
Università degli Studi di Milano

Ph.D. Program in Computer Science

(XXXVI cycle)

Department of Computer Science
“Giovanni degli Antoni”

A thesis submitted for the degree of

Doctor of Philosophy

Non-stationary multiarmed bandits for
satiation and seasonality phenomena in

music recommender systems
Subject Area: INF/01

Author:
Giulia Clerici

Supervisor:
Nicolò Cesa-Bianchi

Co-supervisor:
Pierre Laforgue

PhD Coordinator:
Roberto Sassi

Academic Year 2022-2023

i

“Mi spiegò che a lei non servisse riuscire, per essere felice: il fatto stesso di
fare delle esperienze anche diverse tra loro e non tutte finalizzate a un risultato
le dava delle sensazioni. Belle o brutte che fossero, le riconosceva come segnali
di vitalità. Questo le permetteva di sperimentarsi, vedere che effetto le facesse,
scremare cosa fosse adatto a lei e cosa no. Le dava l’idea di stare scegliendo dal
quasi sconfinato menu delle offerte della vita. Soffriva, molto e in solitudine
- cosa che le faceva male ma non paura. In qualche modo, anche nel dolore
avvertiva una dolcezza, un esistere. Prendere contatto con la crisi era per Ambra
un passaggio necessario, un rilevatore di autenticità affaticante ma prezioso,
che le rappresentava un’occasione per incontrare se stessa e conoscersi nel suo
provarci. Prima della riuscita, nonostante la riuscita, abdicando alla riuscita.”

Stefania Andreoli

ii

Abstract

This thesis delves into theoretical aspects of non-stationary multiarmed ban-
dits, motivated by their application to music recommender systems. An in-
trinsic challenge of such systems lies in evolving user preferences. Rather than
finding a single optimal item, the objective is to craft an ordered sequence
of items aligning with the user’s behaviour. Indeed, these systems need to
address dynamic user preferences, characterized by phenomena like satiation.
Our goal is to study these phenomena in a sequential learning setting charac-
terized by partial feedback, adopting multiarmed bandits as the approach to
tackle this problem. We first introduce a novel model with finitely many arms,
which handles contrasting phenomena like satiation and seasonality in a unified
framework. We formalize this model, called Last Switch Dependent Bandit, as
a non-stationary multiarmed bandit where the expected reward of an arm is
determined by its state, which indicates the time elapsed since the arm last
took part in a switch of actions. This model can generalize to different types of
non-stationarity as we relaxed many typical assumptions. Furthermore, it can
recover state-dependent bandits in the literature. In this thesis, we will discuss
this bandit problem and the solution proposed to solve it, which is based on up-
per confidence bounds and techniques derived from combinatorial semi-bandits.
We conclude this work by providing an upper bound of the regret, to assess the
performance of the proposed solution.
Aware of the limitations of finite action sets, which are not always representa-
tive of real-world applications, a new linear bandit model is proposed to han-
dle non-stationary phenomena within an infinite set of actions, posing complex
challenges for cross-arm dependencies. We formalize a model called Linear Ban-
dit with Memory, where the expected reward of an action is influenced by the
learner’s past actions in a fixed-size window, called memory matrix. Specifically,
the two parameters m and γ, the size of the window and the exponent respec-
tively, characterizing this memory matrix can produce two types of behaviours:
rotting and rising. In our discussion, we show how our model generalizes sta-
tionary linear bandits, as well as partially recovering rested rotting and rising
bandits in the limit m→ +∞. We study the complex problem of modelling the
interactions among arms in a linear non-stationary setting and propose a solu-
tion to solve it. Furthermore, we study the setting where m and γ are unknown
and propose a meta-bandit algorithm for model selection to jointly learn the
parameters and solve the bandit problem. For both models, our contributions
consist in defining novel multiarmed bandit problems, proving sound theoretical
guarantees, and discussing our contributions with respect to the literature.
Additionally, within the context of music streaming services, we present an ad-
ditional line of research exploring the Spotify™ music credits network. We rep-
resent this music credits network as a directed graph and study the relationship
between music genres and graph-related metrics. After observing interesting
patterns on several centrality measures conditioned on music genre, we intro-
duce a novel node-wise index of reciprocity as a potential index for informed
recommendations.

iii

Statement of Contribution
The content of Chapter 4 is based on the published paper: P. Laforgue, G.
Clerici, N. Cesa-Bianchi, Ran Gilad-Bachrach. “A Last Switch Dependent Anal-
ysis of Satiation and Seasonality in Bandits”. Proceedings of the 25th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS). PMLR
151:971-990, 2022 ([Laforgue et al., 2022]).
Chapter 5 is based on the manuscript: G. Clerici, P. Laforgue, N. Cesa-Bianchi.
“Linear Bandits with Memory”, currently under review ([Clerici et al., 2023]).
Chapter 6 is based on the published paper: G. Clerici, M. Tiraboschi. “Cita-
tion is not Collaboration: Music-Genre Dependence of Graph-related Metrics
in a Music Credits Network ”. Proceedings of the Sound and Music Computing
Conference 2023. ISBN 978-91-527-7372-7 ([Clerici* and Tiraboschi*, 2023.]).

iv

Acknowledgements
I would like to thank my supervisor, Nicolò Cesa-Bianchi, and co-supervisor,
Pierre Laforgue, for everything they taught me during the last three years. I
would also like to thank the reviewers for kindly agreeing to review this thesis
and for their helpful feedback.

Thank you to all the people who are, or were, part of the LAILA lab and
everyone I met during these years. I would also like to thank the LIM lab for
their continued support during all my academic years. You have always shown
me unmatched encouragement and uplifting support, especially when I needed
it the most.

I would also like to thank Women In Machine Learning (WiML) for the amazing
opportunities they offered me. I could have only dreamt about taking part and
organizing these events on the other side of the world to bring women in ML
together. I cannot describe the joy and fulfilment it gave me to help grow this
community.

But my biggest thank you goes to my family and friends. Only you know how
hard and challenging these years have been. Thank you for all your love and
support, and for listening to all my complaints. I cannot express how grateful I
am for all the kindness you have shown me during the hardest moments. Thank
you for the laughs and happy moments we shared during our family Sunday
lunches, improvised dinners with friends, last-moment sushi nights, and friend
trips. These moments were an extremely important source of joy and peace
during the hardships of the last few years. It sounds obvious to say, but thank
you for loving me for who I am, and not for what I do or for the results I achieve.
I love you immensely.

Lastly, I would like to thank Matteo. You have seen all the ups and downs of the
past three years, more than anyone else. You might be the only one who truly
understood how tough it has been during certain times. During this period, and
much before that, you have always shown me an incredible amount of patience,
support, and love. Whenever I felt everything was wrong and my self-esteem
was so low, you were always there to show me how much I had accomplished
and to remind me I could achieve everything I wanted. You always know how
to make everything right. Every day I spend with you is the most precious gift.

The hardships of the past few years have taught me a lot about myself. But
I think the greatest lesson I learned, more than any bandits theorem, is that
we’re all humans, we’re all fallible, and we’re not our jobs. It taught me the
importance of taking care of yourself before everything else, that life is full
of possibilities if you’re willing to grasp them and demand them, and that
perfection is the ugliest lie we tell ourselves. I cheer for all the beautiful mistakes
I’ll make in the future, with optimism in the face of uncertainty.

v

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Multiarmed Bandits . 5
1.3 The Spotify™ network as a directed graph 8
1.4 Contributions and Publications 8
1.5 Structure of the thesis . 9

2 The theory behind multiarmed bandits 11
2.1 Stochastic K-armed bandits . 13
2.2 Adversarial multiarmed bandits 17
2.3 Adversarial linear multiarmed bandits 19
2.4 Stochastic contextual multiarmed bandits 20
2.5 Stochastic linear multiarmed bandits 21
2.6 Combinatorial (semi)-bandits 23
2.7 Non-stationary multiarmed bandits 25

3 The state of the art of non-stationary bandits 26
3.1 Exogenous non-stationarity . 27

3.1.1 Piece-wise stationary bandits 27
3.1.2 Non-stationary bandits with variation budget 35
3.1.3 Rotting restless bandits 37
3.1.4 Rising restless bandits 39

3.2 Endogenous non-stationarity . 40
3.2.1 Rested bandits . 41

Rotting rested bandits 41
Rising rested bandits . 48
Fidelity bandits . 49

3.2.2 State-dependent bandits 51
Rebounding bandits . 57
Blocking bandits . 58

4 A novel non-stationary bandit model with finitely many arms 62
4.1 Motivations and applications . 63
4.2 The Last Switch Dependent bandit model 64
4.3 The estimation problem . 78
4.4 The proposed solution . 83
4.5 Experiments on the LSD bandit setting 90
4.6 Conclusions . 94

vi

5 A novel linear non-stationary bandit model 95
5.1 Motivations and applications . 96
5.2 Linear Bandits with Memory (LBM) 97
5.3 The approximation errors . 102
5.4 The estimation problem . 104
5.5 An approach for model selection 109
5.6 Experiments on the LBM setting 111
5.7 Conclusions . 114

6 The Spotify™ network 116
6.1 Background and literature review 117
6.2 The Spotify™ data . 118
6.3 Theoretical definitions . 119

6.3.1 Reciprocity . 119
6.3.2 Reachable Sets . 120
6.3.3 Centrality Metrics . 120

In-degree . 120
Closeness . 120
Lin Centrality . 121
Harmonic Centrality . 121
PageRank . 121

6.4 Analysis of several centrality measures on the Spotify™ music
credits network . 121

6.5 The importance of a directed graph 122
6.6 A new node-wise index of reciprocity 124
6.7 Conclusions . 127

7 Conclusions 129
7.1 Future developments . 131

A Appendix 133
A.1 Proof of the regret bound of OFUL 133
A.2 Proof of the regret bound of CombUCB1 134
A.3 Proof of Proposition 5.4 . 135
A.4 Proof of Theorem 5.6 . 136
A.5 Proof of Corollary 5.8 . 140

vii

List of Figures

3.1 Overview of the state of the art of non-stationary bandits 28

4.1 Comparison between LSD bandit and models with delay-dependent
rewards . 65

4.2 First experiment: reward functions of an instance of LSD bandit 91
4.3 First experiment: comparing the performance of ISI-CombUCB1

against CombUCB1 and OracleGreedy 92
4.4 First experiment: additional comparison against approaches based

on calibration sequences . 93
4.5 Second experiments: reward functions of an instance of LSD bandit. 93
4.6 Experiments: the suboptimality of Oracle Greedy 94

5.1 The effects of the memory matrix on the expected rewards. . . . 98
5.2 The rotting experiment: performance of O3M, Bandit Combiner

on O3M, and other benchmarks. 113
5.3 The rising experiment: performance of O3M against natural base-

lines. 113
5.4 Comparison of the regret of O3M and OM-Block. 115

6.1 The distributions of several centralities conditioned on the music
genre. 122

6.2 Comparison of the thresholded graphs for an instance of the SGC
model and the Spotify™ digraph. 123

6.3 Heatmap of the distribution of in-degrees and out-degrees of the
Spotify™ music credits network. 124

6.4 Reciprocity distributions conditioned on the music genre. 127

1

Notation

Bandits notation

N set of natural numbers N = {0, 1, 2, . . . }
N+ set of positive natural numbers
R set of real numbers
Z set of integer numbers
Z− set of negative integer numbers Z− =

{−1,−2, . . . }
B∗ a set of finite sequences over B, B∗ = ∪∞i=0Bi

d dimension
T temporal horizon of the sequential game, T ∈ N
t index for time steps t = 1, . . . , T
A set of actions, also called arms
K cardinality of the set of actions, when the set-

ting considers a finite set of actions
a a general action, also called arm
a(i) action where the index i = 1, . . . , K indicates

the specific action in the set A
at action played at time step t
a∗ optimal fixed action
a∗t optimal action at time t
Pa(i) reward distribution associated with action a(i)
p set of rewards distributions associated to ac-

tions, p = (Pa : a ∈ A)
Xt reward obtained by the learner at time t
Xi for i = 1, . . . , K, reward obtained by the learner

after playing arm ai
µa(i) , µi mean reward of action a(i)
Ht history of past actions and rewards Ht =

{a1, X1, . . . , at−1, Xt−1}
RT regret over the horizon T
E expectation
π a policy, also referred to as strategy
π∗ optimal policy, also called OPT
v vector of actions, the size is specified in the con-

text
Yt sum of rewards collected at time t by a combi-

natorial bandit
a a general super-arm in a combinatorial bandit

List of Figures 2

a(i) the i-th element of a super-arm in a combinato-
rial bandit

Bachmann-Landau notation
Given the functions f, g : N→ [0,∞):

f(T) = O(g(T))↔ lim
T→∞

sup
f(T)

g(T)
<∞

f(T) = o(g(T))↔ lim
T→∞

f(T)

g(T)
= 0

f(T) = Ω(g(T))↔ lim
T→∞

inf
f(T)

g(T)
> 0

f(T) = ω(g(T))↔ lim
T→∞

inf
f(T)

g(T)
=∞

f(T) = Θ(g(T))↔ f(T) = O(g(T)) and f(T) = Ω(g(T))

3

Chapter 1

Introduction

This thesis aims at studying theoretical models of multiarmed bandits to ad-
dress non-stationary phenomena in music recommender systems. In particular,
we are inspired by the research problems related to the non-stationarity of users’
preferences towards songs in music recommender systems and chose multiarmed
bandits as a method to tackle this problem. Although we mention this appli-
cation, we clarify that our research on non-stationary multiarmed bandits for
recommender systems is purely theoretical and can be applied to a variety of
applications. Before diving into the details of our work, we introduce the set-
ting and some motivations useful to understand the following chapters in this
manuscript.

1.1 Motivation
Since the Nineties, the World Wide Web has witnessed a remarkable expan-
sion, moving from its origins in scientific and academic institutions to not only
companies but also everyday individuals, thus becoming accessible to an ever-
growing number of people. This medium’s popularity grew rapidly and became
an outlet for business activities and e-commerce, showing a rapid growth of on-
line retail platforms. The number of available products and services exploded
and users started to face the challenge of finding relevant items from large cat-
alogues. Traditional search engines provided a means to navigate the web, but
they were not well-suited for personalized recommendations. In the meantime,
these circumstances led to the observation of the so-called long tail phenomenon
[Rajaraman and Ullman, 2011]. This phenomenon describes a distribution of
the popularity of items in e-commerce, where there is a small number of items
whose popularity is very high and a large quantity of products whose number of
sold items is very low. This is one of the situations where an e-commerce man-
ager could exploit the benefits of a recommender system. Indeed, these systems
could provide suggestions tailored to the individual preferences of specific users
who could appreciate those low-popularity items. Overall, since an online plat-
form could gather thousands or millions of items, a much larger number with
respect to catalogues in a physical store, it is necessary to adopt a technology
able to direct the user towards certain sets of items of their interest. From the
provider’s perspective, recommender systems are a great tool to compensate for

Chapter 1. Introduction 4

the possibility that the user is overwhelmed by the plethora of possible choices
and leaves the platform. Thus, the emergence of recommender systems can be
attributed to the recognition that leveraging user’s preferences could greatly
enhance the online shopping experience. Providing a personalized service can
be critical, especially in a world characterized by an exponentially increasing
data flood [Rydning et al., 2018]. For this reason, recommender systems are
employed in a broad range of applications, spanning various industries and sec-
tors from e-commerce, and online advertisement to entertainment. They can
be a valuable resource for e-commerce by exploiting the users’ browsing history,
purchase behaviour, and preferences to enhance the shopping experience and
increase sales. In streaming services, they can provide personalized recommen-
dations for movies, TV shows, songs, podcasts, and other multimedia content
based on the user’s preferences, ratings, and viewing history. They can also
be used for news and content aggregation, suggesting relevant articles, news
stories, blogs, and other material based on user interests, and reading habits;
as well as for personalized advertising, by targeting users with relevant adver-
tisements and promotions based on their demographics, browsing behaviour,
and purchase history. Other industries where these systems can be useful in-
clude social media platforms, job portals, financial services, gaming, food and
restaurant delivery, personalized medicine, healthcare interventions, and many
others.
Recommender systems are essentially responsible for providing suggestions to
a user on an online platform. In such platforms, the system provides a cata-
logue containing a vast amount of products, called items, from which the user
can select one to buy or enjoy, whether they are an e-commerce or an enter-
tainment platform. After consuming the product, they can provide their level
of satisfaction by rating the item, usually with a numeric value on a certain
scale. Using the user’s past ratings and clicks, and sometimes combining them
with the knowledge gained through other users and the features associated with
the items, the system learns the user’s taste and recommends items they most
likely would enjoy. The fundamental goal here is to find the best product, or
the best set of products, for a particular user. When a user joins a platform
for the first time, the system has no information concerning that person’s taste
and preferences and has to deal with the problem of being able to suggest an
item immediately, without having a history of their preferences. This is called
the cold-start problem. In entertainment platforms, this is usually solved by
presenting the first-time user with a list of items and asking them to explicitly
rate some items or select the products they prefer, in order to collect some
information about their taste. For example, when joining a movie streaming
service, the user may be presented with a list of movies and asked to pick their
favourites. By doing so, the system can collect some initial information about
the user’s preferences. However, this is not always possible depending on the
type of platform. This means that the system is required to process data se-
quentially, gaining more information with each interaction between the user and
the platform. It is from these types of settings, where the intelligent system
needs to learn patterns given a sequential stream of data, that online machine
learning finds some of its most convincing applications. Online learning is the

Chapter 1. Introduction 5

most suited class of methods to deal with environments where the learner is not
given a dataset but needs to learn sequentially with each data sample presented
one at a time.
In the most simple settings, the user’s preferences remain unchanged. However,
realistic scenarios are characterized by the fact that the user’s predilection to-
wards an item may change over time depending on the history of the user’s
fruition of items. This is the case, for example, of music streaming platforms.
For instance, after a user listens to several jazz songs, he might get bored of
listening to the same genre and would want to move to some rock songs. When
we observe this pattern, we notice that the user’s taste is not fixed, but the level
of satisfaction with a product changes with respect to the items he previously
experienced. Furthermore, another important property of these platforms is the
fact that the system observes an explicit rating only for those items that have
been consumed by the user. In practical terms, it means that the system has no
knowledge of the exact rating that the user would have assigned to other items
if they had made a different choice at that particular time. This peculiarity,
which seems reasonable and natural in practical applications of everyday life,
is an important matter when choosing the techniques used to implement the
recommender system and constitutes a major difficulty for the theoretical study
of these models. As a result of the phenomena we mentioned, the demand for
new cutting-edge algorithms has been rising recently.
While several techniques can be adopted to develop a recommendation engine,
a relevant approach that has been prospering in the last few decades and that
is the focus of this research is the multiarmed bandit model. We focus on
partial feedback, meaning that the system receives feedback only for the specific
item that has been chosen, and not for all the other items in the set if they
were chosen instead. The multiarmed bandit model is purposely designed to
deal with partial feedback settings in online learning. Moreover, this class of
models proves to be appropriate when dealing with data that is combinatorially
large and often incomplete, which is the case of recommendation systems that
are characterized by vast online catalogues and by the impossibility of a user
to express their preference for all available items. Combining these aspects,
multiarmed bandits are best suited for this environment since they encourage
a good balance between exploitation and exploration, which is fundamental in
this type of setting. In the rest of this thesis, we will use the terminology
“multiarmed bandit” and “bandit” interchangeably.

1.2 Multiarmed Bandits
Before introducing multiarmed bandits, it is appropriate to introduce the broader
class of methods to which they belong, which is online learning. Statistical ma-
chine learning methods are usually given a dataset, which can be annotated
or not, right from the beginning and use it to build a model able to predict
labels of new never-seen-before data points. On the other hand, online learning
is a sequential learning protocol, which means that it is characterized by the
fact that the learner does not have access to the entire training dataset but
accesses data in a sequential fashion, processing one example at a time step.

Chapter 1. Introduction 6

This framework unveils its practicality when dealing with environments char-
acterized by sensor data, user-interaction data, and financial data, for example.
The general framework of online learning consists of a sequential game with a
temporal horizon T , which can be finite or infinite, known or unknown. Given
an initial predictor h1 ∈ H, where H is a class of predictors, in each time
step t = 1, . . . , T the learner observes a data point (xt, yt), receives a reward
r(ht(xt), yt), or a loss lt(ht(xt), yt) = 1 − r(ht(xt), yt), which for simplicity can
be assumed to be bounded in [0, 1]. This reward is used to update the predic-
tor ht → ht+1. So given an algorithm A adopted by the learner, this protocol
generates a sequence of models h1, . . . , ht where we have a different predictor at
each time step. Each one of these predictors differs from the previous one for
the incremental knowledge gained as the game proceeds. To measure the per-
formance of an algorithm, we introduce the regret at horizon T as the following
quantity RT =

∑T
t=1 rt(h

∗
t) −

∑T
t=1 rt(ht), where h∗t = argmaxh∈H

∑t
s=1 rt(ht).

Essentially, the regret is defined as the difference between the cumulative re-
wards collected by the optimal policy and the total rewards collected by the
learner over the horizon T . We use the notation h∗t to indicate the best predic-
tor at time t, the one that maximizes the cumulative rewards up to time t. The
goal of the learner is to exhibit a sublinear regret such that RT = o(T), given
that, if the rewards are bounded in [0, 1], the regret cannot grow more than
linearly. The reader should note how the optimal policy is not always known,
which means that it is not always possible to measure the regret in practical
applications. However, the regret remains an important measure to study and
estimate the quality of the algorithm from a theoretical point of view. Among
the different variants that online learning can take, the current work focuses on
the special case of partial feedback settings, where the learner has access to a
finite set of actions and the models are probability distributions over this set.
We assume that at each time step the learner can play one action and only
observe the reward for the chosen action and not for all the possible actions in
the set. The family of algorithms that addresses this type of setting is called
multiarmed bandits.
The bandit problem is a mathematical model depicting the situation where a
subject is faced with the dilemma of making a decision in the face of uncertainty
on the payoffs resulting from the available choices. Assuming the user makes
some decisions and can observe the payoffs of his actions, he is faced with
another dilemma: Is it better to exploit the action that returns the highest
payoff? Or is it better to move to another one, that might return a higher reward
in future steps? This tradeoff between exploitation and exploration, called
exploration-exploitation dilemma, deeply characterizes the bandit problem.
The multiarmed bandit problem consists of a sequential game between a learner
and an environment over the horizon T , which is a positive natural number rep-
resenting the total number of rounds. In each round t ∈ {1, . . . , T} the learner
is faced with a set of available actions, also called arms, A = {a(1), . . . , a(K)},
where each one is associated with a reward unknown to the learner. In each
round t the learner must choose an action at and at the end of the round the
reward Xt ∈ R associated with the chosen action is revealed. The objective of
the learner is to maximize the reward collected over the horizon. The future is

Chapter 1. Introduction 7

unknown to the learner, which at time t can only base their choices on the infor-
mation collected in the past history, defined as Ht−1 = {a1, X1, . . . , at−1, Xt−1}.
The decisions of the learner are determined by a strategy, also called policy,
which is a mapping from histories to actions or probability distributions over
actions in case of randomized strategies. The learner must decide what strat-
egy to follow in order to maximize the cumulative reward. This policy is chosen
from a set of policies, called competitor class. The performance of the learner
is measured by the regret, which is the difference between the reward collected
by the optimal policy in the competitor class and the expected reward collected
by the policy chosen from the same class and played by the learner.
Different assumptions lead to different types of bandits. Stochastic bandits
assume that the environment draws the rewards in response to each action
from an unknown distribution specific to that action and independent from the
reward distributions of other actions. Therefore, a stochastic bandit consists of
a set of distributions v = (Pa : a ∈ A) such that at time t ∈ {1, . . . , T} the
reward Xat of the chosen action at is sampled from the distribution Pat .
When these distributions remain unchanged in each round, we are talking of
stationary stochastic bandits. However, there is another category of bandits
that assumes that the reward distributions of the arms change over time. This
set is called non-stationary stochastic bandits.
Furthermore, there is a different class of bandits for which the previous assump-
tions drop and the environment can secretly choose the rewards for each action
after examining the code of the algorithm proposed by the learner. This model
where the environment has complete control over the payoffs is called adver-
sarial multiarmed bandit [Auer et al., 2002] since the environment acts as an
adversary to the learner.
In the context of recommendation systems, additional information is usually
presented in association with users and items. However, the models mentioned
above do not use this kind of data. Ignoring this side information would not be
advisable since the quality of the predictions can greatly benefit from this data.
Hence, a particular class of bandits emerges from this opportunity and is called
contextual multiarmed bandits ([Li et al., 2010], [Woodroofe, 1979]).
We will provide a more in-depth discussion on multiarmed bandits in section 2.
This introduction serves the purpose of initiating the discussion on multiarmed
bandits as the main topic of this thesis. The research contribution we will
present is purely theoretical but is focused on the applications of these models
in the setting of music recommender systems.
Although this is the setting we focus on, we specify how music recommender
systems are not the only application for these models. Indeed, the multi-
armed bandit models we formalize can be employed to address non-stationary
in other settings like social media platforms, news and jobs portals, online edu-
cational platforms, financial services, gaming industries, personalized medicine,
and healthcare interventions.

Problem Formulation. The high-level challenge of this thesis is to address
non-stationary phenomena in music recommender systems by introducing novel
models of multiarmed bandits able to generalize to different behaviours.

Chapter 1. Introduction 8

The research effort of this dissertation aims to address the following questions:

• Given the different bandit models in the literature, is it possible to for-
malize a multiarmed bandit model able to generalise to different forms of
non-stationarity? If so, which theoretical guarantees can be proven?

• Is it possible to aim at the same objective in the linear setting, where the
learner deals with an infinite set of actions? In this case, what are the
guarantees on the regret that can be formalized?

1.3 The Spotify™ network as a directed graph
Besides the research on non-stationary multiarmed bandits, we also discuss
a contribution to the research analysis of music credits networks in a music
streaming platform. We base our work on the data provided by Spotify™, which
is used to build a Spotify™ music credits network. This network is modeled as
a directed graph where nodes represent artists and arcs collaborations between
them. Using this data and its representation, we investigate the relationship
between some graph-related metrics and music genre. Specifically, we are inter-
ested in the analysis of the Spotify™ graph to better understand the crediting
patterns revealed in this network, with the objective of studying this data and
seeing if there could be some exploitable information that can be used when
providing recommendations in music streaming platforms.

Problem Formulation. This line of research is concerned with the analysis
of several centrality measures on this directed graph and aims to find an ex-
planation for certain phenomena observed in this analysis. While a previous
work on the undirected graph proposed a model to interpret these phenomena,
we showed that it is not able to illustrate the different types of collaborations
between two artists.
Given these premises, the research question here is: Can we better motivate the
centrality of certain music genres by looking at the directed graph of the credits
network? Can we propose a new index to distinguish between two different
crediting patterns such as citation and collaboration?

1.4 Contributions and Publications
The contributions presented in this manuscript are the following:

• We propose a new model for the class of non-stationary stochastic mul-
tiarmed bandits with finitely many arms aimed at addressing research
problems that arise from music recommender systems. In particular, we
introduce a bandit model able to generalise to different forms of non-
stationarity in a single framework. We call this model the Last Switch
Dependent Bandit, study this setting, and provide algorithmic guarantees
on the regret.

Chapter 1. Introduction 9

• We contribute to the research of linear bandits by introducing a new
model able to generalize to different behaviours of non-stationarity in the
linear setting with an infinite set of actions. When presenting this work,
we show how it can recover previous multiarmed bandit models from the
literature, showing its ability to generalise to standard linear, rotting, and
rising bandits. We call this model Linear Bandits with Memory.

• In our solution to Linear Bandits with Memory, we propose an algorithm
based on the knowledge of two parameters. In order to overcome this
limitation, we propose a bandit model selection algorithm to adapt our
solution to the setting where the learner has no access to the true values
of these parameters. We analyse the meta-bandit and provide guarantees
on its regret.

• Lastly, we present a study of the Spotify™ music credits network, analysing
the relationship between music-genre and graph-related metrics, specifi-
cally centrality measures. We introduce a node-wise index of reciprocity
to better explain the patterns observed in our analysis.

The contributions of this thesis are presented in the following publications:

• P. Laforgue, G. Clerici, N. Cesa-Bianchi, Ran Gilad-Bachrach. “A Last
Switch Dependent Analysis of Satiation and Seasonality in Bandits”. Pro-
ceedings of the 25th International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR 151:971-990, 2022 [Laforgue et al., 2022]

• G. Clerici, M. Tiraboschi. “Citation is not Collaboration: Music-Genre
Dependence of Graph-related Metrics in a Music Credits Network ”. Pro-
ceedings of the Sound and Music Computing Conference 2023. ISBN
978-91-527-7372-7 [Clerici* and Tiraboschi*, 2023.]

and the following manuscript:

• G. Clerici, P. Laforgue, N. Cesa-Bianchi. “Linear Bandits with Memory”.
Currently under review. [Clerici et al., 2023].

1.5 Structure of the thesis
The thesis is structured into seven chapters and an appendix. Here, we briefly
describe the content of each chapter.

• In Chapter 1, we introduce and motivate the work presented in this
manuscript. We briefly present the topics we are discussing in the fol-
lowing chapters, and state the research objectives, the contributions, and
the publications.

• Chapter 2 is focused on the basic theory of multiarmed bandits necessary
to better understand the content of this dissertation. In this chapter, we
introduce multiarmed bandits and present different environments, men-
tioning those that are going to be discussed in the rest of this thesis.

Chapter 1. Introduction 10

In particular, we discuss stochastic, non-stationary, combinatorial, lin-
ear, and contextual bandits. In this chapter, we will also introduce the
mathematical notation used in this dissertation.

• In Chapter 3 we present the state of the art for what concerns the main
topic of this thesis: non-stationary multiarmed bandits. We identify two
main classes of non-stationarity, exogenous and endogenous, and we dis-
cuss the models in the literature belonging to these two classes.

• Chapter 4 presents the work concerned with the first contribution, the
Last Switch Dependent Bandit model. We define the model, discuss the
hardness and approximation results, along with the solution we provide
and its theoretical guarantees. The chapter ends with some experiments
to show the empirical results of our methods.

• Chapter 5 focuses on the second contribution, presenting the Linear Ban-
dit with Memory model. We introduce the model and discuss the results
obtained in the linear setting. We prove regret guarantees for our algo-
rithm and show some experiments. In this chapter, we also discuss the
bandit selection algorithm for Linear Bandit with Memory, illustrating the
dynamics involved in the model selection process in the non-stationarity
setting presented in the previous chapter. As for the previous contri-
butions, we prove regret bounds and show empirical validation of our
solution.

• Chapter 6 discusses the contribution concerning the Spotify™ music cred-
its network, analysing several centrality measures on the directed graph
and proposing a new node-wise index of reciprocity to better understand
intrinsic phenomena observed in the analysis.

• Finally, in Chapter 7 we present the conclusions of this work and discuss
future developments.

• In the Appendix A the reader is provided with all the proofs omitted in
the main body of this thesis.

11

Chapter 2

The theory behind multiarmed
bandits: classes of bandits and
popular approaches to solve them

Contents
2.1 Stochastic K-armed bandits 13

2.2 Adversarial multiarmed bandits 17

2.3 Adversarial linear multiarmed bandits 19

2.4 Stochastic contextual multiarmed bandits 20

2.5 Stochastic linear multiarmed bandits 21

2.6 Combinatorial (semi)-bandits 23

2.7 Non-stationary multiarmed bandits 25

Introduced in 1933 by [Thompson, 1933] and then further studied in 1953 by
[Bush and Mosteller, 1953], multiarmed bandits were first considered for appli-
cations in medical trials and animal learning. The initial goal was to provide a
mathematical model to study the behaviour of mice when placed in a T-shaped
maze. In particular, the concept of these experiments consisted of studying how
these mice would face the dilemma of choosing between two directions where
only one would lead to a reward. This type of study was extended to humans
and their behaviour when facing a situation characterized by a similar dilemma.
Specifically, further studies aimed to analyze the behaviour of a subject when
confronted with a choice: continuing to select an option whose outcome is known
or taking a risk and picking an uncertain alternative for which the outcome is un-
known. This dilemma between a safe and known choice and an alternative and
uncertain direction is called the exploration-exploitation dilemma. Multiarmed
bandits illustrate this situation and started to gain popularity decades later.
They have been extensively studied only in the last twenty years ([Lattimore
and Szepesvári, 2020]), finding many practical applications in industries such as
advert placement, network routing, resource allocation, dynamic pricing, and,
of course, recommendation services.
The name of this class of models comes from the lever-operated slot machines
where the player needs to pull an arm and a reward is revealed. This type

Chapter 2. The theory behind multiarmed bandits 12

of machine is usually called bandit. This term has been adopted and changed
to multiarmed bandit to refer to a variant of these machines with multiple
arms to pull. One can specifically talk about K-armed bandits where K is the
number of arms. For instance, in a bandit where the action set consists of only
two possible actions, therefore K = 2, one can refer to the model as 2-armed
bandits. However, when K ≥ 2 it is common practice to simply call these
models multiarmed bandits.
These slot machines embody the exploration-exploitation dilemma and are an
example of an online learning application characterized by partial feedback. The
exploration-exploitation dilemma in bandits can be summed up in a question:
when a player needs to decide which action to take, is it better to exploit those
actions that he knows are more remunerative, or is it better to explore new
unknown actions that could potentially hold a higher reward? This question
ponders if it is better to make a safe choice for which you know the outcome or
to risk and select a new unknown action without knowing if it will improve or
worsen your performance. This question is modelled by the multiarmed bandit
problem.
The multiarmed bandit problem consists of a sequential game between a learner
and an environment over a horizon T ∈ N, which is a positive natural number
representing the total number of rounds. In each time step t = 1, . . . , T the
learner is faced with a set A = {a(1), . . . , a(K)} of available actions, also called
arms. When it is clear from the context, we use a to refer to a general action
in A. Each action is associated with a reward unknown to the learner. De-
pending on the type of environment, the set of actions can be finite or infinite.
We start by presenting the simpler setting where the set of arms is finite and
K is the cardinality of this set, |A| = K. We will investigate bandits with
infinite arms in Sections 2.3 to 2.5. In each round t the learner must select
an action at to play. Once the arm is pulled, the environment reveals to the
learner the reward Xt resulted from having played the chosen arm at at time
step t. The environment is unknown to the learner, who only knows that the
true environment belongs to a set called environment class. As well as the
environment, the future is also unknown to the learner, which at time t can
only base its choices on the information collected in the past history, defined as
Ht−1 = {a1, X1, . . . , at−1, Xt−1}. The objective of the learner is to maximize the
reward collected over the horizon. The learner must decide what strategy to
follow in order to maximize the cumulative reward at time T , which is defined
as the sum of the rewards collected by the learner over the entire game. The
learner’s strategy, also called policy and indicated by π, is a map from histories
to actions and it is chosen from a set of policies called competitor class. The
performance of the learner is measured by the regret, which is defined as the
difference between the cumulative reward collected by the best policy in the
competitor class and the expected reward collected by the learner’s policy. One
can also consider the competitor class as large as possible to include the best
policy for all possible environments. In this case, the regret is measured against
the so-called optimal policy, also referred to as OPT. The regret can be written

Chapter 2. The theory behind multiarmed bandits 13

as follows:

RT =
T∑
t=1

X∗
t −

T∑
t=1

Xt, (2.1)

where we use X∗
t to indicate the reward observed by the optimal policy at time

t. For the rest of this manuscript the asterisk symbol ∗ associated to some term
will signify that the term refers to the optimal policy.
Different assumptions about the environment lead to different types of bandits.
For the rest of this chapter, we are introducing different classes of bandit prob-
lems, each one characterized by different assumptions on the environment, on
the action set, and the reward function. We will start by introducing the differ-
ence between a stochastic and an adversarial environment. Then, we will pro-
ceed by presenting the prominent class of linear and contextual bandits, which
introduces some assumptions that better match practical scenarios. Then, we
will move to the class of combinatorial bandits, which can be seen as a spe-
cific subgroup of linear bandits. Finally, we introduce non-stationary bandits,
which is the family of bandits characterized by non-stationary environments.
Due to their relevance with respect to the contributions of this thesis, a more
detailed discussion on non-stationary bandits is postponed to Chapter 3, which
will focus on this particular class.

2.1 Stochastic K-armed bandits
Stochastic multiarmed bandits are the foundation on which many other models
are built. This class of bandits assumes that the environment draws the rewards
in response to each action from an unknown distribution specific to that action
and independent from the reward distributions of other actions. Therefore, a
stochastic multiarmed bandit consists of a set of distributions p = (Pa : a ∈ A)
such that at time t for t = 1, . . . , T the reward Xt from playing arm at is
sampled from the distribution Pat . When these distributions remain unchanged
in each round, we are talking about stationary stochastic bandits. We provide
a simple example of a stochastic Bernoulli bandit, where T is the horizon,
A = {a(1), . . . , a(K)} is the action set, and the Bernoulli specification means that
the rewards can take the values zero or one, Xt ∈ {0, 1}. We can characterize
the actions using a vector µ ∈ [0, 1]K , where each element of the vector, µi for
i = 1, . . . , K, indicates the probability that the reward Xa(i) observed by the
learner when choosing action a(i) is 1. We use the notation µi = µa(i) to indicate
the mean value of action a(i) and µ̂i(t) to indicate the empirical average of µi

at time t. Recall that the setting is stochastic and stationary, therefore the
reward distributions are fixed throughout the entire horizon and do not depend
on previous actions and rewards. This means that the actions are characterized
by their mean values µi and that the competitor class is the set of constant
policies always playing the same action in each time step. Consequently, the
optimal policy is to play the fixed best action a∗ = argmaxa∈A µa in every time

Chapter 2. The theory behind multiarmed bandits 14

step. In this case, one can write the expected regret as:

RT = Tµa∗ − E

[
T∑
t=1

Xt

]
, (2.2)

where the first term is the cumulative reward collected by the policy π∗ which
plays arm a∗ in every time step and it is the best possible performance for this
specific environment. The second term is the cumulative reward of the policy
played by the learner, with the expectation being with respect to the random-
ness of the environment and the policy. The strategy of a learner translates in
practice into an algorithm played during the duration of the game. The analysis
of this algorithm adopted by the learner is essential to prove some guarantees
on the performance of the algorithm in the environment considered. By look-
ing closely at the strategy played by the learner one can estimate the regret
incurred by the algorithm, proving an upper and lower bound. As one can
imagine, it is of primary importance to prove an upper bound on the regret in
order to guarantee that the worst performance of the algorithm in this environ-
ment cannot be worse than the upper bound. A performance is considered good
if the regret is sublinear, such that RT = o(T). However, one aims at getting a
regret as small as possible, for instance, a regret which scales as RT = O(

√
T)

or RT = O(log(T)). Studying the regret means proving guarantees on the
performance of your algorithm.
One of the first algorithms proposed to solve this bandit problem is Explore-
Then-Commit, which can be abbreviated in ETC. The concept behind this algo-
rithm is to explore each arm equally for a fixed number of times, look at which
arm performed the best during this exploration phase, and then commit to this
arm by playing it for the rest of the game. We denote with m the number
of times each action is played during the exploration phase. For the first mK
time steps, the learner plays action at = (t mod K) + 1 to explore the differ-
ent arms in A. For the following T −mK time steps, the learner plays action
at = maxa(i)∈A µ̂i(mK) for t = mK + 1, . . . , T . If we denote with ∆i = µ∗ − µi

the suboptimality gap of the mean of action a(i) with respect to the mean of
the optimal arm, we can define the regret obtained by the ETC algorithm using
this quantity. When 1 ≤ m ≤ T/K, the performance of ETC is upper bounded
by:

RT ≤ m
T∑
t=1

∆i + (T −mK)
K∑
i=1

∆iexp
(
−m∆2

i

)
. (2.3)

One can notice that the larger m, meaning that the learner explores for longer,
the bigger the first term gets. On the contrary, if m is too small, the policy
might select the wrong arm to play for the remaining time steps, which will
increase the second term. With some computations [Lattimore and Szepesvári,
2020], it is possible to show that a 2-armed bandit with an optimally tuned m,
the regret bound yields a worst-case bound

RT ≤ min

{
T∆2,∆2 +

1 + log(T∆2
2)

∆2

}
≲
√
T log(T). (2.4)

Chapter 2. The theory behind multiarmed bandits 15

However, the tuning of m depends on ∆i and T which are rarely known in
practical applications. In this case, when T is known but ∆ is unknown, the
parameter m can be tuned as m = (T/K)2/3(lnT)1/3 and the regret becomes
RT = O(T 2/3(K lnT)1/3). Notice that ETC depends on the knowledge of T so
it is not an anytime algorithm, which is a denomination for those algorithms
which do not require the knowledge of T .

Another possible solution, similar to ETC, would be to use elimination-based
strategies. This type of algorithms consists of exploring the arms and adding
an elimination phase to remove an action from the set of arms based on a
test of increasing sensitivity. This strategy can prevent unnecessary plays of
suboptimal actions but still shares some limitations with ETC. We present one
specific example of an elimination-based algorithm. We denote with l the
index of the phase and assume that the horizon T is known. For each phase
l = 1, 2, 3, . . . , the learner plays each arm ai ∈ Al for ml times and computes
the average reward µ̂i(l) of each arm only counting the rewards obtained in the
current phase. At the end of the phase, the learner updates the set of active
arms as Al+1 = {a(i) : µ̂i(l) + 2−l ≥ maxa(j)∈Al

µ̂j(l)}. This is repeated as long
as the horizon is reached. It has been studied [Lattimore and Szepesvári, 2020]
that for an appropriate universal constant C > 0, the regret of this algorithm
is upper bounded by

RT ≤
K∑
i=0

∆i + C
√
TK log(K). (2.5)

Among the plethora of algorithms in the literature, one has become the base
of most popular solutions, whose variants have been developed and adapted
to many other classes of bandits due to its efficiency. We are talking about
the Upper Confidence Bound Algorithm [Lai and Robbins, 1985; Auer et al.,
2002], which is based on the principle of optimism in the face of uncertainty.
This algorithm is based on the index called upper confidence bound (UCB),
which is an upper bound that overestimates the mean reward of an arm based on
the data collected so far in the game. The idea behind this tool is to overestimate
the actions’ mean reward using this index and play the action with the highest
UCB. Thus, an action is played only if its UCB index is higher than the UCB
index of the optimal arm. Before defining the UCB index, we start by stating
that for a sequence of independent random variables X1, . . . , XT bounded in
[0, 1] with mean µ and µ̂ = 1

T

∑T
t=1Xt, then for any ε ≥ 0:

P(µ̂ ≥ µ+ ε) ≤ exp
(
− 2Tε2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
− 2Tε2

)
. (2.6)

We can use this statement and write

P

(
µ ≥ µ̂+

√
log(1/δ)

2T

)
≤ δ (2.7)

for all δ ∈ (0, 1). Here, δ is an upper bound on the probability of the event that

Chapter 2. The theory behind multiarmed bandits 16

the quantity µ̂ +
√

2 log(1/δ)
T

is an underestimate of the true mean µ. We can
use this knowledge to define the UCB index. When the game starts, the UCB
index is set to infinity for every arm, UCBi = ∞ for i = 1, . . . , K. Then, as
soon as an arm ai is played once, the UCB index will be equal to:

UCBi(t− 1) = µ̂i(t− 1) +

√
2 log(1/δ)

Tt−1(i)
, (2.8)

where Tt(i) indicates how many times the action a(i) has been played so far,
meaning that the bandit has collected Ti(t) samples from arm ai so far. The
Upper Confidence Bound Algorithm consists of playing in each time step t
the arm at = maxa(i)∈A UCBi(t−1) with the current highest UCB index. After
each round, the UCB indices are updated, and the process is repeated.
Notice that the term under the square root in the definition of the UCB index in
Equation (2.8) is called exploration bonus since it forces the learner to consider
those arms that have not been played many times. In fact, when the arm
has not been frequently played, and Ti(t − 1) is small, the exploration bonus
dominates the index. On the contrary, the more an action is played, the more
its exploration bonus decreases and its empirical mean controls the index. This
dynamic is useful in the algorithm when the learner has to decide which action
to play. Indeed, this strategy makes sure that at the beginning each action is
explored sufficiently enough. Then, the more an arm is played and its mean
appears to be low, the less it will be played in the future. However, if an
arm’s index is high, it will still be played often. This is coherent with the fact
that, even if an arm is not the optimal one, it is still played as long as its
performance is close to the one of the optimal arm. The UCB algorithm has
been extensively studied [Lattimore and Szepesvári, 2020; Auer et al., 2002]
and it has been shown that for any horizon T , if δ = 1/T 2, then the regret of a
1-sub-Gaussian stochastic K-armed bandits is upper bounded by:

RT ≤ 3
T∑
t=1

∆i +
∑

i:∆i>0

16 log(T)

∆i

. (2.9)

Rewriting the regret so that it does not depend on the reciprocal of the subop-
timality gaps and for any 1-sub-Gaussian environment with K arms, it becomes

RT ≤ 8
√
TK log(T) + 3

K∑
i=1

∆i.

The UCB algorithm has been proven to be near minimax-optimal, meaning that
its upper bound matches the lower bound Ω(

√
TK) except for the logarithmic

factor. This algorithm and its analysis are fundamental in the development
of many other algorithms in the literature, as we will see in the rest of this
dissertation.
So far, we focused on the class of stochastic stationary bandits. However, some
of the assumptions we presented about the environment are not always realistic

Chapter 2. The theory behind multiarmed bandits 17

when we think about real scenarios and practical applications. In the following
paragraphs, we will build on the complexity of the environments and present
different classes of bandits.

2.2 Adversarial multiarmed bandits
We start by introducing adversarial multiarmed bandits ([Auer et al., 1995]). In
contrast with the previous class of stochastic bandits, there is a separate class
of bandits for which the previous assumptions on the environment drop. In
adversarial bandits the environment is seen as an adversary since it can secretly
choose the rewards for each action after examining the code of the algorithm
proposed by the learner. In this model the environment has complete control
over the payoffs and acts as an adversary to the learner. In this manuscript
we will not touch this subject; however, we will briefly introduce this class of
algorithms to better comprehend the entire family of multiarmed bandits. Due
to the fundamentally different assumptions on the generation of the rewards,
we take a moment to introduce the framework.
An adversarial multiarmed bandit is described by an arbitrary sequence of vec-
tors {x1, . . . , xT}, where xt ∈ [0, 1]K for t = 1, . . . , T , which are secretly chosen
by the adversarial environment. In each round t, the learner chooses a dis-
tribution over the actions Pt ∈ PK−1 and samples from Pt an action at from
the set of actions A = {a(1), . . . , a(K)} to play in the current round. After the
action is played, the learner observes a reward xt(at). In this specific setting,
the policy is defined as π : (A× [0, 1])∗ → PK−1, which is a function that maps
the sequences of history to the distributions over the actions. Similarly to the
stochastic setting, the performance of a policy π in environment x is measured
by the expected regret, which is the difference between the expected total re-
ward of the best fixed action in hindsight and the policy played by the learner.
It is formally defined as follows

RT (π, x) =
T∑
t=1

xt(a
∗)− E

[
T∑
t=1

xt(at)

]
, (2.10)

where a∗ = maxa(i)∈A
∑T

t=1 xt(a
(i)) and the expectation is with respect to the

randomness of the learner’s policy. We will abbreviate this notation RT (π, x)
by simply writing RT when it is clear from the context. Using this definition,
it is possible to write the worst-case regret as

R∗
T = sup

x∈[0,1](T×K)

RT (π, x), (2.11)

which is the maximum regret over all possible environments. Indeed, a key
element in successful strategies for adversarial environments is the randomness
introduced by the learner when selecting the actions to play. Without randomi-
sation, the environment could easily take advantage of the learner’s determin-
istic policy, which could not provide a sublinear regret. Here, we illustrate an
algorithm for adversarial bandits called Exp3 [Auer et al., 1995]. This algo-
rithm uses importance-weighted estimators in order to estimate the rewards of

Chapter 2. The theory behind multiarmed bandits 18

the arms that have not been played. It consists of computing for each arm
a(i) ∈ A the sampling distribution Pi,t:

Pi,t =
exp(ηŜi,t−1)∑K

j=1 exp((ηŜj,t−1)
, (2.12)

where η > 0 is the learning rate parameter, Ŝi,t =
∑t

s=1 ŷt(a
(i)) is the estimate

of the total reward at the end of round t, and ŷt(a(i)) is the importance-weighted
estimator of the reward xt(a(i)). After computing the distribution Pt, the learner
samples the actions to play from this distribution and receives a reward xt(at),
which we denote also using Xt. The reward is then used to update the estimates
Ŝi,t as:

Ŝi,t = Ŝi,t−1 +
I{at = a(i)}(1−Xt)

Pi,t

. (2.13)

In this solution, exponential weighting is used to map the estimates of the total
rewards to probabilities and plays actions with higher estimates with higher
probability. It is possible to notice how the parameter η in Equation (2.12)
governs the balance between exploration and exploitation. When η is small,
the distribution Pt becomes more uniform and it encourages exploration. On
the contrary, as η becomes larger, the distribution focuses on the arm with
the highest estimate, promoting an exploitative behaviour. The regret of this
algorithm has been proven to be upper bounded by:

RT ≤ 2
√
TK log(K), (2.14)

for η =
√

log(K)/(TK). Although this bound is sublinear, it is proven with
expectation and it is possible to show that its variance is large. Therefore, it is
worth mentioning that with some modifications it is possible to overcome this
problem. Specifically, modifying the reward estimates, the algorithm EXP3-
IX [Kocák et al., 2014] presents a high-probability bound well concentrated
around its mean, reaching a regret upper bound of RT = O(

√
TK log(K/δ))

with probability at least 1 − δ for δ ∈ (0, 1). Although the environments of
adversarial and stochastic bandits are quite distant from each other, one can
notice how the regret for this algorithm for adversarial bandits is close to the
regret presented for stochastic bandits.

In the models presented above, there is no feature associated with the arms.
However, in practical applications, such as recommender systems, additional
information is usually given in association with users and items. For instance,
in a movie recommender system, each item is typically described by a set of
features such as genre, year, cast members, director, and so on. Likewise, users
may be described by their demographic information or a history of previously
watched movies. In this case, ignoring this side information would not be ad-
visable. In fact, the quality of predictions can greatly benefit from this data.
Hence, a particular class of bandits emerges from this opportunity and it is
called contextual multiarmed bandits ([Li et al., 2010], [Woodroofe, 1979]). To
present this class, we must first introduce a class of bandits closely related to
contextual bandits, the family of linear multiarmed bandits.

Chapter 2. The theory behind multiarmed bandits 19

2.3 Adversarial linear multiarmed bandits
Linear bandits can be declined both in the adversarial and in the stochastic
setting. We start by introducing adversarial linear bandits and then we will
move to the stochastic environment.
This setting is characterized by the presence of an adversarial environment that
chooses the reward vectors (xt)

T
t=1 such that xt ∈ [0, 1]K . We use the term Xi,t

to indicate the single reward of arm a(i) at time t. Moreover, the environment
chooses the sequence of context, one for each time step, which we indicate by
(ct)

T
t=1 such that ct ∈ C where C is the set of possible contexts. The protocol is

the following:

• The adversarial environment secretly decides the reward vectors (xt)
T
t=1,

• The adversarial environment secretly picks the contexts (ct)
T
t=1.

Then, in each round t = 1, . . . , T :

• The learner observes the context ct ∈ C,

• The learner selects a distribution Pt ∈ p and samples the arm to play at
from PT ,

• The learner observes the reward of the pulled arm Xt(at) which depends
on the observed context ct.

In the setting of contextual bandits, the regret is formally defined as:

RT = E

∑
c∈C

max
a(i)∈A={a(1),...,a(K)}

∑
t∈{1,...,T}:ct=c

(
Xi,t −Xt

) , (2.15)

which is the sum of rewards collected by the best policy for each context in
hindsight and the reward observed by the policy played by the learner.
In case the set of contexts C is finite, a simplistic approach would be to instan-
tiate a bandit algorithm for each context. In this case, the final regret would be
impacted by the regret of the algorithm weighted by the cardinality of the set of
contexts. However, if the set of contexts is too big, using a bandit per context
would not be an efficient solution, since the regret would scale with |C|. An
alternative solution would be to partition the set of contexts into disjoint parts
P ∈ P with P ⊂ 2C such that ∪P∈PP = C. Then, for each part in P there is a
function from C to the set of actions {1, . . . , K} which is constant for that part
P ∈ P . For each part, the learner can run an instance of a bandit algorithm
and eventually the regret would depend on the number of parts |P| instead of
the number of contexts |C|. Among all the possible approaches, it is necessary
to mention the framework of bandits with expert advice. In this adversarial
environment, the learner is equipped with M experts. At the beginning of each
round, the experts announce which actions are the most rewarding, providing
a probability distribution over the actions. The experts are represented by
Et ∈ [0, 1]M×K . We indicate with Et(j) with j ∈ {1, . . . ,M} the prediction
made by expert j at time t. The learner selects an expert Et(jt) and plays

Chapter 2. The theory behind multiarmed bandits 20

the action recommended by the expert by sampling the action at ∼ Pt, where
the distribution is defined as Pt = QtEt and Qt is the distribution over the ex-
perts. Then, once the reward is observed by the learner, it is propagated to the
experts, who can update their statistics using importance-weighted estimators
and exponential weighting similarly to EXP3. With the additional presence of
experts, this algorithm is called EXP4 [Auer et al., 2002]. Using this algorithm
in this setting, the learner obtains a regret upper bound of RT ≤

√
2TK log(M)

when η =
√

2 log(M)/(TK).
Here, we briefly mentioned the environment of adversarial linear bandits for
completeness. Now we move to the stochastic counterpart.

2.4 Stochastic contextual multiarmed bandits
The adversarial setting we mentioned is in contrast with the stochastic con-
textual bandits. This class of bandit generalises the setting of linear bandits,
which is a prominent class of bandits. We start by defining stochastic contextual
bandits and then move to linear bandits. The protocol that frames stochastic
contextual bandits reflects the one presented for adversarial contextual bandits
but in a stochastic environment. So, removing the presence of an adversarial
environment, the steps are the following. In each round t = 1, . . . , T :

• The environment presents a context ct ∈ C, which may be random or not,

• The learner observes the context ct,

• The learner selects an arm to play at ∈ {1, . . . , K}

• The learner observes the reward Xt ∈ [0, 1] which if obtained by at and
depends on the observed context ct.

Apart from the fact that there is no adversarial component in this protocol, the
stages of this framework are similar to the adversarial counterpart except that
the current setting presents a key assumption on the reward function. In fact,
the reward function is now defined as:

Xt = r(ct, at) + ηt, (2.16)

where r : C × {1, . . . , K} → R is the reward function that takes as inputs the
context at time t and the arm pulled at time t and returns a real number,
and ηt is the noise, which can be assumed to be conditionally 1-sub-Gaussian
for simplicity. Since the learner observes the context at the beginning of the
round, if the function r were known, then the best strategy would be to play
the arm a∗t = argmaxa(i)∈A={a(1),...,a(K)} r(ct, a

(i)) that maximizes the reward in
the current time step, which depends on the given context ct. However, the
reward function r is typically unknown. One may define the regret as:

RT = E

[
T∑
t=1

max
a(i)∈A

r(ct, a
(i))−

T∑
t=1

Xt

]
. (2.17)

Chapter 2. The theory behind multiarmed bandits 21

Nevertheless, since we do not know how r may be defined, this formalization of
the regret could be misleading. As we mentioned for the adversarial counterpart,
one approach could be to estimate the reward function for each context-arm
pair (c, a) ∈ C × {1, . . . , K}. But, as we said, it would not be efficient since
the regret would be weighted by the number of context-arm pairs. Among
the possible approaches, one interesting choice is to assume the linearity of the
reward function defined as:

r(c, a) = ⟨θ∗, ψ(c, a)⟩ (2.18)

for every context-arm pair (c, a) ∈ C × {1, . . . , K} and where θ∗ ∈ Rd is the
unknown parameter vector. In this definition of the reward function, the learner
has access to ψ : C × {1, . . . , K} → R which is a feature map that maps the
context-arm pair to a d-size vector of real numbers. The concept is close to
the definition of a feature map in Neural Networks, where the aim is to extract
important features from the input data. By introducing this linear assumption
on the reward function, one can approach stochastic contextual bandits by
viewing them as a linear bandit where the reward function is defined as the
dot product between the unknown parameter θ∗ and a vector of size d. Here,
this vector is interpreted as an action at ∈ Rd and can be seen as the vector
resulting from ψ(c, a). In the next paragraph, we are going to present this class
of bandits, which is one of the most relevant bandit problems in the literature.

2.5 Stochastic linear multiarmed bandits
Stochastic linear bandits are a family of bandit problems where the learner has
access to a set of actions At ⊂ Rd, typically infinite, and the reward function of
an arm at ∈ A is given by:

Xt = ⟨θ∗, at⟩+ ηt, (2.19)

where θ∗ ∈ Rd is the unknown parameter vector and ηt is the 1-sub-Gaussian
noise. In every round, t = 1, . . . , T , the learner selects an action at to play, and
obtains a reward Xt. The performance of the learner is measured by the regret,
which is defined as:

RT = E

[
T∑
t=1

max
a∈At

⟨θ∗, a⟩ −
T∑
t=1

Xt

]
. (2.20)

One can also refer to the definition of random pseudo-regret defined as:

R̂T =
T∑
t=1

max
a∈At

⟨θ∗, a− at⟩, (2.21)

so that one can define RT = E
[
R̂T

]
.

One way to characterize this setting is to make assumptions on the set of actions
At. In fact, stochastic linear bandits are a generalisation of stochastic K-armed

Chapter 2. The theory behind multiarmed bandits 22

bandits, which can be recovered when the set of actions is reduced to unit
vectors, At = {e1, . . . , ed}. On the other hand, assuming that At ⊆ {0, 1}d
reduces the model to combinatorial bandits.
We analyze the most popular algorithm for stochastic linear bandits, called
LinUCB or OFUL [Abbasi-Yadkori et al., 2011]. This solution is an adaptation
to the Upper Confidence Bound algorithm to the linear setting. To define
the UCB index for the linear setting, it is necessary to define what we call a
confidence set. The confidence set Ct ⊂ Rd is an ellipsoid which defines the
set to which the unknown parameter θ∗ should belong with high probability.
We will define the construction of this confidence set later on, but for now it
is sufficient to know that it is constructed based on the history of pulled arms
and rewards obtained (a1, X1, . . . , at−1, Xt−1) in the previous time steps. Before
defining the confidence set, we start by providing the idea behind the linear
UCB index. It is defined as:

UCBa(t) = max
θ∈Ct
⟨θ, a⟩, (2.22)

where a ∈ At. This definition acts as an upper bound on the mean reward of
the dot product ⟨θ∗, a⟩ since it is computed with the best possible θ ∈ Ct in
the confidence set according to the action a. The algorithm works similarly as
to the finite arm case. In each round, the learner selects the action with the
highest UCB:

at = argmax
a∈At

UCBa(t), (2.23)

obtains the reward Xt ∈ R, and uses this reward to update the estimate of the
unknown parameter, θ̂t, and the confidence set. The unknown parameter θ∗ is,
in fact, estimated using the regularised least-squares estimator:

θ̂t = argmin
θ∈Rd

(t∑
s=1

(Xs − ⟨θ, as⟩)2 + λ∥θ∥22
)
, (2.24)

where λ ≥ 0 is the so-called penalty factor. Through some simple computations,
it is possible to compute the estimate of θ∗ as :

θ̂t = V −1
t

t∑
s=1

asXs, (2.25)

where

V0 = λI, Vt = V0 +
t∑

s=1

asa
⊤
s , (2.26)

where Vt ∈ Rd×d and I is the identity matrix. This allows us to better define the
confidence set. It is typically assumed to be Ct ⊆ E = {θ ∈ Rd : ∥θ− θ̂t−1∥2Vt−1

≤
βt} with an increasing sequence of constants β1 ≥ 1, as it is defined for the works
discussed in this thesis. As we said, it is an ellipsoid centred at θ̂t−1 and its
shape is defined by the history of past played actions and rewards. The axes of
the ellipsoid are defined by the eigenvectors of Vt and the lengths dictated by

Chapter 2. The theory behind multiarmed bandits 23

the reciprocal of the eigenvalues so that with time and with growing eigenvalues
of matrix Vt, the confidence set shrinks based on the actions played in the past.
Before presenting the regret of LinUCB, it is necessary to specify which assump-
tions must hold for the regret analysis to hold. The proof requires that:

• 1 ≤ β1 ≤ · · · ≤ βT ,

• maxt supa,b∈At
⟨θ∗, a− b⟩ ≤ 1,

• ∥a∥2 ≤ L,∀a ∈ ∪Tt=1At,

• ∃δ ∈ (0, 1) such that with probability 1− δ, ∀t ∈ {1, . . . , T} θ∗ ∈ Ct.

If these assumptions hold, then with probability 1− δ the regret of LinUCB is
upper bounded by:

RT ≤

√√√√8dTβT log

(
dλ+ TL2

dλ

)
, (2.27)

which can be written in expectation as:

RT ≤ Cd
√
T log(TL), (2.28)

with δ = 1/T and C > 0 an appropriate universal constant.
OFUL proves to be an important contribution to the bandit literature since it
adapts the use of UCB indices in a linear setting, which is at the foundation
of later works. Due to the importance of OFUL and its proof in one of our
contributions, we provide the proof of this regret bound in Appendix A.1.

2.6 Combinatorial (semi)-bandits
The next class of bandits we present is combinatorial multiarmed bandits ([Cesa-
Bianchi and Lugosi, 2012; Gai et al., 2012; Chen et al., 2013; Kveton et al.,
2015]). Combinatorial bandits are characterized by the fact that in each time
step the learner plays a so-called super-arm from an action set defined as

A ⊆ {a ∈ {0, 1}L : ∥a∥1 ≤ m}, (2.29)

where L is a positive natural number defining the size of the action vector, which
therefore indicates the cardinality of the ground set of base actions, and m is the
maximum number of elements taking the values 1 in the vector, therefore the
maximum number of chosen items. In some settings, we have that A ⊂ {0, 1}L
due to the fact that the combinatorial structure does not allow every possible
combination. One can think of the element a(i) of the super-arm to be on (1) or
off (0), activated or not. One can possibly interpret this combinatorial action a
as a vector of size K (L = K) where each element of the vector a(i) corresponds
to one of the K base arms in the initial set of actions A = {a(1), . . . , a(K)}. With
this interpretation, the component a(i) indicates if the arm ai is activated or

Chapter 2. The theory behind multiarmed bandits 24

not. In this case, combinatorial bandits essentially allow the learner to play
more actions in a single time step.
It is also possible to consider this class of models as a subset of linear bandits
where the norm of an action of size d is bounded by m. To remain as general
as possible we will consider the definition in Equation (2.29).
In the definition of combinatorial bandits, each component of the vector a is
characterized by a probability distribution a(i) ∼ Pi. In each time step, the
learner plays an action vector a and observes the sum of the rewards the vector
obtains. The reward of the vector is observed as the sum of the rewards of the
activated elements. We can define the compound reward collected at time t as
Xt =

∑L
i=1Xt(v(i)) · a(i).

However, from the way the learner observes the reward, we can distinguish be-
tween two types of combinatorial bandits. On one hand, we have combinatorial
bandits where the learner observes only the sum of the rewards collected by
the actions activated in the vector at, without knowing the specific rewards
obtained by the different elements of the super-arm. On the other hand, we
have combinatorial semi-bandits, where the learner can observe not only the
sum of the rewards but also the individual rewards obtained by each compo-
nent a(i). In both cases, it is possible to note that if the assumption of the
boundedness of the rewards Xt ∈ [0, 1] remains true, then we have that the re-
ward of the super-arm a is bounded as Xt ∈ [0,m]. Of course, one can consider
combinatorial bandits in the stochastic setting, as well as in the adversarial or
non-stationary setting, depending on the probability distributions Pi associated
with the components a(i) and the assumptions on the environment.
Since this dissertation will focus on stochastic environments, we focus on stochas-
tic combinatorial semi-bandits and mention an algorithm to solve this problem
based on upper confidence bounds. The algorithm is called CombUCB1 ([Gai
et al., 2012], [Kveton et al., 2015]). It adopts the UCBs strategy and adjusts
it for the combinatorial semi-bandit setting. This is done by defining the UCB
index of a super-arm a as:

UCBa(t) =
L∑
i=1

UCBa(i)(t), (2.30)

which is the sum of the UCB indices of the arms in a and where the UCB of
an element a(i) is defined as:

UCBa(i)(t) = µ̂a(i)(t) +

√
1.5 log(t)

Ti(t)
, (2.31)

where Ti(t) counts the number of times action a(i) has been played. This def-
inition slightly differs from Equation (2.8) for the term inside the logarithm,
but the concept behind UCBs remains the same. In each round, the algorithm
plays the super-arm:

at = argmax
a∈A

UCBa(t) = argmax
a∈A

L∑
i=1

UCBa(i)(t). (2.32)

Chapter 2. The theory behind multiarmed bandits 25

Then, once the learner observes the sum of the rewards Xt as well as the single
rewards Xi,t, it updates the statistics, such as µi and Ti(t) for i = 1, . . . , L,
before starting a new iteration. In [Kveton et al., 2015], the authors prove an
expected regret upper bound for CombUCB1 of

RT = O(47
√
mKT log T +mK)

and a lower bound of RT ≥ (1/20)min(
√
mKT,mT). This algorithm and the

proof of its regret are crucial for understanding the contributions of Chapter 4
and Chapter 5, therefore we provide details on its analysis in Appendix A.2.

2.7 Non-stationary multiarmed bandits
In the previous paragraphs, we anticipated that there is another category of
stochastic bandits, which is based on the assumption that the reward distribu-
tions of the arms change over time. This is the class of non-stationary stochastic
multiarmed bandits, which is the primary class we are focusing on in this re-
search. In the next chapter, we will describe several non-stationary bandit
models useful to understand our contributions. Specifically, we will present the
state of the art for this class of models. For the moment, we characterize this
class of algorithms by the fact that the reward function depends on time t. This
means the arm is not characterized by the mean reward µa(i) for the entire game.
Instead, each arm is characterized by mean reward µa(i)(t), meaning that the
average reward of the arm a(i) changes depending on t. The different levels and
forms of non-stationarity depend on the assumptions on the reward functions
and the environment, such as a variation budget on the reward function, change
points used to define the type of non-stationarity, and other assumptions. Re-
gardless of the specifics of the model, these characteristics suggest one important
aspect of this class: the optimal policy here does not consist of a single optimal
arm. Instead, the optimal policy is given by an optimal ordered sequence of
actions, where the order, the set of actions, and its cardinality depend on the
specific assumptions on the environment. To measure the performance of an
algorithm π, we introduce a new measure called dynamic regret :

RT = argmax
a1,...,aT∈A

T∑
t=1

rt(π
∗, at)−

T∑
t=1

rt(π, at). (2.33)

This definition differs from the static regret defined in Equation (2.2) since
the cumulative reward is measured against the one obtained by the optimal
sequence of actions, not the optimal arm, dictated by π∗. As one can imagine,
the assumptions on the non-stationarity greatly characterize the problem, its
difficulty, and the strategy used to solve it. For this reason, we dedicate the next
chapter to the introduction and analysis of different non-stationary settings.

26

Chapter 3

The state of the art of
non-stationary bandits

Contents
3.1 Exogenous non-stationarity 27

3.1.1 Piece-wise stationary bandits 27

3.1.2 Non-stationary bandits with variation budget 35

3.1.3 Rotting restless bandits 37

3.1.4 Rising restless bandits 39

3.2 Endogenous non-stationarity 40

3.2.1 Rested bandits . 41

3.2.2 State-dependent bandits 51

This chapter dives into the current state of the art of non-stationary multi-
armed bandit models. We consider different types of non-stationarity and dif-
ferent environments. Since the contributions of this dissertation focus on the
standard K-armed setting and the linear setting, we present state-of-the-art
non-stationary bandit models for these environments.
First, we make a distinction between two types of non-stationarity: exogenous
and endogenous. With the term exogenous we indicate those models where
the non-stationarity of the rewards is due to external factors, which are inde-
pendent of the learner’s actions throughout the sequential game. This class
is commonly referred to as restless bandits. This category might be seen as a
subset of adversarial bandits since the non-stationarity is dictated by the en-
vironment, although there is no explicit adversary. Most of the models that
study this setting introduce some assumptions to bound the non-stationarity,
such as defining a piece-wise stationary or bandits with variation budget. We
will discuss these models in Section 3.1.
On the other hand, we denote a type of non-stationarity as endogenous if the
learner’s actions have an impact on future rewards, meaning that the non-
stationarity of these rewards is given by internal causes. This second category is
seen as a ramification from the stochastic bandit models since the non-stationary
distribution of an arm follows a specific function that depends on the previous

Chapter 3. The state of the art of non-stationary bandits 27

history of actions. Inside this class, we make a distinction between rested bandits
and state-dependent bandits. The first category identifies those bandits where
the reward of the pulled arm changes differently with respect to the rewards
of those arms that have not been pulled. Oftentimes, the reward functions of
these models depend on the number of pulls of an action. On the other hand,
we classify as state-dependent bandits those models which are neither restless
nor rested, where the reward of an arm depends on the time elapsed since it
was last pulled. We use the term state-dependent since these models often use
the concept of an arm state to keep track of how many time steps elapsed since
this arm was last played.
The contributions of this dissertation focus on endogenous types of non-stationa-
rity, both rested and state-dependent, where the learner’s actions influence fu-
ture rewards and these rewards are governed by specific functions. Before diving
into that, in the rest of this chapter we introduce the prominent works in the
literature that focus on both exogenous and endogenous non-stationary bandits,
before presenting our contributions in the following chapter. Figure 3.1 presents
an overview of the different classes and models of non-stationary bandits pre-
sented in this chapter, along with our contributions.

3.1 Exogenous non-stationarity
As we mention, we classify as exogenous the type of non-stationarity which is
caused by external factors. The change in the rewards does not depend on the
policy adopted by the learner and their actions but on time, and it is intrinsic
to the environment. We use the term restless bandits to denote the bandits that
model this behaviour.
Restless bandits were first introduced by [Whittle, 1988] as those bandits where
the mean rewards of the actions change over time independently of the learner’s
actions. This class of bandits, characterized by an exogenous type of non-
stationarity, can be divided into different groups depending on the nature of
this non-stationary behaviour. We identify two main subclasses: piece-wise
stationary bandits (or switching bandits), which can be further divided into
abruptly-changing and slowly-changing environments, and bandits with varia-
tion budget. In the next sections, we present the most relevant works in these
areas that help understand the contributions of this dissertation.

3.1.1 Piece-wise stationary bandits: abruptly-changing
and slowly-changing environments

One category is the class of bandit models whose non-stationary environment
can be defined as piece-wise stationary. This class is also addressed as switching
bandits since [Garivier and Moulines, 2011]. The setting of these models is
characterized by the fact that there are change-points (also called breakpoints)
throughout the horizon where the reward distributions of the arms change. The
peculiarity of this model is that between two change-points, the distributions
of the arms remain unchanged. It is important to notice how these breakpoints
do not depend on the policy of the learner or on the rewards obtained but

Chapter 3. The state of the art of non-stationary bandits 28

En
d

o
g

e
n
o

us

n
o

n
-s

ta
ti

o
n
ar

y
b

an
d

it
s

Ex
o

g
en

o
us

no

n-
st

at
io

na
ry

b

an
d

it
s

N
O

N
-S

T
A

T
IO

N
A

R
Y

 M
U

LT
IA

R
M

E
D

 B
A

N
D

IT
S

R
e
st

e
d

b

an
d

it
s

St
at

e
-d

e
p

e
n
d

e
n
t

b
an

d
it

s

P
ie

ce
-w

is
e

st
at

io
na

ry
 M

A
B

s
N

on
-s

ta
tio

na
ry

M
A

B
s

w
ith

va
ria

tio
n

b
ud

g
et

R
ot

tin
g

 r
es

tl
es

s
M

A
B

s

R
is

in
g

 r
es

te
ls

s
M

A
B

s

R
ot

tin
g

 r
es

te
d

M
A

B
s

R
is

in
g

 r
es

te
d

M

A
B

s

Fi
d

el
ity

M

A
B

s
lo

ya
lt

y-
p

oi
nt

s
m

od
el

R
eb

ou
nd

in
g

M

A
B

s

B
lo

ck
in

g
M

A
B

s

La
st

-S
w

itc
h

D
ep

en
d

en
t

b
an

d
its

Li
ne

ar
b

an
d

its
 w

ith
m

em
or

y

Fi
d

el
ity

M

A
B

s
su

b
sc

rip
tio

n
m

od
el

R
ec

ha
rg

in
g

M

A
B

s R
ec

ov
er

in
g

M

A
B

s

F
ig

u
r
e

3.
1:

T
hi

s
fig

ur
e

su
m

m
ar

is
es

th
e

st
at

e
of

th
e

ar
t

of
no

n-
st

at
io

na
ry

ba
nd

it
s,

id
en

ti
fy

in
g

th
e

di
ffe

re
nt

cl
as

se
s

an
d

th
e

m
od

el
s

be
lo

ng
in

g
to

th
em

.

Chapter 3. The state of the art of non-stationary bandits 29

are fixed and predefined by the environment at the beginning of the game. In
between these two points, the bandit problem could potentially be solved using
an algorithm for stationary bandits. However, the algorithms proposed to solve
this type of bandits must take care of these abrupt changes in order to provide
a sublinear regret.
In this type of environment ([Kocsis and Szepesvari, 2006], [Hartland et al.,
2007], [Yu et al., 2009], [Garivier and Moulines, 2011], [Alami et al., 2017], [Wei
and Srivatsva, 2018], [Besson and Kaufmann, 2019]), where A = {a(1), . . . , a(K)}
is the finite set of arms, the non-stationarity is usually defined by the following
assumption:

ΥT =
T−1∑
t=1

I{∃a(i) ∈ A : µi(t) ̸= µi(t+ 1)} (3.1)

where i is an index used to indicate arm a(i) ∈ A and the term ΥT limits the
number of change points that can appear during the sequential game. The j-th
breakpoint in the game is denoted by τ(j) = inf{t > τ(j−1) : ∃a(i) : µi(t) ̸=
µi(t+1)}. This definition explains that between two breakpoints τ(j) and τ(j+1)

the mean rewards of the arms are stationary and do not change. However, when
there is a breakpoint, there is at least one arm whose mean reward changes.
Some of the algorithms proposed to solve this problem combine algorithms for
stationary bandits and techniques for detecting change points, overwriting the
mean rewards in each stationary interval between two change points. Some
other algorithms operate so that the past average rewards are gradually forgot-
ten by implementing sliding windows or discounting factors to ensure that the
algorithm considers recent rewards as more relevant. In the rest of this section,
we present some works in the literature.
This class of exogenous bandit was first proposed by [Kocsis and Szepesvari,
2006] and [Yu et al., 2009], which initiated a plethora of works concerning
switching bandits. In [Garivier and Moulines, 2011], the authors propose two
algorithms that they call discounted UCB and sliding-window UCB. The first
algorithm, discounted UCB, consists of playing each arm once and then select-
ing the arm that maximizes the discounted empirical average reward summed
to the exploration bonus ct(γ, a(i)), which both depend on a discount factor
γ ∈ (0, 1):

at = argmax
a(i)∈A

X̄t(γ, a
(i)) + ct(γ, a

(i)), (3.2)

where the discounted mean reward is defined as

X̄t(γ, a
(i)) =

1

Nt(γ, a(i))

t∑
s=1

γt−sXs(a
(i))I{as = a(i)}

where Nt(γ, a
(i)) =

t∑
s=1

γt−sI{as = a(i)}.

The exploration bonus in this setting is defined as

ct(γ, a
(i)) = 2B

√
ξ log(nt(γ))/Nt(γ, a(i))

Chapter 3. The state of the art of non-stationary bandits 30

where nt(γ) =
∑K

i=1Nt(γ, a
(i)), ξ > 0 is an appropriate constant, and B is an

upper-bound on the rewards. When γ = 1, the algorithm recovers the standard
UCB algorithm. However, when γ < 1, the computation of the mean reward
X̄t(γ, a

(i)) and the exploration bonus ensures that recent rewards have more
weight in the computation of the average with respect to the ones far back
in the past. The authors show that discounted UCB obtains a regret upper
bound of O(√ΥTT log(T)), for γ = 1 − (4B)−1

√
Υ/T and specific choices of

the parameters to optimize this quantity.
The second algorithm the authors proposed in [Garivier and Moulines, 2011] is
sliding-window UCB. This algorithm expects the learner to play each action
once and then select the action that maximizes the following quantity:

at = argmax
a(i)∈A

X̄t(τ, a
(i)) + ct(τ, a

(i)), (3.3)

where ct(τ, a
(i)) = B

√
ξ log(min{t, τ})/Nt(τ, a(i)). The difference here with

respect to Equation (3.2) is in the definition of the exploration bonus, which
does not depend on γ anymore but on τ . Here, τ indicates the last plays that
the algorithm considers when computing the average reward of an action. The
definitions of the average reward and the number of plays of an action become:

X̄t(τ, a
(i)) =

1

Nt(τ, a(i))

t∑
s=t−τ+1

γt−sXs(a
(i))I{as = a(i)} (3.4)

where Nt(τ, a
(i)) =

t∑
s=t−τ+1

I{as = a(i)}. (3.5)

The idea is to use a sliding window of size τ which forgets the reward accumu-
lated outside of the window. The goal is to keep track only of recent rewards
in the hope that the sliding window is able to avoid the breakpoints. This
algorithm attains a regret upper bound of

O(
√

ΥTT log(T) log(T))

for τ = 2B
√
T log(T)/Υ and specific choices of the parameters. Therefore,

sliding-window UCB shows a better upper bound just by a
√

log(T) factor.

The setting we presented in Equation (3.1) and addressed up to this moment
is called per-arm (or local) abruptly-changing environment, where the change-
point occurs if there is at least one arm whose mean reward changes. However,
proceeding chronologically, it is interesting to cite the work of [Alami et al.,
2017], where the authors proposed a new solution to the switching bandit prob-
lem with Bernoulli arms distributions in a global switching bandit. The global
adjective describes the environment where all the arms a(i) ∈ A suffer a change
in the mean reward µi when a breakpoint occurs. This differs from previous
works we discuss, where a change-point indicates that the mean reward of one
or more arms has changed. Here, if a breakpoint occurs, it indicates that the
mean reward of all arms is altered. To address this problem, the authors pro-
pose a solution based on Thompson Sampling (TS) [Agrawal and Goyal, 2012;

Chapter 3. The state of the art of non-stationary bandits 31

Russo et al., 2018], which is called Global Switching TS with Bayesian Ag-
gregation Global-STS-BA. The algorithms assumes a Beta prior distribution
π
(Beta)

a(i),1
= Beta(α0, β0) where α0, β0 > 0. At every time step, the learner sam-

ples θa(i),t from each distribution π
(Beta)

a(i),t
and selects the arm to play following

at = argmaxa(i)∈A θa(i),t. Once the arm is played and the learner collects the
reward, the algorithm updates the posterior distribution, such that

π
(Beta)

a(i),t
= Beta

(
αa(i),t = α0 + I{

t∑
s=1

as = a(i)}I{
t∑

s=1

rs = 1},

βi,t = β0 + I{
t∑

s=1

as = a(i)}I{
t∑

s=1

rs = 0}
)
.

To face the non-stationarity of the model, the authors combine the Thompson
Sampling approach to a Bayesian online change-point detector, which works
by tracking the optimal expert. Unfortunately, the authors did not provide a
regret analysis of the algorithm.

A subsequent work, which goes back to the local abruptly-changing environ-
ment, is studied in [Liu et al., 2018]. Here, the authors further assume that:

• the distributions of all arms are Bernoulli distributions,

• the shortest stationary interval between two consecutive change-points is
greater than KM , where K is the cardinality of the set of actions A and
M ∈ Z is an integer,

• there exists a known parameter ϵ > 0 such that ∀a(i) ∈ A and ∀t ≤ T −1,
if µi(t) ̸= µi(t+1), then ∥µi(t)− µi(t+1)∥ ≥ 3ϵ. This ensures that when
a breakpoint occurs, the shift suffered by the mean reward of the arm
involved is not infinitesimal.

Similarly to other works, the authors combine an upper confidence bound strat-
egy with a change-point detection, focusing their efforts on the latter. The upper
confidence bound strategy is exactly the UCB algorithm previously mentioned.
The change-point detector is used to tell the UCB algorithm when to reset the
estimates of a certain arm for which the change-point is detected. The method
used to detect the breakpoints is called Two-sided CUSUM and it is based on
the concept of a random walk. It considers a function of the reward sampled
at time t and uses it to make a step in a random walk. If no change in the
mean rewards is detected, then the random walk has a negative mean drift.
Otherwise, if a change-point is detected, then the random walk has a positive
mean drift. The algorithm signals a change in the mean reward of an arm if the
random walk crosses a positive threshold. The algorithm is called "two-sided"
because it instantiates two random walks with a negative mean drift and a
positive mean drift respectively before and after a change-point. This is instan-
tiated for every arm a(i) ∈ A. This means that there are K Two-sided CUSUM
algorithms running in parallel to detect changes in each arm. The algorithm
that combines UCB with Two-sided CUSUM is called CUSUM-UCB. The authors

Chapter 3. The state of the art of non-stationary bandits 32

show that when the horizon T and the number of breakpoints ΥT are known
and the parameters are appropriately tuned, this algorithm has been proven to
reach a regret upper bound of

O
(
ΥT log(T)

(∆µi(T))2
+

√
TγT log(

T

ΥT

)

)
,

where ∆µi(T) = min{µa∗(t) − µa(i)(t)} is the minimum difference between the
expected reward of the best arm a∗ and a suboptimal arm a(i) over all the time
slots.

In the context of abruptly-changing environments, [Wei and Srivatsva, 2018]
proposed two algorithms, Limited Memory Deterministic Sequencing of
Exploration and Exploitation (LM-DSEE) and Sliding-Window Upper
Confidence Bound (SW-UCB#). With their work, the authors address the same
setting of abruptly-changing environments where they assume the mean reward
to be bounded µi(t) ∈ [0, 1], as well as the number of breakpoints ΥT ∈ O(T ν)
where ν ∈ [0, 1). The first algorithm, called LM-DSEE, proposed by the authors
to solve this bandit problem consists of alternating between exploration and
exploitation phases. The algorithm splits the horizon into epochs. In the i-th
exploration phase, it samples each action L(i) = ⌈γ ln(iρlβ)⌉ times and collects
the reward it receives to update the arms’ estimates. In the i-th exploitation
phase, the algorithm plays for ⌈αiρl⌉−KL(i) times the action that resulted to be
the best in the previous phase, namely the one which reached the highest average
reward in the i-th exploration phase. To better understand these quantities,
the authors specify how to tune the parameters γ, l, and ρ depending on the
environment as:

γ ≥ 2

∆2
min

,

l ∈ {K/α⌈γ ln lβ⌉, . . . ,+∞},

ρ =
1− ν
1 + ν

,

where ν ∈ [0, 1),∆min ∈ (0, 1), α ∈ R+ − {0}, β ∈ (0, 1]. This algorithm gets
a regret upper bound of O(T 1+ν

2 lnT) in abruptly-changing environments with
the assumption that ΥT ∈ O(T ν) with ν ∈ [0, 1) known a priori.
For the same type of environment and the same assumption on ΥT , the au-
thors proposed the SW-UCB# algorithm, which is an adaptation of the SW-UCB
algorithm proposed in [Garivier and Moulines, 2011]. It is still based on the
concept of using a sliding window to keep track of the arms’ estimates. How-
ever, while [Garivier and Moulines, 2011] defines a fixed-sized sliding window
which depends on the a priori knowledge of T , here [Wei and Srivatsva, 2018]
defines the window to be of size τ(t, α) = min{⌈γtα⌉, t} where α ∈ (0, 1] and
γ ∈ R+∪{+∞}. This allows the window to have a time-varying size and to not
depend on the knowledge of T . The mean rewards of the arms are computed fol-
lowing Equation (3.5) using only the rewards collected in the sliding window of

Chapter 3. The state of the art of non-stationary bandits 33

size τ(t, α). The algorithm consists of playing each arm once and then selecting
the arm with the highest UCB index similarly as Equation (3.3) with the only
difference that here the confidence bonus is defined as ci(t, α) =

√
(1+α) ln t

Nt(τ(t,α),a(i))
.

Recalling the assumption that ΥT ∈ O(T ν) with known ν ∈ [0, 1), the regret
of the SW-UCB# algorithm is upper bounded by O(T 1+ν

2 ln(T)), the same regret
obtained by LM-DSEE.
More recently, [Besson and Kaufmann, 2019] proposed a new algorithm which
combines approaches based on upper confidence bounds and a change-point
detector. The authors study the piece-wise stationary setting characterized
by the parameter ΥT as defined in Equation (3.1). The authors proposed an
algorithm called GLR-klUCB, which is the first one where it is not required
to know the smallest magnitude of change between two change-points. The
peculiarity of this algorithm is that when selecting the arm with the highest
UCB index to play, the UCB index is not the one defined in Equation (2.8) but
it is an upper confidence bound defined on the Kullbak-Leibler (KL) divergence,
which is a measure of similarity between distributions. Typically, the KL-UCB
standard algorithm selects the arm to play using the following criterion:

at = argmax
a(i)∈A

max

{
µ̃ ∈ [0, 1] : d(µ̂i(t− 1), µ̃) ≤ log(f(t))

T(t−1)(i)

}
where f(t) = 1 + t log2(t).

The GLR-klUCB algorithm uses this bandit algorithm combined with a change-
point detector based on a Generalized Likelihood Ratio test, which detects any
change in the reward distribution of any arm and communicates this to the
algorithm. The authors provide two different versions of the algorithm: local
restart and global restart. The Local Restart resets the mean reward of the arm
for which the change-point has been detected. The Global Restart resets the
mean reward for all the arms even if the change-point has been detected only
for one of them. In both cases, once the mean reward of an arm is restarted,
the algorithm starts recomputing the mean reward from the samples collected
after the change-point. We use τ(i) to indicate the time step where arm a(i) was
last restarted. After playing each arm once at the beginning of the game, the
algorithm selects the action to play at using the KL-divergence and adapting
the criterion to:

at = argmax
a(i)∈A

max
{
µ̃ ∈ [0, 1] : Nt(i)× d(µ̂i(t− 1), µ̃) ≤ f(t− τ(i))

}
where f(t) = ln(t) + 3 ln(ln(t)),

(3.6)

where Nt(i) is the number of times that action a(i) has been pulled after the
last restart. Based on the type of algorithm, either GLR-klUCB with Local
Restart or GLR-klUCB with Global restart, the authors prove that with a
certain tuning of the parameters, the regret upper bound is O(K

√
ΥTT ln(T))

and O(K
√
CTT ln(T)) respectively, where CT ≤ KΥT is the total number of

change points occurred during the game. When ΥT = CT , the analysis shows
that it is preferable to adopt GLR-klUCB with Local Restart.

Chapter 3. The state of the art of non-stationary bandits 34

The last work we mention on switching bandits is the one by [Auer et al., 2019].
In this work, the authors analyse the local abruptly-changing environment when
the number of change-points is unknown. They propose an algorithm called
AdSwitch which does not require knowing ΥT in advance. AdSwitch works on
intervals l = 1, 2, . . . and starts a new interval when a change in the mean
rewards is detected. It starts by considering all arms as good. The more the
actions are played and the rewards collected, the algorithm labels an arm as
bad if it is proven to be suboptimal at time t using as a condition a confidence
bound computed on the current time interval:

max
a′∈goodt

µ̂[s,t],a′ − µ̂[s,t],a >

√
C1 log(T)

n[s,t](a)− 1
, (3.7)

where s is the time index used inside the interval, C1 is a suitable constant, and
n[s,t](a) indicates the number of times the action a has been played inside the
current interval. Similarly, µ̂[s,t],a indicates the mean reward of arm a computed
using the rewards collected in the current interval. If an arm a satisfies the
condition and is labelled as bad, then the mean reward of arm a and its gap to
arm a′ in Equation (3.7) are saved and arm a is removed from the set of good
arms. The algorithm also checks for changes in the good arms, by using the
condition:

|µ̂[s1,s2],a − µ̂[s,t],a| >
√

2 log(T)

n[s1,s2](a)
+

√
2 log(T)

n[s,t](a)
, (3.8)

where s is in the current interval and s1 ≤ s2. The algorithm also forces the
examination of bad arms following some sampling obligations in order to select
this type of arms only rarely to avoid an impact on the regret. The condition
used in this case is the following:

|µ̂[s1,s2],a − µ̃a(l)| >
∆̃l(a)

4
+

√
2 log(T)

n[s,t](a)
, (3.9)

where l is the index of the interval where the arm was evicted from the good
arms, µ̃a(l) is the mean reward the arm had, and ∆̃l(a) = maxa′∈goodt µ̂[s,t],a′ −
µ̂[s,t],a the gap between arm a and arm a′ when it was evicted. At time step t,
AdSwitch selects the arm in the set of good arms that has been played least
recently, selecting good arms in a round-robin fashion. Sometimes, following the
sampling obligations, the algorithm plays some bad arms to check if their mean
reward has changed using Equation (3.9). When a change in mean rewards
is detected, the algorithm starts a new interval and proceeds to examine the
same conditions. The authors analyzed the regret of this algorithm and proved
that its regret is upper bounded by O(C

√
KΥTT log(T)), where C is a suitable

constant and there is no knowledge of ΥT in advance.

While the previous works focused only on settings with finite sets of actions,
the next one studies linear d-dimensional environments.
In [Wei and Srivatsva, 2018] the authors propose LM-DSEE and SW-UCB# not

Chapter 3. The state of the art of non-stationary bandits 35

only for the abruptly-changing environment but also for the slowly-varying en-
vironment. In this setting, the mean reward of an arm measured in two sub-
sequent time steps suffers a small shift upper bounded by ϵT ∈ O(T−m) with
m ∈ R+ − {0} known a priori. We note how for m close to zero, the changes
in the mean rewards become higher. For this environment, the authors pro-
posed the exact same algorithms proposed for the abruptly-changing environ-
ment, but the specificity of this setting influences the regret bounds. Assuming
ϵ = O(T−m), the LM-DSEE algorithm obtains a regret bound of O(T

3+2ρ
3+3ρ lnT)

for ρ = 3min{m,mmax}
4−3min{m,mmax} and mmax ∈ (0, 4/3), while the SW-UCB# algorithm is

upper bounded by O(T 1−α
3 lnT) for α = min{1, 3m

4
}.

3.1.2 Non-stationary bandits with variation budget

In the class of exogenous bandits, where the non-stationarity does not depend
on the actions of the learner, we include another subset called bandits with vari-
ation budget, or variation bound. This family of bandits is still characterized by
a horizon T and a set of actions A, which we assumed to have finite cardinality
K for the moment. The peculiarity of this model is the assumption that the
reward of each arm can change at any point t ∈ {1, . . . , T} but that throughout
the horizon the total variation of the expected reward of an arm is bounded by
the following quantity, called variation budget

T−1∑
t=1

sup
a(i)∈A

∥µi(t)− µi(t+ 1)∥ ≤ VT . (3.10)

The variation budget indicates how much the mean reward of an arm can change
between two consecutive time steps. A particular aspect of this setting is that it
includes both abruptly-changing and slowly-changing environments. In [Besbes
et al., 2014] and [Besbes et al., 2019], the authors present a bandit problem with
variation budget as the one defined. The authors study the setting where the
variation budget VT is known and provide a lower bound for the setting where
T ≥ 1, K ≥ 2, and VT ∈ [K−1, K−1T], stating that RT ≥ C(KVT)

1/3T 2/3 where
C > 0 is an absolute constant. The authors present an algorithm called Rexp3
as a solution to this bandit problem. The algorithm sets a batch size ∆T and
divides the horizon in T/∆T epochs. In each one, it employs a new instance of a
subroutine based on the Exp3 algorithm. They show that for T ≥ 1, K ≥ 2,VT ∈
[K−1, K−1T] and setting the batch size as ∆T = ⌈(K logK)1/3(T/VT)

2/3⌉, Rexp3
obtains a regret upper bound of C̄(K logKVT)

1/3T 2/3 for some absolute constant
C̄ and by appropriately tuning the parameters.

In [Cheung et al., 2019] the authors analyze the bandit with variation budget
problem in a linear setting of dimension d. They study a linear bandit problem
as presented in Section 2.5 for the non-stationary setting. They assume that the
reward function is the inner product between the action at ∈ Dt ⊆ Rd where Dt

is a decision set chosen by an oblivious adversary, and the unknown parameters
vector θ∗t . The subscript indicates that the unknown parameter, which dictates
the best action the learner could pull, changes with every time step. In this

Chapter 3. The state of the art of non-stationary bandits 36

setting, the authors introduced the variation budget as

T−1∑
t=1

∥θ∗t+1 − θ∗t ∥ ≤ VT , (3.11)

assuming that VT = Θ(T ρ) where ρ ∈ (0, 1). However, they differ from the
previous work since they allow the adversary to choose the different θ∗t . To face
this bandit problem, the authors present an algorithm called SW-UCB where they
combine the use of UCB index with a sliding window. The main step of SW-UCB
consists of selecting in each time step the action at ∈ Dt which maximizes the
UCB index defined as:

at = argmax
a∈Dt

{
a⊤θ̂t + ∥a∥V −1

t−1

[
R

√
d ln

(1 + wL2/λ

δ

)
+
√
λS

]}
, (3.12)

which is the solution to the optimization problem where θ̂t is the estimation of θt
using the regularized least squares estimator (Equation (2.24) in Section 2.5),
w is the window size, R is the variance proxy of the noise terms, and L is
the upper bound of all the actions’ l2 norms s.t. ∥a∥ ≤ L. Adopting this
algorithm, the learner is able to achieve a regret bound of O(d2/3V 1/3

T T 2/3),
when VT is known and w = O((dT)2/3V −2/3

T). To overcome the knowledge of
VT , the authors propose a Bandit-over-bandit (BOB) algorithm. It consists
of dividing the horizon into ⌈T/H⌉ blocks of length H. In each block, a window
size wi is drawn from a set J ⊆ {1, . . . , H} and used to run an instance of
SW-UCB with window size w = wi. After H rounds, once the block is over, the
learner sends the average of the rewards collected in the block as the reward
to a meta-bandit, which is an instance of the EXP3 algorithm to control the
selection of the window size wi. In this setting, where VT is unknown, BOB
achieves a regret of Õ(d2/3(VT + 1)1/4T 3/4).

Another work which analyses a bandit problem with variation budget is [Russac
et al., 2019]. Here, the authors consider a linear setting as well. The reward
function is defined as Xt = ⟨at, θ∗t ⟩, where θ∗t is the unknown parameter which
changes with every time step. The authors assume that every action is bounded
by ∥a∥2 ≤ L, the unknown parameter is bounded by ∀t, ∥θ∗t ∥2 ≤ S in each time
step, and the reward is also bounded by ⟨at, θ∗t ⟩ ≤ 1. The authors propose a
weighted regularized least-squares estimator, which is a modified version com-
pared to the one present in Equation (2.24) and defined as follows:

θ̂t = argmin
θ∈Rd

(t∑
s=1

ws(Xs − ⟨θ, as⟩)2 + λt∥θ∥22
)
, (3.13)

where ∀s ∈ {1, . . . , t}, ws are positive weights. Developing the RLSE with
weights, we get the following equations:

θ̂t = V −1
t

t∑
s=1

wsasXs, (3.14)

Chapter 3. The state of the art of non-stationary bandits 37

where

V0 = λtI, Vt = V0 +
t∑

s=1

wsasa
⊤
s , (3.15)

where Vt ∈ Rd×d and I is the identity matrix. They also introduce the matrix:

Ṽt = µ(t)Id +
t∑

s=1

w2
sasa

⊤
s , (3.16)

where ∀t, µ(t) are positive parameters and Ṽt is related to the variance of θ̂t.
These equations are used to solve the bandit problem, following the D-LinUCB
algorithm and setting wt,s = γt−s, where γ is interpreted as a discount fac-
tor. The algorithm plays the action which maximizes the UCB index, which is
defined as:

UCB(a) = a⊤θ̂ + βt−1

√
a⊤V −1Ṽ V −1a, (3.17)

where βt−1 =
√
λS+σ

√
2 log(1/δ) + d log

(
1 + L2(1−γ2t)

λd(1−γ2)

)
defines the confidence

set Ct = {θ : ∥θ − θ̂t−1∥Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1}, using µ(t) = γ−2t. After selecting
the action, the algorithm uses the reward to update the following quantities:

V = γV + ata
⊤
t + (1− γ)λI

Ṽ = γ2Ṽ + ata
⊤
t + (1− γ2)λI

θ̂ = V −1b

b = γb+Xtat.

The authors analysed the performance of the algorithm assuming a variation
budget

∑T−1
s=1 ∥θ∗s − θ∗s+1∥2 ≤ VT and proved that, when γ = 1 − (VT

dT
)2/3 and

T → ∞, with high probability D-LinUCB reaches an asymptotic regret upper
bound of O(d2/3V 1/3

T T 2/3). Note that this result requires T to be known in order
to tune the discount factor γ.

3.1.3 Rotting restless bandits

Finally, we cite the work done by [Seznec et al., 2020] who studied both the
switching bandits and bandits with variation budget only when the rewards are
arbitrary non-increasing functions which depend on time or number of pulls.
For both settings, they define rotting restless bandits as a class of bandits with
a finite set of arms |A| = K where each arm a(i) is associated with a reward
function µi(t) which depends on time t. The environment is based on the
assumption that ∀a(i) ∈ A the reward functions µi(t) are non-increasing. In
this work and in the ones which will follow in the next sections, we will refer to
this last assumption with the terms rotting, other than decreasing or decaying.
Another characteristic of this setting is the assumption of a variation budget

Chapter 3. The state of the art of non-stationary bandits 38

on the mean rewards functions µi : N⋆ → [−VT , 0]:
T∑
t=1

sup
a(i)∈A

(
µi(t)− µi(t+ 1)

)
≤ VT , (3.18)

where the variation budget VT is a positive constant. The authors show that
adapting the proof in [Besbes et al., 2014], under these assumptions and with a
variation budget VT ≥ σ

√
K/(8T), the expected regret of any strategy would

be lower bounded by:

RT ≥
1

16
√
2
(σ2VTKT

2)1/3. (3.19)

The algorithm proposed by authors to solve this bandit problem is called Rotting
Adaptive Window Upper Confidence Bound (Raw-UCB). It is built upon the
proof that the greedy policy, which is the strategy that plays the arm at =
argmaxa(i)∈A µi(t) that maximizes the reward at current time t, is optimal in
the rotting restless setting. They defined the following quantities:

µ̂m
i (t) =

1

m

t−1∑
s=1

I{as = a(i) ∧Ni,s > Ni,t−1 −m}Xs

µ̄m
t (i) =

1

m

t−1∑
s=1

I{as = a(i) ∧Ni,s > Ni,t−1 −m}µi((s,Ni,s−1)),
(3.20)

where Ni,t indicates the number of times action a(i) has been pulled up to time t.
The quantity µ̂m

i (t) defines the mean reward of arm a(i) computed on its last m
observations at time t, while µ̄m

i (t) defines the average of the associated means.
They use these quantities to define the event under which the confidence bound
is true:

∀t, δ = 2t−α ξαt = {∀a(i) ∈ A, ∀n ≤ t−1,∀h ≤ n, |µ̂m
i (t)− µ̄m

t (i)| ≤ c(m, δt)}
(3.21)

where c(m, δt) =
√

2σ2 log(2/δt)
m

and ∀t > K, after pulling each arm once, P[ξ̄αt] ≤
Kt2−α. After defining these quantities, it is easier to define the steps of the algo-
rithm. After pulling each arm once, Raw-UCB selects the arm which maximizes
the following variant of the UCB index:

UCBRaw,i = min
h≤Ni,t−1

µ̂m
i (t) + c(m, δt), (3.22)

where δt = 2/tα. The algorithm selects in an adaptive way the window to
compute the tightest UCBRaw index for each arm, since the rotting behaviour
makes sure that this index is an upper confidence bound on the reward in
the next step. The authors show that their proposed algorithm matches the
lower bound in Equation (3.19) up to poly-logarithmic factors and without the

Chapter 3. The state of the art of non-stationary bandits 39

knowledge of T nor VT :

RT = 4
(
C2σ2VTKT

2 log(T)
)1/3

+ Õ
(
(σV 2

TK
2T)1/3

)
. (3.23)

In the very same work, the authors investigate the piece-wise stationary restless
bandits as well. In this particular setting, they still assume that the reward
functions are bounded as defined in Equation (3.18), but they add another
assumption, which defines the piece-wise stationarity of the model:

ΥT − 1 ≥
T−1∑
t=1

I{∃a(i) ∈ A : µi(t) ̸= µi(t+ 1)}, (3.24)

where ΥT is a positive integer and the assumption states that there are at
most ΥT − 1 change-points throughout the horizon T . The authors propose the
same algorithm Raw-UCB to solve this problem and prove that in this particular
piece-wise stationary setting the regret upper bound of Raw-UCB is:

RT ≤ Cσ
√
log(T)

(√
ΥTKT +ΥTK

)
+ 6KVT , (3.25)

which matches its lower bound up to poly-logarithmic factors and without the
knowledge of T or ΥT − 1, where the expected regret lower bound for ΥT ≤(

32V 2
T T

Kσ2

)
is:

RT ≥
σ

32

√
ΥTKT. (3.26)

3.1.4 Rising restless bandits

Finally, we conclude the discussion on exogenous non-stationarity presenting
rising bandits by [Metelli et al., 2022], which does not fit neither into the piece-
wise stationary nor in the variation budget bandits. The work published in
the cited paper addresses both the restless and rested setting. We defer rising
rested bandits to the next chapter and we explore here the rising restless bandit
model. Each action a(i) ∈ A with |A| = K is characterized by a reward function
µi(t) which is non-decreasing and concave. The monotonicity is defined as
γi = µi(n + 1) − µi(n) ≥ 0 and the concavity as γi(n + 1) − γi(n) ≤ 0. They
characterize the problem by introducing the definition of cumulative increment :

Γµ(s, q) = max
a(i)∈A

{ s−1∑
l=1

γi(l)
q
}

(3.27)

for q ∈ [0, 1] and s ∈ {1, . . . , T}. In this setting, the optimal policy is oracle
greedy, which at every time step t selects the arm with the highest expected
reward. They start by analyzing the deterministic setting, for which they pro-
pose an algorithm that at every time step t selects the arm that maximizes the

Chapter 3. The state of the art of non-stationary bandits 40

exploration index Bi(t) which is set equal to:

µ̄R−less
t (i) = µi(ti,Ni,t−1

) + (t− ti,Ni,t−1
)
µi(ti,Ni,t−1

)− µi(ti,Ni,t−1−1)

ti,Ni,t−1
− ti,Ni,t−1−1

, (3.28)

where µi(ti,Ni,t−1
) represents the most recent reward and

µi(ti,Ni,t−1
)−µi(ti,Ni,t−1−1)

ti,Ni,t−1
−ti,Ni,t−1−1

the most recent increment. Using this algorithm in the deterministic setting,
for every q ∈ [0, 1] the algorithm reaches a regret bound of:

RT ≤ 2K +KT
q

q+1Γµ

(⌈
T

K

⌉
, q

) 1
q+1

. (3.29)

From this result, the authors move to the stochastic setting and propose a
solution based on a d-sized window with d ∈ [Ni,t−1] where the size d governs
the bias-variance trade-off between using a few recent payoffs and many past
rewards. In the algorithm, they propose they define:

µ̂R−less
i (t) =

1

d

Ni,t−1∑
n=Ni,t−1−d+1

(
µ̂i,n(t) + (t− n) µ̂i,n(t)− µ̂i,n−d(t)

d

)
, (3.30)

and adapt the exploration index to be Bi(t) = µ̂R−less
i,d (t) + βR−less

i,d (t) where

βR−less
i,d (t, δt) = σ(t − Ni,t−1 + di,t − 1)

√
10 log(1/δt)

d3i,t
. So the algorithm selects in

each time step the arm which maximizes the index Bi(t).
The authors show that for q ∈ [0, 1], di,t = ⌊εNi,t−1⌋ for ε ∈ (0, 1/2), δt = t−α

for α > 2, the algorithm achieves an expected regret bound of:

RT = O
(
K

ε
(σT)2/3(α log(T))1/3 +

KT
2q
1+q

ε(1− 2ε)
Γµ

(⌈
(1− 2ε)

T

K

⌉
, q

) 1
1+q

)
.

(3.31)

3.2 Endogenous non-stationarity: rested and
state-dependent bandits

In the previous sections, we investigated different classes of restless bandits,
all united by the fact that their non-stationarity is intrinsically related to the
environment. In this section, we depart from the family of restless bandits to
focus on the class of bandits with endogenous non-stationarity. The peculiarity
of this family is that the non-stationarity depends on the previous history of
actions. Here, the learner can directly influence the rewards of future actions
based on the choices he makes from the start of the game. Different models
in the literature study different effects of the history of actions on the rewards.
As mentioned at the beginning of this chapter, we distinguish between rested
and state-dependent bandits. Rested bandits identify a class of bandits where
the expected reward of an arm changes only when this arm has been pulled. In
this case, the non-stationarity of an arm’s distribution at the current time step

Chapter 3. The state of the art of non-stationary bandits 41

t depends on the number of times the arm has been pulled up to time t. Inside
this class, we are going to analyze models that rely on different assumptions:
we mainly distinguish between a rotting, or decaying, and rising, or increasing,
behaviour. In rotting bandits, the expected reward of the arm decreases with the
number of pulls, while in rising bandits this reward increases with the number
of pulls. We will detail each model when we discuss it.
On the other hand, we classify as state-dependent bandits all those bandit mod-
els where the non-stationarity of the distribution of an arm depends on the time
elapsed since it was last pulled or how many times the arm has been consecu-
tively pulled. We use the term state-dependent since these models oftentimes
rely on the concept of state, or delay, to keep track of how many time steps have
passed since the arm was last pulled or how many times it has been consecu-
tively pulled. Inside this class, we are also able to distinguish between bandits
with decreasing and increasing reward functions, recalling the dichotomy be-
tween rotting and rising bandits that we found for restless and rested bandits.
However, as we will see in the rest of this section, we will switch to the term
recovering, or recharging, when we refer to those bandits whose reward function
is increasing with the state but will go back to zero once the action is played.
The different ways in which the rewards are affected by these behaviours are
going to be specified for each model we are going to present. We will make
every distinction clear when presenting each work.

3.2.1 Rested bandits

Rotting rested bandits

We start by presenting those works in the literature that focus on rotting, or
decaying, decreasing, behaviours, which are namely those bandits characterized
by non-increasing or decreasing reward functions. We consider all those bandit
models where the rewards of the actions tend to decrease the more they are
played.
We start by introducing rotting bandits, which is one of the prominent works
in this class. They were first introduced in [Gittins, 1979], [Gittins et al., 2011]
and further studied in [Heidari et al., 2016]. In the latter, the authors define
the rotting bandit problem as a multiarmed bandit with a finite set of actions
of cardinality K where each action a(i) is associated with an arm-dependent
reward function fi : N≥1 → [0, 1], which receives as input the number of times
Ti(t) the action a(i) has been played up to time t and returns the reward fi(Ti(t))
obtained by the arm at time t, which is bounded in [0, 1]. We emphasize how
the cumulative reward of a policy does not depend on the specific order of
the pulls but only on the number of pulls of each arm. This is an important
distinction between rested and state-dependent bandits, where the performance
of the latter depends on the specific order of actions pulled by the learner.
The authors study both increasing and decreasing reward functions for rested
bandits. Here, we analyze the decreasing setting, where the reward function
is decreasing, and defer the discussion about the increasing setting in the next
section. For the offline setting of this problem, they prove that oracle greedy,
which at every round t pulls the arm with the highest instantaneous reward, is

Chapter 3. The state of the art of non-stationary bandits 42

the optimal policy. The authors adapt this algorithm to the online setting by
proposing a greedy policy that pulls each arm once and then selects the arm
with the highest most recent instantaneous reward. Since the reward functions
are decreasing, the player is sure that the next pull of any arm a(i) will not
entail a higher reward than its last one. This algorithm shows a constant regret
of K + εT , where ε > 0 is a bound on the magnitude of the corruption of the
rewards.

The same rotting setting was also studied in [Levine et al., 2017], where the
reward function of any arm is decreasing and depends on the number of pulls.
As in the work of [Heidari et al., 2016], the authors prove that the opti-
mal policy for the rotting bandit problem is greedy, which selects in each
time step t the action which maximizes the most recent instantaneous reward,
a∗t = argmaxa(i)∈A{µi(Ti(t) + 1)}. The novelty of this work is to propose two
different models: a non-parametric and a parametric rotting bandit. In the
non-parametric case, the only assumption is that the reward functions are de-
creasing, with no prior knowledge of the expected rewards. For this setting,
they propose a Sliding-Window Average (SWA) algorithm. In the beginning,
the player pulls each arm m times in a round-robin fashion. Then, he selects
the arm at = argmaxa(i)∈A

{
1
m

∑Ti(t)
n=Ti(t)−m+1Xi,n

}
where Xi,n is the reward col-

lected by the learner when playing arm a(i) at its n-th pull. Once the arm is
played, the algorithm increases by 1 the number of pulls of the selected arm and
stores Xi,t as its last reward. The algorithm follows a similar idea compared to
the previous work, but instead of selecting the arm that maximizes the most
recent instantaneous reward, the learner adapts it so that the condition does
not rely simply on the last reward but on the average of its last m rewards. SWA
achieves a regret upper bound of:

RT ≤
(
α max

a(i)∈A
µi(1) + α−1/2

)
42/3α2/3K1/3T 2/3 ln1/3(

√
2T) + 3K max

a(i)∈A
µi(1)

(3.32)
where α > 0 is used to tune m = ⌈α42/3α2/3K−2/3T 2/3 ln1/3(

√
2T)⌉ and the

upper bound is minimized when α = (2maxa(i)∈A µi(1))
−2/3. This is the bound

for the case where the horizon is known. In case it is not, the authors show
that, by using the doubling trick, the same regret is worsened only by a log2(T)
factor.
On the other hand, the same work analyzes the parametric case where it is
assumed that the player knows that the reward function is the product of the
sum of an unknown constant part and a rotting part belonging to a set of
models. So, the reward function can be written as µ(n) = µc

i + µ(n, θ∗i), where
the collection of {θ∗i }Ki=1 constitutes the set of models Θ∗. The parametric
setting can be further split into two cases: the asymptotically vanishing case,
where ∀a(i) : µc(i) = 0, and the asymptotically non-vanishing case, where ∀a(i) :
µc(i) ∈ R. For both cases, the setting relies on the assumption that ∀a(i), θ ∈
Θ µi(n, θ) is positive, non-increasing in n, and µi(n, θ) ∈ ≀(1), ∀θ ∈ Θ where Θ
is a discrete known set. In the vanishing case, the authors propose an algorithm
called Closest to Origin (CTO). In this algorithm, after playing each arm
once, the learner computes an estimate θ̂i from the detection of the true rotting

Chapter 3. The state of the art of non-stationary bandits 43

model. This detection is performed using the proximity to origin rule, which
looks at what model best fits the rewards collected in the past. This is done by
defining:

Y (i, t,Θ) =
{ Ti(t)∑

n=1

Xi,n −
Ti(t)∑
n=1

µ(n, θ)
}

θ∈Θ
(3.33)

and computing the estimate as:

θ̂i(t) = argmin
θ∈Θ

{|Y (i, t, θ)|}. (3.34)

Then, the algorithm uses this estimate to select greedily in each time step t the
arm at = argmaxa(i)∈A µ(Ti(t) + 1, θ̂i) which maximizes the most recent reward
and uses the new reward obtained by playing at to update the estimates. The
authors show that this approach still achieves a regret upper bound of o(1).
For the asymptotically non-vanishing case, the authors propose a similar method,
which they call Differences Closest to Origin (D-CTO). This algorithm
implements the detection of both the rotting model and the constant term.
The detection of the rotting model is similar to the one performed in the CTO
algorithm but, instead of minimizing |Y (i, t, θ)| in Equation (3.34), here the
algorithm minimizes |Z(i, t, θ)|, which is the norm of the following function:

Z(i, t,Θ) =
(⌊Ti(t)/2⌋∑

n=1

Xi,n −
Ti(t)∑

n=⌊Ti(t)/2⌋+1

Xi,n

)

−
(⌊Ti(t)/2⌋∑

n=1

µ(n, θ)−
Ti(t)∑

n=⌊Ti(t)/2⌋+1

µ(n, θ)
)
.

(3.35)

The idea is to apply the same concept of proximity to origin but on the dif-
ferences between the two halves of the sequences of rewards for both parts of
the reward function. On these definitions, the authors build the D-CTO algo-
rithm which plays every action for a certain optimized amount of time m∗

diff in
a round-robin fashion, uses the criterion of the proximity rule with Z(i, t, θ) to
detect θ̂i(t), and then selects the arm to play using the following UCB criterion:

at = argmax
a(i)∈A

[
µ̂c
i(t) + µ(Ti(t) + 1, θ̂i(t)) + ct,Ti(t)

]
(3.36)

where

µ̂c
i(t) =

∑Ti(t)
n=1

(
Xi,n − µ(n, θ̂i(t))

)
Ti(t)

and ct,s =

√
8 ln(t)σ2

s
. (3.37)

In order to better understand the regret results, we define the following notation:
given a function f : N → R, a new function f ⋆↓ : R → N

⋃{∞} is defined as
the function which takes ζ ∈ R as an argument and returns the smallest natural
number N ∈ N such that ∀n ≤ N : f(n) ≤ ζ if N exists, otherwise f(n) ≤ ∞.

Chapter 3. The state of the art of non-stationary bandits 44

The regret of the D-CTO algorithm has been proven to be upper bounded with
probability 1− δ by:

Rt ≤
∑

a(i)∈A:a(i) ̸=a∗

[
max

{
m∗

diff (δ/K), µ⋆↓(εi, θ
∗
i),

32σ2 ln(T)

(∆i − εi)2
}
× (∆i + µ(1, θ∗a∗))

]
+ C(Θ∗, {µc(i)})

(3.38)

for any sequence εi ∈ (0,∆i) where ∆i = µc(a∗) − µc(i) is the suboptimal
gap on the constant terms, and C(Θ∗, {µc(i)}) =

∑
a(i) ̸=a∗

∑µ⋆↓(∆i,θ
∗
i)

n=1 µi(n) +∑
a(i) ̸=a∗

π2+3
3

(∆i + µ(1, θ∗a∗)).

Another result in the literature which analyzes decaying bandits is [Bouneffouf
and Féraud, 2016]. The environment consisted of a K-armed bandit with re-
wards bounded in [0, 1] and a non-stationary reward function defined as fi(t) =
Xt · D(Ti(t)), where Xt is the stationary reward associated with action a(i) at
time t with expected mean reward µi, Ti(t) the number of pulls associated with
arm a(i) up to time t, and D(Ti(t)) is the known trend reward function which de-
pends on the number of pulls. They measure the regret against an optimal policy
defined as the strategy which always selects arm a∗ = argmaxa(i)∈A{µiD(Ti(t))}.
The authors propose the algorithm A-UCB where the player selects at each time
t action at = argmaxa(i)∈A(µ̂i+c(i)) ·D(Ti(t)), where µ̂i is the empirical average
reward of arm a(i) and the confidence bonus is c(i) =

√
(2 log(t))/Ti(t). In the

paper it is proved that this strategy achieves an expected regret upper bound
of:

RT ≤ max
a(i)∈A

µiDmax

∑
a(i):T ∗

i (T)>Ti(t)

8 ln(T)

∆′2
i

+K
π2

3
, (3.39)

where ∆′
i = (Dmin/Dmax)µ

∗−µi, and Dmin, Dmax are two Lipschitz constants.

Rotting bandits are also studied in [Seznec et al., 2019], where the authors
investigate a setting comparable to the non-parametric case presented in [Levine
et al., 2017]. The environment is characterized by a finite set of actions |A| = K
and by reward functions which decay with the number of pulls. Specifically,
when at time t the learner plays an arm a(i), he gets a noisy σ2-sub-Gaussian
reward with mean µi(Ti(t)), where Ti(t) is the number of times arm a(i) has been
pulled up to time t. It is necessary to clarify a small distinction between this
model and the one presented in [Levine et al., 2017]: while in the latter µi(n)
indicated the expected mean reward of arm a(i) for the n-th pull, here in [Seznec
et al., 2019] µi(n) indicates the expected mean reward of arm a(i) after n pulls.
Due to the rotting nature of this setting, the reward function µi : N+ → R
are assumed to be non-increasing. The peculiarity of this environment is the
assumption that the decay of these reward functions µi is bounded as −L ≤
µi(n+1)−µi(n) ≤ 0 with µi(0) ∈ [0, L]. Firstly, they prove a lower bound for the
deterministic (σ = 0) rotting setting (as the one in [Heidari et al., 2016]) with
bounded decay equal to L(K − 1). Then, they address this bandit problem by
proposing the Filtering on Expanding Window Average (FEWA) algorithm.
This algorithm shares the idea behind previous methods for which the last

Chapter 3. The state of the art of non-stationary bandits 45

reward(s) collected by an arm is the most informative. However, considering
only one or a few samples is producing estimates with higher variance. In order
to balance this trade-off, FEWA employs sliding windows of increasing length
in order to discard suboptimal arms. Specifically, the algorithm starts with
a window size equal to m = 1. In each round it computes a threshold equal
to c(m,σ, δt) =

√
(2σ2/m) log(1/δt). An arm a(i) is discarded if the difference

between the empirical average of the reward of arm a(i) and the best empirical
average among all the active arms is greater than 2c(m,σ, δt). Once suboptimal
arms are filtered out, the algorithm plays the arm at = argmina(i)∈At

Ti(t) which
has been pulled the least among the remaining arms At. Finally, the reward
obtained by the arm is used to update the statistics. The authors show that in
this setting FEWA gets an expected regret upper bound of

RT ≤ 13σ(
√
KT +K)

√
log(KT) +KL.

The authors show that applying FEWA to the rotting bandit setting studied
in [Levine et al., 2017] would reach a regret upper bound of Õ(

√
KT), an

improvement compared to the regret of SWA which achieved an upper bound
of Õ(µ1/3

maxK1/3T 2/3). The authors also studied the problem-dependent regret.
They first defined:

m+
i,T =

{
m ≤ 1 +

32ασ2 log(KT)

∆2
i,m−1

}
where ∆i,m = min

a(j)∈A
µ(j)(T ∗

j (t)− 1)− µ̄m
(T ∗

i (t)+m)(i)

and µ̄m
n (i) =

1

n

m∑
j=1

µi(n− j).

Then, they used these definitions to state the upper bound, which is equal to:

RT ≤
∑

a(i)∈A

(C5 log(KT)

∆i,m+
i,T−1

+
√
C5 log(KT) + L

)
(3.40)

for δt = 1/(Kt5) and Cα = 32ασ2.

A subsequent work is proposed in [Seznec et al., 2020], where some of the same
authors from [Seznec et al., 2019] further study the rotting environment, both in
the restless and rested setting. We presented the restless rotting bandit problem
in the previous section when discussing restless bandits. Here, we focus on the
rotting rested environment and discuss the relationship between the two. First,
we recall the difference between restless and rested rotting bandits and show
some results for the combined setting. While in the restless case the reward
function of any arm a(i) decays with time irrespective of the learner’s actions,
namely µi(t), in the rested case the reward function of any arm a(i) decreases
with the number of pulls, namely µi(Ti(t)). In [Seznec et al., 2020] the authors
study the possibility of a combined setting for a rotting bandit with both restless
and rested arms. They prove that the worst-case regret suffered in this specific
setting is linear, showing that oracle greedy suffers a regret lower bounded by

Chapter 3. The state of the art of non-stationary bandits 46

RT ≥ ⌊T/4⌋ and that any learning strategy suffers RT ≥ ⌊T/8⌋. These results
show that learning a bandit problem with both restless and rested rotting arms
is difficult and achieves linear regret, but by separating the restless and rested
arms allows a near-optimal regret guarantee.
Since the restless case has been discussed before, here we focus on the rested
rotting bandit problem. The authors propose the RAW-UCB algorithm. It starts
by pulling each arm once and then selects the arm which maximizes the UCB
index as defined in Equation (3.22) with the mean reward defined in the first
of the two equations in Equation (3.22). The UCB index is defined as the
average reward on the last h observations summed to a confidence bound de-
fined in Equation (3.21). The authors analyze the regret of Raw-UCB applied
in the rested rotting environment and prove, for α ≥ 5, a problem independent
expected regret upper bound of:

RT ≤ Cσ
√
log(T)

(√
KT +K

)
+ 6KL (3.41)

and a problem-dependent bound of:

RT ≤
∑

a(i)∈A

(
C2σ2 log(T)

∆i,m+
i,T−1

+ Cσ
√

log(T) + 6L

)
(3.42)

where C = 2
√
2α is a universal constant which depends on α, m+

i,T = max{m ≤
1 + C2σ2 log(T)

∆2
i,m−1

}, and ∆i,m = mina(i)∈A(N
∗
j,T − 1)− µ̄m

(N∗
i,T+h)(i).

We mention two more works which are addressing two different environments
compared to the works mentioned so far. We start by presenting the rotting
bandit problem with infinitely many arms [Kim et al., 2022]. In this setting,
the player is faced with an infinite set of actions. Although in bandits literature
infinite set of actions often imply linear assumptions on the reward function,
here the authors do not make this assumption. They assume that µa(t) is the
mean reward of action a at time t. The reward obtained at time t for pulling
arm a is defined as Xt = µat(t) + ηt where ηt denotes 1-sub-Gaussian noise. At
time t = 1 the reward is bounded in [0, 1], but it decreases with a rotting rate
of ρt where 0 ≤ ρt ≤ ρ and ρ = o(1). In rounds t ≥ 1, the rotting behaviour
follows the formula µa(t + 1) = µa(t) − ρt for the arm that has been pulled in
the previous step. Therefore, at time t we can define the mean reward as:

µa(t) = µa(1)−
t−1∑
s=1

ρsI(as = a). (3.43)

The performance of an algorithm is measured against an optimal arm which
returns a reward of 1 at every time step, justified by the infinite set of actions
available. The authors provide a lower bound of the expected regret equal to
RT = Ω(max{ρ1/3T,

√
T}). When the rotting rate is ρ ≤ 1/T 3/2, the lower

bound achieves Ω(
√
T). Otherwise, when the rotting rate is larger, ρ > 1/T 3/2,

the lower bound is Ω(ρ1/3T). The authors propose two algorithms: one for when
the maximum rotting rate is known and one for unknown maximum rotting

Chapter 3. The state of the art of non-stationary bandits 47

rates. The first one called UCB-Threshold Policy (UCB-TP) is based on the
definition of an estimator for the initial mean reward of an arm a defined as:

µ̃o
a(t) =

∑t−1
s=1(Xs + ρTa(s))I(as = a)

Ta(t)
, (3.44)

where Ta(t) is the number of times arm a has been pulled. The algorithm
updates this estimator in each round and checks if this arm is good with a
condition based on a UCB index defined as:

UCBa(t) = µ̃o
a(t)− ρTa(t) +

√
8 log(T)/Ta(t). (3.45)

If the UCB index of arm a satisfies a threshold-based condition, UCBa(t) ≥ 1−δ
where δ is an input of the algorithm, then it keeps pulling arm a. If the condition
is not satisfied anymore, the player removes the action from the set of actions
and pulls another arm. Setting δ = max{ρ1/3, 1/

√
T} and having ρ = o(1),

the expected regret upper bound is equal to RT = Õ(max{ρ1/3T,
√
T}). The

second algorithm works when the maximum rotting rate ρ is unknown. To deal
with this missing information, the authors propose an algorithm of bandit-over-
bandits, called Adaptive UCB-TP (AUCB-TP), where a main bandit is running
the EXP3 algorithm on a bandit instance of UCB-TP, the algorithm proposed
for a known maximum rotting rate. The difference consists in the fact that
here the main bandit divides the horizon T into blocks of size M and at the
beginning of each block picks from a pool of possible candidates an estimator β̃
for the unknown maximum rotting rate. Then, the bandit instance of UCB-TP is
run with β̃ as the maximum rotting rate and δ = β̃1/3. In this case, the regret
upper bound is proved to be Õ(max{ρ1/3T, T 3/4}).
Finally, we mention a result studied in [Seznec, 2020] where the author proves
that the problem of linear rested rotting bandit is impossible to learn. In this
analysis, the authors consider a setting with an infinite set of actionsA ⊂ Rd and
where the reward function is linear, meaning that the reward obtained at time t
after playing arm at is Xt = ⟨µ, at⟩+ηt where ηt is noise with mean reward equal
to zero and µ ∈ Rd is an unknown reward vector which can be seen as the typical
parameter θ∗ presented in the linear bandit section of Section 2.5. Instead of
having a single latent parameter θ∗, this model is characterized by d unknown
parameters µ ∈ Rd. The rested rotting bandit environment is modelled by
introducing d functions µi : R+ → R which are assumed to be non-increasing
and L-Lipschitz. Here, each function µ(1), . . . , µ(d) corresponds to one of the
d parameters in µ. While in the K-armed rested rotting bandit the reward
function of an arm depended on the number of pulls, here in the linear setting
we measure the impact of pulling arm a on the next rounds defining the quantity
Ti,t =

∑t
s=1 as,i. This means that the pull of a certain arm with non-zero

components in dimension i ∈ {1, . . . , d} will impact the future rewards obtained
from pulling actions with non-zero components at index i. We denote the
cumulative pulling intensity as NT =

∑d
i=1 Ti,T . When restraining the action

set A ⊂ R+d to be the positive quadrant of the ball, we can show how the model
can recover rested rotting bandits as well as standard linear bandits when the
reward functions are constant. On the other hand, when A is the actions set

Chapter 3. The state of the art of non-stationary bandits 48

formed by the d canonical basis vector, it is possible to recover rested rotting
bandits with finitely many actions. However, when these restrictions are relaxed
and we consider A ⊂ R, the author shows that oracle greedy is not an optimal
policy anymore and that for the simple case where d = 2, oracle greedy can suffer
a regret of (L(T − 2))/8. This happens because oracle greedy can be tricked
into pulling the arm with the higher mean reward right from the beginning
even in settings where the higher reward would be achieved when playing the
suboptimal arm first. Indeed, there are cases where the optimal policy needs
to avoid playing the optimal arm early on as its reward function could decrease
also the suboptimal arm due to the cross-arm effects and the dependencies
caused by the non-orthogonality of the actions. For this reason, Proposition
4.7.2 and Corollary 4.7.3 in [Seznec, 2020] show that for any learning policy
with T ≥ 23, there exists a linear rested rotting bandit problem with lower
bound RT ≥ LT/20, showing that any learning policy gets a worst-case linear
regret, even when removing noise from the setting.

Rising rested bandits

Among the class of rested bandits, we now consider the family of rising rested
bandits. We use the terms rising, increasing, and recharging to indicate the
broad family of bandits where the reward function of an arm increases with its
number of pulls. With each work we are going to present, we will clarify the
specific assumptions and environment proposed by the authors.
Rising bandits in [Metelli et al., 2022] address a rested bandit setting where
the reward of every action a(i) ∈ A with |A| = K depends on the number of
times the action has been pulled before. Specifically, the payoffs are bounded
in [0, 1], have σ2-sub-Gaussian noise, and µi(Ni,t), where µi is a non-decreasing
and concave function and Ni,tis the number of times arm a(i) has been pulled up
to time t. As for the rising restless bandit model, the monotonicity is defined
as γi = µi(n+ 1)− µi(n) ≥ 0, the concavity as γi(n+ 1)− γi(n) ≤ 0, and they
characterize the problem by introducing the definition of cumulative increment
Γµ(s, q) = maxa(i)∈A

{∑s−1
l=1 γi(l)

q
}

for q ∈ [0, 1] and s ∈ {1, . . . , T}. The first
result presented in [Metelli et al., 2022] is to show that the optimal policy for
rising rested bandits is what they call oracle constant policy, which consists in
pulling constantly the same arm which maximizes the cumulative reward over
the horizon, namely a∗ = argmaxa(i)∈A

∑T
t=1 µi(t) ∀t ≥ T . The authors exploit

this knowledge and propose an algorithm R-ed-UCB for the deterministic setting
which at each time step selects the arm with the highest exploration index Bi(t)
which is set equal to µ̄R−ed

t (i) defined as:

µ̄R−ed
t (i) = µi(Ni,t−1) + (t−Ni,t−1)γi(Ni,t−1 − 1). (3.46)

This index can be seen as a UCB index, where the most recent payoff is summed
to the term (t − Ni,t−1)γi(Ni,t−1 − 1), which upper bounds the sum of future
increments with the most recent increment received. Using this definition and

Chapter 3. The state of the art of non-stationary bandits 49

for q ∈ [0, 1], R-ed-UCB achieves an expected regret upper bound equal to:

RT ≤ 2K +KT qΓµ

(
⌈ T
K
⌉, q
)
, (3.47)

where q can be selected to make the bound tighter. Note that the optimal
value depends on the cumulative increment Γµ(T, q) which is a function of T .
Starting from this result, the authors move to the stochastic setting, where
equation Equation (3.46) cannot be used. To tackle this setting, the authors
propose a solution based on a d-sized window whose size governs the bias-
variance trade-off between using a few recent payoffs and many past rewards.
Here, the exploration bonus for d ∈ [Ni,t−1] becomes:

µ̂R−ed
i (t) =

1

d

Ni,t−1∑
n=Ni,t−1−d+1

(
µ̂i,n(t) + (t− n) µ̂i,n(t)− µ̂i,n−d(t)

d

)
, (3.48)

where µ̂i,n(t) is the estimated reward and the term (t − n)
µ̂i,n(t)−µ̂i,n−d(t)

d
ac-

counts for the estimated increment. In the algorithm proposed for the stochas-
tic setting, the exploration index is set to Bi(t) = µ̂R−ed

i,d (t) + βR−ed
i,d (t) where

βR−ed
i,d (t, δt) = σ(t−Ni,t−1 + di,t − 1)

√
10 log(1/δt)

d3i,t
. The algorithm selects in each

time step the arm which maximizes this index. For q ∈ [0, 1], di,t = ⌊εNi,t−1⌋
for ε ∈ (0, 1/2), δt = t−α for α > 2, the algorithm achieves an expected regret
bound of:

RT = O
(
K

ε
(σT)2/3(α log(T))1/3 +

KT q

1− 2ε
Γµ

(⌈
(1− 2ε)

T

K

⌉
, q

))
. (3.49)

Fidelity bandits

Fidelity bandits [Lugosi et al., 2021] is a K-armed bandit which models several
non-stationary behaviours. Although the authors present both a stochastic and
an adversarial variant of this model, we will focus on the former as it is relevant
to the current discussion. Furthermore, the authors propose a bandit which
can represents two different models of non-stationarity, which they call loyalty-
points and subscription model. Both these models are then further analyzed for
decreasing, increasing, and coupon reward functions. We start by discussing the
loyalty-points model, as it can be classified as a rested bandit. At the beginning
of the next section, when presenting state-dependent bandits, we will discuss
the subscription model, as it belongs to this other class.
Since the environment is stochastic, every arm a(i) ∈ A is generating rewards
from a reward distribution with expected mean µi. The rewards are also as-
sumed to be bounded in [0, 1]. The horizon T is assumed to be known. What
characterizes this bandit model is the fact that the reward obtained from playing
arm a(i) at time t is given by:

Yt,i = Xt,i + ϕi(Ht−1), (3.50)

Chapter 3. The state of the art of non-stationary bandits 50

Two main parts build the reward. The first is Xt,i, which is the base reward
obtained from playing arm a(i) at time t. The second term is ϕi(Ht−1), which is
a known arm-specific function which depends on the history of past actionsHt−1

played by the learner up to time t and models two different behaviours of fidelity
rewards. As we said, the authors distinguish between the loyalty-points model
and the subscription model. In this section, we discuss the former. In this case,
the fidelity rewards are generated by a known function f : N → [0, 1] which
depends on the number of times Ni,t−1 the action has been played in the past,
so ϕi(Ht−1) = fi(Ni,t−1). The arm-specific function fi is known and the authors
analyze three different cases based on the assumptions on fi: when fi is non-
decreasing, non-increasing and the coupon setting, where the player receives
a fidelity reward of ri ∈ [0, 1] after every ρi plays, which are not necessarily
consecutive. We start by analyzing the loyalty-points model in the setting where
the fidelity rewards functions fi∀a(i) ∈ A are non-decreasing functions in Ni,t−1.
For this setting, the authors provide an adaptation of the UCB algorithm. After
playing each arm once and using the rewards obtained to update the estimates,
the player selects at each time step t the arm:

at = argmax
a(i)∈A

UCBi(t− 1), (3.51)

where the UCB index is defined as:

UCBi(t) = X̄i,t +
1

T
Fi(T) +

√
2 log(KT)

Ni,t

, (3.52)

where the term under the square root is the exploration bonus and the first
two terms constitute the modified reward, where Fi(T) =

∑T
t=1 fi(t). Note

that the computation of this modified reward is possible since both T and the
fidelity functions fi∀a(i) ∈ A are known. The expected regret obtained by this
algorithm in this specific loyalty-points setting with increasing fidelity functions
is upper bounded by the following quantity:

RT ≤
K∑

i:a(i) ̸=a∗

16 log(KT)

∆̃2
i

(µ∗ − µi + f ∗(T)− f0(i)) +
1

K
, (3.53)

where ∆̃i = µ∗−µi + (F ∗(T)−FT (i))/T , meaning that the worst case regret is
of order O(T 2/3(K log(T))1/3).
For the loyalty-points model with non-increasing fidelity functions, the au-
thors refer to the model proposed by [Seznec et al., 2020] with regret of order
Õ(
√
KT log(T)), where the authors show that this bound matches the lower

bound for the standard bandit problem up to logarithmic factors. For the
loyalty-points model with coupon rewards, the authors propose a variant of the
UCB algorithm using the following augmented rewards

Ŷi,t = Xi,t +
ri
ρi

(3.54)

Chapter 3. The state of the art of non-stationary bandits 51

and show that there exists a strategy which gets an expected regret bounded
by:

RT ≤
K∑

i:∆i>0

16 log(T)

∆i

+ 4K. (3.55)

where ∆i = maxa(j)∈A

(
µ(j) +

rj
ρj

)
−
(
µi +

ri
ρi

)
, so the worst case regret is of

order O(
√
KT log(T)).

3.2.2 State-dependent bandits

After discussing rested models, we switch to state-dependent bandits, where the
reward function of an arm depends either on the last time the arm has been
pulled or on the number of consecutive pulls of the arm. We will specify the
assumptions on the reward functions when presenting each model. We stress
that one important characterization of state-dependent models is the fact that
the cumulative reward of a policy does not depend on the number of pulls of
each arm, as in rested bandits, but on the order of the pulls.
After analyzing the loyalty-points model at the end of the previous section,
we start by introducing the subscription model of fidelity bandits. As we said,
there is a stochastic environment with |A| = K, known horizon T , and where
the reward of each arm is generated from a reward distribution with expected
mean µi, and rewards bounded in [0, 1]. When the learner plays action a(i) at
time t, the reward is given by:

Yt,i = Xt,i + ϕi(Ht−1), (3.56)

where Xt,i is the base reward obtained from playing arm a(i) at time t, ϕi(Ht−1)
is a known arm-specific function which depends on the history of past actions
Ht−1 played by the learner up to time t. In the subscription model we have that
ϕi(Ht−1) = f(Qi,t)(i), where the fidelity rewards depend on the current number
of consecutive pulls of the arm Qi,t = I{t−max{s ≤ t : as = a(i), as−1 ̸= a(i)}}
where Qi,t = 0 ∀a(i) ̸= at−1. When the fidelity function f : N → [0, 1] is non-
decreasing in Qi,t, the authors mention that strategies employed for best-arm
identification can be directly used in this setting achieving an expected regret
of RT ≤ CT 2/3(K logK)1/3 where C is a numerical constant. When the fidelity
reward function is non-increasing, the authors propose the following strategy.
After an initial phase of pure exploration of length t0 where each arm is played
⌊t0/K⌋, the policy uses the empirical average rewards to select the two arms aî
and aĵ with the highest values of µ̂i + f0(i) such that µ̂î + f̂i(0) ≥ µ̂ĵ + fĵ(0).
Then, the learner computes the following quantity:

m̂ = min{m : µ̂î + f̂i(m+ 1) < µ̂ĵ + fĵ(0)}. (3.57)

After time step t0, the strategy consists in pulling arm aî for m̂ times, pulling
aĵ once, and then coming back to arm aî again, repeating this process until T
is reached. The choice of î, ĵ, and m̂ can be written as the maximization of the

Chapter 3. The state of the art of non-stationary bandits 52

following quantity:

WT (µi, µ(j),m) =

(
T −

⌊
T

m+ 1

⌋)
µi +

⌊
T

m+ 1

⌋
µ(j)

+

⌊
T

m+ 1

⌋
(Fm(i) + Fj(1)) + Fi

(
T − (m+ 1)

⌊
T

m+ 1

⌋)
.

The authors prove that for t0 = (2T)2/3(K logK)1/3 this strategy gets an ex-
pected regret upper bounded by RT ≤ 3T 2/3(K logK)1/3.
Finally, the authors analyze the subscription model with coupon rewards. This
characterization means that the player only receives a fidelity reward of ri ∈
[0, 1] only after every ρi plays, not necessarily consecutive. For this setting, they
propose a batch variant of the classic UCB algorithm. The strategy consists of
selecting arm at which maximizes the UCB index, defined as:

UCBi(t) = X̄i,t +
ri
ρi

+

√
2 log(KT)

Ni,t

, (3.58)

where the X̄i,t is the empirical average reward computed over Ni,t samples up
to time t, and ρi are known since the fidelity reward functions are known. Each
time at is selected, it is played ρi times to guarantee that the fidelity reward is
being collected. The expected regret of this strategy in the subscription model
with coupon rewards is upper bounded by the following quantity:

RT ≤
∑

i:a(i) ̸=a∗

16 log(TK)

∆̃i

+
∑

i:a(i) ̸=a∗

ρi∆̃i +
(
1 +

2

K

) ∑
i:a(i) ̸=a∗

∆̃i + 2ρ̄, (3.59)

where ∆̃i = maxa(j)∈A(µ(j) + rj/ρj) − (µi + ri/ρi) and ρ̄ is the least common
multiple of ρ1, . . . , ρ−K, getting a worst case regret bound of O(

√
KT log(T)+∑K

i=1 ρi + ρ̄).

We proceed by mentioning the model called recharging bandits by [Kleinberg
and Immorlica, 2018]. In this work, the environment is stochastic and deals with
a finite set of actions, |A| = K. The expected reward of an arm depends on
how far back in the past it was last pulled. Specifically, for any arm a(i) ∈ A the
expected reward at time t is given by a weakly concave and weakly increasing
arm-specific reward function Hi(τt), where τt indicates how many steps in the
past the action was last pulled and Hi(0) = 0. In their work, the authors prove
that greedy is suboptimal. First, they studied the problem with known payoffs
to understand what is the optimal strategy in an offline setting. They show
that greedy can be arbitrarily close to a (1/2)-approximation, but never less
than that. To solve this problem, they propose a concave program to upper
bound the cumulative reward of the optimal rounding scheme of arms and use
it to show a constant approximation for what they call interleave rounding.
This idea, which will be used in the proposed algorithm, is to schedule the pull
of an arm in a continuous time with a specific frequency, using the frequency
of how much this arm would be pulled by the optimal schedule, and adding a

Chapter 3. The state of the art of non-stationary bandits 53

random offset to avoid arms colliding in the same spot. This is then translated
into discrete time by preserving the order. This scheme achieves a general
(1 − 1/2e)-approximation and it is shown to be optimal for the setting where
K = 2. Exploiting concavity, the authors prove that for every 0 < ε < 1
there exists a periodic schedule of length T ≥ K/ε whose asymptotic average
reward is at least (1− ε)-OPT. They propose an algorithm for unknown reward
functions based on UCBs. The algorithm divides the horizon into epochs and
computes the upper confidence bounds on every Hi(x), which is defined as
H̄i(x) = q/n+ τi

√
(4 ln(KnT))/n in order to be concave, where τi is the delay,

n is the number of samples of the arm-delay pair and q their sum. Then, it
uses these UCBs to run an approximation algorithm to plan for the scheduling
of arms in the current epoch. Once the epoch is ended, it uses the rewards
obtained to update the estimates of the arms and plan for the following epoch.
This algorithm achieves an expected regret upper bounded by

RT = O
(K2 log(K)

εO(1/ε)

√
log(T)

T

)
. (3.60)

A related work is the one by [Pike-Burke and Grunewalder, 2019]. The authors
study the finite-arm stochastic bandit environment, where the reward of an
action follows an unknown recovery function and depends on the time passed
since the arm was last pulled. The number of rounds since an arm a(i) was last
pulled is denoted by Zi,t ∈ Z = {0, . . . , zmax} for a finite zmax ∈ N. This state
is updated as follows:

Zi,t =

{
0 if at = a(i)

min{zmax, Zi,t + 1} if at ̸= a(i),
(3.61)

meaning that if the arm has been pulled more than zmax rounds ago, the state
will remain equal to zmax. The reward obtained by the learner is given by:

Xt = fit(Zit,t) + εt (3.62)

where fi is the unknown recovery function and εt are i.i.d. N (0, σ2) random
variables with known σ. The difference compared to the previous work is that
the recovery function is assumed to be sampled from a Gaussian process with
mean 0 and known kernel. To measure the performance of their solution, the
authors propose the full horizon regret, the instantaneous regret, and the d-step
lookahead regret, but focus on the last one. While the full horizon regret matches
the definition of regret employed so far, the one where the comparator is the
best sequence of T actions, it is necessary to define the two other definitions of
regret. Instantaneous regret is defined as the regret between the learner’s policy
and oracle greedy which selects the best arm at the states τt = {τ1,t, . . . , τK,t}.
On the other hand, the d-step lookahead regret measures the difference between
the cumulative reward of the learner’s strategy and the optimal sequence of
actions for the current delays τt considering subsequent epochs of size d ≥ 1.
It is important to distinguish between the full horizon regret and the d-step

Chapter 3. The state of the art of non-stationary bandits 54

lookahead regret, as the latter is not measured against the optimal sequence
of actions over the horizon but the optimal sequence of actions in the current
d-sized epoch. As for the previous bandit problem, the authors show the in-
tractability of this problem even in the offline setting. To solve it, the authors
propose a d-step lookahead UCB algorithm and Thompson Sampling. The idea
behind both algorithms is to construct a d-step lookahead tree with edges repre-
senting arms played with updated delay. A leaf on the tree represents a sequence
of d arms, whose expected reward is the sum of the expected rewards collected
by the actions played from the origin to the leaf. The idea for the use of UCBs
is to select the leaf with the largest UCB index at time t which is defined as:

UCBi(t) =
d−1∑
l=0

µ(Jt+l
(t) + αt

d−1∑
l,q=0

covt(fJt+l
(ZJt+l,t+l), fJt+q(ZJt+q ,t+q)) (3.63)

where {Jt+l}d−1
l=0 is the sequence of arms, {ZJt+l,t+l}d−1

l=0 is the sequence of delays,
and

covt(fJt+l
(ZJt+l,t+l), fJt+q(ZJt+q ,t+q))

= I{Jt+l = Jt+q}kJt+l
(ZJt+l,t+l, ZJt+q ,t+q, NJt+l

(t))
(3.64)

where kJt+l
(ZJt+l,t+l, ZJt+q ,t+q, NJt+l

(t)) is the covariance related to the kernel
defined by the Gaussian process (see Section 3 in [Pike-Burke and Grunewalder,
2019]). The authors analyze the two algorithms in two different settings. In
the first setting, they allow for a single play of any arm a(i) in the d-step.
In this case, they show that the expected d-step lookahead regret of both the
UCB strategy and the Thompson Sampling strategy is upper bounded by the
following quantity:

RT = O(
√
KTγT log(TK|Z|)), (3.65)

where Z = {0, τmax} is the set of possible states and γT is the maximal in-
formation gain from T samples, where γT = O(log(T)) for linear kernels and
γT = O(log2(T)) for squared exponential kernels. In the second setting, they
allow for multiple pulls of any arm a(i) in the same d-step. In this case, the
expected d-step lookahead regret is upper bounded by:

RT = O(
√
KTγT log((K|Z|)dT), (3.66)

for both the UCB and Thompson Sampling strategies. The authors also analyse
the instantaneous regret, showing that in this case both algorithms are upper
bounded by:

RT = O(
√
KTγT log(TK|Z|)), (3.67)

the same obtained from the d-step lookahead regret in the single-play setting.

Stochastic bandits with delay-dependent payoffs (B2DEP) is a non-stationary
bandit model proposed in [Cella and Cesa-Bianchi, 2020]. The environment is
characterized by a finite set of actions |A| = K where each one has a state τi
which denotes the number of rounds since arm a(i) was last pulled. Each arm
a(i) is associated with an unknown arm-specific delay-parameter di > 0. The

Chapter 3. The state of the art of non-stationary bandits 55

expected reward µi(τ) of an arm a(i) is a function of τi. When 1 ≤ τi ≤ di, then
µi(τ) ≤ µi. Otherwise, if τi > di, then µi(τi) = µi. More specifically, each arm
is associated with an unknown baseline expected reward µi from a fixed and
unknown reward distribution. The reward function of an arm a(i) with state τi
is a function bounded between [0, 1], non-decreasing and defined as:

µi(τ) = (1− f(τ){0 < τ ≤ di})µi, (3.68)

where f : N → [0, 1] is an unknown non-increasing function. This reward
function means that when you first play any action a(i) ∈ A the expected
reward will match its baseline expected reward. Then, whenever a(i) is pulled,
its expected reward will decrease to zero. At this point, τi denotes how many
time steps have passed since its last pull. The more τi grows the more the
expected reward will increase until it matches the baseline expected reward
once τi > di. After showing that finding the optimal policy is NP-hard, the
authors tackle this bandit problem by considering the class of periodic ranking
policies. This class is made of policies of different lengths which play arms in
decreasing order of highest expected payoff. If we assume that µ(1), . . . , µ(K),
then class ΠK = {πm : m ∈ {1, . . . , K}}, where policy πm cycles over the arms
{a(1), . . . , a(m)}. They denote with πghost the best policy in this class and show
that the expected cumulative regret of πghost is close to the optimal policy with
an approximation error of:

GT (πghost ≥ (1− f(r0))GT (π
∗) +O(1), (3.69)

where j0 is the largest arm index j such that µi > maxl=1,...,i−1 µ(i−l)(l) i =
2, . . . , j and j0 = 1 if µ2 ≤ µ1(1). Therefore, there are two different objectives:
learning the ordering of the arms and learning the best periodic ranking policy.
For the first goal, the authors propose an algorithm called Bandit Ranker based
on action elimination. It consists in sampling each arm, computing the average
rewards, and keeping them sorted in decreasing order. Once the confidence
interval of one arm does not overlap with others, the arm is removed from the
set of arms. Then, the arm that is removed is placed at the root of a tree,
with the left and right nodes containing arms which have respectively a bigger
and lower average reward. This process is iterated until there is no arm whose
average reward overlaps with any other. In the paper, the authors show that
this is attained with probability 1− δ after a number of pulls of order:

K−1∑
i=1

1

∆2
i

ln
1

δ∆i

, (3.70)

where the suboptimality gap is defined as:

∆i =

∆1,2 if i = 1

min{∆i−1,i,∆i,i+1} if < i < K

∆K−1,K if i = K.

After learning the ordering of the arms, the next objective is to learn the best

Chapter 3. The state of the art of non-stationary bandits 56

ranking policy. This is done using the πlow algorithm. Here, the algorithm
consists in considering all periodic ranking policies and playing each one for
Ts/(m|As|) + 1 times with Ts = T 1−2−s and where As is the set of active
policies at time s. After discarding the first sample due to calibration, the
subsequent samples are collected and used to compute the average reward of
each ranking policy and select the best one. Then, the average reward of the
best one is used to remove all policies whose average reward is significantly
smaller, using a Chernoff-Hoeffding bound equal to

√
K
2Ts

ln 2KS
δ

where S0{j ∈
N :
∑j

s=1(|As|+ Ts) ≥ T}. The authors compute the regret of πlow not against
the optimal policy in general, but against the best policy among the periodic
ranking policies, πghost, and prove that this regret is of order:

GT (πghost)−GT (πlow) = O
(
K2 ln lnT +

√
KT

(
ln
K

δ
+ ln ln lnT

))
. (3.71)

with probability at least 1− δ.
Another work related to the previous two is the one proposed in [Simchi-Levi
et al., 2021]. The peculiarity of this work compared to the previous ones is
that in this setting the authors assume that in each time step the learner can
play at most N actions out of the K arms in A. This characteristic makes
it close to combinatorial bandits. Each action a(i) is associated with a non-
decreasing recovery function Ri(t − t′), where t′ denotes the time step when
arm a(i) was last pulled and Ri(0) = 0 for any arm a(i). As for the previous two
works, this means that the more time has passed since the last pull of action
a(i), the higher its reward will be. The reward in each time step is bounded by
Rmax, which is a known constant. The authors show that oracle greedy, which
selects in each time step the N arms with the highest expected rewards, is
arbitrarily bad. The solution proposed in this work is to consider purely periodic
policies which pull arm a(i) with a certain frequency di. The authors show that
this offline problem achieves an approximation ratio of 1−O(1/

√
K), which is

asymptotically optimal for k →∞. To tackle the online problem, they propose
an algorithm based on UCBs called Online Purely Periodic Learning. It
consists in dividing the horizon into epochs of fixed lengths. At the beginning
of each epoch, the learner runs an offline oracle which returns a scheduling of
arms to be played in that phase using the UCB indexes of the arms, which are
defined as follows:

UCBi,j(τ) = min

{
R̄i,j−1(τ), Rmax

√
2 log(KT)

max{ni,j−1(τ), 1}
, Rmax

}
, (3.72)

where i indicates the arm and j the epoch, R̄i,j−1(τ) is the empirical mean of
Ri(τ) prior to epoch j, and ni,j−1(τ) is the number of samples collected for
Ri(τ) prior to phase j. At the end of this epoch, the learner uses the rewards
collected during the phase to update the estimates of the arms and their UCB
indexes, before starting a new epoch. The authors measure the performance of
this algorithm against the offline benchmark and prove that its expected regret

Chapter 3. The state of the art of non-stationary bandits 57

for an epoch length of ϕ = Θ(
√
T/(log(N + 1))) is:

O(max{K,K1/2N3/4}
√
T) (3.73)

with respect to γN ·UB[K,N] ·T , where UB[K,N] is the objective value of the
offline oracle and γN = maxa(i)∈A:τi>0

a(i)

a(i)+1
· N
N+a(i)

in the offline oracle.

Rebounding bandits

Rebounding bandits in [Leqi et al., 2021] model an environment with a finite
set of actions of size K, where an arm a(i) for i = 1, . . . , K has bounded base
rewards bi for i = 1, . . . , K. Every arm has a satiation level defined as:

si,t = γi(si,t−1 + ui,t−1) + zi,t−1 ∀t > t′i (3.74)

where γi ∈ [0, 1) is a satiation retention factor of arm a(i), ui,t = {at = a(i)}
indicates if arm a(i) has been pulled at time t, zi,t−1 is a identically distributed
Gaussian noise with zero mean and σ2 variance, and t′i = min{t : at = a(i)} is
the first time arm a(i) was pulled. Any arm has a satiation level equal to zero
before being played for the first time, si,0 = · · · = si,t′i = 0 ∀a(i) ∈ A. Whenever
an arm a(i) is pulled at time t, the reward obtained by the learner is equal to
µi(t) = bi−λisi,t. Therefore, the expected reward of arm a(i) at time t is given by
the difference between its base rewards bi and the product between its satiation
level si,t and a bounded exposure influence factor λi ≥ 0. The authors call the
product λisi,t the satiation influence. The behaviour modelled by this reward
function is the following: the more the action is pulled the more its reward will
decrease, while it rebounds back to its base reward when it is not been pulled for
a while since the satiation level decreases. The authors first analyze the simpler
setting with deterministic dynamic, removing the noise term zi,t−1 setting σ = 0
from the formula of the satiation level. In this setting, they show that greedy
is not optimal in general. For the case where the satiation effect is always zero,
so for instance if the satiation retention factor γi = 0 ∀i = 1, . . . , K, greedy
always pulls the arm with the highest instantaneous expected reward and it is
optimal. Greedy is also optimal when all the actions have the same properties
{γi, λi, bi} ∀i = 1, . . . , K, playing all arms cyclically. However, it is not optimal
in all other cases, which may be more representative of real applications. To
solve this problem, they propose the algorithm called d-lookahead policy where
d is the size of a window and the strategy is to select arms that maximize
the total reward over the following d rounds, before repeating the process for
the next d steps. The authors use this knowledge to face this problem in the
original stochastic setting, reintroducing the noise zi,t−1 with σ > 0, and with
unknown satiation dynamics, where satiation levels are not observable by the
learner. They represent this problem as a continuous state partially observable
Markov Decision Process. The algorithm proposed to solve this problem is
Explore-Estimate-Plan (EEP). The strategy consists in collecting samples
from the arms by playing them a fixed number of times, using these samples
to estimate the parameters γi, bi, λiγi. Then, it plans for the actions to play
in the window of size d by using the strategy proposed in the d-lookahead

Chapter 3. The state of the art of non-stationary bandits 58

policy. They adopt the d-lookahead regret definition from [Pike-Burke and
Grunewalder, 2019], where the performance of the learner is analyzed window
by window of size d and measured against the optimal policy given the initial
state caused by the learner’s past pulls in the previous window. The authors
prove that there exists a constant T0 such that ∀T > T0 and d ≤ T 2/3, this
algorithm achieves a d-step lookahead regret of:

RT = O(K1/2T 2/3 log(T)). (3.75)

Blocking bandits

We end this chapter by presenting blocking bandits [Basu et al., 2019]. This
bandit problem models a non-stationary stochastic setting with a finite set of
actions of cardinality |A| = K at the beginning of the game. In this environ-
ment, the reward distributions of the arms are stochastic and bounded in [0, 1].
However, when the arm is pulled, it becomes unavailable for a deterministic and
known number of rounds after that. The number of rounds during which the
arm is temporarily unavailable is arm-dependent and called delay, Di ∈ N+. If
at time t we play arm a(i), arm a(i) will be blocked for the following (Di−1) ≥ 0
time steps, so it will be unavailable in the time interval {t+ 1, . . . , t+Di − 1}.
The authors use the notation τi,t to indicate the state of arm a(i) stating that
τi,t = (Di + maxt′≤t{at′ = a(i)} − t) and an arm is available when τi,t ≤ 0.
Using these definitions, we can define the set of available actions at time t as
At = {a(i) ∈ A : τi,t ≤ 0}. As always, the goal is to maximize the cumulative
reward or minimize the total regret. Firstly, they reduce their bandit problem
to a pinwheel scheduling instance to prove its NP-hardness. We present this
reduction since we will use a similar variant to prove the NP-hardness of the
LSD bandit problem in Chapter 4. The pinwheel scheduling problem considers
K arms with delays, s.t. each arm a(i) is associated with its delay Di. The
problem consists of deciding if there exists a schedule of these arms such that
each arm a(i) appears at least once every Di time steps. A pinwheel schedul-
ing instance is called dense if the sum of the reciprocal of the delays sums
to 1,

∑K
i=1 1/Di = 1. It has been proven in the literature that the pinwheel

scheduling problem does not allow any pseudo-polynomial time algorithm un-
less the randomized exponential time hypothesis is false. The authors map
the blocking bandit problem to the pinwheel scheduling on dense instances to
prove that solving it is just as hard (Theorem 3.1, Corollary 3.2 in [Basu et al.,
2019]). After showing the NP-hardness of this problem, the authors prove that
greedy is asymptotically (1−1/e) optimal for this problem and propose the UCB
Greedy algorithm. This algorithm starts by playing each arm once, updating
the statistics about each arm, and then selecting at each time step t the arm
at = argmaxa(i)∈At

(
µ̂i+

√
8 log(t)

Ni

)
, where Ni is the number of times arm a(i) has

been played up to time t. So, at each time step t the algorithm pulls the arm at
with the highest UCB index and at will be blocked for a deterministic number
of time steps such that At+1 = At\at. The authors prove a regret upper bound

Chapter 3. The state of the art of non-stationary bandits 59

for this algorithm with respect to oracle greedy with known rewards, showing
that for any ε > 0

R
(1−1/e)
T = O

(1
ε
log(

1

ε
)
)
+

32Kg(K −K∗
ε)

mina(i)∈[K∗
ε ,...,Kg] ∆i,i+1

log(T), (3.76)

where Kg is the arm with the lowest mean reward strictly positive played by
oracle greedy, K∗

ε = min(K ∪ {k :
∑(k−1)

i=1 1/Dk ≥ 1 − ε}) for any ε ≥ 0, and
∆(i, j) = µi − µ(j).
From the finite-arm variant, several models were proposed for blocking bandits
in different settings, such as contextual blocking bandits, adversarial blocking
bandits, and combinatorial blocking bandits. In this dissertation we analyze
the first and the last variants, omitting the adversarial variant due to the focal
points of this dissertation.

We start by discussing contextual blocking bandits [Basu et al., 2021]. This
setting is stochastic and characterized by the observation of a context ct at the
beginning of each round. At the beginning of each round t = 1, . . . , T , the
environment samples a context ct ∈ C where |C| = m. The player observes
the context ct and selects an action to play at ∈ At. As in blocking bandits,
each action is associated with a known delay Di ∈ N+ which indicates how
many rounds the action will be blocked once it is pulled. Specifically, when
an action a(i) is played, it will be blocked for the following (Di − 1) ≥ 0 time
steps, irrespective of the contexts observed in the next rounds. This means
that the learner needs to select an arm knowing that the arm pulled at time t
will be blocked for (Di − 1) time steps across all contexts. Once the action is
played, the player observes the reward Xt. The reward Xt is sampled from a
stochastic distribution with mean µct,at , which depends both on the arm and
on the context. This reward is used to update the estimates of the selected
arm, which will be removed from the set of available actions At+1 and will
be available again only from time step t + Di. The authors designed the UCB
algorithm for contextual blocking bandits (UCB-CBB) algorithm, which
stores the UCB indices for every arm-context pair. The UCB is here defined as:

µ̄t,ct(i) = min

{
µ̂i,ct(Ti,ct(t)) +

√
3 ln(t)

2Ti,ct(t)

}
, (3.77)

where Ti,ct(t) indicates the number of times the action a(i) was played together
with context ct and µ̂i,ct(Ti,ct(i)) is the empirical estimate of µct,i computed
using the Ti,ct(t) samples. The algorithm selects the arm at by solving a linear
program (LP) using the UCB indices. The LP is defined as:

max
∑

a(i)∈A

∑
ct∈C

µ̄t,ct(i)i,ctzi,ct

s.t.
∑
ct∈C

zi,ct ≤
1

Di

∀a(i) ∈ A

Chapter 3. The state of the art of non-stationary bandits 60

∑
a(i)∈A

zi,ct < fct ∀ct ∈ C

zi,ct ≥ 0 ∀a(i) ∈ At,∀ct ∈ C.

As one can see, the solution to the LP is linked to the sampling of the arms
in the previous steps. To overcome this, the authors introduce the concept of
delayed exploitation, which consists of considering at time t the indices of the
actions from far in the past. In their algorithm, the authors allow for skipping,
so they allow the player to play no arm in some rounds. To strike a balance
between the availability of the arms and the skipping, they introduce non-
skipping probabilities for each arm at every time step, which controls the rate
of availability of one arm to ensure a balance between availability and skipping.
The authors measure the performance of the algorithm using the approximate
regret, also called α-regret, which is defined as:

αRT (π) = αRwdT (π
∗)−RwdT (π), (3.78)

where π∗ is the optimal policy and π is the policy followed by the player. Using
this definition, the authors proved a α-regret upper bound for UCB-CBB with
α = Dmax

2Dmax−1
of:(

Dmax

2Dmax − 1

)
−RT ≤

∑
a(i)∈A

∑
ct∈C

C(K +m) log(T)

∆i,ct
min

+
π2

6

∑
a(i)∈A

∑
ct∈C

log

(
2(K +m)

∆i,ct
min

∆max + 6Dmax

)
,

(3.79)

where C > 0 is a universal constant and m is the cardinality of the set of
contexts C.
Another work related to the family of blocking bandits is combinatorial block-
ing bandits with stochastic delays [Atsidakou et al., 2021]. The setting is sim-
ilar to the ones presented before but adapted to a combinatorial setting. The
environment is characterized by a finite set of actions |A| = K, where each
action a(i) is characterized by a mean reward µi. In the blocking setting, each
action is associated with a delay Di, which indicates that the action will be
blocked for (Di − 1) ≥ 0 rounds, as defined in the previous two models. What
differs in this combinatorial model is that the delay Di,t is a random vari-
able sample from an arm-dependent distribution Di with mean di = E[Di, t],
∀t ∈ {1, . . . , T} and bounded in [1, dmax], where dmax is the maximum delay
defined as dmax = maxa(i)∈A{dmax

i }. The reward Xt obtained by the learner is
also bounded in [0, 1] and, together with the delay, it is sampled independently
from the joint distribution Xi,Di, so that the reward and the delay are allowed
to be correlated. The distributions of the delays are initially unknown to the
player, who will infer Di,t by observing for how many rounds the arm will be
blocked after being pulled. Due to the combinatorial nature of this setting, in
each time step the player plays a super-arm of maximum size m as defined in

Chapter 3. The state of the art of non-stationary bandits 61

Equation (2.29). This means that an arm can be selected in a super-arm only if
it is not blocked. This setting is semicombinatorial since the player can observe
the rewards obtained by each action played in the super-arm and not only the
cumulative reward of the super-arm. The authors propose the CBBSD-UCB al-
gorithm, which is based on upper confidence bounds similarly to the solutions
proposed for the previous models. The algorithm collects the rewards obtained
by the arms when they are pulled and uses them to compute the UCB index,
as defined in Equation (3.77). Then, it chooses the actions to play in the super-
arm by solving an (α, β)-oracle [Atsidakou et al., 2021], which takes as input the
subset of feasible arms and their UCB indices and outputs the maximum weight
feasible set, which is a α-approximate solution. The algorithm plays the subset
of arms from the set of available arms which maximizes the expected reward.
The authors measure the performance of this algorithm using a ρ(α, β)-regret
where ρ = ρ(α, β) = αβ

1+αβ
and prove the following distribution-independent

bound:

ρRT ≤
14
√
KmT ln(T)

1 + αβ
+K(2 +

π2

3
∆max) +O(dmaxK). (3.80)

62

Chapter 4

A novel non-stationary bandit
model with finitely many arms

Contents
4.1 Motivations and applications 63

4.2 The Last Switch Dependent bandit model 64

4.3 The estimation problem 78

4.4 The proposed solution 83

4.5 Experiments on the LSD bandit setting 90

4.6 Conclusions . 94

In the previous chapter, we analyzed several non-stationary bandit models in
the literature. We started by distinguishing between two different types of non-
stationarity: exogenous and endogenous. Inside these categories, we considered
both restless, rested and neither restless nor rested bandits, along with differ-
ent assumptions on the reward functions and how the history of past actions
influences future rewards. In the current chapter, we present our contribution
which fits into the literature of state-dependent bandits. We focus on a non-
stationary bandit model called Last Switch Dependent (LSD) bandit presented
in Laforgue et al. [2022]. This model does not fit neither in the restless nor the
rested class of bandits, since the reward of the arm that is pulled changes differ-
ently from the reward of all the other arms that are not pulled. Furthermore,
we can notice how most of the works presented in the previous chapter focus
on one type of behaviour: either rotting or rising. The model we are going to
present addresses different behaviours in a single model, aiming to be as general
as possible. Before jumping into the technicalities of the model, we discuss the
motivation and applications of this work. Afterwards, we present the definition
of our model and some hardness results. We present our proposed approach,
together with approximation and estimation errors. Finally, we are going to
show some experiments to benchmark the performance of our solution against
relevant algorithms proposed in the literature.

Chapter 4. A novel non-stationary bandit model with finitely many arms 63

4.1 Motivations and applications
As in many works in the non-stationary bandits literature, the straightforward
example of application is recommender systems where the system cannot select a
single best item to suggest to a user. Indeed, in certain systems it is not sufficient
to identify a single best item to guarantee a good performance and satisfy the
user’s preferences. Instead, in these applications the goal is to identify a set of
items which could satisfy the non-stationary preferences of the user. This is true
when the level of satisfaction of a user with an item strongly depends on the
items they accessed in the past. We consider music streaming platforms where
the items are music genres and the goal of a recommender system is to propose
songs of certain genres. We imagine a sequential setting where in each time
step the user listens to a song and returns a value from a predetermined scale
which indicates how much they enjoyed it. In music recommender systems,
it is plausible to assume that the behaviour of the user’s preferences is not
stationary (Dimitrijević et al. [1972], Kovacs et al. [2018]) and that different
users have different behaviours. The non-stationarity can take different forms.
The straightforward consequence caused by recommender systems providing
a single suggestion to the user is that listening to the same genre repeatedly
would very probably cause some users to feel bored or even annoyed. We use
the term satiation to refer to the event when the user’s level of satisfaction
with respect to an item decreases the more the same item is submitted to the
user. This phenomenon has been greatly studied in the literature (Kunaver and
Požrl [2017], Leqi et al. [2021]). One can imagine how listening to jazz music
all the time might cause the user to get bored. On the other hand, another
form of non-stationarity can be identified in seasonality. We refer to seasonality
as what happens when the user’s level of satisfaction with respect to an item
shows some peaks with a certain frequency Schedl et al. [2018]. We explain
this phenomenon with the simple example of Christmas songs. We can imagine
how a user may very much enjoy Christmas songs or Summer Hits once a year,
but this level of satisfaction may decrease in other months of the year. This is
an example of how certain items may be greatly appreciated by the users only
with a certain frequency, after a certain period of time. Furthermore, how fast
and how much the user gets bored or enthusiastic about an item depends on
the specific user’s inclinations. One may prefer certain music genres compared
to others, and furthermore the characteristics of this preference greatly depend
on the individual user’s predilection. A user might get bored of listening to the
same genre after a few plays, while another user could spend hours listening to
the same genre before getting bored of it.
We discussed music recommender systems since it is one of the easiest examples
to mention and the application which we focus on in this thesis. However, non-
stationary behaviours such as satiation and seasonality may also occur in med-
ical domains. We consider the context of psychological interventions for mental
disorders, such as anxiety, depression, and post-traumatic stress disorder. When
suffering from these conditions, the patient should be supported by a profes-
sional psychotherapist who treats a mental illness using psychological therapies,
such as Cognitive Behavioural Therapy or Dialectical Behavioral Therapy. The

Chapter 4. A novel non-stationary bandit model with finitely many arms 64

therapist’s approach may suggest to the patient some micro-interventions such
as positive psychology exercises, mindfulness, and some other activities which
can improve the daily life of the patient. Some studies (Meinlschmidt et al.
[2016], Owen et al. [2018], Schroeder et al. [2018], Fuller-Tyszkiewicz et al.
[2019]) analyze this approach. Different activities may be suggested with differ-
ent frequencies during the patient’s treatment. For instance, a therapy session
may occur once a week. On the other hand, walks and workouts may be planned
multiple times during the week. The seasonality phenomenon explained before
can model the frequencies of such activities. However, in Paredes et al. [2014]
the authors show that when the same exercise is applied repeatedly its effect
might decrease, following the satiation behaviour we encountered in the pre-
vious example. As for music recommender systems, in this setting it is also
plausible that different patients have different needs and the exercises proposed
by a therapist may be suggested with different frequencies based on the severity
of each patient’s condition.
These effects were considered when formalizing the model we propose in the
rest of this chapter.

4.2 The Last Switch Dependent bandit model
Motivated by these applications, we propose a multiarmed bandit model able to
address these two types of non-stationarity, satiation and seasonality, in a single
framework. We define our model as a non-stationary bandit problem where the
set of actions A = {a(1), . . . , a(K)} is finite with cardinality |A| = K. For all
time steps t = 1, . . . , T , the learner selects an action at ∈ A to play and receives
a reward Xt, which is used to update the information about the arms. Each
arm a ∈ A is equipped with a state τa(t) which depends on t. In the rest of this
chapter, we will use the notation τa, dropping the dependence on t whenever it
is clear from the context. As we will see, the state of an arm fully determines
its expected reward. Before discussing the reward function, we take some time
to clarify the concept of state, how it is defined, and how to interpret it.
The state is used to indicate the last time the arm took part in a switch of
actions. With switch of actions we refer to the tuple [at−1, at] which indicates
the switch between action at−1 played in the previous round t− 1 and action at
played in the current round t. More specifically, we define the state as:

τa(0) = 1 and τa(t+ 1) = δa(τa(t), at), (4.1)

where δa is the transition function given by:

∆a(τ, a
′) =

τ − 1 if a′ = a, τ ≤ 0

−1 if a′ = a, τ ≥ 0

1 if a′ ̸= a, τ ≤ 0

τ + 1 if a′ ̸= a, τ ≥ 0.

(4.2)

To better understand the previous equations, we present Figure 4.1. Assisted
by Figure 4.1, we show how the states evolve. At the beginning of the sequential

Chapter 4. A novel non-stationary bandit model with finitely many arms 65

Figure 4.1: In this figure we show examples of an expected
reward function µa and transition mechanisms (reduced to 6 and
4 states) for LSD Bandits (left) and models with delay-dependent

rewards [Kleinberg and Immorlica, 2018, e.g.] (right).

game, when t = 0, each action has a state equal to 1, τa(0) = 1 ∀a ∈ A. Then,
in the following round, if arm a(i) is played, its state will get to τa(i)(1) = −1.
For all the other actions in A which are not played, the state will be incremented
by 1, having τa(j)(1) = 2 for a(j) ̸= a1, a

(j) ∈ A. If at time t arm a(i) has been
consecutively played for the last n time steps, then its state will be τa(i)(t) = −n.
Otherwise, if any arm a(j) has not been played for the last n time steps, then
its state will be τa(j)(t) = n. This can be simply understood by saying that
whenever the state τa(t) of the arm is negative, the absolute value of the state
τa(t) indicates how many times steps this action has been consecutively pulled
by the learner. Otherwise, if the state is positive, its value τa(t) = n indicates
that the action has not been played for the last n rounds. This mechanism is
represented by the plot on the left of Figure 4.1. Using these definitions, it
is possible to model both satiation and seasonality. The first is modelled by
the negative part of the reward function µa using negative states, the second is
represented by the positive part of the reward function related to positive states.
On the right of Figure 4.1, we compare our mechanism with the one presented
in other delay-dependent rewards (e.g. Kleinberg and Immorlica [2018]). As we
can notice, many models also use the concept of states to indicate how many
time steps in the past the action was last pulled. However, these works usually
consider only positive states to indicate how many rounds have passed since the
last pull of an arm and consider a single state, equal to 0 or −1, to indicate that
the action played at time t is the same as the one played in the previous step
(t−1). Thus, these mechanisms do not keep track of the number of consecutive

Chapter 4. A novel non-stationary bandit model with finitely many arms 66

plays of an arm, which is one of the strengths of this model. Indeed, it is because
of this feature that it is possible to model satiation and seasonality in a detailed
way.
We use these concepts of switch of actions and state τa(t) to define the expected
reward of the actions. For this reason, we call our model Last Switch Dependent
(LSD) bandit. As we anticipated, in a LSD bandit the expected reward of an
arm a is fully determined by its state τa(t). More specifically, for every action
a ∈ A there exists an unknown function µa : Z → [0, 1]. There are only two
assumptions on the reward functions: to be bounded in [0, 1] and non-decreasing
on Z−. The expected reward of arm a at time t is given by µa(τa), where τa is
the state of arm a at time t defined in Equation (4.1) and Equation (4.2).

Definition 4.1 (LSD Bandit). A stochastic bandit with action set A is a LSD
bandit if for every action a ∈ A there exists an (unknown) function µa : Z →
[0, 1], nondecreasing on Z−, such that the expected reward of arm a is given by
µa(τa), where τa is the last switch state of a, as defined in (4.1) and (4.2).

For t = 1, . . . , T the sequential protocol will be the following:

1. the learner selects an action at ∈ A to play,

2. the learner receives a stochastic reward Xt with an expected value E[Xt] =
µat(τat(t)),

3. the states of every a ∈ A will be updated: ∀a ∈ A, τa(t+1) = δa(τa(t), at).

The goal is to maximize the expected cumulative reward, measuring the perfor-
mance of an algorithm by the regret defined as:

Rt =
T∑
t=1

µa∗t
(τa∗t (t))− E

[T∑
t=1

µat(τat(t))
]
, (4.3)

where the expected cumulative regret of the learner’s policy is compared to
the cumulative reward of [a∗1, . . . , a∗T], which is the optimal sequence of actions,
the sequence of actions which maximizes the expected sum of rewards over
the horizon 1, . . . , T . We highlight how we measure the performance of our
algorithm against the best possible trajectory, instead of a restricted class of
competitors, such as in the instantaneous regret, or a d-step lookahead regret,
as in other non-stationary bandits discussed in Chapter 3.
The primary aspect of our model is that our definition of the states allows
us to represent two different behaviours, satiation and seasonality, in a single
framework. Furthermore, this is done by dropping many assumptions on the
reward function, such as concavity, Lipschitzness, and monotonicity, which are
assumptions exploited by many other works in the literature (e.g. Kleinberg
and Immorlica [2018], Metelli et al. [2022], Seznec et al. [2020], and many other
works presented in Chapter 3). Compared to other works, our model is neither
restless nor rested. In fact, here the changes depend on the policy played by
the learner, but, at the same time, the reward of an arm changes whether
it is pulled or not. Out of the different categories of non-stationary bandits

Chapter 4. A novel non-stationary bandit model with finitely many arms 67

we described in Chapter 3, the LSD bandit model best fits into the category
of state-dependent bandits (Section 3.2.2). Nonetheless, LSD bandits differ
from the model presented in Section 3.2.2. As we said, in LSD bandits the
assumptions of concavity, Lipschitzness, and increasing monotonicity on the
reward function, proposed in Kleinberg and Immorlica [2018], are dropped.
The fact that we relax the concavity assumption has a drastic effect on our
model. Indeed, for concave reward functions, oracle greedy achieves a 1/2-
approximation of the optimal policy Kleinberg and Immorlica [2018], but when
this assumption is dropped we show in Example 4.1 that oracle greedy can
be arbitrarily bad in our setting. This shows how LSD bandits can be more
difficult than recharging bandits. Furthermore, we do not assume a specific
form of the reward function, unlike Cella and Cesa-Bianchi [2020], or that this
function is drawn from Gaussian Process with known kernel, unlike Pike-Burke
and Grunewalder [2019]. The arm-dependent nature of our reward function
enables us to model different behaviours associated with different arms within
the same bandit instance, without limiting a single bandit instance to represent
only one type of non-stationarity. We also rely on the standard assumption
that in each time step the learner is allowed to play a single action, whereas
in Simchi-Levi et al. [2021] the learner selects more arms in one round. Unlike
Basu et al. [2019], we do not block actions and remove them from the actions
set, in every time steps every action a is always available, with a different reward
function depending on its arm-specific reward function µa and its state τa(t).
We can state that LSD bandits generalize state-dependent bandits (e.g. Klein-
berg and Immorlica [2018], Pike-Burke and Grunewalder [2019], Cella and Cesa-
Bianchi [2020]). The positive branch of the reward function in LSD bandits can
recover the behaviour of other state-dependent models which consider the de-
lay between the current time step and the last time step when the action was
played. On the other side, the LSD bandit model is also able to generalize
these state-dependent bandits when an action is consecutively pulled. Indeed,
in state-dependent bandits, such as Kleinberg and Immorlica [2018], the con-
secutive plays of an arm retrieve the same expected reward, independently of
the number of plays of that arm. This is represented in the plot on the right in
Figure 4.1, where this behaviour is represented as a constant function over the
negative states. However, LSD bandits are also able to represent progressive
satiation, which is a behaviour that other models did not consider. In fact,
on the negative branch Z− of the function µa LSD bandits can model a non-
decreasing trend over the negative states, where the function can take different
values depending on the specific number of consecutive plays of the arm as long
as it satisfies the non-decreasing assumption. While in other models such as
Kleinberg and Immorlica [2018] the expected reward for playing arm a consec-
utively for 1, 10 or 100 times remains the same, in LSD bandits the model can
distinguish between the expected reward of arm a played consecutively for 1, 10
or 100 times. We realize that there is still an assumption of monotonicity on Z−

which does not allow the reward to increase as the number of pulls increases.
However, we believe that this assumption is natural in most scenarios, as it
seems reasonable to think that the more an item is presented to the learner
the more its reward will decrease. We justify this assumption by considering

Chapter 4. A novel non-stationary bandit model with finitely many arms 68

the applications that frame this model and the necessity of this assumption to
derive non-vacuous approximations (see 4.1).
Before showing some results about the difficulty of our setting, we present an
example where we show how oracle greedy is not optimal in LSD bandits.

Example 4.1. Consider the LSD bandit defined by the following reward func-
tions: µ1(τ) = ϵ + (1 − ϵ)I{τ ≥ 1}, and µ2(τ) = 0 ∀τ . An oracle greedy
strategy, which pulls at each time step the arm with highest expected reward (as-
suming the knowledge of the µa) would always pull arm a(1) obtaining a reward
of 1 + (T − 1)ϵ after T rounds. Instead, the optimal policy alternates between
arms a(1) and a(2) and gets a T/2 overall reward. By making ϵ arbitrary close to
0, we can thus make oracle greedy arbitrarily bad. We conclude with a remark
on why this example would be ruled out by concavity. In Kleinberg and Immor-
lica [2018], concavity is actually defined with respect to the origin, such that
the reward obtained in case of consecutive pulls (here it is ϵ) is considered as
an increment from 0. Concavity then prevents the next increments from being
bigger, while here it is equal to 1− ϵ, which is greater than ϵ as soon as ϵ < 1/2.
And for ϵ ≥ 1/2, one can note that oracle greedy is indeed a 1/2-approximation
of the optimal strategy, as revealed by the above computations.

With the previous example, we show that our problem can be more difficult than
recharging bandits, as oracle greedy can perform arbitrarily bad. Starting from
this evidence, we studied the hardness of solving LSD bandits. Building on the
proof used in Theorem 3.1 of Basu et al. [2019] and discussed in Section 3.2.2,
we prove Proposition 4.2.

Proposition 4.2. Computing the optimal policy for LSD bandits is NP-hard.

Before presenting the proof of Proposition 4.2, we define some notation which
will be useful for the rest of this chapter. We use the term B = [a1, . . . , ad]
to define a sequence of actions, also called block of actions, and τ ∈ ZK to
denote the array of states of the actions, where the i-th element of τ is τi,∀i ∈
{1, . . . , K}. When we write r(B|τinit) =

∑d
t=1 µat(τat(t)) we refer to the sum of

the expected rewards obtained by playing the sequence of actions B when the
states of the actions before the first play of a1 in B are initialized to τinit, so
τ(1) = τinit.

Proof. First of all, we consider reward functions µi that are constant functions
on Z−, since it is enough to prove NP-hardness. In this proof, we show a more
general result than the statement of Proposition 4.2. Specifically, we prove that
for any τinit ∈ NK , the following computation:

B∗ = argmax
|B|=d

r(B|τinit) (4.4)

is NP-hard as soon as d is greater than a certain value d0, which will be defined
later on. Note that when τinit = 1 and d = T , solving Equation (4.4) corre-
sponds to finding the best policy. When T is large enough, we get d ≥ d0 and
computing the optimal policy is NP-hard. The interesting aspect of this result is
that it highlights that the inner optimization problem of the CombUCB1 approach

Chapter 4. A novel non-stationary bandit model with finitely many arms 69

(which will be explained later on) is itself NP-hard. The same result holds for
the optimization problem in our algorithm ISI-CombUCB1, since the steps we
are showing work when one substitutes r with r̃, which will be defined later on
in Equation (4.22). As in Basu et al. [2019], we consider the Pinwheel Schedul-
ing Problem (PSP) Holte et al. [1989]. The problem considers a set of actions
{a(1), . . . , a(K)}, each one associated with a delay di ∈ N for i = 1, . . . , K, and
consists in deciding if it is possible or not to design a schedule for the actions,
formally a mapping N → {1, . . . , K}, such that each arm a(i) appears at least
in any sequence of di consecutive steps. When a PSP instance allows for this
schedule, then it is called a YES instance. Otherwise, in case it is not possible
to provide a schedule which respects this constraint, it is called a NO instance.
Furthermore, when a PSP instance is called dense when

∑K
i=1 1/di = 1. This

means that if a PSP instance is a YES instance and is also dense, it implies that
each arm appears exactly every di steps. In Bar-Noy et al. [2002] the authors
show that solving a dense PSP instance is NP-complete. Here, we show that
PSP on dense instances reduces to particular instances of our problem, proving
the hardness of LSD bandits.
To show this reduction, we consider an instance of LSD bandits with K actions
and where each action is associated with a reward function:

µi(τi) = I{τi ≥ di}. (4.5)

We introduce an additional arm K + 1 such that µK+1(τK+1) = 0, ∀τ . Given
an initial state τinit, the aim is to identify the best block of actions B∗ =
argmax|B|=d r(B|τinit). There are two possibilities:

• if the PSP is a YES instance, the PSP schedule obtains a reward of 1
at each time step. Since the initial state τinit might not exactly suit the
schedule, we obtain a reward r(B∗|τinit, Y ES) ≥ d−K.

• if the PSP is a NO instance, we can use the argument proposed in Basu
et al. [2019] and prove that r(B∗|τinit, NO) ≥ d− ⌊ d

ΠK
i=1di
⌋.

Hence, for d ≥ d0 := (K + 1)ΠK
i=1di, if we were able to compute the best block

B∗, and therefore r(B∗|τinit), this would mean we could discriminate between
a YES and a NO instance, depending on whether r(B∗|τinit) ≥ d −K or not.
Thus, solving the PSP on dense instances reduces to solving Equation (4.4) for
the particular choice of reward functions defined in Equation (4.5), therefore
proving the NP-hardness of LSD bandits.
As we anticipated, our proof is largely based on the one presented in Basu et al.
[2019]. Indeed, our framework encapsulates the setting described by Equa-
tion (4.5), which is the one analyzed by the authors to show the hardness of
their problem. There are two main differences between the two proofs. First,
in our setting we need to take into account the initial state τinit, which can be
handled by considering a larger block size d. The second difference is that in
Basu et al. [2019] any empty slot in the schedule is automatically filled with a
pull of the 0 arm, which is the only arm that can be played, while in our proof
we have to invoke a finer argument, namely that at any empty slot, playing the

Chapter 4. A novel non-stationary bandit model with finitely many arms 70

0 arm is the best possible action, since all actions yield a null expected reward,
but playing the 0 arm allows every other arm to recharge.

With this proof, we showed that computing the global optimal policy for LSD
bandits is NP-hard, even with full knowledge of the problem instance. Thus, a
common approach to tackle this obstacle is to consider a restricted and simpler
class of approximating policies and learn the optimal policy among these. For
LSD bandits, a natural approximating class is the set of policies with cyclic play
sequences. A play sequence a1, a2, . . . is cyclic if there exists t0 and d > 0 such
that ∀t ≥ t0 it holds that at+d = at. We state the following Lemma, where we
show how cyclic policies are optimal for 2-armed LSD bandits.

Lemma 4.3. For a LSD bandit with two arms, any deterministic policy induces
a sequence of pulls which is cyclic from a certain time step onward. This holds
in particular for the optimal deterministic policy.

Proof. To prove Lemma 4.3, we consider a 2-armed bandit and assume without
loss of generality that a(1) is the first action played by the learner. We analyze
the possible cases. If there is no switch of actions, then a(1) is played continu-
ously, meaning that the sequence is cyclic. Then, we consider the cases when
one or more switches happen. If there is only one switch of actions, then the
learner plays a(1) until a certain point where the switch happens and a(2) is
played indefinitely after that point, from which the sequence is cyclic. If there
are only two switches, it means that after playing a(1) and a(2) the learner will
go back to play a(1) indefinitely after some time step, from which the sequence
will be again cyclic. If there are three (or more) switches of actions, then there
are two switches of actions from a(1) to a(2) in the sequence, meaning that the
state (τ1, τ2) = (1,−1) will be visited twice. Since the policy is deterministic,
the same cycle will be repeated.

Although we proved that any deterministic policy induces a cyclic policy in a
2-armed LSD bandit from a certain step onward, we highlight how this property
does not resist to the number of arms. Indeed, we can exhibit optimal policies
for 3-armed bandits which do not induce cyclic sequences, showing a policy
which never visits the same state twice. We consider a 3-armed LSD bandit
with an actions set A = {a(1), a(2), a(3)}. We analyze the following sequence of
actions. For m = 1, 2, . . . , the learner plays:

• a(1) consecutively for m times

• a(2) consecutively for m times

• a(3) consecutively for m times.

For simplicity, we assume that the states are all initialized at τi = 0 ∀i = {1, 2, 3}
and not to 1. We allow for this simplification since it only impacts the states
in the first block, for the first time they are played. Following this policy, we
have that in block m, the states of the actions are given by:

(τ1, τ2, τ3) =

(−t,m− 1 + t, t) after the t-th pull of a(1)

(t,−t,m+ t) after the t-th pull of a(2)

(m+ t, t,−t) after the t-th pull of a(3).
(4.6)

Chapter 4. A novel non-stationary bandit model with finitely many arms 71

Using the previous formula, it is easy to see that no state is visited twice. Then,
it is easy to choose µ1, µ2, µ3 such that the policy is optimal: for instance,
µi = 1 ∀i = 1, 2, 3. We clarify that this does not imply that there does not
exist a cyclic optimal policy for a 3-armed bandit, but rather that not every
optimal policy is cyclic. It is rather difficult to answer this question, which is
deferred to future work. Nevertheless, we state a weaker result to show that
cyclic policies can almost reach the best average reward up to a term which is
inversely proportional to the cycle length. We state this in Proposition 4.4.

Proposition 4.4. Let (µi)
K
i=1 be an LSD bandit with K arms and constant

expected rewards on Z−. Let T ≥ 0 be the horizon and d ≥ 0 that divides T .
Then, there exists a cyclic policy π with cycle length d (and t0 = 1) such that

1

T

T∑
t=1

rπ(t) ≥
1

T

T∑
t=1

r∗(t)− K

d
(4.7)

where rπ(t) and r∗(t) are the expected rewards obtained at time step t by π and
the optimal policy, respectively. When the µi are not constant on Z−, (4.7) holds
with K + 2 instead of K in the right-hand side. Note also that (4.7) requires
d ≥ K (respectively d ≥ K + 2) to be non-vacuous, as we have: 0 ≤ r∗(t) ≤ 1.

This shows how cyclic policies give good constant factor approximations in gen-
eral. This would mean that to simplify the problem, the learner could restrict
the search space to cyclic policies and look for the best policy inside this com-
parator class, controlling the approximation error using the cycle length. How-
ever, this strategy is not viable either since finding the optimal cyclic policy
for LSD bandits remains NP-hard, even when arms are totally ordered. Before
proving Proposition 4.4, we state and prove the following proposition.

Proposition 4.5. Finding the optimal cyclic policy for LSD bandit problems is
NP-hard, even with separable reward functions of the form µi(τ) = µ0

i · γ(τ).
Proof. Similarly to Proposition 4.2, it is sufficient to consider only the case
where the reward functions are constant on Z−, and actually prove here a
stronger result than Proposition 4.5. Namely, we show that for some d, com-
puting

B∗ = argmax
|B|=d

r(B | τB) (4.8)

where τB is the state reached by the system after a play of block B, is NP-hard,
even when the reward functions can be totally ordered. The optimal cyclic
policy (with cycle length d) is obtained by repeating indefinitely the solution to
(4.8), and the NP-hardness of the latter problem then yields Proposition 4.5.
This proof is also based on a reduction of the Pinwheel Scheduling Problem
(PSP), see Proposition 4.2. Given a PSP dense instance (di)

K
i=1, we construct

an instance of our problem as follows. For every arm i = 1, . . . , K, we set:

µi(τ) =
√
τ/di . (4.9)

Note that setting Equation (4.9) is fundamentally different from setting (4.5)
as we have a total ordering of the arms, i.e., for all τ we have µ1(τ) ≥ µ2(τ) ≥

Chapter 4. A novel non-stationary bandit model with finitely many arms 72

. . . ≥ µK(τ), with the convention d1 ≤ d2 ≤ . . . ≤ dK . We also highlight that
we do not introduce an additional null arm here, as opposed to (4.9). Finally,
although the µi are unbounded for the moment, thus breaking Definition 4.1,
we see at the end of the proof how to consider bounded µi without altering the
subsequent analysis.
We now show that solving (4.8) with reward functions (4.9) allows us to deter-
mine if the PSP instance is a YES or a NO instance. Let ni be the number of
times action i = 1, . . . , K is played in the block, and τij, for j = 1, . . . , ni be the
different states in which arm i is pulled. Problem (4.8) can be rephrased as:

max
(ni)Ki=1

max
(τij)

K,ni
i=1,j=1

K∑
i=1

ni∑
j=1

√
τij/di subject to

∑K

i=1 ni = d∑ni

j=1 τij = d, i = 1, . . . , K

(4.10)
We start by maximizing with respect to the τ = (τij)

K,ni

i=1,j=1. The Lagrangian
writes

L(τ ,λ) =
K∑
i=1

ni∑
j=1

√
τij/di +

K∑
i=1

λi

(
ni∑
j=1

τij − d
)
.

The KKT conditions (gradient of the Lagrangian and primal feasibility) write

∂L(τ , λ)
∂τij

=
1

2
√
diτij

+ λi = 0i = 1, . . . , K, j = 1, . . . , d (4.11)

ni∑
j=1

τij = d i = 1, . . . , K. (4.12)

Solving (4.11) for τij we obtain a quantity independent of j. Then (4.12) implies
that τij = d/ni for each i = 1, . . . , K. Replacing τij = d/ni into (4.10), we can
now maximize with respect to the ni. The Lagrangian writes

L(n, λ) =
K∑
i=1

√
dni/di + λ

(
K∑
i=1

ni − d
)

and the KKT conditions (gradient of the Lagrangian and primal feasibility) are

∂L(n, λ)
∂ni

=

√
d

4nidi
+ λ = 0 i = 1, . . . , K (4.13)

K∑
i=1

ni = d (4.14)

such that replacing (4.13) into (4.14), we obtain ni = d/di, which implies τij =
di.
Assume now that d can be divided by all the di, such that ni = d/di ∈ N.
From the values of ni and τij obtained, we can see that the optimal block for
(4.8) corresponds to a Pinwheel schedule. It yields an average reward equal
of 1, and is achievable if and only if the Pinwheel instance is a YES instance.

Chapter 4. A novel non-stationary bandit model with finitely many arms 73

Therefore, if we can solve (4.8), we can tell if the average reward is equal to 1
or smaller, and thus decide whether the instance is a YES or NO instance. We
have reduced PSP on dense instances to (4.8), which is therefore shown to be
NP-hard. To our knowledge, this is the first hardness result for decomposable
reward functions of the form µi(τ) = µ0

i · γ(τ).
Now, let dmax = maxi=1,...,K di. Note that replacing (4.9) with the bounded
functions

µi(τ) =

{√
τ/di if τ ≤ dmax√
dmax/di otherwise

does not change change the optimal schedule (arm i is played every di ≤ dmax

time steps) and the analysis is unchanged.

After showing that finding the optimal cyclic policy is NP-hard even when the
reward functions are separable and ordered, we dedicate the rest of this section
to state and prove Lemma 4.6, which will be used in the proof of Proposition 4.4.
Then, we conclude this section with an example to show the tightness of our
analysis.
We start with the discussion and proof of Proposition 4.4. As mentioned be-
fore, we denote with B = [a(1), . . . , ad] a general block of d actions and with
r(B|τinit) =

∑d
t=1 µat(τat(t)) the sum of expected rewards obtained by playing

the actions in block B when τ at time t = 1 inside the block is initialized to
τ (1) = τinit. In order to prove Proposition 4.4, we state and prove the following
lemma.

Lemma 4.6. Let (µi)
K
i=1 be an LSD bandit with K arms and constant expected

rewards on Z−. Then, for all block B and any initial states τinit, τ
′
init ∈ ZK, we

have
r(B | τ ′

init) ≥ r(B | τinit)−K . (4.15)

If the µi are not constant on Z−, a slight modification of B in the left-hand side
is required to maintain a similar bound. Formally, for any block B of length d,
there exists a block B′ of length d such that for any initial states τinit, τ

′
init, we

have
r(B′ | τ ′

init) ≥ r(B | τinit)− (K + 2) . (4.16)

Proof. Here we present the proof of Lemma 4.6. We start by proving the special
case where the reward functions µi are constant on Z−. First, we notice that
after the first play of an arm a, the switch of arms [a, not a] occurs, and its state
will become τa = 1, independently of what its initial state was. Then, let ta be
the round at which arm a is pulled for the first time. Even in the case where arm
a is consecutively pulled many times, the reward collected for τinit and τ ′init are
µa(τinit,a+ta−1), µa(−1), . . . , µa(−1) and µa(τ

′
init,a+ta−1), µa(−1), . . . , µa(−1)

since the reward functions µi are constant on Z−. This means that the only
difference is µa(τ

′
init,a + ta − 1) − µa(τinit,a + ta − 1) ≤ 1. So, considering the

cardinality K of the set of arms, the total difference cannot exceed K, which
leads to the result in Equation (4.15). We specify that in full generality, to be
even more specific, the quantity K could be replaced by the number of different
arms played in B.

Chapter 4. A novel non-stationary bandit model with finitely many arms 74

Now, we move to the general proof for reward functions µi which are not con-
stant on Z−. For any block of actions B of size d, we want to find a block B′ of
length d such that for any initial states τinit, τ ′init ∈ ZK , we have:

r(B′|τ ′init) ≥ r(B|τinit)− (K + 2). (4.17)

We first analyze what happens when we replace B′ with the same B in Equa-
tion (4.17). As for the constant case, we recall that when playing a block of
actions, the arm is impacted by the initial state only in its first pull inside
the block (possibly with several consecutive pulls). When this sequence (which
might be of length 1 if a switch follows the first pull) is interrupted, the arm’s
state goes to 1, independently of the state it was before the switch. Further-
more, note that only the first action a1 in the block can be pulled with a negative
state at the beginning of its sequence of pulls. Let τnew = δ(τinit, a1) where δ
is a componentwise version of δa and a1, as we said, is the action pulled in the
first time step of block B. It is easy to check that for all arms a ̸= a1, we have
that τnew,a ≥ 1. Indeed, there are two cases. If the action was in a negative
state, then its state becomes 1 when action a1 ̸= a is played as the first action
in B. Otherwise, if action a was in a positive state, this state is incremented by
1. This leads to say that the expected rewards obtained during the first play
(possibly with consecutive pulls) of an arm a with initial states τinit and τ ′init
are respectively

µa(τa), µa(−1), µa(−2), . . . and µa(τ
′
a), µa(−1), µa(−2), . . . (4.18)

where τa and τ ′a are two generic positive values (thanks to the remark we made
earlier) which depend on τinit,a, τ ′init,a, and the place of the first pull of a in the
block. Note that the assumption on the boundedness of µa ensures that the
difference of expected rewards obtained is smaller than 1.
Now, we analyze the first pull of arm a1. We start by assumin that it is pulled
for n1 consecutive rounds at the beginning of block B (note, we might have
n1 = 1). Assuming that τinit,1 is positive and τ ′init,1 is negative, the expected
rewards collected are respectively

µ1(τinit,1), µ1(−1) . . . µ1(−n1 + 1) and
µ1(τ

′
init,1), µ1(τ

′
init,1 − 1) . . . µ1(τ

′
init,1 − n1 + 1) .

(4.19)

Unlike in the previous case, the difference between the two sequences is not
bounded by 1. Indeed, it might be even equal to n1 if τ ′init,1 ≤ −n1. This
explains why the same B cannot be used in both sides of Equation (4.17). In
order to break the sequence of pulls and bound this difference, we introduce B′.
Let a2 be the second action pulled in B (if B consists of a sequence where all
the d actions are a1, we can set a2 to be any action in A different from a1). We
assume that the block B′ is equal to B except for the second pull of B′, where
the action pulled in the second time step is necessarily a2. We can face three
different cases:

• If n1 = 1, we have that B′ = B. Since n1 = 1, the difference between
the two sequences of rewards due to the pulls of a1 is at most 1. For all

Chapter 4. A novel non-stationary bandit model with finitely many arms 75

the other actions in the block, we refer to the analysis presented at the
beginning and the total difference is at most K.

• If n1 = 2, and denoted by n2 the number of times a2 is played consecutively
after a1, then the expected rewards of the two sequences obtained by
playing B and B′ with initial state τinit and τ ′init respectively are

µ1(τinit,1), µ1(−1) or µ1(τinit,1 − 1), µ2(τ2), µ2(−1) . . . µ2(−n2 + 1)

and µ1(τ
′
init,1), µ2(τ

′
2), µ2(−1), µ2(−2) . . . µ2(−n2)

where the or comes from the fact that we don’t know if τinit,1 is posi-
tive (then the next reward is µ1(−1)) or negative (then next reward is
µ1(τinit,1 − 1)). Here, τ2 and τ ′2 are two generic positive numbers, whose
values are not important as the difference between the two sequences is
contained in the red rewards, and thus bounded by 3 anyway. For all
other K − 2 actions, we can apply the standard analysis, such that in
total the difference cannot exceed K + 1.

• n1 ≥ 3. Using the same notation as above, we have now respectively for
the first n1 pulls of B

µ1(τinit,1), µ1(−1) or µ1(τinit,1 − 1), µ1(−2) or µ1(τinit,1 − 2),
. . . µ1(−n1 + 1) or µ1(τinit,1 − n1 + 1)

and for B′

µ1(τ
′
init,1), µ2(τ

′
2), µ1(1), . . . µ1(−n1 + 3).

The red terms incur a loss of at most 3. Then, if τinit,1 ≥ 1, the remaining
rewards (non red) in the play of B are

∑n1−1
j=3 µ1(−j) ≤

∑n1−3
j=1 µ1(−j)

as µ1 is nondecreasing on Z−, so the rewards obtained by B′ are greater.
If τinit,1 < 0, we have

∑n1−1
j=3 µ1(τinit,1 − j) ≤

∑n1−3
j=1 µ1(−j) for the same

reasons. So overall, the difference is bounded by 3.

As for the n2 following pulls, recalling that τ2 and τ ′2 are positive since
the preceding pull is a(1), we have

µ2(τ2), µ2(−1), . . . µ2(−n2 + 1)

and µ2(τ
′
2), µ2(−1), . . . µ2(−n2 + 1)

with a difference bounded by 1. For the K− 2 other actions, we still have
the bound of K− 2, so that in total the difference does not exceed K +2.

Lemma 4.6 tells us that playing the same block with different initials states
yields a difference in the sequence of rewards which is bounded by K, when the
reward functions are constant on Z−, or K + 2, when we drop the assumption
that the reward functions are constant on Z− ad allow the µa to be increasing.
We use this lemma to prove Proposition 4.4, where we show the approximation
error of cyclic policies.

Chapter 4. A novel non-stationary bandit model with finitely many arms 76

Proof. We start by considering the case where the reward functions µi are con-
stant on Z−. Note that there exists a time step t0 ≤ T − d + 1 such that the
average reward obtained by the optimal policy in a sequence of d actions, from
time step t0 to t0+d−1, is higher than the average reward of the optimal policy
over the entire horizon, namely (1/d)

∑t0+d−1
t=t0

r∗(t) ≥ (1/T)
∑T

t=1 r
∗(t).

We denote with B∗ = [a∗t0 . . . a
∗
t0+d−1] this block of d actions, and with τ ∗(t) the

sequence of states generated by the optimal policy, such that
∑t0+d−1

t=t0
r∗(t) =

r(B∗ | τ ∗(t0)). Let π be the policy which plays repeatedly the block B∗. How-
ever, except for the first d steps, B∗ is played by π with an initial state τB∗ ,
i.e., the state reached by the system after a play of B∗, which might be different
from τ ∗(t0). Applying Lemma 4.6, and assuming for simplicity that states were
initialized in π to τB∗ , we obtain

1

T

T∑
t=1

rπ(t) =
r(B∗ | τB∗)

d
≥ r(B∗ | τ ∗(t0))−K

d

≥ 1

T

T∑
t=1

r∗(t)− K

d
.

If the µi are not constant on Z−, the repeated block is built using the second
part of Lemma 4.6. Now, we move to the general proof where we drop the
assumption that the reward functions µi are constant on Z− and analyze the
scenario where the µi can be increasing on Z−. Here, we will use the second
result of Lemma 4.6 and the way B′ is constructed from B.
Similarly to the constant case, we first use the fact that we know that there
exists a block B∗ of length d with an average reward (at least) greater than
the average reward of the complete optimal sequence. We still use the notation
where we have B∗ = [a∗t0 . . . a

∗
t0+d−1] and

r(B∗ | τ ∗(t0))

d
≥ 1

T

T∑
t=1

r∗t .

While previously we could simply repeat B∗, now this is not possible anymore
due to the possible effects shown in (4.19). Let B′, derived from B as in the
proof of Lemma 4.6. Namely, if a(1) and a(2) are the first two different actions
played in B, we have B′ = [a∗t0 a

(2) a∗t0+1 . . . a
∗
t0+d−1]. Let τB′ be the state reached

after a play of B′ from initial state 1. Using Lemma 4.6, the expected rewards
rπ(t) obtained by policy π which plays cyclically B′ satisfy

1

T

T∑
t=1

rπ(t) =
r(B′ | 1)

T
+
T − d
T

r(B′ | τB′)

d

=
d

T

r(B′ | 1)
d

+

(
1− d

T

)
r(B′ | τB′)

d

≥ d

T

r(B∗ | τ ∗(t0))− (K + 2)

d
+

(
1− d

T

)
r(B∗ | τ ∗(t0))− (K + 2)

d

Chapter 4. A novel non-stationary bandit model with finitely many arms 77

µa — on Z− ↗ on Z− ∼ on Z−

↗ on Z+ −(K − 1) −(K + 1) −d
∼ on Z+ −K −(K + 2) −d

Table 4.1: In this table we show the approximation errors by
block of size d when µa is constant (—), nondecreasing (↗),
or non-monotone (∼) on Z− and Z+. The grey cell represents
previous works. Our setting covers the blue ones. The red cells

indicate vacuous approximations.

=
r(B∗ | τ ∗(t0))− (K + 2)

d

≥ 1

T

T∑
t=1

r∗t −
K + 2

d
.

As for Lemma 4.6, we provide two results for the cases where the reward func-
tions are constant on Z− and where the reward functions are increasing on Z−.
The approximation errors in these cases are respectively K/d and (K + 2)/d.
We notice that the approximation errors by block of size d that can be achieved
depend on the assumptions on the µi for Z− and Z+. We summarize the results
achievable depending on different assumptions in Table 4.1. Note that relaxing
the assumptions on Z+ does not affect much the cost of the approximation.
On the other hand, the assumptions on Z− can lead to critical changes in the
approximation error. Indeed, dropping the monotonicity assumption on Z− is
critical and would not allow for meaningful results.
Before moving to the discussion about the proposed approach to solve LSD
bandit, we conclude these approximation results by showing an example where
our analysis is essentially tight.

Example 4.2. Consider the LSD bandit defined by the following reward func-
tions

µi(τ) = I{τ ≥ K − 1} ∀i ≤ K.

The optimal policy consists in repeating the block [a(1) . . . a(K)] and obtains an
average reward of 1. Let d = 2K − 1, such that (up to permutations) we have
B∗ = [a(1) . . . a(K)a(1) . . . a(K−1)]. The average reward of B∗ among the optimal
sequence is 1, which is equal to the global average reward. Now, it is easy to check
that playing repeatedly B∗ yields an average reward of K/(2K−1). On the other
hand, the lower bound given by Proposition 4.4 is 1−K/d = (K− 1)/(2K− 1),
which matches the average reward as K → +∞.

In this section, we defined the LSD bandit and studied the hardness of the prob-
lem. We showed that finding the optimal policy is NP-hard, as well as finding
the optimal policy in the restricted comparator class of cyclic policies, even if
it is possible to separate the reward functions as µi(τ) = µ0

i · γ(τ). However,
we show the approximation error of cyclic policies, which can approximate the
best average reward for a factor K/d or (K + 2)/d if the reward functions are

Chapter 4. A novel non-stationary bandit model with finitely many arms 78

respectively constant or increasing on Z−. Finally, we concluded this section
with an example where this approximation error is tight.

4.3 The estimation problem
After defining and studying the problem, in this section, we illustrate the meth-
ods we used to tackle it. From the results obtained in Proposition 4.4, we
understand that a possible approach to solve LSD bandits is to approximate
the optimal sequence of actions considering cyclic policies. In order to employ
a cyclic policy, our approach consists of playing small blocks of actions of size
d < T . Although the optimal block to play would be B∗, we showed in the
proof of Proposition 4.2 (Equation (4.4)) that computing this block constitutes
an NP-hard problem, since its estimation would require the computation of the
optimal sequence of actions. This identifies the first objective, which is to find
a block B of d actions to play. But before planning for the actions inside this
block, there is an additional challenge to solve. We recall that the initial state
of the block has an impact on the average reward collected by the block. When
a "good" block, which attains a high average reward, is played with a different
initial state, it may become "bad", achieving a much lower average reward due
to the impact of the initial state. So, the second challenge is to study how to
handle the impact of the initial state. For simplicity, we analyze the case where
the µi are constant on Z−. Once the results for this setting are presented in
Proposition 4.7, we move to the analysis where µi are not constant on Z−.
We focus on the problems of finding the optimal block and finding a solution to
handle the initial states, which are unknown and impacted by previous plays.
A natural way to tackle this problem is to play every block twice. In this case,
the learner would play B twice and consider only the rewards obtained by the
second block, since these are the rewards that are actually representative of the
rewards obtained by the block if played cyclically. We denote with τB the state
reached by the system after playing block B from initial state 1. Therefore, we
define

B∗
double = argmax

|B|=d

r(B|τB), (4.20)

which indicates the block of size d which maximizes the reward when played
with initial state τB. In other words, B∗ essentially identifies the block which
maximizes the reward of its second play when played twice. As the reader
can notice, solving Equation (4.20) is not trivial since B influences not only the
rewards generated by the actions but also the initial state. Solving this equation
would also correspond to computing the optimal cyclic policy, which has been
proven to be NP-hard in Proposition 4.5. Furthermore, playing the same block
twice to calibrate the initial state seems superfluous since it would misuse the
d time steps of the first of the two blocks. This looks even more excessive when
one observes that d needs to grow in order to control the approximation error.
For this reason, we disfavour this approach.
A cheaper solution for the calibration of the arms is to play all K arms at the
beginning of the block of actions. This would consist in playing a calibration
block Bσ = [aσ(1), . . . , aσ(K)] for any permutation σ ∈ ΣK , before playing the

Chapter 4. A novel non-stationary bandit model with finitely many arms 79

actual block of d actions. This allows the control of the initial state of the
actions played after the calibration sequence Bσ. As for the previous approach,
the rewards of the calibration sequence could not be exploited. However, if we
think of natural applications of our model, we may assume that d > K. So,
in the previous solution the cost of the calibration may increase consistently
because d has to grow. However, in the current scenario, the loss of the learner
would decrease to K pulls per block. We denote with τσ the state of the system
after a play of block Bσ and define

B∗
σ = argmax

|B|=d

r(B|τσ) (4.21)

as the block which maximizes the reward obtained by the d actions in B from
an initial state τσ. This approach would consists in playing cyclically the block
[Bσ, B

∗
σ] of size K + d. Although there is an improvement if compared to the

previous method, some inefficiencies can be observed. The first drawback is
that the approximation guarantee is actually worse than the one for double
plays. Then, it still seems excessive to dissipate K time steps if not all K
arms are actually being played in the d-sized block. Especially, when reasoning
about possible applications, e.g. song recommendation, it is impractical to play
a representative song for each genre, including genres that the user might not
enjoy.
The final solution we propose, which is the one adopted in our solution to LSD
bandits, is to reduce the cost of the calibration by ensuring that there is no
calibration for those actions that are not played in the block. We simplify this
idea by saying that the system discards the rewards obtained each time an
action is pulled for the first time in the block, considering only the rewards
from its second pull forward. Essentially, the first pull of each action inside the
block B is not considered by the learner. Formally, we can define

r̃(B) =
d∑

t=1

µat(τat(t))I{∃t0 < t : at0 = at}, (4.22)

where t indexes the steps inside block B of size d and r̃(B) quantifies the total
reward obtained by a block B of size d counting the reward of an action only if
it is its second pull or higher. The reward obtained by the first pull of an action
in B is ignored. An important note is that with this definition the reward r̃(B)
is independent from the initial state of the block, so the following equation is
well defined:

B̃∗ = argmax
|B|=d

r̃(B). (4.23)

Observe that, because past plays influence the state and therefore future re-
wards, the first pull of an arm in a block is not reliable due to the missing
knowledge of its initial state. Instead of adding a calibration sequence prior to
the play of block B, the solution we propose exploits the first pulls to calibrate
the arms, without enforcing an excessive and superfluous amount of actions
which would not be present in B. Indeed, with this method only the arms
actually played in block B are calibrated. Furthermore, there is not a clear

Chapter 4. A novel non-stationary bandit model with finitely many arms 80

separation between the calibration and the exploitation phase. In fact, these
are intertwined since there is no obligation to have all the first pulls in the first
steps of B. As one can see, this allows a higher degree of freedom when planning
for the actions to play in B. Above all, the primary advantage of this solution
is that the loss paid in the maximization of r̃ is controllable, differently from
the maximization of r since we have

r(B|τinit −K ≤ r̃(B) ≤ r(B|τinit), (4.24)

for any block B initial state τinit.
What follows this discussion is the statement of the approximation results for
all our different approaches.

Proposition 4.7. Let (µi)
K
i=1 be a LSD bandit with K arms and constant ex-

pected rewards on Z−. Let T ≥ 0 be the horizon and d ≥ 0 that divides T . Let
rdouble(t) be the expected rewards obtained at time step t by the policy playing
cyclically B∗

double. We have

1

T

T∑
t=1

rdouble(t) ≥
(
1− d

T

)(
1

T

T∑
t=1

r∗(t)− K

d

)
. (4.25)

Let σ ∈ SK, and assume that d+K divides T . Let rσ(t) be the expected rewards
obtained at time step t by the policy playing cyclically [Bσ, B

∗
σ]. We have

1

T

T∑
t=1

rσ(t) ≥
d

d+K

(
1

T

T∑
t=1

r∗(t)

)
− K

d+K
. (4.26)

Let r̃∗(t) be the expected rewards obtained at time step t by the policy playing
cyclically B̃∗. We have

1

T

T∑
t=1

r̃∗(t) ≥ 1

T

T∑
t=1

r∗(t)− K

d
. (4.27)

Proof. Recall the notation B∗
double, and the additional notation B∗ and τ ∗(t0)

introduced in the proof of Proposition 4.4 in the main body of the paper. We
have

1

T

T∑
t=1

rdouble(t) =
r(B∗

double | 1)
T

+
T − d
T

r(B∗
double | τB∗

double
)

d

≥
(
1− d

T

)
r(B∗

double | τB∗
double

)

d

≥
(
1− d

T

)
r(B∗ | τB∗)

d
(4.28)

≥
(
1− d

T

)
r
(
B∗ | τ ∗(t0)

)
−K

d
(4.29)

Chapter 4. A novel non-stationary bandit model with finitely many arms 81

≥
(
1− d

T

)(
1

T

T∑
t=1

r∗(t)− K

d

)
, (4.30)

where (4.28) holds because B∗
double is a maximizer of r(B | τB), (4.29) holds due

to Lemma 4.6, and (4.30) is a direct consequence of the definition of B∗. Using
similar arguments, we also have

1

T

T∑
t=1

rσ(t) ≥
r(B∗

σ | τBσ)

d+K
≥ d

d+K

r(B∗ | τBσ)

d
≥ d

d+K

r
(
B∗ | τ ∗(t0)

)
−K

d

≥ d

d+K

(
1

T

T∑
t=1

r∗(t)

)
− K

d+K
,

and

1

T

T∑
t=1

Rew∗(t) ≥ Rew(B̃∗)

d
≥ Rew(B∗)

d
≥ r

(
B∗ | τ ∗(t0)

)
−K

d
≥ 1

T

T∑
t=1

r∗(t)−K
d
.

From Proposition 4.7, one can notice how the approximation result for the solu-
tion which ignores the first pulls, Equation (4.27), is able to avoid interferences
between blocks and is tighter than both the results for the double play approach
Equation (4.25) and the calibration sequence approach Equation (4.26) as soon
as

1

T

T∑
t=1

r∗(t) ≥ K

d
, (4.31)

which is implicitly assumed for the bounds to be non vacuous. Moreover, the
result obtained in Equation (4.25) shows that computing a sequence of blocks
with small regret against B∗

double requires playing each block twice, with no
guarantee that the first play will provide any reward, dividing Equation (4.25)
by 2. On the contrary, in the next section we show how to estimate B̃∗ with
tight regret bounds by adapting the CombUCB1 algorithm from Gai et al. [2012].

Before discussing the estimation problem and the algorithm proposed for LSD
bandits, we switch to the setting where the µi are not constant on Z− and show
how the results obtained in Proposition 4.7 adapt to this setting.
While the definition of B∗

double and B∗
σ remain unchanged (respectively 4.20 and

4.21), the definition of B̃∗ needs to be adapted. The essential idea behind r̃ is
to use the first pulls of any arm in the block as a calibration step. The previous
definition we gave works for the setting where the µi are constant on Z−, but
not when the µi are not constant. Indeed, suppose that arm a has been played
at the end of the previous block and is in state τa ≤ 0 at the beginning of block
B. Imagine that there are several pulls of a in the first steps of B. In this case,
the state of arm a will keep decreasing, starting from the state left from the
previous block. The state will decrease as τa, τa − 1, τa − 2, . . . , but since τa is
unknown then all these subsequent states will be unknown as well. Even if we

Chapter 4. A novel non-stationary bandit model with finitely many arms 82

ignore the first pull of a in B, this behaviour would not allow us to calibrate
the state of the arm, because τa − 1, τa − 2 will remain unknown. To overcome
this limit, we introduce the following definition:

B̃∗ = argmax
|B|=d,a1 ̸=a2

r̃(B) (4.32)

where we maintain the same concept of ignoring the first pulls for calibration,
but we enforce the first two actions in the block, a1 and a2, to be different. By
doing so, we ensure that with a2 the state of a1 is reset to τ1 = 1 even in case it
was τ1 ≤ 0 at the beginning of the block. Without this constraint, it would not
be possible to obtain a valid approximation error. Note that the second claim
of Lemma 4.6 also possesses two different first actions, meaning that this extra
constraint in Equation (4.32) does not harm the approximation.
Using this definition, we are able to rewrite the Proposition 4.7 for the setting
where the reward functions µi are not constant over Z−.

Proposition 4.8. Let (µi)
K
i=1 be a LSD bandit with K arms. Let T ≥ 0 be

the horizon, and d ≥ 0 that divides T . Let rdouble(t) be the expected rewards
obtained at time step t by the policy playing cyclically B∗

double. We have

1

T

T∑
t=1

rdouble(t) ≥
(
1− d

T

)(
1

T

T∑
t=1

r∗(t)− K + 2

d

)
.

Let σ ∈ SK, and assume that d+K divides T . Let rσ(t) be the expected rewards
obtained at time step t by the policy playing cyclically [Bσ, B

∗
σ]. We have

1

T

T∑
t=1

rσ(t) ≥
d

d+K

(
1

T

T∑
t=1

r∗(t)

)
− K + 2

d+K
.

Let r̃∗(t) be the expected rewards obtained at time step t by the policy playing
cyclically B̃∗. We have

1

T

T∑
t=1

r̃∗(t) ≥ 1

T

T∑
t=1

r∗(t)− K + 2

d
.

Proof. The proof is similar to that of Proposition 4.7, see Section 4.3. The
only difference is that we cannot use r(B∗ | τB∗) ≥ r

(
B∗ | τ ∗(t0)

)
−K, as we

did during the proof of the first claim of Proposition 4.7. Instead, we have to
involve (B∗)′, as defined in Lemma 4.6. Then, we have

r(B∗
double | τB∗

double
) ≥ r

(
(B∗)′ | τ(B∗)′

)
≥ r
(
B∗ | τ ∗(t0)

)
− (K + 2) ,

r(B∗
σ | τBσ) ≥ r

(
(B∗)′ | τBσ

)
≥ r
(
B∗ | τ ∗(t0)

)
− (K + 2) ,

Rew
(
B̃∗) ≥ Rew

(
(B∗)′

)
≥ r
(
B∗ | τ ∗(t0)

)
− (K + 2) ,

which allows to complete the missing parts in the proofs. Note that in the last
equation, the first inequality holds true thanks to the fact that (B∗)′ has also

Chapter 4. A novel non-stationary bandit model with finitely many arms 83

two first actions that are different, while the second inequality can be recovered
from similar arguments as those used to prove Lemma 4.6.

4.4 The proposed solution: the ISI-CombUCB1
algorithm

After identifying an approach which solves the calibration problem and attains
a valuable approximation error, the next challenge is to estimate the best block
of size d to play. The approach we propose is built upon the CombUCB1 algorithm
for combinatorial semi-bandits introduced in Gai et al. [2012].
As explained in Chapter 2, combinatorial semi-bandit (CSB) is a class of mul-
tiarmed bandits where the action consists of a super-arm of N actions chosen
from a universe of L > N base actions, under some combinatorial constraints.
Once the super-arm is played, the learner observes the individual rewards of the
N base actions and receives their sum as a reward for the super-arm. In this
setting, the regret measures the performance between the super-arm selected
by the player and the best subset of N base actions satisfying the constraints.
We recall that a standard K-armed bandit is a particular instance of a com-
binatorial semi-bandits, with N = 1, L = K, and no constraints. We use the
knowledge of CBS to solve our estimation problem, showing that computing
the best block with small regret against B̃∗ with respect to r̃ can be reduced to
a CSB problem.
We reduce our estimation problem to a CSB problem where N = d, since the
super-arm of size N corresponds to our block of d actions. The universe of base
actions of cardinality L in CSB is more intricate to determine in our setting.
In CSB the super-arm of size N allows one action to be played at most once
in the super-arm. On the contrary, in the LSD setting a block B may contain
multiple plays of the same action. Moreover, while in CSB the rewards of the
actions are i.i.d., in block B the rewards also depend on the state. To overcome
these limitations, we consider a broad universe of Kd2 base actions in the LSD
setting. In this set of base actions, we consider as individual entities the same
action played with different states and at different positions within the block.
Namely, a base action is index by an arm a(i) ∈ A = {a(1), . . . , a(K)}, a state
τ ∈ {1, . . . , d}, and a position inside the block t ∈ {1, . . . , d}. Note that we
limit the state τ in {1, . . . , d} due to the fact that with the approach we adopt
the state of every action is calibrated inside the block. The state coordinate
ensures the i.i.d. nature of the rewards, while the time coordinate allows to
remove the arm multiplicities, therefore making the map from a block to its
representation one-to-one. This representation is necessary to be able to reduce
our problem to a CSB problem and adapt the algorithm for CSB to our LSD
setting. Before moving to the algorithm, we highlight that the structure of the
problem plays a critical role, as the action space is of size L = Kd2, instead of
Kd in the absence of any structure. However, we also note that from a pure
estimation point of view, a space of size Kd is enough, since we know that the
position of the action in the sequence does not influence its reward - the state
does.

Chapter 4. A novel non-stationary bandit model with finitely many arms 84

Algorithm 1 ISI-CombUCB1
input : number of arms K, block size d, horizon T
init : ∀i ≤ K, j ≤ d, T1(i, j) = 0, X1(i, j) = 0,

U1(i, j) = +∞.
for t from 1 to T/d do

// Play the best block for r̃ based on the UCBs

Play B̂t = [at,1 . . . at,d] that maximizes in (as)s≤d

d∑
s=1

Ut

(
as, τas(s)

)
I{∃s0 < s : as0 = as}

Get rewards Xt

(
at,1, τat,1(1)

)
. . . Xt

(
at,d, τat,d(d)

)
// Update the statistics

for i ≤ K and j ≤ d do

if arm i is played with delay j in block B̂t (counting the multiplicities)
then

Tt+1(i, j) = Tt(i, j) + 1,

X t+1(i, j) =
Tt(i, j)X t(i, j) +Xt(i, j)

Tt+1(i, j)

else

Tt+1(i, j) = Tt(i, j), X t+1(i, j) = X t(i, j)

Ut+1(i, j) = XTt+1(i,j)(i, j) +

√
α log(t+ 1)

Tt+1(i, j)

To solve a LSD bandit, we adapt the CombUCB1 algorithm introduced by Gai
et al. [2012] for combinatorial semi-bandits. Its analysis was later refined by
Chen et al. [2013] and Kveton et al. [2015]. In the latter, the authors provide an
improvement in the performance of the algorithm, proving tight regret bounds.
With the adjustments we presented on the structure of the problem, it is possible
to apply CombUCB1 to our setting in a black box fashion. In this case, the regret
bound of O(√NLn log n) in Kveton et al. [2015] is adapted by placing N = d,
L = Kd2, and n = T/d, since we do not play a super-arm per time step but a
block which takes up d time steps over the horizon T . We adapt CombUCB1 to
the LSD setting and present our algorithm called ISI-CombUCB1, which stands
for Initial States Independent CombUCB1. Before showing the regret bound
obtained by combining the regret bound of CombUCB1 and the approximation
result, we discuss its steps.
The pseudocode for ISI-CombUCB1 is presented in Algorithm 1. The algorithm
recovers the main steps of CombUCB1 Gai et al. [2012], but adapts it to the
maximization of r̃. It receives as input the set of actions, the block size d, and
the horizon T . Before starting the game, when there is no information about
the arms and their rewards, each arm has a UCB index equal to +∞, to make

Chapter 4. A novel non-stationary bandit model with finitely many arms 85

sure that at the beginning of the game each action is played once. Note that
the initialization is such that pulling an uninitialized arm is always better than
pulling any combination of initialized arms. As a consequence, the latter lasts
at most Kd rounds, like in standard CombUCB1.
For every time step t, from 1 to T/d, the algorithm plays a block of actions
B̂t = [at,1, . . . , at,d] selecting the arms (as)s≤d which maximize the following
quantity

d∑
s=1

Ut

(
as, τas(s)

)
I{∃s0 < s : as0 = as},

which is the sum of the UCB indexes of the arms in the d steps of the block, ig-
noring their first pulls. The block B̂t will contain the d-sized admissible subset of
arms that maximize this quantity. After identifying these arms, the learner plays
the block of actions and obtains the rewardsXt

(
at,1, τat,1(1)

)
. . . Xt

(
at,d, τat,d(d)

)
,

which are used to update the arms’ statistics stored by the algorithm. Specifi-
cally, the rewards are used to update the Tt(i, j), where i ≤ K index the arm,
j ≤ d index the state, and Tt(i, j) stores the number of plays of arm i with state
j. Also, the rewards are used to update the empirical mean X̄t(i, j), which
again is indexed by the arm and the state and stores the empirical average
of the reward obtained so far from playing arm i with state j. Using Tt(i, j)
and X̄t(i, j), the algorithm finally updates the UCB indexes using the following
formula:

Ut+1(i, j) = X̄Tt+1(i,j)(i, j) +

√
α log(t+ 1)

Tt+1(i, j)
(4.33)

and repeats the process until T is reached. In ISI-CombUCB1, the optimization
problem to select the best subset amounts to solve Equation (4.32), but using
the UCBs instead of the true expected rewards. As pointed out during the
construction of the universe, in our case some actions share the same rewards:
indeed, in our setting the position of the arm inside the block does not influence
its reward, only the state does. Thus, it is sufficient to maintain only Kd UCBs,
one for each combination of arm and delay. The key step in the algorithm is
to compute the block B̂t which maximizes the current rewards estimates. We
formally define this optimization problem as follows. Let F ∈ {0, 1}K×d, such
that F [i, t] = 1 if and only if arm a(i) is played for the first time in the block
at time step t. Let Y ∈ {0, 1}K×d×d, such that Y [i, j, t] = 1 if and only if
arm i is played with delay j at time step t. Let Z = (F, Y) be the Kd2-sized
representation we introduced earlier. Note that the column associated with
t = 1 in Y is filled with zeros, as a pull here is by definition a first pull, and
thus encoded in F . This notation of size Kd(d+1) is however more convenient
for coherence. The constraints for Z needed to describe a valid sequence of arm
pulls are: Action Consistency (AC), i.e., at each time step, one and only one
action is played, Unique First Pull (UFP), i.e., there is only one first pull per
arm, First Pulls First (FPF), i.e., first pulls must precede any other pull of the
same arm, and Time Consistency (TC), i.e., an arm can be pulled with delay
j at time step t only if it was pulled at time step t − j, and not pulled since.

Chapter 4. A novel non-stationary bandit model with finitely many arms 86

These constraints write (for index limits that make sense)

∀t
∑
i

F [i, t] +
∑
i,j

Y [i, j, t] = 1 (AC)

∀i
∑
t

F [i, t] ≤ 1 (UFP)

∀i, t
∑
j

Y [i, j, t] ≤
t−1∑
s=1

F [i, s] (FPF)

∀i, j, t Y [i, j, t] ≤ F [i, t− j] +
∑
l

Y [i, l, t− j]

−
∑
s

Y [i, j − s, t− s] (TC)

The objective function is the sum of the current UCBs for the second actions
present in the block and writes

∑
i,j,s Y [i, j, s]Ut(i, j). Noticing that all the

relations are linear, we can derive ct ∈ RKd2 , G ∈ RKd2+K×Kd2 , h ∈ RKd2+K ,
A ∈ Rd×Kd2 , and b ∈ Rd, such that the optimization problem writes as

max
z∈{0,1}Kd2

c⊤t z s.t.
{
Gz ⪯ h
Az = b

(4.34)

where z is a vector version of Z. We highlight that (4.34) is an integer lin-
ear program, which is NP-hard to solve in general. This is expected, as our
approach enjoys a sublinear linear regret against OPT (which is NP-hard to
compute), and is therefore bound to be intractable. In Simchi-Levi et al. [2021]
(Lemma 6), a Fully Polynomial-Time Approximation Scheme (FPTAS) is used
to address a similar problem. However, we highlight that, although similar at
first sight, our two ILPs are fundamentally different. While the authors try to
select the best K arms at a fixed time step, we aim at selecting an optimal
block, that takes into account the evolution of the rewards over time. This
time constraint is specific to our problem and prevents us from using standard
FPTASs. Instead, we propose a heuristics based on a branch-and-bound-like
approach [Land and Doig, 2010; Clausen, 1999], where we use a LP relaxation
to estimate the value of the objective. This amounts to testing every admis-
sible (discrete) first action, and then keeping the one maximizing the relaxed
objective (in which all subsequent actions are relaxed in [0, 1]). The same is
repeated to choose the following d − 1 discrete actions. Overall, we solve d
Linear Programs, of sizes Kd, 2Kd, . . . ,Kd2. Given a horizon T , and choosing
d as in Theorem 4.9, the total running time is O(K5/2T 9/4).
To ease readability, here we considered positive delays only. We now extend
the discussion of the optimization problem to negative states and expand the
discussion to the heuristic. We start by adapting the Integer Linear Program
which constitutes the optimization problem of ISI-CombUCB1. As previously
said, the difference is that we need to enforce the first two actions of the block
to be different for calibration purposes. The second important difference is the
size of the representation: we introduce Y + and Y −, both of size Kd2, to encode
pulls in positive and negative states respectively. The problem can be described

Chapter 4. A novel non-stationary bandit model with finitely many arms 87

as follows.
Let F ∈ {0, 1}K×d, such that F [i, t] = 1 if and only if arm i is played for the first
time in the block at time step t. Let Y + ∈ {0, 1}K×d×d, such that Y +[i, j, t] = 1
if and only if arm i is played at time step t in state j. Let Y − ∈ {0, 1}K×d×d,
such that Y −[i, j, t] = 1 if and only if arm i is played at time step t in state −j.
In comparison to the previous Integer Linear Program, the objective function,
i.e., the sum of the current UCBs for the second actions present in the block,
and the conditions (AC), (UFP), and (FPF) remain unchanged. Their formula
are recalled for completeness. As for the novelties, we introduce the Change
Action (CA) constraint, i.e., the second pull in the block must differ from the
first. Time Consistency (TC) is now divided into TC for positive states (TC+),
i.e., an arm can be pulled in state j ≥ 1 at time step t only if it was pulled at
time step t − j, and not pulled since, and TC for negative states, (TC−), i.e.,
an arm can be pulled in state −j ≤ −1 at time step t only if it has been pulled
consecutively for the last j time steps. Note that it is easier to express TC−

using two conditions, depending on whether −j = −1 or −j ≤ −2. Overall, we
have (for index limits that make sense)∑

i,j,s

(
Y +[i, j, s] + Y −[i, j, s]

)
Ut(i, j) (objective)

∀t
∑
i

F [i, t] +
∑
i,j

Y +[i, j, t] +
∑
i,j

Y −[i, j, t] = 1 (AC)

∀i
∑
t

F [i, t] ≤ 1 (UFP)

∀i, t
∑
j

Y +[i, j, t] +
∑
j

Y −[i, j, t] ≤
t−1∑
s=1

F [i, s] (FPF)

∑
i

F [i, 2] = 1 (CA)

∀i, j, t Y +[i, j, t] ≤ F [i, t− (j + 1)] +
∑
l

Y +[i, l, t− (j + 1)]

(4.35)

−
∑
s

Y +[i, j − s, t− s] +
∑
l

Y −[i, l, t− (j + 1)]

−
∑
l

Y −[i, l, t− j] (TC+)

∀i, t Y −[i, 1, t] ≤
∑
l

Y +[i, l, t− 1] + F [i, t− 1] (TC−
1)

∀i, t, j ≥ 2 Y −[i, j, t] ≤ Y −[i, j − 1, t− 1] (TC−
2)

Similarly to the previous ILP, we can approximately solve the above Integer Lin-
ear Program by a Branch-and-Bound-like approach, presented in Algorithm 2.
This heuristic works as follows. For every i ≤ K, we set the first action of
the block (of total size d) to a(i). We then solve a relaxed version of the ILP,

Chapter 4. A novel non-stationary bandit model with finitely many arms 88

optimizing only for actions a2, . . . ad (recall that a1 is fixed to a(i)), and allowing
for continuous values in [0, 1], instead of {0, 1}. This can be done efficiently
as the relaxed problem is a standard Linear Program. We finally set a1 to the
a(i) which has given the highest reward according to the relaxed ILP. We reit-
erate, by testing values for the second action, and solving the relaxed version
with respect to a(3) . . . ad ∈ [0, 1]d−2, and so on. Let LP be the function that
takes as input the current UCBs and a fixed block of size s < d, and outputs
the best continuous solution in [0, 1]d−s for actions as+1 . . . ad. Let reward be
the function returning the objective value of any sequence (possibly partially
continuous). The heuristic is summarized in Algorithm 2.

Algorithm 2 Approximate ILP Solver
input : Current UCBs Ut = [Ut(i, j)] ∈ RK×2d for all i ≤ K and −d ≤ j ≤ d

init : block = []
for s = 1 . . . d do

for i = 1 . . . K do
block tmp = block + [a(i)] // test a(i) as next discrete

action (current block size: s)

block cont = LP(Ut, block tmp) // find the best continuous
continuation (of size d− s)

ri = reward(block tmp, block cont) // compute the total relaxed
reward of the half-discrete

// half-continuous block (of overall
size d)

i∗ = argmaxi≤K ri

block = block + [ai∗] // keep the discrete action with
highest relaxed reward

return block

We point out a few aspects of our solution. Although it is generally hard to
derive approximation guarantees, this approach works well in practice, deliv-
ering the optimal solution in all the cases we tested. Moreover, as discussed
in Kveton et al. [2015], if ISI-CombUCB1 is run with the approximate solver,
Theorem 4.9 can be adapted to bound the regret against the best block accord-
ing to the solver’s approximation. Finally, note that our calibration approach
does not affect the complexity of finding the reward-maximizing block. Indeed,
CombUCB1 is also required to solve an integer linear program similar to ours to
find the subset of base actions maximizing the block reward.
After discussing the algorithm, the optimization problem, and the heuristic used
to solve it, we analyze our solution to prove guarantees on the performance of
Algorithm 1. As we did for the previous discussions, we provide two results for
the two settings where the expected rewards are constant on Z− or where they
are not.

Theorem 4.9. Let (µi)
K
i=1 be an LSD bandit with K arms and constant expected

rewards on Z−. Let T ≥ 0 be the horizon, and choose d ≥ 0 that divides T .

Chapter 4. A novel non-stationary bandit model with finitely many arms 89

Then ISI-CombUCB1, run with block size d and exploration parameter α = 1.5,
has regret bounded by

RT ≤
KT

d
+ 47d

√
KT log

T

d
+

(
π2

3
+ 1

)
Kd3 .

Choosing d ∝ T 1/4, we obtain RT = Õ(KT 3/4), where Õ is neglecting logarith-
mic factors.

Theorem 4.10. Let (µi)
K
i=1 be an LSD bandit with K arms. Let T ≥ 0 be the

horizon, and choose d ≥ 0 that divides T . Then ISI-CombUCB1, run with block
size d and exploration parameter α = 1.5, has regret bounded by

RT ≤
(K + 2)T

d
+ 47d

√
2KT log

T

d
+

(
π2

3
+ 1

)
2Kd3 .

Choosing d ∝ T 1/4, we obtain RT = Õ(KT 3/4), where Õ is neglecting logarith-
mic factors.

This bound is the result of adapting the bound of O(√NLn log n) from Kveton
et al. [2015] to our setting in a black box fashion.
Our bounds in Theorem 4.9 and Theorem 4.10 are easily interpretable. The
impact of the approximation results from Proposition 4.7 and Proposition 4.8
in Theorem 4.9 and Theorem 4.10 respectively is represented by the first terms
of the sum, KT

d
and (K+2)T

d
, where the learner pays the price for the calibration

of the arms by ignoring their first pull in the block. The terms
(

π2

3
+ 1
)
Kd3

and
(

π2

3
+ 1
)
2Kd3 respectively in Theorem 4.9 and Theorem 4.10 account for

the loss payed for the initialization of the algorithm. In Kveton et al. [2015], the
term on the right-hand side of the parenthesis was KL due to their size of the
universe, which considered a ground set of L elements and selected a super-arm
of maximum size K. Adapting the bound to our universe for µi constant on
Z−, we consider a super-arm of size d and a set of actions of size Kd2, since we
interpret as different arms the different K actions played with different d states
at different d time steps in the block. This adaptation (K = d, L = Kd2) leads
to the term Kd3 in Theorem 4.9. In Theorem 4.10 the assumption that the µi

are non-decreasing on Z− and the subsequent consideration of negative states
lead to a universe where the possible states are doubled in size since we can
have 2d possible states, τ ∈ {−d, . . . ,−1, 1, . . . , d}, therefore K = d, L = 2Kd2,
resulting in the term 2Kd3 in the bound. Finally, the middle term accounts for
the loss of the estimation process computed by ISI-CombUCB1 and the branch-
and-bound solution.
Note that the second claims of Theorem 4.9 and Theorem 4.10 require a horizon-
dependent tuning. The doubling trick can be used to make the algorithm any-
time without harming the bound. Regarding the optimality, we recall that our
approximation result in O(KT/d) is tight, see e.g., Example 4.2. As for the
estimation part, Kveton et al. [2015] proved a lower bound for CombUCB1 that
matches the upper bound up to a factor

√
log n, where n is their horizon. In-

stantiating this lower bound to our case, we obtain an overall lower of bound of

Chapter 4. A novel non-stationary bandit model with finitely many arms 90

order Ω(KT/d+ d
√
KT). This allows us to state that our result is tight up to

a polylogarithmic factor of
√
log(T/d).

4.5 Experiments on the LSD bandit setting
To conclude the presentation of this work, we present the experiments conducted
on the performance of ISI-CombUCB1.
As in [Warlop et al., 2018], we work with synthetic data to conduct these exper-
iments. This choice is motivated by the counterfactual nature of the learning
problem in bandits. Indeed, the datasets typically used in the field of recom-
mender systems are not suitable for these bandit problems. This is due to the
fact that a suitable dataset would necessarily store the user’s level of satisfac-
tion with respect to all possible ordered sequences of all the items in a dataset,
where the reward may highly depend on the specific order of the sequence. Since
this type of information is not provided by datasets available online, we rely on
synthetic data.
We benchmark our algorithm against vanilla CombUCB1 and Oraclegreedy,
which is the algorithm that plays in each time step at = argmaxi µi(τi(t)),
and breaks ties randomly. Because computing OPT is NP-hard, and that con-
sequently computing the regret is not possible, we measure the performance
in terms of total cumulative reward, averaged over ten repetitions. For both
ISI-CombUCB1 and CombUCB1 the UCB index of an arm a(i) is computed using
the formula

Ut(a
(i), τi(t)) =

√
α log t

Ti(t)
, (4.36)

where for both the algorithms α = 1.5, as in Kveton et al. [2015]. For both
algorithms, the same heuristic based on branch-and-bound and LP relaxations
are used to compute the reward-maximizing block at each time step. Let d
be the block size of CombUCB1, which consequently maintains Kd UCBs. ,
CombUCB1 is not calibrated, so an arm a(i) may be pulled with state τi ≥ d.
Whenever this happens, we assume the algorithm updates the estimate of µi(d),
which actually becomes an estimate of µi(τi ≥ d). In order to maintain Kd
UCBs for ISI-CombUCB1, we consider blocks of size d+ 1. This is necessary in
order to reach the state τi = d. Indeed, since the rewards are ignored the first
time an arm is pulled, reaching a state τi = d requires at least d+ 1 steps. We
recall that the "extra" first pull does not provide any information and it is only
used for calibration purposes, nevertheless it is considered in the measurement
of the performance.

To analyze the behaviour of these algorithms, we consider an instance of LSD
bandits with K = 5 arms, Bernoulli rewards, and the following reward functions
(see Figure 4.2):

µ1(τ) = 0.95 I{τ = 3}, µ2(τ) =

0.16 if τ = 6

0.96 if τ ≥ 9

0.14 otherwise
, µ3,4,5(τ) = 0.15 ∀τ .

(4.37)

Chapter 4. A novel non-stationary bandit model with finitely many arms 91

Figure 4.2: This figure shows the reward (y-axis) functions
µi for i = {1, 2, 3, 4, 5} with respect to τ (x -axis), as defined in

Equation (4.37).

In Figure 4.3, we show the empirical results obtained for d = 3. As one
can notice, ISI-CombUCB1 reaches a higher cumulative reward compared to
CombUCB1 and OracleGreedy. Indeed, ISI-CombUCB1 converges towards the
block [a(1), a(i), a(i), a(1)], where a(i) is any arm in {a(3), a(4), a(5)}. Note that the
first pull of a1 in the block is necessary for the calibration of the arm, which
returns its highest possible reward in the last step of the block when pulled
with state τ1 = 3. This allows ISI-CombUCB1 to exploit arm a1 in its best pos-
sible state. On the contrary, OracleGreedy is not able to exploit the reward of
arm a1. In fact, it pulls any constant arm for the first 8 time steps except at
t = 3 and t = 6, where it plays arm a1. When OracleGreedy gets to t = 9 it
faces a choice between µ1(3) and µ2(9) and thus chooses the latter since it has
a slightly higher reward than action a1. This behaviour prevents it from ever
pulling µ1 again, and will only get µ2(9) every nine steps with any combination
of constant actions in between. As for CombUCB1, it is never able to pull µ1(3).
This is due to fact that whenever the algorithm pulls µ1(τi) with τi > 3, the
expected reward is small and, contributing to the estimate of µ1(3) and its UCB
index, the algorithm will believe that the action is suboptimal pulling it less
and less frequently.
After showing the performance of ISI-CombUCB1 exceeds the performances of
CombUCB1 and OracleGreedy, we work on the same instance of LSD bandits and
benchmark two new algorithms based on calibration sequences (CS): CS-worst
and CS-best. The goal here is to elaborate on the performance of our algorithm
and compare it more carefully to other potential solutions, which were discussed
in Proposition 4.7. Here, we intend to support our theoretical discussion with
empirical validation. Specifically, we consider the approach of maximizing Equa-
tion (4.21) proposed in Equation (4.26) of Proposition 4.7, where the idea was
to play a calibration sequence of size K at the beginning of the block so that
all arms are calibrated before being pulled in the d actions of the block. These
approaches first calibrate the system by playing a permutation σ of all the arms
and then play the best block according to the state reached after σ. In the pre-
vious sections, we discarded this solution because we presented a more efficient

Chapter 4. A novel non-stationary bandit model with finitely many arms 92

Figure 4.3: This figure depicts the comparison of the per-
formance of ISI-CombUCB1, CombUCB1, and OracleGreedy mea-
sured in terms of cumulative rewards in thousands (y-axis), av-
eraged over ten repetitions, with the time horizon on the x -axis.

way of solving our problem using r̃ (Equation (4.22)), which ignores the first
pull of any action played in the block. Indeed, CS-based approaches are known
to be suboptimal, as they calibrate more arms than necessary, here K = 5 arms
instead of 2 (number of different arms in the optimal block).
Since we did not define a specific calibration sequence, we tested two differ-
ent permutations for this approach. Note that since the calibration phase
is of size K = 5 > 3, it might prevent these algorithms from seeing the
spike of arm a(1) at τ1 = 3. CS-worst plays a calibration sequence σworst =
[a(1), a(2), a(3), a(4), a(5)], while CS-best calibrates the state pulling the sequence
σbest = [a(5), a(4), a(3), a(2), a(1)]. Their name indicates whether they can observe
the spike or not. As for ISI-CombUCB1 and CombUCB1, these two CS approaches
use the same branch-and-bound heuristic and the LP relaxations presented in
the previous sections. We add the performances of CS-worst and CS-best to
the results, presented in Figure 4.4.

Considering the previous experiments, one may argue that the instance of a 5-
armed bandit presented in Equation (4.37) is unfair to OracleGreedy, because
the algorithm is tricked by phenomena that occur beyond the block size d.
Therefore, we conclude this section with the presentation of a new example
where this is not the case.
We consider an instance of a 2-armed LSD bandits with Bernoulli rewards and
the following reward functions

µ1(τ) =

{
0.06 if τ = 1

0.95 if τ ≥ 2
and µ2(τ) = 0.05 ∀τ . (4.38)

We represent the reward functions in Figure 4.5 and the empirical evaluation for
d = 10 in Figure 4.6. In this scenario, OracleGreedy constantly pulls a(1), get-
ting an average reward of 0.06 and never pulling any other action. On the other
hand, ISI-CombUCB1 and CombUCB1 behave similarly alternating between a(1)

ad a(2), for an optimal average of 0.5. As opposed to CombUCB1, our algorithm

Chapter 4. A novel non-stationary bandit model with finitely many arms 93

Figure 4.4: Here we plot the cumulative rewards in thou-
sands (y-axis) with respect to the time horizon (x -axis) for the
following algorithms: our approach ISI-CombUCB1, CombUCB1,

OracleGreedy, CS-worst, and CS-best.

Figure 4.5: This figure shows the reward (y-axis) functions
with respect to τ (x -axis).

requires a calibration pull before playing the optimal block. For this reason, in
this steps ISI-CombUCB1 receives a small reward and its average reward down-
grades slightly, explaining the small gap between the two algorithms observed
in Figure 4.6. Besides this gap due to the calibration, both algorithms converge
towards the same optimal block. Overall, note that although the calibration is
an operation that might occasionally degrade the performance (in a controlled
way), on the other hand it guarantees to avoid risky decoys, such as the one
discussed in the previous example (see Figure 4.3). This behaviour is in line
with the fact that the regret of ISI-CombUCB1 is well understood theoretically,
while CombUCB1 is hard to analyze due to the interferences.

Chapter 4. A novel non-stationary bandit model with finitely many arms 94

Figure 4.6: Here we present the cumulative rewards in thou-
sands (y-axis) with respect to the time horizon (x -axis), compar-
ing our solution ISI-CombUCB1 to CombUCB1 and OracleGreedy.

4.6 Conclusions
In this chapter, we presented a new model of non-stationary bandits able to
solve one of the challenges discussed at the beginning: to formalize a multi-
armed bandit model able to generalise to different forms of non-stationarity.
Indeed, LSD bandits show it is possible to account for both satiation and sea-
sonality with a single framework, able to generalize to these behaviours. This
is done by using the concept of state associated with the arms and allowing for
arm-dependent functions, relaxing two typical assumptions in non-stationary
bandits, that µa is (1) non-decreasing on Z and constant on Z−, and using the
minimal assumptions that will admit meaningful theoretical guarantees.
While this model is able to generalise different non-stationary settings facing
both seasonality and satiation, focusing on a finite set of actions is not always
representative of the reality of industrial applications. Indeed, applications are
often characterised by an exponentially increasing data flood, making it difficult
to gain exhaustive information on all products in a catalogue of millions of items.
For this reason, our second objective is to focus on a linear non-stationary MAB
model able to handle these types of non-stationary behaviours as well as to deal
with a continuous and infinite set of actions.

95

Chapter 5

A novel linear non-stationary
bandit model with an infinite set of
actions

Contents
5.1 Motivations and applications 96

5.2 Linear Bandits with Memory (LBM) 97

5.3 The approximation errors 102

5.4 The estimation problem 104

5.5 An approach for model selection 109

5.6 Experiments on the LBM setting 111

5.7 Conclusions . 114

Since many non-stationary phenomena have been mainly studied in settings
with finitely many arms, our goal here is to study non-stationarity in a linear
embedding. In this chapter, we focus on the linear setting where the environ-
ment is characterized by a continuous infinite set of actions a ∈ A ⊂ Rd, namely
the action space is represented by the Euclidean unit ball. Due to the structured
set of actions, the peculiarity of this environment is that playing an action will
influence not only the future rewards of this action but also the future rewards
of other actions in the set. Therefore, the primary concern is to model non-
stationary behaviours considering the interdependencies between actions. Since
maintaining the concept of state in a linear setting is not trivial, we decided
to model non-stationarity using a fixed-size window. The model we proposed
is called Linear Bandits with Memory (LBM) and is presented in Clerici et al.
[2023]. In particular, this model captures both rotting and rising behaviour and
recovers stationary linear bandits as a special case. The core idea behind this
model is that current rewards are influenced by the learner’s past actions in a
fixed-size window. Specifically, we modify the usual reward function of linear
bandits Xt = ⟨at, θ∗⟩ (see Chapter 3) by introducing a window of size m con-
trolled by an exponent γ, so that the reward function becomes Xt = ⟨at, At−1θ

∗⟩
where At−1 = A(at−1, . . . , at−m) =

(
A0 +

∑m
s=1 at−sa

⊤
t−s

)γ
. Note that while the

size m of the window defines how many of the past actions influence the reward,

Chapter 5. A novel linear non-stationary bandit model 96

the exponent γ controls the nature of the non-stationarity, capturing rotting be-
haviours when γ < 0 and rising behaviours when γ > 0, as well as stationary
linear bandits when γ = 0. In the rest of this chapter, we will define the model
and prove regret guarantees for a solution based on OFUL for the setting where
these two parameters, m and γ, are known. However, aware of the fact that
knowing m and γ is not always realistic, we propose a bandit selection approach
to extend our solution in the case where these two parameters are unknown to
the learner. Before introducing a formal definition of our model and discussing
it in the rest of this chapter, we spend some words explaining the necessity of
addressing non-stationary behaviours in a linear environment.

5.1 Motivations and applications
As mentioned at the beginning of this dissertation, we aim to study theoretical
models of multiarmed bandits which could be applied in recommender systems,
particularly in music streaming platforms. The goal is to propose models that
not only address non-stationary phenomena, which are essential to model the
trend of a user’s preferences in such systems, but also the presence of an infinite
and structured set of items, which characterizes many practical applications.
Indeed, if we think of recommender systems, we can see how selecting an item
may influence the level of satisfaction with other items which share some fea-
tures. Let’s consider a music recommender system where the actions are songs
and the different dimensions of the problem represent different music genres.
Let d = 3, where the first dimension represents pop, the second rock, and the
third jazz. Let a = [0.6, 0.4, 0] be a song which fits prevalently into the pop
genre but has some rock sonorities. It is reasonable to think that having played
a song with 0.4 amount of rock may influence the satiation of a user with other
rock songs. With this simple example, it is easy to understand how the level
of satiation of a user for an item is not only influenced by the times the user
selected an exact item, but in a more complex scenario it can potentially be in-
fluenced by any other action with whom it shares some features. Furthermore,
if we refer to this type of environment, it becomes natural to think that the
choices made by the user far back in the past will stop influencing its level of
satisfaction after a certain point. Indeed, it is reasonable to think that your
current level of satisfaction with certain genres is not impacted by the songs
you listened to months ago. To limit a potentially infinite impact, which would
seem unrealistic, we decided to consider a fixed-size window. The window indi-
cates that over a certain threshold, dictated by its size m, past actions do not
influence future rewards anymore.
On top of addressing the structured set of actions, we also define a model which
recovers two different behaviours: rotting and rising. In the example of music
recommendation, it is easier to think of a decreasing reward function dependent
on the number of plays of a song. Indeed, one may grow tired of listening to
the same genre. However, it is plausible to propose a model where the reward
function is increasing. Specifically, among the possible applications targeted by
our model, we can think of algorithmic selection. In this setting, one owns some
resources and must choose among a selection of algorithms and assign them a

Chapter 5. A novel linear non-stationary bandit model 97

chunk of resources. In this case, the increasing reward function models the
quality of an algorithm, which improves the more it has been selected. Indeed,
our modelling choices allow us to recover increasing reward functions.
Thus, we aim to propose a new bandit model motivated by applications, but
also complex enough to capture nontrivial cross-arm effects while remaining
tractable from a learning viewpoint.

5.2 Linear Bandits with Memory (LBM):
a definition of the model

We define a Linear Bandit with Memory (LBM) as a linear multiarmed bandit
where in each time step t = 1, . . . , T , the learner selects an action at from an
infinite set of actions A ⊂ Bd, where Bd is the Euclidean unit ball. Since we
are considering a linear embedding, the expected reward of an arm at is given
by a linear function between the action played and an unknown parameter
θ∗ ∈ Rd. However, as we anticipated, the peculiarity of this model is to address
non-stationary behaviours by considering past actions in a finite-size window,
also called memory. Let m be the size of the memory. The influence of these
past actions is addressed using a correlation matrix

∑m
s=1 at−sa

⊤
t−s, where m

indicates how many past actions still have an impact on the current time step.
To model the rotting and rising behaviour, we introduce a parameter γ, which
is a positive or negative exponent controlling the type of behaviour and its
strength. Using these two parameters m and γ, the reward of an action at is
given by the following formula

Xt = ⟨at, A(at−m, . . . , at−1)θ
∗⟩+ ηt (5.1)

where ηt stands for noise and is a 1-sub-Gaussian random variable independent
from the actions played by the learner and

A(a1, . . . , am) =
(
A0 +

m∑
s=1

asa
⊤
s

)γ
. (5.2)

For simplicity, in the rest of the paper, we use the abbreviation

At−1 = A(at−m, . . . , at−1)

and refer to it as the memory matrix. Conventionally, we set a1−m = a2−m =
· · · = a0 = 0d and choose A0 = Id, unless otherwise stated. Note that at any
time step t the expected reward rt = E[Xt] satisfies |rt| ≤ ∥At−1∥∗.
Using this definition of the memory matrix, the model can retrieve standard lin-
ear bandits when γ = 0, since the reward function reduces to Xt = ⟨at, θ∗⟩+ ηt.
When γ < 0, the impact of the memory causes a rotting behaviour, mean-
ing that the more certain actions are played the more their rewards decrease.
On the other hand, when γ > 0, the model shows a rising behaviour, where
the rewards of future actions increase the more these have been played in the
past. The choice of the covariance matrix is intuitive, as it stores the previously

Chapter 5. A novel linear non-stationary bandit model 98

Figure 5.1: In the top pane, we plot the effect of the memory
matrix (5.2) on the action space for d = 2, m = 1, and γ ∈
{−6, 0, 2}. The red arrow is θ∗ and the black arrow is action
at−1. The colour level indicates the value of the instantaneous
expected reward of any action at (point on the disk). When
γ = −6, the rotting effect is so powerful that the optimal action
at is orthogonal to at−1. When γ = 0, the optimal action remains
θ∗, independently of at−1. For γ = 2, the optimal action is
shifted between θ∗ and at−1. However, the top plot does not
show that playing constantly θ∗ is not the optimal policy. In the
bottom pane, we consider horizon T = 2, with the same choices
of parameters. For a given action a1, since T = 2, it is possible
to determine the best possible next action a2. The colour now
indicates the sum of expected rewards as a function of the initial
action a1 (point on the disk). For γ = −6, we see that playing
θ∗ is not optimal anymore. On the other side, it shows that not

playing θ∗ is more harmful when γ = 2 than when γ = 0.

played actions and naturally encodes the directions where satiation or excita-
tion occurs. To facilitate the understanding of such phenomena, we provide a
graphical explanation in Figure 5.1.
As in every bandit model discussed so far, the aim is to maximize the expected
sum of rewards obtained by the learner over the horizon T . The performance
is measured by the expected regret, defined as:

RT =
T∑
t=1

r∗t − E

[
T∑
t=1

Xt

]
, (5.3)

where r∗t = ⟨a∗t , A(a∗t−m, . . . , a
∗
t−1)θ

∗⟩ and (a∗t)
T
t=1 is the optimal sequence of

actions which maximizes the expected sum of rewards over the horizon and is

Chapter 5. A novel linear non-stationary bandit model 99

defined as:

a∗1, . . . , a
∗
T = argmax

a1,...,aT∈A

T∑
t=1

⟨at, A(at−m, . . . , at−1)θ
∗⟩. (5.4)

In the rest of this chapter, we use OPT to refer to
∑T

t=1 r
∗
t . Therefore, a LBM is

fully characterized by the action set A, the unknown parameter θ∗, the memory
size m, and the exponent γ.
As anticipated, this model can recover different state-of-the-art bandits, such
as stationary linear, rotting, and rising bandits. We provide details on these
reductions in the following examples.

Example 5.1 (Stationary linear bandits). Consider a linear bandit model, de-
fined by an action set A ⊂ Bd and θ∗ ∈ Bd. This is equivalent to a LBM with
the same A and θ∗, and memory matrix A such that A(a1, . . . , am) = Id for
any a1, . . . , am ∈ Am, i.e., when m = 0 or γ = 0.

Example 5.2 (Rotting and rising rested bandits). In rotting [Levine et al.,
2017; Seznec et al., 2019] or rising [Metelli et al., 2022] bandits, the expected
reward of an arm k at time step t is fully determined by the number nk(t) of
times arm k has been played before time t. Formally, each arm is equipped with a
function µk such that the expected reward at time t is given by µk(nk(t)). In par-
ticular, requiring all the µk to be nonincreasing corresponds to the rotting bandits
model, and requiring all the µk to be nondecreasing corresponds to the rested ris-
ing bandits model. Now, let d = K, A = (ek)1≤k≤K, θ∗ = (1/

√
K, . . . , 1/

√
K),

and m = +∞. By the definition of A, see (5.2), and the orthogonality of the
actions, it is easy to check that the expected reward of playing action ek at time
step t is given by (1+nk(t))

γ/
√
K. When γ ≤ 0, this is a nonincreasing function

of nk(t), and we recover rotting bandits. Conversely, when γ ≥ 0, we recover
rising bandits. We note however that the class of decreasing (respectively in-
creasing) functions we can consider is restricted to the set of monomials of the
form n 7→ (1+n)γ/

√
K, for γ ≤ 0 (respectively γ ≥ 0). Extending it to generic

polynomials is clearly possible, although it requires more computations in the
model selection phase, see Remark 5.5.
Although rotting and rising bandits require infinite memory, we argue on both
practical and theoretical grounds that in our setting a finite value of m is prefer-
able. First, in many applications, it is reasonable to assume that the effect of
past actions will vanish at some point. If one has listened to a song long enough
ago, this should not affect anymore how much they enjoy the song now. Second,
permanent effects may trivialize the problem on the theoretical side: Consider
m→∞ and γ ≤ −1/2, then for any sequence of actions (at)t≥1 we have

∑T
t=1⟨at, At−1θ

∗⟩ ≤∑T
t=1

∥∥At−1at
∥∥
2
≤
√
T
∑T

t=1

∥∥At−1at
∥∥2
2

≤
√
2dT log(1 + T/d) := BT ,

where we have used the elliptical potential lemma [Lattimore and Szepesvári,
2020, Lemma 19.4]. Hence, as soon as γ ≤ −1/2, we have OPT ≤ BT , and

Chapter 5. A novel linear non-stationary bandit model 100

the trivial strategy playing constantly 0 enjoys a small regret BT . Focusing on
finite memory m thus yields more interesting problems, although it prevents a
full generalization of rotting bandits with finitely many arms. We note however
that when m <∞, the spirit of rotting (resp., rising) bandits is still preserved,
as playing an action does decrease (resp., increase) its efficiency for the next
pulls (within the time window), see also Figure 5.1.

We highlight the relationship between our model and the result discussed in 3
about [Seznec, 2020]. In [Seznec, 2020] (Proposition 4.7.2, Corollary 4.7.3), the
authors highlight the impossibility of learning rotting linear bandits under their
modelling choices (see Rotting rested bandits in 3 for a detailed discussion).
Indeed, they prove an incompatibility between learning linear bandits and rot-
ting bandits in their model, showing that it is impossible to learn a model that
generalizes both. Because our main goal is to focus on the linear setting, our
model cannot capture the K-armed rotting bandit setting in its full generality.
Therefore, we decided to focus on the linear setting, which would allow us to
recover the rested variants of these models.
After these examples, one can think that a naive approach to solve the LBM
problem could be to neglect non-stationarity. Assuming that θ∗ is known, one
may play at time t the action agreedyt = argmaxa∈A⟨a,At−1θ

∗⟩. This strategy,
which we refer to as oracle greedy, may be optimal in some cases, e.g., in rising
isotropic settings, see Heidari et al. [2016, Section 3.1] and Metelli et al. [2022,
Theorem 4.1] for discussions in the K-armed case. However, we highlight that
it may also be arbitrarily bad, as stated in the next proposition.

Proposition 5.1. The oracle greedy strategy, which plays at each time step
agreedyt = argmaxa∈A⟨a,At−1θ

∗⟩, can suffer linear regret, both in rotting or rising
scenarios.

Proof. To prove this proposition, we build two instances of LBM, one rotting
and one rising, in which the oracle greedy strategy suffers linear regret. We
highlight that the other strategy exhibited, which performs better than oracle
greedy, may not be optimal.

Rotting instance. Let A = Bd, θ∗ = e1, m = d− 1, and A such that

A(a1, . . . , am) =

(
Id +

m∑
s=1

asa
⊤
s

)−γ

,

for some γ > 0 to be specified later. Oracle greedy, which plays at each time
step agreedyt = argmaxa∈A⟨a,At−1θ

∗⟩, constantly plays e1. After the first m pulls,
it collects a reward of 1/dγ at every time step. On the other side, the strategy
that plays cyclically the block e1 . . . ed collects a reward of 1 every d = m + 1
time steps, i.e., an average reward of 1/d per step. Hence, up to the transitive
first m pulls, the cumulative reward of oracle greedy after T rounds is T/dγ,
and that of the cyclic policy is T/d. The regret of oracle greedy is thus at least

T

(
1

d
− 1

dγ

)
,

Chapter 5. A novel linear non-stationary bandit model 101

which is linear for γ > 1.

Rising instance. Let m ≥ 1, d = 2, A = B2, θ∗ = (ε, 1) where ε > 0 is to be
specified later, and A such that

A(a1, . . . , am) =

(
1 0
0 0

)
+

m∑
s=1

asa
⊤
s .

Oracle greedy constantly plays e1 collecting a reward of (m + 1)θ∗1 from round
m+ 1 onward. On the other side, the strategy that plays constantly e2 collects
a reward of mθ∗2 from round m + 1 onward. Hence, the regret of oracle greedy
from round m+1 onward is at least (T −m)[m− (m+1)ε], which is linear for
ε < m/(m+ 1).

Hence, one cannot neglect non-stationarity as it is deleterious for the learner’s
performance. Instead, it is necessary to find new sophisticated strategies, which
may include long-term planning. Before describing our analysis and solution of
this problem, we highlight that LBMs may also be generalized to contextual
bandits [Lattimore and Szepesvári, 2020], but cannot be reduced to adversarial
linear bandits [Lattimore and Szepesvári, 2020].

Remark 5.1 (Contextual bandits). In contextual bandits, at each time step t
the learner is provided a context ct (e.g., data about a user). The learner then
picks an action at ∈ A (based on ct), and receives a reward whose expectation
depends linearly on the vector ψ(ct, at) ∈ Rd, where ψ is a known feature map.
Note that it is equivalent to have the learner playing actions at ∈ Rd that belong
to a subset At = {ψ(ct, a) ∈ Rd : a ∈ A}. The analysis developed for LBM still
holds when At depends on t, and can thus be generalized to contextual bandits
with memory.

Remark 5.2 (Adversarial linear bandits). The reduction of LBM to adversarial
linear bandits is impossible. Indeed, we consider an instance of policy regret,
which allows us to write the regret as:

RT = max
b1,...,bT∈AT

T∑
t=1

〈
bt, A(bt−m, . . . , bt−1)θ

∗〉−E[T∑
t=1

〈
at, A(at−m, . . . , at−1)θ

∗〉] .
(5.5)

Instead, the regret in adversarial linear bandits is

RT = max
a∈A

T∑
t=1

⟨a,Xt⟩ − E

[
T∑
t=1

⟨at, Xt⟩
]
. (5.6)

Note that, while in Equation (5.5) the learner competes against the optimal
trajectory, in Equation (5.6) the competitor is the best single action in hindsight.
Moreover, it is not possible to use the substitution Xt = A(at−m, . . . , at−1)θ

∗

since the adversarial loss vectors are the same for the learner and the comparator
but different in our definition of the regret.

Chapter 5. A novel linear non-stationary bandit model 102

5.3 The approximation errors
After defining the LBM model, we start by focusing on cyclic policies. Although
the optimal policy may not be cyclic, it is possible to show that cyclic policies
provide a reasonable approximation to the optimal policy while being easier to
learn. The difficulty lies in the fact that finding a block of actions maximizing
the sum of expected rewards is not a well-defined problem for LBM. Indeed,
the initial conditions, determined by the m actions preceding the current block,
influence the rewards. To overcome this issue, we introduce the following proxy
reward function which considers a block of size m + L and counts only for the
rewards obtained from action am+1 onward. For any m,L ≥ 1 and any block
a = a1, . . . , am+L of m+ L actions, let

r̃(a) =
m+L∑

t=m+1

〈
at, At−1θ

∗〉 = m+L∑
t=m+1

〈
At−1at, θ

∗〉 . (5.7)

Although r̃(a) counts only for the last L rewards collected in the block, the first
a1, . . . , am actions still play a vital role as they influence the following rewards
in the block, since they are used in the computation of Am, . . . , A2m−1. The
relevant aspect is that r̃(a) is independent from the initial state of the block,
so that

ã = argmax
a∈Bm+L

d

r̃(a) (5.8)

is well-defined. Considering a block ã of size m + L, it is relevant to quan-
tify the approximation error incurred when playing cyclically ã compared to
the optimal sequence of actions (a∗t)

T
t=1 defined in Equation (5.4). To analyze

this approximation error, it is necessary to define the maximal and minimal
instantaneous reward one can obtain. To compute it, we introduce the notation
R = supa1,...,am+1∈A

∣∣⟨am+1, A(a1, . . . , am)θ
∗⟩
∣∣. In (5.12) we will provide a bound

on R in terms of m and γ. In the meantime we use R to define the approx-
imation error in the next proposition, showing that it is tight up to constant.

Proposition 5.2. For any m,L ≥ 1, let ã be the block of m+L actions defined
in (5.8) and (r̃t)

T
t=1 be the expected rewards collected when playing cyclically ã.

We have

OPT−
T∑
t=1

r̃t ≤
2mR

m+ L
T . (5.9)

Proof. Recall that the optimal sequence is denoted (a∗t)
T
t=1 and collects rewards

(r∗t)
T
t=1. Let L > 0; by definition, there exists a block of actions of length L

in (a∗t)
T
t=1 with an average expected reward higher than OPT/T . Let t∗ be the

first index of this block, we thus have (1/L)
∑t∗+L−1

t=t∗ r∗t ≥ OPT/T . However,
this average expected reward is realized only using the initial matrix At∗−1,
generated from a∗t∗−1, . . . , a

∗
t∗−m. Let a∗ = a∗t∗−m, . . . , a

∗
t∗+L−1 of length m + L.

Note that, by definition, we have that r̃(ã) ≥ r̃(a∗) =
∑t∗+L−1

t=t∗ r∗t ≥ L OPT/T .
Furthermore, by (5.12), when playing cyclically ã one obtains at least a reward

Chapter 5. A novel linear non-stationary bandit model 103

of −R in each one of the first m pulls of the block. Collecting all the pieces, we
obtain

T∑
t=1

r̃t ≥
T

m+ L

(
−mR + r̃(ã)

)
≥ T

m+ L

(
−mR + r̃(a∗)

)
≥ T

m+ L

(
−mR + L

OPT

T

)
=

L

m+ L
OPT− mR

m+ L
T

≥ L

m+ L
OPT +

m

m+ L
OPT− mR

m+ L
T − mR

m+ L
T (5.10)

= OPT− 2mR

m+ L
T ,

where (5.10) derives from OPT ≤ RT .

Looking at Proposition 5.2, one can notice how the cycle length L on the right-
hand side of Equation (5.9) is as expected. Indeed, by increasing L, the cyclic
policy achieves an expected reward closer to OPT. We also highlight that for
m = 0 we recover the stationary behaviour, where there are no long-term ef-
fects and the performance is oblivious to the block length. In this case, we
recover

∑T
t=1 r̃t = OPT independently of L. The following step is to show that

Proposition 5.2 is tight up to constants.

Proposition 5.3 (Tight approximation). For any m,L ≥ 1 and γ ≤ 0, let ã
be the block of m+L actions defined in (5.8) and (r̃t)

T
t=1 be the expected rewards

collected when playing cyclically ã. Then, there exists a choice of A and θ∗ such
that

OPT−
T∑
t=1

r̃t ≥
mR

m+ L
T . (5.11)

Proof. Let d = m + 1, A = {0d} ∪ (ek)k≤d, θ∗ = (1/
√
d, . . . , 1/

√
d), and γ ≤ 0.

For simplicity, we note the basis modulo d, i.e., ek+d = ek for any k ∈ N. Note
that for any a1, . . . , am+1 ∈ A we have

∣∣⟨am+1, Amθ
∗⟩
∣∣ ≤ ∥am+1∥1 ∥Amθ

∗∥∞ ≤
1/
√
d, such that one can take R = 1/

√
d. Observe now that the strategy which

plays cyclically e1, . . . , ed collects a reward of 1/
√
d at each time step, which is

optimal, such that OPT = T/
√
d. Further, it is easy to check that block ã,

composed of m pulls of 0d followed by e1, . . . , eL satisfies r̃(ã) = L/
√
d, which

is optimal for similar reasons. Playing cyclically ã, one gets a reward of L/
√
d

every m+ L pulls. In other terms, we have

OPT−
T∑
t=1

r̃t =
T√
d
− L

m+ L

T√
d
=

m

m+ L

T√
d
=

mR

m+ L
T .

Chapter 5. A novel linear non-stationary bandit model 104

To clarify the statements of the previous propositions, we show that it is easy to
compute upper bounds on R. Let a1, . . . , am+1 ∈ A, and Am = A(a1, . . . , am),
we have that

|rm| =
∣∣⟨am+1, Amθ

∗⟩
∣∣ ≤ ∥am+1∥2 ∥Amθ

∗∥2 ≤ ∥Am∥∗ ∥θ∗∥2 ≤ (m+1)γ
+

, (5.12)

such that one can take R = (m+1)γ
+ . Note that any other choice of dual norms

could have been used to upper bound
∣∣⟨am+1, Amθ

∗⟩
∣∣, as done in Proposition 5.3.

For simplicity, we restrict ourselves to the Euclidean norm from now on, and
use R = (m+ 1)γ

+ .
Before moving to the estimation problem, we highlight the necessity of opti-
mizing over the first m actions since there is not a "pre-sequence" of actions
universally optimal for every block.

Remark 5.3 (On the necessity of optimizing over the first actions.). We high-
light that optimizing over the first m actions in Equation (5.8) is necessary,
as there exists no such “pre-sequence” which is universally optimal. Indeed,
let At and A′

t be the memory matrices generated by actions a1 . . . am+L and
a′1 . . . a

′
m am+1 . . . am+L respectively. It is of immediate observation that if the

pre-sequence a1 . . . am is better than a′1 . . . a′m with respect to some model θ ∈ Rd,
i.e., if we have that

∑m+L
t=m+1⟨at, At−1θ⟩ ≥

∑m+L
t=m+1⟨at, A′

t−1θ⟩, then the opposite
holds true for −θ. Hence, one cannot determine a priori a good pre-sequence
and has to optimize for it.

5.4 The estimation problem
In the previous section, we showed that for every block length there exists a
cyclic policy providing a reasonable approximation compared to OPT, and that
this approximation cannot be improved in general. Since we adopt a cyclic
policy, our next objective is to build a sequence of blocks with small regret
against ã. Here, we show that learning the optimal block in the cyclic policy
can be seen as a stationary linear bandit problem equipped with a specific set of
actions. We show how this problem can be solved using the OFUL algorithm.
We start presenting a naive solution and build on it to provide a refined approach
which exploits the structure of the latent parameter θ∗.
We introduce some notation used in the rest of this chapter. Since we consider
blocks of length m+ L, let θ∗ = (0d, . . . , 0d, θ

∗, . . . , θ∗) ∈ Rd(m+L) be the vector
concatenating m times 0d and L times θ∗. Looking at the right-hand side
of Equation (5.7), we introduce a subset of Rd(m+L) composed of blocks b =
b1 . . . bm+L whose actions are of the form bi = Ai−1a

(i) for some block a ∈ Am+L.
Let

B =

{
b ∈ Rd(m+L) : ∃a ∈ Am+L such that

{
bi = a(i) 1 ≤ i ≤ m

bi = Ai−1a
(i) m+ 1 ≤ i ≤ m+ L

}
,

where the (Ai)
m+L−1
i=m+1 are the memory matrices generated from a. Using this

notation, it is easy to see that for any a ∈ Am+L and the corresponding b ∈ B we
have r̃(a) = ⟨b,θ∗⟩. Therefore, estimating b̃, which is the block in B associated

Chapter 5. A novel linear non-stationary bandit model 105

to ã, reduces to a standard stationary linear bandit problem in Rd(m+L), with
parameter θ∗ and feasible set B. By doing this, we have transformed the non-
stationarity of the rewards into a constraint on the action set.
Since the problem can be now seen as a stationary linear bandit, it seems
reasonable to adopt OFUL [Abbasi-Yadkori et al., 2011]. We adapt it by playing
at time step t = τ(m+ L), the block aτ ∈ Am+L, whose associated block bτ in
B satisfies

bτ = argmax
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (5.13)

where Cτ =
{
θ ∈ Rd(m+L) :

∥∥θ̂τ − θ
∥∥
Vτ
≤ βτ (δ)

}
, with βτ (δ) defined in Equa-

tion (A.4),
Vτ =

∑τ
τ ′=1 bτ ′b

⊤
τ ′+λId(m+L) , yτ =

∑m+L
i=m+1 yτ,i , using yτ,i to denote the reward

obtained by the ith action of block τ , and θ̂τ = V −1
τ

(∑τ
τ ′=1 yτ ′bτ ′

)
. Knowing

that ∥θ∗∥22 ≤ L, that for any block b ∈ B we have ∥b∥22 ≤ m+L(m+1)2γ
+ and

⟨θ∗, b⟩ ≤ L(m + 1)γ
+ , it is possible to adapt the OFUL’s analysis and get the

following regret bound.

Proposition 5.4. Let λ ∈ [1, d], L ≥ m, and aτ be the blocks of actions in
Rd(m+L) associated to the bτ defined in (5.13). Then we have

E

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ)

 = Õ
(
dL3/2(m+ 1)γ

+√
T
)
.

We defer the proof of Proposition 5.4 in Appendix A.3. We notice that when
m = 0 and L = 1, we recover the stationary case and the block approach
coincides with OFUL. In this case, we recover (up to log factors) the O(d

√
T)

bound for standard linear bandits. In the following proposition, we prove a more
general and stronger high-probability bound, which also specializes to known
results for linear bandits in the stationary case.

Proposition 5.5. Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in
Rd(m+L) associated to the bτ defined in (5.13). Then, with probability at least
1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ) ≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

)

·
(
√
λL+

√
ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))
.

For this result as well we defer the proof in Appendix A.3.
One can notice how the approach presented above is wasteful. Indeed, in the
naive approach, we estimate a latent parameter θ̂τ which is a concatenated
vector of parameters θ∗ ∈ Rd(m+L), with degraded accuracy due to the increased
dimension. However, the only parameter relevant to our model is θ∗ ∈ Rd.
Furthermore, the proposed method uses only the sum of the rewards obtained
by a block, while the learner has access to finer-grained information, namely the

Chapter 5. A novel linear non-stationary bandit model 106

rewards obtained by each individual action a1, . . . , am+L in the block. To exploit
this information, we propose a new refined approach. Let aτ = aτ,1 . . . aτ,m+L be
the block of actions played at block time step τ , Aτ,i−1 = A(aτ,i−m, . . . , aτ,i−1),
and bτ,i = Aτ,i−1aτ,i for i ≥ m. Instead of computing θ̂τ , we estimate the
following parameter:

θ̂τ = V −1
τ

(
τ∑

τ ′=1

m+L∑
i=m+1

yτ ′,i bτ ′,i

)
, (5.14)

where Vτ =
∑τ

τ ′=1

∑m+L
i=m+1 bτ ′,ib

⊤
τ ′,i + λId. Here, θ̂τ is the standard regularized

least square estimator of θ∗ when only the last L rewards of each block of
size m + L are considered. However, the θ̂τ are only computed every m + L
rounds. The regret is computed here at the block level, such that at each block
time step τ the learner chooses upfront an entire block to play, preventing from
updating the estimates between the individual actions of the block. Following
the principle of optimism in the face of uncertainty, a natural strategy then
consists of playing

aτ = argmax
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θ⟩ , (5.15)

where Cτ =
{
θ ∈ Rd :

∥∥θ̂τ − θ
∥∥
Vτ
≤ βτ (δ)

}
, for some βτ (δ) defined in (A.5).

Expressed in terms of bτ , the estimate (5.15) corresponds to

bτ = argmax
b∈B

sup
θ∈Dτ−1

⟨b,θ⟩ , (5.16)

where Dτ =
{
θ ∈ Rd(m+L) : ∃θ ∈ Cτ such that θ = (0d, . . . , 0d, θ, . . . , θ)

}
. This

estimate is similar to (5.13), except for the improved confidence set Dτ that
leverages the structure of θ∗. A dedicated analysis to deal with the fact that
the estimates θ̂τ are not “up to date” for actions inside the block then allows
bounding the regret of the sequence aτ against the optimal ã. Setting the block
size L to balance this bound with the approximation error of Proposition 5.2
yields the final regret bound.

Theorem 5.6. Let λ ∈ [1, d], and aτ be the blocks of actions in Rd(m+L) defined
in (5.15). Then we have

E
[∑T/(m+L)

τ=1
r̃(ã)− r̃(aτ)

]
= Õ

(
dL(m+ 1)γ

+√
T
)
.

Suppose that m ≥ 1, T ≥ d2m2 + 1, and set L =
⌈√

m/d T 1/4
⌉
−m. Let yt be

the rewards collected when playing aτ as defined in (5.15). Then we have

OPT− E
[∑T

t=1
yt

]
= Õ

(√
d (m+ 1)

1
2
+γ+

T 3/4
)
.

When m = 0 (i.e., in the stationary case), setting L = 1 recovers the OFUL
bound.

Chapter 5. A novel linear non-stationary bandit model 107

See Appendix A.4 for the proof of Theorem 5.6. From these bounds, one can
notice how the refined approach and the improved confidence bounds lead to an
improvement in the dependence of L, which is reduced from L3/2 to L. If one
would have solved the approximation-estimation tradeoff using Proposition 5.4,
this would lead to an overall regret bound of order d2/5(m+1)

3
5
+γ+

T 4/5, worse
than the bound provided by the second claim of Theorem 5.6.
Finding a lower bound matching Theorem 5.6 for arbitrary values of m and γ
remains an open problem. We highlight that lower bounds for nonstationary
bandits are particularly hard to obtain, and that most papers on this topic
do not prove any, see e.g., Levine et al. [2017]; Kleinberg and Immorlica [2018];
Pike-Burke and Grunewalder [2019]; Cella and Cesa-Bianchi [2020]; Metelli et al.
[2022]. Yet, Proposition 5.3 shows that the control of the approximation error
provided by Proposition 5.2 is optimal up to constants. Moreover, our estima-
tion error is tight in general, as in the stationary case (i.e., m = 0) Theorem 5.6
matches the lower bound for stationary linear bandits, see e.g., [Lattimore and
Szepesvári, 2020, Theorems 24.1 and 24.2]. We obtain that our regret bound
cannot be improved (up to log factors) by strategies based on our approxima-
tion/estimation decomposition when the action set is the hypercube or the unit
ball. As we can see from the optimal choice of L in Theorem 5.6, OFUL-memory
requires the knowledge of the horizon T , the memory size m, and the expo-
nent γ, which might all be unknown in practice. While adaptation to T can be
achieved by using the doubling trick, an adaptation to m and γ is more involved.
Before discussing this problem, showing that OFUL-memory can be wrapped by
a model selection algorithm to learn m and γ, we state a few remarks and show
the implementation of the algorithms.
Remark 5.4 (An over-optimistic variant). Note that Dτ =

{
θ ∈ Rd(m+L) : ∃θ ∈

Cτ such that θ = (0d, . . . , 0d, θ, . . . , θ)
}

is not the only improved confidence set
that one can build from Cτ . Indeed, it is immediate to check that our proof
remains unchanged if one uses instead Dopt

τ =
{
θ ∈ Rd(m+L) : ∃ θ1, . . . , θL ∈

Cτ such that θ = (0d, . . . , 0d, θ1, . . . , θL)
}
. Optimizing (5.16) over Dopt

τ−1 and
not Dτ−1 creates an over-optimistic block version of the UCB, composed of the
sum of the UCBs of the single-actions in the block, although the latter might
be attained at different models θi, while we know that θ∗ is the same model θ∗
repeated L times. Still, since each θi is estimated in the confidence set Cτ−1 of
reduced dimension, the guarantees are unchanged. In the rest of the paper, we
refer to this variant as the over-optimistic version of OFUL-memory, denoted by
O3M.

Remark 5.5 (Generic matrix mapping A). Note that our analysis naturally
extends to any matrix mapping A, as long as the latter is known. The term
(m+ 1)γ

+ in Theorem 5.6 is then replaced with supa1...am ∥A(a1, . . . , am)∥∗. We
stress that changing the monomial in Equation (5.2) into a polynomial does not
affect the algorithm. In the adaptive case, looking for polynomials just consists
of tracking more parameters (namely, the different coefficients of the polyno-
mial). We highlight however that having access to such knowledge is unlikely in
practice. This is why focus on the simpler parametric family (5.2), which en-
compasses rotting and rising scenarios while allowing us to learn simultaneously
m and γ, as shown in the next section.

Chapter 5. A novel linear non-stationary bandit model 108

Algorithm 3 OFUL-memory (OM, O3M)
input : action space A ⊂ Rd, memory size m, exponent γ, regularization

parameter λ, horizon T .
init : set L =

√
m/4 d T 1/4 −m, θ̂0 = 0d, V0 = λId, β0 = 0.

for τ = 1, . . . , T/(m+ L) do
// OM // O3M

aτ = argmax
aτ,i∈A

sup
θ∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θ⟩ or aτ =

argmax
aτ,i∈A

sup
θi∈Cτ−1

L∑
i=1

⟨aτ,i, Aτ,i−1θi⟩

// Play and update confidence set

Play aτ , collect yτ,1, . . . , yτ,m+L, and compute Cτ , i.e., θ̂τ , Vτ , and βτ via
(5.14) and (A.5).

When we allow for a generic matrix A, we can extend the set of recovered
bandits with the following example.

Example 5.3 (Bandits with delay-dependent rewards). In bandits with delay-
dependent rewards [Kleinberg and Immorlica, 2018; Cella and Cesa-Bianchi,
2020; Laforgue et al., 2022], the expected reward of an arm is given by µk

(
τk(t)

)
,

where τk(t) is the delay of arm k, i.e., τk(t) = t− tk and tk ≤ t is the last time
step when arm k was played. Following Example 5.2, it is easy to build a
diagonal matrix that corresponds to this model. Note that this construction may
be extended to a bandit whose arms’ expected rewards at time step t are fully
determined by the history a1, . . . , at−1.

A reader may see our LBM problem as a Reinforcement Learning problem. To
clarify this point, we present the following remark.

Remark 5.6 (Solving LBM with a general Reinforcement Learning (RL) ap-
proach). Our setting may be seen as an MDP with a d-dimensional continuous
space of actions, a (md)-dimensional continuous state space (for the past m ac-
tions), a deterministic transition function parameterized by an unknown scalar
γ, and a stochastic reward function with a linear dependence on an additional
d-dimensional latent parameter θ∗. The optimal policy in this MDP is gener-
ally nonstationary, and we are not aware of RL algorithms whose regret can be
bounded without relying on more specific assumptions on the MDP. By exploit-
ing the structure of the MDP, and restricting to cyclic policies, we show instead
that the original problem can be solved using stationary bandit techniques.

After clarifying the functioning of our algorithm, we discuss the practical imple-
mentations of our approaches, OFUL-memory (OM) and over-optimistic OFUL-
memory (O3M, see Remark 5.4), both summarized in Algorithm 3.

Maximizing the UCBs. We start by making explicit the UCBs used in OM
and O3M, see (5.16), optimized over Dτ or Dopt

τ . Using the formula for Cτ , one

Chapter 5. A novel linear non-stationary bandit model 109

can check that they are given by UCBτ (a) =
∑m+L

j=m+1

〈
a(j), Aj−1θ̂τ−1

〉
+ B(a),

where

B(a) = βτ−1

∥∥ m+L∑
j=m+1

A⊤
j−1a

(j)
∥∥
V −1
τ−1

(OM) (5.17)

for OM and
B(a) = βτ−1

∥∥A⊤
j−1a

(j)
∥∥
V −1
τ−1

(O3M) (5.18)

for O3M. The two UCBs only differ in their exploration bonuses. Note that by
the triangle inequality, we have UCBOM

τ (a) ≤ UCBO3M
τ (a) for any a. Thanks

to this closed form in terms of a, it is possible to solve argmaxa UCBτ (a), using
gradient ascent.

Computational complexity. As described in Algorithm 3, our approach
consists of two steps: updating the confidence region Cτ , i.e., θ̂τ and βτ accord-
ing to (5.14) and (A.5), and computing the block aτ that maximizes the UCB
index. The first step is performed by online Ridge Regression, and has a com-
putational cost of O(Ld2). We note here the advantage of our refined algorithm
over the naive concatenated approach, whose Ridge regression update has cost
O(L2d2). The maximization of the UCB indices, performed through Gradient
Ascent (GA) has time complexity per iteration of O

(
(m + L)d2

)
. Hence, the

overall complexity of an epoch of Algorithm 3 is O
(
(m + L)d2 · nit

)
, where nit

is the number of iterations performed by GA. Recall that the epochs of Algo-
rithm 3 correspond to blocks of m+ L actions, such that the actual per-round
complexity is O(d2 · nit).

5.5 An approach for model selection:
Bandit Combiner

As mentioned before, we provide a solution to the case where the parameters
m and γ of a LBM are unknown. Indeed, in the absence of prior knowledge on
the nature of the non-stationary mechanism at work, a natural idea consists of
instantiating several LBMs with different values of γ and running a model selec-
tion algorithm for bandits [Foster et al., 2019; Cutkosky et al., 2020; Pacchiano
et al., 2020]. In bandit model selection, where a master algorithm runs the
different LBMs, the adaptation to the memory size m becomes more complex.
Indeed, the different putative values form induce different block sizes (see Theo-
rem 5.6) which perturb the time and reward scales of the master algorithm. For
instance, bandits with larger block length will collect more rewards per block,
although they might not be more efficient on average. Our solution consists in
feeding the master algorithm with averaged rewards. One may then control the
true regret (i.e., not averaged) of the output sequence, against a scaled version
of the optimal sequence through Lemma 5.7, which links the normalized regret
of a block meta-algorithm to the true regret of the corresponding sequence of
blocks.

Chapter 5. A novel linear non-stationary bandit model 110

Lemma 5.7. Suppose that a block-based bandit algorithm (in our case the bandit
combiner) produces a sequence of Tbc blocks aτ , with possibly different cardinal-
ities |aτ |, such that

Tbc∑
τ=1

r̃(ã)

|ã| −
Tbc∑
τ=1

r̃(aτ)

|aτ |
≤ F (Tbc) ,

for some sublinear function F . Then, we have

minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

Tbc∑
τ=1

r̃(aτ) ≤ min
τ
|aτ |F (Tbc) .

In particular, if all blocks have the same cardinality the last bound is just the
block regret bound scaled by |aτ |.

Combining this result with Theorem 5.6 and [Cutkosky et al., 2020, Corollary 2]
yields the following corollary.

Corollary 5.8. Consider an instance of LBM with unknown parameters (m⋆, γ⋆).
Assume a bandit combiner is run on N ≤ d

√
m⋆ instances of OFUL-memory (Al-

gorithm 4), each using a different pair of parameters (mi, γi) from a set S ={
(m1, γ1), . . . , (mN , γN)

}
such that (m⋆, γ⋆) ∈ S. Let M = (maxj mj)/(minj mj).

Then, for all T ≥ (m⋆+1)2γ
+
⋆ /m⋆d

4, the expected rewards
(
rbc
t

)T
t=1

of the bandit
combiner satisfy

OPT√
M
− E

[
T∑
t=1

rbc
t

]
= Õ

(
M d (m⋆ + 1)1+

3
2
γ+
⋆ T 3/4

)
.

We defer the proof of Corollary 5.8 to Appendix A.5. The practical implemen-
tation of the bandit combiner algorithm builds on the approach of Cutkosky
et al. [2020]. Here, we show our adaptation of the Bandit Combiner algorithm
Cutkosky et al. [2020] to instances of O3M. The meta-algorithm is fed with differ-
ent bandit algorithms, namely different instances of O3M with different choices
of parameters mj and γj, and at each round plays a block according to one of
the algorithms. Each O3M instance comes with a putative regret bound CjT

αj ,
which is the regret bound satisfied by the algorithm should it be well-specified,
i.e., if the rewards are indeed generated through a memory matrix with memory
mj and exponent γj. Note that in order to be comparable across the different
instances, the putative regrets apply to the average rewards. The values of Cj

and αj can be computed using Theorem 5.6, see the proof of Corollary 5.8 for
details. The putative regrets are then used to successively discard the instances
that are not well specified, and eventually identify the instance using parameters
(m⋆, γ⋆). Knowing Cj and αj, we can compute for any j the target regret

Rj = Cj T
2/3
bc +

5
√
30

18
C

3/2
j T

2/3
bc +1152(mj+1)2γ

+
j T 1/3 log(T 3

bcN/δ)+(N−1)T 2/3 ,

(5.19)

Chapter 5. A novel linear non-stationary bandit model 111

where Tbc is the number of blocks the Bandit Combiner is called on, see Ap-
pendix A.5 for details. Here, we note how the presence of (mj+1)2γ

+
j is impact-

ing differently the rising and rotting scenarios. Using [Cutkosky et al., 2020,
Corollary 2], the regret of Algorithm 4 is finally given by 3Rj⋆ , where j⋆ is the
index such that (mj⋆ , γj⋆) = (m⋆, γ⋆). The pseudo-code of the algorithm, which
is an adaptation of Bandit Combiner in Cutkosky et al. [2020], is summarized
in Algorithm 4.

Algorithm 4 Bandit Combiner on Over-Optimistic OFUL-Memory (O3M)
input : Instances O3M(m1, γ1), . . . , O3M(mN , γN), horizon Tbc

numbers C1, . . . , CN > 0, target regrets R1, . . . , RN .
Set T (i) = 0,Si = 0,∆i = 0 for i = 1, . . . , N , and set I0 = {1, . . . , N}

for t = 1, . . . , Tbc do

if there is some i ∈ It with T (i) = 0 then
it = i

else
For each i ∈ It, compute the UCB index:

UCB(i) =min

{
(mi + 1)2γ

+
i ,

Ci√
T (i)

+ 4(mi + 1)2γ
+
i

√
2 log(T 3N/δ)

T (i)

}
− Ri

Tbc

Set it = argmaxi∈It
Si

T (i)
+UCB(i)

Obtain from instance O3M(mit , γit) a block of size mit + Lit and play it
Return the total reward rit collected in the last Lit time steps of the block
to O3M(mit , γit)

Compute the average reward r̂it =
rit
Lit

Update ∆it ← ∆it+Sit/T (it)− r̂it (where we set 0/0 = 0) and Sit ← Sit+ r̂it

Update the number of plays T (it)← T (it) + 1

if ∆it ≥ CitT (it)
γit + 12 (mit + 1)2γ

+
it

√
2 log(T 3N/δ)T (it) then

It = It−1 \ {it}
else

It = It−1

5.6 Experiments on the LBM setting
To conclude the discussion of the LBM model, we present an experimental
evaluation of our approach. We perform experiments to validate the theoretical
performance of OM and O3M (Algorithm 3). Similarly to [Warlop et al., 2018], we
work with synthetic data because of the counterfactual nature of the learning
problem in bandits. Indeed, for a dataset to be suitable for our setting, we

Chapter 5. A novel linear non-stationary bandit model 112

would need information not only on the items actually chosen by the users and
their rewards, but we would also need information and rewards of all possible
ordered sequences of all the items in a dataset. Since this type of information is
not provided by datasets typically available online, we examine the realization
of O3M on synthetic data.
Unless stated otherwise, we set d = 3 while θ∗ ∈ Rd is generated uniformly
at random with unit norm. The rewards are generated according to (5.1) and
(5.2), and perturbed by Gaussian noise with standard deviation σ = 1/10.
Concerning the algorithm Algorithm 3, we test the O3M approach, since it is the
best performing algorithm out of the three approaches we present, O3M, OM, and
OM-Block. The reason why O3M is the best approach out of the three is that this
approach exploits the knowledge that the unknown parameter θ∗ is the same for
every action in the block since it remains unchanged throughout the horizon.
So, while other approaches consider θ∗ ∈ Rd×(m+L), O3M is actually exploiting
the knowledge that θ∗ = {0d, . . . , 0d, θ∗, . . . , θ∗}, where the 0d corresponds to
the first m steps while θ∗ is repeated for each one of the last L steps of the
block. For all these reasons, we decided to plot the best performing algorithm
out of our three approaches.

Rotting with Bandit Combiner. We start by analyzing the rotting scenario
with m = 2 and γ = −3. We measure the performance in terms of the cu-
mulative reward averaged over 5 runs (this is enough because the variance is
small). In Figure 4.3 (left pane) we compare the performance of O3M against or-
acle greedy, vanilla OFUL, and two instances of Bandit Combiner (Algorithm 4).
The first instance, Combiner γ, works in the setting where the misspecified
parameter is γ and the algorithm is run over the set {−4,−3,−2,−1, 0} of pos-
sible values for γ with the true value being −3. The second instance, Combiner
m, tests the setting where the misspecified parameter is m. In this case the
algorithm is run over the set {0, 2, 3} of possible values for m with the true
value being 2. The results—see Figure 4.3 (left pane)—show that O3M can plan
the actions in the block ensuring that a good arm is not played right away
if a higher reward can be obtained later on in the block. This means that
O3M is waiting to play certain actions until the corresponding entries of A have
been offloaded, preventing A to negatively impact the reward of these actions.
Although learning m proves to be more difficult, which is consistent with the
impact of M = (maxj mj)

/
(minj mj) in Corollary 5.8, Combiner m run on in-

stances of O3M is competitive with O3M run with the true parameters. Note that
with isotropic initialization there is no point in running Combiner γ with values
of γ larger than zero. Indeed, in the isotropic case oracle greedy is optimal,
stationary, and with the same optimal action for any γ ≥ 0. The empirical
performance of our algorithms in a non-isotropic rising setting is investigated
in the next example.

Rising with non-isotropic initialization. When γ > 0 (rising setting)
andnA0 ̸= Id (non-isotropic initialization), there are instances for which oracle
greedy is suboptimal, as we show next. Let d = 2, m = 2, γ = 1, A0 = e1e

⊤
1 ,

and θ∗ = (
√
ϵ,
√
1− ϵ). Since γ is positive, the rising scenario is such that the

more we play a direction the more its reward will increase. Due to the nature
of θ∗ and A0, we see that oracle greedy starts to pull action e1 = (1, 0) and

Chapter 5. A novel linear non-stationary bandit model 113

0 200 400 600 800 1000 1200

Time

0

50

100

150

200

250

300

C
um

ul
at

iv
e

re
w

ar
ds

m=2, γ= −3
O3M
Combiner γ
Combiner m
OFUL
Oracle Greedy

Figure 5.2: This figure shows the cumulative rewards obtained
by the tested algorithms in rotting experiment.

0 200 400 600 800 1000 1200

Time

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e

re
w

ar
ds

m=2, γ=1
O3M
Policy π2
OFUL
Oracle Greedy

Figure 5.3: Here, the plot represents the cumulative rewards
obtained by the tested algorithms in the rising experiment with

non-isotropic initialization.

will always play it, obtaining a cumulative reward of T (1 +m)
√
ϵ. Instead, a

better strategy would be to play e2 = (0, 1) all the time, collecting a cumulative
reward of Tm

√
1− ϵ. We call this strategy π2 and in Figure 4.3 (right pane)

we compare the performance of O3M with oracle greedy, π2, and OFUL. Here
OFUL performs well because the optimal action is stationary and, unlike oracle
greedy, OFUL can use exploration to discover that e2 is better than e1. Here
we show how Greedy is indeed suboptimal, as well as O3M and OFUL. We show
that among the strategies we test, the best policy for this specific instance of
the problem is Policy π2, the stationary policy which plays action e2 all the
time. If we compare OFUL to O3M, we see that there is a gap between the two
due to the time that O3M spends in trying to plan for the best actions to play
in the block of size m + L, while OFUL has a learning bias since it looks for

Chapter 5. A novel linear non-stationary bandit model 114

a stationary policy. After some exploration, the two algorithms tend to play
the same actions. However, since we have no guarantees on what the optimal
policy is and furthermore we do not have any formal guarantee that OFUL is
better than us in the rising setting.

Moreover, we justify the loss we incur in O3M by highlighting that the strength
of our algorithm is to be able to approach different settings, such as rotting
and rising, with a unique algorithm. There are settings where it is not clear
from the beginning whether the learner will meet a rotting or rising scenario. If
we consider the example of music recommender systems that we present in the
introduction, we can think of two possible behaviours. In one case, there may
be a user who grows tired of listening to the same music genres and its level of
satisfaction will decrease with time (rotting scenario). On the other side, a user
may be passionate about a newly released album and would want to listen to
the same songs over and over, with their level of satisfaction growing with time
(rising scenario). In these situations, one may choose to adopt our algorithm
since a simple adjustment of the parameter γ would allow one to move from
one setting to the other. In addition to the fact that in the case where m and
γ are unknown one can adopt the Bandit Combiner solution we proposed.
At the beginning of this section, we stated that we would use the O3M approach
during the experiments since it is the best approach out of the ones proposed.
We also explained how OM-Block it is the worst out of the three, O3M, OM, and
OM-Block, since it does not exploit the knowledge on the concatenated vector
θ∗. To support this decision, we end this section with an additional experiment
comparing the regrets of O3M and OM-Block. To be able to plot the regret, one
must know OPT, which in our setting is hard to compute in general. Since in
the rising scenario with an isotropic initialization OPT is oracle greedy, which
is easy to compute, we present this experiment in a rising setting with m = 1
and γ = 2. We plot the regret of O3M and OM-Block against the number
of time steps, measuring the performance at different time horizons and for
different sizes of L (where L depends on T). Specifically, we instantiated O3M
and OM-Block for increasing values of L, setting the horizon of each instance
based on the equations in Theorem 5.6 and Proposition 5.4. Figure 5.4 shows
how the dimension of θ̂, which is d for O3M and d × L for OM-Block, has an
actual impact on the performance since O3M outperforms OM-Block.

5.7 Conclusions
In this chapter, we introduced a novel linear non-stationary bandit, called Linear
Bandit with Memory, to overcome the limitations left by the previous work
on LSD bandits in Chapter 4. We aimed to propose a bandit problem able
to deal with non-stationarity in an infinite set of actions. Here, we showed
how the LBM model, which uses a fixed-size window, can deal with cross-
arm dependencies generated from the structured set of actions considered. We
introduced the model and showed that it can recover stationary linear bandits
as well as rested rotting and rising bandits. After computing the approximation
error, we proposed three different approaches, O3M, OM, and OM-Block, for the

Chapter 5. A novel linear non-stationary bandit model 115

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time 1e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
eg
re
t

1e6

m=1, γ=2
O3M
OM-Block

Figure 5.4: The plot compares the regret (y-axis) of O3M and
OM-Block in the rising setting, where the computation of the
regret is possible. Each dot is a separate run where the value of

L is tuned to the corresponding horizon (x -axis).

estimation problem. We considered cyclic policies and showed an adaptation
of the OFUL algorithm to find the best block of actions. In the analysis of the
regret bound, we showed that when m = 0 the bound recovers OFUL’s bound for
stationary linear banditsO(d

√
T) up to log factors. When we optimize the block

length L to balance the tradeoff between the approximation and estimation
errors, we get a regret upper bound of order

√
d (m+1)

1
2
+max{γ,0}T 3/4 (ignoring

log factors) against the optimal sequence of actions for T ≥ (md)2. We showed
how this analysis holds even for a general matrix mapping A, where the only
impact on the regret is the substitution of the term (m + 1)γ

+ in Theorem 5.6
with supa1...am ∥A(a1, . . . , am)∥∗. We also provided a solution for the setting
where m and γ are unknown. For this case, we proposed Bandit Combiner on
O3M, and computed its regret upper bound in Corollary 5.8. Finally, we offer
an experimental validation of our approach against natural baselines.

116

Chapter 6

The Spotify™ network

Contents
6.1 Background and literature review 117

6.2 The Spotify™ data 118

6.3 Theoretical definitions 119

6.3.1 Reciprocity . 119

6.3.2 Reachable Sets . 120

6.3.3 Centrality Metrics 120

6.4 Analysis of several centrality measures on the Spo-
tify™ music credits network 121

6.5 The importance of a directed graph 122

6.6 A new node-wise index of reciprocity 124

6.7 Conclusions . 127

We started this dissertation by stating that we aim to study non-stationary
bandit models inspired by problems faced in music recommender systems. In
the previous chapters, we proposed two models which address some of the ob-
stacles in song recommendation. Particularly, we focused on examples where
the arms of the bandits were music genres and on those settings where the user’s
preferences are non-stationary as they depend on the user’s past actions. In this
chapter, we continue to focus on music recommender systems but switch to a
different perspective. We specifically concentrate on one of the most popular
music streaming platforms, Spotify™. The objective is to analyse the Spotify
data and look for specific patterns which could provide useful insights to im-
prove recommender systems. Starting from the data made available by the
service, we analysed the directed graph of music credits, where the nodes are
artists and the arc between two nodes represents a collaboration between the
two. We compute different centrality measures on the graph conditioned on
the musical genre, supporting and extending the results previously obtained in
the analysis of the undirected graph made by [South et al., 2020]. Both [South
et al., 2020] and our work show that the centrality measures for classical and
hip-hop have the highest median values compared to other genres. Although we
noticed the same phenomena when examining the popularity of the nodes and

Chapter 6. The Spotify™ network 117

the number of their connections, we propose an alternative explanation to the
one proposed in [South et al., 2020]. We argue that the directed graph is much
more informative and allows us to distinguish between two different crediting
patterns: citation and collaboration. Our contribution to this line of research is
the definition of a new reciprocity index, which quantifies how much an artist
is inclined to collaborate. Although our contribution concerns the analysis and
this new definition of reciprocity, we point out how one of the applications of
this index of reciprocity is to potentially integrate it into music recommendation
systems as a feature to provide more informed recommendations to users. The
contribution related to this chapter is presented in [Clerici* and Tiraboschi*,
2023.].

6.1 Background and literature review
A music streaming platform is oftentimes a resource for a user who wishes
to discover new songs. As discussed in this dissertation, music recommender
systems are useful for fulfilling this function. These systems usually exploit
the information about items and users to quantify how much a certain user
could enjoy an item. Among the abundant collection of features that could
be exploited, one interesting piece of information that could be considered in
this application is the collaboration among artists. This chapter focuses on
extracting and analysing this information using data from Spotify™ to build a
music credits network. The choice of using this data is due to Spotify™ being
currently the leading music streaming platform by the number of paying users
[Wikipedia, 2023] and to the fact that the data is easily accessible to third-party
applications via a REST Web API [Spotify, 2021].
The analysis presented in this chapter will focus on graph-related metrics con-
ditioned on music genre. The literature presents several works and third-party
applications focusing on musicological analyses of music genres. We mention
the web page “Every Noise AT Once” [McDonald, 2013], which is a visualiza-
tion tool for similarities between music genres, and the web platform by [Baratè
and Ludovico, 2022], which investigates music genres labels. Other works inves-
tigated the correlation between the popularity index (with values in the range
[0, 100]) provided by Spotify™ and other features such as audio [Sciandra and
Spera, 2022], precomputed features [Araujo, 2020], and metadata, including
graph-related metrics [Matsumoto et al., 2020].
Focusing on the correlation between commercial success and graph-related met-
rics of music genres, an important work is [Oliveira et al., 2020]. Here, the
authors study an undirected weighted graph with music genres as nodes and
arcs whose weight indicates the number of hit songs resulting from the collabo-
ration between artists belonging to the two music genres connected by this arc.
Their analysis consists of using Exploratory Factor Analysis to find latent vari-
ables correlated with graph-related metrics and DBSCAN clustering to identify
different ”collaboration profiles”.
The most relevant work we discuss is [South et al., 2020], which investigates
precisely the same raw data we are analysing in the next sections of this chapter
and discussed in Section 6.2. The authors use this data to build the undirected

Chapter 6. The Spotify™ network 118

graph of Spotify™ music credits, with artists as nodes and collaborations as arcs.
They analyzed the eigenvector centrality and observed a critical transition when
removing the least popular artists from the graph. In fact, they showed that
classical music attains the highest value of eigenvector centrality when the entire
graph is considered. However, when removing the artists whose popularity
is below a certain threshold, hip-hop artists outperform classical artists and
become the most central in the graph. To formalize this phenomenon, they
propose a Social Group Centrality (SGC) model, which aims at defining the
dichotomy between two types of social influence. They define two types of social
influence related to three types of nodes in the graph. One node can belong to
the class of community leaders, celebrities, and masses. The latter is the class
grouping all nodes with low popularity and a low number of connections. On
one hand, community leaders are those nodes with high popularity which have a
large number of connections to the masses nodes. On the other hand, celebrities
are those nodes with high popularity which have a large number of connections
to nodes with high popularity. In these two classes, community leaders and
celebrities, the authors identified a dichotomy in the type of influence, therefore
collaboration, between artists. They justify their hypothesis by presenting an
analysis of thresholded graphs : considering the entire undirected graph, where
each node has a popularity index, a thresholded graph is the subgraph resulting
from the elimination of those nodes in the graph whose popularity is below
a certain threshold. After analysing the eigenvector centrality of each music
genre for different threshold values, the authors observed the presence of a
critical transition when the threshold is set to 47. When considering threshold
values below 47, classical music is the genre with the highest centrality value.
However, when the threshold is equal to 47 or greater, hip-hop artists become
the most central in the graph.

In the next sections, we present an analysis of several centrality measures and
show that the SGC model does not adapt to other types of centralities. There-
fore, we propose a different explanation for this phenomenon based on the analy-
sis of the directed graph and the hypothesis that the type of connection between
nodes, distinguishing between collaboration and citation, may provide a better
interpretation. Before discussing the difference between the two explanations,
ours and the one provided by [South et al., 2020], in Section 6.5, we introduce
the Spotify™ data employed in this study along with the theoretical metrics
investigated in our analysis.

6.2 The Spotify™ data
The analyses and contributions in the rest of this chapter work on the directed
graph of music credits network built using data from Spotify™. As mentioned
above, the raw data we use was collected between December 2017 and December
2018 by exploring the network via breadth-first search with Kanye West as a
starting point for the collection due to being identified as one of the most
popular artists in the network and very likely to be part of the largest connected
component of the graph.

Chapter 6. The Spotify™ network 119

The dataset contains 1 250 114 artists. We build the directed graph, also called
digraph, where nodes represent artists. In our digraph, there is an arc from
node x to node y if there is a song in artist x’s discography for which artist y is
credited. An arc from node x to node y can be read as "artist x credits artist
y for one of their songs". The total number of arcs in our digraph is 7 435 330.
The Spotify™ data also comes with some useful metadata, although there are
nodes in the data collection for which there is none or partial metadata. Meta-
data was collected for 625 061 artists, around 50%. We consider two metadata:
music genre and popularity. Popularity is a value within the range [0, 100]
and it is computed based on the number, duration, and recency of streams of
an artist’s discography [Spotify, 2021]. In the dataset, 64 273 artists (around
10% of the artists with metadata) had a non-empty value for the music genre.
Intuitively, an artist can be associated with one or more genres. The total
number of different labels of music genre is 1 533. Although it may appear as
an oversimplification, we decided to reduce this high number of genres since
it would require more than a million pairs of genres to compare and because
some genres have very few elements, which would affect negatively the statis-
tical significance of the tests. Therefore, we decided to follow the definition of
music genres as sets [Fabbri, 2004] and considered 16 super-genres (i.e. super-
sets). Because there is not a general consensus on the classification of genres
into super-genres, we curated our own taxonomy, which was largely informed
by AllMusic’s genre classification [AllMusic, 2021] and supported by MusicMap
[Crauwels, 2016], a "genealogy of popular music genres", and Every Noise At
Once [McDonald, 2013], a data-driven map of music genres. We identified 16
super-genres: classical, pop, hip-hop, rock, jazz, blues, soul-R’n’B, country, folk,
easy-listening, avant-garde, electronic, latin, African, Asian, Caribbean. As in
the raw data, an artist can belong to multiple super-genres.

6.3 Theoretical definitions
Before delving into the contribution of this chapter, it is necessary to spend some
time on some theoretical definitions relevant to the content of the next sections.
We will use the following notation. We define G as a directed graph, or digraph,
characterized by a set of nodes V and a set of arcs E ⊆ V 2. Let N = |V | be the
number of nodes in the directed graph. Without loss of generality, we consider
the set V to be the set of integers in the range [0, N]. We denote with A ∈ 2N×N

the adjacency matrix of the graph, such that Ai,j = I{(i, j) ∈ E}.

6.3.1 Reciprocity

We start by introducing the definition of reciprocity of a digraph, which is a
metric that quantifies how frequently, if there is an arc from node i to node
j, there is also the arc from j to i. In [Garlaschelli and Loffredo, 2004], the
authors define reciprocity as the correlation coefficient between the entries in
the adjacency matrix and the entries in its transpose, ignoring entries on the

Chapter 6. The Spotify™ network 120

diagonal

ρ :=
Cov [Ai,j, Aj,i]

Var [Ai,j]
(6.1)

If the adjacency matrix is symmetrical, then ρ = 1. The digraph is perfectly
reciprocal, and it could be represented as an undirected graph. If Ai,j = 1−Aj,i

for i ̸= j, then ρ = −1 and the digraph is unilaterally connected. If the
covariance is 0, then ρ = 0 and arcs are reciprocated as often as they would if
the same number of arcs was distributed at random in the graph.

6.3.2 Reachable Sets

In a digraph, the reachable set of a node is defined as the set of nodes that
are reachable from that node, i.e. nodes at a finite distance from it. The co-
reachable set of a node is the set of nodes from which that node is reachable.
The co-reachable set of a node in a digraph is the reachable set of that node in
the transposed graph. The co-reachable set of node i is:

Ki := {j ∈ V | i ̸= j ∧ d(j, i) < +∞} (6.2)

where d(j, i) is the distance from node j to node i.

6.3.3 Centrality Metrics

A centrality metric indicates the importance of a node in a network. The
Spotify™ digraph is large enough that computing some centrality metrics is
intractable. Therefore, we are focusing mainly on geometric centralities, which
can be approximated efficiently using HyperBall [Boldi and Vigna, 2013], and
PageRank.

In-degree

One of the simplest and most intuitive measures for centrality is the in-degree,
which is the number of incoming arcs of a node. The in-degree of node i is

cini :=
N∑
j=1

Aj,i (6.3)

Closeness

Closeness centrality is based on the intuition that a node is more central the
closer it is to all other nodes in the graph. The closeness of a node is defined
as the reciprocal of the sum of the incoming distances from any other node.

cclosenessi :=
1∑

j∈Ki
d(j, i)

(6.4)

Chapter 6. The Spotify™ network 121

The distances from non co-reachable nodes are ignored: their distance is infinite
and the centrality would result to be zero. However, nodes with a small co-
reachable set tend to have a high centrality value [Boldi and Vigna, 2014].

Lin Centrality

[Lin, 1976] introduced a modified version of closeness centrality, that is weighted
by the square of the cardinality of the co-reachable set.

clini :=
|Ki|2∑

j∈Ki
d(j, i)

(6.5)

Harmonic Centrality

Harmonic centrality [Rochat, 2009] addresses the weaknesses of closeness, by
taking the harmonic sum of the distances instead of the reciprocal of the sum.

charmonic
i :=

∑
j∈Ki

1

d(j, i)
(6.6)

Harmonic centrality naturally ignores nodes outside the co-reachable set, be-
cause limd→∞ 1/d = 0.

PageRank

PageRank is a spectral measure of centrality. The vector of PageRank values
for all nodes can be defined as the solution p to the following equation [Boldi
and Vigna, 2014]

p = αpĀ+ (1− α)v
p ∈ [0, 1]N | ∥p∥1 = 1

(6.7)

The PageRank of a node can be interpreted as the probability distribution of
ending a random walk on that node.

6.4 Analysis of several centrality measures on
the Spotify™ music credits network

The definitions presented in the previous section are necessary to comprehend
the analysis we conducted on the Spotify™ music credits network, which is pre-
sented in this section. We considered the directed graph where the nodes in the
graph represent artists and where an arc from node x to node y denotes that
artist y has been credited for a song in artist x ’s discography. We used Web-
Graph [Boldi and Vigna, 2004a,b], a Java library for compression and analysis
of very large graph to perform the analyses and JPype [Nelson et al., 2020] to
interface WebGraph with Python, used for data visualization purposes.
We analysed the distribution of several centrality measures for artists belonging
to different music genres. We considered the 16 super-genres and computed the
distribution of centrality values of a genre examining the artists belonging to

Chapter 6. The Spotify™ network 122

0 2 4

log10indegree

classical

hip-hop

latin

jazz

avant-garde

easy listening

caribbean

blues

soul-rnb

electronic

asian

african

pop

folk

country

rock

−6 −4

log10pagerank

classical

hip-hop

latin

elec.

caribb.

jazz

a.g.

soul-rnb

blues

easy l.

asian

african

pop

folk

country

rock

1.5 2.0 2.5

harmonic centrality

×105

classical

hip-hop

a.g.

jazz

soul-rnb

blues

elec.

easy l.

caribb.

latin

pop

african

rock

folk

country

asian

1.5 2.0 2.5

lin centrality

×105

classical

hip-hop

soul-rnb

a.g.

jazz

blues

elec.

caribb.

easy l.

latin

african

pop

rock

asian

folk

country

1.0 1.5

closeness centrality

×10−7

classical

hip-hop

soul-rnb

a.g.

jazz

blues

elec.

caribb.

easy l.

latin

african

pop

rock

country

folk

asian

Figure 6.1: This figure shows the violin plots of the distribution
of different centrality measures conditioned on the musical genre.
Genres are sorted in decreasing order of median value for each
centrality. In-degree and PageRank are shown on a logarithmic

scale.

that genre. We performed this analysis for all the five centrality measures
defined in the previous section: in-degree, closeness, Lin centrality, harmonic
centrality, and PageRank. The results are summarized in Figure 6.1. It is
evident how for every centrality the top two genres with the highest median
values are always classical and hip-hop, as previously found in the undirected
graph [South et al., 2020]. Specifically, we noticed that the mean value for
classical artists is significantly higher than all other genres. For what concerns
hip-hop artists, their mean value is second for Lin centrality and closeness,
while for in-degree, harmonic centrality and PageRank the gap between their
mean value and the one in the third place is inconclusive, although it is still
greater than all other 13 genres. For all the other genres, their position varies
depending on the centrality considered. We assessed the significance of the
differences between mean values using a Bayesian Student-T test [Kruschke,
2013], implemented in PyMC3 [Salvatier et al., 2016]. We defined the ROPE as
an effect size between −0.1 and +0.1 (a "very small" effect size [Cohen, 1988])
and set the significance threshold at α = 0.05.

6.5 The importance of a directed graph
After analysing the distribution of different centralities conditioned on the music
genre, we considered the concept of thresholded graph mentioned in the previ-
ous sections and proposed by [South et al., 2020]. Indeed, one of the relevant

Chapter 6. The Spotify™ network 123

10−2

10−1

sgc
Indegree
/nnodes

celebrities
community leaders
masses

100

101

Pagerank
×nnodes

0.0

0.1

0.2

0.3

0.4

0.5

Harmonic Centrality
/nnodes

0.0

0.1

0.2

0.3

0.4

0.5

Lin Centrality
/nnodes

0.00

0.05

0.10

0.15

0.20

Closeness Centrality

0 25 50 75

popularity threshold

10−4

10−3

10−2

spotify-2018

classical
hip-hop
rock

0 25 50 75

popularity threshold

100

0 25 50 75

popularity threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 25 50 75

popularity threshold

0.00

0.05

0.10

0.15

0.20

0.25

0 25 50 75

popularity threshold

0.00

0.02

0.04

0.06

0.08

Figure 6.2: Transitions in node centralities under threshold-
ing in the Spotify™ graph and in an SGC graph. On the x-axis
are the popularity threshold values. Centrality values are nor-
malized to remove trends naturally arising from changing the
number of nodes in the graph (in-degree, harmonic centrality,
and Lin centrality are divided by the number of nodes, PageR-
ank is multiplied by the number of nodes). Solid lines are the
average centrality values for nodes of one musical genre (or SGC
class). Filled areas are between the average plus and minus 0.67
times the standard deviation (50% HDI for a normal distribu-
tion). Indegree and PageRank are shown on a logarithmic scale.

contributions of [South et al., 2020] was to show that when removing nodes
from the undirected graph based on a popularity threshold greater or equal to
47 there is a transition from classical to hip-hop artists as the most central
in the graph. Therefore, as a natural consequence, our following objective is
to study the thresholded graphs for the centralities considered in our analysis.
We implemented the SGC model in NetworkX [Hagberg et al., 2008] and com-
pared the centrality transitions in a graph sampled from the SGC model with
our Spotify™ digraph. We considered different thresholds and computed the
average centrality values of the three classes of the SGC model and of three
super-genres (classical, hip-hop, rock) in the Spotify™ digraph. Results are
shown in Figure 6.2. One can observe that the SGC model graph and the Spo-
tify™ digraph have different behaviours. Indeed, while the SGC graph shows a
transition around a threshold of 47− 50, this does not happen in the Spotify™
digraph.
As a further investigation, we studied the distribution of in-degrees and out-
degrees of the nodes in the Spotify™ digraph. The in-degree of a node is the
number of incoming arcs and the out-degree is the number of outgoing arcs. In
the Spotify™ digraph, this means that the in-degree of a node x indicates how
many artists have credited artist x for one of their songs, while the out-degree
of a node x denotes the number of times artist x credits another artist for one
of their songs. We can observe how the in-degree and out-degree have very
different scales, where the outdegree scales from 0 to the order of hundreds,

Chapter 6. The Spotify™ network 124

0 100 101 102

Outdegree

100

101

102

103

104

In
d

egree

Wolfgang Amadeus Mozart

Lingo

Ed Sheeran

Rick Ross

101

103

105

101 103 105

Figure 6.3: Distribution of in-degrees and out-degrees in the
graph on a logarithmic scale. Joint distribution is shown as a
heatmap (darker colours signify higher frequencies). The degrees
of some reference artists are shown: Wolfgang Amadeus Mozart
(highest in-degree), Lingo (highest out-degree), Ed Sheeran
(highest popularity), and Rick Ross (one of the most central

artists in the thresholded graphs).

while the in-degree scales from 0 to the order of ten thousand, which shows
that there are significant asymmetries in the collaborations. The artist with
the highest in-degree appears to be Mozart, with an in-degree of 11 301 and an
out-degree of 57. This means that Mozart has been credited by 11 301 other
artists but, in his discography, only 57 other artists are credited. On the other
hand, the artist with the highest out-degree is Lingo, a DJ who produces remixes
sampling from various other artists’ discographies. From these results, it seems
evident how crucial it is to consider the directed graph, as these asymmetries
may be relevant to the phenomena observed in the analysis of centralities.

6.6 A new node-wise index of reciprocity
As a result of the observations presented above, we argue that what distinguishes
community leaders and celebrities in the Spotify™ graph is that the former are
highly cited while the latter are truly collaborative. To identify this dichotomy,
we propose a node-wise index of reciprocity to distinguish between citations
and collaborations.
In Section 6.3.1 we presented the reciprocity metric of the entire graph. How-
ever, we are interested in investigating reciprocity between nodes and therefore

Chapter 6. The Spotify™ network 125

how much each node reciprocates arcs. [Cheng et al., 2011] define the reci-
procity over each pair of arcs. They propose this metric which defines an arc as
reciprocated if the arc between the same nodes, but in the opposite direction,
exists. However, in our data, the direction of an arc is not entirely reliable. For
example, the out-degree of Mozart is 57, but that does not mean that Mozart
features 57 other artists in his own work. If one looks at these arcs, it is possi-
ble to see that the outgoing arcs are mainly orchestras that performed Mozart’s
music. [Wardil and Hauert, 2014] propose two indices to quantify a node’s reci-
procity: altruism and activity, where the first accounts for the balance between
incoming and outgoing arcs and the second stands for the normalized number
of arcs in either direction. However, having two indices is not practical. There-
fore, we propose a novel node-wise index of reciprocity defined as Pearson’s
correlation coefficient between the entries in the adjacency matrix correspond-
ing to incoming and outgoing arcs, which are the entries on the node’s column
and row, respectively. It takes after the graph reciprocity index introduced by
[Garlaschelli and Loffredo, 2004]

ρi :=
Cov [Ai,j, Aj,i]√
Var [Ai,j] Var [Aj,i]

. (6.8)

Empirically, it can be computed as

ρ̂i =
←→a i −−→a i

←−a i√
(1−−→a i)

−→a i(1−←−a i)
←−a i

(6.9)

where −→a is the normalized out-degree, ←−a is the normalized in-degree, and ←→a i

is the normalized number of reciprocated arcs.

−→a i :=
1

N

N∑
j=1

Ai,j (6.10)

←−a i :=
1

N

N∑
j=1

Aj,i (6.11)

←→a i :=
1

N

N∑
j=1

Ai,j · Aj,i. (6.12)

In our graph, reciprocity is undefined for nodes with no outgoing arcs: in this
case, we define the reciprocity to be zero as no edge is reciprocated. It would
be undefined for nodes with no incoming arcs, too, but there is no such node in
our digraph, because of the data collection policy.
We present the violin plots of the distribution of reciprocity conditioned on the
music genre in Figure 6.4 and summarize the reciprocity values in Table 6.1.
As an interesting result, it is possible to observe that the music genre with
the highest median value of reciprocity is African followed by Asian, two music
genres defined by their geographical origin. This shows that the artists belong-
ing to these two genres are highly collaborative, favoured by their geographical
proximity. It would be interesting to further investigate the possible causes of

Chapter 6. The Spotify™ network 126

Genre Q1 MED Q3 IQR
african 0.739 0.889 1.000 0.261
asian 0.655 0.866 1.000 0.345
rock 0.655 0.866 1.000 0.345
avant-garde 0.615 0.866 0.970 0.355
folk 0.577 0.845 1.000 0.423
hip-hop 0.674 0.840 0.941 0.267
pop 0.623 0.833 1.000 0.377
latin 0.598 0.816 0.943 0.345
caribbean 0.577 0.816 0.935 0.358
jazz 0.539 0.804 0.939 0.400
soul-rnb 0.552 0.791 0.935 0.384
country 0.488 0.783 0.957 0.469
electronic 0.577 0.775 0.926 0.348
easy listening 0.479 0.747 0.926 0.447
classical 0.500 0.693 0.866 0.366
blues 0.365 0.655 0.913 0.548
Overall 0.583 0.816 0.949 0.365

Table 6.1: Summary of reciprocity values by super-genre: first
quartile, median, third quartile and interquartile range.

these high reciprocity values on an ethnomusicological level.
Our main observation is that the placement of classical and hip-hop artists. The
median reciprocity of classical music is shown to be the lowest among all the
16 super-genres, preceded by blues. The difference between the median values
of classical and hip-hop artists is significant and practically relevant, as the
hip-hop has a higher reciprocity which ranks them as the sixth highest median
reciprocity. This shows how artists in classical music do not reciprocate much,
while hip-hop artists tend to collaborate more. This confirms our hypothesis
that there is a preference for citations in classical music, while hip-hop artists
prefer collaborations.
To give a qualitative insight, we sorted all the nodes by reciprocity and con-
sidered the ones with the highest popularity to find some examples that might
be familiar to many people. Amongst the least reciprocating nodes, we can
find many well-known artists. The top 10 artists in this sorting are: Lil Pump,
Green Day, Jorge & Mateus, Wham!, Oasis, Muse, Pearl Jam, Bruce Spring-
steen, Journey, and The Beach Boys. We believe that this may be due to the
high number of cover songs that other artists published. On the other side,
the top 10 most reciprocating nodes are less popular, both quantitatively and
qualitatively. We report some exceptions: Julian Casablancas in tenth posi-
tion, and Guns N’ Roses in first position. The neighbours of Guns N’ Roses
are eight: five members of the band, two orchestras that recorded some of their
songs, and one musician affiliated with one of the orchestras. What is unusual,
in their case, is the fact that no unreciprocated covers had been uploaded at
the time of the data collection by artists reached by the breadth-first-search

Chapter 6. The Spotify™ network 127

african asian rock avant-garde folk pop hip-hop latin country caribbean jazz soul-rnb electronic easy listening blues classical

0.0

0.2

0.4

0.6

0.8

1.0

reciprocity

Figure 6.4: Violin-plot of the distribution of reciprocity val-
ues conditioned on music genre. Genres are sorted in decreasing
order of median value. Note that the top two genres (African
and Asian) have a strong geographical characterization. Classi-
cal music artists have the lowest median reciprocity; this shows
the tendency, in that genre, to perform compositions by other

authors.

crawler. This could be due to copyrights on the platform at the moment of the
data collection and it would probably be different if we repeated the experiment
with updated data, or if we had the entire Spotify™ database.

6.7 Conclusions
In this chapter, we presented our contribution to a different line of research,
which focused on the analysis of the Spotify™ music credits network. We stud-
ied the directed graph and several centrality measures, which led to the obser-
vation that classical and hip-hop are the most central genres in the graph. This
result was previously supported in [South et al., 2020], however our explanation
deviates from theirs. In fact, we believe that the analysis of the directed graph
instead of the undirected one can better explain the phenomena observed in the
thresholded graphs, where the most central genre switches from classical to hip-
hop. We argue that this dichotomy is due to two different types of connections
between artists: citations and collaborations. We propose a node-wise index of
reciprocity which indicates how much a node is being reciprocated by others.
Using this index and observing the in-degree and out-degree of the nodes in
the graph, it is possible to notice how classical artists are characterized by a
high number of citations and therefore a low reciprocity, while hip-hop artists
by actual collaborations and consequentially by a high reciprocity. This is also
explained by many artists and orchestras citing and sampling from works of
classical artists such as Bach, Mozart, and Beethoven. On the other hand,
hip-hop artists tend to collaborate more, with many featuring in their discogra-
phy. To quantify how much an artist is inclined to collaborate, one can employ
the proposed reciprocity index. This index could also find applications in rec-
ommender systems. For example, it can be used as a feature to improve the
automatic compilation of playlists. If an artist belongs to a community of col-
laborating musicians, it is reasonable to think that collaborating artists might
share some commonalities in their music style. So, if a user listens to an artist

Chapter 6. The Spotify™ network 128

in this community, it is reasonable to believe that the user might also be inter-
ested in the works of the collaborating musicians. Therefore, reciprocity could
be used to filter out false collaborators and identify those for which the user
could sympathize. By using this index, a recommender system may provide
more informed recommendations and support human decision-making. In the
future directions presented in Chapter 7, we elaborate more on the potential
employment of this index in recommender systems.

129

Chapter 7

Conclusions

This thesis studies two different lines of research related by their application
to recommender systems and music streaming platforms. In Chapter 1, we
discussed the importance of recommender systems caused by the development
of the World Wide Web and the growing offer of online services, particularly
streaming services and their catalogues. With an increasing number of prod-
ucts being offered to the user, streaming services had to perform some sort of
personalization to improve the user’s experience and to efficiently profit from
the wide range of offered products. We decided to focus on recommender sys-
tems, focusing specifically on song recommendation in music streaming services.
This choice is due to the interest in studying complex dynamics typical of these
settings, where the user’s preferences constantly change with time or with the
user’s past actions and their history of interactions with items. Here, the focal
problem usually faced in recommender systems is not to find the best product
to recommend, but to find a specific set of items and a specific order for this
set which could satisfy the user’s experience on the platform.
After presenting some basic concepts about multiarmed bandits in Chapter 2
to better comprehend the topics of this dissertation, we identified in the class
of non-stationary multiarmed bandits an efficient tool to answer the problems
which typically arise in song recommendation. Indeed, non-stationary bandits
are proven to be an efficient method to deal with recommendation problems in
settings where the user’s behaviour is not stationary. We discussed the current
state of the art in Chapter 3. In this chapter, we made a distinction between ex-
ogenous and endogenous non-stationarity. The first class groups all those MAB
models where the non-stationarity is intrinsic to the environment, it depends
on time and it is not affected by the user’s actions. In this family of exoge-
nous non-stationarity, it is possible to identify different categories depending on
the assumptions: piece-wise stationary MAB, MAB with variation budget, and
restless MAB. On the other hand, we can also identify a family of bandits where
the non-stationarity directly depends on the user’s past actions. This adds a
layer of complexity since it is assumed that the user’s choice will influence future
rewards. Inside this class of bandits with endogenous non-stationarity, we can
point to rested bandits and state-dependent bandits, where each model offers
different assumptions.
Studying the family of endogenous bandits, we identified a weakness that could
have been improved. Indeed, there was a lack of a model able to generalize to

Chapter 7. Conclusions 130

different types of endogenous non-stationarity, specifically satiation and season-
ality, encapsulating these phenomena in a single framework where the reward
function is arm-dependent and the bandit problem is addressed by a single al-
gorithm. To overcome this, we proposed a new non-stationary bandit model for
finite sets of actions where the reward of an arm depends on its state, which is
designated by the last time the arm took part in a switch of actions. We designed
this model which can represent different types of non-stationary trends, without
the need to restrict to monotonic reward functions. Using this concept of switch
of actions, the bandit can model all types of trends in the non-stationarity as
long as the reward function is bounded in [0, 1] and non-decreasing in Z−. We
called this model Last Switch Dependent bandit and studied its hardness as
well as the approximation and estimation errors. We provided an algorithm
to solve this problem by adapting the CombUCB1 algorithm for combinatorial
semi-bandits by [Kveton et al., 2015] and presented an experimental evaluation
of our model against natural baselines. With this model, we can address both
satiation and seasonality in a single framework, with arm-dependent reward
functions. However, a limitation of this work is the fact that the actions set
considered is finite, which is not always representative of practical applications.
After presenting our contribution to the class of finitely many arms MABs, we
extended our contribution to the linear setting, where the reward of an action
is the result of a linear function between the action and a hidden parameter.
The aim was to provide a non-stationary bandit model able to generalize to
different types of non-stationarity and simultaneously deal with an infinite set
of actions. Addressing this setting properly is much more complex due to the
presence of interferences between arms. Indeed, while in a finite set of actions
playing one arm only influences the reward of that specific arm, the linear setting
and its infinite set of actions cause cross-arm dependencies so that playing any
action may influence any other action in the set. To tackle these problems,
we proposed a non-stationary linear bandit called Linear Bandit with Memory,
where the reward of an action at time t depends on the actions played in the
past in a window, called memory matrix, of size m and elevated to the exponent
γ. We analysed this setting, studying the approximation and estimation errors
as well as proposing an algorithm to solve the bandit problem, along with
experimental validation. We notice that the modelling choices of LBM allow
the representation of monotonic, either increasing or decreasing, functions able
to partially recover rested rotting and rising bandits in a single framework.
However, this model relies on the knowledge of the parameters m and γ, which
might be unrealistic in practice. Therefore, we provide a solution to the case
wherem and γ are unknown. In this setting, we propose an adaptation of Bandit
Combiner on LBM, a meta-bandit algorithm which simultaneously solves the
LBM problem while learning the two parameters. Moreover, we prove that the
results obtained in this section hold also for the case where the form of the
memory matrix is not defined by m and γ but can take a general form. We
state Remark 5.5 where we explain how the results adapt in this case.
After proposing online learning models for tackling the problems arising in song
recommendation, we also focused on the analysis of the Spotify™ music credits
network. In Chapter 6, we studied the Spotify™ data as a directed graph of the

Chapter 7. Conclusions 131

music credits network between artists. We analysed the centrality distributions
of music genres and observed two particular behaviours in classical and hip-
hop artists, who appear to be the most central in the graph. We analysed the
thresholded graphs for several centrality measures and the in-degree and out-
degree distributions of the nodes. We noticed an asymmetry in the collaboration
patterns and proposed a new index of reciprocity to identify two different types
of connections, distinguishing between citations and collaborations. Using this
index, we were able to explain the centrality values of classical and hip-hop
artists, where the centrality of the first genre is motivated by a high number
of citations while the second by a high number of collaborations. Therefore,
we show how reciprocity can discriminate between these two different types of
crediting patterns between artists.

7.1 Future developments
Reflecting on the results discussed in this thesis, we end this dissertation by
discussing some future directions. Concerning the broader theoretical research
on non-stationary bandits, a possible new research could focus on different types
of non-stationarity, focusing on not only relative but also absolute seasonality,
to expand on the type of users’ behaviours which could be considered.
A different research line would be to rephrase the modalities of interactions
between the learner and the bandit. In the models discussed in this research,
we focused on bandits whose goal was to suggest a song to the user, who would
listen and rate this song. A possible idea is to formalize a new setting where
the bandit identifies not a single arm but a subset of n ∈ N>1 arms to offer
the user the possibility of choosing the action to play among these. This could
be done by identifying the best n actions relying on a UCB index to assess
their performance. However, a major problem would be to efficiently exploit
the user’s feedback with respect to the n items in the subset. Indeed, one could
think of a way of exploiting the user’s interactions with the items in this subset
to infer some information about his preferences. One could also study this
problem by formalizing a hierarchy of arms. In the examples illustrated in this
thesis, we considered bandits for music recommender systems with music genres
as arms. However, in song recommendation the system needs to pick a specific
song. Therefore, one could think of formalizing the problem as a bandit with
a hierarchy of arms built on two layers: the arms at a higher level representing
music genres and the arms at a lower level representing actual songs. The
bandit would need to identify first the music genre and then a specific song
belonging to that genre. After the item has been suggested, the user’s feedback
could be used to update the information not only on the specific song but also
about the music genre it belongs to. In this setting, the optimal trajectory is
very complex, as it consists of the best song belonging to the best music genre
at time t. Therefore, the learner must first identify the best genre and then
the best song in this tree of arms. This would make the problem difficult as it
would result in a higher probability of choosing a suboptimal arm and therefore
narrowing the upper bound on the regret would be more complicated.

Chapter 7. Conclusions 132

Concerning the second line of research, a future direction would be to use the
reciprocity index as an additional feature in music recommender systems. In
these settings, where finding music similar to the user’s interests is essential for
providing tailored suggestions, identifying true collaborations and therefore a
community of artists who cooperate may be a helpful tool in making informed
recommendations. This could be useful in automatic playlist continuation. An-
other possibility would be to study which genres collaborate more within the
genre and outside of it. An index measuring this behaviour could be used to
foster different levels of exploration depending on the user’s preferences.
One concrete example would be to focus on engineering a solution which exploits
the bandit models proposed in this manuscript and combines them with the
reciprocity index. This could be done using non-stationary bandit models and
integrating them into a multitask bandit problem. By incorporating this index
in the process of recommending a new song, the system would be able to exploit
additional information to identify the potential song candidate to suggest to
the user. One practical example would be the formalization of a bandit where
reciprocity is used to improve the exploration. Another idea is to also exploit
the Spotify credits network to better identify the collaborating artists that could
potentially be enjoyed by the user. All these suggestions could be integrated
into a single framework to improve once again the user’s personalized experience
within a music streaming platform.

133

Appendix A

Appendix

A.1 Proof of the regret bound of OFUL
Here we are presenting the proof of the regret of the OFUL algorithm in [Abbasi-
Yadkori et al., 2011, Appendix C, Proof of Theorem 3]. It is assumed that
∥θ∗∥2 ≤ S, ∥at∥2 ≤ L, and V = Iλ with λ > 0. As for many regret analysis in
the bandit literature, the first step is to decompose the instantaneous regret.

Xt = ⟨a∗, θ∗⟩ − ⟨at, θ∗⟩
≤ ⟨at, θ̃t⟩ − ⟨at, θ∗⟩

where the last step is because ⟨at, θ̃t⟩ is optimistic

= ⟨at, θ̃t − θ∗⟩
= ⟨at, θ̂t−1 − θ∗⟩+ ⟨at, θ̃t − θ̂t−1⟩

= ∥θ̂t−1 − θ∗∥V̄ −1
t−1
∥at∥V̄ −1

t−1
+ ∥θ̃t − θ̂t−1∥V̄ −1

t−1
∥at∥V̄ −1

t−1

≤ 2
√
βt−1(δ)∥at∥V −1

t

where the last step is obtained using Cauchy-Schwarz and knowing that
√
βt−1(δ)

is bounding the difference between the estimation of theta in the confidence set
and its true value. Since the rewards are bounded in [0, 1], we know Xt ≤ 2. So
we can write

Xt ≤ 2min(
√
βt−1(δ)∥at∥2V̄ −1

t−1
, 1)

≤ 2
√
βt−1(δ)min(∥at∥2V̄ −1

t−1
, 1).

Therefore, we can write that with probability 1−δ for all T ≥ 0, OFUL achieves
a regret upper bounded by

RT ≤

√√√√T
T∑
t=1

X2
t ≤

√√√√8βT (δ)T
T∑
t=1

min(∥at∥V −1
t
, 1) ≤ 4

√
βT (δ)T log(det(VT))

≤ 4
√
Td log(λ+ TL/d)(λ1/2S +R

√
2 log(1/δ) + d log(1 + TL/(λd)))

Appendix A. Appendix 134

where the last step comes [Abbasi-Yadkori et al., 2011, Lemma 11], where the
authors bound

∑T
t=1 ∥at∥2V̄ −1

t−1

≤ 2 log det(V̄T)
det(V)

, and [Abbasi-Yadkori et al., 2011,

Theorem 2], where they define the confidence set as Ct = {θ ∈ Rd : ∥θ̂t−θ∥V̄t
≤

R

√
d log

(
1+tL2/λ

δ

)
+ λ1/2S}.

A.2 Proof of the regret bound of CombUCB1
In this section of the Appendix, we present the proof of the CombUCB1 algorithm
from [Kveton et al., 2015]. The regret analysis relies on the decomposition
between two events: when the suboptimality gaps of the arms are larger than
ε and at most ε.
In [Kveton et al., 2015, Lemma 1], the authors state that

Ft = {∆at ≤ 2
∑
ai∈ãt

cT,Tt−1(ai),∆at > 0}

, where ãt = at a
∗, and prove thatRT ≤ E[R̂T]+

(
π2

3
+1
)
KL, where

(
π2

3
+1
)
KL

bounds the initialization of the algorithm from time step 0 to t0. Thus, R̂T =∑T
t=t0

∆atI{Ft}. The authors partition R̂T as

R̂T =
T∑

t=t0

∆atI{Ft,∆at < ε}+
T∑

t=t0

∆atI{Ft,∆at ≥ ε}

≤ εT +
T∑

t=t0

∆atI{Ft,∆at ≥ ε}.

The second term is then bounded as:

T∑
t=t0

∆atI{Ft,∆at ≥ ε} ≤
∑
ai∈A

K
534

ε
log(n) ≤ KL

534

ε
log(T).

Therefore, it is possible to conclude the analysis by writing

RT ≤
534KL

ε
log(T) + εT +

(π2

3
+ 1
)
KL, (A.1)

and by choosing ε =
√

534KL log(T)
T

:

RT ≤ 2
√

534KLT log(T) +
(π2

3
+ 1
)
KL

< 47

√
KLT log(T) +

(π2

3
+ 1
)
KL.

Adapting the result using the terms in Chapter 3, where the cardinality of the
ground set is L = K and the maximum number of chosen items is K = m, the

Appendix A. Appendix 135

result becomes RT < 47

√
KmT log(T) +

(
π2

3
+ 1
)
mK.

A.3 Proof of Proposition 5.4
We prove the (stronger) high probability version of Proposition 5.4.

Proposition 5.5. Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in
Rd(m+L) associated to the bτ defined in (5.13). Then, with probability at least
1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ) ≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

)

·
(
√
λL+

√
ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))
.

Proof. The proof essentially follows that of [Abbasi-Yadkori et al., 2011, Theo-
rem 3]. The main difference is that our version of OFUL operates at the block
level. This implies a smaller time horizon, but also and increased dimension
and an instantaneous regret ⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩ upper bounded by 2L(m + 1)γ

+

instead of 1. We detail the main steps of the proof for completeness. Recall
that running OFUL in our case amounts to compute at every block time step τ

θ̂τ = V −1
τ

(
τ∑

τ ′=1

yτ ′ bτ ′

)
,

where

Vτ =
τ∑

τ ′=1

bτ ′b
⊤
τ ′ + λId(m+L) , and yτ =

m+L∑
i=m+1

yτ,i ,

since we associate with a block of actions the sum of rewards obtained after time
step m. Note that by the determinant-trace inequality, see e.g., [Abbasi-Yadkori
et al., 2011, Lemma 10], with actions bτ that satisfy ∥bτ∥22 ≤ m+ L(m+ 1)2γ

+

we have

|Vτ |
|λId(m+L)|

≤
(
1 +

τ(m+ L(m+ 1)2γ
+
)

d(m+ L)λ

)d(m+L)

≤
(
1 +

τ(m+ 1)2γ
+

dλ

)d(m+L)

.

(A.2)
The action played at block time step τ is the block aτ ∈ Bm+L

d associated with

bτ = argmax
b∈B

sup
θ∈Cτ−1

⟨b,θ⟩ , (A.3)

where
Cτ =

{
θ ∈ Rd(m+L) :

∥∥θ̂τ − θ
∥∥
Vτ
≤ βτ (δ)

}
,

Appendix A. Appendix 136

with

βτ (δ) =

√
2 ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

τ(m+ 1)2γ+

dλ

)
+
√
λL . (A.4)

Applying [Abbasi-Yadkori et al., 2011, Theorem 2] to θ∗ ∈ Rd(m+L) which sat-
isfies ∥θ∗∥2 ≤

√
L we have that θ∗ ∈ Cτ for every τ with probability at least

1− δ. Denoting by θ̃τ the model that maximizes (A.3), we thus have that with
probability at least 1−δ, the inequality ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩ holds for every τ , and
consequently

T/(m+L)∑
τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

, ⟨bτ , θ̃τ − θ∗⟩
}

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+

,
∥∥θ̃τ − θ∗∥∥

Vτ−1
∥bτ∥V −1

τ−1

}
≤

T/(m+L)∑
τ=1

min
{
2L(m+ 1)γ

+

, 2βτ (δ) ∥bτ∥V −1
τ−1

}
≤ 2L(m+ 1)γ

+

βT/(m+L)(δ)

T/(m+L)∑
τ=1

min
{
1 , ∥bτ∥V −1

τ−1

}

≤ 2L(m+ 1)γ
+

βT/(m+L)(δ)

√√√√ T

m+ L

T/(m+L)∑
τ=1

min
{
1 , ∥bτ∥2V −1

τ−1

}

≤ 2
√
2L(m+ 1)γ

+

βT/(m+L)(δ)

√
T

m+ L
ln
|VT/(m+L)|
|λId(m+L)|

≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

)

·
(
√
λL+

√
ln

(
1

δ

)
+ d(m+ L) ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))
,

where we have used [Abbasi-Yadkori et al., 2011, Lemma 11], as well as (A.2)
and (A.4). Note that in the stationary case, i.e., when m = 0 and L = 1, we
exactly recover [Abbasi-Yadkori et al., 2011, Theorem 3]. Proposition 5.4 is
obtained by setting λ ∈ [1, d], L ≥ m, and δ = 1/T .

A.4 Proof of Theorem 5.6
We prove the high probability version of Theorem 5.6, obtained by setting
λ ∈ [1, d], and δ = 1/T .

Appendix A. Appendix 137

Theorem A.1. Let λ ≥ 1, δ ∈ (0, 1), and aτ be the blocks of actions in Rd(m+L)

defined in (5.15). Then, with probability at least 1− δ we have

T/(m+L)∑
τ=1

r̃(ã)− r̃(aτ) ≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·
(
√
λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))
.

Let m ≥ 1, T ≥ m2d2+1, and set L =
⌈√

m/d T 1/4
⌉
−m. Let rt be the rewards

collected when playing aτ as defined in (5.15). Then, with probability at least
1− δ we have

OPT−
T∑
t=1

rt ≤ 4
√
d (m+ 1)

1
2
+γ+

T 3/4

[
1 + 2

√
ln

(
1 +

T (m+ 1)2γ+

dλ

)

·
(√

λ

d
+

√
ln(1/δ)

d
+ ln

(
1 +

T (m+ 1)2γ+

dλ

))]
.

Proof. The proof is along the lines of OFUL’s analysis. The main difficulty
is that we cannot use the elliptical potential lemma, see e.g., [Lattimore and
Szepesvári, 2020, Lemma 19.4] due to the delay accumulated by Vτ , which is
computed every m+ L round only. Let

βτ (δ) =

√
2 ln

(
1

δ

)
+ d ln

(
1 +

τ(m+ 1)2γ+

dλ

)
+
√
λ . (A.5)

By [Abbasi-Yadkori et al., 2011, Theorem 2], we have with probability at least
1− δ that θ∗ ∈ Cτ for every τ . It follows directly that θ∗ ∈ Dτ for any τ , such
that ⟨b̃,θ∗⟩ ≤ ⟨bτ , θ̃τ ⟩, where θ̃τ = (0d, . . . , 0d, θ̃τ , . . . , θ̃τ) with θ̃τ ∈ Rd that
maximizes (5.15) over Cτ−1. It can be shown that the regret is upper bounded
by
∑

τ

∑m+L
i=m+1⟨bτ,i, θ̃τ − θ∗⟩. Following the standard analysis, one could then

use 〈
bτ,i, θ̃τ − θ∗

〉
≤ ∥bτ,i∥V −1

τ−1

∥∥θ̃t − θ∗∥∥Vτ−1
.

While the confidence set gives
∥∥θ̃t−θ∗∥∥Vτ−1

≤ 2βτ−1(δ), it is much more complex

to bound the quantity
∑m+L

i=m+1 ∥bτ,i∥V −1
τ−1

. Indeed, the elliptical potential lemma
allows to bound

∑
t ∥at∥2V −1

t−1

when Vt =
∑

s≤t asa
⊤
s + λId. However, recall that

in our case we have Vτ =
∑τ

τ ′=1

∑m+L
i=m+1 bτ ′,ib

⊤
τ ′,i + λId, which is only computed

every m+L rounds. As a consequence, there exists a “delay” between Vτ−1 and
the action bτ,i for i ≥ m + 2, preventing from using the lemma. Therefore, we
propose to use instead

〈
bτ,i, θ̃τ − θ∗

〉
≤ ∥bτ,i∥V −1

τ,i−1

∥∥θ̃t− θ∗∥∥Vτ,i−1
, where Vτ,i = Vτ−1 +

i∑
j=m+1

bτ,jb
⊤
τ,j .

(A.6)

Appendix A. Appendix 138

By doing so, the elliptical potential lemma applies. On the other hand, one
has to control

∥∥θ̃t − θ∗∥∥Vτ,i−1
, which is not anymore bounded by 2βτ−1(δ) since

the subscript matrix is Vτ,i−1 instead of Vτ−1. Still, one can show that for any
i ≤ m+ L we have∥∥θ̃t − θ∗

∥∥2
Vτ,i−1

= Tr
(
Vτ,i−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤)
= Tr

(Vτ−1 +
i−1∑

j=m+1

bτ,jb
⊤
τ,j

) (
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
= Tr

(Id + i−1∑
j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤)
V

1/2
τ−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
V

1/2
τ−1

≤
∥∥∥∥Id + i−1∑

j=m+1

(
V

−1/2
τ−1 bτ,j

)(
V

−1/2
τ−1 bτ,j

)⊤∥∥∥∥
∗
Tr
(
V

1/2
τ−1

(
θ̃t − θ∗

)(
θ̃t − θ∗

)⊤
V

1/2
τ−1

)

≤
(
1 +

i−1∑
j=m+1

∥∥V −1/2
τ−1 bτ,j

∥∥2
2

)∥∥θ̃t − θ∗
∥∥2
Vτ−1

≤
(
1 + (L− 1)(m+ 1)2γ

+
) ∥∥θ̃t − θ∗

∥∥2
Vτ−1

≤ L(m+ 1)2γ
+ ∥∥θ̃t − θ∗

∥∥2
Vτ−1

. (A.7)

Recalling also that ⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩ ≤ 2L(m + 1)γ
+ , we have with probability

at least 1− δ
T/(m+L)∑

τ=1

⟨b̃,θ∗⟩ − ⟨bτ ,θ∗⟩

≤
T/(m+L)∑

τ=1

min
{
2L(m+ 1)γ

+
, ⟨bτ , θ̃τ − θ∗⟩

}

=

T/(m+L)∑
τ=1

min

{
2L(m+ 1)γ

+
,

m+L∑
i=m+1

⟨bτ,i, θ̃τ − θ∗⟩
}

≤
T/(m+L)∑

τ=1

min

{
2L(m+ 1)γ

+
,

m+L∑
i=m+1

∥bτ,i∥V −1
τ,i−1

∥∥θ̃t − θ∗
∥∥
Vτ,i−1

}

≤
T/(m+L)∑

τ=1

min

{
2L(m+ 1)γ

+
, 2
√
L(m+ 1)γ

+
βτ−1(δ)

m+L∑
i=m+1

∥bτ,i∥V −1
τ,i−1

}

≤ 2L(m+ 1)γ
+
βT/(m+L)(δ)

T/(m+L)∑
τ=1

m+L∑
i=m+1

min
{
1 , ∥bτ,i∥V −1

τ,i−1

}

≤ 2L(m+ 1)γ
+
βT/(m+L)(δ)

√√√√ T L

m+ L

T/(m+L)∑
τ=1

m+L∑
i=m+1

min

{
1 , ∥bτ,i∥2V −1

τ,i−1

}

≤ 2
√
2L(m+ 1)γ

+
βT/(m+L)(δ)

√
T ln

|VT/(m+L)|
|λId|

Appendix A. Appendix 139

≤ 4L(m+ 1)γ
+

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·

√λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

) , (A.8)

where we have used (A.5), (A.6), and (A.7). Similarly to Proposition 5.5, note
that in the stationary case, i.e., when m = 0 and L = 1, we exactly recover
[Abbasi-Yadkori et al., 2011, Theorem 3]. The first claim of Theorem 5.6 is
obtained by setting λ ∈ [1, d], and δ = 1/T .
Let RT denote the right-hand side of (A.8). Combining this bound with the
arguments of Proposition 4.4, we have with probability 1− δ

T∑
t=1

rt ≥
T/(m+L)∑

τ=1

r̃(aτ)−
m(m+ 1)γ

+

m+ L
T (A.9)

=

T/(m+L)∑
τ=1

⟨bτ ,θ∗⟩ − m(m+ 1)γ
+

m+ L
T

≥
T/(m+L)∑

τ=1

⟨b̃,θ∗⟩ −RT −
m(m+ 1)γ

+

m+ L
T (A.10)

=

T/(m+L)∑
τ=1

r̃(ã)−RT −
m(m+ 1)γ

+

m+ L
T

≥
T∑
t=1

r̃t −RT −
2m(m+ 1)γ

+

m+ L
T (A.11)

≥ OPT−RT −
4m(m+ 1)γ

+

m+ L
T (A.12)

≥ OPT− 4(m+ 1)γ
+

[
mT

m+ L
+ (m+ L)

√
Td ln

(
1 +

T (m+ 1)2γ+

dλ

)

·
(
√
λ+

√
ln

(
1

δ

)
+ d ln

(
1 +

T (m+ 1)2γ+

d(m+ L)λ

))]
,

where (A.9) and (A.11) come from the fact that any instantaneous reward is
bounded by (m + 1)γ

+ , see (5.12), (A.10) from (A.8), and (A.12) from Propo-
sition 4.4.
Now, assume that m ≥ 1, T ≥ d2m2 + 1, and let L =

⌈√
m/d T 1/4

⌉
−m. By

the condition on T , we have
√
m/d T 1/4 > m ≥ 1, such that L ≥ 1 and√

m

d
T 1/4 ≤

⌈√
m

d
T 1/4

⌉
= L+m ≤

√
m

d
T 1/4 + 1 ≤ 2

√
m

d
T 1/4 .

Appendix A. Appendix 140

Substituting in the above bound, we have with probability 1− δ

OPT−
T∑
t=1

rt ≤ 4
√
d (m+ 1)

1
2
+γ+

T 3/4

[
1 + 2

√
ln

(
1 +

T (m+ 1)2γ+

dλ

)

·
(√

λ

d
+

√
ln(1/δ)

d
+ ln

(
1 +

T (m+ 1)2γ+

dλ

))]
.

The second claim of Theorem 5.6 is obtained by setting λ ∈ [1, d], and δ =
1/T .

A.5 Proof of Corollary 5.8
Lemma 5.7. Suppose that a block-based bandit algorithm (in our case the bandit
combiner) produces a sequence of Tbc blocks aτ , with possibly different cardinal-
ities |aτ |, such that

Tbc∑
τ=1

r̃(ã)

|ã| −
Tbc∑
τ=1

r̃(aτ)

|aτ |
≤ F (Tbc) ,

for some sublinear function F . Then, we have

minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

Tbc∑
τ=1

r̃(aτ) ≤ min
τ
|aτ |F (Tbc) .

In particular, if all blocks have the same cardinality the last bound is just the
block regret bound scaled by |aτ |.

Proof. We have

Tbc∑
τ=1

r̃(aτ) ≥ min
τ
|aτ |

Tbc∑
τ=1

r̃(aτ)

|aτ |

≥ min
τ
|aτ |

(
Tbc∑
τ=1

r̃(ã)

|ã| − F (Tbc)

)

=
minτ |aτ |
maxτ |aτ |

r̃(ã)

|ã| max
τ
|aτ | Tbc −min

τ
|aτ |F (Tbc)

≥ minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−min

τ
|aτ |F (Tbc) .

Corollary 5.8. Consider an instance of LBM with unknown parameters (m⋆, γ⋆).
Assume a bandit combiner is run on N ≤ d

√
m⋆ instances of OFUL-memory (Al-

gorithm 4), each using a different pair of parameters (mi, γi) from a set S ={
(m1, γ1), . . . , (mN , γN)

}
such that (m⋆, γ⋆) ∈ S. Let M = (maxj mj)/(minj mj).

Then, for all T ≥ (m⋆+1)2γ
+
⋆ /m⋆d

4, the expected rewards
(
rbc
t

)T
t=1

of the bandit

Appendix A. Appendix 141

combiner satisfy

OPT√
M
− E

[
T∑
t=1

rbc
t

]
= Õ

(
M d (m⋆ + 1)1+

3
2
γ+
⋆ T 3/4

)
.

Proof. Let m⋆ be the true memory size, and L⋆ = L(m⋆) the corresponding
(partial) block length. Throughout the proof, ã denotes the block defined in
(5.8) with length m⋆ + L⋆. First observe that only one of the OFUL-memory
instances we test is well-specified, i.e., has the true parameters (m⋆, γ⋆). We
can thus rewrite the regret bound for the Bandit Combiner [Cutkosky et al.,
2020, Corollary 2], generalized to rewards bounded in [−R,R] as follows

Regretbc = Õ
(
C⋆T

α⋆
bc + C

1
α⋆
⋆ Tbcη

1−α⋆
α⋆

⋆ +R2Tbcη⋆ +
∑
j ̸=⋆

1

ηj

)
, (A.13)

where Tbc = T/(m⋆ + L⋆) is the bandit combiner horizon, C⋆ and α⋆ are the
constants in the regret bound of the well-specified instance (see below how we
determine them), and the ηj are free parameters to be tuned. We now derive C⋆

and α⋆. To that end, we must establish the regret bound of the well-specified
instance, and identify C⋆ and α⋆ such that this bound is equal to C⋆T

α⋆
bc , where

C⋆ may contain logarithmic factors. For the well-specified instance, the first
claim of Theorem A.1 gives that, with probability at least 1− δ, we have

T/(m⋆+L⋆)∑
τ=1

r̃(ã)− r̃(aτ) ≤ 4(m⋆ + L⋆)(m⋆ + 1)γ
+
⋆

√√√√Td ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

dλ

)
√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

d(m⋆ + L⋆)λ

)
T/(m⋆+L⋆)∑

τ=1

r̃(ã)

|ã| −
r̃(aτ)

|aτ |
≤ T 1/2 4(m⋆ + 1)γ

+
⋆

√√√√d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

dλ

)
(A.14)√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

T (m⋆ + 1)2γ
+
⋆

d(m⋆ + L⋆)λ

) ,

where we have used that |aτ | = |ã| = m⋆ + L⋆ for every τ . Note that the
right-hand side of (A.14) is expressed in terms of T , which is not the correct
horizon, T/(m⋆ + L⋆). However, recall that we have

m⋆ + L⋆ ≤ 2

√
m⋆

d
T 1/4

(m⋆ + L⋆)
4 ≤

(
4m⋆

d

)2

T

Appendix A. Appendix 142

T 3 ≤
(
4m⋆

d

)2(
T

m⋆ + L⋆

)4

T 1/2 ≤
(
4m⋆

d

)1/3(
T

m⋆ + L⋆

)2/3

,

such that by substituting in (A.14) and identifying we have α⋆ = 2/3, and

C⋆ = 4

(
4m⋆

d

)1/3

(m⋆ + 1)γ
+
⋆

√√√√d ln

(
1 +

Tbc(m⋆ + L⋆)(m⋆ + 1)2γ
+
⋆

dλ

)
√λ+

√√√√ln

(
1

δ

)
+ d ln

(
1 +

Tbc(m⋆ + 1)2γ
+
⋆

dλ

) .

Setting ηj = T
−2/3
bc , and substituting in (A.13) with R = (m⋆ + 1)γ

+
⋆ , we have

that with high probability

Tbc∑
τ=1

r̃(ã)

|ã| −
r̃(abc

τ)

|abc
τ |

= Õ
((
C3/2

⋆ +N
)
T

2/3
bc + (m⋆ + 1)2γ

+
⋆ T

1/3
bc

)
.

Now, recall that Tbc = O
(√

d/m⋆ T
3/4
)
, and that C⋆ = Õ

(
(m⋆ + 1)

1
3
+γ+

⋆ d2/3
)
.

Hence, N ≤ d
√
m⋆ implies N = O

(
C

3/2
j

)
, and (m⋆ + 1)γ

+
⋆ ≤ d2

√
m⋆T implies

(m⋆ + 1)γ
+
⋆ T

1/3
bc = O

(
C

3/2
⋆ T

2/3
bc

)
. Setting λ ∈ [1, d], δ = 1/T , we obtain

E

[
Tbc∑
τ=1

r̃(ã)

|ã| −
r̃(abc

τ)

|abc
τ |

]
= Õ

(
d
√
m⋆ (m⋆ + 1)

3
2
γ+
⋆ T

2/3
bc

)
. (A.15)

Let mτ be the memory size associated to the bandit played at block time step
τ by Algorithm 4. Let mmin = minj mj and mmax = maxj mj. Finally, let Lmin

and Lmax the (partial) block length associated with mmin and mmax. We have

T∑
t=1

rbc
t ≥

Tbc∑
τ=1

(
r̃(abc

τ)−mτ (m⋆ + 1)γ
+
⋆

)
≥

Tbc∑
τ=1

r̃(abc
τ)−mmax (m⋆ + 1)γ

+
⋆ Tbc ,

such that by Lemma 5.7 and (A.15) we obtain

E

[
minτ |aτ |
maxτ |aτ |

(
r̃(ã)

∑
τ |aτ |
|ã|

)
−

T∑
t=1

rbc
t

]
≤ mmax (m⋆ + 1)γ

+
⋆ Tbc

+min
τ
|aτ | Õ

(
d
√
m⋆ (m⋆ + 1)

3
2
γ+
⋆ T

2/3
bc

)
,

E

[
mmin + Lmin

mmax + Lmax

(
L⋆OPT

T

T

m⋆ + L⋆

)
−

T∑
t=1

rbc
t

]
≤ mmax (m⋆ + 1)γ

+
⋆ T

mmin + Lmin

+ (mmin + Lmin)
1/3 Õ

(
d
√
m⋆ (m⋆ + 1)

3
2
γ+
⋆ T 2/3

)
,

Appendix A. Appendix 143

E

[√
mmin

mmax
OPT−

T∑
t=1

rbc
t

]
≤ mmax

mmin

√
dm⋆ (m⋆ + 1)γ

+
⋆ T 3/4

+ Õ
(
dm⋆ (m⋆ + 1)

3
2
γ+
⋆ T 3/4

)
=
mmax

mmin
Õ
(
dm⋆ (m⋆ + 1)

3
2
γ+
⋆ T 3/4

)
,

where we have used the fact that mmin + Lmin =
√
mmin/d T

1/4, and mmax +

Lmax =
√
mmax/d T

1/4. Corollary 5.8 is obtained by setting M = mmax/mmin.

144

Bibliography

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear
stochastic bandits. Advances in neural information processing systems, 24,
2011.

S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In Conference on learning theory, pages 39–1. JMLR Work-
shop and Conference Proceedings, 2012.

R. Alami, O. Maillard, and R. Féraud. Memory bandits: a bayesian approach
for the switching bandit problem. In NIPS 2017-31st conference on neural
information processing systems, 2017.

AllMusic. Music genres. https://www.allmusic.com/genres, 2021. Accessed:
2021-05-06.

C. V. S. Araujo. A model for predicting music popularity on spotify. Extended
Abstracts for the Late-Breaking Demo Session of the 21st International So-
ciety for Music Information Retrieval Conference, 2020.

A. Atsidakou, O. Papadigenopoulos, S. Basu, C. Caramanis, and S. Shakkot-
tai. Combinatorial blocking bandits with stochastic delays. In International
Conference on Machine Learning, pages 404–413. PMLR, 2021.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE
36th annual foundations of computer science, pages 322–331. IEEE, 1995.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235–256, 2002.

P. Auer, P. Gajane, and R. Ortner. Adaptively tracking the best bandit arm
with an unknown number of distribution changes. In A. Beygelzimer and
D. Hsu, editors, Proceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning Research, pages 138–
158. PMLR, 25–28 Jun 2019. URL https://proceedings.mlr.press/v99/
auer19a.html.

A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber. Minimizing service and
operation costs of periodic scheduling. Mathematics of Operations Research,
27(3):518–544, 2002.

A. Baratè and L. A. Ludovico. A web platform to extract and investigate music
genre labels in spotify. In Proceedings of the 19th Sound and Music Computing
Conference, 2022. ISBN 978-2-9584126-0-9. doi: 10.5281/zenodo.6573370.

https://www.allmusic.com/genres
https://proceedings.mlr.press/v99/auer19a.html
https://proceedings.mlr.press/v99/auer19a.html

BIBLIOGRAPHY 145

S. Basu, R. Sen, S. Sanghavi, and S. Shakkottai. Blocking bandits. Advances
in Neural Information Processing Systems, 32, 2019.

S. Basu, O. Papadigenopoulos, C. Caramanis, and S. Shakkottai. Contextual
blocking bandits. In International Conference on Artificial Intelligence and
Statistics, pages 271–279. PMLR, 2021.

O. Besbes, Y. Gur, and A. Zeevi. Stochastic multi-armed-bandit problem
with non-stationary rewards. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Associates, Inc., 2014.
URL https://proceedings.neurips.cc/paper_files/paper/2014/file/
903ce9225fca3e988c2af215d4e544d3-Paper.pdf.

O. Besbes, Y. Gur, and A. Zeevi. Optimal exploration-exploitation in a multi-
armed-bandit problem with non-stationary rewards, 2019.

L. Besson and E. Kaufmann. The generalized likelihood ratio test meets klucb:
an improved algorithm for piece-wise non-stationary bandits. Proceedings of
Machine Learning Research vol XX, 1:35, 2019.

P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In
Proceedings of the 13th international conference on World Wide Web, pages
595–602, New York, NY, 2004a. ACM.

P. Boldi and S. Vigna. The webgraph framework ii: Codes for the world-wide
web. In Data Compression Conference, 2004. Proceedings. DCC 2004, page
528, New York, NY, 2004b. IEEE, ACM.

P. Boldi and S. Vigna. In-core computation of geometric centralities with hyper-
ball: A hundred billion nodes and beyond. In 2013 IEEE 13th International
Conference on Data Mining Workshops, pages 621–628, New York, NY, 2013.
IEEE. doi: 10.1109/ICDMW.2013.10.

P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):
222–262, 2014. doi: 10.1080/15427951.2013.865686.

D. Bouneffouf and R. Féraud. Multi-armed bandit problem with known trend.
Neurocomputing, 205:16–21, 2016.

R. R. Bush and F. Mosteller. A stochastic model with applications to learning.
The Annals of Mathematical Statistics, pages 559–585, 1953.

L. Cella and N. Cesa-Bianchi. Stochastic bandits with delay-dependent payoffs.
In International Conference on Artificial Intelligence and Statistics, pages
1168–1177. PMLR, 2020.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer
and System Sciences, 78(5):1404–1422, 2012.

https://proceedings.neurips.cc/paper_files/paper/2014/file/903ce9225fca3e988c2af215d4e544d3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/903ce9225fca3e988c2af215d4e544d3-Paper.pdf

BIBLIOGRAPHY 146

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General
framework and applications. In International conference on machine learning,
pages 151–159. PMLR, 2013.

J. Cheng, D. M. Romero, B. Meeder, and J. Kleinberg. Predicting reciprocity
in social networks. In 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Conference on
Social Computing, 2011. doi: 10.1109/PASSAT/SocialCom.2011.110.

W. C. Cheung, D. Simchi-Levi, and R. Zhu. Learning to optimize under non-
stationarity. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1079–1087. PMLR, 2019.

J. Clausen. Branch and bound algorithms-principles and examples. Department
of Computer Science, University of Copenhagen, pages 1–30, 1999.

G. Clerici* and M. Tiraboschi*. Citation is not collaboration: Music-genre de-
pendence of graph-related metrics in a music credits network. In Proceedings
of the 20th Sound and Music Computing, pages 317–322. Royal College of
Music and KTH Royal Institute of Technology, 2023.

G. Clerici, P. Laforgue, and N. Cesa-Bianchi. Linear bandits with memory,
2023.

J. Cohen. Statistical power analysis for the behavioral sciences. Routledge,
Abingdon-on-Thames, UK, 1988. doi: 10.4324/9780203771587.

K. Crauwels. Musicmap - the genealogy and history of popular music genres
from origin till present (1870-2016). https://musicmap.info, 2016. Ac-
cessed: 2021-10-05.

A. Cutkosky, A. Das, and M. Purohit. Upper confidence bounds for combining
stochastic bandits. arXiv preprint arXiv:2012.13115, 2020.

M. R. Dimitrijević, J. Faganel, M. Gregorić, P. Nathan, and J. Trontelj. Habit-
uation: effects of regular and stochastic stimulation. Journal of Neurology,
Neurosurgery & Psychiatry, 35(2):234–242, 1972.

F. Fabbri. A theory of musical genres: two applications. Popular music: critical
concepts in media and cultural studies, 3:7–35, 2004.

D. J. Foster, A. Krishnamurthy, and H. Luo. Model selection for contextual
bandits. Advances in Neural Information Processing Systems, 32, 2019.

M. Fuller-Tyszkiewicz, B. Richardson, V. Lewis, J. Linardon, J. Mills, K. Juk-
naitis, C. Lewis, K. Coulson, R. O’Donnell, L. Arulkadacham, et al. A ran-
domized trial exploring mindfulness and gratitude exercises as ehealth-based
micro-interventions for improving body satisfaction. Computers in Human
Behavior, 95:58–65, 2019.

https://musicmap.info

BIBLIOGRAPHY 147

Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network optimization
with unknown variables: Multi-armed bandits with linear rewards and indi-
vidual observations. IEEE/ACM Transactions on Networking, 20(5):1466–
1478, 2012.

A. Garivier and E. Moulines. On upper-confidence bound policies for switch-
ing bandit problems. In International Conference on Algorithmic Learning
Theory, pages 174–188. Springer, 2011.

D. Garlaschelli and M. I. Loffredo. Patterns of link reciprocity in di-
rected networks. Physical Review Letters, 93:268701, Dec 2004. doi: 10.
1103/PhysRevLett.93.268701. URL https://link.aps.org/doi/10.1103/
PhysRevLett.93.268701.

J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 41(2):148–164,
1979.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using networkx. In G. Varoquaux, T. Vaught, and
J. Millman, editors, Proceedings of the 7th Python in Science Conference,
Pasadena, CA USA, 2008. SciPy2008.

C. Hartland, N. Baskiotis, S. Gelly, M. Sebag, and O. Teytaud. Change point
detection and meta-bandits for online learning in dynamic environments. In
CAp 2007: 9è Conférence francophone sur l’apprentissage automatique, pages
237–250, 2007.

H. Heidari, M. J. Kearns, and A. Roth. Tight policy regret bounds for improving
and decaying bandits. In IJCAI, pages 1562–1570, 2016.

R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A
real-time scheduling problem. In Proceedings of the 22nd Hawaii International
Conference of System Science, pages 693–702, 1989.

J.-h. Kim, M. Vojnovic, and S.-Y. Yun. Rotting infinitely many-armed ban-
dits. In International Conference on Machine Learning, pages 11229–11254.
PMLR, 2022.

R. Kleinberg and N. Immorlica. Recharging bandits. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 309–319.
IEEE, 2018.

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit
exploration in bandit problems with side observations. Advances in Neural
Information Processing Systems, 27, 2014.

L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning, ecml’06 in:
Ecml-06, 2006.

https://link.aps.org/doi/10.1103/PhysRevLett.93.268701
https://link.aps.org/doi/10.1103/PhysRevLett.93.268701

BIBLIOGRAPHY 148

G. Kovacs, Z. Wu, and M. S. Bernstein. Rotating online behavior change in-
terventions increases effectiveness but also increases attrition. Proceedings of
the ACM on Human-Computer Interaction, 2(CSCW):1–25, 2018.

J. K. Kruschke. Bayesian estimation supersedes the t test. Journal of Experi-
mental Psychology: General, 142(2):573, 2013. doi: 10.1037/a0029146.

M. Kunaver and T. Požrl. Diversity in recommender systems–a survey.
Knowledge-based systems, 123:154–162, 2017.

B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari. Tight regret bounds for
stochastic combinatorial semi-bandits. In Artificial Intelligence and Statistics,
pages 535–543. PMLR, 2015.

P. Laforgue, G. Clerici, N. Cesa-Bianchi, and R. Gilad-Bachrach. A last switch
dependent analysis of satiation and seasonality in bandits. In G. Camps-Valls,
F. J. R. Ruiz, and I. Valera, editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings
of Machine Learning Research, pages 971–990. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/laforgue22a.html.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985.

A. H. Land and A. G. Doig. An automatic method for solving discrete program-
ming problems. Springer, 2010.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University
Press, 2020.

L. Leqi, F. Kilinc Karzan, Z. Lipton, and A. Montgomery. Rebounding bandits
for modeling satiation effects. Advances in Neural Information Processing
Systems, 34:4003–4014, 2021.

N. Levine, K. Crammer, and S. Mannor. Rotting bandits. Advances in neural
information processing systems, 30, 2017.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pages 661–670, 2010.

N. Lin. Foundations of Social Research. McGraw-Hill, New York, NY, 1976.

F. Liu, J. Lee, and N. Shroff. A change-detection based framework for piecewise-
stationary multi-armed bandit problem. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018.

G. Lugosi, C. Pike-Burke, and P.-A. Savalle. Bandit problems with fidelity
rewards. arXiv preprint arXiv:2111.13026, 2021.

Y. Matsumoto, R. Harakawa, T. Ogawa, and M. Haseyama. Context-aware net-
work analysis of music streaming services for popularity estimation of artists.
IEEE Access, 8:48673–48685, 2020. doi: 10.1109/ACCESS.2020.2978281.

https://proceedings.mlr.press/v151/laforgue22a.html

BIBLIOGRAPHY 149

G. McDonald. Every noise at once. https://everynoise.com, 2013. Accessed:
2021-10-05.

G. Meinlschmidt, J.-H. Lee, E. Stalujanis, A. Belardi, M. Oh, E. K. Jung, H.-C.
Kim, J. Alfano, S.-S. Yoo, and M. Tegethoff. Smartphone-based psychothera-
peutic micro-interventions to improve mood in a real-world setting. Frontiers
in psychology, 7:1112, 2016.

A. M. Metelli, F. Trovo, M. Pirola, and M. Restelli. Stochastic rising bandits. In
International Conference on Machine Learning, pages 15421–15457. PMLR,
2022.

K. E. Nelson, M. K. Scherer, and U. N. N. S. Administration. Jpype, 6 2020.

G. P. Oliveira, M. O. Silva, D. B. Seufitelli, A. Lacerda, and M. M. Moro.
Detecting collaboration profiles in success-based music genre networks. In
Proceedings of the 21st International Society for Music Information Retrieval
Conference, pages 726–732, Montreal, Canada, 2020. ISMIR.

J. E. Owen, E. Kuhn, B. K. Jaworski, P. McGee-Vincent, K. Juhasz, J. E.
Hoffman, and C. Rosen. Va mobile apps for ptsd and related problems:
public health resources for veterans and those who care for them. Mhealth,
4, 2018.

A. Pacchiano, M. Phan, Y. Abbasi Yadkori, A. Rao, J. Zimmert, T. Lattimore,
and C. Szepesvari. Model selection in contextual stochastic bandit problems.
Advances in Neural Information Processing Systems, 33:10328–10337, 2020.

P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, and
J. Hernandez. Poptherapy: Coping with stress through pop-culture. In Pro-
ceedings of the 8th international conference on pervasive computing technolo-
gies for healthcare, pages 109–117, 2014.

C. Pike-Burke and S. Grunewalder. Recovering bandits. Advances in Neural
Information Processing Systems, 32, 2019.

A. Rajaraman and J. D. Ullman. Mining of massive datasets. Cambridge
University Press, 2011.

Y. Rochat. Closeness centrality extended to unconnected graphs: The har-
monic centrality index. Technical report, Institute of Applied Mathematics
University of Lausanne, 2009.

Y. Russac, C. Vernade, and O. Cappé. Weighted linear bandits for non-
stationary environments. Advances in Neural Information Processing Sys-
tems, 32, 2019.

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):
1–96, 2018.

https://everynoise.com

BIBLIOGRAPHY 150

D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz. The digitization of the world
from edge to core. Framingham: International Data Corporation, 16:1–28,
2018.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in
python using pymc3. PeerJ Computer Science, 2:e55, 2016. doi: 10.7717/
peerj-cs.55.

M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. Current chal-
lenges and visions in music recommender systems research. International
Journal of Multimedia Information Retrieval, 7:95–116, 2018.

J. Schroeder, C. Wilkes, K. Rowan, A. Toledo, A. Paradiso, M. Czerwinski,
G. Mark, and M. M. Linehan. Pocket skills: A conversational mobile web
app to support dialectical behavioral therapy. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pages 1–15, 2018.

M. Sciandra and I. C. Spera. A model-based approach to spotify data analysis:
a beta glmm. Journal of Applied Statistics, 49(1):214–229, 2022. doi: 10.
1080/02664763.2020.1803810.

J. Seznec. Apprentissage automatique séquentiel pour les systèmes éducatifs
intelligents. PhD thesis, École Doctorale Sciences Pour l’Ingénieur, 2020.

J. Seznec, A. Locatelli, A. Carpentier, A. Lazaric, and M. Valko. Rotting bandits
are no harder than stochastic ones. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 2564–2572. PMLR, 2019.

J. Seznec, P. Menard, A. Lazaric, and M. Valko. A single algorithm for both
restless and rested rotting bandits. In International Conference on Artificial
Intelligence and Statistics, pages 3784–3794. PMLR, 2020.

D. Simchi-Levi, Z. Zheng, and F. Zhu. Dynamic planning and learning under
recovering rewards. In International Conference on Machine Learning, pages
9702–9711. PMLR, 2021.

T. South, M. Roughan, and L. Mitchell. Popularity and centrality in spotify net-
works: critical transitions in eigenvector centrality. Journal of Complex Net-
works, 8(6):1–18, Dec 2020. ISSN 2051-1329. doi: 10.1093/comnet/cnaa050.

Spotify. Spotify web api. https://developer.spotify.com/documentation/
web-api, 2021. Accessed: 2022-05-06.

W. R. Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3-4):285–294,
1933.

L. Wardil and C. Hauert. Origin and structure of dynamic cooperative net-
works. Scientific Reports, 4(1):5725, Jul 2014. ISSN 2045-2322. doi:
10.1038/srep05725.

https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api

BIBLIOGRAPHY 151

R. Warlop, A. Lazaric, and J. Mary. Fighting boredom in recommender sys-
tems with linear reinforcement learning. Advances in Neural Information
Processing Systems, 31, 2018.

L. Wei and V. Srivatsva. On abruptly-changing and slowly-varying multiarmed
bandit problems. In 2018 Annual American Control Conference (ACC), pages
6291–6296. IEEE, 2018.

P. Whittle. Restless bandits: Activity allocation in a changing world. Journal
of applied probability, 25(A):287–298, 1988.

Wikipedia. Comparison of music streaming services. https://en.wikipedia.
org/wiki/Comparison_of_music_streaming_services, 2023. Accessed:
2023-02-06.

M. Woodroofe. A one-armed bandit problem with a concomitant variable. Jour-
nal of the American Statistical Association, 74(368):799–806, 1979.

J. Y. Yu, S. Mannor, and N. Shimkin. Markov decision processes with arbitrary
reward processes. Mathematics of Operations Research, 34(3):737–757, 2009.

https://en.wikipedia.org/wiki/Comparison_of_music_streaming_services
https://en.wikipedia.org/wiki/Comparison_of_music_streaming_services

	Introduction
	Motivation
	Multiarmed Bandits
	The Spotify™ network as a directed graph
	Contributions and Publications
	Structure of the thesis

	The theory behind multiarmed bandits
	Stochastic K-armed bandits
	Adversarial multiarmed bandits
	Adversarial linear multiarmed bandits
	Stochastic contextual multiarmed bandits
	Stochastic linear multiarmed bandits
	Combinatorial (semi)-bandits
	Non-stationary multiarmed bandits

	The state of the art of non-stationary bandits
	Exogenous non-stationarity
	Piece-wise stationary bandits
	Non-stationary bandits with variation budget
	Rotting restless bandits
	Rising restless bandits

	Endogenous non-stationarity
	Rested bandits
	Rotting rested bandits
	Rising rested bandits
	Fidelity bandits

	State-dependent bandits
	Rebounding bandits
	Blocking bandits

	A novel non-stationary bandit model with finitely many arms
	Motivations and applications
	The Last Switch Dependent bandit model
	The estimation problem
	The proposed solution
	Experiments on the LSD bandit setting
	Conclusions

	A novel linear non-stationary bandit model
	Motivations and applications
	Linear Bandits with Memory (LBM)
	The approximation errors
	The estimation problem
	An approach for model selection
	Experiments on the LBM setting
	Conclusions

	The Spotify™ network
	Background and literature review
	The Spotify™ data
	Theoretical definitions
	Reciprocity
	Reachable Sets
	Centrality Metrics
	In-degree
	Closeness
	Lin Centrality
	Harmonic Centrality
	PageRank

	Analysis of several centrality measures on the Spotify™ music credits network
	The importance of a directed graph
	A new node-wise index of reciprocity
	Conclusions

	Conclusions
	Future developments

	Appendix
	Proof of the regret bound of OFUL
	Proof of the regret bound of CombUCB1
	Proof of Proposition 5.4
	Proof of Theorem 5.6
	Proof of Corollary 5.8

