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Abstract: A core endeavour in current affective computing and social signal processing research is
the construction of datasets embedding suitable ground truths to foster machine learning methods.
This practice brings up hitherto overlooked intricacies. In this paper, we consider causal factors
potentially arising when human raters evaluate the affect fluctuations of subjects involved in dyadic
interactions and subsequently categorise them in terms of social participation traits. To gauge such
factors, we propose an emulator as a statistical approximation of the human rater, and we first discuss
the motivations and the rationale behind the approach.The emulator is laid down in the next section
as a phenomenological model where the core affect stochastic dynamics as perceived by the rater
are captured through an Ornstein–Uhlenbeck process; its parameters are then exploited to infer
potential causal effects in the attribution of social traits. Following that, by resorting to a publicly
available dataset, the adequacy of the model is evaluated in terms of both human raters’ emulation
and machine learning predictive capabilities. We then present the results, which are followed by a
general discussion concerning findings and their implications, together with advantages and potential
applications of the approach.

Keywords: affective computing; social perception; causal inference; stochastic processes; Bayesian
inference

1. Introduction

The problem: context and importance. Consider the scenario in Figure 1, a canoni-
cal one in affective computing [1–3]. Participants are involved in an interaction task
(here, we will consider a dyadic one), while a third person (the rater or “labeller”) observes
their behaviour and rates both the evolution of their affective experience and subsequently
its social behaviour. Data from participants are sensed through multimodal measurements
(video, audio, physiological, etc.) and ratings provided by the human sensor/rater are
collected to be used as a “ground truth” for subsequent analyses. The data gathered from
participants and ground truth labellings together form a dataset, which is usually exploited
by machine sensing and learning procedures to achieve some prediction of interest.

Computational methods devoted to understanding and predicting social behaviour
and personality traits have recently witnessed a flourish of investigations. By and large,
the proposed approaches rely on solutions apt at dealing with multimodal information
(e.g., audio, RGB(-D) videos, physiological information, eye movement data, etc.) in order
to recognize (in the sense of the pattern recognition paradigm) psychological motifs such
as personality traits [4–6], social behaviour [7–12], or even competence for a job [13–15]
(but see [16] for a review). These methods typically rely on publicly available datasets to
learn models and to benchmark their prediction outcomes. In brief, they are operationalised
in the canonical scenario outlined in Figure 1.
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Figure 1. A standard scenario for dataset construction and exploitation. Multimodal data are collected
from the behaviour of participants involved in some affective/social task or context (for simplicity,
the recording apparatus is not explicitly shown in the scheme). A “ground truth” is provided by the
rater sensing affect/social behaviour unfolding (e.g., in terms of valence and arousal dimensions).
Data and ground truths are subsequently exploited for computational model training and testing to
obtain prediction outcomes of interest (e.g., classification of affective/social behaviour patterns).

However, this deceptively straightforward setting hides a complex state of affairs
that should be plainly set forth from the very beginning and which is best represented
in Figure 2 (but see the Discussion in Section 2).

In the case of affective/social behaviour, unfortunately, we are far from the stan-
dard conditions that we encounter, for instance, in computer vision, where classes of
objects and events (e.g., actions) of interest can be objectively sensed and categorized
(e.g., by assigning a “label”). Measuring general affective and more specific emotional
changes or judging social behaviour is complex and fraught with difficulties. This caveat
should always be taken seriously, as scrutinized in depth in terms of validity by [17–19].
Indeed, the “measurement model” is strongly dependent on the psychological construct
adopted to frame affective/social behaviour [17].

Beyond concerns with the validity/reliability of the study behind the corpus con-
struction and the collected data, other issues are to be considered among which the
“ground truth problem” [19,20] is a prominent one. This is an apparently crude techni-
cal issue and hitherto overlooked in the affective computing literature. As a matter of
fact, even in the case the raters are professionally trained (e.g., psychologists), nothing
grants a reliable ground truth of the inner state of the observed subjects to be eventually
produced [19]. Moreover, the adoption of folk category labels for organizing and rating
patterns of affective behaviour has been questioned [20]. Furthermore, when multiple rat-
ings are provided that concern different aspects of participants’ behaviours, these might be
intertwined to some extent due to the rater’s inferential procedures. Their joint exploitation
in the service of subsequent (machine learning) analyses might turn such circumstances
into either a pitfall or an opportunity [20].
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Figure 2. Rater’s emulation in context. The scheme draws on the scenario presented in Figure 1 while
highlighting some intricacies. The participant’s behaviour (affective, social) is summarised through a
variety of measurements concerning either perceivable cues (e.g., audio, video) and the accompanying
physiological responses (e.g., galvanic skin response). On the one hand, the appropriate use of
such measurements depends on the measurement model, which in turn entails making specific
assumptions on how a participant’s affective and social behaviour are generated [17,18]; here, a
psychological constructionist model is assumed (see Section 2). On the other hand, the human sensor
is not a passive one, but he/she actively scrutinises participants by relying upon prior conceptual
knowledge, language and biases to organize the sensory input. Subsequent ratings, e.g., of affect
and social behaviour, can bring about causal dependencies (light gray arrow) between rating stages.
The emulation of the rater provides a statistical approximation to the rating process suitable to unveil
causal factors impinging on the labelling. The emulator’s results might be exploited to provide
complementary information (dashed arrows) either to the corpus itself or to subsequent analyses
performed via machine learning techniques.

Clearly, the aims of the above mentioned studies (social behaviour quantification/identification)
and their methodology (the classic computer vision or pattern recognition pipeline, extraction of
unimodal or multimodal features followed by regression/classification) overlook or do not address
per se the questions we are confronting here.

Research plan. To shed light on such problem, we consider the case of affect and social
ratings of participants involved in dyadic interactions. Specifically, we question how the
rater’s sensing of given affective dynamics impinges on his/her attribution of a particular
social participation trait.

Our chief concern is in devising a suitable modelling approach to unveil the causal
relationships between the affect dynamics and social trait attribution through the lens
adopted by the rater. We spell the proposed model in the shape of an emulator of the
rater. As opposed to a simulator that aims at modelling in detail a process, an emulator
is a statistical approximation of the process under scrutiny, which allows for simpler
computations than using the process simulator [21]. In our case, the approach is laid
down as follows:

1. Based on the available affect annotations in the valence-arousal space and building
on some preliminary work [22], we phenomenologically model core affect dynamics,
a stochastic trajectory, as an Ornstein–Uhlenbeck (OU) process and identify its relevant
parameters; these can be considered as descriptors of the individual’s affect tendency;

2. We then gauge the cause/effect relationship between such dynamics and social person-
ality, its extent and the direction of such effect. To such end, we use the deconfounder
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method [23]. The method replaces potential unobserved confounders with an inferred
latent variable; the latter is subsequently used to perform causal inference on social
participation labels.

The operalisation of the approach is summarised at a glance in Figure 2. The introduc-
tion of the emulator model brings up three questions at least:

1. Is the emulated core affect dynamics consistent with the participant’s affect dynamics
as perceived by the human rater? (RQ1)

2. Is the emulated social behaviour judgement causally related to the affect dynamics
and reliable with respect to the human rater evaluation? (RQ2)

3. Are the emulator results to some extent suitable to be exploited in subsequent machine-
oriented analyses? (RQ3)

Method. To address such questions, we exploit the well-known and publicly available
RECOLA dataset [24]. This corpus incorporates a variety of affective and behavioural
data collected along dyadic interactions where pairs of participants were asked to perform
a cooperative task. In our analysis, we consider the ratings concerning the core affect
state (continuous) and social personality traits (discrete), which were assigned by human
raters while scrutinizing the recorded dyadic interactions. Appropriate techniques in the
frameworks of Bayesian inference/prediction, nonlinear system analysis and psychometrics
are exploited to operationalise the model and for its assessment.

Novelty of the approach. To the best of our knowledge, the present work is the first
attempt in affective computing to analyse the relationship between the perceived intrap-
ersonal affect dynamics and interpersonal behaviour from a causal standpoint by using
suitable computational techniques.

Beyond the conceptual and technical novelties involved by the approach that con-
cern both modelling and model assessment, the present proposal offers a fresh view to
potentially face a number of problems in different realms of application.

The abstract gives an adequate summary of the paper.

2. Background and Motivation

The current practice of dataset construction for affective computing by and large
considers, in the most general and interesting cases, an observational study where subjects
are assigned a task in a given context. The participants’ behaviour (affective, social) is
gauged through a variety of measurements concerning either perceivable cues (collected
in the form of audio and video) and the related physiological responses (e.g., heart rate
and galvanic skin response). Beyond questionnaires and procedures for participants’ self-
assessment as to their affective state, personality traits, etc., raters are most often recruited
to provide a third-person, supposedly objective “labelling” of the different facets of subjects’
behaviour. The aim is setting a ground truth suitable to be exploited by supervised or semi-
supervised machine learning methods. In the discussion that follows, we assume that the
observational experimental setting and data collection procedure have no flaws; however,
under the above circumstances, there are issues that are seldom taken into account.

Problems with measurements. The subsequent appropriate use of the gathered measure-
ments depends on the measurement model, which in turn entails making specific assump-
tions on how participant’s affective and social behaviour is generated [17,18]. For instance,
under the Basic Emotion Theory assumption (BET [25], which by and large underpins the
majority of current affective computing techniques), a stimulus (e.g., a spider) triggers a
latent emotional state (e.g., fear) that results in an array of outputs (facial, physiological,
etc., see Figure 2) that are strongly correlated with one another because of their common
cause. In this case, measuring one observable (e.g., facial muscle movements) would suffice
for emotion recognition [18]. However, recent advancements in emotion sciences [26]
give evidence of a more nuanced and complex picture, which suitably accommodates
within the framework of constructivist theories of emotion and social behaviour (see, for
reference, [27,28]).
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Given the nature of the subject, it is perhaps best we start by establishing a clear
definition of the core terms exploited in what follows. In the constructive view, emotions
(typically labelled by words as “fear”, “anger”, “surprise”, etc.) are considered to be
abstract, ad hoc categories, where a category stands for a population of events or objects
that are treated as similar because they serve a particular goal in some context [26,29].

The individual’s mental representation of a category is a concept, namely, the popula-
tion of representations that correspond to a category’s events or objects. Emotions, much
like other categorizations, are thus the result of situated conceptualizations. In turn, concep-
tual representations, the backbone of the internal representation model of the individual,
are predictively tested, moment by moment, against the incoming sensory evidence—
from both the external world and the body—to categorize it according to past experience
(prior knowledge). This endless effort aims at anticipating the body’s needs and preparing
to satisfy those needs before they arise, either by acting upon the external world/body
physiology or by revising prior beliefs [30,31]. Sensory evidence is gathered through extero-
ception and interoception. Exteroception represents sensory changes caused by the external
world; external perceptions are gathered through sight, hearing and touch or through the
proprioception of self-movement and body position. Interoception denotes the sensory
data that collectively describe the physiological state of the body, arising from the allostatic
regulation of various bodily systems (e.g., the autonomic nervous system, the endocrine
system and the immune system).

The integration of incoming exteroceptive sensations along with the internal, interocep-
tive information from the body gives birth to the individual’s core affective states—in simple
terms, core affect. Core affect is referred to as “core” since it is grounded in the internal
milieu, and the integrated sensory representation of the physiological state of the body
can be described as a mental state of pleasure or displeasure, named valence, with some
degree of activation or arousal [32–35]. More abstractly, valence and arousal together form
a unified, continuous state-space. Emotions and core affect are thus defined at different
levels, and by no means can the former be conceived as a discretised version of the latter,
or vice versa the latter as a continuous representation of emotions, each emotion being
a “point” in the 2D continuous space of valence and arousal—an unjustified statement
which, unfortunately, is by and large assumed as a working hypothesis in the affective
computing practice [1]. Cogently, the categorical nature of emotions provides the bridge
between the individual’s, perceiver-independent biology of the brain and body and socially
real categories that in turn allow for the sharing of emotions among individuals, i.e., the
understanding by agreement of everyday concepts such as “fear” and “happiness”.

In this case, different from that postulated by BET, measures are not expected to
correlate with one another, but rather together they instantiate the current emotion state.
Thus, an instance of emotion can only be measured using more than one measurement
modality. Furthermore, in a given context, the participant’s exteroceptive and interoceptive
sensations, core affect and conceptual knowledge supported by language (see, for reference,
Figure 2) work together to produce an emergent state that might be measured as a discrete
emotion. In a given instance of emotion (e.g., fear of a spider), the constellation of measures
will take one pattern and, in another instance (e.g., fear of public speaking), it will shift to a
different pattern. All in all, this bears profound consequences both for the observational
study and for the design of machine learning algorithms together with the benchmarking
of their prediction outcomes.

Problems with the rater. The human sensor (see, for reference, Figure 2) is not a passive
one but is made “of the same stuff” participants are made of. The rater actively scrutinises
participants by relying upon prior conceptual knowledge, language and biases to organize
the sensory input (his/her own bodily sensations and the observed participant behaviour).
Emotions and social behaviours are relationship acts that unfold over time nurtured by
bonding and social relations [27,28]. Interestingly enough, there is behavioural and neural
evidence that even trait inference/attribution can be culture-specific [36].
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The rater, rather than being engaged in passive sensing, is most likely part of a com-
municative act in the pragmatic sense where both verbal and nonverbal behaviour play
a fundamental role [37–39]. A vast amount of evidence reveals that the communicative
features of emotions, namely, related overt expressions, have a pivotal role in maintaining
social relationships (affiliation functions) and establish a social position relative to others
(social distancing function) [40–42]. Indeed, beyond the explicit content, the message
encoded in a communicative behaviour encompasses valuable information on thoughts,
desires, motivations and feelings of the sender, which may represent significant clues of
the expresser’s personality. According to neurodevelopmental theories, personality can be
defined as the emergent property of the individual’s continually changing, neurologically
based, internal model of self in relation with the environment that dynamically integrates
environmental information, both physical and social [43]. In other terms, the individual’s
peculiar functioning model of the external world allows the organism to make decisions
that translate into behaviours. An individual’s emotions, and their affective physiologi-
cal/behavioural cascade, are nothing but a part, a primitive of such a model [44].

The judgement of a subject’s personality or social traits as performed by a rater while
observing the subject’s behavioural dynamics is thus a complex inference. The observer
relies on his/her own social-cognitive mechanisms (again, the internal model: goals, be-
liefs, values, scripts, life stories, etc.) to eventually categorize an appropriate trait label
for the surmised behavioural state of the subject. Effects are well documented within the
field. For example, when affective/emotional behavioural states are observed, it has been
shown that smiling people are more likely to be associated with positive personality traits
such as self-confidence [45], high affiliation and dominance. In addition, anger increases
dominance and competence perception, whereas sadness has the opposite effect [46]. By
analogy with computational pragmatics, we are under the circumstances where speakers
(the participants) and listeners (the rater) use social reasoning to go beyond the literal
meanings of words in order to interpret language in context; this entails that the listener,
while “hearing the utterance” (observing behaviour) engages in a recursive inference on
the communicative intentions of the speaker based on common ground and shared in-
tentionality [37,38,47]. All this involves the intertwining of many primitives such as the
conceptualization of exteroceptive and interoceptive sensations, with respect to a context
while focusing on a specific event/object within the context, executive control to pursue
the goal behind the speaker’s own communicative intentions framed by the evaluation of
listener expectation/intentions (theory of mind), motor control of speech production and
accompanying gestures/body behaviour [39]. For example, even the “simple” labelling of
participant’s valence/arousal dynamics is likely to involve the enactment of a simulation
in the rater of a participant’s core affect fluctuations in such given context [48]. Clearly,
the pragmatic requirement of a shared common ground in terms of social context and
culture paves the way to a conformity of judgement. However, in the meantime, it sets
limits, most often overlooked in the affective computing endeavour, to the “in-the-wild” la-
belling practice (e.g., Western observers’ rating affect from YouTube videos where observed
subjects might belong to Eastern cultures), [28,49,50].

The above considerations motivate the present study where we are specifically ad-
dressing the rater problem. In particular, we consider the case where subsequent ratings
provide an evaluation of participants’ core affect in continuous form (valence and arousal
trajectories unfolding in time) and the discrete labelling of their social participation traits
that emerge while they are accomplishing in dyads a collaborative task.

In this perspective, there is evidence that an individual’s trends in core affect dynamics
and social behaviour are intertwined to some extent, which is not a surprise in the light of
a constructivist view [51]. For instance, Timmermans et al. [52] investigated the relation
between intraindividual variability in core affect, interpersonal behaviour and personality
traits with an experience sampling study. Their results attest to significant reciprocal influ-
ences between the mean and variability of affective status in terms of valence and arousal
and interpersonal behaviour. Furthermore, results are consistent with previous studies,
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indicating, for instance, that highly neurotic individuals have in general lower pleasure
scores [53], while individuals in roles of power seem to experience more arousal [54,55],
and high core affect variability may signal insecurity and low self-esteem [56].

Under the circumstances previously outlined, we thus expect that causal dependencies are
likely to occur when the two considered ratings are performed (light gray arrow in Figure 2). At
the most general level, this kind of analysis should entail a process model (e.g., [31,39,48,57–59]),
a simulator of the rater to investigate the processes that actually take place in the rating endeav-
our. However, one such approach brings forth a number of complex issues that at the stage of
the research in the field are far from being solved. A viable solution, as put forward in Section 1,
is rather to resort to a phenomenological model of the rater, an emulator supporting a statistical
approximation to the rating process suitable to unveil causal factors within the labelling.

As to the research questions laid down in Section 1, on the one hand, we expect the
emulator behaviour to be consistent with that of the rater. On the other hand, referring to
the machine learning perspective, we hypothesise that, to the extent that we can support a
causal explanation and rule out competing explanations, the likelihood of generalization
is increased.

Overall, a causal explanation, by distinguishing the active from the inert components
of the reasoning process behind the labelling, can provide an understanding of the processes
underlying the case we are considering here. As such, it is suitable to be exploited for
providing complementary information (dashed arrows in Figure 2) either to the corpus
itself or to subsequent analyses performed via machine learning techniques.

3. Overview of the Approach

To introduce the model while keeping things simple, the computational problem at
hand boils down to devising a mapping, say ps 7→ zi, between a descriptor ps, a vector
of features/parameters suitable for capturing the affective behaviour of subject s, and an
outcome variable/label zi, which denotes the i-th trait that characterises the subject’s social
behaviour. A baseline example of one such mapping can be given in terms of regression,
where the ps components are employed as covariates,

E[zs
i |ps] = psηi + ε, ε ∼ N (0, σ2) (1)

and the ηi is the vector of weights to be estimated; ε stands for noise sampled from the
zero-mean normal distribution N (0, σ2); E[·] denotes the expectation.

Albeit simple, such mapping suffices to conceptually capture the mapping process
that, on the one hand, is assumed at the labelling level; on the other hand, it lies at the
heart of the majority of affective methods. In the latter case, and typically in current end-
to-end models [1], the ps might represent features extracted from multimodal data, and
the mapping function (regression/classification) is shaped in the form of some complex
architecture, e.g., a deep neural network (which generalises Equation (1) to a nonlinear
mapping zs

i = f (ps, ε)).
In either case, the underlying assumption is that of a statistical correlation between

affect and social traits. The model we lay down in what follows takes a different stance
by addressing potential causal relations between the two, markedly at the labelling level.
To such end, we first introduce a phenomenological state-space model of core affect dynam-
ics (Section 3.1, so that model identification (the inference of model parameters) allows the
computation of the ps descriptor; here, we draw on a preliminary study presented in [22].
Then, we unveil the causal mapping ps 7→ zi in terms of multiple causal inference suitable
for coping with observational data (Section 3.2).

We proceed now to discuss the mathematical formalism needed in order to carry out
the outlined program.

3.1. Observed Affect Dynamics: Modelling and Identification

At a phenomenological level, we can figure core affect dynamics as evolving from the
activity of a complex open system which is conceived as subject to stochastic variations.



Sensors 2023, 23, 2885 8 of 32

These are the result of the entanglement of all such internal/external activities (processes
at the neurobiological level) [60]. As observed from the sampling of experiential data,
core affect can be unfolded in time and hence represented as a 2D V/A trajectory, i.e., a
realisation of a stochastic process. Such random evolution reveals the subject-specific
distinctive patterns of affective variation disclosed by the time-varying V/A levels [60].
The core affect trajectories evolving dynamically in the 2D manifold of valence and arousal
can be described formally as follows.

Denote S = {St, 0 ≤ t ≤ T} and Y = {Yt, 0 ≤ t ≤ T} as a pair of stochastic processes
defined over Rs and Ry, respectively.

Assume S to be a Markov process with an infinitesimal generator; the state-space
equations describing a dynamical stochastic system can be laid down as Itô Stochastic
Differential Equations (SDE, to be interpreted as an Itô stochastic integral):

dSt = f (St, Ut)dt + D1/2dWt, (2)

dYt = g(St, Ut)dt + R1/2dVt. (3)

Here, f and g are two vector-valued functions, which are potentially time-varying; W =
{Wt, 0 ≤ t ≤ T} and V = {Vt, 0 ≤ t ≤ T} represent independent Wiener processes having
the same dimensions of S and Y, respectively. D and R represent diffusion coefficients that
could be generally defined as a function of the states, for instance: D = D(St), R = R(St).

For the sake of generality, the variable U is also employed as a stochastic process
U = {Ut, 0 ≤ t ≤ T}; however, simpler definitions (e.g., constant, deterministic) are al-
lowed. U represents the system control (also referred to as source or input). A variety of
definitions are allowed; for instance, it can be a function of S and Y (for handling feedback
control) or depend on an exogenous input (e.g., the labelling sequence provided along a
supervised learning stage).

Equations (2) and (3) can be easily recognised as diffusion processes, f and g being
their respective drifts [61]. These processes can be thought of as the limit of the following
discrete-time processes:

St+∆t − St = f (St, Ut)∆t + D1/2
√

∆tεSt , (4)

Yt+∆t −Yt = g(St, Ut)∆t + R1/2
√

∆tεYt . (5)

Equations (4) and (5) represent the Euler–Maruyama discretization of Equations (2)
and (3), respectively.

Notice that Equations (2) and (3) describe a generalised input–output state-space
model (SSM). Thus, S can be read as the latent state process; its evolution is not directly
observed but can be inferred through the noisy observation process Y. In other terms,
the states St mediate the influence of the input on the output and confer memory to the
system. The state and observation fluctuations are provided by noise terms εS, εY, which
can be defined via the stochastic integrals Wt =

∫ t
0 εSτ

dτ, Vt =
∫ t

0 εYτ
dτ.

Due to the fact that W and V denote Wiener processes, the noise components εS and
εY are specified by Gaussian additive noise, their dimension being equal to that of S and Y,
respectively. Clearly, in this case, the classic diffusion process is obtained.

The typical input–output SSM can be recovered from Equations (2) and (3), un-
der the conditional independence assumption of current observation Yt on the previous
one Yt−1, given St,

Yt⊥Yt−1 | St;

namely,

dSt = f (St, Ut)dt + D1/2dWt, (6)

Yt = g(St, Ut) + R1/2εYt . (7)
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By setting f (St, Ut) = B(U − St) and g(St, Ut) = St in Equations (6) and (7), the
following model of core affect’s stochastic dynamics is eventually recovered:

dSt = B(U − St)dt + D1/2dWt, (8)

Yt = St + R1/2εYt , (9)

In Equation (8), B is a positive definite square matrix; in order to ensure the stability
of the process (convergence to the stationary distribution), the matrix B is required to have
all positive eigenvalues [62]. The U parameter can be considered as a constant (U = const),
or time-varying in the most general case. The instantaneous change in St (dSt) depends on
the relative distance of the current state St being from the point U. The latter is typically
called a steady state or attractor. The state Equation (8) can be easily recognised as a form of
the Ornstein–Uhlenbeck (OU) process [63]; hence, Equations (8) and (9) together represent
an Ornstein–Uhlenbeck State Space Model (OU-SSM).

This theoretical model for the description of covert affect fluctuations has been
adopted by [64], showing that differences between subjects are reflected in variations
of model’s parameters. In a nutshell, the evolution over time of a trajectory describing
the moment-to-moment covert affective state of a subject can be thought of as generated
from Equations (8) and (9) that stochastically evolve in a 2D space, whose axes represent
valence and arousal, respectively. Crucially, albeit evolving randomly, such affective paths
retain individual differences that are eventually captured by the SDE parameters.

Under such circumstances, the relevant parameters of the OU-SSM can be interpreted as follows:

• B: the parameter controls the strength of the “attraction” towards U. For a two-
dimensional trajectory, it is defined as a 2× 2 matrix:

B =

[
BAA BAV
BVA BVV

]
(10)

BAA and BVV represent the drift of the process towards the steady state U in the arousal and
valence dimension, respectively. The off-diagonal elements BAV = BVA = ρB

√
BAABVV

describe the cross-correlation between drift in both dimensions. Higher values of BAA or
BVV will magnify the difference between the actual state and UA or UV, respectively; as a
result, this will produce a faster change towards U for that specific dimension. For high cross-
correlation values, increasing value of the drift in one dimension will produce increasing
values on the other. This will cause more curved trajectories towards the attractor U. For these
reasons, the parameter B is often referred to as the dampening force or centralising tendency.
It is surmised that the strength of this force reflects the regulatory processes devised to keep
a person’s core affect under control.

• U: for a two-dimensional trajectory, this parameter has the shape of a 2D vector.
Intuitively, it operates as an anchor describing the baseline emotional behaviour of
a subject, an affective “home base” or comfort zone of an individual. By constantly
pulling core affect back to its home base, the attractor keeps the system in balance,
creating an emergent coherence around it;

• D: this parameter denotes a 2× 2 correlation matrix controlling the variances and
covariances of the 2 driving white noise processes dWt. Higher values of vari-
ances/covariances will produce noisier/more anisotropic core affect trajectories.

In brief, the affective home base, attractor strength and variability can be considered as
the key mechanisms governing the countless number of ways people can display changes
and fluctuations in their core affect [60].

As said, the affect dynamics—and its driving parameters—is an individual-based dynam-
ics. Thus, denote Θs as the core affect parameters defining the OU-SSM related to subject s.
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By exploiting the Euler–Maruyama discretisation scheme (Equations (4) and (5)) and
relying on the Markov property germane to the OU process, the probability of the observed
trajectory, given the parameters Θs = {Us, Bs, Ds, Rs}, is:

P(Ys|Θs) =
N−1

∏
t=1

P(Ys
t+∆t
|Ys

t , Θ). (11)

The posterior distribution of the OU parameters given the sample trajectory is obtained
by inverting probabilities via Bayes’ theorem:

P(Θs|Ys) =
P(Ys|Θs)P(Θs)

P(Ys)
. (12)

Given the inferred posterior distribution, a concise description of the individual’s core
affect dynamics can be derived as follows. Each posterior distribution associated with
each parameter in the state equation of the OU-SSM (Equation (2)) is summarized via its
posterior sample mean; this provides the distribution summaries related to the diagonal
and one of the off-diagonal components of the Bs and Ds matrices (recall that Bs and Ds

are symmetric matrices) and the two average values obtained from the 2D Us vector.
A descriptor ps is obtained by joining the inferred OU parameters for the s-th subject,

which writes in vector form

ps = [Ûs
A, Ûs

V , B̂s
AA, B̂s

AV , B̂s
VV , D̂s

AA, D̂s
AV , D̂s

VV ]. (13)

Eventually, the vector ps ∈ R8 compactly represents the core affect dynamics for
the s-th subject.

3.2. From Observed Affect Dynamics to Social Participation Labelling: Unveiling Causal Effects

We now consider the vector ps as the set of potential causes eventually conditioning
the outcome zs

i . In a multiple causal inference approach, the inferred OU-SSM parameters
represent the ensemble of treatments that the rater receives, and the problem is to quantify
their effect on the attribution of a given level of social participation.

Clearly, a correlational mapping ps 7→ zi, e.g., the one represented in Equation (1),
does not allow per se to infer a causal effect. Cogently, causal inference requires to analyse
the mapping under active intervention (do) but relying solely on data collected from the
observational study. In Pearl’s [65] notation,

E[zs
i |do(ps)].

The difference is subtle but fundamental; a properly defined causal model allows for
answering counterfactual questions such as: “What would have been the rated zi value,
had the subject exhibited a certain affective behaviour?”

In general [66]:
E[zs

i |ps] 6= E[zs
i |do(ps)] (14)

The reason why this happens is due to the fact that the data may hide some confounders
i.e., variables that affect both the causes (emotional dynamics) and effect (social traits).
The general and most effective solution to the problem of causal inference is the use of
randomization in the study design phase. On the contrary, when relying on purely observa-
tional data, the general solution is to spot and measure a sufficient number of confounding
variables cs = (cs

1, ..., cs
K) and adjusting for it such that ps and zs

i are conditionally indepen-
dent given cs, ps⊥zs

i |cs.
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The observation of all confounding variables renders the causes (affect dynamics)
conditionally independent of the outcome (social behaviour). In this case, we can say that
ignorability holds, hence the causal effect can be identified from observational data [65]:

E[zs
i |do(ps)] = E[E[zs

i |ps, cs]] (15)

What are the factors that if measured may ensure ignorability? Both V/A trajectories
and social participation labels are the result of the annotation of raters. As discussed from
the beginning, these annotations are subjective attributions of each rater based on what
subjects express through facial expression, prosody, gestures, adopted vocabulary, subject’s
cultural origin or maybe some form of the rater’s instinctively perceived sympathy/dislike
for a subject. It seems reasonable to assume that at least a subset of this factors may have an
influence on both the rating of V/A and social traits. All such variables may be confounders
that when left unobserved produce association between perceived emotional dynamics
and social attitude. Notice that, although few of these variables may be measured with
relative ease (e.g., facial expression, prosody, gesture), others are somewhat difficult or
impossible to estimate (e.g., perceived like/dislike). A striking example is provided by
the role of perceived personality; from the social cognitive point of view, information
inferred from facial expressions or auditory behaviours could result in the attribution of
personality traits. Even very short movies depicting social behaviours lead the perceivers
to attribute personality traits to the observed actors [67]. In such a setting, the rater’s
inferred personalty may act as a confounder impinging on both V/A rating and social
participation attribution.

It is known that performing causal inference from observational data requires making
assumptions on how such data may have been generated. These assumptions can be made
explicit through a causal graph, encoding the causal relationships between the relevant
variables in the form of a directed acyclic graph (DAG). The causal graph assumed in this
work is depicted in Figure 3.

p1 p2 p3 p8

zi

ck

Perceived Social
Participation

Perceived Affect
Dynamics

Unobserved
Confounders

c1

Figure 3. The assumed causal graph. The apparent (perceived) social behaviour is caused by the
many variables describing affect dynamics. Both, though, may be subject to a set of unobserved
common causes (confounders).
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In order to infer the causality of ps on zs
i it is therefore necessary to spot and measure

a sufficient number of such confounding variables, thus ensuring ignorability. This is a
standard yet uncheckable assumption.

Recently, Wang and Blei [23] proposed the deconfounder, an algorithm that combines
unsupervised machine learning and predictive model checking to perform causal inference
in multiple-cause settings. The method is built upon three steps:

1. Fit a good factor model of assigned causes able to capture the joint distribution
P(cs, ps

1, ..., ps
L), where cs is a local factor;

2. Use the model to infer the latent variable for each individual P(cs|ps
1, ..., ps

L);
3. Perform causal inference by fitting an outcome model adjusted for confounding by

conditioning on the inferred factor model latent variables cs.

If the factor model is able to capture the joint distribution of the causes P(ps
1, ..., ps

L),
then all the causes are conditionally independent given the latent factor cs:

P(ps
1, . . . , ps

L|cs) =
L

∏
j=1

P
(

ps
j |cs
)

(16)

Intuitively, a well specified factor model captures the observed dependencies among
the causes which should contain information about some of the confounders (e.g., perceived
personality or like/dislike). Consequently, the local factors that are employed as substitute
confounders could eventually deliver information about confounders if this is encoded in
the dependency structure of the data.

The deconfounder relies on few fundamental but reasonable assumptions. In addition
to the SUTVA (Stable Unit Treatment Values Assumption, SUTVA is really two assumptions
rolled into one: (1) the potential outcomes for any unit do not vary with the treatments
assigned to other units; (2) for each unit, there are no different forms or versions of each
treatment level, which lead to different potential outcomes) [68], and it is required that there
are no single-cause confounders, i.e., variables that have an effect on both the outcome
and only one of the treatments. If we assume that there are no unobserved variables
that impinge on the social participation attribution and one of the factors defining affect
dynamics, then Equation (16) implies ignorability: ps⊥zs

i |cs [23]. Note that this assumption
(sometimes called weak unconfoundedness) is weaker than assuming no unobserved
(multi-cause) confounders.

Secondly, the deconfounder assumes that ps
j⊥ps

−j|cs for any j = 1, 2, . . . 8 [69]. This as-
sumption states that there cannot exist a causal relationship among the treatments (see Figure 3).

Following Equation (15), it is possible to perform causal inference on observational
data via conditioning on confounders. Given a good factor model, we can use the expected
value of the inferred posterior of the latent variable

ĉs = E[cs|ps] (17)

as confounders; thus, Equation (15) writes:

E[zs
i |do(ps)] = E[E[zs

i |ps, ĉs]], (18)

which represents the causal outcome model.

4. Methods

The approach described in the previous section has been employed in the analysis of
observational data collected in a publicly available dataset, as commonly carried out in the
affective computing and machine learning realms.

Specifically, we have chosen the well-known and widely used multimodal RECOLA
(REmote COLlaborative and Affective interactions) corpus [24]. This dataset collects obser-
vational data from participants’ spontaneous dyadic interactions; furthermore, it provides
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continuously rated core affect (valence and arousal) dynamics and social participation
evaluation obtained from third-person annotators. For the reader’s convenience, in what
follows, we give a bare recap of its main characteristics relevant for this study, while leaving
the details to [24].

4.1. Participants

For constructing the corpus, 46 participants (27 females, 19 males, mean age 22 years,
standard deviation 3 years) were recruited and divided into 23 dyadic teams. All subjects
were students from the Department of Psychology of the Université de Fribourg and French
speaking (33 had French as the mother tongue, 8 Italian, 4 German and 1 Portuguese).
Amongst the 46 participants, only 34 gave their consent to share their data to the public.
Data from 23 participants (training and validation partitions) are made publicly avail-
able (and hence used in this study), whereas the other subjects (test partition) are not
publicly available.

4.2. Apparatus

Skype was used in full-screen for the video-conference in which the dyadic collabora-
tion task was performed. Audio data were captured by unidirectional headset microphones
and recorded. Two HD webcams were used for each participant. The first webcam only
captured the video data and was used for the Skype video-conference. The second webcam
was used to record both audio, from the built-in omnidirectional microphone, and video
with the software provided by the manufacturer. The headset microphones were placed
on the head of the participants and the camera angle adjusted to have full face visibility
on the screen. For the physiological data, both electro-dermal activity (EDA) and electro-
cardiogram (ECG) signals were recorded. A careful synchronization of all signals was
performed. Eventually, the RECOLA database includes 9.5 h of multimodal recordings.

For facilitating the remote annotation of data, a web-based annotation tool, ANNEMO,
was specifically developed (and publicly released). The tool allows for a setting with
one time-continuous annotation for each affective dimension. The web-browser interface
displays the audiovisual recording (video) and the annotation cursor one below the other.
The arousal and valence were annotated separately and time-continuously, using a slider
with values ranging from −1 to +1 and a step of 0.01.

4.3. Procedure

The participants of a team were introduced to each other and received an introduction
to the experiment. They were told that they were taking part in a study focusing on
communication between people by using computer-supported tools, for an overall duration
of about an hour. Each participant first received a questionnaire to evaluate his/her current
emotional state by using the Self-Assessment Manikin (SAM, [70]).

After this evaluation, participants started individually solving the survival task for
a maximum duration of 10 min. While the members of a team were completing the
individual task, it was decided whether they would be constituting a positive or a negative
group, according to the SAM self-reports. The facilitators of the experiments decided
which participant would receive a positive or a negative mood induction according to the
self-reported SAM’s valence. The mood induction procedure was used to increase the
difference in emotional valence between participants of a team; the aim was to have a
balanced distribution of team members between positive and negative moods group [71].
In the end, 12 participants had a negative mood when they started the discussion with their
teammate, 24 had a neutral mood and 10 a positive one.

Participants performed in dyads remotely through video conference; they engaged in
a remote discussion to solve a collaborative task (“Winter survival task”, [72]). The task
was originally designed by the National Aeronautics and Space Administration (NASA) to
train astronauts before the first moon landing. Participants are asked to reach consensus
on how to survive in a disaster scenario. It is frequently used in social psychology for
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eliciting decision-making processes in small groups; the solution to the problem is not
straightforward and may require an intensive discussion.

At the end of the recordings, annotation of participants’ core affect was performed
(6 raters: 3 males, 3 females). Affective behaviour was continuously rated over time
resorting to the two core affect dimensions of valence V and arousal A. Each annotator
was instructed orally and received instructions explaining in detail the procedure to follow.
Before starting the annotation of the data from the RECOLA corpus, annotators first
performed the annotation of two video sequences selected from the SEMAINE corpus,
to become familiar with the annotation interface.

The annotation of the social dimensions was performed after the two affective di-
mensions for each sequence. Social behaviour was summarised by annotators accord-
ing to five participation dimensions: agreement (that is, judging whether the subject
seems to agree with his/her partner), dominance (the subject appears to be dominant),
engagement (the person shows to be engaged), performance (the person’s speech is clear
and relevant to the task) and rapport (whether the person and his/her partner give the
impression to be or that they could become friends). These basic primitives were chosen
based on various studies in the literature [24]. The annotation of dimensions of social
behaviours was performed using a 7-Likert scale. A careful post-processing of the anno-
tations was conducted to reduce unwanted variabilities in the data (e.g., blanks or jumps
due to re-annotation) and to provide a ground truth for the automatic recognition of the
annotated behaviours.

4.4. Data Analysis

In this section, for each component of the emulator, we detail the Bayesian statistical
procedures for instantiating and inferring the model parameters together with the measures
adopted for assessment/validation.

4.4.1. OU-SSM Parameters Inference and Validation

OU-SSM inference. For each subject s = 1, 2, · · · , Ns, Ns being the total number of rated
subjects in the RECOLA dataset, the 6 raters annotated his/her emotional state evolution as
a time-continuous V/A trajectory; a single average trajectory is obtained as the result of the
Evaluator Weighted Estimator (EWE) measure [73]. EWE performs a weighted average of
each rater on the basis of its agreement with the others (agreement is operationally defined
in terms of Pearson’s Correlation). Under the assumptions of this work, the EWE, rather
than providing a kind of “objective” ground truth, is best described as a measure of social
conformity of the raters in their judgement/inference of subject’s observed affective/social
behaviour. Drawing on earlier, preliminary work [22], we formally consider the EWE
averaged annotated V/A trajectory of the subject s as a realization Ys from Equation (9).

We estimate the set of subject-specific parameters Θs (see, for reference, Equation (12))
to the EWE averaged annotated V/A trajectories via Bayesian inference.

OU-SSM validation. Once the OU-SSM parameters are available, then the emulator
can in theory be exploited to sample stochastic V/A trajectories to be compared with those
generated by a human rating. However, such comparison, when not barely qualitative
such as in [56], for example, is not readily apparent. A simple solution was devised in
our preliminary study [22]. A principled solution can be found by recalling that, at their
origin, V/A trajectories are the outcome of a nonlinear dynamical system that involves
a large number of interacting elements or components [48] that is of a complex system.
In this case, a number of methods are available [74]. One such tool is recurrence analysis
(RA), a nonlinear analysis method that can be employed to scrutinise both stationary
and nonstationary data [75]. The virtue of RA, by contrast with other linear time-series
methods, is that it does not require assumptions about the structure of the time series
being investigated or the underlying dynamics that shapes the recorded trajectory [75].
Albeit still relatively new, there is now substantial evidence that suggests it is potentially
one of the most robust and generally applicable methods for assessing the dynamics
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of biological and human behaviour [74]. In a nutshell, RA identifies the dynamics of a
system by discerning whether the states of the system behaviour recur over time and,
if states are recurrent over time, the degree to which the patterning of recurrences is highly
regular or repetitive. RA can also be extended to uncover the dynamic similarity, mutual
influence, or coordinated structure that exists between two different behavioural time
series or sequences of behavioural events. This latter form is termed cross-recurrence
analysis (CRA) and can be considered as a generalisation of the linear cross-correlation
function [75]. In this case, recurrent points in a cross-recurrence plot (CRP) correspond to
states, events or categories in two time series or behavioural trajectories that are recurrent
with each other [75].

Different measures can be derived from CRA. We use here determinism (DET), lami-
narity (LAM) and maximum diagonal line length (MDL). Determinism is defined as

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(19)

where l stands for the lengths of diagonal lines in the CRP, and P(l) is the number of lines of
length equal to l, while lmin is set to 2. Intuitively, this measure quantifies the percentage of
recurrence points which form diagonal lines or, in other words, how many of the individual
repetitions co-occur in the two trajectories in the same order. Laminarity is defined as

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

(20)

where, similarly to the determinism, v stands for the lengths of vertical lines, P(v) represents
the number of vertical lines in the CRP, and vmins is equal to 2. Laminarity accounts for
the number of recurrence points which form vertical lines, that is to say, it measures the
proportion of time that the two time series are in the same state, or “laminar”, meaning that
they exhibit the same behaviour or pattern at a given point in time. Finally, the maximum
diagonal line length, as one is led to believe, refers to the length of the longest diagonal line
in CRP. It is a measure used to quantify the duration of the longest cross-repeating trajectory,
where a longer diagonal line represents a stronger coupling between the two time series.

4.4.2. Causal Analysis

Causal model determination. The first step required by the deconfounder method is
to find, fit and check a factor model of the causes. One of the most common and simple
factor models is Probabilistic Principal Component Analysis (PPCA). The model is defined
as follows:

cs ∼ N (0, λ2I)

ps|cs ∼ N (csᵀW, ν2I),
(21)

where W ∈ RK×L is the projection matrix from the K-dimensional latent space to the data.
We fit this model using ADVI and obtain the posterior distribution over the free parameters
of the model (ν2, W). We now have access to estimates of P(cs|ps).

In order to ensure that the learned factor model is able to capture the joint distribution
of the causes, posterior predictive checks (PPC) are performed on a held-out set of data.
PPC consists of first sampling values for the held-out causes from the predictive distribution
of the PPCA model:

P(p̂s
held |p

s
obs ) =

∫
p(ps

held |c
s)p(cs|ps

obs)dcs (22)
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where p̂s
held is the replicated held-out data. We then compute the expected held-out log-

likelihood on both the replicated and real held-out data (p̂s
held and ps

held , respectively)
under the PPCA model:

t(ps
held) = Ec,W[log P(ps

held|c
s, W)|ps

obs]

t(p̂s
held) = Ec,W[log P(p̂s

held|c
s, W)|ps

obs]
(23)

These values tell how likely the replicated and real data are under the learnt factor
model; a good model will produce similar values of the expected held-out log-likelihoods.
The predictive score (how well the model approximates the causes) is defined as:

score = P(t(p̂s
held ) < t(ps

held )). (24)

An ideal predictive score will have values around 0.5, while a mismatched model will
produce very low scores.

After fitting and checking the PPCA model with K = 2 on the assigned causes
(OU parameters), the PPC produces a predictive score of 0.44; hence, we conclude that the
model is able to capture the joint distribution of the causes.

The obtained factor model is employed to compute, for each subject, a local factor. The lat-
ter is used as a substitute confounder in the causal outcome model (Equation (18)). We ap-
proximate the P(zs

i |ps, ĉs) (causal outcome model) with the linear function (Truncated BLR):

f (ps, ĉs) = psηi + ĉsγi + ε ε ∼ Ñ (0, σ2
i ), (25)

where Ñ (·) is a truncated Normal distribution that assigns zero probability to the samples
outside the range defined by a 7-Likert scale. Computing the inner expectation on the right-
hand side of Equation (18) boils down to computing the expectation of a Gaussian, while the
outer expectation is approximated via Monte Carlo, i.e., averaging over the latent factor pop-
ulation distribution (this is sometimes referred to as back-door adjustment o G-formula):

E[E[zs
i |ps, ĉs]] =

1
Ns

Ns

∑
s=1

f (ps, ĉs) (26)

The causal outcome model parameters ηi, γi and σ2 are fitted to the augmented
dataset {(ps, zs

i , ĉs)} via ADVI which delivers estimates for the model’s posterior distribu-
tion. The inferred regression coefficients represent the causal effect of raising the causes
by one unit.

To set a baseline for non-causal inference, we employ the standard linear regression model
specified in Equation (1) as well as a purely associative truncated Bayesian Linear Regression.

Causal model validation. The learnt causal outcome model can be employed to sample
R model-simulated raters. More specifically, the r-th rater can be obtained by sampling
from the posterior distribution of the outcome model’s parameters:

ηi,r ∼ P(ηi) γi,r ∼ P(γi) σi,r ∼ P(σi). (27)

Define the value µs
i,r = psηi,r + ĉsγi,r. The r-th rating is thus obtained as:

ẑs
i,r = bÑ (µs

i,r, σ2
i,r)e, (28)

where the b·e operator defines rounding to the nearest integer.
A reliable model-simulated rater should produce social trait ratings that are internally

consistent as well as in agreement with those provided by human raters. In psychometrics,
a variety of Inter-Rater Reliability (IRR) statistics are available in order to assess the agree-
ment between many raters (see [76] for an overview). The intra-class correlation (ICC) is
typically employed for the assessment of IRR in the presence of ordinal, interval or ratio
variables (e.g., 7-Likert scale ratings) [77,78]. ICC estimates of 1 indicate perfect agreement
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between raters, while values approaching −1 denote systematic disagreement. In our case,
the ICC is expected to quantify the amount of inter-rater agreement when confronting
human raters with those simulated by the proposed model.

Causal model predictive performance evaluation. In order to assess the predictive per-
formances of the proposed causal outcome model, we compute the average predictive
log-likelihood (PLL) on n held-out subjects. The latter is defined as:

PLL =
1
n

n

∑
j=1

Eη,γ[log P(zj,held|η, γ, pj,held, ĉj,held)] (29)

PLL allows for measuring the goodness of fit for a model. The higher the value of the
PLL, the better a model fits a dataset. By computing it on held-out data, we are testing the
ability of the model to generalize on unseen data.

Eventually, in the vein of [23], in order to test the capabilities of the causal outcome
model under intervention, the average PPL can be computed on a test set of “uncommon”
subjects. Specifically, we consider the German native speaking subjects as held-out ex-
amples while leaving all the other subjects in the training set. This should change the
distribution of the samples composing the test set with respect to the training set. In such
cases, a causal model should produce more accurate results if compared with a purely
associative one.

5. Results
5.1. OU-SSM Results

To give a tangible clue as to how the OU-SSM component of the emulator operates,
in Figure 4, we display a qualitative comparison between the V/A trajectories generated by
the human rater (per observed subject) and those sampled by the emulator.

Figure 4. V/A trajectories from subjects P30 (top) and P34 (bottom) as annotated by human raters
(in blue) and two emulated raters for each subject (in green).

For a quantitative assessment, Table 1 reports DET, LAM, and MDL measurements
performed through cross-recurrence analysis via cross-recurrence plots. One example of
CRPs underpinning the above measurements is presented in Figure 5, where the emulator
performance is contrasted with that of a random trajectory generator (baseline).



Sensors 2023, 23, 2885 18 of 32

Table 1. Results of the Cross Recurrence Analysis (CRA) conducted among the V/A trajecto-
ries from human raters and 10 emulated raters for each of the 23 subjects. The table reports the
mean values (±standard deviation) of three quantitative measures, namely Determinism (DET),
Laminarity (LAM), and Maximum diagonal line length (MDL). The results of these measures are
compared against those of 10 random raters.

Subject ID
DET LAM MDL

OU Random OU Random OU Random

P16 0.965 ± 0.006 0.013 ± 0.005 0.965 ± 0.005 0.014 ± 0.005 67 ± 10 2 ± 0
P17 0.968 ± 0.005 0.006 ± 0.005 0.970 ± 0.004 0.006 ± 0.006 96 ± 39 2 ± 0
P19 0.969 ± 0.005 0.030 ± 0.020 0.968 ± 0.005 0.030 ± 0.020 78 ± 16 2 ± 0
P21 0.962 ± 0.003 0.018 ± 0.014 0.964 ± 0.003 0.018 ± 0.014 67 ± 12 2 ± 0
P23 0.967 ± 0.002 0.019 ± 0.012 0.968 ± 0.002 0.019 ± 0.012 93 ± 21 2 ± 0
P25 0.947 ± 0.005 0.016 ± 0.012 0.952 ± 0.005 0.016 ± 0.012 57 ± 11 2 ± 0
P26 0.968 ± 0.006 0.017 ± 0.017 0.968 ± 0.006 0.018 ± 0.017 81 ± 42 2 ± 0
P28 0.958 ± 0.003 0.017 ± 0.014 0.960 ± 0.003 0.017 ± 0.015 64 ± 10 2 ± 0
P30 0.955 ± 0.003 0.021 ± 0.012 0.958 ± 0.002 0.020 ± 0.012 68 ± 10 2 ± 0
P34 0.964 ± 0.003 0.016 ± 0.013 0.966 ± 0.002 0.015 ± 0.013 70 ± 8 2 ± 0
P37 0.965 ± 0.002 0.011 ± 0.011 0.965 ± 0.002 0.010 ± 0.011 59 ± 6 2 ± 0
P39 0.968 ± 0.001 0.022 ± 0.020 0.968 ± 0.001 0.022 ± 0.021 74 ± 10 2 ± 0
P41 0.973 ± 0.002 0.018 ± 0.022 0.973 ± 0.002 0.018 ± 0.022 111 ± 22 2 ± 0
P42 0.961 ± 0.003 0.013 ± 0.011 0.962 ± 0.002 0.012 ± 0.011 61 ± 19 2 ± 0
P43 0.964 ± 0.003 0.011 ± 0.007 0.964 ± 0.002 0.010 ± 0.008 68 ± 13 2 ± 0
P45 0.952 ± 0.004 0.019 ± 0.014 0.957 ± 0.003 0.019 ± 0.015 58 ± 12 2 ± 0
P46 0.945 ± 0.005 0.022 ± 0.013 0.949 ± 0.004 0.022 ± 0.014 52 ± 7 2 ± 0
P48 0.956 ± 0.004 0.018 ± 0.015 0.959 ± 0.004 0.018 ± 0.015 64 ± 8 2 ± 0
P56 0.968 ± 0.003 0.023 ± 0.016 0.968 ± 0.003 0.023 ± 0.016 79 ± 19 2 ± 0
P58 0.960 ± 0.003 0.010 ± 0.006 0.960 ± 0.002 0.010 ± 0.006 57 ± 7 2 ± 0
P62 0.968 ± 0.002 0.013 ± 0.013 0.968 ± 0.002 0.014 ± 0.013 80 ± 13 2 ± 0
P64 0.961 ± 0.004 0.016 ± 0.016 0.963 ± 0.003 0.016 ± 0.016 76 ± 26 2 ± 0
P65 0.960 ± 0.003 0.013 ± 0.009 0.960 ± 0.002 0.012 ± 0.009 69 ± 18 2 ± 0

(a) (b)

Figure 5. Cross recurrence plots of the trajectories from human raters compared against an emulated
rater and a random rater. The x- and y-axes represent the time axes of the V/A trajectories generated
by the synthetic and human rater, respectively. Each point in the matrix visualises as a binary value
(black: near, white: far) the adjacency of two V/A points in the respective trajectories. Off-diagonal
dots represent adjacency at different time lags. (a) emulated rater vs. human rater; (b) random rater
vs. human rater.
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Discussion

The examples provided in Figure 4 graphically illustrate that, on the basis of the fitted
parameters, the OU-SSM component of the emulator generates/predicts V/A trajecto-
ries that closely resemble the observed human-rated trajectories in shape and dispersion
(keeping the same time differences as in the observed data). It is important to stress that
the replicated trajectories cannot follow exactly the same path as the observed trajectory
because the model is inherently stochastic. Nonetheless, the examples in Figure 4 illus-
trate that the spatial characteristics of the observed trajectories are well preserved in the
emulated ones.

Besides this crude visual assessment of the similarity between the observed and
replicated trajectories, we also quantitatively examined the correlation between the two
by resorting to measurements derived from cross-recurrence plots. As shown in Figure 5,
the emerging 2D patterns are of major interest here. They represent segments on both
trajectories, which run parallel for some time; the frequency and length of their appearance
are related to a similarity between the dynamics of both systems; such complex patterns do
not arise, as expected, when confronting human-raters’ trajectories with pure randomly
generated trajectories (i.e., a trivially different physical process). DET, LAM and MDL
metrics give evidence of a remarkable agreement for all participants so that it can be
assumed that both data series come from the same process [75]. Note that determinism
and laminarity are measures of the finer temporal structure, which entails that the OU-
SSM model is effective at capturing the idiosyncratic characteristics of individual’s core
affect dynamics.

Interestingly enough, these measures could be used to compare over time across
different types of experimental contexts, and participants [75].

5.2. Causal Analysis Results

Causal Factors. The posterior distribution over the outcome model parameters P(ηi, γi|{(ps,
zs

i , ĉs)}) allows for quantifying the uncertainty on the estimation. The latter can be summarised
by considering the interval of values lying within the 95% of the estimated posterior distribution.
Such quantity is called Highest Density Interval (HDI) and is widely adopted in Bayesian statistics
for the assessment of statistical significance [79].

More specifically, values lying outside the HDI can be considered unlikely under the
observed data and model. Hence, if the 0 value dwells outside the HDI of a given regression
coefficient, then it can be “rejected” as a credible value for describing the relationship
between the associated OU parameter and a given social trait dimension; consequently, we
can conclude that a statistically significant linear relationship exists. Table 2 reports the
regression coefficients whose posterior HDI does not include the zero value for the purely
correlational Bayesian Linear Regression model. Following the same rationale, in Table 3,
the regression coefficients of the causal outcome model whose HDI does not contain the 0
are reported.

Causal model validation. Table 4 reports the ICC values computed on RECOLA’s human
raters (ICC Human), on six sampled raters from Equation (28) (ICC Model) and from the
set of 12 raters obtained by joining the previous two (ICC Humans + Model). Recall that,
according to ICC, inter-rater agreement can be considered poor for values < 0.40, fair
if 0.40 < ICC < 0.59, good if 0.60 < ICC < 0.74 and excellent for ICC values greater
than 0.74 [80]. In order to check whether any difference between the IRR of male and female
raters in the RECOLA dataset exists, ICC has been computed for the two groups separately;
in both cases, male and female raters exhibited good agreement (0.60 < ICC < 0.74) with no
significant differences between the two groups (independent sample t-test, p-value > 0.05).
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Table 2. Bayesian Linear Regression model coefficients not containing zero value in the HDI of
the posterior.

Coefficient Description Mean Post. Distrib. 95% HDI

Agreement

βAgr[UV ]

η associated with the
home base for the
Valence dimension

0.54 0.056÷ 1.03

Dominance

βDom[UA]

η associated with the
home base for the

Arousal dimension
0.56 0.14÷ 0.97

Engagement

βEng[UA]

η associated with the
home base for the

Arousal dimension
0.62 0.27÷ 0.98

βEng[DAA]

η associated with
the diffusion on

the Arousal
dimension

0.44 0.13÷ 0.73

Table 3. Causal Bayesian Linear Regression model coefficients not containing zero value in the HDI
of the posterior.

Coefficient Description Mean Post. Distrib. 95% HDI

Dominance

ηDom[UA]
η associated with the

home base for the
Arousal dimension

0.54 0.076÷ 1

Engagement

ηEng[UA]
η associated with the

home base for the
Arousal dimension

0.57 0.17÷ 0.97

ηEng[DAA]

η associated with
the diffusion on

the Arousal
dimension

0.49 0.17÷ 0.84

Table 4. Intra-class correlation (ICC) measuring agreement between 6 human raters (ICC Humans),
6 raters sampled from the outcome model (ICC Model) and the 12 human + model simulated raters
(p < 0.05 for all cases).

ICC Humans ICC Model ICC Humans + Model

agreement 0.72 0.72 0.82
dominance 0.75 0.74 0.79

engagement 0.82 0.75 0.85
performance 0.83 0.73 0.79

rapport 0.77 0.63 0.62

average 0.78 0.72 0.77
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Results reveal good agreement between raters simulated from the outcome model
(0.6 < ICC < 0.74) and excellent agreement between model-simulated and human raters
as well as human raters only (0.75 < ICC < 1.).

Causal model predictive performance evaluation. Table 5 reports average PLLs on a “typical”
test set constructed by randomly selecting 30% of the subjects (first row) and on a test set
of uncommon subjects (German native speakers, second row). We report results for the
causal outcome model and the (non-causal) truncated BLR in terms of PLL; for comparison,
results for a standard Bayesian Linear Regression model (see, for reference, Equation (1))
are reported too.

Table 5. Average Predictive Log Likelihood and standard deviation for non-causal Vanilla Bayesian
Linear Regression, non-Causal Truncated Bayesian Linear Regression and causal Outcome Model on
a typical test set and on a test set of uncommon subjects (German native speakers).

Non-Causal BLR Non-Causal Trunc. BLR Causal Outcome Model

Typical Test −3.07± 0.19 −1.87± 0.01 −1.88± 0.008
Uncommon Test −1.94± 0.13 −1.862± 0.009 −1.861± 0.01

Figure 6 depicts at a glance the comparison of the performance (average PLL) of the
two best models, i.e., the purely associative predictive model (non-causal Truncated BLR)
vs. the causal one (Causal Outcome Model) when testing on the “typical” and “uncommon”
test sets (see, for reference, Table 5).

Typical Test set German Native-speakers

1.8800

1.8775

1.8750

1.8725

1.8700

1.8675

1.8650

1.8625

Lo
g

 L
ik

e
lih

o
o
d

Truncated Linear Regression

Causal Outcome Model

Figure 6. PLL for the Truncated Bayesian Linear Regression and the Causal Outcome Model on a
“typical” test set (30% of randomly selected subjects) vs. a test set composed of uncommon subjects
(i.e., German native speaking subjects).

Discussion

Causal factors. The main findings can be condensed as follows. Higher agreement
ratings are associated with a home base with higher valence. A similar result is obtained
for both the dominance and engagement traits that are significantly related to a home base
with higher arousal. Furthermore, higher variability in the arousal dimension (DAA) is
significantly linked to higher engagement traits.

Notably, when correcting for confounding, the regression coefficient associated with
the home base valence dimension no longer produces statistically significant results when
predicting for agreement. Conversely, the coefficients that presented a significant associ-
ation between core affect dynamics and both dominance and engagement traits remain
significant in the causal model. Technically, from a causal standpoint, these can be inter-
preted as the Average Treatment Effect (ATE) of observing a specific affective dynamics
on the social trait attribution by a third-person observer. Specifically, results show that
subjects exhibiting higher arousal will be rated as more dominant. Similarly, the level of
engagement is positively affected by higher and more fluctuating arousal trajectories.
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A first remark is that the Bayesian analysis of both approaches, correlational and causal,
does not detect significant relationships between the V/A dynamics and the performance
and rapport interpersonal behavioural traits. This result is not surprising for both traits
given the oral instructions for annotation provided to the raters. The definition of the
former (“the person’s speech is clear and relevant to the task”) only requires a kind of
objective observation on verbal behaviour. The latter (“whether the person and his/her
partner give the impression to be or they could become friends”) is likely to involve a
complex judgement, where, if considered, either positive or negative values of V/A might
be recruited depending on the rater’s individual cognitive evaluation process; this potential
variability is also evident by considering the average ICC score for this factor in Table 4.

More interesting are the results achieved for the agreement, dominance and engage-
ment traits. Note that, in terms of social-psychological models of social evaluation [81],
the dominance trait is easily mapped on the general Agency dimension (represented as a
bipolar axis ranging from assertive-dominant to passive- submissive behaviour), whilst
agreement (“whether the subject seems to agree with his/her partner”) addresses the
Communion dimension that is the bipolar axis ranging from agreeable to quarrelsome
behaviour [82–84]. The fundamental dimension of agentic behaviour can be conceptualized
as behaviour that asserts status relative to others; agency also refers to qualities relevant for
goal attainment. Communal behaviour can be conceptualized as behaviour that promotes
interpersonal ties [82–84]. Given the rating instructions (“the person shows to be engaged”)
and the study context, engagement can also be mapped onto the Agency dimension as
relevant for goal attainment (i.e., solving the survival task) [81].

Remarkably, under such circumstances, the model’s outcome is in accordance with
previous psychological experimental results and theorizing that formulated specific hy-
potheses about how individual differences in intraindividual variability in core affect relate
to those in interpersonal behaviour [52]. Precisely, experimental findings give evidence
that the strongest association is achieved for arousal and agentic behaviour, whereas only a
weak correspondence is measured between valence and the Communion dimension [52].
Interestingly, the analysis on the causal outcome rules out the mean valence dimension pre-
dicting for agreement as compared to the correlational outcome. In addition, the parameter
associated with the diffusion (variability) in the arousal dimension is retained, in line with
the assumption that variability in how dominant one behaves towards others is related to
variability in how active one feels [52]. In spite of its essential and simple conceptual for-
mulation, the phenomenological model behind the emulator overall captures well-known
aspects concerning the relationship between affect and interpersonal behaviour.

Causal Model Validation. Notably, human and model-simulated raters exhibit excellent
agreement (ICC > 0.75); this quantity is comparable to the ICC value eventually obtained
when comparing human raters only. Interestingly enough, multiple raters sampled from the
outcome model exhibit a good agreement (0.6 < ICC < 0.74), thus revealing remarkable
internal rating consistency.

Notice that the outcome of the measured ICC-based agreement, when human and
model-simulated raters are considered together, provides for three fundamental social
traits a higher score than those obtained from humans and model separately. This result
is not surprising given that the perceived core affect trajectory is inferred starting from
the labelling output of the EWE observer (Section 4.4.1), conforming to what is generally
practiced in the affective computing realm.

Causal Model Performance evaluation. As can be appreciated by inspecting Table 5,
the adopted baseline model (non-causal BLR) yields significantly lower performances if
compared with the other two models on typical test sets. On the other hand, if compar-
ing the PLLs delivered by the non-causal Truncated BLR with those obtained from the
causal Outcome model on the same test set, the results are comparable. Indeed, albeit
producing nonidentical performances (the causal model exhibiting slightly worse results),
their difference is not significant (independent sample t-test, p-value > 0.05). Using the
causal model does not worsen the prediction abilities with respect to the non-causal one.
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Indeed, on typical test sets, a good causal model should have prediction performances
comparable to the non-causal one but should aim at producing better predictions when
dealing with “uncommon” data, i.e., data under intervention (this feature is known as
“stability”, “autonomy” or “modularity” [65]). This fact can be appreciated to some extent
in Figure 6; when evaluating on a test set of uncommon data, the causal outcome model
performance raises sensibly if compared with the associative model. Notably, on data
under intervention, the relative performances of the two models is flipped, although—as
for the typical test set case—with non statistically significant differences; however, the trend
exhibited by the two models (Figure 6), besides the limits posed by the dimension of the
test set, deserves to be reported.

Technically, the specific analysis employed here has some limitations that are worth
mentioning. In particular, the emulator, in its present version, relies on the deconfounder
method in order to perform causal inference from observational data. The original study
presenting this approach [23] was deeply discussed in [69,85–87] and later refined in [88,89].
In these follow-up studies, several clarifications on the theoretical requirements of the
deconfounder were presented. Besides the already discussed assumptions (no unobserved
single cause confounders and no causal relationship between the causes), Ref. [89] adds a
third requirement: the substitute confounders (cj with j = 1, . . . , K) should be pinpointed by
a a single deterministic function of the causes; in other words, the uniqueness of the factor
model that captures the distribution of the causes is required. It has been shown [90,91] that,
under certain conditions (many causes and low dimensional factor model latent space),
inference of latent variables approaches a deterministic function. In our analysis, the factor
model latent space dimension is kept very low (K = 2) if compared with the number of
causes; notably, the adopted Posterior Predictive Check procedure reveals a good capacity
of the model to capture the joint distribution of the data. Nonetheless, it is worth remarking
that the analysis is conducted on a limited number of data points, this quantity being
constrained by the size of the adopted RECOLA dataset.

6. General Discussion
6.1. Findings and Implications

The emulator’s component based on the Ornstein–Uhlenbeck process finely captures
(the perceived) core affect dynamics, in spite of its abstraction with respect to the complexity
of the processes underpinning such psychological construct [32–35] and provides an effec-
tive input to the social judgement causal component. Model results are in line with previous
studies for characterising individual’s core affect fluctuations and its bearing on interper-
sonal behaviour and personality [52,56,60]. The rationale behind this component is that core
affect can be formally conceptualised in terms of a complex dynamical system [74,75,92].
This has led us to quantitatively assess model’s behaviour by introducing techniques bor-
rowed from recurrence theory [75] that are, to the best of our knowledge, novel as to affect
analysis. As such, this modelling choice has some general implications. On the one hand,
it paves the way to the exploitation of the many linear and nonlinear time-series analyses
techniques that can be employed to investigate the dynamics inherent to affective and social
behavioural (time-series) data. On the other hand, to put this in perspective, tracking the
change over time of its identifying parameters at a coarse-grained time-scale (e.g., in a
longitudinal study) would allow for studying behaviour as a time-evolving phenomenon.
This way, a principled understanding can be gained concerning the processes by which
affective/social behaviours come about in day-to-day activities [74,93]. Interestingly enough,
the first stage of the emulator could be exploited whenever an analysis in terms of stochastic
trajectories is requested. One straightforward example is the analysis of gaze trajectories in
social/affective behaviour [94,95].

In addition, it is worth recalling from the discussion in Section 4.4.1 the effect of the
EWE-based inference of the perceived core affect trajectory impinging on the outcome
of the measured ICC-based agreement (Table 4); namely, predictions over three social
traits, when human and model-simulated raters were considered together, achieved higher
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ICC-agreement scores than those obtained from humans and model separately. Clearly,
nothing prevents fitting the model on individual raters, which would provide at the study
level (see, for reference, Figure 2) quantitative information concerning idiosyncrasies and
consistency of the rater, markedly when rating over time is to be evaluated (which is not
the case for the RECOLA dataset). In a machine learning perspective, this option could
also serve the purpose of assessing normalization techniques of produced labelling and
synthetic data generation, a cogent problem in current research [96].

As to the causal component of the emulator, all in all, the achieved results are in line
with those established in the psychological literature that relate individual differences
in intraindividual core affect dynamics within interpersonal behaviour [52]. This is a
promising result considering that causal inference from observational data is a difficult
task and requires strong assumptions. While causal inference usually considers a single
possible cause, the deconfounder method [23] that we have adopted provides valid causal
inference at least for the data we are handling here; this is achieved by exploiting the
multiplicity of causes, which entails weaker assumptions than the classical approach
requires. The unveiling of causal relationships can indeed improve the internal validity
of the underlying study (which is curtailed when results can be explained by factors that
are additional to those explicitly incorporated in the design) and subsequent machine
learning analyses.

In this respect, notice that, for conceptual clarity, we have introduced the emulator as
a specific subsystem functionally detached from both the dataset and the machine learning
subsystems (see, for reference, Figure 2). However, when the chief concern is machine
learning, the operationalisation of the emulator could entail its embedding within the
machine learning component. A straightforward example can be constructed by adopting
a computational model to derive core affect trajectories from multimodal data (e.g., [48]
that has been experimented on the same dataset), which are then fed into the emulator to
predict social traits. The simulation we have set up for assessing predictive performance
shows promise but also reveals limitations that are discussed further below. However,
in a stringent machine learning perspective, one might also consider adopting deep neural
networks as causal estimators, a novel and vibrant research area [97,98]. Preliminary studies
in this field claim, for low bias, suitability for estimating the heterogeneous treatment
effects and providing opportunities to predict causal effects in untreated populations
beyond the original sample. However, there is still little consensus on important practical
considerations needed to deploy these tools in the wild [97]. For what concerns causal
inference for affective/social behaviour, the long-term most promising avenue is offered
by deep learning of the causal structure of dynamic systems and time series data [99].
Indeed, in real world cases, dependencies among time series are usually nonlinear and
ignoring such interactions could lead to inconsistent estimation. However, using causal
knowledge to improve machine learning algorithms remains an open area [98,100], and
causal analysis in affective computing is at best in its infancy apart from a handful of
exceptions (e.g., [100–105]).

However, theoretical knowledge of causality methods being combined with psycho-
logical observations [106] can provide interesting insights into the computational methods
dealing with affect and social interaction.

Eventually, it is worth remarking that the methods we have introduced are general
enough to be adopted in studies that do not specifically concern social participation.
For instance, when dealing with self-esteem [107], one example might consider relations
between indicators of self-esteem [107] and negative affect [108].

6.2. Limitations

Potential technical limitations concerning the deconfounder method per se have been
discussed in Section 5.2. Furthermore, in the case considered in the present study, we
had to face the hurdle of a slightly limited dataset—from a modern machine learning
perspective—which reflects on the out-of-sample test case we have constructed. This
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limitation put constraints on the evaluation of causal analysis predictive performance.
On the other hand, the emerging trend we have detected suggests that a causal approach is
suitable to provide better predictions than a purely predictive model when uncommon test
data are taken into account. Note that the term “uncommon” from the machine learning
standpoint translates into the use of a novel dataset at the testing stage, which is nothing
but the generalisation problem (addressing indeed the challenging setting where the testing
distribution is unknown and different from the training, also called the out-of-sample or
out-of-distribution setting), a cogent one in the field [109]. In this respect, it is acknowledged
that causal inference is one key to cope with such problem [109]; in other terms, the causal
approach can potentially pave the way to increase the external validity of a study. This is an
open research problem in the field and the results we achieved here, though encouraging,
do not allow for a conclusive statement in this respect.

6.3. Research Directions

In light of the above considerations, the suitability of the proposed methods to cope
with the unfolding over time of affective/social behaviour raises the interesting point of
whether they could prospectively be of service to experience sampling studies (also called
ecological momentary assessment [110]); these have the virtue of examining behaviour in
its natural, spontaneous context [111]. Experience sampling (ES) broadly denotes the set of
empirical methods that are designed to allow respondents to document their thoughts, feel-
ings, and actions outside the walls of a laboratory and within the context of everyday life. It
is an idiographic approach addressing “within-person” patterns (thus concerning the intra-
individual process), as opposed to the classic nomothetic approach (identifying patterns of
behaviour across a population of individuals, rather than for any given individual) [112].
ES has gained currency for affective/social behavioural research [112] and is likely to play a
role in the future of affective computing. On the one hand, currently available technologies
have expanded the repertoire of ES techniques [113–115] offering novel possibilities; mobile
devices are one such example [113,116,117]. Among others, devices that are likely to play
a key role in the near future are smart mirrors [118,119]. Unfortunately, in most cases,
researchers conducting experiments with novel devices adapted paper-and-pencil methods
from classic ES sampling studies [114,117]. Furthermore, datamining large datasets gener-
ated by novel technologies is a promising methodology, which increases external validity
(results can be generalized to groups other than those that participated in the original study)
of results, given by the size of collected data [117]. Datamining, however, is challenged by
the lack of datasets and the difficulty of aggregating user-generated data. Gathering data is
costly, and labelling data more so. It is not surprising that ES is at best an underexplored
approach in the affective computing field [1–3]. A handful of exceptions concern probing
the user at suitable moments to collect self-reports via smartphone, e.g., [120]. In most
advanced studies, the ES procedure is extended to exploit physiologically-triggered prob-
ing and recording of participants’ self-reports and peripheral physiological activity [121].
The adoption of devices such as smart mirrors [118,119], beyond the privacy concerns that
we shall not address here, might offer the availability of multimodal data for subsequent
analysis; in addition, these more complex interaction devices seem to have potential for
longitudinal studies in the field under quasi-experimentation design [117] based on in-
terval contingent triggering (e.g., interacting with the mirror twice a day) [116]. In the
case of current ES studies, ratings to be evaluated are by and large self-reported; however,
as long as we have time-series, the presented methods can be suitably adapted for gauging
recurrent patterns and their variability together with indicators of affective/social states,
namely that crystallise the bare essentials of ES [121]. Extending the device capabilities (e.g,
smart mirrors) could allow for mixed ratings (personal and third-person).

The proposed approach offers the opportunity to face a number of problems in differ-
ent realms of application. The assessment of displayed personality/social capabilities is
important as they define the quality of social interactions. Notably, these are believed to
positively contribute to health and well-being [122]. In this respect, mining the causes that
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result in a higher/lower level of perceived social participation may concur in understand-
ing such phenomenon. Furthermore, automatic personality/social traits analysis tools are
gaining more and more currency in affective and social computing applications whose
primary concern is to produce artificial systems that are able to deal with social signals of
people they interact with, and exhibit proper social behaviour as a response. As an example,
social robots should be capable of displaying social competence in order to be perceived in a
proper way. Notably, the way a robot is perceived by humans that it is supposed to interact
with (e.g., its personality and social attitude) has been extensively studied in the social
robotics field [123–125]. It seems therefore reasonable to argue that a social robot owning
a causal model of its external social perception, equipped with the ability of simulating
proper social behaviour, could be considered as more socially competent.

The final remark is a cautionary note. Under all the circumstances discussed above,
it is worth noticing that many applications evolving from such tools might be potentially
harmful [126]. Indeed, end-users are often unaware of the process leading to the final
prediction and of the theoretical paradigms that the system implicitly accepts. As a result,
they can easily make errors when interpreting the data. This risk should be minimized
especially in sensitive fields where a misunderstanding of outcomes can lead to critical
scenarios (e.g., automated job screening). To this end, models dealing with such kind
of information should be able to provide actionable information; in other words, the
model should be built in order to answer counterfactual questions [127]. In this regard,
understanding the cause/effect relationships that elicit the attribution of apparent traits is
of primary importance for the definition of trustworthy predictive models.

7. Conclusions

In this study, we have addressed a hitherto neglected problem. We have considered
the typical scenario where raters are recruited to label (in continuous or discrete form)
observed subjects in terms of their exhibited affective/social behavioural cues; in the case
considered here, the rater is attributing both affective and social participation labels to the
behaviour of subjects involved in an experiment concerning dyadic interactions under a
given task. In spite of its widespread use in affective computing for constructing datasets,
this setting most often conceals the occurrence of complex interactions between the rater,
the subjects and the situational cues. As a matter of fact, the ground truth eventually
achieved might be best conceived as the result of fragile equilibrium floating between many
such factors, rather than the barely “objective” measure usually surmised. Thus, the results
produced on its basis should be cautiously handled. Neglecting these issues can impinge
on the internal validity of the underlying study and subsequent machine learning analyses.

To shed light on such complex interactions, we have proposed a novel model, a hu-
man rater emulator that relies upon a phenomenological representation of the core affect
(the OU state-space model) coupled with a causal trait-based attribution of social attitudes.

As related to the specific research questions addressed in this work, the analyses
conducted on the publicly available RECOLA corpus and results so far achieved allow for
the following conclusions:

1. The core affect dynamics generated by the emulator is consistent with the participant’s
affect dynamics as perceived by the human rater;

2. The phenomenological model behind the emulator overall reliably captures salient
causal aspects concerning the relationship between core affect and interpersonal
behaviour involved in social judgement;

3. The emulator in its present form, when straightforwardly embedded as a component
of the machine learning pipeline, exhibits an interesting performance trend that is
in line with the theoretical expectations, namely that a causal-based model should
perform better than a correlational one in dealing with out-of-sample data. The differ-
ence in performance, however, that we have reported with the limited out-of-sample
test set available does not allow for a conclusive statement in this regard, at least in
terms of classical statistical significance.
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The latter point calls for further investigation concerning the design of efficient causal
models/architectures suitable for machine learning and the construction of corpora suitable
to address the out-of-sample problem. Both problems are open issues in current research.

All in all, the emulator approach can be informative for both levels concerning the
observational study/dataset and its machine learning exploitation, while prospectively
offering the opportunity to face cogent problems in different realms of application.
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RA Recurrence Analysis
CRA Cross-Recurrence Analysis
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