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A B S T R A C T   

Epstein-Barr virus (EBV) related- nasopharyngeal carcinoma (NPC) is a squamous carcinoma of the nasopha-
ryngeal mucosal lining. Endemic areas (EA) are east and Southeast Asia, were NPC was recorded with higher 
incidence and longer estimated survival than in non-endemic area (NEA) such as Europe, We analyzed the gene 
expression and microenvironment properties of NPC in both areas to identify molecular subtypes and assess 
biological and clinical correlates that might explain the differences in incidence and outcome between EA- and 
NEA-NPCs. 

Six EA-NPC transcriptomic datasets, including tumor and normal samples, were integrated in a meta-analysis 
to identify molecular subtypes using a ConsensusClusterPlus bioinformatic approach. Based on the biological/ 
functional characterization of four identified clusters were identified: Cl1, Immune-active; Cl2, defense-response; 
Cl3, proliferation; Cl4, perineural-interaction/EBV-exhaustion. Kaplan–Meier survival analysis, applied to the single 
dataset with available disease-free survival indicated Cl3 as the cluster with the worst prognosis (P = 0.0476), 
confirmed when applying four previously published prognostic signatures. A Cl3 classifier signature was 
generated and its prognostic performance was confirmed (P = 0.0368) on a validation dataset. Prediction of 
treatment response suggested better responses to: radiotherapy and immune checkpoint inhibitors immune-active 
and defense-response clusters; chemotherapy proliferation cluster; cisplatin perineural-interaction/EBV-exhaustion 
cluster. RNA sequencing for gene expression profiling was performed on 50 NEA-NPC Italian samples. 

In the NEA cohort, Cl1, Cl2 and Cl3 were represented, while perineural-interaction/EBV-exhaustion was almost 
absent. The immune/biological characterization and treatment-response prediction analyses of NEA-NPC 
partially replicated the EA-NPC results. 

List of abbreviations: NPC, Nasopharyngeal carcinoma; EA, endemic area; NEA, non-endemic area; EBV, Epstein-Barr; RNAseq, RNA sequencing; GE, gene 
expression; GSEA, Gene Set Enrichment analyses; RT, Radiotherapy; CRT, chemoradiotherapy; PNI, Perineural invasion; GEO, GE Omnibus; RMA, Robust Multi-Array 
Average; FPKM, fragments per kilobase per million; TPM, transcripts per kilobase million; INT, IRCCS Istituto Nazionale dei Tumori; EBER 1, EBV-Encoded RNA 1; 
UMI, unique molecular identifiers; PCR, Polymerase Chain Reaction; TMM, trimmed mean of M-values; log2-CPM, log2-counts per million; CDF, cumulative dis-
tribution function; DSGA, Disease-Specific Genomic Analysis; SOM, self-organizing map; LASSO, least absolute shrinkage and selection operator; DFS, disease free 
survival; HR, hazard ratios; 95 % CI, 95 % confidence intervals; PFS, progression-free survival; OS, overall survival; PS, performance status; ROC, Receiver operating 
characteristics; AUC, area under the curve; DOR, diagnostic odds ratio; RSI, radiosensitivity index; TCIA, The Cancer Immunome Database; IPS, immunophenoscore; 
DC, Dendritic cells; NKT, Mast cells and natural killer. 
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Well characterized EA- and NEA-NPC retrospective and prospective cohorts are needed to validate the ob-
tained results and can help designing future clinical studies.   

Brief Commentary 

Background 

Nasopharyngeal carcinoma (NPC) is a squamous carcinoma of the 
head and neck showing great variation in geographical and ethnic 
distribution. As a matter of fact, NPC is a huge health burden in 
Epstein-Barr virus (EBV) endemic areas, especially in the devel-
oping world, while in non endemic areas the same disease has 
lower incidence rates but with worst survival rates. 

Translational significance 

Our study provides a relevant biological overview of EBV related 
NPC, proving the role of immune microenvironment stemming 
from the viral etiology of this malignancy. By dissecting the mo-
lecular landscape of NPC from EBV-endemic and non endemic 
areas, 4 molecular subtypes were identified (Cl1= Immune-active; 
Cl2= Defense-response; Cl3= Proliferation; Cl4= Perineural- 
interaction/EBV-exhaustion) with different prognosis and treat-
ment sensitivity. The immune/biological characterization of NPC 
could help designing future clinical studies to improve therapeutic 
strategies and differentiate treatment modalities in endemic and 
non-endemic areas.   

Introduction 

Epstein-Barr virus (EBV)-related nasopharyngeal carcinoma (NPC) is 
an epithelial malignancy arising from the nasopharyngeal mucosal lin-
ing. A high incidence of EBV-related NPC has been recorded in EBV- 
endemic areas (EA) such as East and Southeast Asia,1 with a high 
prevalence in males.2 The incidence of NPC in Europe, a non-endemic 
area (NEA), is low (1/105/year); however, the estimated survival rate 
in that region is much lower than that recorded in Asia (5-year 
age-standardized relative survival = 54–57 % vs. 74 %).3 Risk factors of 
NPC include genetic, ethnic, and environmental factors.4 Differences in 
incidence and survival rates between EA and NEA NPCs could involve 
several factors, including EBV-related factors, genetic susceptibility of 
different populations to EBV infections, and environmental factors such 
as local diet and pollution.5–8 Nevertheless, all proposed models of NPC 
pathogenesis are based on data derived from EA in Asia. Furthermore, 
clinical, pathogenic, and microenvironmental characteristics may play 
additional roles in differences of incidence and outcome observed be-
tween EA- and NEA-NPC. 

EBV-related NPC in EA has already been characterized using 
genomic and transcriptomic data analysis.9 Moreover, prognostic and 
predictive signatures of EA-NPC have been reported in the literature.10 

Several gene expression datasets for NPC are available, and 
genome-wide molecular profiling investigations are being conducted on 
NPC. However, the sample sizes of these studies were relatively small. 
Furthermore, published/available gene expression analysis data11 on 
NEA-NPC remains limited. 

Comparing gene expression data from EA- and NEA-NPC allows the 
recognition of similarities and differences among diseases arising in 
different geographical areas. We investigated if the transcriptomic pat-
terns involved in EA-NPC could be verified to an Italian cohort for which 
tumor tissue and clinical data were available. The immune and biolog-
ical/functional characterization of EA- and NEA-NPC could help in 

identifying new therapeutic strategies. It has been described in literature 
that suppressor immune cells, such as myeloid-derived suppressor cells 
(MDSCs) could be a promising target to enhance the efficacy of cancer 
immunotherapy.12 Currently, the treatment for localized NPC includes 
radiotherapy, which is often combined with platinum-based chemo-
therapy, especially for locally advanced cancer. Neoadjuvant chemo-
therapy with cisplatin and gemcitabine was administered in the case of 
high-risk disease.13–14 Immunotherapy with checkpoint inhibitors has 
shown clinical efficacy in recurrent/metastatic advanced NPC and 
studies aiming to determine its mechanism of action are underway.15 

Our study aimed to dissect the gene expression and microenviron-
ment of NPC, leading to the identification of the molecular subtypes of 
EA- and NEA-NPC. We also aimed to elucidate the biological/ functional 
differences within EA-NPC and between EA-and NEA-NPC to eventually 
provide new insights into novel treatment strategies. 

Methods 

Public datasets 

The workflow followed that of our previous work.16 A survey of gene 
expression data on NPC that were accessible as of May 31, 2022, was 
conducted. Datasets were chosen based on the following eligibility 
criteria: i) primary lesions of NPC; ii) endemic areas only; iii) at least 15 
tumor samples; iv) Minimum Information About a Microarray Experi-
ment (MIAME)-compliant data,17 with raw data posted on publicly 
available repositories and comprehensive gene annotation (GenBank 
accession or EntrezID). After a literature review, six datasets, with a total 
of 314 tumors and 35 normal samples, were retrieved from the NCBI 
Gene Expression Omnibus (GEO) database.18 Supplementary Table S1 
and Fig. S1 contain details of the datasets, including their accession 
numbers and methods described in the original papers. 

Regarding the Affymetrix data (microarray: GSE12452, GSE34573, 
and GSE132112) signal intensity was normalized within each dataset 
using a robust multi-array average (RMA) tool; Agilent data (micro-
array: GSE53819) signal intensity was processed using quantile 
normalization. For RNA sequencing (RNA-seq) datasets (GSE68799 and 
GSE102349), the fragments per kilobase per million (FPKM) values were 
transformed into transcripts per kilobase per million (TPM). To reduce 
the likelihood of systemic nonbiological technical experimental biases 
causing batch effects, the ComBat algorithm was used to adjust the 
data.19 The redundancy of probes mapping the same EntrezID was 
eliminated by selecting the probe with the highest variance across 
samples using the collapse Row R function available in the WGCNA R 
package.20 Moreover, we collected available clinical data related to the 
selected datasets. For validation purposes, the gene expression matrix 
with computed RPKM values, along with the anonymized clinical an-
notations from Tay et al.,21 were retrieved from the Supplementary 
Materials accompanying the original paper. 

Non-endemic study population: recruitment and clinical characteristics 

Clinical data and formalin-fixed paraffin-embedded (FFPE) samples 
of primary lesions were retrospectively collected from patients with 
histologically confirmed NEA-NPC treated at the Fondazione IRCCS 
Instituto Nazionale dei Tumori (INT) in Milan from 2009 to 2018. 
Clinical data were collected from patients’ clinical charts. Inclusion 
criteria were: 1) signed informed consent; 2) histologically confirmed 
diagnosis of EBV-related NPC; 3) evidence of EBV infection in the 
nasopharyngeal tumor tissue defined as positive in in situ hybridization 
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analysis designed for EBV-encoded RNA 1 (EBER 1); 4) clinical stage 
I–IV according to the AJCC staging system VIIth ed.; 5) availability of 
archived pre-treatment primary tumor specimen (i.e., macrodissected 
areas from FFPE sections of good quality) with >70 % of tumor content 
and no/minor signs of necrosis; and 6) age ≥ 18 years. 

Patients with a history of any previous malignancy treated with 
surgery or radiation in the head and neck region were excluded to avoid 
radiation-induced tumors, whose biology is expected to be different 
from that of de novo-arising NPCs. This study was approved by the 
Institutional Ethics Committee of the INT of Milan (study number: 
INT188/19). 

Gene expression profiling 

RNA-seq of tumor samples from patients with NEA was performed 
using the QuantSeq 3’ mRNA Library Prep Kit FWD for Illumina (Lex-
ogen, Vienna, Austria) and NextSeq sequencing in accordance with the 
manufacturer’s protocol for low-input/FFPE samples. Briefly, to make 
Illumina-compatible libraries, 100 ng of total RNA was reverse tran-
scribed by incubation for 60 min at 42 ◦C to generate first-strand cDNA, 
and the RNA was removed. During the synthesis of second-strand cDNA, 
unique molecular identifiers (UMI) were added, followed by purification 
of the double-stranded cDNA and amplification by polymerase chain 
reaction (PCR). The number of PCR cycles was adjusted for each sample 
based on the RNA input amount and quality using a PCR add-on kit for 
Illumina, and 16–22 cycles were used for library amplification. The li-
braries were pooled together in an equal molar ratio, denatured, and 
diluted to produce a 2.0 pM DNA solution before sequencing on a 
NextSeq 500 (112 bp single read). Primary demultiplexed data were 
processed using the BlueBee Genomics Platform. FastQC (version 0.11) 
and MultiQC (version 1.7) were used in the quality assurance process. 

Raw counts obtained from the QuantSeq 3mRNA-Seq were processed 
using the voom/limma pipeline. First, the dataset was filtered to remove 
genes with <10 reads in >95 % of samples. We then performed trimmed 
mean of M-value (TMM) normalization using the limma and edgeR 
packages to estimate a scale factor to decrease technical bias between 
samples resulting from differences in library size.22–23 Finally, we 
applied voom transformation to convert the raw counts into log2-counts 
per million (log2-CPM) and calculated the respective observation-level 
weights for differential expression analysis.24 RNA-seq data were ob-
tained from the GEO repository (accession number: GSE208281). 

Bioinformatics analyses 

Unsupervised tumor subtype identification was performed using 
ConsensusClusterPlus,25 with k-means clustering and 1-Pearson corre-
lation as the distance matrix. In addition, 1000 resampling interactions 
were applied to the data by randomly selecting a fraction of the samples, 
and the presence of 2 < k < 5 clusters was tested. To identify the number 
of clusters with the highest stability, empirical cumulative distribution 
function (CDF) plots displaying the consensus distribution for each k 
were assessed. To assess the topological connections and distances be-
tween each NPC subtype and normal tissues, we performed 
disease-specific genomic analysis (DSGA).26,18 DSGA is a computational 
bioinformatics approach based on data decomposition using the equa-
tion T = NcT + DcT, where T is the log-transformed tumor gene 
expression data, NcT is the normal component, and DcT is the disease 
component. NcT represents the best approximation for the “normal-like” 
cell state. DcT is the deviation from the normal-like state, thereby 
highlighting the “aberrant” cell state, which was retained for further 
analyses. Correlation networks were built based on the metagene data. 
Metagenic analysis of the gene expression data was performed as pre-
viously described.27 Gene expression data were clustered using 
self-organizing map (SOM) machine learning. We used SOM, as imple-
mented in the “oposSOM” R package.28 The SOM translated the original 
meta-analysis data matrix consisting of 314 NPC cases into a data matrix 

with a reduced dimensionality of K = 256 meta-profiles. Each 
meta-profile was the mean profile averaged over the expression of all 
genes in the respective meta-cluster. To assess how gene expression and 
the identified clusters reflected the diversity of the samples, similarity 
networks were calculated based on the correlation coefficients of all 
pairwise combinations of samples.27 Diversity analysis of the samples 
and their relationships with the subtypes were performed in terms of 
correlation networks; correlations connecting samples with r > 0.5 were 
retained for drawing a network map. 

For bioinformatic analyses, we used R software version 4.2.0, Bio-
conductor version 3.15,29 and NCI BRB-ArrayTools v4.6.1.30 Plots were 
produced using the R package ggplot231 along with its extension ggrepel 
(https://ggrepel.slowkow.com/) and were successively assembled into 
panels using the free and open-source vector graphics editor InkScape.32 

As the true number of NPC subtypes is unknown, we must consider that 
there may be more than four subtypes, with certain subtypes under-
represented in our cohort.33,34 A quality check was conducted using 
silhouette plots to determine the extent to which samples belonged to a 
specific cluster. The silhouette width values35 for all samples were 
calculated (R-package: cluster), and the plot function was used to 
visualize the partition object. The performance of cluster stratification 
was assessed using silhouette scores, an estimate of the optimal cluster 
membership of samples with positive values indicating a preference for 
the actual cluster chosen and negative values for alternative cluster 
memberships. 

A literature survey of prognostic signatures in EA-NPC yielded four 
studies, the details of which are presented in Supplementary Table S2. 
Data, including the gene list and coefficients used to assess signature 
scores, were retrieved from original papers. The genes included in the 
signatures were manually curated and implemented in the hacksig 
package, a unified framework for obtaining single-sample scores.36 

To construct a classifier capable of identifying Cl3 cases, the method 
of Friedman et al.37 using the least absolute shrinkage and selection 
operator (LASSO) was applied to fit a logistic regression on the gene 
expression data to predict the binary class stratification, including the 
cluster of interest, and compare it with the other clusters. The algorithm 
applies an L1 penalized maximum likelihood method to generate 
parsimonious models. Diagnostic odds ratio (DOR), a measure of the 
effectiveness of a diagnostic test that enables correct classification with 
respect to misclassification, was used to identify the stratification 
threshold. In this instance, the cutoff was selected to maximize the 
chance of correct classification relative to the chance of misclassification 
(maxDOR). Receiver operating characteristic (ROC) and area under the 
curve (AUC) analyses were performed as per standard methodology 
using the continuous score generated by LASSO. Calculations and plot-
ting were performed using the easyROC v1.3.1 available (http://www. 
biosoft. hacettepe. edu. tr/easyROC/). 

The established classifier was used to predict the worst cluster 
membership in gene expression data reported by Tay et al.21 A survey of 
the literature from January 2021 to December 2022 for analyses of 
genes deregulated by EBV infection enabled us to select 11 genes21,38,39 

whose expression was analyzed in the EA-NPC data analysis. 

Statistical analysis 

Survival analysis and visualization were performed using the Surv-
miner R package and ggsurvplot function (https://rpkgs.datanovia. 
com/survminer/index.html). The endpoint of the analyses was disease- 
free survival (DFS), defined as the time from the date of diagnosis to the 
date of objective tumor progression, excluding clinical deterioration 
without evidence of disease (local, regional, or distant). We estimated 
the signature stratification capability using the Kaplan–Meier method 
and compared curves using the log-rank test. The results of the Cox 
analyses were reported as hazard ratios (HR) with their corresponding 
95 % confidence intervals (95 % CI). We applied a Fleming-Harrington 
test for censored data based on permutations to assess the behavior/ 
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distortion potentially affecting a small sample size, imposing rho=1, 
lambda=1. 

Tumor microenvironment analysis 

Immune and stromal cell prevalences in NPC were estimated using 
the xCell tool.40 xCell applies single-sample gene set enrichment analysis 
(GSEA) to estimate the abundance of 64 cell types, including adaptive 
and innate immune cells, hematopoietic progenitors, epithelial cells, 
and extracellular matrix cells, using a compendium of 489 gene sets. 

Prediction of treatment response 

The multiple cancer signature radiosensitivity index (RSI), directly 
proportional to radioresistance, was applied to the EA- and NEA-NPC 
clusters, following the linear model provided in the original study.41 

Drug sensitivity was evaluated using the pRRophetic R package,42 

according to the guidelines of the authors. This program includes public 
Cancer Genomic Project data, comprising baseline gene expression and 
drug sensitivity data for approximately 700 cell lines and 130 com-
pounds currently in clinical use or under investigation. To construct a 
ridge regression model to predict the AUC value according to the cell 
line gene expression profile of two databases, we focused our analysis on 
‘upper aerodigestive’ cell lines selected for consistency with NPC. Gene 
annotations were mapped to the official GeneSymbol, and the cell line 
and meta-analysis data matrices were homogenized using the ComBat 
function. For data processing, 20 % of the genes with the lowest vari-
ability were eliminated. The homogenized dataset was fitted using a 
linear ridge regression model to estimate drug sensitivity for each 
tumor. 

The immunophenogram available in The Cancer Immunome Data-
base (TCIA) (https://tcia.at/)43 was used to visualize the immunophe-
notypes of the tumor samples. The immunophenogram allows the 
computation of an aggregated score (i.e., immunophenoscore, IPS) 
based on the expression profiles of major histocompatibility complex 
(MHC) molecules, immunomodulators, effector cells [activated 
CD8 + and CD4 + T cells, effector memory (Tem) CD8 + and 
CD4 + cells], and suppressor cells [regulatory T cells (Tregs), and 
MDSCs. It was used to determine the cellular composition of neoantigens 
in the two cytolytic subsets of skin melanomas. The IPS ranged from 0 to 
10, with higher scores associated with increased immunogenicity. We 
analyzed the IPS, which imposes a clinical benefit when IPS ≥ 8, in data 
of patients with melanoma.44 

Results 

Meta-analysis and identification of clusters in endemic NPC 

From the six selected datasets, a data matrix containing 11640 
unique genes was constructed and analyzed. The expression data led to 
the identification of coherent molecular patterns. Using an unsupervised 
clustering method, the samples were stratified into four molecular 
clusters (Fig. 1A). Optimal clustering was demonstrated by a positive 
silhouette score (Si) in all clusters (average Si: 0.91, 0.92, 0.89, and 0.93 
for Cluster (Cl)1 Cl2, Cl3, and Cl4, respectively), except for one sample 
(Fig. 1B). An alluvial diagram was used to exclude technical biases 
owing to the different platforms employed for expression profiling 
(Supplementary Fig. 1). No significant stratification was observed, 
corroborating the biological value of the four-subtype clustering. 

We used a correlation spanning tree on deconvoluted data using 
DSGA to depict the similarity network of the four tumor clusters 
compared to healthy tissue. The resulting tree showed that most samples 
segregated into well-localized clusters, reflecting their mutual similar-
ities and divergences from healthy tissues (Fig. 1C). Cl4 was the cluster 
most distant from the normal tissue samples, whereas Cl1 was the 
closest. Cl2 and Cl3 formed branches that were not directly 

interconnected with the normal samples, highlighting similarities be-
tween those 2 clusters. The network map depicts the extent of similar-
ities among the tumor clusters, confirming the presence of well-defined 
clusters among the NPC expression data: Cl1 shows similarities with Cl2 
to a certain extent, but not with Cl3 or Cl4 (Supplementary Fig. 2). The 
careful meta-analysis of six gene expression datasets allowed to identify 4 
well-defined clusters in EA- NPC. 

Prognostic analyses of endemic NPC 

A total of 88 cases belonging to only one of the six selected datasets 
(GSE102349) that reported survival data were stratified as Cl1 (n = 23; 
26.1 %), Cl2 (n = 25; 28.4 %), Cl3 (n = 34; 38.6 %), and Cl4 (n = 6; 6.8 
%). The 2-year DFS rates were 90.6 %, 90.0 %, 69.1 %, and 100 % for the 
Cl1, Cl2, Cl3, and Cl4 clusters, respectively (Fig. 2A). The predicted Cl3 
group had significantly worse outcomes than the other clusters (log-rank 
test, P = 0.0476). 

Four prognostic signatures were retrieved from the literature (Sup-
plementary Table 2): Tang2018_NPC, Si2022_NPC, and Lu2020_NPC, 
which included 13, 4, and 3 genes, respectively, and were developed to 
predict distant recurrence; Zou2020_NPC, a 10-gene prognostic signa-
ture, was based on tumor-infiltrating immune cells and 
microenvironment-relevant genes (Fig. 2B). When our four clusters were 
challenged against these prognostic signatures, Tang2018_NPC was 
unable to determine prognosis pertaining to each of the four clusters (P 
= 0.0492), while the other signatures identified differences among 
clusters. Si2022_NPC (P = 9.2e-09), Lu2020_NPC (P = 2.6e-06), and 
Zou2020_NPC (P < 2.2e-16) signatures clearly attributed the best 
prognosis to Cl1 and the worst to Cl3 and Cl4. 

Based on the Kaplan–Meier survival and available prognostic gene 
signature analyses, Cl3 was associated with the worst prognosis; thus, a 
classifier signature was developed using the meta-analysis dataset. A 10- 
fold cross-validated LASSO logistic regression model, following 10 
permutations in the 314 cases of the meta-analysis (Cl3, n = 105 vs. 
other Cls n = 209), generated a classifier signature of 51 genes. The list 
of genes included in our model is shown in the heatmap (Fig. 3A), and 
the coefficients are listed in Supplementary Table 3. 

The prognostic performance of the classifier was assessed, and the 
threshold to impute Cl3 membership was selected when the DOR was 
maximal, corresponding to a value ≥ -0.1023 (Fig. 3A). The binary 
prediction accuracy of the signature (i.e., Cl3 vs. other clusters) was 
evaluated using ROC, and the AUC was 0.972. (Fig. 3B). 

DFS data from 47 cases in the Tay validation set20 were stratified and 
dichotomized based on the identified threshold in 28 Cl3 cases and 19 
cases belonging to other clusters (clinical characteristics are shown in 
Supplementary Table 4). Kaplan–Meier curves confirmed the signifi-
cantly different DFS for the two groups (log-rank test, P = 0.0368 and 
Fleming-Harrington test p-value= 0.0213), corresponding to a DFS of 
77.4 % and 94.7 % for Cl3 and the other clusters, respectively (Fig. 3C). 
Based on survival and available prognostic gene signature analyses, Cl3 
was associated with the worst prognosis and the diagnostic performance 
of the developed classifier signature (51 genes) was very high. 

Immune, biological and functional characterization of endemic NPC 

The immune score and cell components were inferred using an in 
silico approach with the xCell tool to evaluate heterogeneity in the 
tumor microenvironment (see Supplementary Fig. 3 for all available 
data about the immune and microenvironment cells in EA-NPC sam-
ples). Immune and microenvironment scores exhibited the same trend, 
with Cl1 expressing the highest immune score (P < 2.2e-16), followed by 
Cl2, Cl4, and Cl3 (Fig. 4A). Among different cell types, B cells, CD4+
memory T cells, CD8+ T cells, dendritic cells (DC), mast cells, and 
natural killer T (NKT) cells were considered for further analyses because 
of their abundance and association with better prognosis.45 Cl1 showed 
the highest numbers of B cells, CD4+ memory T cells, CD8+ T cells, DC, 
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Fig. 1. Identification of four molecular clusters in EA-NPC. A. Unsupervised clustering analysis. Gene-expression data revealed four molecular clusters: Cl1 (n = 46), Cl2 
(n = 123), Cl3 (n = 105), and Cl4 (n = 40) accounting for 14.6 %, 39.2 %, 33.4 %, and 12.7 %, of the cohort, respectively. Correlation matrix showed a high 
correlation within each subtype, while a low correlation was observed among the different clusters (blue = high correlation; white = low correlation). B. Silhouette 
plot analysis. Silhouette widths (Si) have a range of [-1, 1]: coefficients near +1 indicate that the sample is far away from the neighboring clusters; a value of 
0 indicates that the sample is on or very close to the boundary between two neighboring clusters; negative values indicates that the samples may have been 
incorrectly assigned to a cluster. C. Correlation spanning tree. To disclose the connections between normal tissue and tumor molecular subtypes, DSGA was applied to 
EA-NPC data. Disease state (DcT) representing the distance from the healthy component (NcT) was computed and retained to draw the correlation spanning tree. The 
modules in the graph are nodes (i.e., samples) connected to a spanning tree of maximal mutual correlation between connected nodes. Thus, the tree summarizes the 
extent to which each sample belonging to a subtype is similar to the normal tissue. 
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Fig. 2. Prognostic analyses of endemic NPC clusters. A. Kaplan–Meier survival curves applied to the GSE102349 dataset. Selecting DFS as the clinical endpoint, 
prognosis was different in the four clusters (log-rank P = 0.0476), with the worst outcome for the Cl3 subtype. B. Application of prognostic signatures to the four 
clusters: these signatures were imputed following the methods in the original papers, and the association of signatures scores and the four clusters was assessed. Box 
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and mast cells. Cl3 showed the lowest abundance of CD8+ T cells, DC, 
and NKT cells. Cl4 contained the highest number of NKT cells but the 
lowest number of B cells, CD4+ memory T cells, and mast cells (Fig. 4B). 
In addition, Cl4 showed the highest number of myeloid suppressor cells 
(MSC, p = 5.9e− 07). (Supplementary Fig. 3) 

In agreement with the meta-analysis data, Cl3 of the validation set 
was associated with a low immune score and poor prognosis (Supple-
mentary Fig. 4). 

To characterize the biology of EA-NPC clusters, hallmark gene sets 
were analyzed using GSEA, comparing each cluster with the others (the 
enriched pathway list is available in Supplementary Table 5): Cl1 was 
enriched in six of seven immune categories; Cl2 was enriched in all 
categories except for cellular components, particularly in four of seven 
immune and two of three DNA damage categories; Cl3 expressed four 
out of six proliferation categories; and Cl4 did not express any hallmarks 
(Fig. 4C). These results confirmed the xCell analyses and supported the 
immune contents of Cl1 and Cl2. In association with a worse outcome, 

Cl3 showed enrichment of proliferation pathways. 
Even after exploiting a holistic approach using GSEA and hallmark 

gene sets, Cl4 remains largely uncharacterized. To further investigate 
the biology of Cl4, we compared the expression of 11 single genes 
(whose expression has already been reported to be deregulated in EA- 
NPC) in tumors with that in normal tissues. As summarized in Table 1 
(see Supplementary Fig. 5 for each gene boxplot), all genes were 
significantly downregulated in the Cl4 group, except for SSTR2, whose 
expression was marginally increased. Considering the other clusters, the 
expression of each gene (upregulation of TRAF2, LDHA, HIF1A, and 
GPX4 and downregulation of GSKB) was in line with previously pub-
lished data (Table 1). 

An indirect comparison between the literature data of pathway 
regulation (FGFR1/FGFR2 and NKB1/NFKB2) and the gene expression 
we documented in EA-clusters confirmed the significant downregulation 
of most genes of interest in Cl4. Moreover, we retrieved four gene sets 
associated with EBV-related NPC (Liu_NPC, Wood EBV EBNA1 Targets 
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Fig. 4. Immune and biological characterization of endemic NPC clusters. A. Immune and microenvironment scores. Immune (P < 2.2e-16) and microenvironment (P <
2.2e-16) components calculated by xCell for each tumor cluster and normal tissue. B. Expression of immune cells. The abundance of B cells (P < 2.2e-16), CD4+
memory T cells (P < 2.2e-16), CD8+ T cells (P = 2.4e-15), dendritic cells (DC) (P = 1.2e-13), mast cells (P = 1.2e-05), and natural killer T (NKT) cells (P = 5e-12) 
calculated by xCell for each tumor cluster and normal tissue. C. GSEA hallmark analyses of clusters. Hallmarks were divided into eight categories: cellular component, 
development, DNA damage, immune, metabolic, pathway, proliferation, and signaling. Gene expression analyses were performed for each cluster vs. others to 
analyze which component one cluster is enriched in compared to others (see Supplementary Table 5 for the list of enriched pathways). D. ssGSEA of four NPC-related 
gene sets. Gene sets were analyzed in Cl4 vs others: Liu_NPC (P < 2.2e-16), Wood EBV EBNA1 Targets Down (P = 3.6e-09), Sengupta NPC_with LMP1 UP (P = 4.1e- 
10), and REACTOME DNA Repair (P = 4.6e-07). 
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Down, Sengupta NPC with LMP1 UP, and REACTOME DNA Repair) and 
compared their expression in Cl4 with that in the other clusters 
(Fig. 4D). The Cl4 cluster was associated with the downregulation of all 
four selected gene sets. 

The presence of neuronal components was also investigated. Starting 
from the perineural invasion literature data, we analyzed the presence of 
four pathways associated with neuronal differentiation and activity in 
Cl4 and compared the results with those of other clusters; the results 
suggested the presence of neuronal-tumor cell interactions only in Cl4 
(Fig. 5). 

Considering the above reported immune, biological and functional 
characterization of the 4 EA-NPC identified clusters, we arrived at the 
following designation of the corresponding molecular subtypes: Cl1 =
Immune-active, Cl2 = Defense-response, Cl3 = Proliferation, and Cl4 =
Perineural-interaction/EBV-exhaustion. 

Prediction of treatment response in endemic NPC 

A significant relationship was found between our stratification and 
RSI. Specifically, immune-active and defense-response clusters displayed 
the lowest RSI scores, which predicted their radiosensitivity. In contrast, 
proliferation and perineural-interaction/EBV-exhaustion clusters exhibited 
the highest RSI scores compared with the other two, predicting their 
intrinsic radioresistance (P = 5.87 × 1e− 05) (Fig. 6A). 

We tested the chemosensitivity of the four clusters based on gene 
expression data from our meta-analysis. Our findings demonstrated a 
statistically significant difference in drug sensitivity for patients 
belonging to different clusters. The proliferation cluster showed greater 
chemo-sensitivity than the others, suggesting that patients could benefit 
from intensified treatment [cisplatin AUC = 0.653, 95 % CI 
(0.586–0.721); gemcitabine AUC = 0.739, 95 % CI (0.681–0.796]) 
(Fig. 6B). The GPX4 expression levels reported in Table 1 were 
concordant with the chemosensitivity to gemcitabine (Table 1). 

A greater benefit from immune checkpoint inhibitors was predicted 
for Immune-active and defense-response clusters as compared with 

Proliferation and Perineural-interaction/EBV-exhaustion (χ2 test = 63.6, P 
< 10e-07) (Fig. 6C). 

On the whole, prediction of treatment response in endemic NPC 
suggested better responses to radiotherapy and immune checkpoint in-
hibitors in immune-active and defense-response clusters and to 
chemotherapy in the Proliferation cluster. 

Molecular clusters, immune, biological and functional characterization of 
non-endemic NPC 

Based on an institutional historical database, we collected FFPE 
samples from the primary tumors of 50 EBV-related NPC cases. The 
clinical characteristics of the NEA (Italian) cohort are presented in 
Supplementary Table 6. When the four EA-NPC four clusters were 
applied to the gene expression data of NEA-NPC cohort, the prevalence 
of the respective molecular subtypes was as follows: immune-active (n =
16, 32 %), defense-response (n = 11, 22 %), and proliferation (n = 22, 44 
%); the perineural-interaction/EBV-exhaustion subtype was found in only 
one sample (2 %) (Fig. 7A). Due to the low number of cases in the per-
ineural-interaction/EBV-exhaustion cluster, it was not considered for 
further analyses. The prognostic signatures were tested in NEA cases 
[Supplementary Table 2]. Applying the Tang2018_NPC signature yiel-
ded no statistically significant results (P = 0.58). However, the other 
signatures identified differences among clusters, as they did in EA-NPC: 
Si2022_NPC (P = 0.0011), Lu2020_NPC (P = 0.021), and Zou2020_NPC 
(P = 3.8e-05). These last 3 signatures attributed the best prognosis to Cl1 
and the worst to Cl3 [Supplementary Fig. 6]. 

The expression of the immune-related score in NEA-NPC was higher 
in the immune-active than in the other two clusters, with the lowest 
expression observed in the proliferation cluster (P = 6.4E-09) (Fig. 7B). 
Furthermore, the microenvironment score showed the same trend as in 
the EA cohort. These results reflected the overall expression profile of 
the immune cell population already observed in EA-NPC. 

Immune population characterization among the clusters (Fig. 7C) 
indicated that: immune-active expressed a major amount of B cells and 
mast cells, and the population of CD8+ T cells and NKT cells was 
comparable with that in defense-response; defense-response showed a 
highest expression of CD4+ memory T-cells and DC; proliferation pre-
sented the lowest expression of immune cells, similar to that in EA-NPC 
(Fig. 4B). At variance from deregulation of MSC in EA-NPC, no signifi-
cant difference in the levels of these cells was recorded in NEA-NPC (see 
Supplementary Fig. 7 for all available data about the immune and 
microenvironment cells in NEA-NPC samples). 

Hallmark analysis of NEA-NPC (a list of the enriched pathways is 
presented in Supplementary Table 7) indicated that immune-active 
cluster did not express immune pattern in the immune-active cluster of 
EA NPC, and no immune pathways were active. The allograft rejection 
pathway (immune) was enriched in the defense response cluster and the 
proliferation cluster showed expression of five out of six proliferation 
pathways. 

Characterization of NEA-NPC indicated that: three out of four clus-
ters of EA-NPC were identified in NEA-NPC while the perineural- 
interaction/EBV-exhaustion cluster was not expressed; the immune 
and microenvironment scores showed the same trend between EA and 
NEA while the expression of some immune populations differed. 

Prediction of treatment response in non-endemic NPC 

RSI did not differ significantly among the three NEA-NPC clusters 
(Fig. 8A). We tested the sensitivity to cisplatin and gemcitabine, and our 
findings revealed a statistically significant difference in drug sensitivity: 
the proliferation cluster showed better sensitivity than the other clusters 
[cisplatin AUC = 0.774, 95 % CI (0.638–0.911); gemcitabine AUC =
0.889, 95 % CI (0.794–0.984]) (Fig. 8B). When analyzing the IPS, all 
clusters showed potential responsiveness to immunotherapy (Fig. 8C). 

Table 1 
Single-Gene Expression in EA-NPC clusters: genes/pathways selected according 
to recent literature data.  

Genes/ 
pathways 
regulated by 
LMP1 

Literature 
Data 

Reference Author/ 
year DOI 

Gene expression levels in 
Tumor Cluster vs Normal 
Cl- 
1 

Cl- 
2 

Cl- 
3 

Cl- 
4 

GSK3B GE ↓ Yang T/2022 
10.3389/ 
fcimb.2022.935205 

¼ þ þ - - 
TRAF2 

FGF1 
GE ↑ 
GE ↑ 

¼

þ

þþ

þþ

þ

þþ

- 
þ

LDHA◦ GE ↑ ¼ þþ þþ - 
HIF1A◦ GE ↑ þþ þþ ¼ - 
SSTR2◦◦ GE ↑ Tay JK/2022 

10.1126/sciadv. 
abh2445 

þ þþ þþ þ

NFKB1 Pathway 
activation 

Yang T/2022 
10.3389/ 
fcimb.2022.935205 

þ þ ¼ - 

NFKB2 Pathway 
activation 

¼ þ ¼ - 

FGFR1 Pathway activation ¼ ¼ ¼ - - 
FGFR2 Pathway 

activation 
¼ ¼ þ - - 

Genes 
regulated 
by 
EBV 
infection 

Literature 
Data 

Reference Author/ 
year DOI 

Gene expression levels in 
Tumor Cluster vs Normal 
Cl- 
1 

Cl- 
2 

Cl- 
3 

Cl- 
4 

GPX4 GE ↑ Yuan L/2022 
10.1038/s41418- 
022-00939-8 

- þþ þþ - - 

The LDHA and HIF1A gene expression is regulated by FGRF1/FGFR2 pathways 
activation. 
The SSTR2 gene expression is regulated by NFKB1/NFKB2 pathways activation. 
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Discussion 

In this study, we characterized EBV-related EA-NPC and we identi-
fied four clusters with unique biological characteristics: immune-active, 
defense-response, proliferation, and perineural-interaction/EBV-exhaustion. 
The workflow of our analyses and main results are shown in Fig. 9. 

The EA immune-active cluster presented a good prognosis and was 
characterized by the highest expression of the immune score, immune 
cells, immune hallmarks, and EBV-related pathways. In NEA cases, the 
immune activity was similar to that of its EA counterpart; however, the 
immune active cluster expressed more B cells and mast cells than the 
other clusters (see Fig. 7C) and did not express immune hallmarks (see 
Fig. 7D). The absence of the expression of immune hallmarks and low 
levels of T cells and NKT in NEA-NPC might be explained by the level of 
mast cells, according to literature exert an immune suppressive role.46 

The EA defense-response cluster presented a good prognosis and was 

similar to immune-active in terms of the immune score, immune cells, and 
immune hallmarks. It also expressed other hallmarks, such as DNA 
damage, proliferation, and signaling, and EBV-related pathways. The 
NEA defense-response cluster showed a good immune cell expression 
profile with the presence of many immune cell types, but only one im-
mune hallmark (allograft rejection pathway). 

In agreement with worst prognosis, the EA proliferation cluster 
exhibited lower immune score and immune cell levels, and increased 
expression of proliferation hallmarks and EBV pathways. Similar to its 
counterpart, the NEA proliferation cluster showed low levels of immune 
score and immune cells and increased expression of proliferation hall-
marks. Overall, the NEA proliferation cluster appeared to share the 
hallmarks of the EA proliferation and defense-response clusters; the NEA- 
NPC small sample size could explain this partial similarity. 

The EA perineural-interaction/EBV-exhaustion cases considered in the 
Kaplan–Meier analysis (six of 40 patients with available clinical data) 
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Fig. 5. Perineural invasion pattern in CL4. Four perineural invasion gene sets were analyzed in Cl4 vs. others. Results showed that Cl4 was enriched in LE_NEUR-
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Fig. 6. Prediction of treatment response in endemic NPC. A. Radiosensitivity index. RSI was evaluated and found to be directly proportional to radioresistance (high 
index = radioresistance). Stratification by RSI reached P = 5.9e-05. B. Drug sensitivity was predicted for each case in the meta-analysis dataset. Two therapeutic 
agents were investigated (i.e., cisplatin and gemcitabine). Boxplots depict the predicted drug sensitivity in the four clusters (P = 6.8e-10 and 2.2e-16 for cisplatin and 
gemcitabine, respectively); the ROC curves estimate the prediction accuracy of the most sensitive subtype against the others. P value by Kruskal–Wallis test. C. IPS. 
The plots show the IPS score distributions for the four clusters. 
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Fig. 7. Identifying clusters and immune, and biological characteristics of non-endemic NPC. A. Cluster prediction in non-endemic NPC. Cluster prediction disclosed three 
molecular clusters: Cl1 (n = 16), Cl2 (n = 11), Cl3 (n = 22), and Cl4 (n = 1) accounting for 32 %, 22 %, 44 %, and 2 % of the cohort, respectively. B. Immune and 
microenvironment scores. Immune (P = 6.4e-09) and microenvironment (P = 4.1e-09) components calculated by xCell for each tumor cluster. C. Expression profiles 
of immune cells. The abundance of B cells (P = 2.2e-08), CD4+ memory T cells (P = 6.9e-05), CD8+ Tcells (P = 3.6e-08), dendritic cells (DC) (P = 0.00051), mast 
cells (P = 7.8e-07), and natural killer T (NKT) cells (P = 0.013) were calculated using xCell for each tumor cluster. D. GSEA hallmark analyses of clusters. Hallmarks 
were divided into eight categories: cellular component, development, DNA damage, immune, metabolic, pathway, proliferation, and signaling. Gene expression 
analyses were performed for each cluster vs. others to analyze in which component one cluster is enriched in compared to others (see Supplementary Table 7 for the 
list of enriched pathways). 
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presented the best prognosis. However, the biological/functional char-
acterization of the perineural-interaction/EBV-exhaustion cluster sug-
gested the worst prognosis; in fact, it express a low level of immune 
scores and anti-tumoral immune cells, a high level of MDSCs and 
exhibited expression of perineural pathways. 

MDSCs suppress T-cell activity contributing the immune escape of 
tumors.12 Perineural invasion, characterized by the invasion of cancer 
cells into the space surrounding a nerve, has been observed in many 
cancer types, including head and neck cancer and NPC, and is associated 
with poor prognosis in head and neck cancer.47–48 

Although only EBV-positive patients were included in the EA meta- 
analysis, the perineural-interaction/EBV-exhaustion cluster did not show 
an upregulation of EBV pathways. The spanning tree analysis indicated 
that the perineural-interaction/EBV-exhaustion cluster was the most distant 
from normal phenotypes and the network map confirmed that the data 
cloud of this cluster was more distinct than that of the others. These results 
suggest that in the perineural-interaction/EBV-exhaustion different oncoge-
netic mechanisms of EBV exhaustion may be at play. We hypothesize a 
virus-related “hit and run theory”, according to which such agents pro-
mote oncogenesis by inducing the accumulation of mutations, resulting in 
increased genomic instability; in this scenario, the virus would no longer 
be necessary for tumor maintenance and would be lost after tumor cell 
proliferation.49–50 Perineural-interaction/EBV-exhaustion was not identified 
in the NEA cohort. 

Similarly to patients with other cancer types, not all patients with NPC 
exhibit the same clinical outcomes after therapy. Risk stratification in pa-
tients with NPC is urgently needed to select better treatment plans (i.e., the 
addition of neoadjuvant or adjuvant chemotherapy), especially for NEA- 
NPC. According to the literature, upregulated GPX4 associated with EBV 
infection39 leads to chemoresistance.51 On the other hand, the data on the 
significant downregulation of the majority of a selected genes, including 

GPX4 (see Table 1), and of the four genesets all associated to an active EBV 
infection strongly suggested the switching off of EBV infection and support 
the final designation of Cl4 as perineural-interaction/EBV-exhaustion. Hence, 
perineural-interaction/EBV-exhaustion, which is present only in EA- NPC, is 
expected to lead to a worse prognosis owing to its biological and functional 
features, but it could be successfully treated using gemcitabine. The 
NEA-NPC treatment response analysis partially confirmed the EA-NPC re-
sults (see Fig. 9). 

Although our analyses offer a tool for investigating NPC prognosis, 
further validation is needed to apply this finding in a clinical setting. 
This study has both strengths and limitations. Its first strength is the 
comprehensive meta-analysis of 314 EA-NPC cases belonging to six 
different datasets, four of which also included 35 normal tissue samples. 
This normal subset enabled us to assess the topological connections and 
biological distances between each NPC tumor subtype and the normal 
tissue. Additional strengths include the availability of previously pub-
lished prognostic signatures and an external validation EA cohort with 
good clinical annotation. 

The Italian cohort of NEA-NPC described herein could be considered 
the first available gene expression dataset, analysis focusing specifically 
on NEA-NPCs; in fact, Tay et al.21 included in analyzed dataset of NPC 
(47 cases) both 12 NEA-NPC cases, but they did not analyze them 
separately from 35 EA-NPC cases they could also characterize. In addi-
tion, we collected samples from a unique NEA-NPC cohort with good 
clinical annotation, which enabled the preliminary analysis of the sim-
ilarities and divergencies between EA-NPC and NEA-NPC gene-ex-
pression patterns. 

The limitations of this study include the small number of available 
samples and few survival events that prevented survival prediction 
analysis. Considering the limitations EA-NPC, we should recognize that 
i) the amount of clinical information of EA datasets used for meta- 

Fig. 9. Biological/functional characterization of NPC: summary of the main steps and major results. In the central area, the main applied techniques are shown and in the 
external quadrants, each step of the study is shown. EA-NPC (up left-quadrant): identification of four clusters in the meta-analysis of 6 datasets and cluster 3 as that 
with worst prognosis; EA-NPC (up right-quadrant): validation of worst prognosis of cluster 3 in an independent dataset; EA-NPC (down right-quadrant): identification 
of the main biological/functional characteristics of the clusters and their predicted sensitivity to different therapeutic strategies. NEA-NPC (down left-quadrant): 
identification of three clusters in a new Italian cohort of patients and their sensitivity to different therapeutic strategies. NPC: Nasopharyngeal Cancer; EA: 
Endemic Area (light pink); NEA: Non-Endemic Area (light gray). Created with BioRender.com. 
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analysis is limited, and ii) the validation cohort consists of is mixed EA/ 
NEA NPC. These limitations reduced the accuracy of the analysis of 
prognostic outcomes for each of the four clusters identified in EA-NPC. 
This limited the interpretation of the contradictory prognostic results 
obtained for the perineural-interaction/EBV-exhaustion cluster. 

Our future goals differ between the incidence areas (EA and NEA), 
based on the reported data and their limitations. Regarding EA-NPC, 
access to a larger dataset with complete clinical variables would 
enable the validation of our data and confirmation of the presence and 
characteristics of the perineural-interaction/EBV-exhaustion cluster and 
its prognosis. In the NEA-NPC population, we are expanding sample 
collection to provide deeper insights into the molecular landscape and 
regulatory networks of gene expression pertaining to these tumors. 

Conclusions 

Our study provides a relevant biological overview of EBV-related 
NPC in patients from both EA and NEA. The immune microenviron-
ment plays a critical role in NPC owing to the viral etiology of this 
malignancy. A perineural-interaction/EBV-exhaustion cluster in EA-NPC 
suggests an inactive EBV infection but more precise molecular ana-
lyses are needed to confirm this suggestion. Well characterized EA- and 
NEA-NPC retrospective and prospective cohorts would enable a vali-
dation of the results obtained herein. 
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