained models (see Periti and Montanelli, 2024 for an extensive overview). Additionally, we also note
that processing the generated definitions by removing short words with fewer than 2, 3 or 4 characters, in
addition to punctuation, consistently boosts the performance of Flan-T5-Definition, reaching corre-
lations of .755, .762 and .827, respectively (see Figure 9.3). However, we did not observe the same boost
for definitions generated by LlamaDictionary. After reviewing a small set of generated definitions, we
hypothesize that this is due to the length of definitions generated by the models, with LlamaDictionary
trained to provide concise definitions (See Figure 9.1).

When compared to state-of-the-art form-based approaches, our approach achieves medium-strong cor-
relation results but does not outperform the considered baselines. When we consider APDP, the Llama2
Dictionary model obtains the highest result, achieving a new state-of-the-art of .667 for interpretable
LSC. This aligns with Giulianelli et al. (2023), who observe that the clusters of definitions have a lower
intra-cluster dispersion compared to clusters using token and sentence embeddings.

LSC method Spearman
WiC-trained Aida and Bollegala (2024) form-based .774

WiC-trained Periti and Tahmasebi (2024a) form-based .886
Keidar et al. (2022) form-based .489

Giulianelli et al. (2022) form-based .514
Flan-T5-Definition + SBERT form-based .682
Llama2Dictionary + SBERT form-based .667
Llama3Dictionary + SBERT form-based .662

WiC-trained Periti and Tahmasebi (2024a) sense-based .652
Rother et al. (2020) sense-based .512

Montariol et al. (2021) sense-based .456
Flan-T5-Definition + SBERT sense-based .575
Llama2Dictionary + SBERT sense-based .667
Llama3Dictionary + SBERT sense-based .587

Table 9.8: Evaluation results for the Lexical Semantic Change task. The best result is highlighted in bold.
Results are reported using both form-based and sense-based methods.

9.5.4 Word Sense Induction (WSI)

Our WSI evaluation relies on a recently developed benchmark originally designed for LSC. This benchmark
contains cluster labels derived from manually annotated judgments of words in-context. These can there-
fore be considered as silver label data, rather than gold label data, as the clusters themselves have not been
manually labeled.

Our results are reported in Table 9.9. We observe the highest results for the WiC-trained XL-LEXEME
model (Cassotti et al., 2023a), and GPT-4, where the training data is unknown and thus could include both
WiC data and the WSI data used in this evaluation (Balloccu et al., 2024). When compared to standard
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pretrained models (i.e., BERT, mBERT, XLM-R), our results are consistently higher.
In line with Periti and Tahmasebi (2024a), we observe low results in terms of ARI. We believe this stems

from the quality of the original clusters to which we are comparing. The more flexible RI metric in Table 9.9
shows results comparable to the PUR scores.

In terms of the resulting clusters, we obtain an average number of clusters of 3.91 compared to the 9.61
of the original benchmark. This is in line with our intuition that definitions can be considered as prototypes
of multiple word usages.

model ARI PUR RI

Results from
Periti and Tahmasebi (2024a)

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4

.136

.067

.068

.273

.340

.700

.644

.737

.834

.877

.629

.526

.582

.757

.802
Flan-T5-Definition
Llama2Dictionary
Llama3Dictionary

.088

.144

.073

.832

.835

.832

.713

.702

.699

Table 9.9: Evaluation results for the Word Sense Induction task. The best result is highlighted in bold.

9.6 Discussion and considerations
Inspired by recent advancements in text generation, in this chapter, we investigated the potential of fine-
tuned large language models to generate sense definitions for words in-context. Specifically, we fine-tuned
two new Llama chat-based models, called LlamaDictionary, and assessed their performance along with
an existing Flan-T5-Definition model on the Definition Generation task. Next, we explored their utility
for modeling word meaning by addressing lexical semantic tasks such as Word-In-Context, Word Sense
Induction, and Lexical Semantic Change. In our experiments, we considered the generated definitions as
intermediate representations, passed through a sentence embedding model.

Our results consistently show that we can use generated definitions to explicitly model the meaning of
word usages through interpretable definitions. In all tasks, the use of sentence embeddings for generated
definitions outperformed the use of standard token embeddings for word occurrences, setting new state-of-
the-art results. Across tasks, we find that the use of the larger 7B and 8B LlamaDictionary models
compared to the smaller 3B T5-based model obtain slightly higher results in the Definition Generation task,
while being equally strong on the lexical semantics tasks. An extension of the LlamaDictionarymodels
is to fine-tune them on all the benchmarks that have been used for the Flan-T5-Definition model, as
well as to fine-tune the models further on generated usage sentences (Malkin et al., 2021; Ma et al., 2024b).

Our evaluation using automatically generated sense definitions in this chapter paves the way for future ad-
vancements in modeling lexical semantics. For example, by offering an automatic labeling of senses, we can
support the creation of lexicographic resources for all languages, including low-resource languages (Kong
et al., 2022), providing a way to better know what change our words have experienced over time.
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Limitations. In our work, we consider only English data as there are few available benchmarks on Defini-
tion Generation, neither for training nor comparison on other languages. Given the necessary resources, we
believe our approach to be language-agnostic and readily applicable to other languages.

We limited our experiments to LlamaDictionary and Flan-T5-Definition due to the cost and
required computational resources for fine-tuning other large language models. Such large-scale models and
experimental data must be approached cautiously as they will otherwise generate enormous computational
costs (both in terms of monetary and environmental costs).

A further limitation of our models arises from the fact that existing Definition Generation benchmarks
occasionally include multiple definitions for the same word meanings (e.g., Table D.4). While this may
serve as a form of regularization for training models, we believe that it may have influenced the uniformity
in style and wording of our models. Unfortunately, statistics for these issues are non-existent. We thus
advocate for further refinement to ensure consistency and coherence across definitions. We believe that,
ideally, maximizing uniformity in definitions is desirable to develop models that offer consistent responses
for similar word usages. This will be beneficial for any large-scale follow-up analysis relying on our evaluated
approach.

In this chapter, we integrated generated definitions with sentence embeddings. However, generated defi-
nitions often display higher lexical similarity to one another compared to word usages. Given the anisotropic
nature of embedding spaces in large language models (Ethayarajh, 2019), the use of sentence embeddings
might complicate discerning differences in definition of different complexity for language learners (Yuan
et al., 2022). We thus believe future research should also explore the utilization of definition generation
models alongside more conventional text-mining methods, such as count-based models. Count-based mod-
els may offer a more straightforward approach to processing interpretable, lexical similar definitions.
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Chapter 10

Modeling historical resonance

“To beer or not to beer”
Spaggiari et al., A meta-analysis of the effects of

beer consumption on cardiovascular health. PLoS One.

10.1 Introduction
Thus far, in the preceding chapters of this thesis, we focused on the computational modeling of semantic
change at word-level. Our discussion centered on lexical semantic change and modeling of word meaning
by considering the temporal nature of language. In this chapter, we move our attention towards the computa-
tional modeling of semantic shift at text-level. In particular, we consider the semantic change of existing text
(e.g., well-known phrases, sentences, multi-word expressions) that is re-used over time in different contexts.

As individuals, we often reuse someone else’s words for diverse reasons and in various ways. This lin-
guistic choice transcends cultural and temporal boundaries, representing an interesting phenomenon to study
in Linguistics (Bois, 2014). For instance, linguistic scholars have investigated theories of Reception (Thomp-
son, 1993; Hohendahl and Silberman, 1977) and Resonance (McDonnell et al., 2017; Dimock, 1997) to un-
derstand how individuals and communities interpret and reuse historical texts many years after they were
written.

With the advent of digitization, recent years have seen a growing interest in computational methods for
studying text reuse, i.e., “the reuse of existing written sources in the creation of a new text” (Clough et al.,
2002). Existing methods focus on the main task of Text Reuse Detection (TRD). In TRD, text reuses are
all assumed as “topically related to the source” (Hagen and Stein, 2011; Chiu et al., 2010), the boundaries
of reused text are unknown, and the goal is to detect text reuse across a diachronic corpus (Seo and Croft,
2008). Whether and how the topic(s) or context(s) of a reused text differs from the source is generally
overlooked. Thus, new methods are needed for modeling recontextualization, i.e., “the dynamic transfer-
and-transformation of a text from one discourse/text-in-context to another” (Connolly, 2014; Linell, 1998).
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In this paper, we propose a framework, called Topic Relatedness of Text Reuse (TRoTR), to evaluate
computational methods for capturing the different recontextualizations of text reuse. In TRoTR, the bound-
aries of reused text are known and the goal is to distinguish reuses of the same text according to their different,
latent (i.e., unlabeled) topics. As an example, consider three recontextualizations of the biblical passage John
15:13 (in bold):

(1) It’s the wonderful pride month!! ♥ ♥ ♥ ♥ ♥ ♥ Honestly pride is everyday! Love is love don’t forget I love you
♥. Remember this! John 15:12-13: “My command is this: Love each other as I have loved you. Greater love
has no one than this: to lay down one’s life for one’s friends”

(2) At a large Crimean event today Putin quoted the Bible to defend the special military operation in Ukraine which
has killed thousands and displaced millions. His words “There is no greater love than if someone gives soul
for their friends”. And people were cheering him. Madness!!!

(3) “Freeing people from genocide is the reason, motive & goal of the military operation we started in the Donbas
& Ukraine”, Putin says, then quotes the Bible: “There is no greater love than to lay down one’s life for one’s
friends.” It’s like Billy Graham meets North Korea

In this example, the biblical passage is incorporated within three texts with different topic recontextualiza-
tions. In particular, the text (1) has a different topic with respect to text (2) and (3), while the texts (2) and (3)
are topic related. In TRoTR, we support the recognition of such a kind of recontextualizations by leveraging
the notion of topic relatedness. TRoTR represents a new opportunity in Natural Language Processing (NLP)
and can be used to distinguish recontextualizations of any kind of text reuse (e.g., proverbs, Ghosh and
Srivastava, 2022), to investigate phenomena such as the use of misquotations (Porrino et al., 2008) and
dogwhistles (Hertzberg et al., 2022), as well as to provide in-context interpretation to vague utterances, with
special focus on enhancing the LLMs’ capabilities to this end (DeVault and Stone, 2004).

Chapter outline.
This chapter includes materials originally published in the following publication:

Francesco Periti, Pierluigi Cassotti, Stefano Montanelli, Nina Tahmasebi, and Dominik Schlechtweg.
2024c. TRoTR: A Framework for Evaluating the Re-contextualization of Text Reuse. In Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Miami,
Florida, USA. Association for Computational Linguistics.

In this chapter, we introduce a novel framework, called TRoTR, with two NLP tasks called Text Reuse in-
Context (TRiC) and Topic variation Ranking across Corpus (TRaC). The chapter is organized as follows.
In Section 10.2, we frame our framework within the relevant literature. In Section 10.3, we present the
TRoTR framework and outline the structure of TRiC and TRaC. In Section 10.4, we present the TRoTR
benchmark containing gold labels derived by human judgments of topic relatedness in context pairs. The
judgments show an inter-annotator agreement of .811, calculated by the average pairwise correlation on

196

https://aclanthology.org/2024.emnlp-main.774/


assigned assessments. In Section 10.5, we describe the setup of our evaluation. In Section 10.6, we present
the results of our experiments. In particular, we evaluate 36 SBERT models by considering 4 settings.
Our results reveal that these models reach high performance (correlation 0.6-0.8), but are more sensitive to
semantic similarity rather than topic relatedness. Finally, we summarize the findings of this chapter, as well
as its main limitations, in Section 10.7.

10.2 Background and related work

Works related to TRoTR are about text reuse and recontextualization, semantic textual similarity and relat-
edness, and topic modeling and annotation.

Figure 10.1: The TRoTR framework consists of two tasks, called Text Reuse in-Context (TRiC) and Topic
variation Ranking across Corpus (TRaC), along with a corresponding annotation process. We use [...]
to denote the left and right context of a target text-reuse excerpt.

Text reuse and recontextualization. Although multiple facets of text reuse have been investigated, such
as historical (Büchler et al., 2014), cross-lingual (Muneer and Nawab, 2022), allusive (Manjavacas et al.,
2019), explicit (Franzini et al., 2018), non-literal (Moritz et al., 2016), and local (Seo and Croft, 2008),
computational approaches primarily focuses on detecting instances of text reuse. To the best of our knowl-
edge, studies extending beyond mere TRD often leverage text metadata to analyze reuse within temporal and
spatial graphs (Khritankov et al., 2015; Smith et al., 2013; Xu et al., 2014). However, these studies do not
specifically focus on capturing how the reused text is recontextualized, thereby leaving a gap in the current
literature.
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Among recent advancements in NLP, some works are related to the recontextualization of text. Wilner
et al. (2021) focus on Narrative Analysis by investigating how the recontextualization of events across whole
stories impacts word embeddings. Ghosh and Srivastava (2022) introduce a benchmark for evaluating the
LLMs’ capability of generating proverbs in-context of narratives.

Over the past few years, there has been growing interest in quotations, i.e. “well known phrases or
sentences that we use for various purposes such as emphasis, elaboration, and humor” (Lee et al., 2016).
This interest extends to various forms of quotations spanning from epigraphs (Bond and Matthews, 2018) to
biblical references (Moritz et al., 2016). In particular, there has been a surge of attention in recommendation
systems that offer off-the-shelf quotations based on provided context (Wang et al., 2023, 2022, 2021b).

Text 1 Text 2 Semantic Textual
Similarity

Semantic Textual
Relatedness

Semantic Textual
Topic Relatedness

It’s the wonderful pride month!! ♥ ♥
♥ ♥ ♥ ♥ Honestly pride is everyday!
Love is love don’t forget I love you ♥.
Remember this! John 15:12-13: “My
command is this: Love each other as I
have loved you. Greater love has no
one than this: to lay down one’s life
for one’s friends”

Happy Pride Month! ♥ Remember,
pride isn’t just for a month—it’s a
daily celebration! Love knows no
boundaries, and I want you to know
that I cherish you every single day. ♥
Let’s always remember these power-
ful words from John 15:12-13: “My
command is this: Love each other as I
have loved you. Greater love has no
one than this: to lay down one’s life
for one’s friends”

✓

paraphrase
✓

related
in some aspects

✓

related
in topic

“Freeing people from genocide is the
reason, motive & goal of the military
operation we started in the Donbas
& Ukraine”, Putin says, then quotes
the Bible: “There is no greater love
than to lay down one’s life for one’s
friends.” It’s like Billy Graham meets
North Korea

At a large Crimean event today Putin
quoted the Bible to defend the special
military operation in Ukraine which
has killed thousands and displaced
millions. His words “There is no
greater love than if someone gives
soul for their friends”. And people
were cheering him. Madness!!!

×
neither paraphrases

nor entailment

✓

related
in some aspects

✓

related
in topic

It’s the wonderful pride month!! ♥ ♥
♥ ♥ ♥ ♥ Honestly pride is everyday!
Love is love don’t forget I love you ♥.
Remember this! John 15:12-13: “My
command is this: Love each other as I
have loved you. Greater love has no
one than this: to lay down one’s life
for one’s friends”

At a large Crimean event today Putin
quoted the Bible to defend the special
military operation in Ukraine which
has killed thousands and displaced
millions. His words “There is no
greater love than if someone gives
soul for their friends”. And people
were cheering him. Madness!!!

×
neither paraphrases

nor entailment

✓

related
in some aspects

×
unrelated
in topic

You are altogether beautiful, my dar-
ling; there is no flaw in you. Charm
is deceitful, and beauty is vain, but
a woman who fears the Lord is to be
praised

At a large Crimean event today Putin
quoted the Bible to defend the special
military operation in Ukraine which
has killed thousands and displaced
millions. His words “There is no
greater love than if someone gives
soul for their friends”. And people
were cheering him. Madness!!!

×
neither paraphrases

nor entailment

×
unrelated

in any aspects

×
unrelated
in topic

Table 10.1: Examples of semantic textual similarity, semantic textual relatedness, and topic relatedness.
The first and last pair of sentences are examples of paraphrases and semantically unrelated content, respec-
tively. Most people will agree that the second pair of sentences is more related in topic than the third pair of
sentences. However, some people may still consider the third pair as semantically related due to the presence
of the same quotation.
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Semantic textual similarity and relatedness. In NLP, a possible option for assessing text recontextualiza-
tion is to use semantic (textual) similarity. However, semantic similarity is traditionally used as a metric to
assess paraphrases or entailment equivalence between two texts (Hercig and Kral, 2021; Konopík et al., 2017;
Cer et al., 2017; Agirre et al., 2016, 2015, 2014, 2013, 2012); thus, it is not suitable for TRoTR. Semantic
(textual) relatedness has been long recognized as a core aspect in understanding the meaning of texts (Miller
and Charles, 1991), and encompasses a multitude of intricate relationships, such as sharing a common topic,
expressing similar viewpoints, or originating from the same temporal period (Abdalla et al., 2023). However,
there is no universally accepted linguistic theory or set of guidelines for evaluating relatedness. Its assessment
is inherently more complex than semantic similarity, as two texts may lack semantic similarity but still be
semantically related through some textual relationship (see Table 10.1).

Topic modeling and annotation. An alternative method for assessing text recontextualization is by an-
alyzing topics where text is reused (Jin and Spence, 2021; Kim et al., 2018). Topic models can be useful
tools to discover latent topics in collections of documents (Abdelrazek et al., 2023), either as probability
distributions like LDA (Blei et al., 2003) or clustering of embeddings like BERTopic (Grootendorst, 2022).
When applied, the derived topics need to be carefully evaluated against benchmarks containing manually
derived ground truth. As topics represent vague concepts, different guidelines for deriving ground truth use
different topic definitions tailored to the specific interests of analysis (Orita et al., 2014). Generally, these
guidelines result in manual annotations of topic labels that typically differ across annotators and thus require
post-processing techniques to be uniform and standardized (Poursabzi-Sangdeh and Boyd-Graber, 2015).
For example, annotators can use different wording to express the same concept.

As a result, there is no well-established guideline for annotating topics. However, common to different
guidelines is a definition of topic that relies on the notion what the text is about (Bauwelinck and Lefever,
2020; Hovy and Lin, 1998).

10.3 The TRoTR framework

The TRoTR framework consists of two tasks, called Text Reuse in-Context (TRiC) and Topic variation
Ranking across Corpus (TRaC), along with a corresponding annotation process (see Figure 10.1). TRiC
and TRaC are grounded on human judgments of a specific facet of semantic relatedness (see Section 10.2)
that considers the extent to which two texts share a common topic. We call this facet topic relatedness (see
Table 10.1 for an example). In our study, the definition of topic follows the popular notion of what the text
is about.

When dealing with complex problems, such as recontextualization, a general approach involves starting
with a smaller sub-problem to establish a focused foundation before further expanding. Thus, we first present
TRiC as a context-pair level task. Then, we present TRaC as a more complex corpus-level task that must be
addressed to identify potential varying targets for real, in-depth analysis.
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10.3.1 Tasks

In the TRoTR tasks, instances of text reuse are presented within different contexts, each representing a new
recontextualization of the original text.

Text Reuse in-Context frames a text reuse 𝑡 within two different contexts 𝑐1 and 𝑐2. The goal is to assess
the topic relatedness of 𝑐1 and 𝑐2. TRiC includes two subtasks, namely binary classification and ranking.
These subtasks resemble the structure of the Word-in-Context task (Pilehvar and Camacho-Collados, 2019)
and the Graded Word Similarity in Context task (Armendariz et al., 2020b), respectively. However, while
they focus on distinguishing the different meanings words can have in different contexts, TRiC focuses on
distinguishing different topics in which text is reused.

Each TRiC instance is associated with a binary label 𝑙 ∈ {0, 1} and a continuous score 1 ≤ 𝑠 ≤ 4.
• Subtask 1 - binary classification: the task is to identify, for each instance, whether the contexts 𝑐1 and
𝑐2 share roughly the same topic (i.e., 𝑙 = 1) or not (i.e., 𝑙 = 0).

• Subtask 2 - ranking: the task is to rank the TRiC instances according to the degree of topic relatedness
𝑠 of the contexts 𝑐1 and 𝑐2.

Topic variation Ranking across Corpus frames a text reuse 𝑡 within a corpus 𝐶 that includes various
contexts 𝑐𝑖 where 𝑡 occurs. TRaC resembles the structure of the Lexical Semantic Change (LSC) detection
task defined by (Schlechtweg et al., 2018; Kutuzov and Pivovarova, 2021b). However, while this focuses
on assessing the semantic change of a word, TRaC focuses on assessing the topic variation of a reused text.
Each TRaC instance is associated with a continuous score 𝑠 ∈ [0, 1] of topic variation that indicates the
variability in topic usages for a target text reuse 𝑡 across the corpus 𝐶 . Specifically, a score of 1 indicates
that a target is associated with a high number of topics, while a score of 0 indicates that a target is associated
with a single topic.

Given a set of target text reuses 𝑡 ∈ 𝑇 , the task is to rank the text reuses by the degree of topic variation
across the corpus 𝐶 .

10.3.2 Annotation process

The TRoTR annotation process is enforced to collect human judgments of topic relatedness (see Table 10.1).
In our study, we sidestep the need for annotating topics explicitly using a well-established paradigm adopted
for modeling word meaning. Our intuition is that annotating topic relatedness, instead of relying on explicit
topic labels, closely mirroring recent work exemplified in the Word-in-Context task (Pilehvar and Camacho-
Collados, 2019), which relies on annotating meaning relatedness rather than explicit sense labels.

Annotators are asked to evaluate the topic relatedness of different text reuse instances ⟨𝑡, 𝑐1, 𝑐2⟩, where 𝑡
is a target text reuse, and 𝑐1 and 𝑐2 are two different contexts in which 𝑡 occurs.
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The topic relatedness is evaluated by utilizing the four-point DURel relatedness scale (Schlechtweg et al.,
2024), with annotators following instructions inspired by the guidelines from Erk et al. (2013), as well as
those provided for SemEval-2020 Task 1 (Schlechtweg et al., 2020) and the PLATOS project (Bauwelinck
and Lefever, 2020). 1

10.4 The TRoTR benchmark

The TRoTR benchmark is composed of human-annotated instances of text reuse. Specifically, we first man-
ually collected and curated tweets containing text reuse instances. We then incorporated gold labels derived
by human annotations.

10.4.1 Data

Inspired by Moritz et al. (2016); Büchler et al. (2014), we focus on text reuse of biblical passages because
they typically show high context variety (Greenough, 2021; Cheong, 2014), the degree of which we aim to
study. Moreover, they are frequently and explicitly mentioned in-context, often with an identifying reference
(e.g., John 15:13). Tweets were collected through a manual search process, thus allowing us to avoid a TRD
phase and its validation.

For a set of 42 target passages we collected 30 tweets each. These were curated by experts by removing
minor word variations in phrasing that can stem from the use of e.g., different Bible versions.

10.4.2 Human judgments

We collected judgments according to the procedure outlined in Section 10.3.2. Specifically, we recruited
four native English speakers as annotators. Annotators were trained and tested on a small set of instances in
an online tutorial.

For each target passage 𝑡, we generate all possible context pairs where the contexts are chosen from the
30 tweets. We then randomly sampled 150 context pairs. These were presented to annotators in randomized
order to be judged for topic relatedness. Each context pair received at least two judgments, although the
majority received three.

The outcome of our annotation pipeline is a dataset of 6,300 annotated context pairs. We measured inter-
annotator agreement on judgments using Krippendorff’s 𝛼 coefficient (Krippendorff, 2019) and the weighted
mean of Spearman correlations (Spearman, 1987) between annotator pairs. Similar to previous studies that
reported Krippendorff’s 𝛼 of .439 (Loureiro et al., 2022) and weighted mean of Spearman correlation between
annotator judgments ranging from .550 to .680 (Erk et al., 2013; Schlechtweg et al., 2018), we obtained a
comparable Krippendorff’s 𝛼 score of .420 and Spearman correlation of .506.

1The annotation guidelines for TRoTR, along with its benchmark, and our code, are submitted and will be publicly available.
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10.4.3 Deriving gold labels

Following Loureiro et al. (2022), we employ filtering criteria for the annotation instances to reduce uncer-
tainty and ensure a more controlled setting.

For TRiC, we first filtered out all instances with high disagreement2, e.g. an instance with three different
judgments where it is unclear which the gold label could be. We also enforce a clear-cut separation by
filtering out all the instances where the average judgment score is between 2 and 3. This filtering results in
a more refined dataset of 3,821 annotated context pairs, characterized by a Krippendorff’s 𝛼 agreement of
.709 and a weighted average pairwise Spearman agreement of .811.

For TRaC, we adopted a different filtering approach at the level of targets to ensure a comparable number
of instance pairs when deriving the gold labels. Specifically, we filtered out the targets 𝑡 where the weighted
average pairwise Spearman agreement is below .150 leading to the exclusion of 2 targets.

TRiC labels. For each instance, we aggregate the judgments of all annotators by averaging. We then
directly use the average judgment 𝑠 of each instance to derive binary labels and continuous scores for Subtask
1 and Subtask 2.

For Subtask 1, we binarize 𝑠 as 1 if 𝑠 ≥ 2.5 or as 0 if 𝑠 < 2.5 and associate each instance with the
corresponding binary label. A threshold of 2.5 is a midpoint split on the judgment scale. It follows that the 0
label consists of Unrelated and Distantly related annotations, while label 1 consists of Identical and Closely
related annotations. Overall, our benchmark includes a total of 2,621 examples with label 0 and a total of
1,200 examples with label 1.

For Subtask 2, we directly utilize the continuous score 𝑠 for each instance.

TRaC labels. For each target, we use a judgment summary measure similar to the DURel EARLIER/LATER
measures introduced by Schlechtweg et al. (2018) in the field of LSC (Periti and Montanelli, 2024; Tahmasebi
et al., 2021a). This involves computing the average of annotator judgments over all instances for a target.
Lower scores correspond to greater topic variation, while greater scores (i.e., more Identical annotations) are
associated with less topic variation.

10.5 Evaluation setup

We use the TRoTR tasks and benchmarks to evaluate the ability of sequence-level models to capture topic
relatedness and variation in different text recontextualizations to set baselines for the tasks.

Because Sentence-BERT (SBERT) models are recognized to be the state-of-the-art architecture for ad-
dressing sequence-level tasks (Reimers and Gurevych, 2019), we choose a range of different SBERT models
tailored for sequence-level embeddings and textual similarity.

2We consider high disagreement to be a difference between the maximum and the minimum judgment of 2 or 3.
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10.5.1 SBERT models

We consider 36 SBERT models trained on a wide range of tasks including Paraphrasis, Semantic Similarity,
and Question Answering. Specifically, we evaluate all the (non-image based) pre-trained models available
at https://www.sbert.net/index.html. We evaluate each SBERT model in its pre-trained ver-
sion (base) and three different settings, namely:

• +MASK: given an instance ⟨𝑡, 𝑐1, 𝑐2⟩, we mask the text-reuse excerpt 𝑡 in the contexts 𝑐1 and 𝑐2 to
prevent that the topic estimate of topic relatedness is influenced by the common 𝑡 in 𝑐1 and 𝑐2. To this
end, we replace 𝑡 in 𝑐1 and 𝑐2 with a dash (i.e., “-”);

• +FT: we fine-tune the pre-trained model on TRiC instances using the contrastive loss (Hadsell et al.,
2006). This loss minimizes the distance between embeddings of similar sentences and maximizes the
distance for dissimilar sentences;

• +FT+MASK: we combine both the +FT and +MASK settings, meaning that we fine-tune the model
and then evaluate it by considering contexts where targets are masked.

SBERT architectures. Each SBERT model has been pre-trained using one of two architectures:
• Bi-Encoder models are designed to produce a sequence embedding for an input text sequence. Given

an instance ⟨𝑡, 𝑐1, 𝑐2⟩, we independently feed a Bi-Encoder model with the sequence 𝑐1 and 𝑐2 to obtain
the corresponding sequence embeddings 𝑢 and 𝑣. Similar to Abdalla et al. (2023), we use the cosine
similarity between 𝑢 and 𝑣 as an estimate of the topic relatedness between 𝑐1 and 𝑐2.

• Cross-Encoder models are designed to produce an output value that indicates the similarity of two
input sequences. Thus, given an instance ⟨𝑡, 𝑐1, 𝑐2⟩, we simultaneously pass the sequences 𝑐1 and 𝑐2 to
the Cross-Encoder model and use the output value as an estimate of the topic relatedness between 𝑐1
and 𝑐2.

10.5.2 TRiC evaluation

Similar to the WiC tasks (e.g., Pilehvar and Camacho-Collados, 2019), we split the TRoTR benchmark into
three distinct partitions, namely training set (Train), development set (Dev), and test set (Test), comprising
approximately 80%, 10%, and 10% of the instances, respectively. To strengthen the robustness of the eval-
uation, ten randomized Train-Dev-Test splits were generated (see Appendix E.1). The average performance
across all the splits is used as reference for comparison.

Additionally, inspired by Raganato et al. (2020), we include the evaluation of target text reuse 𝑡 that
are unseen during fine-tuning. The goal is to evaluate the ability of models to generalize the assessment
of topic relatedness. Specifically, we fine-tune each considered model on the Train set and we evaluate it
on two different Test sets: i) the standard Test set, containing instances ⟨𝑡, 𝑐1, 𝑐2⟩ whose target 𝑡 was either
seen or unseen during fine-tuning; and ii) the Out-of-Vocabulary (OOV) Test set, containing only instances
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⟨𝑡, 𝑐1, 𝑐2⟩ whose target 𝑡 was not seen during fine-tuning. OOV Test set represents half of the Standard Test
set.

For TRiC Subtask 1, we need to define a threshold to determine instances ⟨𝑡, 𝑐1, 𝑐2⟩ where 𝑐1 and 𝑐2 share
roughly the same topic or not. Thus, given a model, we tune a threshold-based classifier on the Dev set.
Specifically, for each instance ⟨𝑡, 𝑐1, 𝑐2⟩ in Dev, we use the model to predict the topic relatedness between 𝑐1
and 𝑐2. Then, we determine the optimal threshold that maximized the Weighted F1 (Harbecke et al., 2022)
score over the Dev set. Finally, we apply this threshold to both the Train and Test sets. Due to the unbalanced
distribution of gold binary labels, we evaluate models using the F1 metric. Precision (PR) and Recall (RE)
for each individual class are also reported for completeness.

For TRiC Subtask 2, given a model, we directly use its predictions as estimates of topic relatedness. Then,
we evaluate the model using Spearman correlation (SP) with continuous gold scores.

10.5.3 TRaC evaluation

Similar to the LSC tasks (e.g., Schlechtweg et al., 2020), we consider an unsupervised scenario. In particular,
motivated by the limited number of targets (i.e., 42), we do not split the benchmark into Train-Dev-Test
partitions with the aim to mitigate the potential evaluation impact of a small Test set. Without training
instances, the configurations with +FT and +FT+MASK are not applicable to TRaC.

To quantify the topic variation of a target, we adopted the same approach used for determining the gold
scores. Thus, given a model, the topic variation of a target 𝑡 is calculated as the average prediction of topic
relatedness across all the annotated ⟨𝑡, 𝑐1, 𝑐2⟩ pairs. We then evaluate models using Spearman correlation
(SP) with gold scores.

10.6 Evaluation results
First, we evaluated an extensive set of pre-trained SBERT models on the TRiC task (see Table E.2 in Ap-
pendix). Then, for simplicity, we opted to consider and fine-tune a smaller set of models, precisely the top-
five models by SP over the Train sets. Since we did not perform any training over the models, the Train sets
act as a larger set for testing the models. Specifically, we chose: all-distilroberta-v1 (ADR), distiluse-base-
multilingual-cased-v1 (DBM), paraphrase-multilingual-MiniLM-L12-v2 (PAM), paraphrase-multilingual-
mpnet-base-v2 (PAR), and multi-qa-mpnet-base-cos-v1 (MQA). In particular, ADR and DBM are Bi-Encoders
for English. PAM and PAR are multilingual Bi-Encoders fine-tuned on paraphrase pairs. Similarly, MQA is
a multilingual Bi-Encoder fine-tuned on question-answer pairs.

As a general remark on our initial evaluation, we note that Bi-Encoder models consistently exhibit supe-
rior performance compared to Cross-Encoder models in both TRiC Subtask 1 and Subtask 2. This finding
aligns with the recent comparisons by Ishihara and Shirai (2022) and Cassotti et al. (2023a) for News Article
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Standard Test set Out-of-vocabulary (OOV) Test set
Label 0 Label 1 All Label 0 Label 1 All

Models PR RE F1 PR RE F1 F1 SP PR RE F1 PR RE F1 F1 SP
ADR .95±.03 .47±.13 .62±.11 .42±.11 .93±.04 .57±.10 .61±.10 .55±.09 .94±.07 .45±.20 .58±.20 .38±.19 .93±.06 .51±.18 .58±.16 .48±.20
+FT .95±.03 .61±.15 .73±.11 .50±.14 .93±.03 .64±.10 .71±.10 .66±.07 .91±.12 .49±.24 .61±.22 .40±.21 .91±.06 .52±.18 .61±.18 .51±.22

+MASK .89±.05 .87±.07 .87±.03 .70±.14 .72±.12 .69±.07 .82±.03 .67±.06 .90±.07 .85±.10 .87±.05 .62±.21 .71±.18 .63±.14 .82±.05 .62±.15
+FT+MASK .90±.07 .89±.07 .89±.03 .75±.12 .76±.12 .74±.05 .85±.04 .71±.05 .87±.11 .88±.09 .87±.06 .66±.20 .70±.15 .65±.09 .82±.06 .63±.15

DBM .96±.02 .26±.12 .40±.14 .35±.09 .97±.03 .51±.09 .43±.12 .54±.09 .96±.08 .21±.19 .31±.23 .31±.14 .97±.05 .45±.16 .38±.18 .44±.23
+FT .97±.02 .46±.17 .60±.15 .43±.10 .96±.03 .58±.09 .61±.13 .64±.07 .93±.15 .34±.23 .46±.26 .34±.14 .95±.05 .49±.15 .50±.19 .48±.29

+MASK .87±.07 .88±.07 .87±.03 .72±.14 .66±.16 .66±.09 .81±.03 .64±.04 .88±.09 .88±.09 .87±.05 .66±.23 .64±.25 .58±.19 .82±.04 .58±.12
+FT+MASK .88±.06 .89±.07 .88±.04 .74±.11 .70±.13 .70±.04 .83±.03 .66±.04 .85±.12 .87±.09 .85±.08 .63±.19 .58±.20 .57±.13 .80±.08 .58±.14

PAM .96±.02 .46±.09 .61±.08 .41±.09 .96±.02 .57±.08 .61±.07 .58±.08 .96±.04 .43±.17 .57±.16 .37±.15 .95±.05 .52±.15 .59±.12 .49±.22
+FT .95±.03 .59±.12 .72±.11 .48±.09 .92±.04 .63±.08 .70±.09 .66±.06 .90±.18 .45±.21 .57±.23 .37±.13 .92±.06 .51±.13 .59±.17 .51±.22

+MASK .89±.05 .88±.06 .88±.03 .71±.10 .72±.10 .70±.05 .83±.03 .67±.04 .89±.09 .86±.09 .87±.06 .65±.19 .71±.18 .65±.12 .83±.05 .60±.13
+FT+MASK .90±.05 .90±.03 .90±.03 .76±.07 .77±.06 .76±.03 .86±.03 .69±.04 .88±.10 .89±.05 .88±.06 .68±.13 .73±.11 .69±.07 .84±.06 .60±.12

PAR .95±.03 .40±.10 .56±.09 .39±.09 .95±.04 .55±.08 .56±.07 .56±.09 .93±.11 .35±.18 .49±.19 .34±.15 .95±.06 .49±.16 .52±.15 .47±.25
+FT .95±.05 .60±.10 .73±.08 .49±.10 .93±.05 .63±.08 .71±.07 .66±.06 .91±.17 .46±.21 .58±.21 .38±.16 .91±.08 .51±.15 .59±.18 .53±.24

+MASK .89±.05 .85±.07 .87±.04 .69±.10 .75±.11 .70±.05 .83±.03 .68±.03 .90±.08 .83±.13 .86±.07 .63±.19 .75±.17 .65±.10 .82±.05 .62±.11
+FT+MASK .89±.06 .91±.05 .90±.03 .78±.09 .73±.11 .74±.05 .86±.03 .70±.04 .87±.11 .90±.07 .88±.06 .68±.16 .66±.18 .64±.11 .83±.07 .61±.14

MQA .94±.03 .42±.11 .58±.11 .40±.10 .94±.03 .55±.09 .58±.09 .55±.09 .94±.09 .39±.19 .53±.20 .36±.19 .96±.03 .50±.18 .55±.16 .49±.21
+FT .96±.03 .61±.13 .74±.10 .50±.10 .94±.04 .65±.08 .72±.09 .68±.06 .92±.15 .47±.22 .60±.24 .39±.16 .94±.05 .53±.15 .61±.19 .54±.21

+MASK .88±.05 .87±.07 .88±.04 .71±.10 .71±.12 .69±.06 .83±.04 .68±.05 .89±.07 .86±.10 .87±.06 .63±.18 .69±.16 .63±.13 .83±.05 .62±.13
+FT+MASK .90±.05 .91±.04 .90±.03 .77±.08 .76±.09 .76±.05 .86±.03 .72±.04 .88±.10 .90±.04 .88±.06 .67±.16 .69±.16 .65±.11 .84±.06 .63±.13

Table 10.2: TRiC evaluation on Subtask 1 and Subtask 2 for both Test and OOV Test sets. For Subtask
1, precision (PR), recall (RE), and Weighted -F1 scores (F1) are reported for both label 0 (i.e., different
topics) and label 1 (i.e., roughly identical topics). For Subtask 2, Spearman correlation (SP) is reported on
the overall set of instances. Standard deviations (±) across the 10 Test splits are presented for comparative
analysis. For each metric, the best performance of the comparison between pre-trained/fine-tuned models is
highlighted in bold. Results for masking settings are reported in italic.

Models ADR
+MASK

DBM
+MASK

PAM
+MASK

PAR
+MASK

MQA
+MASK

Spearman .72
.84

.66

.80
.66
.81

.73

.76
.65
.80

Table 10.3: TRaC evaluation using the pre-trained models alone and in the +MASK setting (italic).

Similarity and LSC, challenging the idea that the use of cross-attention benefits Cross-Encoder architectures
in sequence-level tasks (Lee et al., 2023; Thakur et al., 2021). In the following, we first present the results of
our evaluation by comparing the use of pre-trained and fine-tuned models (+FT); then, we discuss the results
in the masking settings (+MASK, +FT+MASK). We report in Table 10.2 and 10.3 the overall results for
TRiC and TRaC, respectively.

10.6.1 TRiC: pre-trained vs. fine-tuned

Across the overall standard Test sets, when pre-trained models are used for Subtask 1, we observe high
precision (PR) values, ranging from .93 to .96, and low recall (RE) values ranging from .21 to .47 for label
0 (i.e., different topics). Conversely, for label 1 (i.e., roughly identical topics), we observe an inverse trend
of performance, with PR values ranging from .31 to .42 and RE values ranging from .93 to .97. Such results
suggest that SBERT models face difficulties in distinguishing different recontextualization. For Subtask 1,
we observe a moderate F1-score (F1) ranging from .43 to .61; for Subtask 2, we observe only moderate
Spearman correlation coefficients (SP) ranging from .54 to .58.

Additional results for the OOV Test sets are reported in Table 10.2. We note that the results for the OOV
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Test sets are lower in performance while being associated to higher standard deviations. For pre-trained
models, we attributed this drop to (1) the unbalanced number of instances and labels available for each
target; (2) that the inter-annotator agreements differ between targets. If target words with a small number of
instances or lower inter-annotator agreement fall in the OOV Test sets, then the performance will be much
lower. Finally, (3) the size of the OOV Test sets is smaller because it splits the standard Test sets in two
halves.

Fine-tuning: When the pre-trained models are fine-tuned on TRiC instances (i.e., +FT), we observe a
significant improvement in performance for both Subtask 1 and Subtask 2 on both the standard Test set and
the OOV Test set. This observation indicates that fine-tuning SBERT models on TRiC instances enhances
their capability to contextualize a sequence in-context. In particular, the improvement is more pronounced
on the standard Test sets than on the OOV Test sets. We attribute this discrepancy to the limited size of our
benchmark that includes a small number of target quotations sufficient for testing purposes. A larger number
of targets will further improve the models’ generalization capability. For Subtask 1, we observe a F1 ranging
from .61 to .72 (standard) and from .50 to .61 (OOV); for Subtask 2, we observe SP coefficients ranging from
.64 to .68 (standard) and .51 to .54 (OOV).

10.6.2 TRiC and TRaC: masking settings
When pre-trained and fine-tuned models are used in the masking settings (i.e., +MASK and +FT+MASK),
we observe a significant improvement in performance for both TRiC and TRaC. Notably, this improvement
for TRiC is substantially larger compared to the one observed in the prior comparison (pre-trained vs. fine-
tuned), with +FT+MASK exhibiting slightly superior performance to +MASK. We attribute this improve-
ment to the fact that, in the masking settings, models are compelled to pay more attention to the surrounding
contexts of reused texts, thereby fostering a more comprehensive understanding of topic relatedness.

For TRiC, we observe the following performance. For Subtasks 1, we observe a F1 ranging from .81 to .83
and from .82 to .86 for +MASK and +FT+MASK, respectively. For Subtask 2, we observe a SP coefficients
ranging from .60 to .68 and from .60 to .72 for +MASK and +FT+MASK, respectively.

For TRaC, we observe SP coefficients ranging from .65 to .73. Conversely, when pre-trained models are
used in the +MASK setting, SP coefficients exhibit a substantial improvement, ranging from .76 to .84.

10.6.3 Discussion
The results found in our experiments underscore the difficulty of SBERT models in distinguishing different
text recontextualizations. This, despite the fact that SBERT models are the state-of-the-art for sequence-level
tasks. As a matter of fact, pre-trained models exhibit a bias toward their typical pre-training focus, namely
semantic similarity, while demonstrating only a superficial understanding of topic relatedness. Although
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the masking settings seem to offer a valuable workaround to sidestep the problem, we claim that their use is
generally undesirable in real scenarios involving text reuse. First, because masking may disrupt the natural
flow of sentences precluding to obtain optimal performance. Second, because the boundaries of text reuse
are often nuanced or unbalanced in different recontextualizations, when considering a form of text reuse
broader than explicit quotation that implicitly reuses text in-context. In such cases, masking may result in
the removal of crucial contextual information.

Consequently, to provide a more accurate modeling of text-reuse in-context, we argue that there is a clear
imperative to develop or fine-tune novel models specifically tailored on topic relatedness. In this regard,
TRoTR represents a valuable framework for evaluating language models that extend existing benchmarks
on sentence-pair regression tasks, such as Semantic Textual Similarity (Agirre et al., 2012) and Semantic
Textual Relatedness (Abdalla et al., 2023). While current benchmarks rely on a notion of similarity or relat-
edness, they overlook the potential impact of shared substrings, such as text-reuse excerpts, on computational
estimates.

10.7 Discussion and considerations
To the best of our knowledge, this work represents a first pioneering effort in the computational modeling
of recontextualization. We relied on the notion of topic relatedness to introduce a novel framework named
Topic Relatedness of Text Reuse (TRoTR) with two tasks: Text Reuse in-Context (TRiC) and Topic variation
Ranking across Corpus (TRaC). The tasks are inherently difficult as topic relatedness is under-defined, and
under-researched, therefore this paper presents important steps forward.

First, we presented a human-annotated benchmark of text reuse instances extracted from Twitter. This
benchmark can be used to support Linguistic Recycling and Reception studies, ranging from misuse and dog
whistles to the study of author influence. Using the framework, the benchmark can easily be extended in
future work to cover more diverse sets of text reuse from other sources, e.g., literature and political text.

Next, we comprehensively evaluate SBERT models on the TRiC and TRaC tasks. We find that the Bi-
Encoder models outperform the Cross-Encoder models. Additionally, we evaluate the considered models
by masking the occurrences of text reuse and find that the models exhibit a greater sensitivity to semantic
similarity rather than topic relatedness. These results now constitute a baseline for continued research and
can be used as a comparison for improved models and architectures.

Future work. Text reuse is inherently diachronic and can take place both over short and long time spans.
The TRoTR framework is applicable to address the recontextualization problem across time, space, or do-
main. In our ongoing work, we will extend the TRoTR benchmark by annotating historical text and explicitly
modeling change in topical variation over time. This will allow us to track the evolution of a quote like To
be or not to be where Hamlet originally reflected on the struggles of existence and the fear of the un-
known. Over the centuries, the phrase has become deeply embedded in various languages and cultures, often
improperly referenced, quoted, and parodied in diverse literary works, contexts, and topics (Bate, 1985).
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Limitations. The main limitations of this work pertain to the benchmark, including the data collection and
processing:

• Manual tweet search: we conducted a manual search of tweets by leveraging the Twitter search bar.
This allowed us to sidestep a Text Reuse Detection phase and its validation. However, manually check-
ing the suitability of retrieved tweets is extremely time consuming, thus limiting our ability to collect a
large amount of tweets. Moreover, due to the Twitter ranking of matching results, the topic distribution
of recontextualizations may be biased.

• Randomization of the annotation instances: in generating the pairs of tweets to compare for human
judgment, we randomized the order of ⟨𝑡, 𝑐1, 𝑐2⟩ instances. However, we did not randomize the order
of the two contexts within a pair. The ordering of 𝑐1 and 𝑐2 in ⟨𝑡, 𝑐1, 𝑐2⟩ was fixed and determined by
their IDs. If item order influences annotator judgments, this may have created a bias towards certain
orderings.

• Human judgments: we discarded some of judgments from human annotators to ensure high-quality
of annotation results. This implied a high degree of imbalance in the distribution of TRiC labels for
Subtask 1. We addressed and discussed this imbalance in the experimental results (see Section 10.5.2
and Appendix E.1).

As a further limitation, the TRoTR benchmark contains English tweets only with literal text reuse (i.e.,
explicit quotations). However, the benchmark can be extended to consider multi-language corpora and im-
plicit text reuse.

As this work is the first of its kind to phrase a new problem, recontextualization of text-reuse, create a
human-annotated benchmark, and attempt to solve the problem using computational tools, we do not claim
our work to be exhaustive.

Ethical considerations. The authors have carefully considered the ethics associated with theTRoTR bench-
mark. The benchmark data, extracted from Twitter (now X), and annotations have been used while respecting
the privacy and confidentiality of both users and annotators. For users, we made an effort to anonymize pub-
licly available tweets’ content by removing tweet mentions and users. For human annotators, we explicitly
notified them prior to the annotation that some instances of text reuse might encompass discriminatory lan-
guage against people or communities. We encourage the research community to approach our benchmark
with a critical perspective, recognizing the potential ethical implications of working with data from social
media platforms.

The annotation campaign was conducted with Native English speakers who were reached through email
broadcasts. Compensation details, set in advance, were based on an hourly rate of €12. Each annotator
spent a total of 53 hours on the annotation process, resulting in an overall compensation of €636. This
fixed compensation was determined according to our time estimation. As per our contract terms, annotators
received payment at the conclusion of the annotation campaign.
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Chapter 11

Conclusion

“So long, and thanks for all the fish”
Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In the past five years, the advent of Large Language Models (LLMs) has revolutionized the field of
Natural Language Processing (NLP). The capability of LLMs to generate a distinct semantic representation
for each occurrence of a target word was considered the most valuable advancement for any text-based re-
searchers (Chernyavskiy et al., 2021). However, although an increasing number of studies have been testing
LLMs in synchronic scenarios and tasks, few studies have focused on diachronic scenarios and semantic
change. Thus, this thesis represents a significant contribution to the field of NLP, bridging the gap between
the synchronic modeling of word meaning, and the diachronic modeling of their semantic change.

At the beginning of my PhD, word embeddings were considered the preferred tool for modeling word
meaning. Thus, this thesis initially placed particular emphasis on encoder-based LLMs (e.g., BERT, mBERT,
XLM-R). In later stages, in response to recent advancements in text generation (e.g., GPT, LlaMa), I have ex-
panded my discussion to include and explore the modeling of meaning through generative models. Nonethe-
less, my discussion is often general and can be applied to different classes of LLMs.

In the introduction of this thesis, we formulated three primary research questions (RQs). We have ad-
dressed these RQs throughout the chapters, and we now present a summary of our contributions.

11.1 Summary of contributions
RQ1 How can lexical semantic change be modeled using LLMs?

To model lexical semantic change through LLMs, existing approaches typically follow a standard recipe.
Given a target word and a diachronic corpus spanning two time periods, these approaches i) extract all the
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usages of the word from the corpus, ii) generate a semantic representation for each word occurrence, iii)
optionally aggregate these representations into sense representations, and iv) finally assess the degree of se-
mantic change by applying a distance measure to the word representations from different time periods.

In Chapter 2, we thoroughly reviewed the relevant literature at the beginning of my PhD. In particular, we
propose a novel classification framework to categorize existing approaches according to three dimensions of
analysis: meaning representation, time awareness, and learning modality. We also discussed performance,
open challenges, and main limitations in the current state of the modeling. Among these, we note that mod-
eling lexical semantic change thus far has been approached using several simplifications. Given a word,
existing approaches mainly focus on quantifying the change of the dominant meaning and are limited to de-
tecting change over two time periods. While these simplifications have served as building blocks for studying
language change, they prevent from modeling the evolution of each individual sense of a word over time,
and thus, from answering research questions posed in text-based research fields.

In Chapter 7, we noted that state-of-the-art comparisons are often conducted under varied conditions,
which may lead to misleading conclusions. Additionally, we also observed that most of existing approaches
have been evaluated on semantic change quantification but not on how they model meaning.

Considering the first issue, we performed a systematic evaluation comparing different LLMs (i.e., BERT,
mBERT, XLM-R, XL-LEXEME) and approaches (i.e., APD, PRT, AP+JSD, WiDiD) across multiple lan-
guages (i.e., English, Latin, Swedish, German, Spanish, Chinese, Norwegian, Russian) under identical con-
ditions. Our experiments demonstrated that, currently, XL-LEXEME is the most effective LLM for modeling
the semantics of word in-context. Our experiments also showed that, in monolingual scenarios, monolingual
pre-trained BERT models outperform multilingual pre-trained models such as mBERT and XLM-R. Addi-
tionally, we discovered that the standard practice of using word embeddings generated by the last layer of
these models is typically not the most effective option for modeling semantic change. Instead, we found that
other layers consistently achieve higher performance. Furthermore, we find that approaches that quantify
semantic change based on features such as polysemy and dominant word meaning prove to be more powerful
than those attempting to model each meaning of a word individually before modeling semantic change.

Considering the second issue, we connected the current modeling of lexical semantic change with other
established NLP problems and further evaluated LLMs in tasks such as Word-in-Context and Word Sense In-
duction. Our experiments demonstrated that while word embeddings perform comparably to human-level in
Word-in-Context and Graded Change Detection tasks, they exhibit only medium-low performance in Word
Sense Induction.

Since our initial focus was on word embeddings, we investigated alternative semantic representations for
word occurrences in Chapters 3, 8, and 9. Specifically, we investigated the use of prompt answers (Chap-
ter 3), lexical replacements and substitutes (Chapter 8), and sense definitions (Chapter 9). Throughout our
investigation, we extended our evaluation to generative language models (e.g., GPT-3.5, GPT-4, LLaMA2,
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LLaMA2-Chat, LLaMA3-Instruct, Flan-T5). Our findings suggest that: (i) while embeddings provide a
more scalable solution compared to recent generative models, they often present challenges in terms of in-
terpretability; (ii) prompt-based approaches are inadequate due to limitations in both performance and ac-
cessibility; (iii) lexical replacements and substitutes provide interpretability and achieve results that are at
least comparable to state-of-the-art performance; (iv) automatically generated sense definitions combined
with sentence embeddings represent a promising approach for modeling word meaning, offering improved
interpretability.

RQ2 How can the existing modeling be expanded to handle multiple time periods?

To expand the existing modeling of lexical semantic change, we challenged the general assumption that
approaches proposed for the modeling over two time periods are also suitable over multiple time periods.

In Chapter 4, we presented various strategies to expand the existing modeling towards diachronic word
sense induction, aiming to create a diachronic word sense inventory that facilitates both semantic change
assessment and interpretations. These strategies include i) clustering word-usage representations from con-
secutive time intervals, ii) clustering word-usage representations from consecutive time periods, iii) perform-
ing one-time clustering of word-usage representations from all time periods, iv) implementing incremental
clustering of word-usage representations from consecutive time periods, and v) scaling up clustering with
form-based approaches. We emphasized that each approach has its advantages and drawbacks, and the choice
of modeling should depend on the research questions and available data. However, we believe that modeling
lexical semantic change should involve the use of solutions that take the temporal nature of language into
account, such as incremental, evolutionary clustering.

In this regard, in Chapter 5, we proposed a new algorithm, called A-Posteriori affinity Propagation, that
is both scalable and evolutionary. Through rigorous experimentation, we demonstrate the effectiveness of
this algorithm in general clustering settings. We then integrate it into a novel approach for modeling lexical
semantic change to facilitate the handling of semantic representations (e.g., word embeddings), and the study
of the evolution of each individual word meaning over time. In Chapter 6, we illustrated the application of
our approach by considering target words across two Italian datasets containing: i) Italian parliamentary
speeches, and ii) Vatican publications, respectively. In Chapter 5 and 6 and 7, we evaluated the use of APP
combined to different LMs (i.e., BERT, mBERT, XLM-R, XL-LEXEME) across different languages (e.g.,
English, Latin, Swedish, German, Spanish, Chinese, Norwegian, Russian, Italian), demonstrating its supe-
riority compared to the current state-of-the-art. Nonetheless, although enhancing the current modeling and
state-of-the-art, we relied on several simplification and thus believe there is still ample room for improve-
ment. The incremental modeling of lexical semantic change through LLMs represents a pioneering endeavor
in the field of NLP, and as such, we believe it will inspire future research for a more comprehensive modeling
of word meaning that incorporates temporal information.
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RQ3 How can the existing modeling be extended to model historical resonance?

Thus far, historical resonance has been modeled by merely considering the detection of text reuse excerpts
(e.g., literary quotations). However, we observe that these approaches do not focus on recontextualization,
i.e., how the new context(s) of a reused text differs from its original context(s).

Thus, in Chapter 10, we define historical resonance as text-reuse re-contextualization and introduce a
novel evaluation framework, called TRoTR, to evaluate computational methods and LLMs in capturing the
recontextualization of text-reuse. This framework relies on the notion of topic relatedness and consists of
two tasks, namely Text Reuse in-Context (TRiC) and Topic Variation Ranking across Corpus (TRaC), which
offer two different semantic-change evaluation settings.

To support evaluation, we conducted a human-annotation campaign to collect judgments on topic relat-
edness over re-contextualizations of biblical passages in tweets, thereby creating an evaluation benchmark
with gold standard labels for both TRiC and TRaC tasks. We comprehensively evaluated 36 different SBERT
models in different setting (i.e., pre-trained, fine-tuned, and by masking the text reuse instance) to asses their
suitability for modeling topic relatedness. Our findings hold true for all these models and indicate that cur-
rent sequence models are more sensitive to textual similarity rather than topic relatedness. Consequently,
different texts containing common substrings are prone to be erroneously considered related in topic due to
their shared substrings. Additionally, our results suggests that LLMs trained on Bi-Encoder architectures
obtain higher results than LLMs trained on Cross-Encoder architectures.

212



Bibliography

Mohamed Abdalla, Krishnapriya Vishnubhotla, and Saif Mohammad. 2023. What Makes Sentences Se-
mantically Related? A Textual Relatedness Dataset and Empirical Study. In Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics, pages 782–796,
Dubrovnik, Croatia. Association for Computational Linguistics.

Aly Abdelrazek, Yomna Eid, Eman Gawish, Walaa Medhat, and Ahmed Hassan. 2023. Topic Modeling
Algorithms and Applications: A Survey. Information Systems, 112:102131.

Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and Anders Søgaard. 2022. Word Order Does Matter
and Shuffled Language Models Know It. In Proc. of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 6907–6919, Dublin, Ireland. Association for
Computational Linguistics.

Oshin Agarwal and Ani Nenkova. 2022. Temporal Effects on Pre-trained Models for Language Processing
Tasks. Transactions of the Association for Computational Linguistics, 10:904–921.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Iñigo Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, German Rigau, Larraitz Uria, and Janyce Wiebe.
2015. SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability.
In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 252–
263, Denver, Colorado. Association for Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe. 2014. SemEval-2014 Task 10: Multilingual Semantic
Textual Similarity. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), pages 81–91, Dublin, Ireland. Association for Computational Linguistics.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and
Cross-Lingual Evaluation. In Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 497–511, San Diego, California. Association for Computational Linguistics.

213

https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/https://doi.org/10.1016/j.is.2022.102131
https://doi.org/https://doi.org/10.1016/j.is.2022.102131
https://doi.org/10.18653/v1/2022.acl-long.476
https://doi.org/10.18653/v1/2022.acl-long.476
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.1162/tacl_a_00497
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081


Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A Pilot on
Semantic Textual Similarity. In *SEM 2012: The First Joint Conference on Lexical and Computational
Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages 385–393,
Montréal, Canada. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. SEM 2013 shared
task: Semantic Textual Similarity. In Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity,
pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Eneko Agirre and Aitor Soroa. 2007. SemEval-2007 Task 02: Evaluating Word Sense Induction and Dis-
crimination Systems. In Proceedings of the Fourth International Workshop on Semantic Evaluations
(SemEval-2007), pages 7–12, Prague, Czech Republic. Association for Computational Linguistics.

Taichi Aida and Danushka Bollegala. 2023. Swap and Predict – Predicting the Semantic Changes in Words
across Corpora by Context Swapping. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 7753–7772, Singapore. Association for Computational Linguistics.

Taichi Aida and Danushka Bollegala. 2024. A Semantic Distance Metric Learning approach for Lexical
Semantic Change Detection. In Findings of the Association for Computational Linguistics ACL 2024,
pages 7570–7584, Bangkok, Thailand and virtual meeting. Association for Computational Linguistics.

Anna Aksenova, Ekaterina Gavrishina, Elisei Rykov, and Andrey Kutuzov. 2022. RuDSI: Graph-based
Word Sense Induction Dataset for Russian. In Proceedings of TextGraphs-16: Graph-based Methods for
Natural Language Processing, pages 77–88, Gyeongju, Republic of Korea. Association for Computational
Linguistics.

Domagoj Alagic, Jan Snajder, and Sebastian Pado. 2018. Leveraging Lexical Substitutes for Unsupervised
Word Sense Induction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Ian L Alberts, Lorenzo Mercolli, Thomas Pyka, George Prenosil, Kuangyu Shi, Axel Rominger, and Ali
Afshar-Oromieh. 2023. Large Language Models (LLM) and ChatGPT: What Will the Impact on Nuclear
Medicine Be? European journal of nuclear medicine and molecular imaging, 50(6):1549–1552.

Ashjan Alsulaimani and Erwan Moreau. 2023. Improving Diachronic Word Sense Induction with a Non-
parametric Bayesian Method. In Findings of the Association for Computational Linguistics: ACL 2023,
pages 8908–8925, Toronto, Canada. Association for Computational Linguistics.

Ashjan Alsulaimani, Erwan Moreau, and Carl Vogel. 2020. An Evaluation Method for Diachronic Word
Sense Induction. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
3171–3180, Online. Association for Computational Linguistics.

214

https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://aclanthology.org/S07-1002
https://aclanthology.org/S07-1002
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://doi.org/10.18653/v1/2023.findings-emnlp.520
https://aclanthology.org/2024.findings-acl.451
https://aclanthology.org/2024.findings-acl.451
https://aclanthology.org/2022.textgraphs-1.9
https://aclanthology.org/2022.textgraphs-1.9
https://doi.org/10.1609/aaai.v32i1.12017
https://doi.org/10.1609/aaai.v32i1.12017
https://doi.org/doi.org/10.1007/s00259-023-06172-w
https://doi.org/doi.org/10.1007/s00259-023-06172-w
https://doi.org/10.18653/v1/2023.findings-acl.567
https://doi.org/10.18653/v1/2023.findings-acl.567
https://doi.org/10.18653/v1/2020.findings-emnlp.284
https://doi.org/10.18653/v1/2020.findings-emnlp.284


Fares Antaki, Samir Touma, Daniel Milad, Jonathan El-Khoury, and Renaud Duval. 2023. Evaluating the
Performance of ChatGPT in Ophthalmology: An Analysis of Its Successes and Shortcomings. Ophthal-
mology Science, 3(4):100324.

Marianna Apidianaki. 2023. From Word Types to Tokens and Back: A Survey of Approaches to Word
Meaning Representation and Interpretation. Computational Linguistics, 49(2):465–523.

Nikolay Arefyev, Maksim Fedoseev, Vitaly Protastov, Daniil Homiskiy, Adis Davletov, and Alexander
Panchenko. 2021. DeepMistake: Which Senses are Hard to Distinguish for a Word-in-Context Model. In
Proceedings of the Conference on Computational Linguistics and Intellectual Technologies (Dialogue),
(online). RSUH.

Nikolay Arefyev and Vasily Zhikov. 2020. BOS at SemEval-2020 Task 1: Word Sense Induction via Lex-
ical Substitution for Lexical Semantic Change Detection. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, pages 171–179, Barcelona (online). International Committee for Computational
Linguistics.

Carlos Santos Armendariz, Matthew Purver, Senja Pollak, Nikola Ljubešić, Matej Ulčar, Ivan Vulić, and Mo-
hammad Taher Pilehvar. 2020a. SemEval-2020 Task 3: Graded Word Similarity in Context. In Proceed-
ings of the Fourteenth Workshop on Semantic Evaluation, pages 36–49, Barcelona (online). International
Committee for Computational Linguistics.

Carlos Santos Armendariz, Matthew Purver, Matej Ulčar, Senja Pollak, Nikola Ljubešić, and Mark Granroth-
Wilding. 2020b. CoSimLex: A Resource for Evaluating Graded Word Similarity in Context. In Proceed-
ings of the Twelfth Language Resources and Evaluation Conference, pages 5878–5886, Marseille, France.
European Language Resources Association.

Natalia M. Arzeno and Haris Vikalo. 2017. Evolutionary Affinity Propagation. In Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2681–2685.

Natalia M. Arzeno and Haris Vikalo. 2021. Evolutionary Clustering via Message Passing. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 33(6):2452–2466.

Tal August, Katharina Reinecke, and Noah A. Smith. 2022. Generating Scientific Definitions with Con-
trollable Complexity. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8298–8317, Dublin, Ireland. Association for Computational
Linguistics.

Anthony Baez and Horacio Saggion. 2023. LSLlama: Fine-Tuned LLaMA for Lexical Simplification. In
Proceedings of the Second Workshop on Text Simplification, Accessibility and Readability, pages 102–108,
Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.

215

https://doi.org/https://doi.org/10.1016/j.xops.2023.100324
https://doi.org/https://doi.org/10.1016/j.xops.2023.100324
https://doi.org/10.1162/coli_a_00474
https://doi.org/10.1162/coli_a_00474
https://doi.org/dx.doi.org/10.28995/2075-7182-2021-20-16-30
https://doi.org/10.18653/v1/2020.semeval-1.20
https://doi.org/10.18653/v1/2020.semeval-1.20
https://doi.org/10.18653/v1/2020.semeval-1.3
https://aclanthology.org/2020.lrec-1.720
https://doi.org/10.1109/ICASSP.2017.7952643
https://doi.org/10.1109/TKDE.2019.2954869
https://doi.org/10.18653/v1/2022.acl-long.569
https://doi.org/10.18653/v1/2022.acl-long.569
https://aclanthology.org/2023.tsar-1.10


Bing Bai, Jian Liang, Guanhua Zhang, Hao Li, Kun Bai, and Fei Wang. 2021. Why Attentions May Not Be
Interpretable? In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, KDD ’21, page 25–34, New York, NY, USA. Association for Computing Machinery.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondrej Dusek. 2024. Leak, Cheat, Repeat:
Data Contamination and Evaluation Malpractices in Closed-Source LLMs. In Proceedings of the 18th
Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 67–93, St. Julian’s, Malta. Association for Computational Linguistics.

David Bamman and Patrick J. Burns. 2020. Latin BERT: A Contextual Language Model for Classical Philol-
ogy.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Proceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguistics.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. 2023. A Multitask, Multilingual,
Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity. In Proceedings of
the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages
675–718, Nusa Dua, Bali. Association for Computational Linguistics.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering. Machine learning, 56:89–
113.

Pierpaolo Basile, Annalina Caputo, Tommaso Caselli, Pierluigi Cassotti, and Rossella Varvara. 2020.
DIACR-Ita@ EVALITA2020: Overview of the EVALITA2020 DiachronicLexical Semantics (DIACR-
Ita) Task. In Proceedings of the Evaluation Campaign of Natural Language Processing and Speech Tools
for Italian (EVALITA), Online. CEUR-WS.

Jonathan Bate. 1985. Parodies of Shakespeare. Journal of Popular Culture, 19(1):75.

Nina Bauwelinck and Els Lefever. 2020. Annotating Topics, Stance, Argumentativeness and Claims in Dutch
Social Media Comments: A Pilot Study. In Proceedings of the 7th Workshop on Argument Mining, pages
8–18, Online. Association for Computational Linguistics.

Diego Bear and Paul Cook. 2021. Cross-Lingual Wolastoqey-English Definition Modelling. In Proceedings
of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021),
pages 138–146, Held Online. INCOMA Ltd.

216

https://doi.org/10.1145/3447548.3467307
https://doi.org/10.1145/3447548.3467307
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://doi.org/doi.org/10.48550/arXiv.2009.10053
https://doi.org/doi.org/10.48550/arXiv.2009.10053
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/2023.ijcnlp-main.45
https://aclanthology.org/2023.ijcnlp-main.45
https://doi.org/doi.org/10.1023/B:MACH.0000033116.57574.95
https://ceur-ws.org/Vol-2765/paper158.pdf
https://ceur-ws.org/Vol-2765/paper158.pdf
https://www.proquest.com/scholarly-journals/parodies-shakespeare/docview/1297348258/se-2
https://aclanthology.org/2020.argmining-1.2
https://aclanthology.org/2020.argmining-1.2
https://aclanthology.org/2021.ranlp-1.17


Christin Beck. 2020. DiaSense at SemEval-2020 Task 1: Modeling Sense Change via Pre-trained BERT
Embeddings. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 50–58, Barcelona
(online). International Committee for Computational Linguistics.

Jürgen Beringer and Eyke Hüllermeier. 2006. Online Clustering of Parallel Data Streams. Data & Knowledge
Engineering (DKE), 58(2):180–204.

Michele Bevilacqua, Marco Maru, and Roberto Navigli. 2020. Generationary or “How We Went beyond
Word Sense Inventories and Learned to Gloss”. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 7207–7221, Online. Association for Compu-
tational Linguistics.

Andreas Blank. 1997. Prinzipien des lexikalischen Bedeutungswandels am Beispiel der romanischen
Sprachen. Max Niemeyer Verlag, Berlin, Boston.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet Allocation. J. Mach. Learn.
Res., 3(null):993–1022.

Terra Blevins and Luke Zettlemoyer. 2020. Moving Down the Long Tail of Word Sense Disambiguation
with Gloss Informed Bi-encoders. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1006–1017, Online. Association for Computational Linguistics.

Leonard Bloomfield. 1933. Language. Holt, Rinehart and Winston, New York.
John W. Du Bois. 2014. Towards a Dialogic Syntax. Cognitive Linguistics, 25(3):359–410.
Brian Bonafilia, Bastiaan Bruinsma, Denitsa Saynova, and Moa Johansson. 2023. Sudden Semantic Shifts

in Swedish NATO Discourse. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 4: Student Research Workshop), pages 184–193, Toronto, Canada. Association
for Computational Linguistics.

Francis Bond and Graham Matthews. 2018. Toward An Epic Epigraph Graph. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. 2011. Displacement Inter-
polation using Lagrangian Mass Transport. ACM Trans. Graph., 30(6):1–12.

Emanuela Boros, Maud Ehrmann, Matteo Romanello, Sven Najem-Meyer, and Frédéric Kaplan. 2024. Post-
Correction of Historical Text Transcripts with Large Language Models: An Exploratory Study. In Pro-
ceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature (LaTeCH-CLfL 2024), pages 133–159, St. Julians, Malta. Association
for Computational Linguistics.

217

https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.18653/v1/2020.semeval-1.4
https://doi.org/10.1016/j.datak.2005.05.009
https://doi.org/10.18653/v1/2020.emnlp-main.585
https://doi.org/10.18653/v1/2020.emnlp-main.585
https://doi.org/doi.org/10.1515/9783110931600
https://doi.org/doi.org/10.1515/9783110931600
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/10.18653/v1/2020.acl-main.95
https://doi.org/doi:10.1515/cog-2014-0024
https://doi.org/10.18653/v1/2023.acl-srw.28
https://doi.org/10.18653/v1/2023.acl-srw.28
https://aclanthology.org/L18-1522
https://doi.org/10.1145/2070781.2024192
https://doi.org/10.1145/2070781.2024192
https://aclanthology.org/2024.latechclfl-1.14
https://aclanthology.org/2024.latechclfl-1.14


Michel Bréal. 1904. Essai de Sémantique (Science des Significations). Hachette.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language
Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc.

Marco Büchler, Philip R. Burns, Martin Müller, Emily Franzini, and Greta Franzini. 2014. Towards a His-
torical Text Re-use Detection, pages 221–238. Springer International Publishing, Cham.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church. 2021. Isotropy in the Contextual Embedding
Space: Clusters and Manifolds. In International Conference on Learning Representations.

Lyle Campbell. 2020. Historical Linguistics. Edinburgh University Press, Edinburgh.
Dallas Card. 2023. Substitution-based Semantic Change Detection using Contextual Embeddings. In Pro-

ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 590–602, Toronto, Canada. Association for Computational Linguistics.

Pierluigi Cassotti, Lucia Siciliani, Marco DeGemmis, Giovanni Semeraro, and Pierpaolo Basile. 2023a. XL-
LEXEME: WiC Pretrained Model for Cross-Lingual LEXical sEMantic changE. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
1577–1585, Toronto, Canada. Association for Computational Linguistics.

Pierluigi Cassotti, Lucia Siciliani, Lucia Passaro, Maristella Gatto, and Pierpaolo Basile. 2023b. WiC-ITA
at EVALITA2023: Overview of the EVALITA2023 Word-in-Context for ITAlian Task. In Proceedings of
the Eighth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian (EVALITA
2023), Parma, Italy. CEUR.org.

Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Francesco Periti. 2024. Incremental Affinity Prop-
agation based on Cluster Consolidation and Stratification.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017. SemEval-2017 Task
1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14, Vancouver, Canada.
Association for Computational Linguistics.

Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2006. Evolutionary Clustering. In Proceedings
of the 12th ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 554–
560, Philadelphia, PA, USA. Association for Computing Machinery.

218

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1007/978-3-319-12655-5_11
https://doi.org/10.1007/978-3-319-12655-5_11
https://openreview.net/forum?id=xYGNO86OWDH
https://openreview.net/forum?id=xYGNO86OWDH
https://doi.org/doi:10.1515/9781474463133
https://doi.org/10.18653/v1/2023.acl-short.52
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/10.18653/v1/2023.acl-short.135
https://doi.org/doi.org/10.48550/arXiv.2401.14439
https://doi.org/doi.org/10.48550/arXiv.2401.14439
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1145/1150402.1150467


Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek Srikumar. 2008. Importance of Semantic Representa-
tion: Dataless Classification. In Proceedings of the 23rd National Conference on Artificial Intelligence -
Volume 2, AAAI’08, page 830–835, Chicago, Illinois. AAAI Press.

Ting-Yun Chang and Yun-Nung Chen. 2019. What Does This Word Mean? Explaining Contextualized Em-
beddings with Natural Language Definition. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 6064–6070, Hong Kong, China. Association for Computational Linguistics.

Chi Cheang, Hou Chan, Derek Wong, Xuebo Liu, Zhaocong Li, Yanming Sun, Shudong Liu, and Lidia Chao.
2023. Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 16205–16217,
Singapore. Association for Computational Linguistics.

Jing Chen, Emmanuele Chersoni, and Chu-ren Huang. 2022a. Lexicon of Changes: Towards the Evalu-
ation of Diachronic Semantic Shift in Chinese. In Proceedings of the 3rd Workshop on Computational
Approaches to Historical Language Change, pages 113–118, Dublin, Ireland. Association for Computa-
tional Linguistics.

Jing Chen, Emmanuele Chersoni, Dominik Schlechtweg, Jelena Prokic, and Chu-Ren Huang. 2023a. Chi-
WUG: A Graph-based Evaluation Dataset for Chinese Lexical Semantic Change Detection. In Proceed-
ings of the 4th Workshop on Computational Approaches to Historical Language Change, pages 93–99,
Singapore. Association for Computational Linguistics.

Jing Chen, Emmanuele Chersoni, Dominik Schlechtweg, Jelena Prokic, and Chu-Ren Huang. 2023b. Chi-
WUG: Diachronic Word Usage Graphs for Chinese.

Ze Chen, Kangxu Wang, Zijian Cai, Jiewen Zheng, Jiarong He, Max Gao, and Jason Zhang. 2022b. Using
Deep Mixture-of-Experts to Detect Word Meaning Shift for TempoWiC. In Proceedings of the First
Workshop on Ever Evolving NLP (EvoNLP), pages 7–11, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Pauline Hope Cheong. 2014. Tweet the Message? Religious Authority and Social Media Innovation. Journal
of Religion, Media and Digital Culture, 3(3):1 – 19.

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. 2021. Transformers: “The End of History” for
Natural Language Processing? In Machine Learning and Knowledge Discovery in Databases. Research
Track, pages 677–693, Cham. Springer International Publishing.

Cheng-Han Chiang and Hung-yi Lee. 2023. Are Synonym Substitution Attacks Really Synonym Substitution
Attacks? In Findings of the Association for Computational Linguistics: ACL 2023, pages 1853–1878,
Toronto, Canada. Association for Computational Linguistics.

219

https://doi.org/10.18653/v1/D19-1627
https://doi.org/10.18653/v1/D19-1627
https://doi.org/10.18653/v1/2023.emnlp-main.1007
https://doi.org/10.18653/v1/2022.lchange-1.11
https://doi.org/10.18653/v1/2022.lchange-1.11
https://doi.org/10.18653/v1/2023.lchange-1.10
https://doi.org/10.18653/v1/2023.lchange-1.10
https://doi.org/10.5281/zenodo.10023263
https://doi.org/10.5281/zenodo.10023263
https://doi.org/10.18653/v1/2022.evonlp-1.2
https://doi.org/10.18653/v1/2022.evonlp-1.2
https://doi.org/https://doi.org/10.1163/21659214-90000059
https://doi.org/10.1007/978-3-030-86523-8_41
https://doi.org/10.1007/978-3-030-86523-8_41
https://doi.org/10.18653/v1/2023.findings-acl.117
https://doi.org/10.18653/v1/2023.findings-acl.117


Ting-Rui Chiang and Dani Yogatama. 2023. The Distributional Hypothesis Does Not Fully Explain the
Benefits of Masked Language Model Pretraining. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 10305–10321, Singapore. Association for Computational
Linguistics.

Stanford Chiu, Ibrahim Uysal, and W. Bruce Croft. 2010. Evaluating Text Reuse Discovery on the Web. In
Proceedings of the Third Symposium on Information Interaction in Context, IIiX ’10, page 299–304, New
Brunswick, New Jersey, USA. Association for Computing Machinery.

Hyunjin Choi, Judong Kim, Seongho Joe, Seungjai Min, and Youngjune Gwon. 2021. Analyzing Zero-
shot Cross-lingual Transfer in Supervised NLP Tasks. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 9608–9613.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. 2024. Scaling Instruction-Finetuned Language Models. Journal of Machine Learning Research,
25(70):1–53.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What Does BERT Look
at? An Analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy. Association for Computational
Linguistics.

Paul Clough, Robert Gaizauskas, Scott S.L. Piao, and Yorick Wilks. 2002. Measuring Text Reuse. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 152–
159, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised Cross-
lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8440–8451, Online. Association for Computational Linguistics.

John H. Connolly. 2014. Recontextualisation, Resemiotisation and Their Analysis in Terms of an FDG-based
Framework. Pragmatics, 24(2):377–397.

Paul Cook, Jey Han Lau, Diana McCarthy, and Timothy Baldwin. 2014. Novel Word-sense Identification. In
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Techni-
cal Papers, pages 1624–1635, Dublin, Ireland. Dublin City University and Association for Computational
Linguistics.

220

https://doi.org/10.18653/v1/2023.emnlp-main.637
https://doi.org/10.18653/v1/2023.emnlp-main.637
https://doi.org/10.1145/1840784.1840829
https://doi.org/10.1109/ICPR48806.2021.9412570
https://doi.org/10.1109/ICPR48806.2021.9412570
http://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.3115/1073083.1073110
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/https://doi.org/10.1075/prag.24.2.09con
https://doi.org/https://doi.org/10.1075/prag.24.2.09con
https://aclanthology.org/C14-1154


D. Alan Cruse. 2000. Aspects of the Micro-Structure of Word Meanings, pages 30–51. Oxford University
Press.

Amaru Cuba Gyllensten, Evangelia Gogoulou, Ariel Ekgren, and Magnus Sahlgren. 2020. SenseCluster at
SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 112–118, Barcelona (online). International Committee
for Computational Linguistics.

Miriam Cuscito, Alfio Ferrara, and Martin Ruskov. 2024. How BERT Speaks Shakespearean English? Eval-
uating Historical Bias in Contextual Language Models.

Arséne Darmesteter. 1893. La Vie des Mots Étudiée Dans Leurs Significations. C. Delagrave.
Marco Del Tredici, Raquel Fernández, and Gemma Boleda. 2019. Short-Term Meaning Shift: A Distribu-

tional Exploration. In Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2069–2075, Minneapolis, Minnesota. Association for Computational Linguistics.

Zhijie Deng, Yucen Luo, and Jun Zhu. 2019. Cluster Alignment With a Teacher for Unsupervised Domain
Adaptation. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 9943–9952.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. QLoRA: Efficient Finetuning
of Quantized LLMs.

David DeVault and Matthew Stone. 2004. Interpreting Vague Utterances in Context. In COLING 2004: Pro-
ceedings of the 20th International Conference on Computational Linguistics, pages 1247–1253, Geneva,
Switzerland. COLING.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Wai Chee Dimock. 1997. A Theory of Resonance. PMLA, 112(5):1060–1071.
George Doddington. 2002. Automatic Evaluation of Machine Translation Quality Using n-gram Co-

occurrence Statistics. In Proceedings of the Second International Conference on Human Language Tech-
nology Research, HLT ’02, page 138–145, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Haim Dubossarsky, Simon Hengchen, Nina Tahmasebi, and Dominik Schlechtweg. 2019. Time-Out: Tem-
poral Referencing for Robust Modeling of Lexical Semantic Change. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 457–470, Florence, Italy. Association for
Computational Linguistics.

221

https://doi.org/10.18653/v1/2020.semeval-1.12
https://doi.org/10.18653/v1/2020.semeval-1.12
https://doi.org/https://doi.org/10.48550/arXiv.2402.05034
https://doi.org/https://doi.org/10.48550/arXiv.2402.05034
https://doi.org/10.18653/v1/N19-1210
https://doi.org/10.18653/v1/N19-1210
https://doi.org/10.1109/ICCV.2019.01004
https://doi.org/10.1109/ICCV.2019.01004
https://doi.org/https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/https://doi.org/10.48550/arXiv.2305.14314
https://aclanthology.org/C04-1181
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/https://doi.org/10.2307/463483
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044


Haim Dubossarsky, Yulia Tsvetkov, Chris Dyer, and Eitan Grossman. 2015. A Bottom Up Approach to
Category Mapping and Meaning Change. In Proceedings of the NetWordS Final Conference, pages 66–
70, Pisa, Italy. CEUR-WS.

Haim Dubossarsky, Daphna Weinshall, and Eitan Grossman. 2017. Outta Control: Laws of Semantic Change
and Inherent Biases in Word Representation Models. In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages 1136–1145, Copenhagen, Denmark. Association for
Computational Linguistics.

Martin Emms and Arun Kumar Jayapal. 2016. Dynamic Generative model for Diachronic Sense Emergence
Detection. In Proceedings of COLING 2016, the 26th International Conference on Computational Lin-
guistics: Technical Papers, pages 1362–1373, Osaka, Japan. The COLING 2016 Organizing Committee.

Volkmar Engerer. 2017. Exploring Interdisciplinary Relationships between Linguistics and Information
Retrieval from the 1960s to Today. Journal of the Association for Information Science and Technology,
68(3):660–680.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord. 2013. Measuring Word Meaning in Context. Compu-
tational Linguistics, 39(3):511–554.

Kawin Ethayarajh. 2019. How Contextual are Contextualized Word Representations? Comparing the Ge-
ometry of BERT, ELMo, and GPT-2 Embeddings. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65, Hong Kong, China. Association for Computational
Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford Books.

Alessio Ferrari, Beatrice Donati, and Stefania Gnesi. 2017. Detecting Domain-Specific Ambiguities: An
NLP Approach Based on Wikipedia Crawling and Word Embeddings. In 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), pages 393–399.

Tony Finch. 2009. Incremental Calculation of Weighted Mean and Variance. University of Cambridge,
4(11-5):41–42.

John Rupert Firth. 1957. A Synopsis of Linguistic Theory. Studies in linguistic analysis.

Lauren Fonteyn, F Karsdorp, B McGillivray, A Nerghens, and M Wevers. 2020. What About Grammar?
Using BERT Embeddings to Explore Functional-Semantic Shifts of Semi-Lexical and Grammatical Con-
structions. In Proceedings of the Workshop on Computational Humanities Research (CHR), pages 257–
268, Amsterdam, the Netherlands. CEUR-WS.

222

https://ceur-ws.org/Vol-1347/paper14.pdf
https://ceur-ws.org/Vol-1347/paper14.pdf
https://doi.org/10.18653/v1/D17-1118
https://doi.org/10.18653/v1/D17-1118
https://aclanthology.org/C16-1129
https://aclanthology.org/C16-1129
https://doi.org/10.1002/asi.23684
https://doi.org/10.1002/asi.23684
https://doi.org/10.1162/COLI_a_00142
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://mitpress.mit.edu/9780262561167/
https://doi.org/10.1109/REW.2017.20
https://doi.org/10.1109/REW.2017.20
https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
https://ceur-ws.org/Vol-2723/short15.pdf
https://ceur-ws.org/Vol-2723/short15.pdf
https://ceur-ws.org/Vol-2723/short15.pdf


Clémentine Fourrier and Syrielle Montariol. 2022. Caveats of Measuring Semantic Change of Cognates
and Borrowings using Multilingual Word Embeddings. In Proceedings of the 3rd Workshop on Com-
putational Approaches to Historical Language Change, pages 97–112, Dublin, Ireland. Association for
Computational Linguistics.

Greta Franzini, Marco Passarotti, Maria Moritz, and Marco Büchler. 2018. Using and Evaluating TRACER
for an Index Fontium Computatus of the Summa contra Gentiles of Thomas Aquinas. In Proceedings of
the Fifth Italian Conference on Computational Linguistics (CLiC-it 2018), Torino, Italy, December 10-12,
2018, volume 2253 of CEUR Workshop Proceedings. CEUR-WS.org.

Brendan J Frey and Delbert Dueck. 2007. Clustering by Passing Messages Between Data Points. science,
315(5814):972–976.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry Vetrov. 2018. Conditional Generators of Words Definitions.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 266–271, Melbourne, Australia. Association for Computational Linguistics.

Noah Gardner, Hafiz Khan, and Chih-Cheng Hung. 2022. Definition Modeling: Literature Review and
Dataset Analysis. Applied Computing and Intelligence, 2(1):83–98.

Aina Garí Soler and Marianna Apidianaki. 2021. Let’s Play Mono-Poly: BERT Can Reveal Words’ Polysemy
Level and Partitionability into Senses. Transactions of the Association for Computational Linguistics,
9:825–844.

Aina Garí Soler, Matthieu Labeau, and Chloé Clavel. 2022. One Word, Two Sides: Traces of Stance in Con-
textualized Word Representations. In Proceedings of the 29th International Conference on Computational
Linguistics, pages 3950–3959, Gyeongju, Republic of Korea. International Committee on Computational
Linguistics.

Dirk Geeraerts. 2020. Semantic Change: “What The Smurf?”. The Wiley Blackwell Companion to Semantics,
pages 1–24.

A. Shaji George and A. S. Hovan George. 2023. A Review of ChatGPT AI’s Impact on Several Business
Sectors. Partners Universal International Innovation Journal, 1(1):9–23.

Sayan Ghosh and Shashank Srivastava. 2022. ePiC: Employing Proverbs in Context as a Benchmark for
Abstract Language Understanding. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 3989–4004, Dublin, Ireland. Association for
Computational Linguistics.

Mario Giulianelli, Marco Del Tredici, and Raquel Fernández. 2020. Analysing Lexical Semantic Change
with Contextualised Word Representations. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3960–3973, Online. Association for Computational Linguistics.

223

https://doi.org/10.18653/v1/2022.lchange-1.10
https://doi.org/10.18653/v1/2022.lchange-1.10
https://ceur-ws.org/Vol-2253/paper22.pdf
https://ceur-ws.org/Vol-2253/paper22.pdf
https://doi.org/doi.org/10.1126/science.1136800
https://doi.org/10.18653/v1/P18-2043
https://doi.org/https://doi.org/10.3934/aci.2022005
https://doi.org/https://doi.org/10.3934/aci.2022005
https://doi.org/10.1162/tacl_a_00400
https://doi.org/10.1162/tacl_a_00400
https://aclanthology.org/2022.coling-1.347
https://aclanthology.org/2022.coling-1.347
https://doi.org/doi.org/10.1002/9781118788516.sem042
https://doi.org/10.5281/zenodo.7644359
https://doi.org/10.5281/zenodo.7644359
https://doi.org/10.18653/v1/2022.acl-long.276
https://doi.org/10.18653/v1/2022.acl-long.276
https://doi.org/10.18653/v1/2020.acl-main.365
https://doi.org/10.18653/v1/2020.acl-main.365


Mario Giulianelli, Andrey Kutuzov, and Lidia Pivovarova. 2022. Do Not Fire the Linguist: Grammatical
Profiles Help Language Models Detect Semantic Change. In Proceedings of the 3rd Workshop on Com-
putational Approaches to Historical Language Change, pages 54–67, Dublin, Ireland. Association for
Computational Linguistics.

Mario Giulianelli, Iris Luden, Raquel Fernandez, and Andrey Kutuzov. 2023. Interpretable Word Sense
Representations via Definition Generation: The Case of Semantic Change Analysis. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
3130–3148, Toronto, Canada. Association for Computational Linguistics.

Mihir Godbole, Parth Dandavate, and Aditya Kane. 2022. Temporal Word Meaning Disambiguation using
TimeLMs. In Proceedings of the The First Workshop on Ever Evolving NLP (EvoNLP), pages 55–60, Abu
Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.

Hila Gonen, Ganesh Jawahar, Djamé Seddah, and Yoav Goldberg. 2020. Simple, Interpretable and Stable
Method for Detecting Words with Usage Change across Corpora. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 538–555, Online. Association for Com-
putational Linguistics.

Roksana Goworek and Haim Dubossarsky. 2024. Toward Sentiment Aware Semantic Change Analysis. In
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Lin-
guistics: Student Research Workshop, pages 350–357, St. Julian’s, Malta. Association for Computational
Linguistics.

Chris Greenough. 2021. From Biblical Text to Twitter: Teaching Biblical Studies in the Zeitgeist of# MeToo.
Journal of Feminist Studies in Religion, 37(1):133–135.

Stefan Grondelaers, Dirk Speelman, and Dirk Geeraerts. 2010. Lexical Variation and Change. In The Oxford
Handbook of Cognitive Linguistics. Oxford University Press.

Maarten Grootendorst. 2022. BERTopic: Neural Topic Modeling with a Class-based TF-IDF Procedure.

Yue Guan, Jingwen Leng, Chao Li, Quan Chen, and Minyi Guo. 2020. How Far Does BERT Look At:
Distance-based Clustering and Analysis of BERT’s Attention. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 3853–3860, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Kristina Gulordava and Marco Baroni. 2011. A Distributional Similarity Approach to the Detection of
Semantic Change in the Google Books Ngram Corpus. In Proceedings of the GEMS 2011 Workshop
on GEometrical Models of Natural Language Semantics, pages 67–71, Edinburgh, UK. Association for
Computational Linguistics.

224

https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/2022.lchange-1.6
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2023.acl-long.176
https://doi.org/10.18653/v1/2022.evonlp-1.8
https://doi.org/10.18653/v1/2022.evonlp-1.8
https://doi.org/10.18653/v1/2020.acl-main.51
https://doi.org/10.18653/v1/2020.acl-main.51
https://aclanthology.org/2024.eacl-srw.28
https://doi.org/10.1093/oxfordhb/9780199738632.013.0037
https://doi.org/doi.org/10.48550/arXiv.2203.05794
https://doi.org/10.18653/v1/2020.coling-main.342
https://doi.org/10.18653/v1/2020.coling-main.342
https://aclanthology.org/W11-2508
https://aclanthology.org/W11-2508


Janosch Haber and Massimo Poesio. 2021. Patterns of Polysemy and Homonymy in Contextualised Language
Models. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2663–2676,
Punta Cana, Dominican Republic. Association for Computational Linguistics.

Muhammad Usman Hadi, Qasem al Tashi, Rizwan Qureshi, Abbas Shah, Amgad Muneer, Muhammad Irfan,
Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, and Mubarak Shah.
2023. Large Language Models: A Comprehensive Survey of its Applications, Challenges, Limitations,
and Future Prospects.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction by Learning an Invariant
Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), 17-22 June 2006, New York, NY, USA, pages 1735–1742. IEEE Computer Society.

Matthias Hagen and Benno Stein. 2011. Candidate Document Retrieval for Web-Scale Text Reuse Detec-
tion. In String Processing and Information Retrieval, pages 356–367, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Helena Halmari. 2011. Political Correctness, Euphemism, and Language Change: The Case of ‘People
First’. Journal of Pragmatics, 43(3):828–840. The Language of Space and Time.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Sta-
tistical Laws of Semantic Change. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1489–1501, Berlin, Germany. Association for
Computational Linguistics.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024. Parameter-Efficient Fine-Tuning
for Large Models: A Comprehensive Survey.

Michael Hanna and David Mareček. 2021. Analyzing BERT’s Knowledge of Hypernymy via Prompting.
In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for
NLP, pages 275–282, Punta Cana, Dominican Republic. Association for Computational Linguistics.

David Harbecke, Yuxuan Chen, Leonhard Hennig, and Christoph Alt. 2022. Why only Micro-F1? Class
Weighting of Measures for Relation Classification. In Proceedings of NLP Power! The First Workshop on
Efficient Benchmarking in NLP, pages 32–41, Dublin, Ireland. Association for Computational Linguistics.

Zellig S. Harris. 1954. Distributional structure. Word, 10(23):146–162.
Simon Hengchen, Nina Tahmasebi, Dominik Schlechtweg, and Haim Dubossarsky. 2021. Challenges for

Computational Lexical Semantic Change, pages 341–372. Language Science Press, Berlin.
Tomáš Hercig and Pavel Kral. 2021. Evaluation Datasets for Cross-lingual Semantic Textual Similarity.

In Proceedings of the International Conference on Recent Advances in Natural Language Processing
(RANLP 2021), pages 524–529, Held Online. INCOMA Ltd.

225

https://doi.org/10.18653/v1/2021.findings-emnlp.226
https://doi.org/10.18653/v1/2021.findings-emnlp.226
https://doi.org/10.36227/techrxiv.23589741.v4
https://doi.org/10.36227/techrxiv.23589741.v4
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/doi.org/10.1007/978-3-642-24583-1_35
https://doi.org/doi.org/10.1007/978-3-642-24583-1_35
https://doi.org/https://doi.org/10.1016/j.pragma.2010.09.016
https://doi.org/https://doi.org/10.1016/j.pragma.2010.09.016
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
http://arxiv.org/abs/2403.14608
http://arxiv.org/abs/2403.14608
https://doi.org/10.18653/v1/2021.blackboxnlp-1.20
https://doi.org/10.18653/v1/2022.nlppower-1.4
https://doi.org/10.18653/v1/2022.nlppower-1.4
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.5281/zenodo.5040322
https://doi.org/10.5281/zenodo.5040322
https://aclanthology.org/2021.ranlp-1.59


Niclas Hertzberg, Robin Cooper, Elina Lindgren, Björn Rönnerstrand, Gregor Rettenegger, Ellen Breitholtz,
and Asad Sayeed. 2022. Distributional properties of political dogwhistle representations in Swedish
BERT. In Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH), pages 170–175,
Seattle, Washington (Hybrid). Association for Computational Linguistics (ACL).

Jack Hessel and Alexandra Schofield. 2021. How effective is BERT without word ordering? Implications for
language understanding and data privacy. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 204–211, Online. Association for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and Interpreting Probes with Control Tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Hans Henrich Hock and Brian D. Joseph. 2019. Language History, Language Change, and Language Rela-
tionship. De Gruyter Mouton, Berlin, Boston.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich Schütze. 2021. Dynamic Contextualized Word Em-
beddings. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 6970–6984, Online. Association for Computational Linguistics.

Peter Uwe Hohendahl and Marc Silberman. 1977. Introduction to Reception Aesthetics. New German
Critique, 10:29–63.

Franziska Horn. 2021. Exploring Word Usage Change with Continuously Evolving Embeddings. In Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Processing: System Demonstrations, pages 290–297,
Online. Association for Computational Linguistics.

Eduard Hovy and Chin-Yew Lin. 1998. Automated Text Summarization and the Summarist System. In
TIPSTER TEXT PROGRAM PHASE III: Proceedings of a Workshop held at Baltimore, Maryland, October
13-15, 1998, pages 197–214, Baltimore, Maryland, USA. Association for Computational Linguistics.

Eduardo Raul Hruschka, Ricardo J. G. B. Campello, Alex A. Freitas, and André C. Ponce Leon F. de Car-
valho. 2009. A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 39(2):133–155.

Beizhe Hu, Qiang Sheng, Juan Cao, Yongchun Zhu, Danding Wang, Zhengjia Wang, and Zhiwei Jin. 2023.
Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track),
pages 116–125, Toronto, Canada. Association for Computational Linguistics.

226

https://doi.org/10.18653/v1/2022.woah-1.16
https://doi.org/10.18653/v1/2022.woah-1.16
https://doi.org/10.18653/v1/2021.acl-short.27
https://doi.org/10.18653/v1/2021.acl-short.27
https://doi.org/10.18653/v1/D19-1275
https://doi.org/doi.org/10.1515/9783110613285
https://doi.org/doi.org/10.1515/9783110613285
https://doi.org/10.18653/v1/2021.acl-long.542
https://doi.org/10.18653/v1/2021.acl-long.542
https://doi.org/doi.org/10.2307/487671
https://doi.org/10.18653/v1/2021.acl-demo.35
https://doi.org/10.3115/1119089.1119121
https://doi.org/10.1109/TSMCC.2008.2007252
https://doi.org/10.18653/v1/2023.acl-industry.13


Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models.

Renfen Hu, Shen Li, and Shichen Liang. 2019. Diachronic Sense Modeling with Deep Contextualized Word
Embeddings: An Ecological View. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3899–3908, Florence, Italy. Association for Computational Linguistics.

Han Huang, Tomoyuki Kajiwara, and Yuki Arase. 2021. Definition Modelling for Appropriate Specificity.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
2499–2509, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Xiaolei Huang and Michael J. Paul. 2019. Neural Temporality Adaptation for Document Classification:
Diachronic Word Embeddings and Domain Adaptation Models. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pages 4113–4123, Florence, Italy. Association for
Computational Linguistics.

Lawrence Hubert and Phipps Arabie. 1985. Comparing Partitions. Journal of classification, 2:193–218.
Mathew Huerta-Enochian. 2024. Instruction Fine-Tuning: Does Prompt Loss Matter?
Shotaro Ishihara and Hono Shirai. 2022. Nikkei at SemEval-2022 Task 8: Exploring BERT-based Bi-

Encoder Approach for Pairwise Multilingual News Article Similarity. In Proceedings of the 16th In-
ternational Workshop on Semantic Evaluation (SemEval-2022), pages 1208–1214, Seattle, United States.
Association for Computational Linguistics.

Shotaro Ishihara, Hiromu Takahashi, and Hono Shirai. 2022. Semantic Shift Stability: Efficient Way to
Detect Performance Degradation of Word Embeddings and Pre-trained Language Models. In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
205–216, Online only. Association for Computational Linguistics.

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshinaga, Graham Neubig, Shoetsu Sato, Masashi Toyoda,
and Masaru Kitsuregawa. 2019. Learning to Describe Unknown Phrases with Local and Global Contexts.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3467–3476,
Minneapolis, Minnesota. Association for Computational Linguistics.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019. What Does BERT Learn about the Structure of
Language? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for Computational Linguistics.

Christopher Jenkins, Filip Miletic, and Sabine Schulte im Walde. 2023. To Split or Not to Split: Com-
posing Compounds in Contextual Vector Spaces. In Proceedings of the 2023 Conference on Empirical

227

https://doi.org/https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.18653/v1/P19-1379
https://doi.org/10.18653/v1/P19-1379
https://doi.org/10.18653/v1/2021.emnlp-main.194
https://doi.org/10.18653/v1/P19-1403
https://doi.org/10.18653/v1/P19-1403
https://doi.org/doi.org/10.1007/BF01908075
http://arxiv.org/abs/2401.13586
https://doi.org/10.18653/v1/2022.semeval-1.171
https://doi.org/10.18653/v1/2022.semeval-1.171
https://aclanthology.org/2022.aacl-main.17
https://aclanthology.org/2022.aacl-main.17
https://doi.org/10.18653/v1/N19-1350
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2023.emnlp-main.1002
https://doi.org/10.18653/v1/2023.emnlp-main.1002


Methods in Natural Language Processing, pages 16131–16136, Singapore. Association for Computational
Linguistics.

Ming Jiang, Yuerong Hu, Glen Worthey, Ryan C Dubnicek, Ted Underwood, and J Stephen Downie. 2021.
Impact of OCR Quality on BERT Embeddings in the Domain Classification of Book Excerpts. In Pro-
ceedings of the Conference on Computational Humanities Research 2021, Amsterdam, the Netherlands.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing Wang, and Zhaopeng Tu. 2023. Is ChatGPT A Good
Translator? Yes With GPT-4 As The Engine.

Xianlin Jin and Patric R. Spence. 2021. Understanding crisis communication on social media with CERC:
topic model analysis of tweets about Hurricane Maria. Journal of Risk Research, 24(10):1266–1287.

John S. Justeson and Slava M. Katz. 1991. Co-occurrences of Antonymous Adjectives and Their Contexts.
Computational Linguistics, 17(1):1–20.

Alexander Kalinowski and Yuan An. 2021. Exploring Sentence Embedding Structures for Semantic Relation
Extraction. In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–7.

Masahiro Kaneko and Danushka Bollegala. 2021. Debiasing Pre-trained Contextualised Embeddings. In
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266, Online. Association for Computational Linguistics.

Vani Kanjirangat, Sandra Mitrovic, Alessandro Antonucci, and Fabio Rinaldi. 2020. SST-BERT at SemEval-
2020 Task 1: Semantic Shift Tracing by Clustering in BERT-based Embedding Spaces. In Proceedings
of the Fourteenth Workshop on Semantic Evaluation, pages 214–221, Barcelona (online). International
Committee for Computational Linguistics.

Nikitas Karanikolas, Eirini Manga, Nikoletta Samaridi, Eleni Tousidou, and Michael Vassilakopoulos. 2024.
Large Language Models versus Natural Language Understanding and Generation. In Proceedings of the
27th Pan-Hellenic Conference on Progress in Computing and Informatics, PCI ’23, page 278–290, Lamia,
Greece. Association for Computing Machinery.

Andres Karjus. 2023. Machine-assisted Mixed Methods: Augmenting Humanities and Social Sciences with
Artificial Intelligence.

Anna Karnysheva and Pia Schwarz. 2020. TUE at SemEval-2020 Task 1: Detecting Semantic Change
by Clustering Contextual Word Embeddings. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 232–238, Barcelona (online). International Committee for Computational Linguistics.

Kseniia Kashleva, Alexander Shein, Elizaveta Tukhtina, and Svetlana Vydrina. 2022. HSE at LSCDiscovery
in Spanish: Clustering and Profiling for Lexical Semantic Change Discovery. In Proceedings of the 3rd
Workshop on Computational Approaches to Historical Language Change, pages 193–197, Dublin, Ireland.
Association for Computational Linguistics.

228

https://ceur-ws.org/Vol-2989/long_paper43.pdf
https://doi.org/doi.org/10.48550/arXiv.2301.08745
https://doi.org/doi.org/10.48550/arXiv.2301.08745
https://doi.org/10.1080/13669877.2020.1848901
https://doi.org/10.1080/13669877.2020.1848901
https://aclanthology.org/J91-1001
https://doi.org/10.1109/IJCNN52387.2021.9534215
https://doi.org/10.1109/IJCNN52387.2021.9534215
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2020.semeval-1.26
https://doi.org/10.18653/v1/2020.semeval-1.26
https://doi.org/10.1145/3635059.3635104
https://doi.org/doi.org/10.48550/arXiv.2309.14379
https://doi.org/doi.org/10.48550/arXiv.2309.14379
https://doi.org/10.18653/v1/2020.semeval-1.28
https://doi.org/10.18653/v1/2020.semeval-1.28
https://doi.org/10.18653/v1/2022.lchange-1.21
https://doi.org/10.18653/v1/2022.lchange-1.21


Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. 2024. A Survey of Reinforcement Learn-
ing from Human Feedback.

Margarita Kay. 1979. Lexemic Change and Semantic Shift in Disease Names. Culture, medicine and psy-
chiatry, 3(1):73–94.

Raef Kazi, Alessandra Amato, Shenghui Wang, and Doina Bucur. 2022. Visualisation Methods for Di-
achronic Semantic Shift. In Proceedings of the Third Workshop on Scholarly Document Processing, pages
89–94, Gyeongju, Republic of Korea. Association for Computational Linguistics.

Daphna Keidar, Andreas Opedal, Zhijing Jin, and Mrinmaya Sachan. 2022. Slangvolution: A Causal Anal-
ysis of Semantic Change and Frequency Dynamics in Slang. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1422–1442, Dublin,
Ireland. Association for Computational Linguistics.

Olga Kellert and Md Mahmud Uz Zaman. 2022. Using Neural Topic Models to Track Context Shifts of
Words: a Case Study of COVID-related Terms Before and After the Lockdown in April 2020. In Proceed-
ings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 131–139,
Dublin, Ireland. Association for Computational Linguistics.

Mohammad Khalil and Erkan Er. 2023. Will ChatGPT Get You Caught? Rethinking of Plagiarism Detec-
tion. In Learning and Collaboration Technologies: 10th International Conference, LCT 2023, Held as
Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023,
Proceedings, Part I, page 475–487, Copenhagen, Denmark. Springer-Verlag.

Anton S. Khritankov, Pavel V. Botov, Nikolay S. Surovenko, Sergey V. Tsarkov, Dmitriy V. Viuchnov, and
Yuri V. Chekhovich. 2015. Discovering Text Reuse in Large Collections of Documents: A Study of Theses
in History Sciences. In 2015 Artificial Intelligence and Natural Language and Information Extraction,
Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT), pages 26–32.

Keivan Kianmehr, Mohammed Alshalalfa, and Reda Alhajj. 2010. Fuzzy clustering-based discretization for
gene expression classification. Knowledge and Information Systems, 24:441–465.

Adam Kilgarriff. 1997. I Don’t Believe in Word Senses. Computers and the Humanities, 31(2):91–113.
Munui Kim, Injun Baek, and Min Song. 2018. Topic Diffusion Analysis of a Weighted Citation Network in

Biomedical Literature. Journal of the Association for Information Science and Technology, 69(2):329–
342.

Kazuma Kobayashi, Taichi Aida, and Mamoru Komachi. 2021. Analyzing Semantic Changes in Japanese
Words Using BERT. In Proceedings of the 35th Pacific Asia Conference on Language, Information and
Computation, pages 270–280, Shanghai, China. Association for Computational Lingustics.

229

http://arxiv.org/abs/2312.14925
http://arxiv.org/abs/2312.14925
https://doi.org/10.1007/BF00114693
https://aclanthology.org/2022.sdp-1.10
https://aclanthology.org/2022.sdp-1.10
https://doi.org/10.18653/v1/2022.acl-long.101
https://doi.org/10.18653/v1/2022.acl-long.101
https://doi.org/10.18653/v1/2022.lchange-1.14
https://doi.org/10.18653/v1/2022.lchange-1.14
https://doi.org/10.1007/978-3-031-34411-4_32
https://doi.org/10.1007/978-3-031-34411-4_32
https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382965
https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382965
https://doi.org/doi.org/10.1007/s10115-009-0214-2
https://doi.org/doi.org/10.1007/s10115-009-0214-2
https://doi.org/10.1023/A:1000583911091
https://aclanthology.org/2021.paclic-1.29
https://aclanthology.org/2021.paclic-1.29


Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydło, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, Anna Kocoń, Bartłomiej Koptyra, Wiktoria
Mieleszczenko-Kowszewicz, Piotr Miłkowski, Marcin Oleksy, Maciej Piasecki, Łukasz Radliński, Konrad
Wojtasik, Stanisław Woźniak, and Przemysław Kazienko. 2023. ChatGPT: Jack of All Trades, Master of
None. Information Fusion, 99:101861.

Cunliang Kong, Yun Chen, Hengyuan Zhang, Liner Yang, and Erhong Yang. 2022. Multitasking Frame-
work for Unsupervised Simple Definition Generation. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 5934–5943, Dublin, Ireland.
Association for Computational Linguistics.

Miloslav Konopík, Ondřej Pražák, and David Steinberger. 2017. Czech Dataset for Semantic Similarity
and Relatedness. In Proceedings of the International Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 401–406, Varna, Bulgaria. INCOMA Ltd.

Matej Kosec, Sheng Fu, and Mario Michael Krell. 2021. Packing: Towards 2x NLP BERT Acceleration.
Klaus Krippendorff. 2019. Content Analysis. SAGE Publications, Inc.
Artem Kudisov and Nikolay Arefyev. 2022. BOS at LSCDiscovery: Lexical Substitution for Interpretable

Lexical Semantic Change Detection. In Proceedings of the 3rd Workshop on Computational Approaches to
Historical Language Change, pages 165–172, Dublin, Ireland. Association for Computational Linguistics.

Parag A. Kulkarni and Preeti Mulay. 2013. Evolve Systems using Incremental Clustering Approach. Evolving
Systems, 4(2):71–85.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2015. Statistically Significant Detection
of Linguistic Change. In Proceedings of the 24th International Conference on World Wide Web, WWW
’15, page 625–635, Florence, Italy. International World Wide Web Conferences Steering Committee.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation of Deep Bidirectional Multilingual Transformers
for Russian Language. In Proceedings of the Conference on Computational Linguistics and Intellectual
Technologies (Dialogue), Moscow, Russia. RSUH.

Andrey Kutuzov. 2020. Distributional Word Embeddings in Modeling Diachronic Semantic Change. Ph.D.
thesis, University of Oslo.

Andrey Kutuzov and Mario Giulianelli. 2020. UiO-UvA at SemEval-2020 Task 1: Contextualised Embed-
dings for Lexical Semantic Change Detection. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 126–134, Barcelona (online). International Committee for Computational Linguistics.

Andrey Kutuzov, Elizaveta Kuzmenko, and Lidia Pivovarova. 2017. Clustering of Russian Adjective-Noun
Constructions using Word Embeddings. In Proceedings of the 6th Workshop on Balto-Slavic Natural
Language Processing, pages 3–13, Valencia, Spain. Association for Computational Linguistics.

230

https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.18653/v1/2022.acl-long.409
https://doi.org/10.18653/v1/2022.acl-long.409
https://doi.org/10.26615/978-954-452-049-6_053
https://doi.org/10.26615/978-954-452-049-6_053
https://openreview.net/forum?id=3_MUAtqR0aA
https://doi.org/https://doi.org/10.4135/9781071878781
https://doi.org/10.18653/v1/2022.lchange-1.17
https://doi.org/10.18653/v1/2022.lchange-1.17
https://doi.org/10.1007/s12530-012-9068-z
https://doi.org/10.1145/2736277.2741627
https://doi.org/10.1145/2736277.2741627
https://doi.org/doi.org/10.48550/arXiv.1905.07213
https://doi.org/doi.org/10.48550/arXiv.1905.07213
https://www.duo.uio.no/handle/10852/81045
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/2020.semeval-1.14
https://doi.org/10.18653/v1/W17-1402
https://doi.org/10.18653/v1/W17-1402


Andrey Kutuzov, Lilja Øvrelid, Terrence Szymanski, and Erik Velldal. 2018. Diachronic Word Embeddings
and Semantic Shifts: a Survey. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1384–1397, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Andrey Kutuzov and Lidia Pivovarova. 2021a. RuShiftEval.
Andrey Kutuzov and Lidia Pivovarova. 2021b. RuShiftEval: A Shared Task on Semantic Shift Detection for

Russian. In Proceedings of the Conference on Computational Linguistics and Intellectual Technologies
(Dialogue), 20, (online). RSUH.

Andrey Kutuzov and Lidia Pivovarova. 2021c. Three-part Diachronic Semantic Change Dataset for Russian.
In Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language
Change 2021, pages 7–13, Online. Association for Computational Linguistics.

Andrey Kutuzov, Lidia Pivovarova, and Mario Giulianelli. 2021a. Grammatical Profiling for Semantic
Change Detection. In Proceedings of the 25th Conference on Computational Natural Language Learning,
pages 423–434, Online. Association for Computational Linguistics.

Andrey Kutuzov, Samia Touileb, Petter Mæhlum, Tita Enstad, and Alexandra Wittemann. 2022a. Nor-
DiaChange: Diachronic Semantic Change Dataset for Norwegian. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages 2563–2572, Marseille, France. European Language
Resources Association.

Andrey Kutuzov, Samia Touileb, Petter Mæhlum, Tita Ranveig Enstad, and Alexandra Wittemann. 2021b.
NorDiaChange.

Andrey Kutuzov, Erik Velldal, and Lilja Øvrelid. 2022b. Contextualized Embeddings for Semantic Change
Detection: Lessons Learned. Northern European Journal of Language Technology, Volume 8.

Caterina Lacerra, Tommaso Pasini, Rocco Tripodi, and Roberto Navigli. 2021. ALaSca: an Automated
approach for Large-Scale Lexical Substitution. In Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI-21, pages 3836–3842. International Joint Conferences on Artificial
Intelligence Organization. Main Track.

Viet Lai, Nghia Ngo, Amir Pouran Ben Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui, and Thien
Nguyen. 2023. ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language
Models in Multilingual Learning. In Findings of the Association for Computational Linguistics: EMNLP
2023, pages 13171–13189, Singapore. Association for Computational Linguistics.

Severin Laicher, Gioia Baldissin, Enrique Castañeda, Dominik Schlechtweg, and Sabine Schulte. 2020. CL-
IMS @ DIACR-Ita: Volente o Nolente: BERT does not Outperform SGNS on Semantic Change Detec-
tion. In Proc. of the Evaluation Campaign of Natural Language Processing and Speech Tools for Italian
(EVALITA), pages 438–443, Marrakech, Morocco. CEUR-WS.

231

https://aclanthology.org/C18-1117
https://aclanthology.org/C18-1117
https://github.com/akutuzov/rushifteval_public
https://www.dialog-21.ru/media/5536/pivovarovalpluskutuzova151.pdf
https://www.dialog-21.ru/media/5536/pivovarovalpluskutuzova151.pdf
https://doi.org/10.18653/v1/2021.lchange-1.2
https://doi.org/10.18653/v1/2021.conll-1.33
https://doi.org/10.18653/v1/2021.conll-1.33
https://aclanthology.org/2022.lrec-1.274
https://aclanthology.org/2022.lrec-1.274
https://github.com/ltgoslo/nor_dia_change
https://doi.org/https://doi.org/10.3384/nejlt.2000-1533.2022.3478
https://doi.org/https://doi.org/10.3384/nejlt.2000-1533.2022.3478
https://doi.org/10.24963/ijcai.2021/528
https://doi.org/10.24963/ijcai.2021/528
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://doi.org/10.18653/v1/2023.findings-emnlp.878
https://ceur-ws.org/Vol-2765/paper132.pdf
https://ceur-ws.org/Vol-2765/paper132.pdf
https://ceur-ws.org/Vol-2765/paper132.pdf


Severin Laicher, Sinan Kurtyigit, Dominik Schlechtweg, Jonas Kuhn, and Sabine Schulte im Walde. 2021.
Explaining and Improving BERT Performance on Lexical Semantic Change Detection. In Proceedings of
the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student
Research Workshop, pages 192–202, Online. Association for Computational Linguistics.

Brenden M Lake and Gregory L Murphy. 2023. Word Meaning in Minds and Machines. Psychological
Review, 130(2):401–431.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019.
ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty,
and Jimmy Huang. 2023. A Systematic Study and Comprehensive Evaluation of ChatGPT on Bench-
mark Datasets. In Findings of the Association for Computational Linguistics: ACL 2023, pages 431–469,
Toronto, Canada. Association for Computational Linguistics.

Jey Han Lau, Paul Cook, Diana McCarthy, David Newman, and Timothy Baldwin. 2012. Word Sense In-
duction for Novel Sense Detection. In Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pages 591–601, Avignon, France. Association for Computa-
tional Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and Documents. In Proceed-
ings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1188–1196, Bejing, China. PMLR.

Hanbit Lee, Yeonchan Ahn, Haejun Lee, Seungdo Ha, and Sang-goo Lee. 2016. Quote Recommendation in
Dialogue Using Deep Neural Network. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’16, page 957–960, Pisa, Italy. Association
for Computing Machinery.

Hyun Seung Lee, Seungtaek Choi, Yunsung Lee, Hyeongdon Moon, Shinhyeok Oh, Myeongho Jeong, Hyo-
jun Go, and Christian Wallraven. 2023. Cross Encoding as Augmentation: Towards Effective Educational
Text Classification. In Findings of the Association for Computational Linguistics: ACL 2023, pages 2184–
2195, Toronto, Canada. Association for Computational Linguistics.

Piroska Lendvai and Claudia Wick. 2022. Finetuning Latin BERT for Word Sense Disambiguation on the
Thesaurus Linguae Latinae. In Proceedings of the Workshop on Cognitive Aspects of the Lexicon, pages
37–41, Taipei, Taiwan. Association for Computational Linguistics.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driving Some Sense into BERT. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 4656–4667, Online.
Association for Computational Linguistics.

232

https://doi.org/10.18653/v1/2021.eacl-srw.25
https://doi.org/10.1037/rev0000297
https://doi.org/doi.org/10.48550/arXiv.1909.11942
https://doi.org/10.18653/v1/2023.findings-acl.29
https://doi.org/10.18653/v1/2023.findings-acl.29
https://aclanthology.org/E12-1060
https://aclanthology.org/E12-1060
https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1145/2911451.2914734
https://doi.org/10.1145/2911451.2914734
https://doi.org/10.18653/v1/2023.findings-acl.137
https://doi.org/10.18653/v1/2023.findings-acl.137
https://aclanthology.org/2022.cogalex-1.5
https://aclanthology.org/2022.cogalex-1.5
https://doi.org/10.18653/v1/2020.acl-main.423


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.

Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang Yang,
and Xing Xie. 2023. Large Language Models Understand and Can be Enhanced by Emotional Stimuli.

Meng Liang and Yao Shi. 2023. Named Entity Recognition Method Based on BERT-whitening and Dynamic
Fusion Model. In 2023 5th International Conference on Natural Language Processing (ICNLP), pages
191–197.

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.

Ruixi Lin and Hwee Tou Ng. 2022. Does BERT Know that the IS-A Relation Is Transitive? In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 94–99, Dublin, Ireland. Association for Computational Linguistics.

Per Linell. 1998. Approaching Dialogue: Talk, Interaction and Contexts in Dialogical Perspectives. John
Benjamins.

Zhidong Ling, Taichi Aida, Teruaki Oka, and Mamoru Komachi. 2023. Construction of Evaluation Dataset
for Japanese Lexical Semantic Change Detection. In Proceedings of the 37th Pacific Asia Conference on
Language, Information and Computation, pages 125–136, Hong Kong, China. Association for Computa-
tional Linguistics.

Qianchu Liu, Edoardo Maria Ponti, Diana McCarthy, Ivan Vulić, and Anna Korhonen. 2021a. AM2iCo:
Evaluating Word Meaning in Context across Low-Resource Languages with Adversarial Examples. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7151–
7162, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Yang Liu, Alan Medlar, and Dorota Glowacka. 2021b. Statistically Significant Detection of Semantic Shifts
using Contextual Word Embeddings. In Proceedings of the 2nd Workshop on Evaluation and Compar-
ison of NLP Systems, pages 104–113, Punta Cana, Dominican Republic. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

Daniel Loureiro, Aminette D’Souza, Areej Nasser Muhajab, Isabella A. White, Gabriel Wong, Luis
Espinosa-Anke, Leonardo Neves, Francesco Barbieri, and Jose Camacho-Collados. 2022. TempoWiC:

233

https://doi.org/doi.org/10.48550/arXiv.2307.11760
https://doi.org/10.1109/ICNLP58431.2023.00041
https://doi.org/10.1109/ICNLP58431.2023.00041
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.acl-short.11
https://aclanthology.org/2023.paclic-1.13
https://aclanthology.org/2023.paclic-1.13
https://doi.org/10.18653/v1/2021.emnlp-main.571
https://doi.org/10.18653/v1/2021.emnlp-main.571
https://doi.org/10.18653/v1/2021.eval4nlp-1.11
https://doi.org/10.18653/v1/2021.eval4nlp-1.11
https://doi.org/https://doi.org/10.48550/arXiv.1907.11692
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296


An Evaluation Benchmark for Detecting Meaning Shift in Social Media. In Proceedings of the 29th In-
ternational Conference on Computational Linguistics, pages 3353–3359, Gyeongju, Republic of Korea.
International Committee on Computational Linguistics.

Brady D Lund and Ting Wang. 2023. Chatting about ChatGPT: How May AI and GPT Impact Academia
and Libraries? Library Hi Tech News, 40(3):26–29.

Chenyang Lyu, Yongxin Zhou, and Tianbo Ji. 2022. MLLabs-LIG at TempoWiC 2022: A Generative Ap-
proach for Examining Temporal Meaning Shift. In Proceedings of the The First Workshop on Ever Evolv-
ing NLP (EvoNLP), pages 1–6, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational
Linguistics.

Xianghe Ma, Michael Strube, and Wei Zhao. 2024a. Graph-based Clustering for Detecting Semantic Change
Across Time and Languages. In Proceedings of the 18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1542–1561, St. Julian’s, Malta.
Association for Computational Linguistics.

Xianghe Ma, Michael Strube, and Wei Zhao. 2024b. Graph-based Clustering for Detecting Semantic Change
Across Time and Languages. In Proceedings of the 18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pages 1542–1561, St. Julian’s, Malta.
Association for Computational Linguistics.

Xiaofei Ma, Zhiguo Wang, Patrick Ng, Ramesh Nallapati, and Bing Xiang. 2019. Universal Text Represen-
tation from BERT: An Empirical Study.

Ansel MacLaughlin, Shaobin Xu, and David A. Smith. 2021. Recovering Lexically and Semantically Reused
Texts. In Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Seman-
tics, pages 52–66, Online. Association for Computational Linguistics.

James MacQueen et al. 1967. Some Methods for Classification and Analysis of Multivariate Observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA.

Nikolay Malkin, Sameera Lanka, Pranav Goel, Sudha Rao, and Nebojsa Jojic. 2021. GPT Perdetry Test:
Generating New Meanings for New Words. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 5542–
5553, Online. Association for Computational Linguistics.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach, and Sameer Pradhan. 2010. SemEval-2010 Task 14:
Word Sense Induction & Disambiguation. In Proceedings of the 5th International Workshop on Semantic
Evaluation, pages 63–68, Uppsala, Sweden. Association for Computational Linguistics.

234

https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://aclanthology.org/2022.coling-1.296
https://doi.org/dx.doi.org/10.2139/ssrn.4333415
https://doi.org/dx.doi.org/10.2139/ssrn.4333415
https://doi.org/10.18653/v1/2022.evonlp-1.1
https://doi.org/10.18653/v1/2022.evonlp-1.1
https://aclanthology.org/2024.eacl-long.93
https://aclanthology.org/2024.eacl-long.93
https://aclanthology.org/2024.eacl-long.93
https://aclanthology.org/2024.eacl-long.93
https://doi.org/doi.org/10.48550/arXiv.1910.07973
https://doi.org/doi.org/10.48550/arXiv.1910.07973
https://doi.org/10.18653/v1/2021.starsem-1.5
https://doi.org/10.18653/v1/2021.starsem-1.5
http://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.18653/v1/2021.naacl-main.439
https://doi.org/10.18653/v1/2021.naacl-main.439
https://aclanthology.org/S10-1011
https://aclanthology.org/S10-1011


Enrique Manjavacas, Brian Long, and Mike Kestemont. 2019. On the Feasibility of Automated Detection of
Allusive Text Reuse. In Proceedings of the 3rd Joint SIGHUM Workshop on Computational Linguistics
for Cultural Heritage, Social Sciences, Humanities and Literature, pages 104–114, Minneapolis, USA.
Association for Computational Linguistics.

Christopher D Manning. 2009. An Introduction to Information Retrieval. Cambridge university press.
Stratos Mansalis, Eirini Ntoutsi, Nikos Pelekis, and Yannis Theodoridis. 2018. An evaluation of data stream

clustering algorithms. Statistical Analysis and Data Mining: The ASA Data Science Journal, 11(4):167–
187.

Federico Martelli, Najla Kalach, Gabriele Tola, and Roberto Navigli. 2021. SemEval-2021 Task 2: Mul-
tilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). In Proceedings of the 15th
International Workshop on Semantic Evaluation (SemEval-2021), pages 24–36, Online. Association for
Computational Linguistics.

Matej Martinc, Petra Kralj Novak, and Senja Pollak. 2020a. Leveraging Contextual Embeddings for De-
tecting Diachronic Semantic Shift. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, pages 4811–4819, Marseille, France. European Language Resources Association.

Matej Martinc, Syrielle Montariol, Elaine Zosa, and Lidia Pivovarova. 2020b. Capturing Evolution in Word
Usage: Just Add More Clusters? In Companion Proceedings of the Web Conference 2020, WWW ’20,
page 343–349, Taipei, Taiwan. Association for Computing Machinery.

Matej Martinc, Syrielle Montariol, Elaine Zosa, and Lidia Pivovarova. 2020c. Discovery Team at SemEval-
2020 Task 1: Context-sensitive Embeddings Not Always Better than Static for Semantic Change Detection.
In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 67–73, Barcelona (online).
International Committee for Computational Linguistics.

Terence E. McDonnell, Christopher A. Bail, and Iddo Tavory. 2017. A Theory of Resonance. Sociological
Theory, 35(1):1–14.

Barbara McGillivray, Dominik Schlechtweg, Haim Dubossarsky, Nina Tahmasebi, and Simon Hengchen.
2021. DWUG LA: Diachronic Word Usage Graphs for Latin.

Leland McInnes, John Healy, and Steve Astels. 2017. HDBSCAN: Hierarchical Density Based Clustering.
Journal of Open Source Software, 2(11):205.

Leland McInnes, John Healy, and James Melville. 2020. UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction.

Qiaozhu Mei and ChengXiang Zhai. 2005. Discovering Evolutionary Theme Patterns from Text: An Explo-
ration of Temporal Text Mining. In Proceedings of the Eleventh ACM SIGKDD International Conference

235

https://doi.org/10.18653/v1/W19-2514
https://doi.org/10.18653/v1/W19-2514
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://doi.org/10.1002/sam.11380
https://doi.org/10.1002/sam.11380
https://doi.org/10.18653/v1/2021.semeval-1.3
https://doi.org/10.18653/v1/2021.semeval-1.3
https://aclanthology.org/2020.lrec-1.592
https://aclanthology.org/2020.lrec-1.592
https://doi.org/10.1145/3366424.3382186
https://doi.org/10.1145/3366424.3382186
https://doi.org/10.18653/v1/2020.semeval-1.6
https://doi.org/10.18653/v1/2020.semeval-1.6
http://www.jstor.org/stable/26382903
https://doi.org/10.5281/zenodo.5255228
https://doi.org/10.21105/joss.00205
https://doi.org/doi.org/10.48550/arXiv.1802.03426
https://doi.org/doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1145/1081870.1081895
https://doi.org/10.1145/1081870.1081895


on Knowledge Discovery in Data Mining, KDD ’05, pages 198–207, Chicago, Illinois, USA. Association
for Computing Machinery.

Stefano Menini, Teresa Paccosi, Sara Tonelli, Marieke Van Erp, Inger Leemans, Pasquale Lisena, Raphael
Troncy, William Tullett, Ali Hürriyetoğlu, Ger Dijkstra, Femke Gordijn, Elias Jürgens, Josephine Koop-
man, Aron Ouwerkerk, Sanne Steen, Inna Novalija, Janez Brank, Dunja Mladenic, and Anja Zidar. 2022.
A Multilingual Benchmark to Capture Olfactory Situations over Time. In Proceedings of the 3rd Workshop
on Computational Approaches to Historical Language Change, pages 1–10, Dublin, Ireland. Association
for Computational Linguistics.

Timothee Mickus, Denis Paperno, Mathieu Constant, and Kees van Deemter. 2020. What do you mean,
BERT? In Proceedings of the Society for Computation in Linguistics 2020, pages 279–290, New York,
New York. Association for Computational Linguistics.

Timothee Mickus, Denis Paperno, and Matthieu Constant. 2019. Mark my Word: A Sequence-to-Sequence
Approach to Definition Modeling. In Proceedings of the First NLPL Workshop on Deep Learning for
Natural Language Processing, pages 1–11, Turku, Finland. Linköping University Electronic Press.

Timothee Mickus, Kees Van Deemter, Mathieu Constant, and Denis Paperno. 2022. Semeval-2022 Task 1:
CODWOE – Comparing Dictionaries and Word Embeddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022), pages 1–14, Seattle, United States. Association for
Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient Estimation of Word Represen-
tations in Vector Space.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, Georgia.
Association for Computational Linguistics.

Filip Miletic, Anne Przewozny-Desriaux, and Ludovic Tanguy. 2021. Detecting Contact-Induced Semantic
Shifts: What Can Embedding-Based Methods Do in Practice? In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 10852–10865, Online and Punta Cana,
Dominican Republic. Association for Computational Linguistics.

George A. Miller. 1994. WordNet: A Lexical Database for English. In Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994.

George A. Miller and Walter G. Charles. 1991. Contextual correlates of semantic similarity. Language and
Cognitive Processes, 6(1):1–28.

236

https://doi.org/10.18653/v1/2022.lchange-1.1
https://aclanthology.org/2020.scil-1.35
https://aclanthology.org/2020.scil-1.35
https://aclanthology.org/W19-6201
https://aclanthology.org/W19-6201
https://doi.org/10.18653/v1/2022.semeval-1.1
https://doi.org/10.18653/v1/2022.semeval-1.1
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://doi.org/10.18653/v1/2021.emnlp-main.847
https://doi.org/10.18653/v1/2021.emnlp-main.847
https://aclanthology.org/H94-1111
https://doi.org/10.1080/01690969108406936


George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. 1993. A Semantic Concordance.
In Human Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March
21-24, 1993.

Syrielle Montariol, Matej Martinc, and Lidia Pivovarova. 2021. Scalable and Interpretable Semantic Change
Detection. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4642–4652, Online. Association for
Computational Linguistics.

Maria Moritz, Andreas Wiederhold, Barbara Pavlek, Yuri Bizzoni, and Marco Büchler. 2016. Non-Literal
Text Reuse in Historical Texts: An Approach to Identify Reuse Transformations and its Application to
Bible Reuse. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1849–1859, Austin, Texas. Association for Computational Linguistics.

Iqra Muneer and Rao Muhammad Adeel Nawab. 2022. Cross-Lingual Text Reuse Detection at sentence level
for English–Urdu language pair. Computer Speech & Language, 75:101381.

Juan Pablo Munoz, Jinjie Yuan, Yi Zheng, and Nilesh Jain. 2024. LoNAS: Elastic Low-Rank Adapters
for Efficient Large Language Models. In Proceedings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 10760–
10776, Torino, Italia. ELRA and ICCL.

Usman Naseem, Imran Razzak, Shah Khalid Khan, and Mukesh Prasad. 2021. A Comprehensive Survey on
Word Representation Models: From Classical to State-of-the-Art Word Representation Language Models.
ACM Trans. Asian Low-Resour. Lang. Inf. Process., 20(5).

D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. 1998. UCI Repository of Machine Learning Databases.
Ke Ni and William Yang Wang. 2017. Learning to Explain Non-Standard English Words and Phrases. In

Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), pages 413–417, Taipei, Taiwan. Asian Federation of Natural Language Processing.

Bill Noble, Asad Sayeed, Raquel Fernández, and Staffan Larsson. 2021. Semantic Shift in Social Networks.
In Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics,
pages 26–37, Online. Association for Computational Linguistics.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and Doug Downey. 2017. Definition Modeling: Learning
to Define Word Embeddings in Natural Language. Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1).

Ben O’Neill. 2011. A Critique of Politically Correct Language. The Independent Review, 16(2):279–291.
OpenAI. 2023. GPT-4 Technical Report.

237

https://aclanthology.org/H93-1061
https://doi.org/10.18653/v1/2021.naacl-main.369
https://doi.org/10.18653/v1/2021.naacl-main.369
https://doi.org/10.18653/v1/D16-1190
https://doi.org/10.18653/v1/D16-1190
https://doi.org/10.18653/v1/D16-1190
https://doi.org/https://doi.org/10.1016/j.csl.2022.101381
https://doi.org/https://doi.org/10.1016/j.csl.2022.101381
https://aclanthology.org/2024.lrec-main.940
https://aclanthology.org/2024.lrec-main.940
https://doi.org/10.1145/3434237
https://doi.org/10.1145/3434237
http://www.ics.uci.edu/~mlearn/MLRepository.html
https://aclanthology.org/I17-2070
https://doi.org/10.18653/v1/2021.starsem-1.3
https://doi.org/10.1609/aaai.v31i1.10996
https://doi.org/10.1609/aaai.v31i1.10996
http://www.jstor.org/stable/24563157
https://doi.org/doi.org/10.48550/arXiv.2303.08774


Naho Orita, Naomi Feldman, Jordan Boyd-Graber, and Eliana Vornov. 2014. Quantifying the Role of Dis-
course Topicality in Speakers’ Choices of Referring Expressions. In Proceedings of the Fifth Workshop
on Cognitive Modeling and Computational Linguistics, pages 63–70, Baltimore, Maryland, USA. Asso-
ciation for Computational Linguistics.

Lionel Ott and Fabio Ramos. 2012. Unsupervised Incremental Learning for Long-term Autonomy. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 4022–4029.

Teresa Paccosi, Stefano Menini, Elisa Leonardelli, Ilaria Barzon, and Sara Tonelli. 2023. Scent and Sensi-
bility: Perception Shifts in the Olfactory Domain. In Proceedings of the 4th Workshop on Computational
Approaches to Historical Language Change, pages 143–152, Singapore. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computa-
tional Linguistics.

Jeong Yeon Park, Hyeong Jin Shin, and Jae Sung Lee. 2022. Word Sense Disambiguation Using Clustered
Sense Labels. Applied Sciences, 12(4).

Hermann Paul. 1880. Prinzipien der Sprachgeschichte. Niemeyer, Halle.
Paolo Pedinotti and Alessandro Lenci. 2020. Don’t Invite BERT to Drink a Bottle: Modeling the Inter-

pretation of Metonymies Using BERT and Distributional Representations. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 6831–6837, Barcelona, Spain (Online).
International Committee on Computational Linguistics.

Fabian Pedregosa, Gäel Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word Rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.

Francesco Periti. 2023. Contextualised Semantic Shift Detection. In Proceedings of the 31st Symposium of
Advanced Database Systems (SEBD), pages 735–741, Galzingano Terme, Italy. CEUR.org.

Francesco Periti, David Alfter, and Nina Tahmasebi. 2024a. Automatically Generated Definitions and their
utility for Modeling Word Meaning. In Proceedings of the 2024 Conference on Empirical Methods in

238

https://doi.org/10.3115/v1/W14-2008
https://doi.org/10.3115/v1/W14-2008
https://doi.org/10.1109/ICRA.2012.6224605
https://doi.org/10.18653/v1/2023.lchange-1.15
https://doi.org/10.18653/v1/2023.lchange-1.15
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3390/app12041857
https://doi.org/10.3390/app12041857
https://doi.org/10.18653/v1/2020.coling-main.602
https://doi.org/10.18653/v1/2020.coling-main.602
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://ceur-ws.org/Vol-3478/paper81.pdf
https://aclanthology.org/2024.emnlp-main.776
https://aclanthology.org/2024.emnlp-main.776


Natural Language Processing, pages 14008–14026, Miami, Florida, USA. Association for Computational
Linguistics.

Francesco Periti, Pierluigi Cassotti, Haim Dubossarsky, and Nina Tahmasebi. 2024b. Analyzing Semantic
Change through Lexical Replacements. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 4495–4510, Bangkok, Thailand. Association
for Computational Linguistics.

Francesco Periti, Pierluigi Cassotti, Stefano Montanelli, Nina Tahmasebi, and Dominik Schlechtweg. 2024c.
TRoTR: A Framework for Evaluating the Re-contextualization of Text Reuse. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 13972–13990, Miami, Florida,
USA. Association for Computational Linguistics.

Francesco Periti and Haim Dubossarsky. 2023. The Time-Embedding Travelers@WiC-ITA. In Proceedings
of the Eighth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final
Workshop (EVALITA 2023), Parma, Italy. CEUR.org.

Francesco Periti, Haim Dubossarsky, and Nina Tahmasebi. 2024d. (Chat)GPT v BERT Dawn of Justice for
Semantic Change Detection. In Findings of the Association for Computational Linguistics: EACL 2024,
pages 420–436, St. Julian’s, Malta. Association for Computational Linguistics.

Francesco Periti, Alfio Ferrara, Stefano Montanelli, and Martin Ruskov. 2022. What is Done is Done: an
Incremental Approach to Semantic Shift Detection. In Proceedings of the 3rd Workshop on Computational
Approaches to Historical Language Change, pages 33–43, Dublin, Ireland. Association for Computational
Linguistics.

Francesco Periti and Stefano Montanelli. 2024. Lexical Semantic Change through Large Language Models:
a Survey. ACM Comput. Surv., 56(11).

Francesco Periti, Sergio Picascia, Stefano Montanelli, Alfio Ferrara, and Nina Tahmasebi. 2024e. Study-
ing Word Meaning Evolution through Incremental Semantic Shift Detection. Language Resources and
Evaluation.

Francesco Periti and Nina Tahmasebi. 2024a. A Systematic Comparison of Contextualized Word Embed-
dings for Lexical Semantic Change. In Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pages 4262–4282, Mexico City, Mexico. Association for Computational Linguistics.

Francesco Periti and Nina Tahmasebi. 2024b. Towards a Complete Solution to Lexical Semantic Change:
an Extension to Multiple Time Periods and Diachronic Word Sense Induction. In Proceedings of the
5th Workshop on Computational Approaches to Historical Language Change, pages 108–119, Bangkok,
Thailand. Association for Computational Linguistics.

239

https://aclanthology.org/2024.acl-long.246
https://aclanthology.org/2024.acl-long.246
https://aclanthology.org/2024.emnlp-main.774
https://ceur-ws.org/Vol-3473/paper47.pdf
https://aclanthology.org/2024.findings-eacl.29
https://aclanthology.org/2024.findings-eacl.29
https://doi.org/10.18653/v1/2022.lchange-1.4
https://doi.org/10.18653/v1/2022.lchange-1.4
https://doi.org/10.1145/3672393
https://doi.org/10.1145/3672393
https://doi.org/10.1007/s10579-024-09769-1
https://doi.org/10.1007/s10579-024-09769-1
https://aclanthology.org/2024.naacl-long.240
https://aclanthology.org/2024.naacl-long.240
https://aclanthology.org/2024.lchange-1.10
https://aclanthology.org/2024.lchange-1.10


Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge Enhanced Contextual Word Representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 43–54, Hong Kong, China. Association for
Computational Linguistics.

Erika Petersen and Christopher Potts. 2023. Lexical Semantics with Large Language Models: A Case Study
of English “break”. In Findings of the Association for Computational Linguistics: EACL 2023, pages
490–511, Dubrovnik, Croatia. Association for Computational Linguistics.

Kevin J Peterson and Hongfang Liu. 2021. An Examination of the Statistical Laws of Semantic Change in
Clinical Notes. AMIA Joint Summits on Translational Science proceedings, 2021:515–524.

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the Word-in-Context Dataset for Eval-
uating Context-Sensitive Meaning Representations. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273, Minneapolis, Minnesota. Association for Compu-
tational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2021. Contextualized Embeddings, pages 69–96.
Springer International Publishing, Cham.

Martin Pömsl and Roman Lyapin. 2020. CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and
Context-Dependent Word Representations. In Proceedings of the Fourteenth Workshop on Semantic Eval-
uation, pages 180–186, Barcelona (online). International Committee for Computational Linguistics.

Jack A. Porrino, Virak Tan, and Aaron Daluiski. 2008. Misquotation of a Commonly Referenced Hand
Surgery Study. The Journal of Hand Surgery, 33(1):2.e1–2.e9.

Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Forough Poursabzi-Sangdeh and Jordan Boyd-Graber. 2015. Speeding Document Annotation with Topic
Models. In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Student Research Workshop, pages 126–132, Denver, Colorado. Association
for Computational Linguistics.

240

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/2023.findings-eacl.36
https://doi.org/10.18653/v1/2023.findings-eacl.36
https://doi.org/10.3473089
https://doi.org/10.3473089
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.1007/978-3-031-02177-0_6
https://doi.org/10.18653/v1/2020.semeval-1.21
https://doi.org/10.18653/v1/2020.semeval-1.21
https://doi.org/https://doi.org/10.1016/j.jhsa.2007.10.007
https://doi.org/https://doi.org/10.1016/j.jhsa.2007.10.007
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.3115/v1/N15-2017
https://doi.org/10.3115/v1/N15-2017


Marko Pranjić, Kaja Dobrovoljc, Senja Pollak, and Matej Martinc. 2024. Semantic Change Detection for
Slovene Language: a Novel Dataset and an Approach Based on Optimal Transport.

Judita Preiss. 2024. Using Word Evolution to Predict Drug Repurposing. BMC Medical Informatics and
Decision Making, 24(2):114.

James Pustejovsky and Branimir Boguraev. 1993. Lexical Knowledge Representation and Natural Language
Processing. Artificial Intelligence, 63(1):193–223.

Wenjun Qiu and Xu Yang. 2022. HistBERT: A Pre-trained Language Model for Diachronic Lexical Semantic
Analysis.

Maxim Rachinskiy and Nikolay Arefyev. 2021. Zeroshot Crosslingual Transfer of a Gloss Language Model
for Semantic Change Detection. In Proceedings of the Conference on Computational Linguistics and
Intellectual Technologies (Dialogue), (online). RSUH.

Maxim Rachinskiy and Nikolay Arefyev. 2022. GlossReader at LSCDiscovery: Train to Select a Proper
Gloss in English – Discover Lexical Semantic Change in Spanish. In Proceedings of the 3rd Workshop on
Computational Approaches to Historical Language Change, pages 198–203, Dublin, Ireland. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research, 21(140):1–67.

Alessandro Raganato, Tommaso Pasini, Jose Camacho-Collados, and Mohammad Taher Pilehvar. 2020. XL-
WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7193–7206, Online.
Association for Computational Linguistics.

William M. Rand. 1971. Objective Criteria for the Evaluation of Clustering Methods. Journal of the Amer-
ican Statistical Association, 66(336):846–850.

Abhilasha Ravichander, Eduard Hovy, Kaheer Suleman, Adam Trischler, and Jackie Chi Kit Cheung. 2020.
On the Systematicity of Probing Contextualized Word Representations: The Case of Hypernymy in BERT.
In Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, pages 88–102,
Barcelona, Spain (Online). Association for Computational Linguistics.

Radim Rehurek and Petr Sojka. 2011. Gensim–Python Framework for Vector Space Modelling. NLP Centre,
Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2).

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and Measuring the Geometry of BERT. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

241

https://doi.org/https://doi.org/10.48550/arXiv.2402.16596
https://doi.org/https://doi.org/10.48550/arXiv.2402.16596
https://doi.org/10.1186/s12911-024-02496-1
https://doi.org/https://doi.org/10.1016/0004-3702(93)90017-6
https://doi.org/https://doi.org/10.1016/0004-3702(93)90017-6
https://doi.org/10.13140/RG.2.2.14905.44649
https://doi.org/10.13140/RG.2.2.14905.44649
https://doi.org/dx.doi.org/10.28995/2075-7182-2021-20-578-586
https://doi.org/dx.doi.org/10.28995/2075-7182-2021-20-578-586
https://doi.org/10.18653/v1/2022.lchange-1.22
https://doi.org/10.18653/v1/2022.lchange-1.22
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.emnlp-main.584
https://doi.org/10.18653/v1/2020.emnlp-main.584
http://www.jstor.org/stable/2284239
https://aclanthology.org/2020.starsem-1.10
https://radimrehurek.com/gensim
https://proceedings.neurips.cc/paper_files/paper/2019/file/159c1ffe5b61b41b3c4d8f4c2150f6c4-Paper.pdf


Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Computational Linguistics.

Karl Christian Reisig. 1839. Professor K. Reisig’s Vorlesungen Über Lateinische Sprachwissenschaft. Verlag
der Lehnhold’schen Buchhandlung.

Frederick Riemenschneider and Anette Frank. 2023. Exploring Large Language Models for Classical Philol-
ogy. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 15181–15199, Toronto, Canada. Association for Computational Linguistics.

Shruti Rijhwani and Daniel Preotiuc-Pietro. 2020. Temporally-Informed Analysis of Named Entity Recogni-
tion. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7605–7617, Online. Association for Computational Linguistics.

Julia Rodina, Yuliya Trofimova, Andrey Kutuzov, and Ekaterina Artemova. 2021. ELMo and BERT in
Semantic Change Detection for Russian. In Analysis of Images, Social Networks and Texts, pages 175–
186, Cham. Springer International Publishing.

Guy D. Rosin, Ido Guy, and Kira Radinsky. 2022. Time Masking for Temporal Language Models. In
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, WSDM
’22, page 833–841, Virtual Event, AZ, USA. Association for Computing Machinery.

Guy D. Rosin and Kira Radinsky. 2022. Temporal Attention for Language Models. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022, pages 1498–1508, Seattle, United States. Association
for Computational Linguistics.

David Rother, Thomas Haider, and Steffen Eger. 2020. CMCE at SemEval-2020 Task 1: Clustering on Man-
ifolds of Contextualized Embeddings to Detect Historical Meaning Shifts. In Proceedings of the Four-
teenth Workshop on Semantic Evaluation, pages 187–193, Barcelona (online). International Committee
for Computational Linguistics.

Paul Röttger and Janet Pierrehumbert. 2021. Temporal Adaptation of BERT and Performance on Down-
stream Document Classification: Insights from Social Media. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, pages 2400–2412, Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Peter J. Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster
Analysis. Journal of Computational and Applied Mathematics, 20:53–65.

242

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.acl-long.846
https://doi.org/10.18653/v1/2023.acl-long.846
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.18653/v1/2020.acl-main.680
https://doi.org/10.1145/3488560.3498529
https://doi.org/10.18653/v1/2022.findings-naacl.112
https://doi.org/10.18653/v1/2020.semeval-1.22
https://doi.org/10.18653/v1/2020.semeval-1.22
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/10.18653/v1/2021.findings-emnlp.206
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7


Maja Rudolph and David Blei. 2018. Dynamic Embeddings for Language Evolution. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, page 1003–1011, Lyon, France. International World Wide
Web Conferences Steering Committee.

Anastasiia Ryzhova, Daria Ryzhova, and Ilya Sochenkov. 2021. Detection of Semantic Changes in Rus-
sian Nouns with Distributional Models and Grammatical Features. In Proceedings of the Conference on
Computational Linguistics and Intellectual Technologies (Dialogue), (online). RSUH.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a Distilled Version
of BERT: Smaller, Faster, Cheaper and Lighter.

Yo Sato and Kevin Heffernan. 2020. Homonym normalisation by word sense clustering: a case in Japanese.
In Proceedings of the 28th International Conference on Computational Linguistics, pages 3324–3332,
Barcelona, Spain (Online). International Committee on Computational Linguistics.

Dominik Schlechtweg. 2023. Human and Computational Measurement of Lexical Semantic Change. Ph.D.
thesis, University of Stuttgart.

Dominik Schlechtweg, Haim Dubossarsky, Simon Hengchen, Barbara McGillivray, and Nina Tahmasebi.
2022a. DWUG EN: Diachronic Word Usage Graphs for English.

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2020. SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages 1–23, Barcelona (online). International Committee
for Computational Linguistics.

Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2022b. DWUG DE: Diachronic Word Usage Graphs for German.

Dominik Schlechtweg, Nina Tahmasebi, Simon Hengchen, Haim Dubossarsky, and Barbara McGillivray.
2021. DWUG: A large Resource of Diachronic Word Usage Graphs in Four Languages. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7079–7091, Online
and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Dominik Schlechtweg, Shafqat Mumtaz Virk, Pauline Sander, Emma Sköldberg, Lukas Theuer Linke, Tuo
Zhang, Nina Tahmasebi, Jonas Kuhn, and Sabine Schulte im Walde. 2024. The DURel Annotation Tool:
Human and Computational Measurement of Semantic Proximity, Sense Clusters and Semantic Change.
In Proceedings of the 18th Conference of the European Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 137–149, St. Julians, Malta. Association for Computational
Linguistics.

243

https://doi.org/10.1145/3178876.3185999
https://doi.org/dx.doi.org/10.28995/2075-7182-2021-20-597-606
https://doi.org/dx.doi.org/10.28995/2075-7182-2021-20-597-606
https://doi.org/doi.org/10.48550/arXiv.1910.01108
https://doi.org/doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.18653/v1/2020.coling-main.295
https://doi.org/http://dx.doi.org/10.18419/opus-12833
https://doi.org/10.5281/zenodo.7387261
https://doi.org/10.18653/v1/2020.semeval-1.1
https://doi.org/10.5281/zenodo.7441645
https://doi.org/10.18653/v1/2021.emnlp-main.567
https://aclanthology.org/2024.eacl-demo.15
https://aclanthology.org/2024.eacl-demo.15


Dominik Schlechtweg and Sabine Schulte im Walde. 2020. Simulating Lexical Semantic Change from
Sense-Annotated Data. In Proceedings of the 13th International Conference on the Evolution of Lan-
guage (EvoLang13), Brussels, Belgium.

Dominik Schlechtweg, Sabine Schulte im Walde, and Stefanie Eckmann. 2018. Diachronic Usage Related-
ness (DURel): A Framework for the Annotation of Lexical Semantic Change. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), pages 169–174, New Orleans, Louisiana. Association
for Computational Linguistics.

Hinrich Schütze. 1998. Automatic Word Sense Discrimination. Computational Linguistics, 24(1):97–123.

Vincent Segonne and Timothee Mickus. 2023. Definition Modeling : To model definitions. Generating
Definitions With Little to No Semantics. In Proceedings of the 15th International Conference on Compu-
tational Semantics, pages 258–266, Nancy, France. Association for Computational Linguistics.

Frank Seifart. 2019. Contact-induced Change. De Gruyter Mouton, Berlin, Boston.

Lutfi Kerem Senel, Ihsan Utlu, Veysel Yucesoy, Aykut Koc, and Tolga Cukur. 2018. Semantic Struc-
ture and Interpretability of Word Embeddings. IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
26(10):1769–1779.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational
Linguistics.

Jangwon Seo and W. Bruce Croft. 2008. Local Text Reuse Detection. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08,
page 571–578, New York, NY, USA. Association for Computing Machinery.

Sofia Serrano and Noah A. Smith. 2019. Is Attention Interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 2931–2951, Florence, Italy. Association
for Computational Linguistics.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face.

X. H. Shi, R. C. Guan, L. P. Wang, Z. L. Pei, and Y. C. Liang. 2009. An incremental affinity propagation al-
gorithm and its applications for text clustering. In Proceedings of the 2009 International Joint Conference
on Neural Networks, IJCNN’09, pages 2734–2739, Atlanta, Georgia, USA. IEEE Press.

244

https://brussels.evolang.org/proceedings/papers/EvoLang13_paper_9.pdf
https://brussels.evolang.org/proceedings/papers/EvoLang13_paper_9.pdf
https://doi.org/10.18653/v1/N18-2027
https://doi.org/10.18653/v1/N18-2027
https://aclanthology.org/J98-1004
https://aclanthology.org/2023.iwcs-1.27
https://aclanthology.org/2023.iwcs-1.27
https://doi.org/doi:10.1515/9783110435351-002
https://doi.org/10.1109/TASLP.2018.2837384
https://doi.org/10.1109/TASLP.2018.2837384
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/1390334.1390432
https://doi.org/10.18653/v1/P19-1282
https://doi.org/doi.org/10.48550/arXiv.2303.17580
https://doi.org/doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.1109/IJCNN.2009.5178973
https://doi.org/10.1109/IJCNN.2009.5178973


Philippa Shoemark, Farhana Ferdousi Liza, Dong Nguyen, Scott Hale, and Barbara McGillivray. 2019. Room
to Glo: A Systematic Comparison of Semantic Change Detection Approaches with Word Embeddings. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 66–76, Hong
Kong, China. Association for Computational Linguistics.

Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka, André C. P. L. F. de Carvalho,
and João Gama. 2013. Data stream clustering: A survey. ACM Comput. Surv., 46(1).

David A. Smith, Ryan Cordel, Elizabeth Maddock Dillon, Nick Stramp, and John Wilkerson. 2014. Detecting
and Modeling Local Text Reuse. In IEEE/ACM Joint Conference on Digital Libraries, pages 183–192.

David A. Smith, Ryan Cordell, and Elizabeth Maddock Dillon. 2013. Infectious Texts: Modeling Text Reuse
in Nineteenth-Century Newspapers. In 2013 IEEE International Conference on Big Data, pages 86–94.

Padhraic Smyth. 1996. Clustering Sequences with Hidden Markov Models. In Advances in Neural Informa-
tion Processing Systems, volume 9. MIT Press.

C. Spearman. 1987. The Proof and Measurement of Association between Two Things. The American Journal
of Psychology, 100(3/4):441–471.

Gustaf Stern. 1931. Meaning and Change of Meaning; with Special Reference to the English Language.
Wettergren & Kerbers.

Zhaochen Su, Zecheng Tang, Xinyan Guan, Lijun Wu, Min Zhang, and Juntao Li. 2022. Improving Temporal
Generalization of Pre-trained Language Models with Lexical Semantic Change. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pages 6380–6393, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.

Leilei Sun and Chonghui Guo. 2014. Incremental Affinity Propagation Clustering Based on Message Passing.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(11):2731–2744.

Aris Sunmood, Thanawin Rakthanmanon, and Kitsana Waiyamai. 2018. Evolution and Affinity-Propagation
Based Approach for Data Stream Clustering. In Proceedings of the International Conference on Frontiers
of Educational Technologies (ICFET), pages 97–101.

Jader Martins Camboim de Sá, Marcos Da Silveira, and Cédric Pruski. 2024. Survey in Characterization of
Semantic Change.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2021a. Survey of Computational Approaches to Lexical
Semantic Change Detection, pages 1–91. Language Science Press, Berlin.

245

https://doi.org/10.18653/v1/D19-1007
https://doi.org/10.18653/v1/D19-1007
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1109/JCDL.2014.6970166
https://doi.org/10.1109/JCDL.2014.6970166
https://doi.org/10.1109/BigData.2013.6691675
https://doi.org/10.1109/BigData.2013.6691675
https://proceedings.neurips.cc/paper_files/paper/1996/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf
http://www.jstor.org/stable/1422689
https://doi.org/10.18653/v1/2022.emnlp-main.428
https://doi.org/10.18653/v1/2022.emnlp-main.428
https://doi.org/10.1109/TKDE.2014.2310215
https://doi.org/10.1145/3233347.3233382
https://doi.org/10.1145/3233347.3233382
https://doi.org/https://doi.org/10.48550/arXiv.2402.19088
https://doi.org/https://doi.org/10.48550/arXiv.2402.19088
https://doi.org/10.5281/zenodo.5040302
https://doi.org/10.5281/zenodo.5040302


Nina Tahmasebi, Lars Borin, Adam Jatowt, and Yang Xu, editors. 2019. Proceedings of the 1st International
Workshop on Computational Approaches to Historical Language Change. Association for Computational
Linguistics, Florence, Italy.

Nina Tahmasebi and Haim Dubossarsky. 2023. Computational Modeling of Semantic Change.
Nina Tahmasebi, Simon Hengchen, Dominik Schlechtweg, Barbara McGillivray, and Haim Dubossarsky.

2022a. DWUG SV: Diachronic Word Usage Graphs for Swedish.
Nina Tahmasebi, Adam Jatowt, Yang Xu, Simon Hengchen, Syrielle Montariol, and Haim Dubossarsky, ed-

itors. 2021b. Proceedings of the 2nd International Workshop on Computational Approaches to Historical
Language Change 2021. Association for Computational Linguistics, Online.

Nina Tahmasebi, Syrielle Montariol, , Andrey Kutuzov, David Alfter, Francesco Periti, Pierluigi Cassotti,
and Netta Huebscher, editors. 2024. Proceedings of the 5th Workshop on Computational Approaches to
Historical Language Change. Association for Computational Linguistics, Bangkok.

Nina Tahmasebi, Syrielle Montariol, Haim Dubossarsky, Andrey Kutuzov, Simon Hengchen, David Alfter,
Francesco Periti, and Pierluigi Cassotti, editors. 2023. Proceedings of the 4th Workshop on Computational
Approaches to Historical Language Change. Association for Computational Linguistics, Singapore.

Nina Tahmasebi, Syrielle Montariol, Andrey Kutuzov, Simon Hengchen, Haim Dubossarsky, and Lars Borin,
editors. 2022b. Proceedings of the 3rd Workshop on Computational Approaches to Historical Language
Change. Association for Computational Linguistics, Dublin, Ireland.

Nina Tahmasebi, Syrielle Montariol, Andrey Kutuzov, Simon Hengchen, Haim Dubossarsky, and Lars Borin,
editors. 2022c. Proceedings of the 3rd Workshop on Computational Approaches to Historical Language
Change. Association for Computational Linguistics, Dublin, Ireland.

Nina Tahmasebi, Kai Niklas, Gideon Zenz, and Thomas Risse. 2013. On the Applicability of Word Sense
Discrimination on 201 Years of Modern English. International Journal on Digital Libraries, 13(3-4):135–
153.

Nina Tahmasebi and Thomas Risse. 2017. Finding Individual Word Sense Changes and their Delay in
Appearance. In Proceedings of the International Conference Recent Advances in Natural Language Pro-
cessing, RANLP 2017, pages 741–749, Varna, Bulgaria. INCOMA Ltd.

Xiaohang Tang, Yi Zhou, Taichi Aida, Procheta Sen, and Danushka Bollegala. 2023. Can Word Sense
Distribution Detect Semantic Changes of Words? In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 3575–3590, Singapore. Association for Computational Linguistics.

Xuri Tang. 2018. A State-of-the-art of Semantic Change Computation. Natural Language Engineering,
24(5):649–676.

246

https://aclanthology.org/W19-4700
https://aclanthology.org/W19-4700
https://doi.org/doi.org/10.48550/arXiv.2304.06337
https://doi.org/10.5281/zenodo.7389506
https://aclanthology.org/2021.lchange-1.0
https://aclanthology.org/2021.lchange-1.0
https://aclanthology.org/2024.lchange-1.0
https://aclanthology.org/2024.lchange-1.0
https://aclanthology.org/2023.lchange-1.0
https://aclanthology.org/2023.lchange-1.0
https://aclanthology.org/2022.lchange-1.0
https://aclanthology.org/2022.lchange-1.0
https://aclanthology.org/2022.lchange-1.0
https://aclanthology.org/2022.lchange-1.0
https://doi.org/doi.org/10.1007/s00799-013-0105-8
https://doi.org/doi.org/10.1007/s00799-013-0105-8
https://doi.org/10.26615/978-954-452-049-6_095
https://doi.org/10.26615/978-954-452-049-6_095
https://doi.org/10.18653/v1/2023.findings-emnlp.231
https://doi.org/10.18653/v1/2023.findings-emnlp.231
https://doi.org/10.1017/S1351324918000220


Daniela Teodorescu, Spencer von der Ohe, and Grzegorz Kondrak. 2022. UAlberta at LSCDiscovery: Lex-
ical Semantic Change Detection via Word Sense Disambiguation. In Proceedings of the 3rd Workshop on
Computational Approaches to Historical Language Change, pages 180–186, Dublin, Ireland. Association
for Computational Linguistics.

Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. 2021. Augmented SBERT: Data
Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 296–310, Online. Association for Computational Linguistics.

Martyn P. Thompson. 1993. Reception Theory and the Interpretation of Historical Meaning. History and
Theory, 32(3):248–272.

Konstantin Todorov and Giovanni Colavizza. 2022. An Assessment of the Impact of OCR Noise on Language
Models.

Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavaf, and Edward A. Fox. 2021. Natural
Language Processing Advancements By Deep Learning: A Survey.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. LLaMA: Open and Efficient Foundation Language Models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-
rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy
Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subra-
manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023b. Llama 2: Open Foundation and Fine-Tuned
Chat Models.

Yu-Hsiang Tseng, Mao-Chang Ku, Wei-Ling Chen, Yu-Lin Chang, and Shu-Kai Hsieh. 2023. Vec2Gloss:
definition modeling leveraging contextualized vectors with Wordnet gloss. In Proceedings of the 37th
Pacific Asia Conference on Language, Information and Computation, pages 679–690.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models.

247

https://doi.org/10.18653/v1/2022.lchange-1.19
https://doi.org/10.18653/v1/2022.lchange-1.19
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/10.18653/v1/2021.naacl-main.28
https://doi.org/https://doi.org/10.2307/2505525
https://doi.org/doi.org/10.48550/arXiv.2202.00470
https://doi.org/doi.org/10.48550/arXiv.2202.00470
https://doi.org/doi.org/10.48550/arXiv.2003.01200
https://doi.org/doi.org/10.48550/arXiv.2003.01200
https://doi.org/https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/doi.org/10.48550/arXiv.1908.08962
https://doi.org/doi.org/10.48550/arXiv.1908.08962


S. Ullmann. 1957. The Principles of Semantics. Glasgow University publications. Jackson.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,

and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Kitsana Waiyamai, Thanapat Kangkachit, Thanawin Rakthanmanon, and Rattanapong Chairukwattana.
2014. SED-Stream: Discriminative Dimension Selection for Evolution-Based Clustering of High Dimen-
sional Data Streams. International Journal of Intelligent Systems Technologies and Applications (IJISTA),
13(3):187–201.

Jonas Wallat, Fabian Beringer, Abhijit Anand, and Avishek Anand. 2023. Probing BERT for Ranking Abil-
ities. In Advances in Information Retrieval, pages 255–273, Cham. Springer Nature Switzerland.

Benyou Wang, Emanuele Di Buccio, and Massimo Melucci. 2020. University of Padova @ DIACR-Ita. In
Proceedings of the Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for
Italian. Final Workshop (EVALITA 2020), Marrakech, Morocco. CEUR-WS.

Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, and Jakob Grue Simonsen.
2021a. On Position Embeddings in BERT. In International Conference on Learning Representations.

Lingzhi Wang, Xingshan Zeng, and Kam-Fai Wong. 2021b. Quotation Recommendation and Interpretation
Based on Transformation from Queries to Quotations. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 754–758, Online. Association for Computational
Linguistics.

Lingzhi Wang, Xingshan Zeng, and Kam-Fai Wong. 2022. Learning When and What to Quote: A Quotation
Recommender System with Mutual Promotion of Recommendation and Generation. In Findings of the
Association for Computational Linguistics: EMNLP 2022, pages 3094–3105, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Lingzhi Wang, Xingshan Zeng, and Kam-Fai Wong. 2023. Quotation Recommendation for Multi-Party
Online Conversations Based on Semantic and Topic Fusion. ACM Trans. Inf. Syst., 41(4).

Anna Wegmann, Florian Lemmerich, and Markus Strohmaier. 2020. Detecting Different Forms of Semantic
Shift in Word Embeddings via Paradigmatic and Syntagmatic Association Changes. In The Semantic Web
– ISWC 2020, pages 619–635, Cham. Springer International Publishing.

Hendryk Weiland, Maike Behrendt, and Stefan Harmeling. 2023. Automatic Dictionary Generation: Could
Brothers Grimm Create a Dictionary with BERT? In Proceedings of the 19th Conference on Natural Lan-
guage Processing (KONVENS 2023), pages 102–120, Ingolstadt, Germany. Association for Computational
Lingustics.

248

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1504/IJISTA.2014.065174
https://doi.org/10.1504/IJISTA.2014.065174
https://ceur-ws.org/Vol-2765/paper91.pdf
https://openreview.net/forum?id=onxoVA9FxMw
https://doi.org/10.18653/v1/2021.acl-short.95
https://doi.org/10.18653/v1/2021.acl-short.95
https://doi.org/10.18653/v1/2022.findings-emnlp.225
https://doi.org/10.18653/v1/2022.findings-emnlp.225
https://doi.org/10.1145/3594633
https://doi.org/10.1145/3594633
https://doi.org/https://doi.org/10.1007/978-3-030-62419-4_35
https://doi.org/https://doi.org/10.1007/978-3-030-62419-4_35
https://aclanthology.org/2023.konvens-main.11
https://aclanthology.org/2023.konvens-main.11


Leonie Weissweiler, Valentin Hofmann, Anjali Kantharuban, Anna Cai, Ritam Dutt, Amey Hengle, Anubha
Kabra, Atharva Kulkarni, Abhishek Vijayakumar, Haofei Yu, Hinrich Schuetze, Kemal Oflazer, and David
Mortensen. 2023. Counting the Bugs in ChatGPT’s Wugs: A Multilingual Investigation into the Morpho-
logical Capabilities of a Large Language Model. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 6508–6524, Singapore. Association for Computational
Linguistics.

Laura Wendlandt, Jonathan K. Kummerfeld, and Rada Mihalcea. 2018. Factors Influencing the Surprising
Instability of Word Embeddings. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 2092–2102, New Orleans, Louisiana. Association for Computational Linguistics.

Sean Wilner, Daniel Woolridge, and Madeleine Glick. 2021. Narrative Embedding: Re-Contextualization
Through Attention. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 1393–1405, Online and Punta Cana, Dominican Republic. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation.

Katherine Wysocki and Joseph R. Jenkins. 1987. Deriving Word Meanings through Morphological Gener-
alization. Reading Research Quarterly, 22(1):66–81.

Yu Xiao, Naomi Baes, Ekaterina Vylomova, and Nick Haslam. 2023. Have the Concepts of ‘anxiety’ and
‘depression’ been Normalized or Pathologized? A Corpus Study of Historical Semantic Change. PloS
One, 18(6):e0288027.

Shaobin Xu, David Smith, Abigail Mullen, and Ryan Cordell. 2014. Detecting and Evaluating Local Text
Reuse in Social Networks. In Proceedings of the Joint Workshop on Social Dynamics and Personal At-
tributes in Social Media, pages 50–57, Baltimore, Maryland. Association for Computational Linguistics.

249

https://doi.org/10.18653/v1/2023.emnlp-main.401
https://doi.org/10.18653/v1/2023.emnlp-main.401
https://doi.org/10.18653/v1/N18-1190
https://doi.org/10.18653/v1/N18-1190
https://doi.org/10.18653/v1/2021.emnlp-main.105
https://doi.org/10.18653/v1/2021.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/doi.org/10.48550/arXiv.1609.08144
https://doi.org/doi.org/10.48550/arXiv.1609.08144
https://doi.org/doi.org/10.2307/747721
https://doi.org/doi.org/10.2307/747721
https://doi.org/10.1371/journal.pone.0288027
https://doi.org/10.1371/journal.pone.0288027
https://doi.org/10.3115/v1/W14-2707
https://doi.org/10.3115/v1/W14-2707


Yang Xu and Charles Kemp. 2015. A Computational Evaluation of Two Laws of Semantic Change. In
Proceedings of the 37th Annual Meeting of the Cognitive Science Society, Pasadena, California, USA.
Cognitive Science Society.

Erjia Yan and Yongjun Zhu. 2018. Tracking Word Semantic Change in Biomedical Literature. International
Journal of Medical Informatics, 109:76–86.

Chen Yang, Lorenzo Bruzzone, Renchu Guan, Laijun Lu, and Yanchun Liang. 2013. Incremental and Decre-
mental Affinity Propagation for Semisupervised Clustering in Multispectral Images. IEEE Transactions
on Geoscience and Remote Sensing (TGRS), 51(3):1666–1679.

David Yenicelik, Florian Schmidt, and Yannic Kilcher. 2020. How does BERT Capture Semantics? A
Closer Look at Polysemous Words. In Proceedings of the Third BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, pages 156–162, Online. Association for Computational Linguistics.

Jiaxin Yuan, Cunliang Kong, Chenhui Xie, Liner Yang, and Erhong Yang. 2022. COMPILING: A Bench-
mark Dataset for Chinese Complexity Controllable Definition Generation. In Proceedings of the 21st
Chinese National Conference on Computational Linguistics, pages 921–931, Nanchang, China. Chinese
Information Processing Society of China.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and Dominik Schlechtweg. 2022a. DWUG ES: Diachronic
Word Usage Graphs for Spanish.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and Dominik Schlechtweg. 2022b. LSCDiscovery: A
Shared Task on Semantic Change Discovery and Detection in Spanish. In Proceedings of the 3rd Work-
shop on Computational Approaches to Historical Language Change, pages 149–164, Dublin, Ireland.
Association for Computational Linguistics.

Ziqian Zeng, Xin Liu, and Yangqiu Song. 2018. Biased Random Walk based Social Regularization for
Word Embeddings. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 4560–4566. International Joint Conferences on Artificial Intelligence Orga-
nization.

Hengyuan Zhang, Dawei Li, Yanran Li, Chenming Shang, Chufan Shi, and Yong Jiang. 2023. Assisting
Language Learners: Automated Trans-Lingual Definition Generation via Contrastive Prompt Learning.
In Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications
(BEA 2023), pages 260–274, Toronto, Canada. Association for Computational Linguistics.

Hengyuan Zhang, Dawei Li, Shiping Yang, and Yanran Li. 2022. Fine-grained Contrastive Learning for Def-
inition Generation. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 12th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1001–1012, Online only. Association for Computational Linguistics.

250

https://www.cs.toronto.edu/~yangxu/xu_kemp_2015_parallelchange.pdf
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.11.006
https://doi.org/10.1109/TGRS.2012.2206818
https://doi.org/10.1109/TGRS.2012.2206818
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://aclanthology.org/2022.ccl-1.81
https://aclanthology.org/2022.ccl-1.81
https://doi.org/10.5281/zenodo.6433667
https://doi.org/10.5281/zenodo.6433667
https://doi.org/10.18653/v1/2022.lchange-1.16
https://doi.org/10.18653/v1/2022.lchange-1.16
https://doi.org/10.24963/ijcai.2018/634
https://doi.org/10.24963/ijcai.2018/634
https://doi.org/10.18653/v1/2023.bea-1.23
https://doi.org/10.18653/v1/2023.bea-1.23
https://aclanthology.org/2022.aacl-main.73
https://aclanthology.org/2022.aacl-main.73


Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu,
Tianwei Zhang, Fei Wu, and Guoyin Wang. 2024. Instruction Tuning for Large Language Models: A
Survey.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. BERTScore: Eval-
uating Text Generation with BERT.

Xiangliang Zhang, Cyril Furtlehner, and Michèle Sebag. 2008. Frugal and Online Affinity Propagation. In
Proceedings of the Conférence francophone sur l’Apprentissage (CAP).

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and Dacheng Tao. 2023. Can ChatGPT Understand Too?
A Comparative Study on ChatGPT and Fine-tuned BERT.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang
He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian Pei, Philip S. Yu, and
Lichao Sun. 2023a. A Comprehensive Survey on Pretrained Foundation Models: A History from BERT
to ChatGPT.

Jinan Zhou and Jiaxin Li. 2020. TemporalTeller at SemEval-2020 Task 1: Unsupervised Lexical Semantic
Change Detection with Temporal Referencing. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 222–231, Barcelona (online). International Committee for Computational Linguistics.

Kaitlyn Zhou, Kawin Ethayarajh, and Dan Jurafsky. 2021. Frequency-based Distortions in Contextualized
Word Embeddings.

Wei Zhou, Nina Tahmasebi, and Haim Dubossarsky. 2023b. The Finer They Get: Combining Fine-Tuned
Models For Better Semantic Change Detection. In Proceedings of the 24th Nordic Conference on Compu-
tational Linguistics (NoDaLiDa), pages 518–528, Tórshavn, Faroe Islands. University of Tartu Library.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies
and Reading Books. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 19–27.

251

https://doi.org/https://doi.org/10.48550/arXiv.2308.10792
https://doi.org/https://doi.org/10.48550/arXiv.2308.10792
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://inria.hal.science/inria-00287381/document
https://doi.org/doi.org/10.48550/arXiv.2302.10198
https://doi.org/doi.org/10.48550/arXiv.2302.10198
https://doi.org/doi.org/10.48550/arXiv.2302.09419
https://doi.org/doi.org/10.48550/arXiv.2302.09419
https://doi.org/10.18653/v1/2020.semeval-1.27
https://doi.org/10.18653/v1/2020.semeval-1.27
https://doi.org/doi.org/10.48550/arXiv.2104.08465
https://doi.org/doi.org/10.48550/arXiv.2104.08465
https://aclanthology.org/2023.nodalida-1.52
https://aclanthology.org/2023.nodalida-1.52
https://doi.org/doi.ieeecomputersociety.org/10.1109/ICCV.2015.11
https://doi.org/doi.ieeecomputersociety.org/10.1109/ICCV.2015.11




Chapter A

A very first evaluation of ChatGPT

This appendix contains material for Chapter 3. For each considered temperature, we conducted two exper-
iments. The comprehensive ChatGPT API results for Experiment 1 and Experiment 2 at different tempera-
tures are presented in Tables A.1 and A.2. The average results of these two experiments are summarized in
Table A.3.

Experiment 1: ChatGPT API performance (Macro-F1) per temperature (0.0-2.0)
prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .568 .584 .604 .599 .592 .576 .604 .560 .560 .599 .579 .584
FSp .648 .648 .664 .634 .597 .631 .645 .585 .608 .581 .598 .622

HistoWiC ZSp .728 .683 .689 .676 .666 .694 .715 .609 .704 .671 .594 .675
FSp .684 .698 .721 .698 .671 .700 .686 .599 .552 .607 .601 .656

Table A.1: Experiment 1: ChatGPT API performance (Macro-F1) for TempoWiC and HistoWiC.

Experiment 2: ChatGPT API performance (Macro-F1) per temperature (0.0-2.0)
prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .645 .628 .643 .605 .664 .602 .600 .598 .575 .580 .636 .616
FSp .659 .632 .649 .627 .644 .597 .689 .627 .597 .551 .562 .621

HistoWiC ZSp .751 .758 .711 .765 .729 .712 .678 .652 .679 .664 .604 .700
FSp .684 .678 .707 .700 .706 .665 .607 .662 .615 .592 .623 .658

Table A.2: Experiment 2: ChatGPT performance (Macro-F1) for TempoWiC and HistoWiC.

Average: ChatGPT API performance (Macro-F1) per temperature (0.0-2.0)
prompt 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 avg

TempoWiC ZSp .606 .606 .624 .602 .628 .589 .602 .579 .568 .589 .607 .600
FSp .654 .640 .657 .631 .620 .614 .667 .606 .602 .566 .580 .622

HistoWiC ZSp .740 .720 .700 .720 .698 .703 .696 .631 .692 .668 .599 .688
FSp .684 .688 .714 .699 .688 .682 .647 .631 .584 .599 .612 .657

Table A.3: Average of experiment 1 and 2: ChatGPT API performance (Macro-F1) for TempoWiC and
HistoWiC. We report the average performance for each temperature.
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Chapter B

A systematic evaluation of word embeddings

This appendix contains material for Chapter 7.

B.1 Comprehensive evaluation
We report in TableB.1 a comprehensive evaluation of standard approaches to GCD by using the layers 1-12
of BERT / mBERT / XLM-R.
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EN LA DE SV ES RU NO ZH Avg𝑤
𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2 𝐶𝑖 − 𝐶𝑗

fo
rm

-b
as

ed

APD

1
2
3
4
5
6
7
8
9
10
11
12

.358 / .278 / .064

.464 / .346 / .229

.574 / .389 / .314

.628 / .410 / .400

.684 / .412 / .452

.667 / .395 / .438

.614 / .419 / .395

.642 / .408 / .426

.600 / .406 / .460

.530 / .348 / .511

.554 / .305 / .548

.563 / .363 / .444

- / .153 / .073
- / .119 / .006
- / .047 / -.025
- / .022 / -.010
- / -.028 / .043
- / -.005 / .061
- / -.009 / .073
- / .023 / .043
- / .044 / -.047
- / .008 / -.082
- / .023 / -.069
- / .102 / .151

.144 / .218 / .270

.155 / .208 / .319

.164 / .232 / .301

.176 / .241 / .326

.237 / .344 / .414

.309 / .397 / .471

.335 / .434 / .471

.389 / .481 / .474

.427 / .423 / .479

.354 / .333 / .433

.275 / .315 / .409

.271 / .398 / .264

.213 / .132 / .134

.255 / .129 / .234

.295 / .189 / .289

.307 / .254 / .286

.305 / .321 / .351

.242 / .352 / .424

.237 / .404 / .441

.248 / .455 / .456

.250 / .463 / .468

.275 / .414 / .497

.267 / .309 / .500

.270 / .389 / .257

.167 / .104 / .003

.255 / .164 / .076

.307 / .212 / .139

.394 / .276 / .184

.450 / .345 / .279

.468 / .361 / .277

.479 / .364 / .280

.438 / .430 / .297

.399 / .413 / .352

.282 / .331 / .407

.257 / .265 / .444

.335 / .341 / .386

.335 / .204 / .258

.374 / .198 / .245

.427 / .215 / .238

.492 / .257 / .287

.519 / .295 / .374

.516 / .338 / .438

.549 / .402 / .439

.566 / .427 / .430

.539 / .382 / .401

.515 / .362 / .369

.439 / .333 / .361

.518 / .368 / .290

.281 / .204 / .308

.309 / .188 / .283

.370 / .218 / .292

.427 / .247 / .346

.465 / .275 / .453

.463 / .305 / .503

.495 / .379 / .473

.495 / .400 / .466

.479 / .364 / .419

.461 / .313 / .405

.393 / .256 / .394

.482 / .345 / .287

.261 / .214 / .253

.303 / .218 / .236

.360 / .242 / .241

.431 / .280 / .288

.456 / .318 / .373

.467 / .347 / .432

.523 / .429 / .430

.531 / .451 / .427

.534 / .405 / .404

.523 / .379 / .402

.461 / .330 / .401

.476 / .386 / .318

.160 / .143 / .145

.199 / .155 / .153

.290 / .170 / .171

.364 / .168 / .143

.396 / .192 / .165

.400 / .180 / .172

.429 / .262 / .191

.416 / .291 / .197

.429 / .257 / .190

.418 / .226 / .191

.378 / .196 / .215

.441 / .279 / .195

.234 / .219 / .203

.288 / .213 / .235

.371 / .223 / .243

.463 / .322 / .264

.497 / .364 / .330

.532 / .374 / .367

.547 / .437 / .375

.529 / .499 / .373

.525 / .462 / .394

.531 / .425 / .411

.530 / .403 / .432

.466 / .488 / .379

.340 / -.100 / -.222
.540 / .263 / .338
.594 / .464 / .540
.747 / .613 / .615
.720 / .662 / .600
.667 / .661 / .629
.645 / .725 / .618
.654 / .715 / .638
.667 / .670 / .646
.625 / .656 / .613
.604 / .628 / .601
.656 / .689 / .500

.255 / .171 / .166

.312 / .198 / .216

.371 / .232 / .244

.438 / .275 / .284
.471 / .315 / .36

.473 / .338 / .398

.494 / .390 / .393

.497 / .421 / .396

.486 / .391 / .388

.450 / .346 / .387

.405 / .303 / .392

.449 / .371 / .316

PRT

1
2
3
4
5
6
7
8
9
10
11
12

.295 / .195 / .221

.409 / .271 / .382

.436 / .295 / .453

.467 / .290 / .487

.494 / .315 / .476

.516 / .353 / .447

.529 / .383 / .462

.539 / .383 / .464

.549 / .358 / .437

.511 / .355 / .481

.452 / .342 / .501

.457 / .270 / .411

- / .289 / .303
- / .286 / .263
- / .277 / .271
- / .255 / .297
- / .232 / .322
- / .257 / .350
- / .304 / .349
- / .292 / .359
- / .311 / .319
- / .280 / .329
- / .298 / .308
- / .380 / .424

.133 / .162 / .122

.217 / .198 / .125

.267 / .230 / .141

.297 / .285 / .204

.343 / .384 / .294

.379 / .421 / .357

.400 / .437 / .385

.398 / .468 / .402

.390 / .469 / .477

.380 / .454 / .486

.412 / .430 / .507

.422 / .436 / .369

.215 / .001 / .045

.274 / .006 / .066

.301 / .012 / .078

.280 / .017 / .087

.233 / .060 / .129

.206 / .082 / .171

.178 / .008 / .184

.197 / .081 / .196

.201 / .096 / .247

.193 / .133 / .223

.169 / .076 / .245

.158 / .193 / .020

.303 / .295 / .190

.407 / .397 / .328

.438 / .424 / .364

.455 / .446 / .388

.455 / .495 / .439

.451 / .524 / .449

.466 / .498 / .453

.453 / .514 / .463

.476 / .501 / .503

.417 / .482 / .538

.422 / .489 / .540

.413 / .543 / .505

.263 / .271 / .220

.304 / .279 / .216

.338 / .311 / .203

.398 / .329 / .246

.399 / .364 / .323

.391 / .359 / .365

.411 / .379 / .358

.404 / .393 / .375

.375 / .353 / .382

.349 / .376 / .409

.319 / .344 / .412

.400 / .391 / .321

.206 / .149 / .305

.261 / .139 / .352

.305 / .191 / .405

.346 / .235 / .433

.395 / .327 / .509

.390 / .374 / .519

.426 / .447 / .510

.410 / .421 / .531

.402 / .404 / .471

.379 / .382 / .447

.317 / .335 / .439

.374 / .356 / .443

.159 / .169 / .144

.196 / .161 / .153

.251 / .195 / .162

.306 / .250 / .234

.331 / .313 / .323

.331 / .365 / .384

.380 / .413 / .384

.380 / .411 / .396

.353 / .384 / .401

.335 / .366 / .431

.303 / .321 / .438

.347 / .423 / .405

.032 / -.005 / .028

.122 / -.020 / .092
.250 / .042 / .111
.378 / .019 / .102
.440 / .096 / .137
.449 / .104 / .181
.511 / .161 / .192
.449 / .227 / .292
.481 / .243 / .351
.482 / .212 / .373
.448 / .197 / .360
.507 / .219 / .387

.161 / .168 / .039
.349 / .215 / -.020
.365 / .294 / .005
.408 / .303 / .075
.466 / .367 / .189
.471 / .330 / .232
.501 / .371 / .236
.493 / .389 / .246
.485 / .380 / .239
.481 / .398 / .263
.503 / .365 / .214
.444 / .438 / .149

.383 / .017 / -.139
.582 / .192 / .140
.676 / .397 / .424
.691 / .525 / .544
.651 / .551 / .531
.637 / .556 / .475
.641 / .613 / .549
.664 / .619 / .575
.671 / .606 / .646
.626 / .583 / .619
.602 / .550 / .620
.712 / .524 / .558

.220 / .178 / .165

.302 / .209 / .216

.348 / .253 / .253

.389 / .283 / .296

.408 / .337 / .357

.408 / .362 / .383

.433 / .389 / .390

.426 / .400 / .409

.422 / .385 / .418

.396 / .378 / .431

.371 / .350 / .432

.406 / .395 / .381

se
ns

e-b
as

ed

AP

1
2
3
4
5
6
7
8
9
10
11
12

.129 / .220 / .032
.288 / .079 / -.128
.267 / .161 / .016
.353 / .330 / .087
.432 / .221 / .322
.431 / .208 / .330
.144 / .362 / .321
.228 / .418 / .175
.424 / .357 / .311
.233 / .317 / .289
.148 / .338 / .374
.289 / .181 / .278

- / -.011 / .409
- / .008 / .215
- / -.012 / .218
- / -.106 / .253
- / -.024 / .281
- / -.000 / .286
- / -.044 / .233
- / -.101 / .260
- / .120 / .153
- / .124 / .381
- / .132 / .266
- / .277 / .398

-.108 / -.087 / -.040
.113 / -.131 / -.017
.007 / -.043 / .120
-.041 / .088 / .054
.143 / .235 / .196
.243 / .372 / .280
.284 / .443 / .387
.417 / .353 / .393
.339 / .322 / .361
.393 / .328 / .334
.465 / .275 / .435
.469 / .280 / .224

-.121 / -.021 / -.244
-.138 / -.141 / -.244
-.201 / -.117 / -.177
-.213 / -.131 / -.172
-.015 / -.083 / -.125
-.129 / -.040 / -.070
-.070 / -.031 / -.155
.124 / .114 / -.082
.054 / .010 / -.195
-.023 / .061 / -.210
-.057 / .175 / .133
-.090 / .023 / -.076

.168 / .233 / .172

.104 / .109 / .140

.161 / .142 / .063

.263 / .195 / .266

.247 / .319 / .162

.363 / .251 / .002

.406 / .301 / .216

.384 / .401 / .031

.270 / .296 / .157

.294 / .201 / .151

.351 / .310 / .039

.225 / .067 / .224

.050 / -.001 / -.154
-.127 / -.154 / -.036
-.006 / .007 / -.019
.093 / -.159 / -.042
.072 / -.085 / -.035
-.049 / -.111 / -.094
.082 / -.069 / .067
.058 / -.014 / -.073
.038 / .013 / -.081
.126 / .108 / .044

-.004 / .034 / -.069
.069 / .017 / -.068

.132 / .108 / .060

.038 / .110 / .073
-.002 / .058 / .129
.045 / .096 / .104
.169 / .014 / .140
.173 / .093 / .176
.288 / .235 / .084
.128 / .230 / .211
.072 / .149 / .232
.116 / .169 / .240
.068 / .141 / .279
.279 / .086 / .209

.098 / -.143 / .023
.096 / -.109 / -.025
.027 / -.130 / -.020
.168 / -.076 / .050
.081 / -.019 / .025
.091 / .035 / .291
.190 / .158 / .131
.088 / .137 / .228
.098 / .055 / .011
.187 / .082 / .194
.157 / .113 / .262
.094 / -.116 / .130

-.104 / -.237 / -.019
.031 / -.230 / -.025
-.118 / .016 / -.060
-.281 / -.123 / -.016
-.318 / -.027 / .033
-.192 / -.076 / .031
-.257 / -.114 / -.051
-.165 / -.114 / -.109
-.016 / .005 / .045
.151 / -.127 / -.041
.021 / -.232 / -.211
.314 / .035 / -.100

-.048 / .021 / -.239
-.039 / .104 / .028
-.051 / -.011 / .124
.257 / -.282 / .020
.323 / .143 / .149
.440 / .206 / .131
.115 / .140 / -.130
-.029 / .469 / .256
.092 / .198 / .031
.168 / .271 / .101
.090 / .146 / .062
.011 / -.090 / .030

.118 / -.179 / .110
.301 / -.058 / -.048
.189 / .221 / -.143
.360 / .322 / -.047
.251 / .689 / .343
.458 / .342 / .280
.292 / .226 / .344
.113 / .231 / .045
.423 / .404 / .245
.430 / .291 / .436
.322 / .223 / .243
.165 / .465 / .448

.060 / .011 / .012
.052 / -.030 / .006
.033 / .021 / .028
.113 / .014 / .064
.140 / .097 / .112
.166 / .099 / .132
.183 / .153 / .131
.148 / .192 / .117
.157 / .158 / .104
.197 / .158 / .169
.151 / .151 / .158
.179 / .077 / .142

WiDiD

1
2
3
4
5
6
7
8
9
10
11
12

.253 / .301 / .278

.434 / .261 / .065

.423 / .268 / .147

.611 / .228 / .448

.527 / .078 / .393

.458 / .250 / .625

.305 / .328 / .475

.449 / .312 / .411

.544 / .509 / .567

.396 / .301 / .587

.299 / .218 / .627

.385 / .323 / .564

- / .028 / -.048
- / .018 / -.130
- / .026 / .019
- / .030 / .108

- / -.020 / -.037
- / -.030 / -.050
- / .139 / .106
- / .091 / .038
- / -.066 / .104
- / -.024 / .187
- / -.064 / -.111
- / -.039 / -.064

.147 / .204 / .219

.106 / .143 / .292

.115 / .120 / .474

.126 / .067 / .424

.190 / .173 / .509

.293 / .294 / .433

.235 / .253 / .514

.344 / .341 / .565

.353 / .299 / .573

.315 / .407 / .477

.258 / .381 / .486

.355 / .312 / .499

.120 / .052 / -.062
-.041 / .015 / -.118
.198 / .029 / .106
.176 / -.130 / .312
.151 / -.074 / .300
.211 / .148 / .335
.295 / .198 / .414
.071 / .354 / .321
.184 / .319 / .203
.145 / .233 / .148
.172 / .128 / .343
.106 / .195 / .129

.132 / .051 / -.015
.103 / .105 / .110
.228 / .108 / .118
.292 / .175 / .221
.356 / .295 / .310
.382 / .387 / .346
.382 / .318 / .324
.340 / .371 / .395
.324 / .450 / .372
.306 / .388 / .471
.424 / .432 / .464
.383 / .343 / .459

.159 / .047 / .125
.209 / -.046 / .274
.251 / -.073 / .345
.091 / -.039 / .332
-.034 / .023 / .259
.094 / .063 / .184
.017 / .032 / .292
.000 / -.008 / .105
-.002 / .075 / .108
.011 / .087 / .270
.134 / .152 / .220
.135 / -.068 / .268

.108 / .073 / .197

.076 / .180 / .060

.091 / .113 / .184

.010 / .041 / .307

.071 / .076 / .314

.141 / .066 / .210

.203 / .285 / .152

.284 / .260 / .243

.083 / .076 / .171

.302 / .090 / .308

.234 / .120 / .334

.102 / .160 / .216

.090 / -.036 / .051
.212 / -.038 / -.008
.233 / .077 / .153
.157 / -.053 / .059
.205 / .137 / .202
.182 / .288 / .264
.216 / .188 / .458
.025 / .203 / .267
.205 / .205 / .388
.060 / .172 / .328
.185 / .087 / .312
.243 / .142 / .342

.356 / .150 / .090
.285 / -.030 / .085
.229 / -.102 / .074
.242 / .038 / .002
.297 / .100 / .023
.261 / -.080 / .215
.244 / .119 / .247
.221 / .226 / .262
.183 / .063 / .174
.155 / .179 / .234
.218 / .195 / .345
.233 / .241 / .226

.120 / .127 / .154

.161 / .103 / .214

.239 / .064 / .204

.340 / .152 / .062

.380 / .156 / .316

.428 / .295 / .102
.397 / .195 / -.034
.449 / .428 / .155
.390 / .118 / .149
.488 / .175 / .275
.296 / .291 / .438
.087 / .290 / .349

.122 / .026 / .160
.371 / -.013 / .063
.256 / .114 / .349
.388 / .279 / .417
.524 / .193 / .217
.446 / .271 / .335
.338 / .298 / .293
.475 / .325 / .286
.404 / .347 / .328
.428 / .355 / .383
.539 / .277 / .372
.533 / .338 / .382

.146 / .074 / .103

.175 / .060 / .094

.216 / .065 / .203

.200 / .054 / .244

.218 / .112 / .265

.252 / .185 / .269

.237 / .211 / .304

.224 / .242 / .271

.222 / .212 / .280

.224 / .204 / .339

.260 / .199 / .345

.239 / .181 / .314

Table B.1: Comprehensive evaluation of standard approaches to GCD by using the layers 1-12 of BERT / mBERT / XLM-R. Top score
for each approach, model, and benchmark in bold. Avg is the weighted average score based on the number of targets in each benchmark.
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B.2 Optimal layer combinations for Graded Change Detection
For the sake of comparison, we report in Table B.2 the overall top score for GCD obtained using BERT,
mBERT, and XLM-R. Specifically, we present results for the optimal combination and the outcome obtained
by summing the last four layers, separated by a slash. Additionally, we include the standard result obtained
using the last layer individually.
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]
EN LA DE SV ES RU NO ZH

𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶3 𝐶1 − 𝐶2 𝐶2 − 𝐶3 𝐶1 − 𝐶2

fo
rm

-b
as

ed APD
BERT

mBERT
XLM-R

.692 / .566 (.563)

.466 / .365 (.363)

.579 / .518 (.444)

/
.136 / .034 (.102)
.080 / -.072 (.151)

.412 / .349 (.271)

.468 / .370 (.398)

.496 / .438 (.264)

.325 / .272 (.270)

.486 / .398 (.389)

.496 / .496 (.257)

.488 / .310 (.335)

.423 / .351 (.341)

.443 / .398 (.386)

.573 / .537 (.518)

.419 / .365 (.368)

.441 / .368 (.290)

.506 / .477 (.482)

.393 / .324 (.345)

.491 / .404 (.287)

.546 / .522 (.476)

.443 / .386 (.386)

.432 / .397 (.318)

.463 / .457 (.441)

.320 / .248 (.279)

.215 / .180 (.195)

.556 / .521 (.466)

.496 / .429 (.488)

.421 / .418 (.379)

.760 / .658 (.656)

.739 / .674 (.689)

.675 / .627 (.500)

PRT
BERT

mBERT
XLM-R

.550 / .520 (.457)

.382 / .339 (.270)

.513 / .476 (.411)

/
.352 / .305 (.380)
.365 / .312 (.424)

.421 / .397 (.422)

.467 / .454 (.436)

.497 / .486 (.369)

.293 / .170 (.158)

.132 / .105 (.193)

.253 / .236 (.020)

.478 / .441 (.413)

.555 / .514 (.543)

.538 / .522 (.505)

.425 / .368 (.400)

.411 / .373 (.391)

.409 / .402 (.320)

.418 / .374 (.374)

.442 / .386 (.356)

.530 / .453 (.443)

.383 / .346 (.347)

.434 / .367 (.423)

.449 / .435 (.405)

.538 / .513 (.507)

.256 / .228 (.219)

.384 / .384 (.387)

.513 / .481 (.444)

.432 / .405 (.438)

.270 / .220 (.149)

.706 / .649 (.712)

.648 / .588 (.524)

.642 / .627 (.558)

se
ns

e-b
as

ed AP
BERT

mBERT
XLM-R

.464 / .245 (.289)

.501 / .313 (.181)

.473 / .340 (.278)

/
.326 / .179 (.277)
.482 / .398 (.398)

.520 / .435 (.469)

.428 / .329 (.280)

.502 / .370 (.224)

.201 / -.061 (-.090)
.193 / .090 (.023)
.235 / .022 (-.076)

.499 / .295 (.225)

.484 / .259 (.067)

.307 / .170 (.224)

.292 / .149 (.069)

.209 / .123 (.017)
.162 / .012 (-.068)

.418 / .216 (.279)

.316 / .175 (.086)

.378 / .247 (.209)

.386 / .207 (.094)
.247 / .058 (-.116)
.358 / .224 (.130)

.329 / .028 (.314)
.194 / -.105 (.035)
.322 / .132 (-.100)

.466 / .227 (.011)
.539 / .275 (-.090)
.465 / .035 (.030)

.671 / .587 (.165)
.645 / .256 (465)
.583 / .135 (.448)

WiDiD
BERT

mBERT
XLM-R

.635 / .441 (.385)

.600 / .317 (.323)

.760 / .663 (.564)

/
.252 / .055 (-.039)
.347 / -.077 (-.064)

.465 / .322 (.355)

.610 / .422 (.312)

.721 / .557 (.499)

.432 / .177 (.106)

.521 / .413 (.195)

.503 / .220 (.129)

.466 / .361 (.383)

.575 / .272 (.343)

.526 / .437 (.459)

.388 / .136 (.135)
.255 / .215 (-.068)
.426 / .223 (.268)

.410 / .190 (.102)

.373 / .056 (.160)

.460 / .352 (.216)

.408 / .280 (.243)

.327 / .252 (.142)

.485 / .304 (.342)

.531 / .160 (.233)

.500 / .459 (.241)

.505 / .399 (.226)

.578 / .336 (.087)

.467 / .292 (.290)

.440 / .336 (.349)

.701 / .537 (.533)

.620 / .513 (.338)

.637 / .349 (.382)

Table B.2: Top score for GCD obtained using BERT, mBERT, and XLM-R. We present results for the optimal combination and the outcome
obtained by summing the last four layers, separated by a slash (i.e., best results / sum of last four layers). Additionally, for comparison purposes,
we include the result obtained using the last layer individually (enclosed in brackets). Top scores for approach and benchmark are highlighted
in bold.
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Chapter C

Analyzing Semantic Change through lexical
replacements

This appendix contains material for Chapter 8.

C.0.1 Artificial diachronic corpus
We generated an artificial diachronic corpus for LSC by utilising the SemEval and LSCDiscovery bench-
makrs for LSC in DWUG format1 (see Table C.1). Instead of incorporating data from both time periods, 𝑇1
and 𝑇2, we discarded information from the first time period as it is more likely to contain word meanings
outside the pre-trained knowledge of the models under examination. We created two distinct artificial sub-
corpora, 𝐶1 and 𝐶2, by randomly sampling occurrences from the data of the second time period 𝑇2. The
DWUG English dataset contains data for 46 target words.

For each target 𝑡, we considered all sentences where another target 𝑡1, with 𝑡1 ≠ 𝑡, appeared as poten-
tial candidates to emulate instances of semantic change. We simulated a change instance through a random
replacement, that is by replacing 𝑡 in the sentence where 𝑡1 occurred – i.e., 𝑡1 ← 𝑡. We sample a varying num-
ber of sentences and perform replacements for each target, thereby emulating a varying degree of semantic
change.

1English: https://zenodo.org/records/5796878, German: https://zenodo.org/records/5796871,
Swedish: https://zenodo.org/records/5090648, Spanish: https://zenodo.org/records/6433667

References Benchmark # targets
Schlechtweg et al., 2020 DWUG-English 46
Schlechtweg et al., 2020 DWUG-German 50
Schlechtweg et al., 2020 DWUG-Swedish 44

Zamora-Reina et al., 2022b DWUG-Spanish 100
Table C.1: References and number of targets for each consider artificial corpus.
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Chapter D

Automatically generated definitions and
their utility for modeling word meaning

This appendix contains material for Chapter 9.

D.1 Fine-tuning
In our experiments, we conducted multiple rounds of fine-tuning, systematically testing various parameters.
Specifically, we detail these configurations in Table D.1. In line with Huerta-Enochian (2024), who recently
demonstrated that prompt loss can be safely ignored for many datasets, we observed lower preliminary results
in the evaluation tasks for models chosen based on validation performance. Therefore, we selected the final
models (see Table D.2) based on the checkpoint from the last training epoch that had the best performance
on the Definition Generation task.

D.1.1 Lora rank-alpha

We conduct fine-tuning using LoRA, (Hu et al., 2021) and QLORA, (Dettmers et al., 2023) obtaining very
similar evaluation results. Drawing from insights from prior research (Munoz et al., 2024) as well recent
online discussions, we adopted a strategy where the LoRA alpha 𝛼 was set to double the LoRA rank 𝑟. In our
experiments for the Definition Generation task, larger ranks resulted in higher performance on WordNet and
slightly higher performance on Oxford benchmarks. However, no improvement was noted for Wiktionary
(see Figure D.1).

D.2 SBERT models
In our experiments, we made an effort to evaluate all the Bi-Encoder SBERT models available at https://
sbert.net/ (see Table D.3). This thorough assessment ensures that our findings are robust and accurate.
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Parameter Experimented values
Model Meta-Llama-3-8B-Instruct,

Llama-2-7b-chat-hf
GPU A100:fat (80 GB)

Hours 7-8
PEFT LoRA, QLoRA

Dropout 0.05, 0.1, 0.2
Weight decay 0.001, 0.0001
Learning rate 1e-4, 1e-5

Lora ranks 8, 32, 64, 128, 256, 512, 1024
Lora alpha 16, 64, 256, 512, 1024, 2048

Warmup ratio 0.03, 0.05
Eval steps 250

Train epochs 4, 5, 10
Max seq. length 512

Batch size 32
Optimizer Adam

LoRA target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

Table D.1: Settings and parameters used during training. Parameters shown in small font represent prelimi-
nary experiments that were not further evaluated.

Final setting Llama2Dictionary Llama3Dictionary
GPU A100:fat (80 GB) A100:fat (80 GB)

Hours 7-8 8-9
PEFT LoRA LoRA

Dropout 0.1 0.05
Weight decay 0.001 0.001
Learning rate 1e-4 1e-4

Lora ranks 1024 512
Lora alpha 2048 1024

Warmup ratio 0.05 0.05
Eval steps epochs epochs

Train epochs 4 4
Max seq. length 512 512

Batch size 32 32
Optimizer Adam Adam

LoRA target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

Table D.2: Parameters of our final models. Our code is publicly available at https://github.com/
FrancescoPeriti/LlamaDictionary for further details. For finetuning, we rely on the transformers
library (Wolf et al., 2020).

While we acknowledge that other models may exist, the evaluation results we present remain valuable and
consistent across the models tested, contributing to the broader perspective presented in the paper.

Further parameters are related to our procedure for addressing the Word-in-Context, Word Sense Induc-
tion, and Lexical Semantic Change tasks. We report these parameters in Table D.5.
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SBERT models
all-mpnet-base-v2
multi-qa-mpnet-base-dot-v1
all-distilroberta-v1
all-MiniLM-L12-v2
multi-qa-distilbert-cos-v1
all-MiniLM-L6-v2
multi-qa-MiniLM-L6-cos-v1
paraphrase-multilingual-mpnet-base-v2
paraphrase-albert-small-v2
paraphrase-multilingual-MiniLM-L12-v2
paraphrase-MiniLM-L3-v2
distiluse-base-multilingual-cased-v1
distiluse-base-multilingual-cased-v2

Table D.3: Experimented SBERT models. We report in bold the model used for the results obtained in the
main paper. We use this model as it was used in previous experiments by Giulianelli et al. (2023).

D.3 Definition Generation
In our work, we extensively evaluated ourLlamaDictionarymodels along with theFlan-T5-Definition
models by Giulianelli et al. (2023), setting new state-of-the-art results on the Definition Generation tasks
across multiple benchmarks. In Table D.6, we provide a full comparison, including individual scores for
each benchmark and the measures considered.

Benchmark Target 𝑤 Example 𝑒 Definition 𝑒
WordNet accuracy He was beginning to doubt the accuracy of his compass The quality of being near to

the true value
Oxford accuracy However, these studies have not generally had enough par-

ticipants to provide precise estimates of accuracy.
The quality or state of be-
ing correct or precise

Wiktionary accuracy The efficiency of the instrument will also depend upon the
accuracy with which the piston fits the bottom and sides of
the barrel. When the piston is depressed to the bottom, it
is considered in theory to be in absolute contact, so as to
exclude every particle of air from the space between it and
the bottom.

The state of being accu-
rate; being free from mis-
takes, this exemption aris-
ing from carefulness; ex-
actness; correctness

Oxford yesterday Yesterday the weather was beautiful On the day preceding today
Oxford yesterday It was in yesterday ’s newspapers The day immediately be-

fore today
Oxford yesterday I am doing a research paper on women ’s voting rights ;

yesterday and today
On the day before today

Oxford yesterday On a day like today after yesterday , i tend to reflect , inter-
nalize , and re-address the balance

The day before today

Table D.4: Example of correct but inconsistent definitions from the considered benchmarks. It is unneces-
sary to train the model to provide different answers. Ideally, a single definition should be used for different
examples of the considered target.
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Figure D.1: Average performance of trained models using LoRA (Hu et al., 2021) and QLoRA (Dettmers
et al., 2023) with parameters from Table D.1. We conducted experiments with LoRA alpha 𝛼 set to double
the rank 𝑟 and observed that larger ranks resulted in higher performance on WordNet and slightly higher
performance on Oxford benchmarks. However, no improvement was noted for Wiktionary. We report
BERT-F1 and BLEU as examples. Similar trends were observed for other performance metrics.
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Evaluation tasks
DG WiC WSI LSC

gen. model LlamaDictionary,
Flan-T5-Definition

LlamaDictionary,
Flan-T5-Definition

LlamaDictionary,
Flan-T5-Definition

LlamaDictionary,
Flan-T5-Definition

temperature 0.0 0.0 0.0 0.0
enc. model roberta-large all-distilroberta-v1 all-distilroberta-v1 all-distilroberta-v1

metric BERTScore cosine cosine
cosine (APD)

canberra (APDP) following
Periti et al.; Periti and Tahmasebi

clustering - - HDBSCAN HDBSCAN
HDBSCAN-allow_single_cluster - - True True

HDBSCAN-min_cluster_size - - 2 2
HDBSCAN-cluster_selection_method - - leaf leaf

Table D.5: Models and parameters used for addressing the DG, WIC, WSI, and LSC tasks. We rely on the
HDBSCAN implementation of the scikit-learn library (Pedregosa et al., 2011).
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ROUGE-L BLEU BERT-F1 NIST SACREBLEU METEOR EXACT MATCH
WordNet - seen

Noraset et al. (2017) - .236∗ - .497∗ - - -
Ni and Wang (2017) - .248∗ - .403∗ - - -

Gadetsky et al. (2018) - .237∗ - .443∗ - - -
Ishiwatari et al. (2019) - .248 - .435∗ - - -

Huang et al. (2021) - .327 - .646 - - -
Zhang et al. (2022) - .320 - .747 - - -

Giulianelli et al. (2023) Reported .522 .328 .921 - - - -
Giulianelli et al. (2023) Observed .405 .320 .893 .907 23.302 .374 .164

Llama2chat .564 .513 .920 1.391 41.096 .536 .373
Llama3Instruct .435 .339 .893 1.012 27.400 .480 .131

Oxford - seen
Noraset et al. (2017) - .149∗ - .327∗ - - -
Ni and Wang (2017) - .176∗ - .313∗ - - -

Gadetsky et al. (2018) - .120 - .358∗ - - -
Ishiwatari et al. (2019) - .185 - .382∗ - - -

Huang et al. (2021) - .265 - .742 - - -
Bevilacqua et al. (2020) .294 .088 .768 - - .135 -

Zhang et al. (2022) - .271 - .794 - - -
Giulianelli et al. (2023) Reported .387 .186 .897 - - - -
Giulianelli et al. (2023) Observed .324 .213 .878 .749 14.400 .292 .057

Llama2chat .398 .291 .840 .969 21.410 .367 .158
Llama3Instruct .365 .228 .885 .900 16.550 .373 .055

Wikitionary - seen
Llama2chat .222 .131 .666 .408 6.963 .183 .025

Llama3Instruct .267 .156 .863 .517 8.100 .232 .034

Urban - unseen
Noraset et al. (2017) - seen - .515∗ - .104∗ - - -
Ni and Wang (2017) - seen - .899∗ - .174∗ - - -

Gadetsky et al. (2018) - seen - .088∗ - .194∗ - - -
Ishiwatari et al. (2019) - seen - .105 - .192∗ - - -

Huang et al. (2021) - seen - .177 - .355 - - -
Zhang et al. (2022) - seen - .194 - .410 - - -

Giulianelli et al. (2023) - unseen Observed .106 .053 .835 .167 2.160 .068 .001
Llama2chat - unseen .110 .055 .812 .170 2.247 .071 .001

Llama3instruct - unseen .115 .057 .836 .197 2.331 .079 .001

Wikipedia - unseen
Noraset et al. (2017) - seen - .446∗ - .334∗ - - -
Ni and Wang (2017) - seen - .527∗ - .552∗ - - -
Gadetsky et al. (2018)- seen - .450∗ - .331∗ - - -
Ishiwatari et al. (2019)- seen - .538 - .567∗ - - -

Huang et al. (2021)- seen - .556 - .640 - - -
Giulianelli et al. (2023) - unseen Observed .240 .138 .863 .511 8.212 .263 .000

Llama2chat - unseen .213 .123 .716 .523 7.399 .232 .000
Llama3Instruct - unseen .253 .144 .863 .614 8.638 .290 .000

Table D.6: Evaluation results for the Definition Generation task. The best result is highlighted in bold. Our
model is trained exclusively on the training set of the WordNet, Oxford, and Wiktionary datasets. Results
marked with ∗ are reported from experiments in Huang et al. (2021).
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Chapter E

Modeling historical resonance

This appendix contains material for Chapter 10.

E.1 Train-Dev-Test partitions

For each randomized split, we use the filtered instances (see Section 10.4.2) to create the Train-Dev-Test
partitions, comprising approximately 80%, 10%, and 10% of the instances, respectively. In the creation
of the Train set of a split, we exclude the ⟨𝑡, 𝑐1, 𝑐2⟩ instances associated to four targets 𝑡 (i.e., 10% of the
benchmark’s targets). We include these instances in Dev and Test to enforce the Out-of-Vocabulary (OOV)
evaluation. Specifically, we include in Dev the instances associated with two targets, and in Test the instances
of the remaining excluded targets.

Notably, we ensure that each partition has a distinct set of OOV targets, such that the intersection of the
OOV sets for each split is empty.

E.2 Model evaluation

We evaluate almost all the pre-trained models available at https://www.sbert.net/index.html.
Specifically, we considered only pre-trained models trained on tasks based on textual similarity and excluded
those trained on other tasks (e.g., models for Image Search). Table E.2 reports results for all the evaluated
models.

For the sake of transparency and completeness, we have included the computation of Precision (PR) and
Recall (RE) for each considered class. Specifically, for label 1, PR and RE are calculated as 𝑇𝑃

(𝑇𝑃+𝐹𝑃 ) and
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
respectively. Similarly, for label 0, PR and RE are computed as 𝑇𝑁

(𝑇𝑁+𝐹𝑁)
and 𝑇𝑁

(𝑇𝑁+𝐹𝑃 )
. In scientific

literature, these latter metrics are also known as Negative Predictive Value and Sensitivity. For the sake of
clarity, we preferred using PR and RE for label 0 and label 1 instead of distinguishing between Precision
(PR), Recall (RE), Negative Predictive Value (NPV), and Specificity (SP).
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E.3 Fine-tuning
For each randomized split, we fine-tuned each considered model on the Train set and subsequently validated
its performance on the Dev set. To do this, we employed the AdamW optimizer, coupled with a linear learning
rate warm-up applied to the first 10% of the Train set. We used grid search to optimize hyper-parameters,
with a particular focus on fine-tuning the learning rate by testing values from the set {1e-6, 2e-6, 5e-6, 1e-
5, 2e-5}. We do not use weight decay, since our initial experiments did not yield any additional benefits.
During the training, we leveraged an early stopping strategy. In particular, we fine-tuned each pre-trained
model on TRiC instances using the contrastive loss (Hadsell et al., 2006). This loss minimizes the distance
between embeddings of similar sentences and maximizes the distance for dissimilar sentences. We finally
ceased training when there was no further improvement observed on the Dev set. Details on the setup of
hyper-parameters are shown in Table E.1.

E.4 Hyper-parameters

Models Learning Rate
all-distilroberta-v1 (ADR) 1e-05
distiluse-base-multilingual-cased-v1 (DBM) 1e-05
paraphrase-multilingual-MiniLM-L12-v2 (PAM) 2e-05
paraphrase-multilingual-mpnet-base-v2 (PAR) 5e-06
multi-qa-mpnet-base-cos-v1 (MQA) 1e-05

Table E.1: Models learning rates.

E.5 Annotation
Annotating topic relatedness, instead of relying on explicit topic labels, closely resembles recent work ex-
emplified in the Word-in-Context task (Pilehvar and Camacho-Collados, 2019), which relies on annotating
word meaning relatedness rather than explicit sense labels. The methodology underlying this approach is
thoroughly elucidated in our guidelines, submitted as supplementary material along with our paper. The
topic relatedness is evaluated by using the four-point DURel relatedness scale (see Figure 10.1). Annotator
were trained in a 30-minute online session and tested on a small set of 25 instances (tutorial). In particular,
we ensured that each annotator achieved a minimum agreement (measured by Spearman correlation) of at
least .550 with the tutorial judgments. We interpreted these results as reliable, and consequently, we pro-
ceeded with the annotation of our benchmark. Then, we derive TRiC and TRaC labels after conducting an
empirical analysis of the agreement of each level of our topic relatedness scale (see Section 10.4.2).
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Standard Test Set Out-of-vocabulary (OOV) Test set
Label 0 Label 1 All Label 0 Label 1 All

Models PR RE F1 PR RE F1 F1 SP PR RE F1 PR RE F1 F1 SP
paraphrase-multilingual-MiniLM-L12-v2 (PAM) .96±.02 .46±.09 .61±.08 .41±.09 .96±.02 .57±.08 .61±.07 .58±.08 .96±.04 .43±.17 .57±.16 .37±.15 .95±.05 .52±.15 .59±.12 .49±.22

+MASK .89±.05 .88±.06 .88±.03 .71±.10 .72±.10 .70±.05 .83±.03 .67±.04 .89±.09 .86±.09 .87±.06 .65±.19 .71±.18 .65±.12 .83±.05 .60±.13
multi-qa-mpnet-base-cos-v1 (MQA) .94±.03 .42±.11 .58±.11 .40±.10 .94±.03 .55±.09 .58±.09 .55±.09 .94±.09 .39±.19 .53±.20 .36±.19 .96±.03 .50±.18 .55±.16 .49±.21

+MASK .88±.05 .87±.07 .88±.04 .71±.10 .71±.12 .69±.06 .83±.04 .68±.05 .89±.07 .86±.10 .87±.06 .63±.18 .69±.16 .63±.13 .83±.05 .62±.13
all-distilroberta-v1 (ADR) .95±.03 .47±.13 .62±.11 .42±.11 .93±.04 .57±.10 .61±.10 .55±.09 .94±.07 .45±.20 .58±.20 .38±.19 .93±.06 .51±.18 .58±.16 .48±.20

+MASK .89±.05 .87±.07 .87±.03 .70±.14 .72±.12 .69±.07 .82±.03 .67±.06 .90±.07 .85±.10 .87±.05 .62±.21 .71±.18 .63±.14 .82±.05 .62±.15
all-mpnet-base-v2 .93±.03 .48±.14 .62±.13 .42±.12 .91±.03 .57±.10 .61±.11 .53±.10 .93±.09 .44±.22 .56±.21 .38±.20 .94±.05 .51±.18 .57±.18 .48±.20

+MASK .88±.06 .84±.09 .85±.05 .66±.12 .71±.11 .67±.04 .81±.04 .66±.06 .89±.08 .82±.11 .85±.07 .59±.20 .73±.14 .62±.11 .81±.05 .61±.15
paraphrase-multilingual-mpnet-base-v2 (PAR) .95±.03 .40±.10 .56±.09 .39±.09 .95±.04 .55±.08 .56±.07 .56±.09 .93±.11 .35±.18 .49±.19 .34±.15 .95±.06 .49±.16 .52±.15 .47±.25

+MASK .89±.05 .85±.07 .87±.04 .69±.10 .75±.11 .70±.05 .83±.03 .68±.03 .90±.08 .83±.13 .86±.07 .63±.19 .75±.17 .65±.10 .82±.05 .62±.11
all-MiniLM-L12-v2 .95±.03 .40±.12 .55±.11 .39±.11 .94±.04 .54±.10 .55±.10 .52±.08 .94±.03 .37±.18 .50±.18 .35±.18 .93±.06 .48±.18 .52±.16 .47±.17

+MASK .88±.05 .87±.08 .87±.03 .70±.13 .72±.11 .69±.06 .82±.03 .68±.04 .89±.08 .85±.10 .86±.05 .62±.21 .71±.17 .62±.14 .82±.04 .62±.13
multi-qa-distilbert-cos-v1 .96±.03 .33±.11 .48±.11 .37±.10 .97±.02 .53±.09 .50±.10 .53±.09 .97±.06 .29±.18 .42±.19 .33±.16 .97±.05 .47±.17 .46±.16 .47±.21

+MASK .88±.06 .86±.06 .87±.03 .68±.11 .73±.10 .69±.05 .82±.03 .68±.05 .89±.10 .85±.08 .86±.05 .61±.19 .71±.14 .63±.11 .82±.05 .62±.14
multi-qa-mpnet-base-dot-v1 .92±.05 .48±.14 .62±.11 .42±.11 .89±.06 .56±.09 .61±.09 .51±.10 .91±.15 .45±.19 .59±.17 .38±.18 .92±.07 .51±.17 .59±.14 .46±.22

+MASK .87±.07 .86±.08 .86±.03 .69±.12 .65±.19 .63±.08 .80±.03 .63±.05 .87±.09 .85±.09 .85±.06 .62±.23 .63±.20 .57±.13 .80±.05 .57±.12
all-MiniLM-L6-v2 .96±.02 .40±.10 .55±.10 .39±.10 .95±.04 .55±.09 .56±.08 .53±.09 .97±.03 .37±.17 .51±.19 .35±.17 .95±.07 .49±.18 .54±.14 .44±.23

+MASK .88±.05 .88±.06 .88±.03 .72±.12 .70±.12 .69±.06 .83±.03 .67±.05 .89±.07 .88±.09 .88±.05 .67±.22 .66±.19 .62±.14 .83±.04 .61±.16
distiluse-base-multilingual-cased-v1 (DBM) .96±.02 .26±.12 .40±.14 .35±.09 .97±.03 .51±.09 .43±.12 .54±.09 .96±.08 .21±.19 .31±.23 .31±.14 .97±.05 .45±.16 .38±.18 .44±.23

+MASK .87±.07 .88±.07 .87±.03 .72±.14 .66±.16 .66±.09 .81±.03 .64±.04 .88±.09 .88±.09 .87±.05 .66±.23 .64±.25 .58±.19 .82±.04 .58±.12
distiluse-base-multilingual-cased-v2 .96±.03 .26±.08 .40±.10 .34±.09 .97±.03 .50±.09 .43±.09 .54±.10 .96±.08 .21±.16 .32±.20 .30±.15 .96±.08 .44±.17 .38±.16 .44±.25

+MASK .87±.06 .89±.07 .87±.03 .72±.14 .66±.14 .66±.09 .82±.03 .65±.04 .88±.08 .88±.10 .87±.05 .66±.24 .64±.23 .60±.18 .82±.05 .59±.12
multi-qa-distilbert-dot-v1 .93±.04 .40±.12 .55±.11 .39±.09 .92±.05 .54±.09 .56±.09 .51±.09 .92±.12 .36±.16 .50±.16 .34±.15 .92±.07 .48±.16 .53±.11 .43±.19

+MASK .85±.05 .87±.08 .85±.03 .69±.15 .60±.16 .61±.08 .79±.02 .62±.05 .86±.09 .87±.09 .86±.05 .66±.24 .58±.22 .55±.16 .80±.03 .57±.14
paraphrase-albert-small-v2 .96±.02 .36±.09 .52±.09 .38±.09 .96±.02 .54±.09 .53±.07 .53±.09 .95±.10 .32±.16 .46±.18 .33±.14 .97±.04 .48±.16 .50±.12 .43±.25

+MASK .88±.06 .84±.07 .86±.03 .65±.11 .70±.14 .66±.07 .80±.02 .65±.05 .88±.08 .82±.12 .84±.07 .56±.19 .67±.20 .58±.14 .80±.05 .57±.14
multi-qa-MiniLM-L6-cos-v1 .95±.03 .37±.09 .52±.09 .38±.10 .95±.04 .53±.10 .53±.08 .52±.10 .91±.14 .34±.18 .48±.19 .34±.17 .94±.08 .47±.17 .50±.16 .42±.25

+MASK .88±.05 .88±.04 .88±.02 .70±.09 .69±.09 .68±.06 .83±.02 .66±.04 .87±.09 .87±.07 .87±.05 .61±.19 .64±.19 .60±.14 .82±.04 .60±.15
stsb-roberta-large .33±.08 .99±.02 .49±.09 .97±.03 .19±.10 .30±.13 .36±.11 .52±.07 .29±.14 .99±.03 .42±.16 .94±.15 .11±.15 .18±.19 .28±.15 .42±.20

+MASK .70±.13 .68±.15 .66±.07 .87±.06 .87±.08 .87±.03 .81±.03 .66±.04 .62±.27 .64±.28 .57±.21 .87±.10 .86±.11 .86±.06 .80±.06 .62±.08
paraphrase-MiniLM-L3-v2 .95±.03 .28±.09 .43±.10 .35±.08 .96±.03 .51±.09 .46±.08 .49±.11 .96±.05 .23±.19 .34±.21 .31±.14 .97±.05 .45±.16 .41±.17 .40±.27

+MASK .87±.05 .86±.09 .86±.04 .68±.12 .68±.11 .66±.05 .81±.03 .65±.04 .88±.07 .85±.12 .86±.06 .61±.21 .64±.22 .59±.15 .81±.05 .59±.14
msmarco-distilbert-dot-v5 .93±.04 .36±.10 .51±.09 .37±.09 .93±.03 .52±.08 .52±.08 .47±.08 .92±.09 .31±.18 .43±.20 .32±.14 .92±.08 .46±.15 .48±.13 .38±.19

+MASK .87±.05 .91±.04 .89±.03 .75±.10 .66±.08 .69±.06 .84±.03 .64±.04 .87±.09 .90±.05 .88±.06 .67±.18 .60±.16 .61±.15 .83±.06 .58±.10
msmarco-MiniLM-L12-cos-v5 .91±.04 .44±.09 .59±.08 .39±.09 .90±.05 .54±.08 .58±.07 .44±.08 .91±.09 .44±.17 .58±.16 .36±.16 .88±.10 .49±.16 .59±.12 .38±.19

+MASK .85±.05 .88±.06 .86±.03 .68±.11 .60±.10 .62±.06 .80±.03 .59±.04 .85±.10 .88±.08 .86±.06 .62±.21 .55±.21 .53±.16 .79±.05 .54±.12
multi-qa-MiniLM-L6-dot-v1 .89±.07 .54±.07 .67±.06 .42±.09 .84±.08 .55±.08 .64±.05 .46±.10 .87±.16 .51±.15 .63±.15 .37±.16 .83±.11 .49±.15 .62±.12 .37±.26

+MASK .83±.07 .86±.06 .84±.03 .61±.13 .56±.12 .56±.07 .76±.04 .53±.07 .82±.12 .86±.08 .83±.07 .53±.23 .50±.20 .47±.17 .76±.08 .45±.18
msmarco-MiniLM-L6-cos-v5 .93±.03 .41±.10 .56±.10 .39±.09 .92±.06 .54±.09 .56±.08 .44±.10 .93±.07 .38±.18 .52±.18 .34±.16 .91±.12 .48±.17 .54±.14 .37±.22

+MASK .85±.06 .87±.07 .86±.04 .67±.10 .62±.14 .62±.07 .79±.03 .59±.04 .85±.11 .86±.09 .85±.07 .60±.17 .58±.24 .55±.16 .79±.05 .54±.11
msmarco-distilbert-base-tas-b .93±.04 .36±.13 .51±.13 .38±.09 .93±.05 .53±.09 .52±.11 .45±.10 .92±.10 .32±.22 .44±.21 .33±.15 .92±.10 .47±.16 .48±.17 .36±.23

+MASK .86±.07 .86±.08 .86±.03 .67±.14 .64±.14 .63±.07 .80±.03 .62±.05 .86±.11 .87±.11 .85±.06 .61±.23 .59±.26 .53±.20 .79±.07 .56±.14
stsb-distilroberta-base .33±.08 .96±.04 .49±.08 .94±.06 .23±.10 .35±.12 .40±.10 .43±.08 .29±.14 .96±.06 .43±.15 .89±.21 .17±.16 .27±.19 .34±.15 .36±.21

+MASK .66±.13 .61±.15 .61±.07 .85±.07 .86±.09 .85±.04 .78±.04 .59±.04 .58±.22 .56±.25 .51±.17 .85±.11 .84±.12 .84±.07 .77±.07 .55±.08
msmarco-distilbert-cos-v5 .94±.03 .30±.09 .45±.11 .36±.09 .95±.03 .51±.09 .48±.09 .42±.09 .91±.12 .26±.14 .38±.17 .31±.14 .94±.06 .44±.15 .43±.13 .34±.17

+MASK .88±.05 .84±.06 .85±.03 .64±.10 .71±.11 .66±.07 .80±.02 .62±.03 .88±.08 .82±.08 .84±.05 .56±.19 .67±.16 .59±.15 .80±.04 .56±.09
stsb-TinyBERT-L-4 .32±.09 .98±.03 .48±.10 .96±.03 .16±.13 .26±.16 .33±.14 .41±.07 .29±.14 .97±.05 .43±.17 .77±.39 .13±.18 .19±.23 .28±.20 .34±.19

+MASK .67±.15 .66±.16 .63±.07 .86±.07 .85±.09 .85±.04 .79±.04 .62±.04 .61±.23 .62±.26 .54±.17 .87±.10 .85±.11 .85±.05 .79±.05 .56±.11
stsb-roberta-base .31±.08 .98±.02 .47±.09 .95±.05 .13±.07 .22±.10 .30±.08 .42±.07 .28±.14 .97±.05 .41±.16 .91±.15 .10±.10 .16±.15 .26±.13 .33±.20

+MASK .68±.10 .64±.15 .64±.08 .86±.06 .87±.07 .86±.03 .80±.04 .63±.06 .57±.21 .57±.26 .52±.20 .86±.11 .86±.10 .85±.06 .78±.08 .57±.11
msmarco-bert-base-dot-v5 .93±.03 .32±.10 .47±.11 .36±.08 .94±.03 .51±.09 .49±.09 .45±.09 .91±.07 .26±.19 .38±.21 .31±.14 .92±.08 .45±.16 .43±.15 .33±.24

+MASK .87±.05 .90±.05 .88±.03 .74±.11 .66±.09 .69±.06 .83±.03 .65±.03 .86±.09 .90±.06 .88±.05 .66±.18 .58±.20 .58±.17 .82±.05 .58±.11
ms-marco-TinyBERT-L-2-v2 .32±.08 .97±.02 .48±.09 .93±.06 .17±.11 .28±.14 .34±.12 .34±.10 .29±.14 .97±.03 .43±.16 .78±.30 .13±.19 .20±.23 .29±.19 .26±.20

+MASK .67±.15 .64±.14 .63±.07 .86±.06 .86±.09 .85±.04 .79±.03 .60±.06 .60±.23 .61±.24 .55±.17 .87±.10 .86±.12 .85±.05 .79±.06 .55±.15
ms-marco-MiniLM-L-2-v2 .32±.08 .97±.02 .48±.09 .94±.05 .16±.12 .26±.15 .33±.13 .36±.10 .29±.14 .97±.05 .43±.16 .91±.15 .13±.20 .19±.24 .29±.20 .26±.23

+MASK .67±.14 .61±.13 .62±.07 .85±.06 .87±.07 .85±.03 .79±.03 .57±.08 .58±.22 .55±.25 .50±.18 .85±.11 .85±.10 .84±.06 .77±.07 .51±.16
ms-marco-MiniLM-L-4-v2 .32±.08 .95±.03 .47±.09 .89±.04 .18±.10 .29±.13 .35±.11 .31±.10 .29±.14 .93±.09 .42±.17 .91±.10 .16±.16 .24±.20 .32±.17 .24±.22

+MASK .63±.13 .64±.13 .62±.07 .86±.06 .83±.08 .84±.04 .78±.04 .56±.07 .56±.21 .62±.25 .53±.16 .87±.11 .81±.14 .83±.07 .77±.06 .52±.15
quora-roberta-base .31±.08 .99±.02 .46±.09 .96±.04 .10±.05 .18±.07 .27±.07 .32±.08 .28±.14 .98±.05 .41±.17 .78±.39 .09±.10 .15±.15 .25±.13 .23±.17

+MASK .63±.12 .55±.07 .58±.08 .83±.04 .87±.03 .85±.03 .78±.03 .47±.09 .58±.30 .47±.18 .49±.20 .84±.08 .88±.08 .85±.05 .79±.04 .41±.16
quora-roberta-large .31±.08 .97±.05 .46±.09 .26±.40 .09±.15 .13±.21 .23±.17 .31±.10 .28±.14 .97±.06 .41±.17 .25±.39 .08±.19 .11±.23 .22±.21 .22±.19

+MASK .40±.20 .76±.37 .40±.10 .22±.34 .29±.44 .25±.38 .30±.26 .48±.08 .35±.25 .73±.41 .32±.20 .23±.36 .29±.44 .25±.39 .30±.28 .42±.14
ms-marco-MiniLM-L-6-v2 .33±.09 .91±.05 .48±.09 .87±.06 .25±.11 .37±.12 .41±.11 .30±.09 .29±.15 .88±.12 .42±.17 .89±.10 .23±.15 .34±.16 .39±.14 .21±.18

+MASK .63±.14 .62±.13 .60±.08 .85±.06 .84±.07 .84±.03 .78±.03 .55±.07 .55±.24 .57±.26 .49±.20 .86±.11 .83±.12 .83±.05 .77±.05 .50±.15
ms-marco-MiniLM-L-12-v2 .33±.09 .79±.07 .46±.09 .81±.07 .35±.09 .49±.09 .49±.07 .24±.09 .30±.17 .78±.17 .41±.18 .82±.16 .34±.15 .47±.16 .48±.12 .20±.16

+MASK .58±.11 .58±.13 .56±.05 .83±.06 .81±.09 .82±.05 .75±.04 .48±.05 .47±.19 .53±.25 .45±.18 .83±.11 .80±.12 .81±.08 .74±.06 .44±.09
quora-distilroberta-base .31±.08 .97±.06 .46±.09 .18±.36 .08±.18 .11±.23 .22±.18 .25±.10 .28±.14 .98±.05 .42±.17 .19±.38 .07±.20 .09±.23 .21±.21 .16±.20

+MASK .39±.20 .84±.31 .43±.11 .16±.32 .20±.39 .18±.35 .27±.25 .34±.10 .34±.19 .81±.37 .36±.21 .17±.34 .20±.40 .18±.36 .28±.28 .30±.18
qnli-electra-base .33±.10 .45±.12 .36±.08 .74±.08 .63±.12 .67±.08 .58±.07 .04±.11 .31±.18 .49±.18 .34±.16 .78±.14 .64±.14 .68±.09 .60±.11 .07±.18

+MASK .41±.12 .36±.12 .35±.07 .74±.08 .77±.14 .74±.08 .63±.08 .07±.08 .40±.23 .38±.19 .32±.11 .77±.14 .78±.16 .75±.10 .64±.12 .11±.14
qnli-distilroberta-base .31±.09 .50±.18 .35±.10 .73±.07 .53±.18 .60±.11 .53±.08 .05±.06 .30±.18 .48±.19 .32±.14 .75±.13 .53±.19 .59±.14 .54±.12 .02±.10

+MASK .46±.24 .31±.15 .30±.11 .73±.07 .77±.16 .74±.08 .61±.06 .13±.09 .32±.27 .26±.15 .24±.13 .75±.12 .78±.19 .74±.11 .62±.10 .15±.13

Table E.2: TRiC evaluation using various SBERT models on Subtask 1 and Subtask 2. Results are pre-
sented for each model using pre-trained models and the +MASK setting (italic). For Subtask 1, precision
(PR), recall (RE), and Weighted -F1 scores (F1) are reported for both label 0 (i.e., different topics) and label
1 (i.e., roughly identical topics). For Subtask 2, Spearman correlation (SP) is reported on the overall set
of instances. The reported metrics include standard deviations (±) across the 10 Test splits for compara-
tive analysis. The superior performance for each metric between pre-trained models is highlighted in bold.
Results for both Test and OOV Test sets are provided for completeness.
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