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1 Introduction

It is a great pleasure for us to dedicate our work to Renato Tribuzy
on the occasion of his 75th birthday, in recognition for his outstanding
work to shape the field of Differential Geometry in Brazil, especially in the
Amazon region.

This note is about the spectral properties of some fully nonlinear, de-
generate operators of geometric interest in Rn. For w ∈ C2(Rn), we let

λ1(∇2w) ≤ λ2(∇2w) ≤ . . . ≤ λn(∇2w)

be the eigenvalues of the Hessian ∇2w, in increasing order, and given
k ∈ {1, . . . , n} we define

P−
k (∇2w)

.
= λ1(∇2w) + . . .+ λk(∇2w),

P+
k (∇2w)

.
= λn−k+1(∇2w) + . . .+ λn(∇2w).

We do not consider the case k = n, for which P+
n = P−

n = ∆, and
hereafter restrict to k ∈ {1, . . . , n − 1} unless otherwise specified. Given
h ∈ R+

0
.
= [0,∞), we then consider the operators

F+
k [w]

.
= P+

k (∇2w) + h|∇w|, F−
k [w]

.
= P−

k (∇2w)− h|∇w|. (1.1)

Both P±
k and F±

k naturally arise in Differential Geometry, especially in
the theory of submanifolds. For instance, they appeared in the level set
formulation of the mean curvature flow with higher codimension [5], and
to formulate partially positive Ricci curvature conditions suited to obtain
Morse-theoretic results [35, 39]; they have been used in connection with
barrier principles for submanifolds with higher codimension in [23] and
later in [37, 38, 16]; in the (almost) complex or calibrated setting, they
are ubiquitous in the study of plurisubharmonic functions and in potential
theory [19, 20]. However, despite the many applications, only in recent
years the analytic properties of P±

k and F±
k have systematically been in-

vestigated. In this respect, we quote [17, 18] by R. Harvey and B. Lawson,
[31] by A.M. Oberman and L. Silvestre, [14] by L. Caffarelli, Y.Y. Li and
L. Nirenberg, and [10, 8] by I. Birindelli, G. Galise and H. Ishii. Follow-
ing [10], we name P±

k truncated Laplacians. Denote with USC(A) the set
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of upper-semicontinuous functions on a set A ⊂ Rn. Following [7], there
exist, at least, two slightly different notions of principal eigenvalue of F±

k

on an open set Ω ⊂ Rn:

µ(F±
k ,Ω)

.
= sup

{
c ∈ R : ∃w < 0 on Ω, F±

k [w] + cw ≥ 0 on Ω
}
,

µ̄(F±
k ,Ω)

.
= sup

{
c ∈ R : ∃w < 0 on Ω, F±

k [w] + cw ≥ 0 on Ω
}
.

Hereafter in this paper, inequality F±
k [w]+cw ≥ 0 is meant to hold in the

viscosity sense, so we assume w ∈ USC(Ω). Note that 0 ≤ µ̄(F±
k ,Ω) ≤

µ(F±
k ,Ω), since negative constants are admissible as w.

Remark 1.1. Customarily, principal eigenvalues are also defined in terms
of positive supersolutions of F±

k [w] + cw = 0. However, in view of the
identity F−

k [−w] = −F+
k [w], this doesn’t introduce further constants of

interest, since for instance µ(F±
k ,Ω) can equivalently be defined as

sup
{
c ∈ R : ∃w ∈ LSC(Ω), w > 0 on Ω, F∓

k [w] + cw ≤ 0 on Ω
}
.

For E ⊂ Rn, define

µ(F±
k , E) = sup

{
µ(F±

k ,Ω) : Ω ⊂ Rn open, E ⊂ Ω
}
.

and µ̄(F±
k , E) accordingly. The purpose of the present paper is to inves-

tigate possible lower bounds for µ̄(F±
k , E) depending on the size of E, in

the spirit of the Faber-Krahn inequality

µ(∆,Ω) ≥
[
µ(∆, B)

|B|−2/n

]
|Ω|−

2
n

where Ω ⋐ Rn has smooth boundary, and B is a ball with |B| = |Ω|. For
second order, uniformly elliptic operators in trace form

Lw = aij∂
2
ijw + bi∂iw

with bounded, measurable coefficients aij = aji and bi on Rn, works of H.
Berestycki, L. Nirenberg and S. Varadhan in [7, Thm. 2.5] and X. Cabré
in [12] established the estimate

µ(L,Ω) ≥ C|Ω|−
2
n ∀Ω ⋐ Rn open, (1.2)
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for some constant C > 0 only depending on the ellipticity constants of
aij , on ∥bi∥Ln(Ω) and on an upper bound for |Ω|1/n. The case of L in
divergence form (with bounded, measurable coefficients) was shown before
by H. Brezis and P.-L. Lions in [11]. For fully nonlinear operators which
are 1-homogeneous and uniformly elliptic, we are not aware of estimates
like (1.2). However, a weaker result with a lower bound depending on
|Ω|−1/n can be found in [34, Prop. 4.8].

Inequalities of the type in (1.2) for F±
k seem quite difficult to achieve.

Among the issues to overcome, we stress that the proofs of (1.2) are based
on the ABP method and that, to our knowledge, sharp ABP inequalities
tailored to the degenerate elliptic operators F±

k are yet to be formulated;
their lack also helps to explain the absence of regularity results for P±

k

when k ̸∈ {1, n} (for k = 1, see [31, 10]). A series of unusual phenomena
for F±

k was first pointed out by I. Birindelli, G. Galise and H. Ishii in [10],
and the results therein reveal the prominent role played by a boundedness
condition for h related to the diameter of Ω. Let k ∈ {1, . . . , n − 1}, and
let R such that Ω ⊂ BR. In [10, Cor. 4.2 and Prop. 4.3], the authors
proved that

hR < k =⇒

 µ̄(F−
k ,Ω) ≥

2(k−hR)
R2

µ̄(F+
k ,Ω) = +∞.

Hence, searching for lower bounds for the principal eigenvalue of F+
k is

meaningless, at least if hR < k, and hereafter we will focus on F−
k . Con-

dition hR < k is sharp to guarantee a positive lower bound for µ̄(F−
k ,Ω).

Indeed, as proved in [10, Ex, 4.9], for each ε > 0 small enough the annulus

Ωε = B3π/2+ε \B3π/2−ε ⊂ Rn

satisfies µ̄(F−
k ,Ωε) = 0 with the choice h = k/(3π/2). Note that condi-

tions Ωε ⊂ BR and hR ≤ k barely fail to be simultaneously satisfied. Also,
the example shows that the n-dimensional measure of E is not expected
to control µ̄(F−

k , E).
A surprising fact is the validity of reversed Faber-Krahn inequalities

for the operator P−
1 . As conjectured in [9] building on results for multi-

dimensional rectangles, and proved in [32], µ(P−
1 ,Ω) is maximized by the
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ball among domains with the same fixed diameter (please mind the con-
ventions in [32] and recall Remark 1.1). Consequently, it is also maximized
by the ball among domains with the same fixed volume.

We are ready to state our main result. To this aim, we recall that
given a continuous, non-decreasing Ψ : [0, c) → R+

0 with Ψ(0) = 0, the
generalized Hausdorff measure of order Ψ(t) is defined by

HΨ(E)
.
= lim

δ→0+
inf

∑
j

Ψ(rj) : E ⊂
∞⋃
j=1

Brj (xj), rj ≤ δ

 .

If Ψ(t) = tk then HΨ is, up to an inessential constant, the standard
Hausdorff k-dimensional measure H k. We underline the inequality

H 2(E) ≤ CHΨ(E) where Ψ(t) = t2| log(R/t)|, R ∈ R+,

for some constant C = C(R, c).

Theorem 1.2. Let E ⊂ Rn be a compact set of diameter diam(E) < R,
Fix k ∈ {1, . . . , n − 1} and let h ∈ R+

0 satisfying hR < k. Then, there
exists a constant C = C(n, k, hR) such that

µ̄(F−
k , E) ≥ C

HΨ(E)
, where Ψ(t) =


Rt if k = 1

t2| log(R/t)| if k = 2

t2 if k ≥ 3.

(1.3)
In particular, µ̄(F−

k , E) = +∞ whenever HΨ(E) = 0.

Remark 1.3. We stress that inequality (1.3) is scale-invariant for each k,
due to the presence of R in the definition of Ψ(t).

Remark 1.4. The constant C can be bounded from below uniformly in
terms of k, n and a of a lower bound for k − hR.

It is reasonable to guess that the lower bound for µ̄(F−
k , E) in terms

of the Hausdorff k-measure, that we proved for k = 1, be obtainable also
for k > 1. If so, also the case k = 2 of our Theorem would be nearly sharp,
failing only by a logarithmic term. We propose the following
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Conjecture 1.5. Suppose that E ⊂ Rn is a compact subset of diameter
< R, fix k ∈ {1, . . . , n − 1} and h ∈ R+ satisfying hR < k. Then, there
exists a constant C > 0 depending on n, k, hR and on an upper bound for
H k(E) such that

µ(F−
k , E) ≥ CH k(E)−

2
k .

In particular, if H k(E) = 0 then µ(F−
k , E) = +∞.

It may be possible that condition diam(E) < R could be weakened to
E ⊂ BR(o), for some o ∈ Rm.

A geometric application

A source of motivation for the present paper comes from the theory of
minimal submanifolds in Rn. Indeed, the note arises from the desire to put
the main result in [6] into a more general perspective, explaining how it
descends from an estimate for the principal eigenvalue of F−

k . At the same
time, we improve on [6] on various aspects, in particular for submanifolds
with nonzero mean curvature.

In [6], we addressed a question of S.T. Yau about the discreteness of the
spectrum of the Laplacian of some striking examples of bounded, complete
minimal surfaces constructed after N. Nadirashvili’s counterexample to an
old conjecture of E. Calabi [30]. We recall that the spectrum σ(−∆) of
the Laplace-Beltrami operator on a manifold M is said to be discrete if
it only contains a divergent sequence of eigenvalues, each of them with
finite multiplicity. For instance, this happens if M is the interior of a
compact submanifold with smooth boundary. In this case, clearly M is
not complete as a metric space. On the other hand, complete minimal
surfaces which are well-behaved, in the sense that they have finite density
at infinity:

lim
r→∞

|M ∩ Br|
r2

<∞, Br ⊂ R3 a ball,

satisfy σ(−∆) = R+
0 by [25, Thm. 1]. Therefore, complete manifolds with

discrete spectrum are expected to exhibit a pathological behaviour, and
the examples arisen after Nadirashvili’s work are good candidates to have
discrete spectrum. Nadirashvili constructed a complete minimal surface
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M2 → R3 which is bounded in R3, and his method, a far reaching exten-
sion of that of L. Jorge and F. Xavier in [24], inspired an entire literature:
in particular, highly nontrivial refinements [27, 28, 15, 26, 29] and entirely
new methods [1, 2, 3, 4] enabled to construct complete, bounded minimal
surfaces whose behaviour at infinity is controlled in some way. To be more
precise, given an immersion φ :M → Rn, we define the limit set

limφ
.
=

{
p ∈ Rn : p = lim

j
φ(xj) for a divergent sequence {xj} ⊂M

}
.

Here, {xj} is said to be divergent if it eventually lies outside every fixed
compact set of M . Note that, if φ(M) ⊂ Ω for some domain Ω, then
limφ ⊂ Ω. If limφ ⊂ ∂Ω, we say that M is proper in Ω. After Nadi-
rashvili’s work, proper examples in convex sets were constructed in [27, 28,
15], examples with a control on the conformal structure of M in [2, 3, 4],
and examples with a control of the Hausdorff dimension of limφ, in the
sense that dimH (limφ) = 1, in [29, 1]. They motivated our criterion in
[6, Thm. 2.4], which we refine in the present note.

To state the result, we introduce some terminology. For a (2, 0)-
tensor A with eigenvalues {λj(A)}nj=1 in increasing order, and given k ∈
{1, . . . , n}, we write

P−
k (A)

.
= λ1(A) + . . .+ λk(A).

Remark 1.6. Note that P−
k (A) can be characterized as follows:

P−
k (A) = inf

{
trW A : W a k-dimensional subspace

}
,

where, taken an orthonormal basis {ei} for W , trW A
.
=

∑k
i=1A(ei, ei).

Given a k-dimensional immersed submanifold φ :M → Rn, we denote
with H the unnormalized mean curvature vector, that is, the trace of the
second fundamental form of M . Let Ω ⊂ Rn be an open subset, and let
Λk−1,Λk ∈ R. We say that ∂Ω satisfies

inf
∂Ω

P−
k (II∂Ω) ≥ Λk, inf

∂Ω
P−
k−1(II∂Ω) ≥ Λk−1

in the barrier sense if, for each x ∈ ∂Ω and ε > 0, there exists a supporting
smooth hypersurface S such that S ∩Ω = ∅, x ∈ S and the second funda-
mental form IIS of S in the direction pointing towards Ω satisfies both of
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the inequalities

P−
k (IIS)(x) ≥ Λk − ε, P−

k−1(IIS)(x) ≥ Λk−1 − ε.

For instance, by using hyperplanes as supporting hypersurfaces, a convex
set Ω satisfies

inf
∂Ω

P−
k (II∂Ω) ≥ 0 inf

∂Ω
P−
k−1(II∂Ω) ≥ 0,

and a domain that can be written as the intersection of balls of radius R
satisfies

inf
∂Ω

P−
k (II∂Ω) ≥

k

R
inf
∂Ω

P−
k−1(II∂Ω) ≥

k − 1

R
.

Given Λk ∈ R ∪ {−∞}, we also say that

inf
∂Ω

P−
k (II∂Ω) > Λk

if there exists Λk > Λk such that inf∂Ω P−
k (II∂Ω) ≥ Λk.

We are ready to state

Theorem 1.7. Let φ : M → Rn be a bounded immersed submanifold of
dimension k ≥ 2, contained in a relatively compact domain Ω with diameter
R. Assume that the mean curvature vector H of M satisfies R∥H∥∞ < k.
Define

Ψ(t) =

{
t2| log(R/t)| if k = 2

t2 if k ≥ 3.

Assume that either

(i) HΨ(limφ) = 0, or

(ii) HΨ(limφ ∩ Ω) = 0 and the second fundamental form II∂Ω of ∂Ω in
the inward direction satisfies

inf
∂Ω

P−
k (II∂Ω) > ∥H∥∞, inf

∂Ω
P−
k−1(II∂Ω) > −∞ (1.4)

in the barrier sense.

Then, the spectrum of the Laplace-Beltrami operator on M is discrete.
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Remark 1.8. Clearly, if ∂Ω is C2, (1.4) is equivalent to P−
k (II∂Ω) > ∥H∥∞

on ∂Ω, that was the condition stated in [6]. Besides the weaker regularity
assumed on ∂Ω, Theorem 1.7 improves on [6, Thm. 2.4] when H ̸≡ 0 for
each k. First, condition R∥H∥∞ < k is weaker than R∥H∥∞ < k − 1,
which was required in [6]. Second, when

θ
.
= k − 1−R∥H∥∞ ∈ (0, 1)

(which is automatic if k = 2 and H ̸≡ 0), condition HΨ(limφ ∩ Ω) = 0

was replaced by the stronger

H θ+1(limφ ∩ Ω) = 0,

with the somehow puzzling feature that R∥H∥∞ appeared to bound the
exponent of the Haudorff dimension. The possibility to get better dimen-
sional conditions for limφ ∩ Ω depends on Lemmas 2.1 and 2.2 for the
operator F−

k , which may have an independent interest.

The above result is particularly effective when k = 2, since for instance
it can be applied to any of the examples in [27, 28, 15, 29, 1] to answer Yau’s
question, as done in [6]. Also, Theorem 1.7 applies to solutions of Plateau’s
problem for (parametrized) surfaces with constant mean curvature (see [36]
for a detailed account), and our condition on h is almost sharp: indeed,
interestingly, for a rectifiable Jordan curve γ ⊂ BR inequality hR ≤ 2

turns out to be sharp to always guarantee the existence of a topological
disk with constant mean curvature h and boundary γ, in the sense that
if hR > 2 then there exists γ ⊂ BR such that Plateau’s problem has no
solution with mean curvature h (cf. [22]). The next result was shown in
[6, Cor. 2.6] for minimal surfaces.

Corollary 1.9. Let γ : S1 → Rn be a Jordan curve with diam(γ(S1)) ≤ R

and HΨ

(
γ(S1)

)
= 0, Ψ(t) = t2| log(R/t)|. Fix h ∈ R+

0 satisfying hR <

2. Then, every solution of Plateau’s problem for surfaces with constant
(unnormalized) mean curvature h and boundary γ has discrete spectrum.

The geometric counterpart of Conjecture 1.5 is the following

Conjecture 1.10. Let φ : M → Rn be a bounded immersed submanifold
of dimension k ≥ 2, contained in a relatively compact domain Ω with



Principal eigenvalue of truncated Laplacian and submanifolds 221

diameter R. Assume that the mean curvature vector H of M satisfies
R∥H∥∞ < k, and that either

(i) H k(limφ) = 0, or

(ii) H k(limφ ∩ Ω) = 0 and the second fundamental form II∂Ω of ∂Ω in
the inward direction satisfies

inf
∂Ω

P−
k (II∂Ω) > ∥H∥∞, inf

∂Ω
P−
k−1(II∂Ω) > −∞

in the barrier sense.

Then, the spectrum of the Laplace-Beltrami operator on M is discrete.

A word of warning: our proof of Theorem 1.7 based on Theorem 1.2
could easily be adapted to prove the geometric Conjecture 1.10 from Con-
jecture 1.5 only in case (i). Case (ii) seems to be subtler.

2 Proof of Theorem 1.2

We start with the following ODE Lemma.

Lemma 2.1. Let k ∈ {1, . . . , n}, R ∈ R+ and h, h∗ ∈ R+
0 satisfying

hR < k, h∗ ≥ max

{
h,

h

k − hR

}
.

Let ξ ∈ C(R+) be non-increasing, non-negative and such that∫
0+
tk−1ξ(t)dt <∞, (2.1)

and let ψ ∈ C2
(
(0, R)

)
solve

(
tk−1e−h∗tψ′)′ = e−h∗ttk−1ξ on (0, R),

lim
t→0

(
tk−1ψ′(t)

)
= 0.

(2.2)

Fix x0 ∈ Rn and set r(x) = |x − x0|. Then, the function w(x) = ψ(r(x))

satisfies

F−
k [w]

.
= P−

k (∇2w)− h|∇w| ≥ ξ(r)

1 + h∗R
on BR(x0)\{x0}. (2.3)

Moreover, w(x) ∈ C2(BR(x0)) and the inequality holds pointwise on the
entire BR(x0) provided that ξ ∈ C(R+

0 ).
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Proof. From

∇2w = ψ′′dr ⊗ dr + ψ′∇2r =

(
ψ′′ − ψ′

r

)
dr ⊗ dr +

ψ′

r
⟨ , ⟩,

the eigenvalues of ∇2w are ψ′′(r) with multiplicity 1, and ψ′(r)/r with
multiplicity (n− 1). Note that, expanding (2.2),

ψ′′(t) +
k − 1

t
ψ′(t) = ξ(t) + h∗ψ′(t) on (0, R). (2.4)

Integrating (2.2) on (ε, t), we get

ψ′(t) =
eh

∗t

tk−1

{
e−h∗εεk−1ψ′(ε) +

∫ t

ε
e−h∗ssk−1ξ(s)ds

}
.

Since the last term in brackets has a finite limit as ε → 0 by (2.1), and
because of the limit condition in (2.2),

ψ′(t) =
eh

∗t

tk−1

∫ t

0
e−h∗ssk−1ξ(s)ds ≥ 0 on (0, R). (2.5)

We claim that

ψ′′(t) ≤ (1 + h∗R)
ψ′(t)

t
on (0, R). (2.6)

Indeed, since ξ(s)e−h∗s is non-increasing,

ψ′(t) ≥ eh
∗t

tk−1
ξ(t)e−h∗t

∫ t

0
sk−1ds =

t

k
ξ(t)

and therefore, using (2.4),

ψ′′ − h∗R+ 1

t
ψ′ =

[
h∗ − k + h∗R

t

]
ψ′ + ξ(t) ≤ −k

t
ψ′(t) + ξ(t) ≤ 0

on (0, R), as claimed. Let x ∈ BR(x0) \ {x0} and r = r(x). If ψ′′(r) ≤
ψ′(r)/r, then using h∗ ≥ h we deduce

P−
k (∇2w)− h|∇w| = ψ′′(r) + (k − 1)

ψ′(r)

r
− hψ′(r)

= ξ(r) + (h∗ − h)ψ′(t) ≥ ξ(r) ≥ ξ(r)

1 + h∗R
.
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On the other hand, if ψ′′(r) > ψ′(r)/r, inequality (2.6) and ψ′ ≥ 0 give

P−
k (∇2w)− h|∇w| = k

ψ′(r)

r
− hψ′(r)

≥ (k − 1)
ψ′(r)

r
+

ψ′′(r)

1 + h∗R
− hψ′(r)

= (k − 1)
ψ′(r)

r
+

1

1 + h∗R

[
ξ(r) + h∗ψ′(r)

−k − 1

r
ψ′(r)

]
− hψ′(r)

=

[
k − 1

r

h∗R

1 + h∗R
+

h∗

1 + h∗R
− h

]
ψ′(r)

+
1

1 + h∗R
ξ(r)

≥ 1

R

[
kh∗R

1 + h∗R
− hR

]
ψ′(r) +

ξ(r)

1 + h∗R

≥ ξ(r)

1 + h∗R

pointwise on BR(x0)\{x0}, where the last inequality follows since our as-
sumption h∗ ≥ h/(k − hR) is equivalent to kh∗R

1+h∗R − hR ≥ 0.
The C2-regularity of w and the validity of the pointwise inequality for
F−

k [w] up to x0 easily follow from the very definition of ψ.

We next state our key Lemma, which refines [6, Lem. 4.1].

Lemma 2.2. Fix x0 ∈ Rn and let r(x) = |x − x0|. Fix R > 0 and
k ∈ {1, . . . , n}, let h, h∗ ∈ R+

0 satisfying

hR < k, h∗ ≥ max

{
h,

h

k − hR

}
.

Choose a non-negative, non-increasing function S ∈ C(R+
0 ) satisfying S ≡
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1 on [0, 1] and

∫ ∞

0
S(t)dt = Ŝ <∞ if k = 1,∫ ∞

0
tS(t)max

{
1, | log t|

}
dt = Ŝ <∞ if k = 2,∫ ∞

0
tS(t)dt = Ŝ <∞ if k > 2.

(2.7)

Then, there exists a positive constant C0 = C0(k, h
∗R) such that the fol-

lowing holds: for each a ∈ (0, R/e], there is a C2 function

ux0 : BR(x0) ⊂ Rn → R

such that

(i) ux0 ≥ 0, ux0(x) = 0 if and only if x = x0; (2.8)

(ii) ∥ux0∥∞ ≤


C0ŜRa if k = 1,

C0Ŝa
2 log

(
R
a

)
if k = 2,

C0Ŝa
2 if k > 2;

(2.9)

(iii) F−
k [ux0 ] ≥

kS(r/a)

1 + h∗R
on BR(x0) (2.10)

where F−
k is as in (1.1). In particular, F−

k [ux0 ] ≥ k
1+h∗R on Ba(x0).

Proof. Define ξ(t) = kS(t/a), and set

ψ(t) =

∫ t

0

eh
∗s

sk−1

[∫ s

0
e−h∗σσk−1ξ(σ)dσ

]
ds. (2.11)

Since ψ solves (2.2), ξ satisfies (2.1) and S is non-increasing and 1 in a
neighbourhood of zero, by Lemma 2.1 the function ux0 = ψ(r) solves

F−
k [ux0 ] ≥

ξ(r)

1 + h∗R
on BR(x0).
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To prove the L∞ bound, we change the order of integration and change
variables to get, for k = 1,

ψ(t) =

∫ t

0
e−h∗σξ(σ)

{∫ t

σ
eh

∗sds

}
dσ

≤
∫ t

0
eh

∗(t−σ)(t− σ)ξ(σ)dσ ≤ eh
∗RR

∫ t

0
ξ(σ)dσ

= eh
∗RRka

∫ t/a

0
S(τ)dτ ≤ eh

∗RRkŜa.

For k > 2,

ψ(t) =

∫ t

0
e−h∗σσk−1ξ(σ)

{∫ t

σ

eh
∗sds

sk−1

}
dσ

≤
∫ t

0
eh

∗(t−σ)σk−1ξ(σ)

{∫ t

σ

ds

sk−1

}
dσ

≤ eh
∗R

∫ t

0
σk−1ξ(σ)

σ2−k − t2−k

k − 2
dσ ≤ eh

∗R

k − 2

∫ t

0
σξ(σ)dσ

=
a2keh

∗R

k − 2

∫ t/a

0
τS(τ)dτ ≤ eh

∗RkŜ

k − 2
a2,

and for k = 2,

ψ(t) =

∫ t

0
e−h∗σσξ(σ)

{∫ t

σ

eh
∗sds

s

}
dσ

≤
∫ t

0
eh

∗(t−σ)σξ(σ) log(t/σ)dσ

≤ eh
∗R

∫ R

0
σξ(σ) log(R/σ)dσ

= eh
∗R logR

∫ R

0
σξ(σ)dσ − eh

∗R

∫ R

0
σξ(σ) log σdσ
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that is, changing variables in the integral,

ψ(t) ≤ ka2eh
∗R logR

∫ R/a

0
τS(τ)dτ − ka2eh

∗R

∫ R/a

0
τS(τ) log(aτ)dτ

= ka2eh
∗R log

(
R

a

)∫ R/a

0
τS(τ)dτ − ka2eh

∗R

∫ R/a

0
τS(τ) log τdτ

≤ ka2 log

(
R

a

)
eh

∗R

∫ R/a

0
τS(τ)dτ + ka2eh

∗R

∫ R/a

0
τS(τ)| log τ |dτ

≤ ka2eh
∗R

[∫ ∞

0
τS(τ)max

{
1, | log τ |

}
dτ

]{
log

(
R

a

)
+ 1

}
≤ 2keh

∗RŜa2 log

(
R

a

)
,

where in the last line we used a ≤ R/e, so log(R/a) ≥ 1. This concludes
the proof.

Remark 2.3. In [6, Lem. 4.1], the radial function ux0 is constructed for
k ≥ 2, from a solution ψ of

ψ′′(t) +
θ

t
ψ′(t) = ξ(t) on (0, R),

where θ
.
= k − 1 − hR is assumed to be positive (forcing the stronger

requirement hR < k − 1). In particular, the case θ ∈ (0, 1) yields to
an estimate on ux0 of the form ∥ux0∥∞ ≲ aθ+1. As it will be apparent
in the next theorem, the bound implies a more binding control on E in
terms of the Hausdorff measure H θ+1, leading to the stronger condition
on limφ ∩ Ω described in Remark 1.8.

We are now ready to prove Theorem 1.2, in the following strengthened
form that will be used later to prove Theorem 1.7. Hereafter, given A ⊂
Rn, with 1A we mean the characteristic function of A.

Theorem 2.4. Let Ω ⊂ Rn, n ≥ 3 be an open subset with diameter
R, fix k ∈ {1, . . . , n − 1} and let E ⋐ Ω be a compact subset satisfying
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HΨ(E) <∞, where

Ψ(t) =


Rt if k = 1

t2| log(R/t)| if k = 2

t2 if k ≥ 3.

Fix h ∈ R+
0 satisfying hR < k. Then, there exists a constant C1 =

C1(n, k, hR) with the following property: for each ε > 0 and each Q ∈
(HΨ(E),∞), there exists a relatively compact, open set Uε containing E
and there exists wε ∈ C2(Ω) such that wε < 0 on Ω and

F−
k [wε] ≥ 1Uε on Ω, ∥wε∥∞ ≤ C1Q,

where F−
k is as in (1.1). In particular,

F−
k [wε] +

1

C1Q
wε ≥ 0 on Uε, F−

k [wε] ≥ 0 on Ω,

and
µ̄(F−

k , E) ≥ 1

C1HΨ(E)
.

Proof. Note first that R > diam(E). Choose S(t) ∈ C∞
c ([0, 2)), S ≡ 1 on

[0, 1], and let Ĉ1 denote the constant C0Ŝ in Lemma 2.2. Cover E with a
finite number of balls {Bi}ti=1, Bi = Bai(xi), t = t(Q) ≥ 2 such that

xi ∈ Ω, 0 < ai ≤ R/e,

t∑
j=1

Ψ(aj) ≤ Q.

Define h∗ .
= max{h, h/(k− hR)}. To each i, let ui

.
= uxi given by Lemma

2.2, which is defined and C2 on BR(xi) ⊃ Ω. Define

wj =
1 + h∗R

k

∑
i

(vi − 2∥vi∥∞) ∈ C2(Ω).

Then, wj < 0 on Ω and there, by Lemma 2.2 and the 1-homogeneity and
superadditivity of F−

k , it satisfies

F−
k [wj ] ≥ 1 on

⋃
i

Bi
.
= Uε, F−

k [wj ] ≥ 0 on Ω,
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and ∥wj∥∞ ≤ 21+h∗R
k Ĉ1Q

.
= C1Q. Therefore,

F−
k [wj ] +

1

C1Q
wj ≥ 0 on Uε,

showing that

µ̄(F−
k , E) ≥ µ̄(F−

k , Uε) ≥
1

C1Q
.

The thesis follows by letting Q→ HΨ(E).

Remark 2.5. The constant C0 in Lemma 2.2, hence C1 in Theorem 2.4,
can be bounded from above in terms of k, n and an upper bound for h∗R.
Being

h∗R ≥ max

{
hR,

hR

k − hR

}
,

C0 and C1 can equivalently be bounded from above in terms of a lower
bound for k − hR, as stated in Remark 1.4.

3 From Theorem 1.2 to Theorem 1.7

We premit a few observations. Given a Riemannian manifold M , its
Laplace operator ∆M is initially defined on C∞

c (M), and then extended
in a canonical way (Friedrichs extension) to a self-adjoint operator on a
domain D ⊂ L2(M). The spectrum σ(−∆M ) is a closed subset of R+

0 .
Agreeing with the literature, we split σ(−∆M ) into the discrete spec-
trum σdisc(−∆M ) (eigenvalues with finite multiplicity, which are isolated in
σ(−∆)) and the essential spectrum σess(−∆M ) = σ(−∆M )\σdisc(−∆M ).
For Ω ⊂M open, let λ(Ω) be the bottom of the spectrum of the Friedrichs
extension of (−∆M , C

∞
c (Ω)), which coincides with the first eigenvalue if

∂Ω is Lipschitz. By Persson’s formula [33],

inf σess(∆M ) = sup
K⊂M compact

λ(M\K).

It is known by [7] that λ(M\K) coincides with the principal eigenvalue of
M\K, defined as

sup
{
c ∈ R : ∃0 > v ∈ USC(M\K), ∆Mv + cv ≥ 0 on M\K

}
.
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Therefore, in order to prove that σ(−∆M ) is discrete, equivalently, that
inf σess(−∆M ) = +∞, it is enough to produce, for each ε > 0, a compact
set Kε ⊂M and functions vε < 0 on M\Kε such that

∆Mvε + Cεvε ≥ 0, with Cε → +∞ as ε→ 0.

To this aim, we first assume (i), that is, that HΨ(limφ) = 0, and we
define h .

= ∥H∥∞. From Theorem 1.2, we can take a sequence {Uε}ε>0 of
relatively compact, open sets with Uε ⊂ Ω and

limφ ⊂ Uε, 2cε = µ̄(F−
k , Uε) → +∞ as ε→ 0.

For each ε, let wε ∈ USC(U ε), wε < 0 on U ε solve

F−
k [wε] + cεwε ≥ 0 in viscosity sense on Uε.

Consider the functions vε = wε ◦ φ. To explain the strategy, assume first
that wε is C2. Let {ei} be an orthonormal frame on M in a neighbouhood
of a point. Then, from the chain rule for the Hessian, the Laplacian ∆Mvε
of vε satisfies

∆Mvε =
k∑

i=1

∇2wε(φ∗ei, φ∗ei) + ⟨∇wε, H⟩

≥
k∑

i=1

∇2wε(φ∗ei, φ∗ei)− |H||∇wε|.
(3.1)

The term
k∑

i=1

∇2wε(φ∗ei, φ∗ei)

is the trace of ∇2wε restricted to the tangent plane φ∗TM and thus, by
the characterization in Remark 1.6, it is at least P−

k (∇2wε). Using the
inequality satisfied by wε and |H| ≤ h we therefore get

∆Mvε ≥ P−
k (∇2wε)− |H||∇wε| ≥ F−

k [wε] ≥ −cεwε = −cεvε

on φ−1(Uε). Since Uε contains limφ, M\φ−1(Uε) = Kε is compact, so
{vε} is the desired family of functions which guarantee the discreteness
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of σ(−∆M ). Next, we describe how to apply the above reasoning when
wε has weak regularity. To this aim, we use Theorem 8.1 in [21]. We
briefly explain their result in our setting, referring to [17, 21] for notation
and terminology. We consider the bundle of 2-jets J2(M) and J2(Rn),
respectively over M and Rn. Jets J ∈ J2(Rn) are denoted by (y, r, p, A),
where y ∈ Rn, r ∈ R, p ∈ Rn and A ∈ Sym2(Rn). We consider

F =
{
(r, p, A) ∈ R×Rn × Sym2(Rn) : P−

k (A)− h|p|+ cεr ≥ 0
}

and the subset
F = Rn × F ⊂ J2(Rn)

which is, in Harvey and Lawson’s terminology, a universal Riemannian
subequation with model F. In particular, F is locally jet-equivalent mod-
ulo M to F. The differential inequality satisfied by wε is equivalent to
say that wε is F -subharmonic on Uε (namely, the 2-jet of any C2 function
ϕ touching w from above at a given point belongs to F ). Consider the
pull-back subset

φ∗F =
{
φ∗J : J ∈ F

}
⊂ J2(M),

namely, if J is the 2-jet of the function u, then φ∗J is the 2-jet of the
function u ◦ φ. The computation in (3.1) guarantees that

φ∗F ⊂ G
.
=

{
(x, s, q, B) ∈ J2(M) : tr(B) + cεs ≥ 0

}
.

Note also that G is a (universal, Riemannian) subequation on M . Then,
the Restriction Theorem in [21, Thm. 8.1] implies that vε is φ∗F -subharmonic
on φ−1(Uε), in particular, it is G-subharmonic. Equivalently, vε solves in
the viscosity sense

∆Mvε + cεvε ≥ 0 on φ−1(Uε),

as required. This concludes the proof in case (i). To deal with case (ii),
we shall use the full strength of Theorem 2.4, and also we shall produce a
suitable barrier in a neighbourhood of ∂Ω. First, because of [16, Prop. 2],
in the stated assumption (1.4) there exists a constant δ > 0 depending on

R, k, inf
∂Ω

P−
k (II∂Ω)− ∥H∥∞, inf

∂Ω
P−
k−1(II∂Ω),
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and a function w ∈ Lip(Ω) such that w = 0 on ∂Ω, w < 0 on Ω and

P−
k (∇2w)− h|∇w| ≥ δ on Ω

in the barrier (hence, viscosity) sense. Hence, by the Restriction Theorem,
v
.
= w ◦ φ satisfies in the viscosity sense

∆Mv ≥ δ on M.

For ε > 0, define

Vε =
{
x ∈ Ω : dist(x, ∂Ω) <

√
ε
}
,

and let Eε = limφ∩(Ω\Vε). Note that Eε is compact, and that HΨ(Eε) =

0, thus µ̄(F−
k , Eε) = +∞. By Theorem 2.4, there exists a constant C

independent of ε, an open set Uε and a function wε ∈ C2(Ω), wε < 0 on
Ω satisfying

F−
k [wε] ≥ 1Uε , ∥wε∥∞ ≤ Cε. (3.2)

Set vε = wε ◦φ, so that by restriction ∆Mvε ≥ 1φ−1(Uε), ∥vε∥∞ ≤ Cε. We
study the function

uε
.
= vε − Cε+

√
εv on φ−1(Uε ∪ Vε).

Note that Kε
.
=M\φ−1(Uε ∪ Vε) is compact in M , and that

−2Cε−
√
ε|v| ≤ uε ≤ −Cε.

On φ−1(Uε), we compute in the viscosity sense

∆Muε = ∆Mvε +
√
ε∆Mv ≥ 1 +

√
εδ

≥ − uε
2Cε+

√
ε∥v∥∞

+
√
εδ ≥ −C1√

ε
uε,

for some constant C1 = C1(C, ∥v∥∞, δ). On the other hand, on φ−1(Vε),
denoting with L the Lipschitz constant of w we deduce |v| ≤ L

√
ε, hence

∆Muε = ∆Mvε +
√
ε∆Mv ≥

√
εδ

≥ −
√
εδ

2Cε+
√
εv
uε ≥ − δ

(2C + L)
√
ε
uε

.
= −C2√

ε
uε.

Summarizing,

∆Muε +
min{C1, C2}√

ε
uε ≥ 0 on φ−1(Uε ∪ Vε),

which implies inf σess(−∆) = +∞ by the arbitrariness of ε.



232 G.P. Bessa, L.P.M. Jorge, L. Mari

References

[1] A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J.
López, Every bordered Riemann surface is a complete conformal
minimal surface bounded by Jordan curves, Proc. Lond. Math. Soc.
(3) 111 (2015), no. 4, 851–886.

[2] A. Alarcón, F. Forstnerič, The Calabi-Yau problem, null
curves, and Bryant surfaces, Math. Ann. 363 (2015), no. 3-4, 913–
951.

[3] A. Alarcón, J. Globevnik, F.J. López, A construction of com-
plete complex hypersurfaces in the ball with control on the topology,
J. Reine Angew. Math. 751 (2019), 289–308.

[4] A. Alarcón, F.J. López, Complete bounded embedded complex
curves in C2, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 8, 1675–1705.

[5] L. Ambrosio, H.M. Soner, Level set approach to mean curvature
flow in arbitrary codimension, J. Differ. Geom. 43 (1996), 693–737.

[6] G.P. Bessa, L.P. Jorge, L. Mari, On the spectrum of bounded
immersions, J. Differ. Geom. 99 (2015), no. 2, 215–253.

[7] H. Berestycki, L. Nirenberg, S. Varadhan, The principle
eigenvalue and maximum principle for second order elliptic opera-
tors in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1,
47–92.

[8] I. Birindelli, G. Galise, H. Ishii, Existence through convexity
for the truncated Laplacians, Math. Ann. 379 (2021), no. 3-4, 909–
950.

[9] I. Birindelli, G. Galise, H. Ishii, Towards a reversed Faber-
Krahn inequality for the truncated Laplacian, Rev. Mat. Iberoam. 36
(2020), no. 3, 723–740.

[10] I. Birindelli, G. Galise, H. Ishii, A family of degenerate elliptic
operators: maximum principle and its consequences, Ann. Inst. H.
Poincaré Anal. Non Linéaire 35 (2018), no. 2, 417–441.



Principal eigenvalue of truncated Laplacian and submanifolds 233

[11] H. Brezis, P.-L. Lions, An estimate related to the strong maxi-
mum principle. Boll. Un. Mat. Ital. A 17 (1980), no. 5, 503–508.

[12] X. Cabré, Isoperimetric, Sobolev, and eigenvalue inequalities via
the Alexandroff-Bakelman-Pucci method: a survey, Chin. Ann. Math.
Ser. B 38 (2017), no. 1, 201–214.

[13] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations,
Colloquium Publications Vol. 43, Amer. Math. Soc., Providence, RI,
(1995).

[14] L. Caffarelli, Y.Y. Li, L. Nirenberg, Some remarks on singular
solutions of nonlinear elliptic equations. I, J. Fixed Point Theory Appl.
5 (2009) 353–395.

[15] L. Ferrer, F. Martín, W. Meeks III, Existence of proper min-
imal surfaces of arbitrary topological type, Adv. Math. 231 (2012),
no. 1, 378–413.

[16] E.S. Gama, J.H.S. de Lira, L. Mari, A.A. de Medeiros, A
barrier principle at infinity for varifolds with bounded mean curvature,
To appear on J. London Math. Soc, available at arXiv:2004.08946.

[17] F.R. Harvey, H.B. Lawson Jr., Dirichlet duality and the nonlin-
ear Dirichlet problem on Riemannian manifolds, J. Differential Geom.
88 (2011), 395–482.

[18] F.R. Harvey, H.B. Lawson Jr., Geometric plurisubharmonicity
and convexity: an introduction, Adv. Math. 230 (2012), no. 4-6, 2428–
2456.

[19] F.R. Harvey, H.B. Lawson Jr., p-convexity, p-
plurisubharmonicity and the Levi problem, Indiana Univ. Math. J.
62 (2013), no. 1, 149–169.

[20] F.R. Harvey, H.B. Lawson Jr., Potential theory on almost com-
plex manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 1, 171–
210.



234 G.P. Bessa, L.P.M. Jorge, L. Mari

[21] F.R. Harvey, H.B. Lawson Jr., The restriction theorem for fully
nonlinear subequations, Ann. Inst. Fourier (Grenoble) 64 (2014),
no. 1, 217–265.

[22] E. Heinz, On the Nonexistence of a Surface of Constant Mean Cur-
vature with Finite Area and Prescribed Rectifiable Boundary, Arch.
Rational Mech. Anal. 35 (1969), 249–252.

[23] L.P. Jorge, F. Tomi, The barrier principle for minimal submani-
folds of arbitrary codimension, Ann. Global Anal. Geom. 24 (2003),
no. 3, 261–267.

[24] L.P. Jorge, F. Xavier, A complete minimal surface in R3 between
two parallel planes, Ann. of Math. 112 (1980), no. 2, 203–206.

[25] B.P. Lima, J.F.B. Montenegro, L. Mari, F.B. Vieira, Density
and spectrum of minimal submanifolds in space forms, Math. Ann.
366 (2016), no. 3-4, 1035–1066.

[26] F. Lopez, F. Martín, S. Morales, Adding handles to Nadi-
rashvili’s surfaces, J. Differential Geom. 60 (2002), no. 1, 155–175.

[27] F. Martín, S. Morales, Complete proper minimal surfaces in
convex bodies of R3, Duke Math. J. 128 (2005), 559–593.

[28] F. Martín, S. Morales, Complete proper minimal surfaces in
convex bodies of R3. II. The behavior of the limit set, Comment.
Math. Helv. 81 (2006), 699–725.

[29] F. Martín, N. Nadirashvili, A Jordan curve spanned by a com-
plete minimal surface, Arch. Ration. Mech. Anal. 184 (2007), no. 2,
285–301.

[30] N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on neg-
atively curved and minimal surfaces, Invent. Math. 126 (1996), 457–
465.

[31] A.M. Oberman, L. Silvestre, The Dirichlet problem for the con-
vex envelope, Trans. Am. Math. Soc. 363 (2011), 5871–5886.



Principal eigenvalue of truncated Laplacian and submanifolds 235

[32] E. Parini, J. Rossi, A. Salort, Reverse Faber-Krahn inequality
for a truncated Laplacian operator, available at arXiv:2003.12107.

[33] A. Persson, Bounds for the discrete part of the spectrum of a
semibounded Schrödinger operator, Math. Scand. 8 (1960), 143–153.

[34] A. Quaas, B. Sirakov, Principal eigenvalues and the Dirichlet
problem for fully nonlinear elliptic operators, Adv. Math. 218 (2008),
105–135.

[35] J.P. Sha, p-convex Riemannian manifolds, Invent. Math. 83 (1986),
437–447.

[36] M. Struwe, Plateau’s problem and the calculus of variations,
Princeton, New Jersey, Princeton University Press, 1988.

[37] B. White, The maximum principle for minimal varieties of arbitrary
codimension, Comm. Anal. Geom. 18 (2010), no. 3, 421–432.

[38] B. White, Controlling area blow-up in minimal or bounded mean
curvature varieties, J. Differential Geom. 102 (2016), no. 3, 501–535.

[39] H. Wu, Manifolds of partially positive curvature, Indiana Univ.
Math. J. 36 (1987), no. 3, 525–548.


	Introduction
	Proof of Theorem 1.2
	From Theorem 1.2 to Theorem 1.7

