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INTERIOR REGULARITY RESULTS FOR INHOMOGENEOUS

ANISOTROPIC QUASILINEAR EQUATIONS

CARLO ALBERTO ANTONINI, GIULIO CIRAOLO, AND ALBERTO FARINA

Abstract. We consider inhomogeneous p-Laplace type equations of the form −div (a(∇u)) = f

in a possibly anisotropic setting. Under general assumptions on the source term f , we obtain
quantitative Sobolev regularity results for the stress field a(∇u) and weighted L2 estimates for
the Hessian of the solution. As far as we know, our results are new or refine the ones available
in literature also when restricted to the Euclidean setting.

1. Introduction

In this paper we study local regularity of solutions to inhomogeneous nonlinear PDE’s
driven by anisotropic p-Laplace type operators. More precisely, we are considering equations
with a variational structure and of p-Laplacian type, possibly singular or degenerate. The word
anisotropic means that the considered equation is of quasilinear type and that the gradient of
the solution is measured in terms of a norm H, i.e., we are considering equations of the form

− div (a(∇u)) = f , (1)

where

a(∇u) := 1

p
∇ξH

p(∇u) (2)

and H is a suitable norm.
We were led to discuss this topic while we were studying qualitative properties for quasilinear

partial differential equations of the form

−∆pu = F (u) ,

as well as for their natural generalization in an anisotropic setting, and we noticed that some
regularity results needed in our analysis were missing. More precisely, we needed quantitative
higher order integrability properties for the so-called stress field, i.e. the vector field given by
(2), as well as for the Hessian of the solution u. Few of these results were available when H is
the standard Euclidean norm and, in the more general anisotropic setting, only when the source
term f is constant.

Throughout this paper Ω is an open subset of Rn with n ≥ 2 and, for 1 < p < +∞, we
consider a local weak solution u ∈W 1,p

loc (Ω) to

− div (a(∇u)) = f , (3)

where f ∈ Lq
loc(Ω), with

q =

{

2 if p ≥ 2n
n+2

(p∗)′ if 1 < p < 2n
n+2 .

(4)

Here 1

a(∇u) := 1

p
∇ξH

p(∇u) , (5)

1Given a function u : Ω → R, we denote by ∇u(x) the gradient of u evaluated at a point x ∈ Ω. Given a
function ψ : Rn → R, the notation ∇ξψ(Du) means that we are differentiating the function ψ with respect to
ξ ∈ R

n and evaluating it at ∇u.
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and we assume that the norm H is of class C2(Rn \ {0}) and such that

the unit ball {H(ξ) < 1} is uniformly convex; 2 (6)

see Section 2 for further properties, equivalent definitions and some explicit examples. Equation
(3) has a variational structure since it is the Euler-Lagrange equation of the functional

J (v) =
1

p

ˆ

Ω
Hp(∇v) dx−

ˆ

Ω
fv dx .

In particular, if H is the standard Euclidean norm then the corresponding operator on the left-
hand side in (3) is the standard p-Laplace operator and, as we will discuss later, even in this
special case some of our results are new or refine the existing ones.

Our first main result is a local regularity result regarding the stress field a(∇u), more
precisely we have

Theorem 1.1. Let u ∈ W 1,p
loc (Ω) be a local weak solution of (3), with f ∈ Lq

loc(Ω) and where q
and H satisfy (4) and (6), respectively. Then

a(∇u) ∈ H1
loc(Ω)

and there exists a constant C, depending only on n, p and H, such that

‖∇a(∇u)‖L2(BR/2)
≤ C

[

(R−n
2
−1)‖a(∇u)‖L1(B2R\BR) + ‖f‖L2(B2R)

]

, (7)

‖a(∇u)‖L2(BR) ≤ C
[

R−n
2 ‖a(∇u)‖L1(B2R\BR) +R‖f‖L2(B2R)

]

, (8)

‖a(∇u)‖L1(B2R\BR) ≤ C‖∇u‖p−1
Lp−1(B2R\BR)

, (9)

for any open ball B2R ⊂⊂ Ω.

Motivated by applications to qualitative studies of PDEs (as discussed before), we also prove
some regularity results regarding the Hessian of the solutions, provided that the source term f
enjoys better integrability properties.

Theorem 1.2. Assume 1 < p ≤ 2 and let u ∈W 1,p
loc (Ω) be a local weak solution of (3) where H

satisfies (6) and f ∈ Lr
loc(Ω), r > n. Then

u ∈ H2
loc(Ω) ∩C1,β

loc (Ω)

for some β ∈ (0, 1) depending only on n, p, r and H.
Moreover, for any open ball B2R ⊂⊂ Ω we have

ˆ

BR/2

‖D2u‖2dx ≤ C
[

R−n−2‖a(∇u)‖2L1(B2R\BR) + ‖f‖2L2(B2R)

]

,

where C is a constant depending only on p, n,H, r,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Lr(B2R).
In particular, when p = 2 we have

ˆ

BR/2

‖D2u‖2dx ≤ C
[

R−n−2‖a(∇u)‖2L1(B2R\BR) + ‖f‖2L2(B2R)

]

,

where C is a constant depending only on n,H.

Remark 1.3. Theorem 1.2 is a special case of a more general result involving a source term f
satisfying some weaker integrability conditions. See Theorem 5.2 and Remark 5.1 in Section 5.

For a general p > 1 we have the following weighted integral estimate for the Hessian of the
solution u.

2i.e. such that the principal curvatures of its boundary are bounded away from zero.
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Theorem 1.4. Let u ∈W 1,p
loc (Ω) be a local solution of (3), where H satisfies (6) and f ∈ Lr

loc(Ω)
with r > n. Then

u ∈ H2
loc(Ω \ Z) ∩ C1,β

loc (Ω)

where Z denotes the set of critical points of u and β ∈ (0, 1) depends only on n, p, r and H.

Moreover, for any open ball B2R ⊂⊂ Ω we have
ˆ

BR/2\Z

[

H2(∇u)
]p−2 ‖D2u‖2dx ≤ C, (10)

where C is a constant depending only on p, n,H, r,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Lr(B2R).

Remark 1.5. Theorem 1.4 is a special case of a more general result involving a source term f
satisfying some weaker integrability conditions. See Theorem 5.3 and Remark 5.1 in Section 5.

Let us now briefly overview the results related to ours and which are available in the existing
literature. A first result concerning the local Sobolev regularity of the stress field was proved
in [18] for the special case of the classical p-Laplacian operator.3 Also, the results in [18] are
obtained under stronger (than ours) integrability assumptions on the source term4 and the
quantitative estimates are not obtained.

In [6] an equation driven by a rotationally-invariant operator is considered, i.e. an equation
having the special form

− div (a(|∇u|)∇u) = f (11)

where | · | denotes the Euclidean norm. Under the so-called Uhlenbeck structure conditions,
the authors of [6] prove local5 H1-regularity for the stress field a(|∇u|)∇u together with a
quantitative estimate. Their approach is different from ours. They make use of an intermediate
inequality for the square of the differential operator −div (a(|∇u|)∇u). However this differential
inequality seems to depend crucially on the fact that the left-hand-side of (11) is rotationally
invariant and therefore its anisotropic counterpart does not seem to be obvious.

Fractional-Sobolev regularity for the stress fields has also been investigated. In particular,
the authors of [1] prove that the stress field a(∇u) belongs to W σ,1

loc for any σ ∈ (0, 1), whenever
f is locally integrable (or even a suitable measure).

While writing this paper, we became aware of [11, Theorem 1.2] where the authors obtain
some quantitative estimates (in H1

loc) on the stress field a(∇u) for a larger class of operators
than ours. Their approach completely differs from ours, it provides some estimates in a slightly
different form and it seems that it does not lead to integral estimates for the Hessian of the
solution u.

Second-order Sobolev regularity for solutions to the inhomogeneous p-Laplace equation has
also been the object of research. For p ∈ (1, 2] and f ∈ Lp′ , the regularity u ∈ W 2,p has been
obtained in [11] and [23]. To the best of our knowledge, when p > 2, the known results are
available only under a Sobolev-type regularity for the source term f . Indeed, the author of
[5] proves that u ∈ H2

loc if f ∈ H1
loc, when p ∈ (2, 3), while in [20] the regularity u ∈ W 2,m

loc

if f ∈ W 1,m
loc , m > n, is obtained when p is suitably close to 2. We also refer to [10] for an

earlier contribution under stronger regularity assumptions on both u and f . Finally we mention
that, for p > 2 and f ∈ Lr, fractional-Sobolev regularity results for the gradient of solutions to
nonlinear equations of p-Laplacian type can be found in [23], [21], [1] (see also the references
therein).

3Actually in [18] the author proves only that |∇u|p−1 ∈ H1
loc(Ω,R) and not that |∇u|p−2∇u ∈ H1

loc(Ω,R
N).

4See the discussion after formula (16).
5In [6] the authors, under suitable regularity assumptions on the bounded domain Ω, also prove global (i.e.,

up to the boundary) H1-regularity for the stress field a(|∇u|)∇u when u is a solution to either the homogeneous
Dirichlet or the homogeneous Neumann problem.
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Apart from its own interest in regularity theory, Theorem 1.1 may be helpful in many
situations arising in PDEs theory and we actually arrived to study this problem while we were
working on another project on qualitative properties of solutions to elliptic PDEs which will
appear in a forthcoming paper. However, in this paper we also prove two interesting consequences
of Theorem 1.1.

The first application is related to the measure of critical points and it was firstly proved in
[18] in the Euclidean case and under more restrictive assumptions on f (see also [8]).

Proposition 1.6. Let u ∈W 1,p(Ω) be a weak solution of (3) and assume that the assumptions
of Theorem 1.1 are fulfilled. Then

f(x) = 0 a.e. x ∈ {∇u = 0}.
An immediate consequence of Proposition 1.6 is the following corollary.

Corollary 1.7. Under the assumptions of Proposition 1.6, if f(x) 6= 0 for almost all x ∈ Ω,
then the Lebesgue measure of the singular set {∇u = 0} is zero.

In particular, for any C ∈ R, the level set {u = C} has zero measure.

The paper is organized as follows. In Section 2 we introduce some notation, clarify the
setting in which we are working and provide some examples of norms satisfying (6). In Section 3
we describe our approximation argument and obtain some preliminary uniform bounds. Section
4 is devoted to the proof of some crucial uniform bounds for the approximating solutions. The
proofs of the main results are given in Section 5.

Acknowledgements

The first two authors have been partially supported by the “Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the “Istituto Nazionale di
Alta Matematica” (INdAM, Italy).

2. Notations and the anisotropic setting

In this section we clarify the notation, make some comments on the main assumptions and
provide examples of anisotropic norms.

Let Ω ⊆ R
n, n ≥ 2, and let p ∈ (1,∞). Given a function u : Ω → R, we denote by ∇u(x) the

gradient of u evaluated at a point x ∈ Ω. Given a function ψ : Rn → R, the notation ∇ξψ(Du)
means that we are differentiating the function ψ with respect to ξ ∈ R

n and evaluating it at ∇u.
Let H : Rn → R be a norm of Rn. Throughout the paper, we assume that H is of class

C2(Rn \ {0}) and we ask that its anisotropic unit ball

BH
1 = {ξ ∈ R

n : H(ξ) < 1} is uniformly convex. (12)

This means that all the principal curvatures of its boundary are bounded away from zero (see
for instance [9]).

In view of the smoothness assumptions on the norm H we have

Hp

p
∈ C1(Rn) ∩ C2(Rn \ {0})

and we shall denote its gradient by a = a(ξ), i.e.,

a = a(ξ) =

{

Hp−1(ξ)∇ξH(ξ) if ξ 6= 0,

0 if ξ = 0.
(13)

We consider a local weak solution u ∈W 1,p
loc (Ω) to

− div (a(∇u)) = f in Ω, (14)



REGULARITY RESULTS FOR ANISOTROPIC EQUATIONS 5

i.e., a function u ∈W 1,p
loc (Ω) satisfying
ˆ

Ω
a(∇u)∇ϕdx =

ˆ

Ω
fϕdx ∀ϕ ∈W 1,p

c (Ω), (15)

where W 1,p
c (Ω) denotes the the set of compactly supported members of W 1,p(Ω) and the source

term f is assumed to belong to Lq
loc(Ω) with

q =

{

2 if p ≥ 2n
n+2 ,

(p∗)′ if 1 < p < 2n
n+2 .

(16)

Let us remark that the assumption q = (p∗)′, when 1 < p < 2n
n+2 , is the least one on the source

term f in order to have the right-hand side of equation (15) well defined.6

Also, for 1 < p < 2n
n+2 , we always have 2 =

(

2n
n+2

)∗
=
((

2n
n+2

)∗)′
< (p∗)′ = np

np−n+p <
n
p .

Therefore, our integrability assumption on f is weaker than the one in [18]. 7

The assumption (12) on the anisotropic unit ball of H implies that a = a(ξ) satisfies some
natural growth and ellipticity conditions. Indeed we notice that, by letting

B(t) =
tp

p
for t > 0, (17)

equation (14) can be written as

− div (∇ξ(B ◦H)(∇u)) = f in Ω. (18)

Then, according to [9, Proposition 3.1], there exist constants c, C > 0, depending only on n, p,H,
such that

∂ξiξj (B ◦H)(ξ)ηiηj ≥ c|ξ|p−2|η|2
n
∑

i,j=1

∣

∣∂ξiξj (B ◦H)(ξ)
∣

∣ ≤ C|ξ|p−2,
(19)

for all ξ ∈ R
n \ {0}, η ∈ R

n.
For n ≥ 2 we shall denote by Cs(r, n) the Sobolev constant of the embeddingW 1,r →֒ Lr∗ in

R
n, for 1 < r < n. We also recall that, when p ≥ 2n/(n + 2), by Sobolev and Holder inequality

we get

‖v‖Lq′ (ω) = ‖v‖L2(ω) ≤ Cs

(

2n

n+ 2
, n

)

‖∇v‖L2n/(n+2)(ω′)

≤ Cs

(

2n

n+ 2
, n

)

|ω|
1
2
+ 1

n
− 1

p ‖∇v‖Lp(ω) ∀ v ∈W 1,p
0 (ω)

(20)

where ω is any open bounded subset of RN .
Finally we recall that the dual norm of H, which is denoted by H0, is defined by

H0(x) = sup
ξ 6=0

x · ξ
H(ξ)

∀x ∈ R
n

and satisfies the following property (see for instance [7, Lemma 3.1])

H0(∇ξH(ξ)) = 1 ∀ ξ ∈ R
n \ {0}. (21)

6For 1 < p < 2n
n+2

, one might use a notion of very weak (or generalized) solution. However, for the sake of

clarity and to avoid burying main ideas under technical details, we will not consider this context.
7Since (13) and (16) are satisfied, a standard density argument implies that any distributional solution u ∈

W
1,p
loc (Ω) of (14) is a local weak solution.
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We conclude this section by mentioning that interesting examples of norms satisfying (12)
can be found in [9]. In the following example we provide a further one.

Example 2.1. Let H♯ and H∗ be two norms of class C2(Rn \{0}), and assume that H♯ satisfies
(12) (and therefore also (19)). Let a, b > 0 and define

H(ξ) =
(

aHp
♯ (ξ) + bHp

∗ (ξ)
)1/p

.

Then H satisfies (19) which, in view of [9, Proposition 3.1], is equivalent to say that H satisfies
(12).

Indeed, it is clear that H is a norm and that

B ◦H(ξ) :=
Hp(ξ)

p
=
a

p
Hp

♯ (ξ) +
b

p
Hp

∗ (ξ) .

Since H∗ is one-homogeneous and of class C2 outside the origin, we have that ∇2
ξH

p
∗ is homo-

geneous of degree p − 2, and so the second inequality in (19) is fulfilled. The first condition in
(19) follows from the fact that H♯ satisfies (19) and since Hp

∗ is convex and hence its Hessian
is nonnegative definite outside the origin.

As a particular case of this example, we notice that the assumptions on H♯ are clearly
satisfied by the Euclidean norm | · |.

3. The approximation argument

As usual in regularity theory, the starting point of our argument is the choice of an approx-
imating procedure. In this section we set the approximation argument and obtain a preliminary
uniform bound which will be useful later.

Let ε ∈ [0, 1) and set Bε(t) = B(
√
ε2 + t2)−B(ε) with B given by (17), i.e.

Bε(t) =
1

p

(

ε2 + t2
)

p
2 − εp/p

for any t ≥ 0.
We set f0 := f and

fε := min
{

max{f,−ε−1}, ε−1
}

∀ ε ∈ (0, 1) ; (22)

then
{

fε ∈ L∞(Ω), |fε| ≤ |f | a.e. in Ω,

fε → f in Lq
loc(Ω).

(23)

Let us fix a subdomain Ω′ ⊂⊂ Ω (i.e. compactly contained in Ω) and let uε be the unique
weak solution of

{

−div (∇ξ(Bε ◦H)(∇uε)) = fε in Ω′

uε = u on ∂Ω′,
(24)

where the boundary condition is to be intended as

uε − u ∈W 1,p
0 (Ω′).

It is classical that, for every ε ∈ [0, 1), uε is the unique minimizer of the strictly convex, coercive
and weakly lower semicontinuous functional

Jε(v) =
1

p

ˆ

Ω′

(

ε2 +H2(∇v)
)

p
2 dx−

ˆ

Ω′

fεv dx, (25)

in the closed and convex set

W 1,p
u (Ω′) = u+W 1,p

0 (Ω′).
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Now, thanks to [9, Proposition 3.1 and Lemma 4.1], there exist constants c, C > 0, depending
only on n, p,H, such that

∂ξiξj (Bε ◦H)(ξ)ηiηj ≥ c(ε2 + |ξ|2)
p−2
2 |η|2 (26)

and
n
∑

i,j=1

∣

∣∂ξiξj (Bε ◦H)(ξ)
∣

∣ ≤ C(ε2 + |ξ|2) p−2
2 , (27)

for all η ∈ R
n, ξ ∈ R

n \ {0}. Therefore there exist positive constants λ,Λ, depending only on
n, p,H such that, for all η ∈ R

n, ξ ∈ R
n \ {0}, it holds

λ|η|2 ≤
〈D2

ξ (Bε ◦H)(ξ)η, η〉
[ε2 + |ξ|2] p−2

2

≤ Λ|η|2. (28)

The following lemma provides a first useful bound on the approximating functions uε.

Lemma 3.1. Let uε be a solution of (24). Then, for any Ω′ ⊂⊂ Ω and for any ε ∈ (0, 1),
ˆ

Ω′

(

ε2 +H2(∇uε)
)

p
2 dx ≤ KΩ′ + 2pεp|Ω′| (29)

with

KΩ′ = (2p + 1)

ˆ

Ω′

Hp(∇u) + C ‖f‖p′Lq(Ω′). (30)

Here |Ω′| denotes the Lebesgue measure of Ω′ and C = C(n, p,H, |Ω′|) is a non-negative constant,
independent of ε, that can be explicitly determined. 8

Furthermore, we have that

uε −→ u strongly in W 1,p(Ω′).

Proof. Since uε minimizes the functional (25) over W 1,p
u (Ω′) = u +W 1,p

0 (Ω′), we can take u as
a competitor. This choice leads to

1

p

ˆ

Ω′

(

ε2 +H2(∇uε)
)

p
2 dx ≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2 dx+

ˆ

Ω′

fε(uε − u) dx

≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2 dx+ ‖fε‖Lq(Ω′)‖uε − u‖Lq′ (Ω′).

(31)

Then,

‖uε − u‖Lq′ (Ω′) =











‖uε − u‖L2 if p ≥ 2n/(n+ 2)

‖uε − u‖Lp∗ if p < 2n/(n+ 2)

≤











Cs

(

2n
n+2 , n

)

‖∇uε −∇u‖p |Ω′|
1
2
+ 1

n
− 1

p if p ≥ 2n/(n + 2)

Cs(p, n)‖∇uε −∇u‖p if p < 2n/(n + 2)

(32)

where in the latter we have used (20). Hence,

‖uε − u‖Lq′ (Ω′) ≤ C0

(

‖∇uε‖Lp(Ω′) + ‖∇u‖Lp(Ω′)

)

(33)

8 C = 2p
′+1(p−1)αp′C

p′

0 , where C0 is given by (34) and α > 0 is a structural constant such that |ξ| ≤ αH(ξ)
for any ξ ∈ R

N . Note that such a constant α does exist since all the norms on R
N are equivalent.
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where

C0 =











Cs

(

2n
n+2 , n

)

|Ω′|
1
2
+ 1

n
− 1

p if p ≥ 2n/(n + 2)

Cs(p, n) if p < 2n/(n + 2) .

(34)

Therefore, for any δ > 0, by weighted Young’s inequality we obtain

‖fε‖Lq(Ω′) ‖uε − u‖Lq′ (Ω′) ≤
(

‖∇uε‖Lp(Ω′) + ‖∇u‖Lp(Ω′)

)

C0‖fε‖Lq(Ω′)

≤ δp

p

(

‖∇uε‖Lp(Ω′) + ‖∇u‖Lp(Ω′)

)p
+

(

C0‖fε‖Lq(Ω′)

)p′

δp
′
p′

.

By plugging the above inequality in (31) we infer

1

p

ˆ

Ω′

(

ε2 +H2(∇uε)
)

p
2 dx ≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2 dx+

+
2p−1δpαp

p

(
ˆ

Ω′

Hp(∇uε)dx+

ˆ

Ω′

Hp(∇u)dx
)

+
Cp′

0 ‖fε‖p
′

Lq(Ω′)

δp
′
p′

,

(35)

where α > 0 is such that |ξ| ≤ αH(ξ). By choosing δ = 1/2α we find
ˆ

Ω′

(

ε2 +H2(∇uε)
)

p
2 dx ≤ 2

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2 dx+

+

ˆ

Ω′

Hp(∇u)dx+ 2p
′+1(p − 1)αp′Cp′

0 ‖fε‖p
′

Lq(Ω′)

≤ (2p + 1)

ˆ

Ω′

Hp(∇u)dx+ 2p
′+1(p− 1)αp′Cp′

0 ‖fε‖p
′

Lq(Ω′) + 2pεp|Ω′|

(36)

and the desired inequality (29) follows by recalling (23).
Now we show that

uε → u in W 1,p(Ω′).

We first notice that ‖uε‖W 1,p(Ω′) is uniformly bounded in ε thanks to Poincaré inequality on Ω′

and (29). We can therefore extract a subsequence, relabeled as uε, such that

uε ⇀ w weakly in W 1,p(Ω′),

for some function w ∈ W 1,p
u (Ω′), since this set is weakly closed (being closed and convex). We

want to show that w = u on Ω′.
We recall that u is the unique minimizer of the functional

J [v] :=
1

p

ˆ

Ω′

Hp(∇v) dx −
ˆ

Ω′

f v dx in W 1,p
u (Ω′).

Again, since Jε[uε] ≤ Jε[u], we obtain
ˆ

Ω′

Hp(∇uε)
p

dx ≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇uε)
)

p
2 dx ≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2+

ˆ

Ω′

fε(uε−u) dx. (37)

Therefore

J [uε] =
1

p

ˆ

Ω′

Hp(∇uε) dx−
ˆ

Ω′

f uε dx

≤ 1

p

ˆ

Ω′

(

ε2 +H2(∇u)
)

p
2 −
ˆ

Ω
fε u dx+

ˆ

Ω′

(fε − f)uε dx

= Jε[u] +

ˆ

Ω′

(fε − f)uε dx.

(38)
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We know that fε → f in Lq(Ω) and uε is uniformly bounded in Lq′(Ω′) by Sobolev inequality;
hence

ˆ

Ω′

(fε − f)uε dx→ 0 as ε→ 0.

By the weak lower semicontinuity of the functional J and (38), we then infer

J [w] ≤ lim inf
ε→0

J [uε] ≤ lim inf
ε→0

(

Jε[u] +

ˆ

Ω′

(fε − f)uε dx

)

= J [u], (39)

which implies that w = u on Ω′ by the uniqueness of minimizers of J . By repeating the above
argument for any subsequence {uεn} ⊂ {uε}, we infer that the whole sequence uε → u weakly
in W 1,p(Ω′).

We now show that uε → u strongly in W 1,p(Ω). By [25, Lemma 1], we have

[aε(∇u)− aε(∇uε)] · [∇u−∇uε] ≥ Gε := γ0

{

(1 + |∇u|+ |∇uε|)p−2|∇u−∇uε|2 p < 2

|∇u−∇uε|p p ≥ 2,

(40)
where we set

aε(ξ) := ∇ξ(Bε ◦H)(ξ) =

{

[ε2 +H2(ξ)]
p−2
2 H(ξ)∇H(ξ) if ξ 6= 0,

0 if ξ = 0.
(41)

Notice that, by using this notation, uε is a weak solution to

−div(aε(∇uε)) = fε in Ω′.

Therefore

0 ≤
ˆ

Ω′

Gε dx ≤
ˆ

Ω′

[aε(∇u)− aε(∇uε)] · [∇u−∇uε] dx

=

ˆ

Ω′

aε(∇u) · [∇u−∇uε] dx−
ˆ

Ω′

aε(∇uε) · [∇u−∇uε] dx

= I1(ε) + I2(ε).

(42)

Now we show that I1(ε) and I2(ε) vanish at the limit ε → 0. To this end, we observe that
(41) implies

|aε(∇u)| ≤ C(H, p) (1 + |∇u|)p−1 a.e. in Ω′, ∀ε ∈ (0, 1),

and so aε(∇u) → a(∇u) in Lp′(Ω′), by dominated convergence. Since ∇uε ⇀ ∇u in Lp(Ω′) we
immediately obtain that

I1(ε) → 0 as ε→ 0 .

Regarding I2(ε), we notice that by testing the equation (24) with the test function u − uε, we
have

I2(ε) = −
ˆ

Ω′

fε (u− uε) dx. (43)

We first recall that uε → u weakly in W 1,p(Ω′). Moreover, as seen before, uε is uniformly

bounded in Lq′(Ω′) w.r.t. ε, then, up to a subsequence, uεn → u weakly in Lq′(Ω′). Again, by
repeating the argument for any subsequence, we find

uε → u weakly in Lq′(Ω′) and fε → f strongly in Lq(Ω) ,

which imply I2(ε) → 0 as ε→ 0.
Thus we have obtained that

ˆ

Ω′

Gε dx→ 0 as ε→ 0. (44)
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If p ≥ 2 then this is exactly the strong convergence of uε to u in W 1,p(Ω′).
When p < 2, by Holder’s inequality we have

ˆ

Ω′

|∇(uε − u)|pdx ≤
(
ˆ

Ω′

(1 + |∇u|+ |∇uε|)p−2|∇(uε − u)|2dx
)

p
2

×
(
ˆ

Ω′

(1 + |∇u|+ |∇uε|)pdx
)

2−p
2

,

which goes to 0 as ε → 0. The latter implies the desired conclusion also for p < 2, which
concludes the proof.

�

The following lemma collects some properties for uε which will be useful later.

Lemma 3.2. Let uε be a solution of (24). Then,

uε ∈ H2
loc(Ω) ∩ C1(Ω)

and

aε(∇uε) =
(

a1ε(∇uε), ..., anε (∇uε)
)

∈ H1
loc(Ω;R

n).

Furthermore, for any j, k = 1, ..., n,

∂xk
ajε(∇uε) =

n
∑

m=1

∂ajε
∂ξm

(∇uε)
∂

∂xk

( ∂uε
∂xm

)

a.e. in Ω, (45)

where the products on the r-h-s are to be interpreted as zero whenever their second factor is zero,

irrespective of whether ∂ajε
∂ξm

is defined.

Proof. Since fε ∈ L∞
loc(Ω), thanks to [22] we have that uε ∈ C0(Ω). Then, thanks to conditions

(26)-(27), we may apply [25, Theorem 1, Proposition 1] and obtain

uε ∈ H2
loc(Ω) ∩ C1(Ω) if p ≥ 2

uε ∈W 2,p
loc (Ω) ∩C1(Ω) if p ≤ 2.

(46)

Since ∇uε ∈ C0(Ω) ⊂ L∞
loc(Ω), we infer

uε ∈ H2
loc(Ω)

also in the case p ≤ 2 by applying [9, Proposition 4.3].
Now we notice that [9, Lemma 4.1] implies

aε(ξ) ∈ C1(Rn \ {0}) ∩ Liploc(Rn)

and, from [19, Theorem 2.1] (see also [15, section 11]), we obtain that

aε(∇uε) ∈ H1
loc(Ω;R

n)

and (45), which completes the proof. �

4. Preliminary uniform bounds

In this section we obtain some crucial integral inequalities for the solutions uε of the ap-
proximating problems, which allow us to bound some relevant integral quantities uniformly in
ε.

Let
Zε = {x ∈ Ω : ∇uε = 0}

be the set of critical points of uε. Therefore, in view of Lemma 3.2, we have

D2uε = 0 a.e. in Zε,
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and so

∇aε(∇uε) =
{

AεD
2uε a.e. on Zc

ε ,

0 a.e. on Zε,
(47)

where the symmetric matrix

Aε(x) = ∇ξaε(∇uε)

is well defined for x 6∈ Zε.

Proposition 4.1. Let uε be a solution of (24). Then there exists a constant C1 = C1(n, p,H)

such that, for any function η ∈ C0,1
c (Ω) and for any ε ∈ (0, 1), we have

ˆ

Ω
η2[ε2 +H2(∇uε)]p−2‖D2uε‖2dx ≤C1

ˆ

Ω
[ε2 +H2(∇uε)]p−2H2(∇uε)|∇η|2 dx

+C1

ˆ

Ω
η2f2ε dx.

(48)

Proof. Since from Lemma 3.2 we have that aε(∇uε) ∈ H1
loc(Ω), we can differentiate the equation

(24) to obtain

− div (∂xk
aε(∇uε)) = ∂xk

fε in D′(Ω), k = 1, ..., n, (49)

and so
n
∑

j=1

ˆ

Ω
∂xk

ajε(∇uε)∂xjϕ = −
ˆ

Ω
fε∂xk

ϕ k = 1, ..., n, (50)

holds true for any ϕ ∈ H1
c (Ω), the set of compactly supported members of H1(Ω).

For any η ∈ C0,1
c (Ω) and any k = 1, ..., n we first choose ϕ = η2akε(∇uε) ∈ H1

c (Ω) as test
function in (50) and then we sum the obtained identities from k = 1 to n to obtain

0 =

ˆ

Ω
η2tr

[

(∇aε(∇uε))2
]

dx+ 2

ˆ

Ω
η〈∇aε(∇uε) aε(∇uε),∇η〉dx

+

n
∑

k=1

ˆ

Ω
η2∂xk

akε(∇uε)fε dx+ 2

ˆ

Ω
η fε〈aε(∇uε),∇η〉 dx =

= I1 + I2 + I3 + I4.

(51)

Thanks to the ellipticity condition (28), we have that

λ|z|2 ≤ 〈Aε(x) z, z〉
[ε2 +H2(∇uε(x))]

p−2
2

≤ Λ|z|2 ∀z ∈ R
n, ∀x 6∈ Zε , (52)

where λ and Λ depend only on n, p,H.
We exploit the following basic algebra inequality: let X be a symmetric matrix, and Y

positive semidefinite matrix; if λmin and λmax denote the smallest and biggest eigenvalues of X,
respectively, then

λmintr(Y ) ≤ tr(XY ) = tr(Y X) ≤ λmaxtr(Y ). (53)

Therefore, from (47), (53) and (52) we infer
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I1 =

ˆ

Ω\Zε

η2tr
[

AεD
2uεAεD

2uε
]

dx

≥ λ

ˆ

Ω\Zε

η2[ε2 +H2(∇uε)]
p−2
2 tr

(

D2uεAεD
2uε
)

dx

= λ

ˆ

Ω\Zε

η2[ε2 +H2(∇uε)]
p−2
2 tr

(

AεD
2uεD

2uε
)

dx

≥ λ2
ˆ

Ω\Zε

η2[ε2 +H2(∇uε)]p−2tr
(

D2uεD
2uε
)

dx

= λ2
ˆ

Ω
η2[ε2 +H2(∇uε)]p−2‖D2uε‖2dx,

(54)

where we used the symmety of D2uε and the fact that a scalar product of two matrices X and
Y can be defined by X : Y = tr(X Y T ), so that ‖X‖2 = X : X.

From (47), (52) and since

|aε(ξ)| ≤ C(H)[ε2 +H2(ξ)]
p−2
2 H(ξ) ∀ ξ ∈ R

n, ∀ε ∈ (0, 1),

where C(H) is a constant depending only on H, we find that

|I2| =
∣

∣

∣
2

ˆ

Ω\Zε

η〈AεD
2uε aε(∇uε),∇η〉dx

∣

∣

∣

≤ 2ΛC(H)

ˆ

Ω
η [ε2 +H2(∇uε)]p−2H(∇uε)|∇η| ‖D2uε‖ dx

≤ δ

ˆ

Ω
η2 [ε2 +H2(∇uε)]p−2‖D2uε‖2 dx

+
Λ2 C(H)

δ

ˆ

Ω
[ε2 +H2(∇uε)]p−2H2(∇uε)|∇η|2 dx,

(55)

where in the last inequality we applied the weighted Young inequality with a weight δ > 0 to
be chosen later.

From (52), (53), Holder and Young inequalities, we obtain

|I3| =
∣

∣

∣

ˆ

Ω\Zε

η2 [Aε : D
2uε] fε dx

∣

∣

∣
≤
ˆ

Ω\Zε

η2 ‖Aε‖‖D2uε‖ |fε| dx

≤
√
nΛ

ˆ

Ω
η2 [ε2 +H2(∇uε)]

p−2
2 ‖D2uε‖ |fε| dx

≤ δ

ˆ

Ω
η2 [ε2 +H2(∇uε)]p−2‖D2uε‖2 dx+

nΛ2

4δ

ˆ

Ω
η2f2ε dx.

(56)

Finally, via Young’s inequality,

|I4| ≤ 2C(H)

ˆ

Ω
|η|
(

ε2 +H2(∇uε)
)

p−2
2 H(∇uε)|fε||∇η| dx

≤ C(H)

ˆ

Ω
[ε2 +H2(∇uε)]p−2H2(∇uε)|∇η|2 dx+

ˆ

Ω
η2f2ε dx.

(57)

By combining (54)-(57) we get

(λ2 − 2δ)

ˆ

Ω
η2[ε2 +H2(∇uε)]p−2‖D2uε‖2dx

≤ C(H)

(

1 +
Λ2

δ

)
ˆ

Ω
[ε2 +H2(∇uε)]p−2H2(∇uε)|∇η|2 dx+

(

1 +
nΛ2

4δ

)
ˆ

Ω
η2f2ε dx
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and, by choosing δ = λ2

4 in the latter, we find

ˆ

Ω
η2[ε2 +H2(∇uε)]p−2‖D2uε‖2dx

≤ C(H)
2

λ2

(

1 +
4Λ2

λ2

)
ˆ

Ω
[ε2 +H2(∇uε)]p−2H2(∇uε)|∇η|2 dx+

2

λ2

(

1 +
nΛ2

λ2

)
ˆ

Ω
η2f2ε dx

which completes the proof. �

The following corollary is a consequence of Proposition 4.1. It will be crucial in the proof
of Theorem 1.1.

Corollary 4.2. Let uε be a solution of (24). Then for any function η ∈ C0,1
c (Ω) and for any

ε ∈ (0, 1), we have
ˆ

Ω
η2[ε2 +H2(∇uε)]p−2‖D2uε‖2dx ≤ C2

ˆ

Ω
|aε(∇uε)|2|∇η|2dx+ C2

ˆ

Ω
η2f2ε dx (58)

and
ˆ

Ω
η2‖∇aε(∇uε)‖2 ≤ C2

ˆ

Ω
|aε(∇uε)|2|∇η|2dx+C2

ˆ

Ω
η2f2ε dx , (59)

where C2 is a constant depending only on n, p and H.

Proof. We notice that

|aε(∇uε)| ≥ c(H)
[

ε2 +H2(∇uε)
]

p−2
2 H(∇uε). (60)

Indeed, recalling that the dual norm of H satisfies (21), we have for any ξ 6= 0

H0(aε(ξ)) = H0

(

[

ε2 +H2(ξ)
]

p−2
2 H(ξ)∇ξH(ξ)

)

=

(

[

ε2 +H2(ξ)
]

p−2
2 H(ξ)

)

H0(∇ξH(ξ)) =
[

ε2 +H2(ξ)
]

p−2
2 H(ξ),

thus (60) follows from the equivalence of norms on R
n and (58) follows from (48).

Also, by (47) and (52), we have that

‖∇aε(∇uε)‖ = ‖AεD
2uε‖ ≤ C(n, p,H)[ε2 +H2(∇uε)]

p−2
2 ‖D2uε‖ a.e. on Ω, (61)

therefore (59) follows immediately from (58). �

Now we estimate the term
´

BR
|aε(∇uε)|2dx, where BR is any open ball such that B2R ⊂ Ω.

More precisely we have the following result.

Proposition 4.3. Let uε be a solution of (24). Then, for any ε ∈ (0, 1) and for any open ball
B2R ⊂⊂ Ω we have

ˆ

BR

|aε(∇uε)|2dx ≤ C3

[

R−n

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+R2

ˆ

B2R

f2ε dx
]

(62)

ˆ

BR
2

‖∇aε(∇uε)‖2dx ≤ C4

[

R−n−2

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+

ˆ

B2R

f2ε dx
]

(63)

where C3, C4 are constants depending only on n, p and H.



REGULARITY RESULTS FOR ANISOTROPIC EQUATIONS 14

Proof. Thanks to Lemma 3.2 we have ηakε(∇uε) ∈ H1
c (Ω) for any k = 1, ..., n and for η ∈ C0,1

c (Ω)
whose support is contained in B2R ⊂ Ω.

We first consider the case n ≥ 3.
Case n ≥ 3. Since

ˆ

Ω
|η aε(∇uε)|2

∗
dx =

ˆ

Ω

(

|η aε(∇uε)|2
)

2∗

2 dx

=

ˆ

Ω

(

n
∑

k=1

|η akε(∇uε)|2
)

2∗

2

dx ≤ C(n)

ˆ

Ω

n
∑

k=1

|η akε(∇uε)|2
∗
dx ,

(64)

then the Sobolev embedding H1(Ω) →֒ L2∗(Ω) yields

ˆ

Ω
|η aε(∇uε)|2

∗
dx ≤ C ′(n)





n
∑

k=1

(
ˆ

Ω
|∇(η akε(∇uε))|2dx

)
2∗

2





≤ C ′′(n)

n
∑

k=1

[
ˆ

Ω

(

η2|∇akε(∇uε))|2 + |akε(∇uε))|2|∇η|2
)

dx

]
2∗

2

≤ nC ′′(n)

[
ˆ

Ω

(

η2‖∇aε(∇uε))‖2 + |aε(∇uε))|2|∇η|2
)

dx

]
2∗

2

.

(65)

Now we use (59) in the latter to infer

ˆ

Ω
|η aε(∇uε)|2

∗
dx ≤ nC ′′(n)

[

(C2 + 1)

ˆ

Ω
|aε(∇uε)|2|∇η|2dx+ C2

ˆ

Ω
η2f2ε dx

]
2∗

2

≤ C(n, p,H)

[
ˆ

Ω
|aε(∇uε)|2|∇η|2dx+

ˆ

Ω
η2f2ε dx

]
2∗

2

≤ C ′(n, p,H)





(
ˆ

Ω
|aε(∇uε)|2|∇η|2

)
2∗

2

dx+

(
ˆ

Ω
η2f2ε dx

)
2∗

2



 .

(66)

Let R ≤ t < s ≤ 2R and let η = ηt,s ∈ C0,1
c (Ω) be a cut off function with 0 ≤ η ≤ 1 and such

that

η ≡ 1 on Bt, η = 0 on Ω \Bs, |∇η| ≤ 1

s− t
on Ω. (67)

Then from (66) we have

ˆ

Bt

|aε(∇uε)|2
∗
dx ≤ C ′′(n, p,H)





1

(s− t)2∗

(

ˆ

Bs\BR

|aε(∇uε)|2dx
)

2∗

2

dx+

(
ˆ

B2R

f2ε dx

)
2∗

2



 .

(68)
Following [13, Remark 6.12], let r = 2∗/2 > 1 and consider σ ∈ (0, 1). Let

α =

(

1− σ

r − σ

)

r ∈ (0, 1)

so that
r

α
=
r − σ

1− σ
> 1,

( r

α

)′
=
r − σ

r − 1
and (1− α)

( r

α

)′
= σ.
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By Holder’s inequality we have
ˆ

Bs\BR

|aε(∇uε)|2dx =

ˆ

Bs\BR

|aε(∇uε)|2α |aε(∇uε)|2(1−α)dx

≤
(

ˆ

Bs\BR

|aε(∇uε)|2rdx
)

1−σ
r−σ

(

ˆ

Bs\BR

|aε(∇uε)|2σdx
)

r−1
r−σ

.

(69)

Thus, since −2∗ = −2n/(n − 2) = n(1− r), from (68) and the latter we obtain
ˆ

Bt

|aε(∇uε)|2
∗
dx

≤ C ′′(n, p,H)(s − t)n(1−r)

(

ˆ

Bs\BR

|aε(∇uε)|2rdx
)r( 1−σ

r−σ)
(

ˆ

Bs\BR

|aε(∇uε)|2σdx
)r( r−1

r−σ )

+ C ′′(n, p,H)

(
ˆ

B2R

f2ε dx

)r

≤
(
ˆ

Bs

|aε(∇uε)|2rdx
)r( 1−σ

r−σ ) [
C ′′(n, p,H)(s − t)n(1−r)

(

ˆ

Bs\BR

|aε(∇uε)|2σdx
)r( r−1

r−σ )
]

+ C ′′(n, p,H)

(
ˆ

B2R

f2ε dx

)r

(70)

and therefore, via weighted Young’s inequality with conjugate exponents r−σ
r(1−σ) and r−σ

σ(r−1) , we

obtain

ˆ

Bt

|aε(∇uε)|2
∗
dx ≤ 1

2

ˆ

Bs

|aε(∇uε)|2rdx+ C̃(s− t)−(r−σ)n
σ

(

ˆ

Bs\BR

|aε(∇uε)|2σdx
)

r
σ

+ C ′′(n, p,H)

(
ˆ

B2R

f2ε dx

)r

≤ C̃(s− t)−(r−σ)n
σ

(

ˆ

B2R\BR

|aε(∇uε)|2σdx
)

r
σ

+ C ′′(n, p,H)

(
ˆ

B2R

f2ε dx

)r

+
1

2

ˆ

Bs

|aε(∇uε)|2
∗
dx

where C̃ is a constant depending only on n, p, σ and H.
By applying [13, Lemma 6.1] with

Z(t) =

ˆ

Bt

|aε(∇uε)|2
∗
dx,

and by choosing σ = 1
2 , from the above inequality we obtain

ˆ

BR

|aε(∇uε)|2
∗
dx ≤ C ′′′R−(r−σ)n

σ

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2r

+ C ′′′

(
ˆ

B2R

f2ε dx

)r

(71)

where C ′′′ is a constant depending only on n, p,H.
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Then Holder inequality and (71) imply

ˆ

BR

|aε(∇uε)|2dx ≤ C ′′′
1 |BR|2/n

[

R−(r−σ)n−2
σ

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+

ˆ

B2R

f2ε dx
]

(72)

where C ′′′
1 is a constant depending only on n, p,H.

A short computation yields (r − σ)n−2
σ = n+ 2, therefore the latter gives

ˆ

BR

|aε(∇uε)|2dx ≤ C ′′′
2 R

2
[

R−(n+2)

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+

ˆ

B2R

f2ε dx
]

(73)

where C ′′′
2 is a constant depending only on n, p,H. This proves (62).

To prove (63) we make use of (59) by letting η ∈ C0,1
c (Ω) be a cut-off function with 0 ≤ η ≤ 1

and such that

η ≡ 1 in BR/2, η = 0 on Ω \BR, |∇η| ≤ 2/R on Ω,

which leads to
ˆ

BR
2

‖∇aε(∇uε)‖2 ≤ 4C2R
−2

ˆ

BR

|aε(∇uε)|2dx+ C2

ˆ

BR

f2ε dx (74)

Inserting (73) into the latter yields (63).

Case n = 2. In this case we observe that, for any θ > 2, it holds

ˆ

Ω
|ηakε(∇uε)|θ ≤ C(θ)R2

(
ˆ

Ω
∇|(ηakε(∇uε)|2

)
θ
2

. (75)

Here we have used that ηakε(∇uε) ∈ H1
c (Ω) and its support is contained in B2R ⊂ Ω (see for

instance [15, Theorem 12.33]). Now we repeat the previous computations with any θ > 2 fixed.
This leads to (68) with 2∗ replaced by θ and C ′′(n, p,H) replaced by C ′′(n, p,H, θ)R2, i.e.,

ˆ

Bt

|aε(∇uε)|θdx ≤ C ′′(n, p,H, θ)R2

[

1

(s− t)θ

(
ˆ

Bs

|aε(∇uε)|2dx
)

θ
2

dx+

(
ˆ

B2R

f2ε dx

)
θ
2

dx

]

.

(76)
Now we choose r = θ

2 > 1 and we repeat the computations after formula (68). This leads to
ˆ

Bt

|aε(∇uε)|θdx

≤ C ′′(n, p,H, θ)R2(s− t)−2r

(

ˆ

Bs\BR

aε(∇uε)|2rdx
)r( 1−σ

r−σ)
(

ˆ

Bs\BR

aε(∇uε)|2σdx
)r( r−1

r−σ )

+ C ′′(n, p,H, θ)R2

(
ˆ

B2R

f2ε dx

)r

≤ C̃R
2(r−σ)
σ(r−1) (s − t)

− 2r(r−σ)
σ(r−1)

(

ˆ

B2R\BR

|aε(∇uε)|2σdx
)

r
σ

+ C ′′(n, p,H, θ)R2

(
ˆ

B2R

f2ε dx

)r

+
1

2

ˆ

Bs

|aε(∇uε)|θdx
(77)

where C̃ is a constant depending only on n, p, σ,H and θ.
By by choosing σ = 1

2 and applying [13, Lemma 6.1] we obtain
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ˆ

BR

|aε(∇uε)|θdx ≤ C ′′′R
2(r−σ)
σ(r−1)R

−
2r(r−σ)
σ(r−1)

(

ˆ

B2R\BR

|aε(∇uε)|2σdx
)

r
σ

+ C ′′′R2

(
ˆ

B2R

f2ε dx

)r

= C ′′′R−2(θ−1)

(

ˆ

B2R\BR

|aε(∇uε)|dx
)θ

+ C ′′′R2

(
ˆ

B2R

f2ε dx

)
θ
2

(78)

where C ′′′ is a constant depending only on n, p,H and θ.
Then Holder inequality and (78) imply

ˆ

BR

|aε(∇uε)|2dx ≤ C ′′′
1

[

R−2

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+R2

ˆ

B2R

f2ε dx
]

(79)

where C ′′′
1 is a constant depending only on n, p,H and θ. Then (62) follows by fixing a value of

θ > 2. From the latter it is immediate to infer (63).
�

5. Proof of the main results

In this section we prove the main results of this paper.

Proof of Theorem 1.1. It suffices to apply the estimates we found in the previous sections for
the approximating sequence uε, and then pass to the limit as ε→ 0.

Let us fix Ω′ ⊂⊂ Ω and consider uε solutions to (24). From (41) we have

|aε(∇uε)| ≤ C(H)
(

ε2 +H2(∇uε)
)

p−1
2 ,

and therefore (29) yields

‖aε(∇uε)‖L1(Ω′) ≤ C ,

where C does not depend on ε. Then from Proposition (4.3) and a standard covering argument
we infer that

‖∇aε(∇uε)‖H1(Ω′) ≤ C, (80)

where C does not depend on ε.
Since those estimates are uniform in ε, we can extract a subsequence, relabelled as uε, such

that

aε(∇uε) → h weakly in H1
loc(Ω), strongly in L2

loc(Ω) and a.e. in Ω, (81)

for some h ∈ H1
loc(Ω).

From the Lp convergence ∇uε → ∇u, we have (up to a subsequence, still denoted by uε)

∇uε → ∇u a.e. in Ω.

Hence

aε(∇uε) → a(∇u) a.e. in Ω,

and so h = a(∇u) thanks to (81).
Estimates (7) and (8) then follows by letting ε→ 0 in Proposition 4.3. Finally, the estimate

(9) follows immediately from (13). �

As already observed in Remark 1.3 and Remark 1.5, Theorem 1.2 and Theorem 1.4 are
special cases of two more general results that we state and prove hereafter. To this end we first
introduce the assumptions on the source term f :
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if p > n
2 ∃λ ∈ (n − 2, n) : f ∈ M2,λ

loc (Ω),

if p ≤ n
2 ∃λ ∈ (n − 2, n), ∃ s > n

p : f ∈ Ls
loc(Ω) ∩M2,λ

loc (Ω),

(82)

where we have denoted by M2,λ the classical Morrey space. Then we have

Remark 5.1.

i) If f satisfies (82), then f ∈ Lq
loc(Ω) where q fulfills (16), and therefore Theorem 1.1 applies.

ii) If f ∈ Lr
loc(Ω), r > n, then f satisfies (82). Indeed, by Holder inequality, we have that f ∈

M2,n− 2n
r

loc (Ω) (and n− 2n
r ∈ (n−2, n), since r > n). Moreover, ‖f‖

M2,n− 2n
r (Ω′)

≤ C(n, r)‖f‖Lr(Ω′)

for any open subset Ω′ ⊂⊂ Ω. Therefore, Theorem 1.2 and Theorem 1.4 are special cases of the
two following general results.

Theorem 5.2. Assume 1 < p ≤ 2 and let u ∈W 1,p
loc (Ω) be a local weak solution of (3) where H

satisfies (6) and f satisfies (82). Then

u ∈ H2
loc(Ω) ∩C1,β

loc (Ω)

for some β ∈ (0, 1) depending only on n, p, λ and H.
Moreover, for any open ball B2R ⊂⊂ Ω we have

ˆ

BR/2

‖D2u‖2dx ≤ C
[

R−n−2‖a(∇u)‖2L1(B2R\BR) + ‖f‖2L2(B2R)

]

,

where C is a constant depending on p, n,H, λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Lmax{2,s}(B2R) and ‖f‖M2,λ(B2R).

In particular, when p = 2 we have
ˆ

BR/2

‖D2u‖2dx ≤ C
[

R−n−2‖a(∇u)‖2L1(B2R\BR) + ‖f‖2L2(B2R)

]

,

where C is a constant depending only on n,H.

Theorem 5.3. Let u ∈W 1,p
loc (Ω) be a local solution of (3), where H satisfies (6) and f satisfies

(82). Then

u ∈ C1,β
loc (Ω)

for some β ∈ (0, 1) depending only on n, p, λ and H.
Moreover, for any open ball B2R ⊂⊂ Ω we have

ˆ

BR/2\Z

[

H2(∇u)
]p−2 ‖D2u‖2dx ≤ C, (83)

where Z denotes the set of critical points of u and C is a constant depending on p, n,H,
λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Lmax{2,s}(B2R) and ‖f‖M2,λ(B2R).

To prove Theorem 5.2 and Theorem 5.3 we need the following useful auxiliary result (inspired
by the reading of Section 5 of [17]).

Lemma 5.4. Assume n ≥ 2 and let U be an open bounded set of Rn of class C2. Let f be a
function belonging to the Morrey space M2,λ(U) with n−2 < λ < n and set α = λ−n+2

2 ∈ (0, 1).

Then there exists F ∈ H1(U,Rn) ∩ C0,α
loc (U,R

n) such that

− divF = f in U (84)
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and, for any open Lipschitz set U ′ ⊂⊂ U ,

‖F‖C0,α(U ′) ≤ C‖f‖M2,λ(U), (85)

where C is a constant depending only on n, λ, U ′ and U .

Proof. The proof relies on some results of Campanato and Morrey. 9

Let u ∈ H1
0 (U) ∩ H2(U) be the unique weak solution to −∆u = f in U and recall that

‖u‖2H2(U) ≤ C1‖f‖2L2(U), for some constant C1 depending only on n and U . Also, by a result of

Campanato [2, Teorema 10.I] we know that

‖∂jku‖2M2,λ(U ′) ≤ C2

[

‖u‖2H2(U) + ‖f‖2M2,λ(U)

]

∀ j, k = 1, ..., n (86)

where the constant C2 depends only on λ, n and U ′. Hence,

‖∇∂ku‖2M2,λ(U ′) ≤ C3‖f‖2M2,λ(U) ∀ j, k = 1, ..., n (87)

where C3 is a constant that depends only on λ, n, U ′ and U . Set w = ∂ku, then Poincaré

inequality and (87) imply that, for any x0 ∈ U ′ and any 0 < ρ < dist(U ′, ∂U)
2 ,

ˆ

Bρ(x0)
|w − wBρ(x0)|2dx ≤ cρ2

ˆ

Bρ(x0)
|∇∂ku|2 ≤ cρ2C3‖f‖2M2,λ(U)ρ

λ = cC3‖f‖2M2,λ(U)ρ
λ+2

(88)
where wω := 1

|ω|

´

ω w dx and c = c(n).

Moreover, when ρ ≥ dist(U ′, ∂U)
2 , we have

ˆ

U∩Bρ(x0)
|w − wU∩Bρ(x0)|2dx ≤ 2‖w‖2L2(U) ≤ 2‖w‖2L2(U)

[

2ρ

dist(U ′, ∂U)

]λ+2

= 2

[

2

dist(U ′, ∂U)

]λ+2

‖∂ku‖2L2(U)ρ
λ+2 ≤ 2

[

2

dist(U ′, ∂U)

]λ+2

C2
1‖f‖2L2(U)ρ

λ+2

(89)

Combining (88) and (89) we immediately get that ∂ku belongs to the Campanato space L2,λ+2(U ′)
and

‖∂ku‖2L2,λ+2(U ′) ≤ C4‖f‖2M2,λ(U) ∀ k = 1, ..., n (90)

where C4 is a constant depending only on n, λ, U ′ and U .
Now, since n < λ+ 2 < n+ 2, the well-known integral characterisation of Holder spaces by

Campanato [4, 3, 13] tell us that

∂ku ∈ C0,λ−n+2
2 (U ′), ‖∂ku‖

C0, λ−n+2
2 (U ′)

≤ C5‖f‖M2,λ(U) ∀ k = 1, ..., n (91)

where C5 is a constant depending only on n, λ, U ′ and U .
The desired conclusion then follows by taking F = ∇u. �

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Set

s̃ :=

{

2 if p > n
2 ,

s if p ≤ n
2 .

(92)

9Recall that the Morrey space M2,λ(A) is isomorphic (as Banach space) to the Campanato space L2,λ(A)
whenever A is an open bounded Lipschitz set of Rn and 0 ≤ λ < n. We shall freely use this result in the course
of the proof. More details on this property as well as other useful results used in this paper on Morrey’s and
Campanato’s spaces can be found in [13][Section 2.3]
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Let us consider an open ball B2R ⊂⊂ Ω and let fε and uε be as in Section 3. Recall that, in the
course of the proof of Theorem 1.1, we proved that

‖uε‖W 1,p(B2R) ≤ C ′
1 := C ′

1(p, n,H,B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R)) (93)

‖aε(∇uε)‖L1(B2R) ≤ C ′
1 (94)

and that, up to a subsequence,

∇uε → ∇u strongly in W 1,p
loc (Ω) and a.e. in Ω, (95)

aε(∇uε) → a(∇u) weakly in H1
loc(Ω), strongly in L2

loc(Ω) and a.e. in Ω. (96)

By making use of (93) we have uε ∈ C0(Ω) and the following bound

‖uε‖L∞(BR) ≤ C ′
2 := C ′

2(p, n,H,B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R)). (97)

Indeed, if p > n we have ‖uε‖L∞(BR) ≤ C(BR, p)‖uε‖W 1,p(BR) by Sobolev embedding, and so (97)

follows from (93). When p ≤ n we have ‖uε‖L∞(BR) ≤ C ′(p, n,H,B2R, ‖uε‖Lp(B2R), ‖f‖Ls̃(B2R)),

by the celebrated results in [22], and once again (97) follows from (93).
Now we observe that fε ∈ M2,λ(B2R) and ‖fε‖M2,γ (B2R) ≤ ‖f‖M2,γ (B2R). We can therefore

use Lemma 5.4 to obtain vector fields Fε ∈ C0,α(BR) such that

‖Fε‖C0,α(BR) ≤ C‖fε‖M2,λ(B2R) ≤ C‖f‖M2,λ(B2R) (98)

where α = λ−n+2
2 ∈ (0, 1) and C is a constant depending only on n, λ,BR and B2R.

Now we set Aε(x, ξ) := aε(ξ)− Fε(x), (x, ξ) ∈ BR × (Rn \ {0}) and observe that

− div(Aε(x,∇uε)) = 0 in BR. (99)

We can therefore apply [16, Theorem 1.7] to obtain β = β(n, p,H, λ) ∈ (0, 1) such that

‖uε‖C1,β(BR
2
) ≤ C ′

3 = C ′
3(p, n,H, λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R), ‖f‖M2,λ(B2R)). (100)

Hence, up to a subsequence, uε → u in C1
loc(Ω), u ∈ C1,β

loc (Ω).
By (58) and p ≤ 2 we get

ˆ

BR
2

‖D2uε‖2dx ≤ C ′
4

ˆ

BR
2

[

ε2 +H2(∇uε)
]p−2 ‖D2uε‖2dx ≤

C ′
4C2

[

4

R2

ˆ

BR

|aε(∇uε)|2dx+

ˆ

BR

f2ε dx

]

(101)

where C2 is a constant depending only on n, p,H and C ′
4 is a positive constant depending only

on C ′
3 (note that one can take C ′

4 = 1 when p = 2). Then, inserting (62) into the latter yields
ˆ

BR
2

‖D2uε‖2dx ≤ C ′
4C2

[

4

R2

ˆ

BR

|aε(∇uε)|2dx+

ˆ

BR

f2ε dx

]

≤ C ′
4C(n, p,H)

[

R−n−2

(

ˆ

B2R\BR

|aε(∇uε)|dx
)2

+

ˆ

B2R

f2dx
]

≤ C ′
5 = C ′

5(p, n,H, λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R), ‖f‖M2,λ(B2R))

(102)

where in the last inequality we have used (94). Therefore, up to a subsequence, uε → u weakly
in H2

loc(Ω) and the thesis follows by letting ε→ 0 in (101) and then recalling (8).
�
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Proof of Theorem 5.3. We repeat the proof of Theorem 1.2 until the estimate (100). Hence, up
to a subsequence,

uε → u in C1
loc(Ω), u ∈ C1,β

loc (Ω). (103)

By (58), (62) and (94) we have that
ˆ

BR
2

[

ε2 +H2(∇uε)
]p−2 ‖D2uε‖2dx ≤ C2

[

4

R2

ˆ

BR

|aε(∇uε)|2dx+

ˆ

BR

f2ε dx

]

≤ C ′
5 = C ′

5(p, n,H, λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R), ‖f‖M2,λ(B2R)) ;

(104)

therefore, for every i, j ∈ {1, . . . , n} ,

φi,jε :=
(

ε2 + |∇uε|2
)

p−2
2 ∂ijuε (105)

is uniformly bounded in L2
loc(Ω) w.r.t. ε > 0. Hence, up to a subsequence,

φi,jε → φi,j weakly in L2
loc(Ω) as ε→ 0. (106)

In view of (104), (106) and the weak lower semicontinuity of the L2 norm, to get our thesis
it is enough to prove that

φi,j = |∇u|p−2∂iju a.e. in Ω \ Z. (107)

To this end, we fix an arbitrary open ball B2R ⊂⊂ Ω \ Z, then |∇u| ≥ 2c > 0 in B2R by
definition of Z. Hence, by (103), we have

|∇uε| ≥ c in B2R, for all small enough ε. (108)

By using (104), (108) and (100) we find
ˆ

BR
2

‖D2uε‖dx ≤ C(c, p,H,C ′
3)

ˆ

BR
2

[

ε2 +H2(∇uε)
]p−2 ‖D2uε‖2dx

≤ C ′
6 = C ′

6(c, p, n,H, λ,BR, B2R, ‖u‖W 1,p(B2R), ‖f‖Ls̃(B2R), ‖f‖M2,λ(B2R)),

which implies that uε is uniformly bounded in H2
loc(Ω\Z) and then, up to a subsequence, uε → u

weakly in H2
loc(Ω \ Z). The latter and (103) yield

φi,jε =
(

ε2 + |∇uε|2
)

p−2
2 ∂ijuε → |∇u|p−2∂i,ju,

weakly in L2
loc(Ω \ Z), which proves (107) and concludes the proof. �

Proof of Proposition 1.6. From Theorem 1.1 we know that

|a(∇u)| ∈ H1
loc(Ω).

Thanks to a well-known result due to Stampacchia [24] we infer that

|a(∇u)|
ε+ |a(∇u)| ∈ H

1
loc(Ω)

for any ε > 0. Therefore, for any ϕ ∈ C∞
c (Ω), we can use

|a(∇u)|
ε+ |a(∇u)|ϕ

as a test function in (15) and we have
ˆ

Ω

|a(∇u)|
ε+ |a(∇u)|ϕf dx =

ˆ

Ω

|a(∇u)|
ε+ |a(∇u)|a(∇u) · ∇ϕdx+ ε

ˆ

Ω

a(∇u) · ∇(|a(∇u)|)
(ε+ |a(∇u)|)2 ϕdx. (109)

We first notice that
ˆ

Ω

|a(∇u)|
ε+ |a(∇u)|ϕf dx =

ˆ

Ω\{∇u=0}

|a(∇u)|
ε+ |a(∇u)|ϕf dx. (110)



REGULARITY RESULTS FOR ANISOTROPIC EQUATIONS 22

Moreover we have
∣

∣

∣

∣

∣

ε
a(∇u) · ∇(|a(∇u)|)

(ε+ |a(∇u)|)2 ϕ

∣

∣

∣

∣

∣

≤ ∇(|a(∇u)|)|ϕ|

where the latter function belongs to L1(Ω), independently on ε. This implies that we can use
the dominated convergence theorem in (109) as ε→ 0+ and, from (110), we obtain

ˆ

Ω\{∇u=0}
ϕf dx =

ˆ

Ω
a(∇u) · ∇ϕdx =

ˆ

Ω
ϕf dx ,

where in the last equality we used again the equation. Since ϕ is any function in C∞
c (Ω), we get

the desired conclusion. �

Proof of Corollary 1.7. This corollary is a straightforward consequence of Proposition 1.6. In-
deed, the singular set {∇u = 0} is contained into the set {f = 0} up to a set of measure zero.
Since |{f = 0}| = 0 then |{∇u = 0}|. �
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