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Abstract
We consider an optimization problem arising when a set of items must be selected and picked up from given locations in an
automated storage and retrieval system by a crane of given capacity, minimizing the overall distance traveled. The problem
has been classified as open in a recent taxonomy of optimal picking problems in automated warehouses. In this paper, we
analyze some non-trivial properties of the problem and we describe a polynomial-time dynamic programming algorithm to
solve it to proven optimality.
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1 Introduction

Automated storage and retrieval systems (AS/RS) are com-
monly used to speed up warehouse operations in industrial
production plants (Azadeh, De Koster, and Roy, 2019). At
their core, a crane operates to pickup boxes at specific posi-
tions in the warehouse shelves and to bring them to an output
port, where a conveyor belt is placed. To be efficient in terms
of reactiveness and energy consumption, the crane sched-
ule must be suitably optimized. This is why an appropriate
modeling and the design of efficient algorithms are crucial
and why crane scheduling is a lively topic in mathematical
optimization, aiming at the development of exact algorithms
(Weidinger, Boysen, and Schneider, 2019) as well as heuris-
tics (Fontin & Lin, 2020; Ouzidan, Sevaux, Olteanu, Pardo,
and Duarte, 2022). For an overview of AS/RS systems and
their optimization we refer the reader to surveys, such as
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van den Berg and Zijm (1999); Gu et al. (2007); de Koster et
al. (2007); Roodbergen and Vis (2009); Boysen et al. (2019).
In this paper we consider an automated warehouse where
all components are stored in identical (standardized) boxes,
called items in the remainder. The items are stored in suit-
able locations along a single aisle. All the required items are
collected by a single crane equipped with q shuttles, which
moves along a rail. The crane is initially empty at an idle
point that also acts as the output location. The idle point
(called origin in the remainder) is at a given intermediate
position along the rail. Such a layout appears in real-world
warehousing systems studied in the literature, see, e.g., Tang
and Ren (2010). Therefore, the aisle can be represented by
two lines with a common origin, as in Fig. 1. In general, each
required item can be picked up on either line, because multi-
ple identical copies of the same materials or components can
be stored in the automated warehouse. We consider the case
where each required item can be picked up from two distinct
locations, one on each line. This assumption does not imply
any loss of generality: in case an item is available at more
than one location on a given line, it is always optimal to pick
it up from the location that is closest to the origin; in case
an item is not available on a given line, it can be considered
as if it were located at a very large distance from the origin
on that line. At each cycle, the crane starts from the origin,
it moves along one of the two lines, it collects at most q
required items and it returns to the origin where it unloads
the collected items. Hence, the total distance traveled in a
cycle is twice the distance between the origin and the far-
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thest collected item. The objective is to minimize the total
distance traveled by a crane of capacity q to collect a set of
required items.

The problem described above is a case of single-crane
scheduling (Boysen & Stephan, 2016; Goeke & Schnei-
der, 2021), and in particular it can be seen as a variant
of F, q/I O1/Cmax: single IO point with crane composed
by q shuttles, single command (only pickup operations),
makespan minimization. Still in the context of single-crane
scheduling, the paper by Barbato et al. (2019) discusses sev-
eral pickup and delivery problems arising in the study of a
real-world automatedwarehouse and studies their worst-case
time complexity. The real-world system considered in Bar-
bato et al. (2019) has a storage area where each cell of a
2-dimensional rack has depth 2. The items are collected by
a crane of capacity 2. The storage area communicates with a
production area by means of an automated belt, from which
items are delivered to human operators by means of shuttle
of capacity 2. Barbato et al. (2019) focuses on the worst-case
time complexity of the problems arising in this context, as
a function of the warehouse characteristics (e.g., capacity of
the vehicles, number of dimensions of the storage area, etc.).
The same paper also introduces a four-field notation to clas-
sify them. Our problem is accordingly denoted as q/1/P/V .
Such a notation indicates that an arbitrary capacity value is
given (field “q”), that the warehouse is 1-dimensional (field
“1”) and only pickup operations (field “P”) must be per-
formed to collect items from locations to be selected (field
“V ”). The assessment of the time complexity of q/1/P/V
had been left open in Barbato et al. (2019) and, to the best of
our knowledge, no other results in the literature can be found
regarding q/1/P/V . As reported in Boysen and Stephan
(2016), several single-crane scheduling problems have been
proven NP-hard for arbitrary capacities (i.e., cases F, q/ · /·
of Boysen and Stephan (2016)). The combinatorial structure
of problems with capacity 1 has instead been exploited to
design polynomial-time exact algorithms (Gharehgozli, Yu,
Zhang, and Koster, 2017). A few special cases exist, which
can be solved in polynomial time also when the capacity
is 2 (see, e.g., Dooly and Lee (2008)). These cases, how-
ever, do not directly extend to the setting considered in this
paper. Several problems involving capacity 3 (e.g. F, 3/ · /·
ofBoysen andStephan (2016)) are N P-hard.Although prob-
lem q/1/P/V has been inspired by the study of a real-world
AS/RS, it has no direct practical applications. Ourmain inter-
est in this problem is rather motivated by its relevance as an
intermediate step to solve more complex problems in real-
world systems as the one described in Barbato et al. (2019).

In this paper, we provide a polynomial-time algorithm to
solve q/1/P/V . Our result holds for any value of q, making
it a non-trivial methodological achievement in the literature.
Outline.

The core of our approach is the identification of dominance
properties allowing to restrict the search to a specific set
of structured solutions and hence to avoid the combinato-
rial explosion in the number of solutions to be examined.
In Sect. 2, we formally define the problem q/1/P/V and
observe that it is decomposable into two sub-problems: deter-
mining a line assignment of items and optimally collecting
the items on the assigned line. We state the dominance prop-
erty that allows to restrict the set of solutions for each given
line assignment. Next, Sect. 3 presents dominance properties
that allow to restrict the set of line assignments to be enu-
merated. Finally, these dominance properties are exploited
in the dynamic programming algorithm to solve q/1/P/V ,
outlined in Sect. 4. The conclusions of our paper are given in
Sect. 5.

2 Problem definition and decomposition

Throughout this paper, we indicate by N = {1, 2, . . . , n} the
set of items to be picked up from the 1-dimensional ware-
house described in the introduction. The origin is indicated
by O . Each line holds one copy of each item i ∈ N at a given
location. From now on, d�(i) denotes the distance of i ∈ N
from O on line � ∈ {1, 2}. Multiple items can be stored at a
same location. The crane capacity is a given positive integer
q. An illustration of the above definitions in a simple case
with |N | = 2 and q = 2 is provided in Fig. 1.

Definition 1 (Trips) A trip T is a subset of N of cardinality
at most q. The cost of a trip T on line � ∈ {1, 2} is C�(T ) =
maxi∈T {d�(i)}, i.e., half the distance traveled by the crane.

The problem q/1/P/V requires to find a pair (T 1, T 2) of
sets of non-empty trips such that the trips in T 1∪T 2 partition
N and such that the total cost C(T ) = ∑2

�=1
∑

T∈T � C�(T )

is minimum.

Definition 2 (Leading item) A leading item of a trip T on
line � is an item in T that is farthest from O , i.e., an item
j ∈ T such that d�( j) = maxi∈T {d�(i)}. A leading item is
not necessarily unique.

From the previous definition, the cost of each trip T on
line � is C�(T ) = d�( j), where j is a leading item of T .

Determining a feasible solution to q/1/P/V consists of
(a) deciding a line assignment, i.e., determining the line
where each item must be picked up and (b) grouping the
items assigned to the same line into trips.
Optimally grouping items on each line.
We first consider the sub-problem of optimally grouping the
items consistently with a given line assignment A. In this
sub-problem, the locations where items are to be collected
are fixed. Following the notation introduced in Barbato et al.
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Fig. 1 Schematic top view of the 1-dimensional automated warehouse
considered in this paper. The real elements (crane, rail, item boxes,
in/out site) are depicted in gray, while the formal representation of the
warehouse (consisting in the origin O , lines and points corresponding

to the item locations) is drawn in black. Each line holds a copy of an
element in N = {1, 2}. The distances d1(1) and d2(1) of item 1 on each
line are explicitly represented

(2019) and emphasizing the dependency on A, we denote
this sub-problem as q/1/P/F(A). Clearly, q/1/P/F(A)

corresponds to two independent instances, one for each line,
of the problem with fixed locations on a single line.

Definition 3 (q/1/P/F on a single line) Data:

• a set N of n locations to be visited on a line,
• the distance d(i) from the origin for each item i ∈ N ,
• the crane capacity q.

Constraints: find a partition of N into a set T of trips such
that |T | ≤ q ∀T ∈ T .
Objective: minimize the total cost of the trips, C(T ).

The problem of Def. 3 can be solved to optimality by the
greedy algorithm described by Brucker et al. (1998) with
worst-case time complexity O(n log n): on each line, items
are sorted according to their distance from O and they are
grouped in batches of q starting from the farthest ones.

Owing to this optimal greedy algorithm, the implicit com-
plete enumeration of solutions can obtained through the
implicit complete enumeration of line assignments.

The solution computed by the greedy algorithm may not
be unique, because some items may be located at the same
distance from O . However, it is possible to characterize the
whole set of optimal solutions by two properties, outlined
hereafter.

For any given line � ∈ {1, 2} and any given set N� of
items assigned to it, let T � = {T �

1 , T �
2 , . . . , T �

m} a set of trips
partitioning N�.

Definition 4 (Compact trips and solutions) A set T � of trips
on line � ∈ {1, 2} is compact if and only if, for any two
distinct trips T1, T2 ∈ T �, eitherd�(i) ≥ d�( j)∀i ∈ T1,∀ j ∈
T2 or d�(i) ≤ d�( j) ∀i ∈ T1,∀ j ∈ T2. A solution (T 1, T 2)

to q/1/P/V is compact if and only if T � is compact for any
line � ∈ {1, 2}.

Definition 5 (Complete trips and solutions) Consider a set
T � of m� trips on line � ∈ {1, 2} ordered by non-increasing
distance of their leading items. T � is complete if and only if
its farthest m� − 1 trips are made of q items each. A feasible
solution (T 1, T 2) to q/1/P/V is complete if and only T � is
complete for � = 1, 2.

In Fig. 2, we illustrate the concepts of compactness and
completeness by means of simple examples.

Observation 1 By construction, the optimal solution to q/1/
P/F(A), computed by the greedy algorithm of Brucker et
al. (1998), is compact and complete.

The converse is also true.

Property 1 (Optimality) For any given line assignment A,
any solution that is compact and complete is optimal for
q/1/P/F(A).

Proof Bydefinition, twocomplete solutions to aq/1/P/F(A)

instance have the same number of trips, which can be put in
correspondence, after sorting them by their cost. If the two
solutions are also compact, the leading items of two corre-
sponding trips appear in the same position in N�. Then all
compact and complete solutions have the same cost and are
optimal by Observation 1. ��

The latter property allows to compare partial line assign-
ments, to early discard some that cannot correspond to
optimal solutions, as described in Sect. 3.
Graphical representation of line assignments.
For the sake of illustrating the dominance properties between
line assignments and the algorithm that relies upon them, we
introduce a graph terminology, associating each item in N
with an edge. This terminology stems from representing the
two lines of the warehouse as vertical and parallel and each
item as an edge linking its positions on the two lines as in
Fig. 3a. Hence, in the remainder the terms item and edgewill
be used as synonymous.
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Fig. 2 Examples of a non-compact and non-complete solution (top) and a compact and complete solution (bottom) for q = 3

Definition 6 (Orientations) Edge i ∈ N is horizontal if and
only if d1(i) = d2(i). In a given line assignment, a horizontal
edge is �-oriented if and only if item i is assigned to line �; a
non-horizontal edge i ∈ N is upward-oriented if and only if
item i is assigned to the line where it is farther from the origin
and it is downward-oriented if and only if it is assigned to
the line where it is closer to the origin.

Assigning an item to one of the lines corresponds to ori-
enting its edge, as shown in Fig. 3b.

Definition 7 (Intersecting edges) Given two distinct edges
i ∈ N and j ∈ N , they intersect if and only if d�′(i) ≤ d�′( j),
d�′′(i) ≥ d�′′( j) where {�′, �′′} = {1, 2}. Two distinct edges
are disjoint if and only if they do not intersect.

3 Dominance properties for line assignments

Since there are n items to be assigned in a problem instance,
there are 2n possible line assignments. To contrast the com-
binatorial explosion implied by the exponential number of
line assignments, the dynamic programming algorithm illus-
trated in Sect. 4 restricts the search to a subset of canonical
line assignments corresponding to non-dominated solutions
to q/1/P/V . Such “non-dominated” line assignment are
defined in Subsection 3.1. Then, in Subsection 3.2 we intro-
duce the definition of primary edge sets, and we show that
they are in correspondence with non-dominated line assign-
ments. Finally, in Subsection 3.3 we study the properties of
partial line assignments, which are iteratively constructed
by selecting primary edges according to a suitably defined
partial order of the edges. In particular, we establish domi-

nance properties between partial line assignments, which are
the basis for a polynomial-time dynamic programming algo-
rithm, since they allow discarding some sub-optimal partial
line assignments.

3.1 Non-dominated line assignments

The dominance relation between line assignments relies on
some definitions and properties presented hereafter. First, we
show the effect of replacing an item on a line: it is easy to
characterize replacements that do not produce a cost increase
on the line, independently of the position of all the other
items. Then, we apply this observation to show the effect
of swapping the assignments of two items: we characterize
swaps that do not worsen solutions, independently of the
assignments of all the other items. Then, we introduce a lex-
icographic ordering of line assignments that allows to define
an asymmetric and transitive dominance relation between
them. Finally, we prove that an optimal solution is certainly
found even if the search is restricted to line assignments that
are non-dominated according to our definition of dominance.

Property 2 (Replacement) Consider a line � ∈ {1, 2} and a
compact and complete set T � of trips on that line; let C be
its cost. If an item i ∈ T � is replaced by an item j /∈ T � with
d�( j) ≤ d�(i), then the cost of a compact and complete set
of trips collecting the items in T � \ {i} ∪ { j} on line � is not
larger than C.

Proof Consider the effect of inserting j in the same trip T ∈
T � of the deleted item i . Let C(T ) and C ′(T ) be the cost of
trip T before and after the replacement.

123



Journal of Scheduling

Fig. 3 Edges and orientations representing item positions and a line assignment

If i is not a leading item in T and j does not become the
leading item, then C ′(T ) = C(T ).

If i is not a leading item in T and j becomes a leading item,
then there exists an item k ∈ T such that C(T ) = d�(k) ≥
d�(i) andC ′(T ) = d�( j) ≥ d�(k). Since d�(i) ≥ d�( j), then
d�( j) = d�(k) = d�(i). Hence, C ′(T ) = C(T ).

If i is a leading item of T and j does not become a leading
item, there exists an item k ∈ T such that C ′(T ) = d�(k)
and C(T ) = d�(i) ≥ d�(k). Hence, C ′(T ) ≤ C(T ).

If i is a leading item of T and j becomes a leading item,
thenC(T ) = d�(i) andC ′(T ) = d�( j). Since d�( j) ≤ d�(i),
then C ′(T ) ≤ C(T ).

In general, the replacement may produce a set of trips T ′
on line � that is not compact and complete. However, owing
to Property 1, the cost of a compact and complete set of trips
on line � is not larger than the cost of T ′. ��

Applying Property 2 to both lines immediately yields the
following:

Property 3 (Swap) Consider a solution with a compact and
complete set T � of trips on each line � ∈ {1, 2} and let C be
its cost. If two items i ∈ T 1 and j ∈ T 2 with d1( j) ≤ d1(i)
and d2(i) ≤ d2( j) are swapped, then the cost of the optimal
solution corresponding to the new assignment is not larger
than C.

A graphical representation of Property 3 is illustrated in
Fig. 3b, where edges i and j intersect each other: reversing
their orientation assigns the same number of items to each
line without increasing their distance from O . Hence, the
compact solutionobtained from the line assignment ofFig. 3b
is dominated (in terms of traveled distance) by the compact
solution obtained by the line assignment in which edges i

and j have opposite orientation while all the other items (not
represented in the figure) keep their orientation.

Exploiting Property 3, we now establish a dominance rela-
tion between line assignments. For this purpose,we introduce
three quantities α, β and γ associated with line assignments,
in order to break ties. For a given line assignment A, we
indicate by L(i,A) ∈ {1, 2} the line to which item i ∈ N is
assigned in A.

Definition 8 (α,β,γ ) For any given line assignment A

α(A) =
∑

i∈N
dL(i,A)(i),

β(A) =
∑

i∈N
dL(i,A)(i)i,

γ (A) =
∑

i∈N
L(i,A)i .

Example 1 Consider N = {1, 2, 3} with d1(1) = 5 = d2(2),
d1(2) = 3 = d2(3) and d1(3) = 4 = d2(1). Let A be
the assignment given by L(1,A) = 1, L(2,A) = 2 and
L(3,A) = 1. Then α(A) = 14, β(A) = 27 and γ (A) = 8.

Property 4 (Edge reversal) Let {�′, �′′} = {1, 2}. Consider
two distinct intersecting edges i ∈ N and j ∈ N.

1. Non-coincident edges. If d�′(i) ≥ d�′( j), d�′′(i) ≤ d�′′( j)
and at least one of the two inequalities is strict, consider
a line assignment A in which i is oriented to �′ and j
is oriented to �′′ and the line assignment A obtained
fromA by reversing the orientation of both edges. Then,
C(A) ≤ C(A). Furthermore α(A) < α(A).

2. Coincident non-horizontal edges. If d�′(i) = d�′( j) >

d�′′(i) = d�′′( j) and i > j , consider a line assignment
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A in which i is oriented to line �′ and j is oriented to
line �′′ and the line assignment A obtained from A by
reversing the orientation of both edges. Then, C(A) =
C(A). Furthermore α(A) = α(A) and β(A) < β(A).

3. Coincident horizontal edges. If d1(i) = d1( j) = d2(i) =
d2( j) and i > j , consider a line assignmentA in which i
is oriented to line 2 and j is oriented to line 1 and the line
assignmentA obtained fromA by reversing the orienta-
tion of both edges. Then, C(A) = C(A). Furthermore,
α(A) = α(A), β(A) = β(A) and γ (A) < γ (A).

Proof In all three cases, the number of items assigned to
each line is the same in A and A. In case 1 reversing the
orientation of edges i and j has the only effect of replacing
an itemwith another one at a non-larger distance on each line.
This cannot increase the total cost of an optimal solution to
q/1/P/F(A), owing to Property 3. The strict decrease in the
value of α directly comes from the definition of α and the
assumption that at least one of the two inequalities is strict.
In case 2 the proof that C(A) and the value of α remain
unchanged is trivial. The strict decrease in the value of β

comes from the definition ofβ and the assumption that i > j .
In case 3, the proof that C(A) and the value of α and β

remain unchanged is trivial. The strict decrease in the value
of γ comes from the definition of γ and the assumption that
i > j . ��
Definition 9 (Dominance)Given two line assignmentsA and
A′, A dominates A′ if and only if A is obtained from A′
through a sequence of the edge-reversal operations described
in Property 4.

Corollary 5 The dominance relation of Def. 9 is asymmetric
and transitive.

Proof We associate with each line assignment A the triple
(α(A), β(A), γ (A)). If A dominates A′, then, by Prop-
erty 4, the triple (α(A), β(A), γ (A)) is lexicographically
smaller than (α(A′), β(A′), γ (A′)), i.e., (α(A) < α(A′)) ∨
((α(A) = α(A′))∧ (β(A) < β(A′)))∨ ((α(A) = α(A′))∧
(β(A) = β(A′))∧(γ (A) < γ (A′))). Since the lexicograph-
ical order is asymmetric and transitive so is the dominance
relation of Def. 9. ��
Corollary 6 Every instance of q/1/P/V admits at least one
optimal solution whose corresponding line assignment is
non-dominated.

Proof Let A′ be an optimal line assignment, i.e., the line
assignment corresponding to an optimal solution. AssumeA′
is dominated by A, as otherwise the result follows immedi-
ately. By Property 4C(A) ≤ C(A′), hence alsoA is optimal.
Since the dominance relation is transitive and asymmetric,
and since the optimal line assignments are finite, the result
follows. ��

This allows to restrict the search for an optimal solution
by considering only non-dominated line assignments.

3.2 Primary sets

So far, we have proven that the search for an optimal solution
can be pursued by enumerating line assignments that are non-
dominated according to a suitable definition of dominance.
The implicit complete enumeration of non-dominated line
assignments must be done efficiently. For this purpose, we
introduce the definitions of primary edges and primary set
and we prove that enumerating primary sets is equivalent to
enumerating non-dominated line assignments. While a line
assignment requires to specify the orientation of each of the n
edges, a primary set is described by a selection of a (typically
small) subset of the n edges. We prove that the selection of
the primary edges is enough to determine the orientation of
all edges in a non-dominated line assignment.

The orientation of the edges relies on the properties of non-
dominated line assignments and the definition of primary
edges. In turn, the definition of primary edges relies upon
the definition of implications between edges. Therefore, this
subsection is organized in three paragraphs, one for each of
these steps.
Implication between edges.

Definition 10 (Implication between non-horizontal edges)
Given two distinct edges i ∈ N and j ∈ N , with d�′(i) <

d�′′(i), i implies j if and only if the following three conditions
are satisfied:

1. d�′( j) ≥ d�′(i),
2. d�′′( j) ≤ d�′′(i),
3 at least one of the two inequalities above is strict or j < i .

Implication between non-horizontal edges is shown in
Fig. 4.

Definition 11 (Implication between horizontal edges) Given
two distinct edges i ∈ N and j ∈ N , with d1(i) = d2(i),
i implies j if and only if the following three conditions are
satisfied:

1. d1( j) = d1(i),
2. d2( j) = d2(i),
3. j < i .

Observation 2 For any two distinct and intersecting edges i
and j , either i implies j or j implies i or both. For any two
disjoint edges, none of them implies the other.

Primary edges.

Definition 12 (Primary edges) Given a line assignment,
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Fig. 4 Edge i implies all the other edges represented in the figure

• a non-horizontal edge is primary if and only if it is
upward-oriented and it is not implied by any other
upward-oriented edge;

• a horizontal edge is primary if and only if these three
statements hold:

1. it is 2-oriented,
2. it is not implied by any upward-oriented edge,
3. it is not implied by any 2-oriented horizontal edge.

Property 7 (Disjoint primary edges) In any line assignment
all primary edges are disjoint.

Proof By contradiction, if two primary edges i and j inter-
sect, then three cases may occur.

• Case 1: both edges are non-horizontal. Then by Obser-
vation 2 at least one of the edges implies the other one.
Both edges are upward-oriented, because they are pri-
mary, thus contradicting Def. 12.

• Case 2: one of the two edges, say j , is horizontal and the
other is not. By Def. 10 and Observation 2, i implies j .
Edge i must be upward-oriented and edge j must be 2-
oriented, because they are primary. This contradicts the
assumption that j is primary.

• Case 3: both edges are horizontal (and coincident): then
w.l.o.g. assume i implies j . Both edges must be 2-
oriented, because they are primary. Then, by Def. 12,
j cannot be primary, yielding a contradiction. ��

Orientation of implied edges.
Now, by combining the definition of non-dominated line
assignment with the definition of primary edges, we prove
that the selection of the primary edges completely determines
a non-dominated line assignment.

First, we state some properties on edge orientations
implied by the assumption that an edge is primary in a non-
dominated line assignment.

Property 8 (Non-horizontal primary edge) If a non-horizontal
edge i ∈ N is primary in a non-dominated line assignment
A, then

1. edge i is upward-oriented;
2. each edge j implying i is downward-oriented;
3. each edge j implied by i is oriented to L(i,A).

Proof Statements 1 and 2 are implied by Def. 12, since i is
primary. To prove statement 3, let � be the line different from
L(i,A). Owing to Def. 10, if i implies j and i is upward-
oriented to line L(i,A), then d�( j) ≥ d�(i) and if the two
edges coincide, then j < i . By contradiction, if j is oriented
to �, consider two cases. If the two edges do not coincide,
then by Property 4, statement 1, the line assignment A is
dominated, contradicting the assumption. If the two edges
coincide, then by Property 4, statement 2, the line assignment
A is dominated, contradicting the assumption. ��

Property 9 (Horizontal primary edge) If a horizontal edge
i ∈ N is primary in a non-dominated line assignment A,
then

1. edge i is 2-oriented;
2. all non-horizontal edges implying i are downward-

oriented;
3. all horizontal edges implying i are 1-oriented;
4. all horizontal edges implied by i are 2-oriented.

Proof Statements (1), (2) and (3) are implied by Def. 12.
To prove statement (4), observe that, by Def. 11, an edge j
implied by i must be horizontal, coincident with i and such
that j < i . If j is 1-oriented, then edge reversal 3 can be
applied to A, showing that A is dominated. ��

Properties 8 and 9 are illustrated in Figs. 5a and 5b. We
now state someproperties on edge orientations implied by the
assumption that an edge is not primary in a non-dominated
line assignment.

Definition 13 (Partial order) For each pair of distinct edges
i ∈ N and j ∈ N , i precedes j (indicated by i ≺ j) if and
only if d�(i) < d�( j) ∀� = 1, 2.

Definition 7 and Def. 13 directly give the following:

Observation 3 For each pair of disjoint edges i ∈ N and
j ∈ N , either i ≺ j or j ≺ i . For each pair of intersecting
edges i ∈ N and j ∈ N , neither i ≺ j nor j ≺ i .
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Fig. 5 The selection of edge i
as a primary edge induces the
orientation of edge i and all
edges intersecting it

Property 10 (Non-primary edge) Consider two edges i ∈ N
and j ∈ N with i ≺ j that are consecutive primary edges
in a non-dominated line assignment A, i.e., there exists no
primary edge k ∈ N with i ≺ k ≺ j in A. Then,

• every non-horizontal edge k ∈ N s.t. i ≺ k ≺ j is
downward-oriented;

• every horizontal edge k ∈ N s.t. i ≺ k ≺ j is 1-oriented.

Proof The proof is by contradiction.
Case 1: Assume there exists a non-horizontal edge k

between i and j that is upward-oriented inA. Since i and j are
consecutive primary edges, k cannot be primary. Therefore
at least one of the conditions stated in Def. 12 must be vio-
lated by k. Since k is non-horizontal and upward-oriented,
there must exist an upward-oriented edge e implying k. If
e and k do not coincide and they are assigned to distinct
lines, then the edge-reversal operation 1 applies, contradict-
ing the assumption that A is non-dominated; then e and k
are assigned to the same line (this trivially holds when the
two edges coincide). Let �′ be the line L( j,A) = L(e,A)

and �′′ the other line. Then d�′(e) ≥ d�′(k) > d�′(i) and
d�′′(e) ≤ d�′′(k) < d�′′( j). By Property 7, since i and j are
primary, then edge e cannot intersect any of them. There-
fore, e is an upward-oriented edge such that i ≺ e ≺ j ; this
would allow to repeat the same argument indefinitely, which
is impossible since the number of edges between i and j is
finite.

Case 2: Assume there exists a horizontal edge k between
i and j that is 2-oriented inA. Since i and j are consecutive
primary edges, k cannot be primary. Therefore at least one of
the conditions stated in Def. 12 must be violated. So, either
k is implied by an upward-oriented edge or k is implied by
a 2-oriented horizontal edge. In the former case, the proof
for Case 1 applies. In the latter case, there exists another
horizontal edge e coinciding with k and such that e > k, so

Fig. 6 The orientation of all edges between two consecutive primary
edges i and j is determined by Property 10

that i ≺ e ≺ j ; this would allow to repeat the same argument
indefinitely, which is impossible since the number of edges
between i and j is finite.

Because of the contradiction, all non-horizontal edges
between i and j must be downward-oriented and all hori-
zontal edges between i and j must be 1-oriented. ��

Property 10 is illustrated by Fig. 6.
As a consequence of the properties above, if the search is

restricted to non-dominated line assignments, once the pri-
mary edges have been selected the orientation of all the other
edges follows.

Definition 14 (Primary set) The primary set of a solution is
the set of its primary edges.

By Properties 8, 9 and 10, there exists a unique non-
dominated line assignment A(P) having P as primary set.
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3.3 Partial line assignments

In this subsection, we study the properties of partial line
assignments, corresponding to partial primary sets. The goal
is to design a dynamic programming algorithm that implic-
itly enumerates all primary sets by iteratively adding primary
edges to partial primary sets in all possible ways. The iter-
ations stop when all primary edges are selected and a line
assignment (and its corresponding solution) is determined.
Obviously, such a procedure would have complexity expo-
nential in n. In order to manage a polynomially bounded
number of partial primary sets, the idea is to extend the dom-
inance properties between line assignments to dominance
properties between partial line assignments. This allows to
discard some of them earlier during the enumeration.

For this purpose, we exploit the partial order defined in
Definition 13 and the properties of primary edges to prove
that for each given partial primary set, it is possible to parti-
tion the edges into two subsets, such that the edge orientation
in one of them is completely determinedwhile the edge orien-
tation in the other is completely free. From this intermediate
step, we derive a dominance test to possibly discard partial
line assignments.
Partial primary sets and edge partitions.
First of all, we prove that for any given partial primary set,
the edges can be partitioned into two subsets, one with a
fixed orientation and the other without any constraint on the
orientation.

Definition 15 (Edge partition) For each edge i ∈ N , we
define three subsets of items in which N is partitioned:

• N−(i) = { j ∈ N : j ≺ i};
• N+(i) = { j ∈ N : i ≺ j};
• N±(i) = N\(N−(i) ∪ N+(i)).

Property 11 (Item positions) For any non-dominated line
assignment A in which edge i ∈ N is a primary edge,

1. dL( j,A)( j) < dL( j,A)(i) ∀ j ∈ N−(i);
2. dL( j,A)( j) > dL( j,A)(i) ∀ j ∈ N+(i);
3. dL( j,A)( j) ≤ dL( j,A)(i) ∀ j ∈ N±(i).

Proof Statements 1 and 2 directly follow from Definitions
13 and 15.

Statement 3 follows from Properties 8, 9 and Observa-
tion 2, stating that at least one of two intersecting edges must
imply the other.

If edge i is non-horizontal and primary, then it is upward-
oriented. If edge i implies j ∈ N±(i) and i is primary,
then for Property 8 j is oriented to the same line as i , i.e.,
L( j,A) = L(i,A) and hence, by Def. 10, dL( j,A)( j) ≤
dL( j,A)(i).

If edge j ∈ N±(i) implies i and i is primary, then,
for Property 8, j is downward-oriented and, by Def. 10,
dL( j,A)( j) ≤ dL( j,A)(i).

If edge i is horizontal and j ∈ N±(i) is non-horizontal,
then j implies i . Hence, by Property 9, if i is primary
then j is downward-oriented and, by Def. 10, dL( j,A)( j) ≤
dL( j,A)(i).

If edge i is horizontal and j ∈ N±(i) is horizontal, then,
by Def. 7, j coincides with i and therefore dL( j,A)( j) =
dL( j,A)(i). ��

For any line assignment A, let N�(A) the set of items
assigned to line �:

N�(A) = { j ∈ N : L( j,A) = �} ∀� = 1, 2.

For any given primary item i ∈ N ofA, consider the partition
of N�(A) into two subsets:

S�(i,A) = { j ∈ N�(A) : d�( j) > d�(i)}

and its complement

R�(i,A) = { j ∈ N�(A) : d�( j) ≤ d�(i)}.

Property 12 (Independent subsets) If A is non-dominated,

• the elements in S�(i,A)are determinedby the orientation
of the edges in N+(i) and not by the orientation of the
edges in N−(i) ∪ N±(i).

• The elements in R�(i,A) are determined by the orien-
tation of the edges in N−(i) ∪ N±(i) and not by the
orientation of the edges in N+(i).

Proof The property immediately follows from Property 11
and the above definitions of S�(i,A) and R�(i,A). ��

Property 12 is illustrated by Fig. 7.
Consider now two consecutive primary items i and j in a

non-dominated line assignment A, such that i ≺ j . Let Ni j
�

be the set of edges in (N−( j) ∪ N±( j)) ∩ N+(i) that are
oriented to line � in A, that is,

Ni j
� = S�(i,A) ∩ R�( j,A) ∀i, j ∈ N primary edges s.t. i ≺ j .

We slightly extend this definition to include the edges
before the first primary edge and after the last one. Let us
introduce a dummy edge 0 preceding all edges in N and a
dummy edge n + 1 preceded by all edges in N . We define
N 0 j

� = R�( j,A) ∀ j = 1, . . . , n, Ni,n+1
� = S�(i,A) ∀i =

1, . . . , n and N 0,n+1
� = N�. In this way, Ni j

� is well-defined
for all (i, j) pairs with i = 0, . . . , n and j = 1, . . . , n + 1
and i ≺ j .
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Fig. 7 When a partial primary set is defined up to edge i , the orientation
of all edges in R�(i,A) is defined on each line, while the orientation
of all edges in S�(i,A) is not constrained. All locations to be visited
closer to O than the endpoints of edge i are determined (black dots),
while all locations to be visited farther from O than the endpoints of
edge i are undetermined (e.g., edge j)

Property 13 (Assignments between consecutive primary
edges) In any non-dominated line assignment A in which
i ∈ N ∪ {0} and j ∈ N ∪ {n + 1} with i ≺ j are consecutive
primary edges, the elements in Ni j

� are determined only by
the primary edges i and j .

Proof The set Ni j
� is the intersection between S�(i,A) and

R�( j,A). By Property 12, S�(i,A) only depends on the ori-
entation of the edges in N+(i) and R�( j,A) only depends
on the orientation of the edges in N−( j) ∪ N±( j). Since i
and j are consecutive primary edges in A, the only primary
edges in (N−( j)∪N±( j))∩N+(i) are edges i and j . Hence
Ni j

� only depends on primary edges i and j and not on the
other primary edges in A. ��

Therefore, the elements of each set Ni j
� can be computed

by Properties 8, 9 and 10.
Cost of partial line assignments.
Not only the partial line assignment but also its cost can be
derived from any given partial primary set. The cost of a
set of trips on a line depends on the leading items of the
trips. In turn, the leading items are determined by the greedy
algorithm of Brucker et al. (1998) starting from the farthest
items. Unfortunately, the construction of partial primary sets
must proceed from the origin, i.e., starting from the clos-
est items. For this reason it is not possible to determine the
cost implied by the oriented edges in a partial primary set,
because it is not known which items among them are leading
in their trips. However, the number of possibilities is given
by q. In other words, for any given partial primary set, the
total cost corresponding to the leading items in the subset
of oriented edges may have q distinct values. Therefore, a
dynamic programming algorithm may associate q distinct
states with each partial non-dominated primary set.

Given a non-dominated line assignment A and a primary
edge i ∈ N , we define the number of residual items on each
line at edge i as the value r�(i,A) ∈ {0, 1, . . . , q − 1} such
that

r�(i,A) = |S�(i,A)| mod q ∀� = 1, 2.

Let T (A) be the compact solution obtained from line
assignment A through the greedy algorithm of Brucker et
al. (1998). Its cost is the sum of two contributions for each
line �: the cost of the trips having their leading item in
S�(i,A) and the cost of the trips having their leading item
in R�(i,A). We give formulas for these two contributions
by assuming that S�(i,A) and R�(i,A) are represented as
vectors indexed from 1 and whose entries are sorted by
non-increasing distances from O on line �. Denoting by
S�(i,A)[t] and R�(i,A)[t] the t-th entry of such vectors,
the sets of leading items in S�(i,A) and R�(i,A) are

LS
� (i,A) = {S�(i,A)[t] : t mod q = 1}

and

LR
� (i,A) = {R�(i,A)[t] : (t + r�) mod q = 1}

respectively. Then the first cost contribution is

C�(S�(i,A)) =
∑

k∈LS
�

d�(k).

By Property 12, this sum includes the cost terms given by the
edges in N+(i), and it does not depend on the orientation of
the edges in N−(i) ∪ N±(i). Analogously, the second cost
contribution is

C�(R�(i,A), r�) =
∑

k∈LR
�

d�(k). (1)

By Property 12, this sum includes the cost terms given
by the edges in N−(i) ∪ N±(i) and it does not depend
on the orientation of the edges in N+(i), but only on the
number of residual items r�(i,A) on each line. Setting
C+(i,A) = ∑2

�=1 C�(S�(i,A)) and C−(i,A, r1, r2) =
∑2

�=1 C�(R�(i,A), r�), we get that the costC(A) of solution
T (A) is

C(A) = C+(i,A) + C−(i,A, r1, r2). (2)

Partial line assignments and dominance.
As a consequence of the above properties, an optimal solution
ofq/1/P/V can be found by (implicitly) enumerating all pri-
mary sets. This is done by the algorithm illustrated in Sect. 4.
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The algorithm iteratively defines primary sets by adding a pri-
mary item at each iteration. At intermediate iterations, this
generates partial line assignments, as defined below.

Definition 16 (Partial line assignments) For any given edge
i ∈ N , a partial line assignment Ai is an assignment to the
lines of all items in N−(i) ∪ N±(i) so that i is primary. The
corresponding partial primary set Pi is the set of primary
items of Ai . A (possibly partial) line assignment A extends
Ai if and only if the items in N−(i) ∪ N±(i) are assigned to
the same lines in both A and Ai .

Property 14 (Dominance between partial line assignments)
For a given i ∈ N, consider two partial line assign-
ments A′

i and A′′
i (hence i is primary for both) and a line

assignment A′′ extending A′′
i . Let also r� = r�(i,A′′) for

� = 1, 2. Then, if C−(i,A′
i , r1, r2) < C−(i,A′′

i , r1, r2)
(resp. C−(i,A′

i , r1, r2) = C−(i,A′′
i , r1, r2)), there exists

A′ extending A′
i such that C(A′) < C(A′′) (resp. C(A′) =

C(A′′)).

Proof Given A′′ extending A′′
i , define the line assignment

A′ from A′′ by orienting the edges in N−(i) ∪ N±(i) as
in A′

i . Then, by Def. 16, A′ extends A′
i . By Property 11

S�(i,A′) = S�(i,A′′) since such sets only depend on the
orientation of the edges in N+(i)which is the same inA′ and
A′′ by construction. Hence, |S�(i,A′′)| mod q = r� ∀� =
1, 2 implies |S�(i,A′)| mod q = r� ∀� = 1, 2. Moreover,
the same argument yields LS

� (i,A′′) = LS
� (i,A′) for � =

1, 2, thus C+(i,A′′) = C+(i,A′). Then the result follows
from Eqn. (2). ��

Property 14 allows to define a dominance relation between
partial line assignments, analogous to the dominance relation
between line assignments stated in Property 4. Hence, domi-
nated partial line assignments can be immediately discarded
without losing the guarantee that an optimal solution will be
eventually found.

This can be seen as a special case of Bellman optimal-
ity principle and it is the basis for a dynamic programming
algorithm: a sub-policy characterized byP ′

i dominates a sub-
policy characterized byP ′′

i for a given pair of residual values
(r1, r2) if and only if C−(i,A′

i , r1, r2) < C−(i,A′′
i , r1, r2).

In case of tie, any arbitrary criterion can be used to discard
one of the two equivalent partial solutions.

4 A dynamic programming algorithm

In this section, we provide a description of a dynamic pro-
gramming algorithm that solves q/1/P/V to optimality,
relying on the properties illustrated in the previous sections.
States.

A state of the dynamic programming algorithm is a triple
{i, r1, r2}, with i ∈ N ∪ {0, n + 1} and r1 and r2 satisfying

(r1 + r2) mod q = ρi ,

where ρi = |N+(i)| mod q. Hence, there are q distinct
states for each item i ∈ N ∪ {0} and the following relations
allow to obtain r1 from r2 and vice versa:

r1 = (ρi − r2) mod q

r2 = (ρi − r1) mod q.

A state {i, r1, r2} with i ∈ N corresponds to a partial
line assignment Ai having i as primary item. Triples of
the form {0, r1, r2} are called initial states: in this case r1
and r2 indicate the number of residual items on each line
before orienting any edge. These q initial states are given
by the q possible values of (r1, r2) pairs such that (r1 + r2)
mod q = n mod q, that is, {(0, ρ), . . . , (ρ, 0), (ρ + 1, q −
1), . . . , (q − 1, ρ + 1)}, where ρ = n mod q.

The final state {n + 1, 0, 0} corresponds to a full line
assignment without residual items; hence, it must be reached
to guarantee that on each line the leading item of the farthest
trip is a farthest item.
Extension rule.
States are iteratively extended according to a pre-topological
order of the items, with the addition of the initial item 0
preceding all items in N and the final item n+1 following all
items in N . A setW of edges is initialized at N . Then, at each
iteration the states of an edge j ∈ W are evaluated and then
j is deleted fromW . The algorithm terminates whenW = ∅,
meaning that the costs of all states have been computed. The
selection of j ∈ W obeys the rule that all predecessor states
must have already been evaluated, i.e., none of them must be
in W . Initially, only the initial states satisfy this condition.

Extending a state from a predecessor state {i, r1, r2} to a
successor state { j, r ′

1, r
′
2} means extending the line assign-

ment Ai corresponding {i, r1, r2} with the line assignment
A j such that edge j is primary in A j and no primary edge
exists between the primary edges i and j .

Owing to Property 13 and the definition of residual items,
r� = (r ′

� + |Ni j
� |) mod q ∀� ∈ {1, 2}. In this way a one-

to-one correspondence is established between the q states
of edge i and the q states of edge j for each (i, j) pair
such that i ≺ j . For each state { j, r ′

1, r
′
2}, we indicate by

Pred( j, r ′
1, r

′
2) the set of its predecessor states:

Pred( j, r ′
1, r

′
2) = {{i, r1, r2} : i ≺ j and

r� = (r ′
� + |Ni j

� |) mod q ∀� ∈ {1, 2}}.
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We remark that ρi = (ρ j + |Ni j
1 | + |Ni j

2 |) mod q. We
also remark that for the predecessor {i, r1, r2} of { j, r ′

1, r
′
2}

it holds r ′
� = (r� − |Ni j

� |) mod q ∀� = 1, 2.
Cost extension.
Each state {i, r1, r2} has an associated cost C(i, r1, r2), that
is the minimum cost of a partial solution corresponding to
the state, owing to Property 14.

The cost associatedwith the initial states is null:C(0, r1, r2) =
0 ∀(r1, r2) : (r1 + r2) mod q = n mod q. The cost asso-
ciated with a successor state { j, r ′

1, r
′
2} is computed from

that of a predecessor state {i, r1, r2} through a cost extension
function �(i, j, r ′

1, r
′
2) given below. Only the minimum cost

is retained, according to the dominance criterion established
in Property 14:

C( j, r ′
1, r

′
2)

= min
{i,r1,r2}∈Pred( j,r ′

1,r
′
2)
{C(i, r1, r2) + �(i, j, r ′

1, r
′
2)}.

Consistently with Eqn. (1), �(i, j, r ′
1, r

′
2) is the sum of

the distances of the leading items in Ni j
1 and Ni j

2 . These
can be identified according to the values of r ′

1 and r ′
2. For

each line � ∈ {1, 2}, consider an array made of the edges in
Ni j

� indexed from 1 and sorted by non-increasing value of

distance from O . Let Ni j
� [t] be the edge in position t in the

array. Then, the set of leading items in Ni j
� [t] is

Li j
� = {Ni j

� [t] : (t + r ′
�) mod q = 1}.

Then,

�(i, j, r ′
1, r

′
2) =

2∑

�=1

∑

k∈Li j
�

d�(k).

For the sake of completeness and rigorousness of presenta-
tion, the complete pseudo-code of the dynamic programming
algorithm is reported in the Appendix.
Complexity.
There are O(nq) states. The number of (i, j) pairs such that
i ≺ j is O(n2); q values of �(i, j) must be computed for
each pair. Overall, by using a suitable procedure on Ni j

� , such
q values canbe computed inO(n) time.Therefore the asymp-
totic worst-case time complexity of the algorithm is O(n3).

5 Conclusions and further extensions

Proving that problem q/1/P/V is polynomially solvable is
a significant step forward in the analysis and classification
of the many variations of single-crane picking problem in
AS/RS. The complexity of this variation had been left open

in a previous work (see Barbato et al. (2019)), where several
polynomial-time variations had been identified.

Another open problem variation is 2/1/PD/F , that is the
problem on a single line, where the origin is at an endpoint,
the crane capacity is equal to 2, locations are unique for
each item and both pickup orders (retrieval operations, in any
sequence) and delivery orders (storage operations, according
to a given sequence) must be executed.

The identification of polynomially solvable variations,
although they may look oversimplified compared to real
problems, is important to provide efficiently solvable relax-
ations that can be exploited within branch-and-bound algo-
rithms to solve more complex (N P-hard) and realistic
variations.

A possibly interesting extension of this work on the
q/1/P/V variation concerns the problem with L ≥ 2 aisles,
that can be decomposed into L single-aisle sub-problems,
to be efficiently solved with the algorithm presented here.
Also, problems in 2 dimensions can be solved via exact
optimization algorithms, such as branch-and-bound, where
a polynomial-time algorithm for the 1-dimensional problem
is useful to efficiently compute lower bounds.

Appendix A Pseudo-code

The procedure to solve problem q/1/P/V can be split in
three subroutines, as indicated in the pseudo-code of Algo-
rithm 1.

Algorithm 1Main algorithm
1: Preprocessing
2: OrientEdges
3: DynamicProgramming

The Preprocessing step determines the subsets N−, N+ and
N± of Definition 15. Its pseudo-code, provided in Algo-
rithm 2, is a simple if-else procedure that considers all
possible positions of pairs of distinct items on both lines.

Procedure OrientEdges, described in Algorithm 3, con-
siders all potential pairs of consecutive primary items i, j ∈
N (checking that i ≺ j , line 4). For each such pair, it ori-
ents the edges with at least one endpoint between i and j on
any line in the (unique) way guaranteeing that the resulting
partial orientation belongs to a non-dominated solution hav-
ing i and j as consecutive primary items. This is done by
imposing separately the conditions of Property 10 (lines 5–
11), Property 9 (lines 13–28) and Property 8 (lines 30–42).
Each block imposing one of these conditions is essentially an
exhaustive enumeration of all possible cases and takes O(n)

time. So, overall, the whole OrientEdges procedures takes
O(n3) time. Note also that, for � = 1, 2 and for every i, j
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Algorithm 2 Pre-processing
1: procedure Preprocessing(N , d) Output: N−(e), N+(e) and N±(e)

for e ∈ N
2: for i = 1, . . . , n do
3: N+(i) ← ∅
4: N−(i) ← ∅
5: N±(i) ← {i}
6: end for
7: for i = 1, . . . , n − 1 do
8: for j = i + 1, . . . , n do
9: if (d1(i) < d1( j)) ∧ (d2(i) < d2( j)) then
10: N+(i) ← N+(i) ∪ { j}
11: N−( j) ← N−( j) ∪ {i}
12: else
13: if (d1(i) > d1( j)) ∧ (d2(i) > d2( j)) then
14: N+( j) ← N+( j) ∪ {i}
15: N−(i) ← N−(i) ∪ { j}
16: else
17: N±( j) ← N±( j) ∪ {i}
18: N±(i) ← N±(i) ∪ { j}
19: end if
20: end if
21: end for
22: end for
23: end procedure

satisfying the if condition of line 4, the set Ni j
� has O(n)

elements.
The third stepDynamicProgramming, described inAlgo-

rithm 4, is the complete dynamic programming procedure
solving problem q/1/P/V . It has three main blocks: initial-
ization, cost extension and extensions to the final state.

The initialization (lines 2–6) defines all possible initial
states and sets their cost to 0.

Next, the set W of items to be processed is defined. Here
“processing” an item means to compute the costs of all its
possible states starting from the costs of its predecessor states.
InitiallyW contains all items. Then, sequentially a new item
is processed and, after its processing, it is removed from W
(line 38). The item selection on line 9 ensures that the states
of the next item to be processed have all their predecessor
states already processed (see paragraph Cost Extension of
Sect. 4 for the definition of predecessor state). Given the cur-
rent item j to be processed, lines 15 and 16 select the items
i ∈ N having a predecessor state of some state of j . The
variable � used in Algorithm 4 can be interpreted as a 2-
dimensional matrix for each fixed i, j ∈ N . Its entry (r ′

1, r
′
2)

contains the value by which the cost C( j, r ′
1, r

′
2) of state

( j, r ′
1, r

′
2) is computed. All entries of � are initially set to 0

(lines 17–20); subsequently their actual values are computed

Algorithm 3 Orienting the edges between consecutive pri-
mary edges
1: procedure OrientEdges(N , d , N+(e), N−(e), N±(e) for every e ∈ N ) Output: Ni j

� for i, j ∈ N and � = 1, 2
2: for i = 0, . . . , n do
3: for j = 1, . . . , n + 1 do
4: if i ≺ j then

// Edges disjoint from i and j : apply Property 10
5: for k ∈ N+(i) ∩ N−( j) do
6: if d1(k) ≤ d2(k) then
7: Ni j

1 ← Ni j
1 ∪ {k}

8: else
9: Ni j

2 ← Ni j
2 ∪ {k}

10: end if
11: end for

// Edges intersecting j
12: if d1( j) = d2( j) then

// j is horizontal: apply Property 9
13: Ni j

2 ← Ni j
2 ∪ { j}

14: for k ∈ N±( j) do
15: if d1(k) �= d2(k) then
16: if d1(k) < d2(k) then
17: Ni j

1 ← Ni j
1 ∪ {k}

18: else
19: Ni j

2 ← Ni j
2 ∪ {k}

20: end if
21: else
22: if k > j then
23: Ni j

1 ← Ni j
1 ∪ {k}

24: else
25: Ni j

2 ← Ni j
2 ∪ {k}

26: end if
27: end if
28: end for
29: else

// j is not horizontal: apply Property 8
30: if d1( j) < d2( j) then
31: λ ← 2
32: else
33: λ ← 1
34: end if
35: Ni j

λ ← Ni j
λ ∪ { j}

36: for k ∈ N±( j) do
37: if (dλ(k) > dλ( j)) ∨ (d3−λ(k) < d3−λ( j)) ∨ ((dλ(k) = dλ( j)) ∧ (d3−λ(k) = d3−λ( j)) ∧ (k > j)) then
38: Ni j

3−λ ← Ni j
3−λ ∪ {k}

39: else
40: Ni j

λ ← Ni j
λ ∪ {k}

41: end if
42: end for
43: end if
44: end if
45: end for
46: end for
47: end procedure

as follows (lines 43–48): for each item in e ∈ Ni j (which
is available from procedure OrientEdges) find the two states
(i, r1, r2) and ( j, r ′

1, r
′
2) for which e is a leading item and

sum its distance from the origin to the current value of entry
(r ′

1, r
′
2) of �. Note that, since |Ni j | ∈ O(n), computing �

for a given pair of items i, j takes O(n) time. Finally, still
for fixed i and j , the cost C( j, r ′

1, r
′
2) of all states ( j, r ′

1, r
′
2)

associated to j set equal to the sum of C(i, r1, r2) and of
entry (r ′

1, r
′
2) of � whenever the resulting value improves

over the current value of C( j, r ′
1, r

′
2) (initially such value is

+∞, see lines 10–13). The computation of all q costs of a
given j is performed in lines 30–35 in O(nq) time.

Finally, the extension to the final state (lines 40–52) is
similar to the cost extension subroutine just described but,
instead of an actual item j , it is performed on the fictitious
item n + 1.

The bottleneck of the whole DynamicProgramming step
is the computation of � for each suitable pair of items i, j .
Since � is computed in O(n) time for fixed i, j , and there
are O(n2) pairs, the algorithm runs in O(n3) time.
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Algorithm 4 Dynamic programming
1: procedure DynamicProgramming

// Initialization
2: ρ0 ← n mod q
3: for r1 = 0, . . . , q − 1 do
4: r2 ← (ρ0 − r1) mod q
5: C[0, r1, r2] ← 0
6: end for
7: W ← N

// Cost extension
8: while W �= ∅ do
9: Select j : N−( j) ∩ W = ∅

// Initialize C( j, ·, ·)
10: for r ′

1 = 0, . . . , q − 1 do
11: r ′

2 ← (ρ j − r ′
1) mod q

12: C( j, r ′
1, r

′
2) ← +∞

13: end for
14: ρ j ← (|N+( j)|) mod q
15: for i ∈ N ∪ {0} do
16: if i ≺ j then

// Initialize �

17: for r ′
1 = 0, . . . , q − 1 do

18: r ′
2 ← (ρ j − r ′

1) mod q
19: �[i, j, r ′

1, r
′
2] ← 0

20: end for
// Compute the q values of �[i, j]

21: for l ∈ {1, 2} do
22: for t = 1, . . . , |Ni j

� | do
// Find the state for which component t corresponds to a leading item

23: r ′
� ← (1 − t) mod q

24: r ′
3−� ← (ρ j − r ′

�) mod q

25: r� ← (r ′
� + |Ni j

� |) mod q
26: r3−� ← (ρi − r�) mod q
27: �[i, j, r ′

1, r
′
2] ← �[i, j, r ′

1, r
′
2] + d�(N

i j
� [t])

28: end for
29: end for

// Compare and retain the policy of minimum cost for each state of item j
30: for r ′

1 = 0, . . . , q − 1 do
31: r ′

2 ← (ρ j − r ′
1) mod q

32: r1 ← (r ′
1 − |Ni j

1 |) mod q

33: r2 ← (r ′
2 − |Ni j

2 |) mod q
34: C( j, r ′

1, r
′
2) ← min{C( j, r ′

1, r
′
2),C(i, r1, r2) + �[i, j, r ′

1, r
′
2]}

35: end for
36: end if
37: end for
38: W ← W\{ j}
39: end while

// Extensions to the final state n + 1
40: z ← ∞
41: for i = 0, . . . , n do

// Initialize �

42: �[i, n + 1] ← 0
// Compute �[i, n + 1]

43: for l ∈ {1, 2} do
44: for t = 1, . . . , |Ni,n+1

� | do
45: if t mod q = 1 then
46: �[i, n + 1] ← �[i, n + 1] + d�(N

i,n+1
� [t])

47: end if
48: end for

// Find the predecessor state
49: r� ← |Ni,n+1

� | mod q
50: end for

// Compare and retain the policy of minimum cost for the final state
51: z ← min{z,C(i, r1, r2) + �[i, n + 1]}
52: end for
53: end procedure
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