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Abstract
Chronic exposure to high levels of particulate matter (PM) is correlated to a higher prevalence of cardio-metabolic distur-
bances. Adipose tissue represents a pivotal regulator of metabolic homeostasis, and its dysfunction is associated with health 
issues in PM-exposed models. This review discusses the adaptive changes of white (WAT) and brown (BAT) adipose tis-
sue in response to fine particulate matter  (PM2.5), investigating the underlying pathophysiology. In exposed models,  PM2.5 
increases oxidative stress and impairs mitochondria functionality and biogenesis in WAT and BAT. Chronic exposure also 
upregulates the main apoptotic/pro-inflammatory pathways and promotes the infiltration of monocytes and the accumulation 
of activated macrophages. Oxidative stress and inflammation are responsible for the inhibition of insulin signal transduction 
and glucose uptake in both the adipose tissues. The increased inflammatory status also suppresses the metabolic activity 
of brown adipocytes, promoting the whitening. Altogether, this evidence suggests the shift of WAT and BAT toward an 
inflammatory and metabolic dysfunctional phenotype. Although the underlying mechanisms remain to be clarified, the 
development of inflammation in lungs, gut, and hypothalamus seems to have a pivotal role in the alteration of adipose tissue 
homeostasis. The potential consequences on systemic cardio-metabolic health render the relationship PM-adipose tissue a 
key issue to investigate.
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TGs  Triglycerides
TLR  Toll-like receptor
TNF  Tumor necrosis factor
UCP  Uncoupling protein
UPR  Unfolded protein response
WAT   White adipose tissue

Introduction

Particulate matter (PM) is a component of air pollution 
containing a complex mixture of solid and liquid particles, 
derived from human activities and natural sources. Variabil-
ity in size, shape, and chemical composition is responsible 
for differing toxicity of inhaled PM [1]. Chronic exposure 
to airborne PM has a profound impact on human health, 
especially in the early stages of life and frail subjects [2, 
3]. In humans and animals, the chronic inhalation of fine 
PM  (PM2.5; mean diameter of particles ~2.5 μm) is associ-
ated with the development of insulin resistance [4], meta-
bolic syndrome [5], and diabetes [2, 6–8]. The functional 
impairment of tissues such as the brain, liver, and adipose 
tissue, secondary to  PM2.5 exposure, is likely implicated in 
the development of such dysmetabolic conditions [9–11].

Growing evidence suggests that  PM2.5 inhalation nega-
tively influences both white and brown adipose tissue (WAT 
and BAT, respectively) [12, 13]. In addition, the develop-
ment of dysfunction in both the adipose tissues is associ-
ated with the worsening of health conditions in humans and 
animals undergoing chronic PM exposure [12, 14–28].

Considering these findings, the investigation of adipose tis-
sue response to  PM2.5 can represent a crucial step for under-
standing the health consequences of prolonged  PM2.5 exposure. 
This review discusses the adaptive and pathological responses 
of BAT and WAT of rodents undergoing  PM2.5 exposure.

Adipose tissue is an important regulator 
of metabolic homeostasis

Adipose tissue is an ensemble of different cell types com-
prising adipocytes, immune, vascular, and stromal cells. 
Adipocytes express a highly adaptive biological profile 
[29] as they can activate specific pathways in response to 
surrounding environmental changes and varying nutritional 
conditions [29, 30]. The crosstalk between adipose tissue 
and organs such as the brain, liver, and skeletal muscle helps 
to coordinate an articulated network, which is critical for the 
control of systemic metabolic health [30–32].

WAT is primarily intended to store the energy surplus in the 
form of triglycerides (TGs) [30]. The tight inter-communication 
between adipocytes and resident immune cells regulates inflam-
matory balance and insulin sensitivity in WAT [30, 32–34]. 
Factors such as energy excess, toxicants, and pro-inflammatory 

agents can disrupt this equilibrium leading to the development 
of inflammation and metabolic dysfunction [30]. The spillage 
of pro-inflammatory/diabetogenic mediators such as interleu-
kin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α 
(TNFα), and C–C motif chemokine ligand-2 (CCL2) from 
dysfunctional WAT worsens gluco-metabolic health [35–37].

BAT promotes the conversion of stored fats into energy 
through the sympathetic-mediated activation of uncoupling 
protein (UCP)-1 [34, 38]. Brown adipocytes increase energy 
expenditure and improve insulin sensitivity by stimulating 
glucose and fatty free acids (FFAs) oxidation [34, 38, 39]. 
White and brown adipocytes can mutually interconvert 
given appropriate stimuli [40]: physical activity stimulates 
the browning [34, 40]; in contrast, obesity is correlated with 
increased whitening [38, 41]. The whitening of brown adi-
pocytes is characterized by decreased mitochondrial fitness 
and marks dysfunction as white-shifted adipocytes are prone 
to develop a pro-inflammatory/apoptotic phenotype [34, 42]

Airborne particulate matter

Airborne PM is a collection of microscopic particles of different 
sizes, consisting of carbonaceous particles with adsorbed chem-
icals [43]. Transition metals (Fe, Cu, Ni) account for the larger 
fraction of inorganic molecules constituting PM. Endotoxins, 
polycyclic aromatic hydrocarbons (PAHs), and quinones [44, 
45] typically represent the organic fraction of PM. Differences 
in size, shape, and chemical composition are responsible for the 
toxicity of specific subclasses of inhaled PM [1, 43].

In the respiratory compartment, PM dissolves in the 
aqueous lining, coming into direct contact with alveolar 
cells [1]. Alveolar macrophages sequester particles of vari-
ous size shifting towards an activated phenotype [46]; the 
PM-induced activation of macrophages is critical for the 
increase of local and systemic inflammation [1, 47–49].

The finest fraction of PM (~0.2 μm) enters systemic circu-
lation by crossing the alveolar (or gastrointestinal; GI) barrier 
and could be internalized in tissues via endocytosis-mediated 
mechanisms [1, 46, 47, 49–53]. Larger particles can reach 
extrapulmonary organs transported by alveolar macrophages 
[53]. Also, organic/inorganic fractions of PM, as well as mate-
rials adsorbed to the surface of inhaled particles can pass into 
circulation and accumulate in central/peripheral tissues [43].

PM2.5 exposure increases oxidative stress 
and impairs mitochondria and endoplasmic 
reticulum

In isolated cells, PM elicits its cytotoxic activity by altering mem-
brane stability and stimulating the production of reactive oxygen 
species (ROS) [1]. Both the carbonaceous nuclei and adsorbed 
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organic/inorganic chemicals play a critical role in this respect 
[43]. Reactive constituents of PM (metals, PAHs, quinones) pro-
pel the production of ROS by inducing Fenton’s reactions and/
or stimulating the oxidation of other organic macromolecules 
(Fig. 1) [4, 5]. PM can also generate ROS by interfering with the 
activity of the mitochondrial respiratory chain [54].

The upregulation of superoxide anions and markers such 
as superoxide dismutase (SOD), nuclear factor erythroid 
2-related factor (Nrf)-2, and heat shock 70 kDa protein-1 
(HSP72) provides supporting evidence for increased ROS in 
WAT and BAT of  PM2.5-exposed animals [23, 55]. Chiefly, 
HSP72 represents a hallmark of functional derangement 
under PM exposure, since its expression correlates with 
inflammation and insulin resistance [56, 57]. ROS act as 
co-factors in the induction of mitochondria and endoplasmic 
reticulum (ER) functional impairment [58].

Mitochondria are essential for energy production. In adi-
pose tissue, they regulate lipid metabolism, insulin sensitiv-
ity, and the secretion of key adipokines [59, 60]. The proper 

functioning of mitochondria in WAT and BAT warrants sys-
temic gluco-metabolic homeostasis [34, 42, 61, 62].

PM2.5 and its chemical constituents can impair mitochon-
dria [53]. Also, pro-inflammatory mediators and ER stress 
can negatively impact mitochondrial functionality (Fig. 1) 
[9, 23, 55, 61–63]. Studies in rodents demonstrate that mito-
chondrial function and biogenesis are compromised upon 
prolonged  PM2.5 exposure [1, 54, 64] (Fig. 1). In WAT and 
BAT of mice undergoing either inhalation or intratracheal 
instillation of  PM2.5, the expression of mitochondrial bio-
genetic markers–peroxisome proliferator activated receptor 
gamma coactivator 1-(PGC-1)α and UCP-1–was signifi-
cantly suppressed [23, 25, 28, 65, 66]. Similarly, a reduction 
in mitochondrial number and size was observed in BAT and 
WAT of  PM2.5-exposed rodents [23, 65, 66]. These changes 
were associated with the increase in superoxide anion and 
Nrf-2 in both WAT and BAT [23, 65], suggesting a causal 
role of ROS in the alteration of mitochondrial biogenesis/
functionality and vice versa (Fig. 1).

Fig. 1  Intracellular pathways conducive to inflammation and insu-
lin resistance are upregulated in adipose tissue of  PM2.5-exposed 
animals.  PM2.5 enhances ROS production.  PM2.5 constituents (e.g., 
endotoxins) and pro-inflammatory cytokines stimulate the NF-κB 
pathway. ROS are responsible for the impairment of ER and mito-
chondria. ER stress and ROS upregulate JNK, p38, and ERK and 
suppress AMPK. NF-kB and JNK enable pro-inflammatory/apop-
totic response and downregulate insulin signaling. Mitochondrial 
dysfunction impairs substrate oxidation and insulin sensitivity. AKT, 
Protein kinase B; AMPK, AMP-activated protein kinase; ASK, apop-

tosis signal-regulating kinase 1; CCL2, chemokine C–C motif ligand 
2; ER, endoplasmic reticulum; ERK, extracellular signal-regulated 
kinase; IL-6, interleukin 6; IR, insulin receptor; ILR; interleukin 
receptor; IRS, insulin receptor substrate; JNK 1, 2; NF-κB, nuclear 
factor kappa-light-chain-enhancer of activated B cells; p38, p38 
mitogen-activated protein kinase; PM, particulate matter; ROS, reac-
tive oxygen species; TLR4, Toll-like receptor 4; TGs, triglycerides; 
TNFα, tumor necrosis factor-α; TNFR, tumor necrosis factor recep-
tor. **These pathways are not demonstrated in adipose tissue

667Journal of Molecular Medicine (2022) 100:665–676



1 3

ER represents a pivotal structure for adipocyte metabolic 
health [67, 68]. ER dysfunction is responsible for the devel-
opment of chronic inflammation in adipose tissue [68]. ROS 
enhances the unfolded protein response (UPR), which rep-
resents a cellular self-protection mechanism and a reliable 
indicator of ER dysfunction [58, 69, 70].

In mice exposed to chronic  PM2.5 inhalation, Mendez 
et al. observed a significant increase in ER stress in WAT, as 
demonstrated by the induction of the UPR activator–binding 
immunoglobulin protein (BiP) [71]. In addition, the long-
term exposure to high  PM2.5 concentrations was found to 
activate the UPR pathway by upregulating the expression of 
regulated IRE1-dependent mRNA decay and the constitutive 
elements of ER-associated degradation pathways [71].

PM2.5 triggers inflammation and insulin 
resistance

In WAT of  PM2.5-exposed animals, mitochondrial and ER 
impairment is associated with insulin resistance and inflam-
mation [23, 65, 71]. This finding is in accordance with evi-
dence from non-exposed models [61, 68] and indicates that 
mitochondrial and ER dysfunction can upregulate the molecu-
lar pathways conducive to inflammation and insulin resistance 
in the adipose tissue of  PM2.5-exposed animals [72] (Fig. 1).

JNK is a cell regulator, enabled by a variety of stress-
ors [73]; its activation induces apoptosis and suppresses the 
insulin signal in adipocytes [73–75].  PM2.5 exposure was 
demonstrated to augment JNK expression in organs critical 
for metabolic regulation such as liver and adipose tissue [17, 
25, 76]. Pan et al. showed a significant increase in pJNK 
in the visceral WAT (vWAT) of both lean and ob/ob mice 
undergoing  PM2.5 inhalation, compared to non-exposed [25].

The activation of p38 mitogen-activated protein kinase 
(p38) and extracellular signal-regulated kinase (ERK) inhib-
its insulin signaling [77, 78] and promotes the whitening of 
brown adipocytes [79, 80]. In human observational studies, the 
expression of p38 and ERK in vWAT was correlated with the 
concentration of PM [81]. In lean and db/db mice  PM2.5 inha-
lation increased p38 and ERK expression [25]. Interestingly, in 
high-fat diet (HFD)-fed  PM2.5-exposed rodents, the inhibition 
of monocyte recruitment efficiently prevented the activation 
of p38 in WAT, suggesting that the immune-mediated inflam-
mation is involved in the activation of the p38 pathway [18].

The 5′-AMP-activated protein kinase (AMPK) enables 
the translocation of the glucose transporter (GLUT)-4 to 
plasma membrane and promotes glucose and FFAs oxida-
tion [82]. In WAT, AMPK suppresses the nuclear factor 
kappa-light-chain-enhancer of activated B-cells (NF-κB) 
and the adipocyte pro-inflammatory shift [17, 25, 83, 84] 
(Fig. 1). In animal models,  PM2.5 intratracheal instillation 
significantly reduced phosphorylated AMPK (pAMPK) in 

the subcutaneous WAT (sWAT) of lean mice [28]. In con-
trast, the pharmacological activation of AMPK effectively 
prevented the  PM2.5-induced whitening in BAT.

The protein kinase B (AKT) mediates the transduction 
of insulin signal [85]. Reduced phosphorylation of  AKT473 
(pAKT) is associated with inflammation and insulin resistance 
in WAT [86]. In response to  PM2.5, the expression of pAKT 
and GLUT-4 significantly decreased in vWAT and BAT of 
lean [23, 28, 87] and diabetes-susceptible mice (KKay) [26]. 
In contrast, the administration of antioxidants or the condi-
tional ablation of CCR2 was sufficient to revert these meta-
bolic changes [18, 28]. This and similar evidence suggests that 
the macrophage-dependant inflammation/ROS production is 
implicated in the development of insulin resistance in adipose 
tissue of  PM2.5-exposed animals [23, 88] (Fig. 2).

The accumulation of macrophages is a recognized mark 
of adipose tissue inflammation and metabolic dysfunction 
[30]. In animal models,  PM2.5 exposure was shown to upreg-
ulate vascular adhesion molecules and augmented mono-
cytes in mesenteric blood vessels of both HFD-fed and lean 
mice [12, 18, 19]. Also, an increased number of activated 
macrophages in vWAT and BAT is reported by numerous 
investigations [12, 18, 21, 25–27, 71, 88].

The M1-polarization of macrophages is another feature 
indicating the inflammatory switch of WAT in  PM2.5-exposed 
animals [12, 19]. M1 macrophages accumulate in vWAT of 
obese animals and generate pro-inflammatory/pro-fibrotic 
signals [89]. On the contrary, M2 macrophages buffer fluc-
tuations of energy substrates and improve insulin sensitivity 
[30, 89]. Early findings suggest the M1-shift under  PM2.5 
exposure [12, 19, 90]. For example, in vitro studies showed 
that high concentrations of  PM2.5, through ROS-dependent 
mechanisms, drive the M1-polarization of macrophages 

Fig. 2  Adipocyte-macrophage interplay in adipose tissue under 
 PM2.5 exposure. A tight adipocyte-macrophage interplay is instru-
mental for the development of WAT and BAT metabolic dysfunction. 
Macrophage- and adipocyte-released pro-inflammatory cytokines 
stimulate the recruitment of circulating monocytes. Activated mac-
rophages enhance ROS production and inflammatory response in 
WAT, increasing adipocyte stress. Stressed/apoptotic adipocytes 
release pro-inflammatory mediators, sparking a vicious cycle result-
ing in the development of adipose tissue dysfunction. CCL2, C–C 
motif chemokine ligand 2; FFAs, fatty free acids; IL-6, interleukin 6; 
 O2

−, superoxide anion; TNFα, tumoral necrosis factor
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in WAT [90]; in addition,  PM2.5 exposure was shown to 
suppress the anti-inflammatory IL-10 and the M2-specific 
markers–macrophage-galactose-type lectin and galactose-N-
acetyl-galactosamine–specific lectin–in lean [19] and obese 
animals [12].

PM2.5 stimulates adipocyte hypertrophy 
and WAT mass expansion

Adipocyte hypertrophy and WAT mass expansion have been 
observed in both lean [19, 25, 28, 71, 91] and obese rodents 
[12, 25] undergoing chronic  PM2.5 exposure. Observational 
data in humans substantiate this finding by showing that 
chronic PM exposure is associated with higher abdomi-
nal adiposity [13, 92]. Interestingly, in rodent studies, 
 PM2.5-induced WAT mass expansion occurs independently 
of changes in food intake [25, 28].

Hypertrophy can cause white adipocyte stress and dysfunc-
tion [30, 34]. The excessive adipocyte enlargement induces 

the compression of blood vessels, causing the development of 
ischemic areas in the context of WAT [34, 93]; chronic hypoxia 
stimulates the activation of apoptosis and stress/inflammatory 
pathways, promoting the shifting of WAT toward a dysfunc-
tional phenotype [30, 34, 94] (Figs. 1, 2, and 3).

Although the underlying mechanisms are unclear, early 
studies suggest that chronic exposure to  PM2.5 enhances 
adipo- and lipogenesis in WAT [28, 71]. In  PM2.5- instilled 
mice, adiposyte hypertropy and WAT expansion were asso-
ciated with the upregulation of the pro-adipogenic factors 
– peroxisome proliferator-activated receptor (PPAR)γ 
– and – cAMP response element-binding protein (CREB/P)
α – [28]. In addition, a significant upregulation of key-
enzymes in the synthesis of fatty acid (acetyl-CoA car-
boxylase, ACC) and TGs synthesis (diglyceride acyltrans-
ferase-2, DGAT2) was reported in WAT of  PM2.5-exposed 
mice [71]. A decrease in energy expenditure, resulting 
from hypothalamic dysfunction and BAT whitening, can 
also account for the augmented TGs storage in white adi-
pocytes [20, 21, 25, 26, 71, 95].

Fig. 3  Model showing the potential mechanisms responsible for adi-
pose tissue dysfunction under  PM2.5 exposure.  PM2.5-induced alveo-
lar inflammation is responsible for the release of pro-inflammatory 
mediators into circulation.  PM2.5 also alters microbiota composi-
tion and compromises epithelial integrity, allowing the leakage of 
pro-inflammatory molecules. Circulating cytokines, LPS, and other 
byproducts fuel inflammation and insulin resistance in WAT and 
stimulate the whitening of brown adipocytes.  PM2.5-induced hypo-

thalamic inflammation contributes to increase inflammation and 
insulin resistance in WAT. CCL2, C–C motif chemokine ligand 2; 
ICAM, intercellular adhesion molecule 1; LPS, lipopolysaccharide 
FFAs, free fatty acids. IL-6, interleukin 6; IL-1β, interleukin 1β; 
 O2

−, superoxide anion; OxFFAs, oxidized free fatty acids; OxPLs, 
oxidized phospholipids; PM, particulate matter; TLR, Toll-like 
receptor. TNFα, tumoral necrosis factor
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On the other hand, adipocyte hypertrophy, in the absence 
of an energy surplus, suggests the existence of maladap-
tive mechanisms enhancing TGs accumulation [34]. ER and 
mitochondrial dysfunction can impair glucose/lipid oxida-
tion, stimulating TGs storage and adipocyte hypertrophy 
independently from changes in energy intake/expenditure 
[34, 42, 62, 67]. In  PM2.5 exposed rodents, for instance, the 
impairment in mitochondrial biogenesis was associated with 
WAT mass expansion and adipocyte hypertrophy [25, 28]. 
Likewise, ER stress was associated with the upregulation of 
lipogenic markers in WAT in exposed models [71].

One final aspect is that oxidative stress/inflammation can 
directly inhibit the oxidation of substrates in adipocytes, 
stimulating TGs storage and hypertrophy [96] (Fig. 2). 
Supporting this insight, the deletion of the antioxidant 
transcription factor Nrf-2 was found to exacerbate adipo-
cyte hypertrophy upon  PM2.5 intratracheal instillation [91]; 
conversely, the administration of a concentrated antioxidant 
(e.g., hydroxytyrosol) efficiently reverted adipocytes hyper-
trophy and vWAT mass expansion [28].

PM2.5 exposure induces the whitening 
of brown adipocytes

Growing evidence reveals that BAT loss and the whitening 
of brown adipocytes occur in animals chronically exposed 
to  PM2.5 [23]. Brown adipocytes of  PM2.5-exposed rodents 
display a higher number of lipid droplets than filtered-air-
exposed controls [17], which indicates an initial phase of 
whitening.  PM2.5 exposure reduced mitochondrial size and 
number in BAT of  PM2.5-exposed [23, 65, 66]. The UCP-1 
expression was found to decrease in BAT of  PM2.5-exposed 
KKay [26], ApoE-/- [65] and lean mice [17, 23, 28]. Also, 
chronic exposure to  PM2.5 suppressed PGC-1α and glu-
cose uptake in BAT [20, 21, 23], while stimulating the 
expression of markers of whitening (e.g., homeobox-C9 
and insulin-like growth factor-binding protein-3) [23, 65].

Persistent  PM2.5 inhalation induces the upregulation of 
p38, TNFα, and IL-6 [26] and the accumulation of mac-
rophages in BAT [21]. Interestingly, macrophage accu-
mulation was associated with the impairment of glucose 
uptake, indicating that BAT metabolic dysfunction might 
be dependent upon inflammation. This occurrence is also 
suggested by evidence in non-exposed models; mac-
rophages infiltration in WAT is demonstrated to prevent 
the browning of adipocyte precursors [97], and the overex-
pression of TNFα and CCL2 in BAT is associated with the 
downregulation of UCP-1 and PGC-1α [98]. In contrast, 
the inhibition of p38 and JNK promotes the browning of 
white adipocytes [79, 80]. In addition, the suppression of 

WAT browning is probably mediated by the activation of 
the protein apoptosis signal-regulating kinase 1 (ASK1), 
a JNK inducer (Fig. 1) [99]. Notably, ASK1 represents a 
key player in the induction of inflammatory response in 
alveolar cells upon  PM2.5 exposure [54].

Role of other tissues in WAT and BAT 
dysfunction under  PM2.5 exposure

In humans and animals,  PM2.5 exerts its negative effects by 
perturbing cell and tissue homeostasis. In animal models, 
2-μm particles have been shown to reach parenchymatous 
organs such as the kidney, liver, and spleen, likely transported 
by alveolar macrophages [53]. Therefore,  PM2.5 may reach 
the adipose tissue milieu and exert an in loco toxic effect.

In addition, existing evidence suggests that pro-inflammatory 
mediators and other biomolecules released by inflamed tissues 
including the lungs, the GI tract, and the hypothalamus may be 
responsible for WAT and BAT dysfunction, in  PM2.5-exposed 
models (Figs. 3 and 4).

Alveolar‑derived pro‑inflammatory mediators may 
affect BAT and WAT 

The activation of alveolar macrophages, following  PM2.5 
inhalation, is responsible for the systemic increase of IL-1β, 
IL-6, TNFα, and interferon-γ [9, 10, 12, 100]. In experi-
mental models, both the treatment with antioxidants and 
the induction of SOD expression in the lungs efficaciously 
inhibited inflammation in periaortic adipose tissue and miti-
gated insulin resistance in endothelial cells [101, 102], sug-
gesting that lungs inflammation can impair the functionality 
of distant tissues.

Under chronic  PM2.5 exposure, lung-released inflam-
matory mediators can affect adipose tissue metabolic and 
inflammatory homeostasis. IL-6 was demonstrated to impair 
insulin signaling and GLUT4 in pre-adipocytes [103]. In 
mature adipocytes, TNFα inhibited IRS-1 and stimulated 
IL-6 expression [104, 105]. TNFα also enhances ROS pro-
duction [96, 106] and suppresses mitochondrial biogenesis 
and brown adipocytes growth [107, 108]. IL-1β activates 
NF-κB and inhibits IRS-1 and pAKT, in WAT [109, 110]. 
Finally, IL-6 and IL-1β can suppress BAT thermogenetic 
activity and the browning of white adipocytes [111–113].

Other organic byproducts derived from the interaction 
airways-PM2.5 may enhance inflammation in adipose tissue. 
For example, PM-carried endotoxins as well as ROS and 
organic byproducts released into circulation trigger WAT 
inflammation by activating the toll-like receptor (TLR) 
downstream cascade [72, 88, 114] (Figs. 1 and 2).
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Alteration of the gut‑microbiota lining can induce 
WAT and BAT dysfunction

The lower GI tract can be directly exposed to PM, following 
the consumption of foods carrying high levels of particles 
[51]. Evidence suggests that up to  1014 particles per day can 
be ingested by consuming a typical western diet, with an 
overall GI absorption of about 1% [51, 115]. Besides, the 
muco-ciliary clearance in the upper airways redirects inhaled 
 PM2.5 toward the GI tract [116]. Since  PM2.5 is less read-
ily absorbed [51], it migrates as far as the lower gut [117], 
interfering with gut-microbiota homoeostasis.

The loss of integrity of colonocytes-microbiota lining 
represents a potential trigger for WAT dysfunction [118, 
119]. Indeed, the leakage of intraluminal LPS, oxidized 
FFAs, and other pro-inflammatory mediators stimulates adi-
pogenesis and WAT inflammation [96, 106, 118, 120–124]. 
In addition, gut-derived LPS impairs BAT thermogenic 
activity by downregulating UCP-1 and the β3-adrenergic 
signaling [125–127]. On the contrary, the inhibition of 
mucosal inflammation in the gut is followed by decreased 
inflammation and insulin resistance in WAT [128].

In experimental models,  PM2.5 exposure was shown to 
negatively influence gut-microbiota homeostasis [116, 
129].  PM2.5 induced a switch in the gut microbiota toward a 

pro-inflammatory phenotype and augmented the proportion 
of oxidized FFAs within the gut lumen [130–132]. In mice 
treated with oral gavage of a  PM2.5 solution, gut epithelial 
cells exhibited molecular and morphologic features of dys-
function and death [117]. Also,  PM2.5 exposure worsened gut 
permeability by altering the expression of thigh-junctions 
and by increasing inflammation of the mucosal lining [117, 
132–134] (Figs. 2 and 3). Noteworthy, in  PM2.5 intratracheal-
instilled mice, the decrease in gut-microbiota diversity was 
correlated with white adipocytes hypertrophy and the sup-
pression of UCP-1 in BAT [28].

Hypothalamic inflammation is associated 
with insulin resistance and inflammation in WAT 

The hypothalamus is a brain structure critical for the integra-
tion of multiple peripheral signals to ensure metabolic flex-
ibility and systemic homeostasis. In particular, the medioba-
sal hypothalamus directly modulates lipogenesis, substrate 
oxidation and insulin sensitivity of WAT [135, 136].

PM2.5 could affect brain functionality by (i) upregulating 
circulating pro-inflammatory mediators [137]; (ii) inducing 
inflammation of the olfactory bulb [137]; and (iii) altering 
gut microbiota ecosystem and the gut-brain crosstalk [137, 
138].

Fig. 4  Synoptic scheme showing the potential influence of adipose 
tissue dysfunction on systemic health under  PM2.5. Lung- and gut-
derived pro-inflammatory mediators and other biomolecules trigger 
WAT inflammation and metabolic dysfunction. The development of 
hypothalamic inflammation increases WAT inflammatory response 
and insulin resistance. Soluble mediators secreted by dysfunctional 

WAT worsen whole-body metabolic homeostasis and affect the func-
tionality of central/peripheral tissues. BAT, brown adipose tissue; 
CCL2, C–C motif chemokine ligand 2; IL-6, interleukin 6; IL-12, 
interleukin 12; OxFFAs, oxidized free fatty acids; OxPLs, oxidized 
phospholipids; PM, particulate matter; SNS, sympathetic nervous 
system; TNFα, tumoral necrosis factor
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PM2.5 exposure is followed by an intense microglia acti-
vation and increased expression of the inhibitor of nuclear 
factor kappa-B kinase subunit-β (IKKβ), TNFα, and IL-6 
in the hypothalamus [139–141].  PM2.5 was also shown to 
upregulate NF-κB and the expression of pro-inflammatory 
genes in the paraventricular nucleus [141], a region involved 
in the control of energy balance and sympathetic activation. 
Interestingly, this neuro-inflammatory setting was accompa-
nied by the accumulation of activated macrophages and the 
suppression of insulin signaling in vWAT [139]. Of note, 
either the blockage [139] or the ablation [27] of IKKβ in 
the hypothalamus effectively prevented macrophages accu-
mulation, the expression of pro-inflammatory mediators, 
and insulin resistance in vWAT. Altogether, these findings 
strongly suggest that WAT dysfunction, under  PM2.5, could 
be driven by hypothalamic inflammation (Fig. 3) [139–145].

Conclusion and future directions

Current animal studies demonstrate that  PM2.5 exposure 
significantly increases inflammation in both WAT and 
BAT. Mitochondrial impairment, insulin resistance, and the 
whitening of brown adipocytes indicate the development of 
metabolic dysfunction.

While the underlying mechanisms are not fully eluci-
dated,  PM2.5-driven alterations in the lungs, the gut, and the 
hypothalamus appear to play an important role in driving 
inflammation and dysmetabolism in both WAT and BAT.

Noteworthy, the perturbation of adipose tissue homeostasis, 
under  PM2.5 exposure, may worsen systemic cardio-metabolic 
health and the functionality of central/peripheral organs (Fig. 4).

Further investigations should be aimed to (i) investigate 
the accumulation of  PM2.5 in adipose tissue and mechanisms 
of damage in adipocytes; (ii) characterize the activation of 
lipolysis/lipogenesis as well as the release of adipose tissue-
specific mediators (adiponectin, FFAs, diacylglycerols, cera-
mides); and (iii) estimate the effect of adipose tissue dysfunc-
tion on gluco-metabolic balance in exposed models.

Literature search methods

The research has been carried out on Medline, Scopus and 
Embase by restricting the language to English. The search 
strategy was assessed by alternatively combining the key-
words “adipose tissue,” “adipocyte,” “metabolism,” “obe-
sity” with “PM,” “fine particulate matter,” and “air pol-
lution.” Data strictly pertaining to experimental evidence 
investigating the effect of fine particulate matter (PM; 2.5 
μm, in diameter) on WAT and BAT have been retrieved. In 
order to describe the pathophysiological mechanisms under-
lying BAT and WAT dysfunction, we have restricted our 
research to controlled studies on animals undergoing direct 
exposure in a confined chamber or intratracheal instillation 

(a validated method to replicate airborne PM exposure in 
animal models) [146] of  PM2.5.
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