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Abstract. Absorption spectroscopy and voltammetry, of known analogies and connections, share 

even more fascinating similarities and connections at a higher complexity level, when “upgrading” 

them with the ability to discriminate between enantiomers by chiral selector implementation. In 

both techniques either “molecular” selectors or “electromagnetic” ones (L- vs R- circularly 

polarized light components for spectroscopy, - vs - spin electrons for voltammetry) can be 

considered; moreover, external magnetic field application can replace a truly chiral actor. A 

tentative schematization is provided. Analogies and connections also concern molecular features 

of the enantiodiscrimination actors. In both techniques outstanding performances are obtained with 

inherently chiral molecules, in which a conjugated backbone with tailored torsion is source of 

chirality as well as spectroscopic and electrochemical activity, in an attractive three-fold 

interconnection. Their outstanding effects can be justified by a combination of chemical and 

electromagnetic properties (excellent potential molecular spin filters), a fascinating challenge for 

future developments.  
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1. Well known analogies and connections between Voltammetry and Electronic Absorption 

Spectroscopy in the study of active molecules and molecular materials 

The steadily growing search for molecules and molecular materials with advanced functional 

properties often involves systems that include sites with interesting electronic features, making 

them at the same time spectroscopically and electrochemically active, i.e. both chromophores and 

redox sites. To experimentally investigate and rationalize such electronic properties, electronic 

absorption spectroscopy and voltammetry are usually applied in sinergy, with well-known 

reciprocal connections. The first one accounts for intramolecular electronic transitions driven by 

increasing energy in terms of decreasing wavelength of incident light; the second one accounts for 

electron transfer processes to/from electrode (oxidations/reductions) driven by increasing energy 

in terms of increasingly positive/negative electrode potentials. In turn, measured quantities, i.e. 

absorbance in the first case and current intensity in the second case, share dependency on (i) 

chromophore/redox site concentration, (ii) geometric parameters (optical path length, electrode 

surface), as well as (iii) molecular parameters accounting for the process mechanism (molar 

extinction coefficient, accounting for light-matter interaction, in the first case; energy barrier 

symmetry factor, number of exchanged electrons etc. in the second case). Accordingly, molecular 

identification/discrimination together with information about molecular energy levels can be 

achieved considering absorption wavelengths/potentials for electron transfer, while quantification 

is feasible by considering absorption/current intensities. 

Actually the information obtained from the two approaches about energy levels is not expected to 

coincide, considering the significantly different conditions (homogeneous phase, organic solvent, 

even apolar, with no electrolyte, no net charge formation… in the first case; heterogeneous 

conditions, electrolyte medium, net charge formation… in the second case); nor is expected to 

coincide with values obtained by other approaches such as theoretical computations (usually in 

vacuum) or, for molecular solids, photoelectron spectroscopies (aggregation effects...).[1-3] 

However, for example, HOMO-LUMO energy gaps obtained (in eV) from first absorption 

wavelengths (maxima or onset ones [4]) according to  

h (J s)  c(m s-1)/(max/onset(m)  qe(C e-1))                                         

are often similar to those obtained from first oxidation and first reduction potentials (formal, or 

peak, or onset ones [4]) in voltammetry experiments, according to 

   1e  [EI a - EI c]V    

Notably, however, only electrochemical experiments make it possible to estimate single HOMO 

or LUMO levels,  

ELUMO (eV)  1e  [(E I c /V(Fc+|Fc) + 4.8 V (Fc+|Fc vs zero)]  

EHOMO (eV)  1e  [(EI a /V(Fc+|Fc) + 4.8 V (Fc+|Fc vs zero)]  

on the basis of the estimation of the energy level of the reference intersolvental reference couple 

Fc+|Fe respect to vacuum (here considered as 4.8 eV, but for which actually there is a range of 

proposed literature values, being an extrathermodynamic quantity [5]). 

Moreover, there can be exceptions in which the two approaches yield remarkably different results, 

particularly if first oxidation and/or first reduction in the voltammetry experiment do not involve 

the same HOMO and LUMO energy levels as in the spectroscopic experiments, like e.g. when in 



large molecules easiest oxidation and easiest reduction involve different sites that are reciprocally 

distant and not communicating. 

2.  The two techniques at a higher selectivity level: discriminating enantiomers of chiral 

advanced molecules and molecular materials  

Many optically and electrochemically active molecules of high relevance, for example among 

natural or synthetic active pharmaceutical ingredients/nutrients, catalysts, materials for optics and 

spintronics..., are chiral. Endowing spectroscopy and voltammetry with the ability to discriminate 

between their enantiomers is important, as an alternative or at least a complement to expensive 

and destructive separation by enantioselective chromatographic techniques.  

In achiral environments the enantiomers of chiral electroactive molecules have identical physico-

chemical properties and therefore result in identical absorption spectra or voltammetry patterns. 

Therefore, achieving enantiomer recognition, thus upgrading spectroscopy or voltammetry to 

chiral spectroscopy or chiral voltammetry, requires implementation of a suitable chiral selector 

able to significantly interact with the chiral probe, resulting in diastereomeric and therefore 

energetically distinguishable situations.  

As we will discuss further on, the selector can be either a “molecular” one, i.e. the (R)- or (S)- 

enantiomer of a second chiral molecular species besides the chiral probe, or an “electromagnetic”, 

one, also truly chiral: in particular, the L- and R- circularly polarized light components, or the - 

and β-spin electrons in rototranslational motion across the electrochemical interphase.  

Of course, in order to achieve transduction of the recognition event, at least one chromophore 

or/and redox site, respectively for chiral spectroscopy or/and chiral voltammetry, must either be 

present in the probe and/or in the selector, or, if necessary, provided by a third, possibly achiral, 

co-actor [6]. In any case, such active sites should be possibly strictly related to (e.g. located close 

to, coupled with, or, best of all, coincident with) the stereogenic element which enables chiral 

recognition. In such perspective, particularly attractive are “inherently chiral” molecular selectors 

in which the main molecular backbone, based on a conjugated (hetero)aromatic system featuring 

an helical or axial stereogenic element, is the source of both chirality and key electron 

absorption/electron transfer properties.[7-9] 

In summary, at least two chiral actors (probe/selector, although it should be remarked that 

discriminating between probe and selector is only a matter of perspective…) and at least one 

chromophore/redox site must be present in the environment were the enantiorecognition event has 

to be achieved and detected. A tentative comparative schematization of possible cases is provided 

in Scheme 1. 

 

Scheme 1. (following page) A tentative schematization of possible enantiodiscrimination 

strategies in chiral electronic absorption spectroscopy or chiral voltammetry, with related 

implications. 
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 2.a Achieving enantiodiscrimination in electronic spectroscopy with truly chiral actors  

 

In principle, enantiodiscrimination could be achieved in absorption or emission spectroscopy with 

both chiral actors being “molecular” ones, provided that their combination results in significant 

variation in absorption wavelength or/and intensity for at least one chromophore belonging to one 

or both chiral actors (or to a third auxiliary achiral co-actor).  

Although a significant number of such cases have been studied, especially for colorimetric/visual 

readout of the recognition event (like e.g. [10,11]), this approach does not look very popular, 

possibly since it requires development, preparation and bulk consumption of specific, powerful 

chiral molecular selectors, and is probe-destructive. 

Such onerous requirement is instead not necessary working with polarized light, in the well-

established technique of circular dichroism [12-21,23].  

Plane polarized light PL can be regarded (Figure 1) as the sum of two helix-like left-handed and 

right-handed circularly polarized light components, L-CPL and R-CPL (which in turn can be 

regarded as the sum of two perpendicular PLs with  /2 phase difference). When PL passes 

through a chiral sample, its L-CPL and R-CPL components proceed at different speed; as a result, 

 if the wavelength is such that no absorption can take place, the light exiting the chiral 

sample is still plane polarized, but rotated by a given  angle (the observed quantity in the 

popular polarimetry technique). Such rotation depends on the light wavelength, which is 

the object of the optical rotation dispersion ORD technique, analyzing L-CPL vs R-CPL 

propagation speed differences [21,22];  

 if the light wavelength  is such that it can be also absorbed by the sample, the light exiting 

the sample is elliptically polarized, as a consequence of the two CPL components being 

absorbed with different molar extinction coefficients L and R, resulting in different AL 

and AR absorbances (“Cotton effect”). Recording the ellipticity , or its proportional 

quantities RL or ARAL, as a function of incident PL wavelength, provides circular 

dichroism CD spectra [12,15,23] or, more precisely, E[lectronic]CD spectra, to distinguish 

them from V[ibrational]CD spectra, which can be obtained in the infrared range [24,25]. 

ECD signals are located in correspondence of UV-Vis absorption ones, but, unlike them, being 

differential quantities they can be either positive or negative, and are perfectly specular for the 

enantiomers of a given chiral molecule.  

It is worthwhile recalling that extinction coefficient , accounting for efficiency of photon/matter 

interaction, depends on both electric and magnetic transition dipole moments, accounting for 

electron density redistribution (translational and rotational displacement, respectively) in transition 

between different energy levels implying different orbital (electron density) shapes. In achiral UV-

Vis absorption spectroscopy the electric transition dipole moment is usually the prevailing one, 

and allowed and forbidden transitions are defined considering it only. Instead, in chiral 

spectroscopy both dipole moments are important, involving chiral charge displacement along e.g. 

a helical path (in the asymmetric chiral magnetic field corresponding to the chiral sample) [12] 



Simulation of CD spectra with theoretical computations enables to assign absolute configuration 

to the two enantiomers. [15,19,26]  

Conformation [13], supramolecular [14] and solid-state effects [17,20,27-29] can result in 

significant modulation of ECD spectra. The ECD technique is particularly useful when studying 

chiral macromolecules (including both natural and synthetic ones), to account for the presence of 

a regular "secondary" chiral structure [13,30] (Figure 1). In particular, the more regular and stable 

the “secondary” helical/foldamer chiral structure of the macromolecule, the more evident its ECD 

response, which can instead nearly cancel for chiral polymers with “random coil” features and/or 

resulting from non-regioregular oligomerization. [28,31] Accordingly, the ECD of a given chiral 

macromolecule remarkably changes if the latter conformation changes (at constant configuration) 

e.g. as a function of pH, solvent, light, electric charge etc..[29]  

Symmetrically to ECD, in emission spectroscopy with PL excitation, chiral samples can fluoresce 

with PL, consisting of two circularly polarized components of different intensity (Circularly 

polarized luminescence, CPL. [32-35] 

 

Figure 1. Polarized light and electronic circular dichroism basic features. 

 



2.b Achieving enantiodiscrimination at the electrochemical interphase with truly chiral actors  

In chiral voltammetry the most desirable transduction mode of the enantiomer recognition event 

is in terms of a significant, possibly wide, potential difference for the two electroactive probe 

enantiomers in the presence of the chiral enantiopure selector. (Figure 2) In fact, a potential 

difference can enable direct enantiomer recognition (also combined with quantitative estimation 

from peak currents) and/or selective enantiomer activation, [7] from the microscopic scale up to, 

fascinatingly, the macroscopic one, in many smart device architectures [36-40] 

The most favourable circumstance is when a neat potential difference between two well-defined 

peaks with linear dynamic range for currents is observed for the two enantiomers simultaneously 

present, enabling to estimate enantiomeric excesses. [41,42] This optimal situation can be easier 

achieved for chemically reversible electron transfer processes, which result in little or no surface 

conditioning by the first enantiomer electrode process with respect to the second one. [41,42] 

It must be underlined that there is obviously no a priori relationship between the combination of 

probe/enantiomer absolute configurations and the peak sequence, being the (R)- and (S)-

descriptors assigned according to an abstract convention. Instead, specular potential differences 

must be obtained upon inverting either probe or selector configuration (Figure 2); such double 

inversion test provides the soundest reliability test for the enantiodiscrimination protocol, enabling 

to rule out possible other causes for the observed potential differences. [41] 

Actually many cases have been recently presented of significant and even wide potential 

differences, obtained for various probe enantiomers by implementing molecular chiral selectors at 

the electrochemical interphase, either as confined solid selector layer/network, modifying the 

electrode surface with suitable chiral selector films [41-51], or as expanded semisolid selector 

network, exploiting media of high local order at the interphase with a charged achiral electrode 

implemented with chirality, like ionic liquids or deep eutectic solvents [52-57].  

Since in the voltammetry case the enantiodiscrimination process is intrinsically hetereogeneous, 

taking place at the interphase rather than in the bulk, only minimal quantities of the molecular 

selector can be employed, e.g. modifying the electrode surface by electrodeposition of a very thin 

chiral selector layer [ 41-51] or working with screen-printed cells with a thin layer of ionic liquid 

modified with a chiral additive (or itself chiral).[53-55,57] Moreover, the modified surface could 

be recycled (at least in favourable cases with no filming/conditioning products) and in any case 

the experiment is non-destructive for the bulk probe. Furthermore, local cage/structuring/electro-

magnetic effects can enhance probe/selector interactions respect to bulk conditions. 

Notably, the observed potential shifts (up to some hundreds mVs) are consistent with mild 

coordination, considering e.g. the well known Kolthoff and Lingane treatment for ligand effect on 

electrochemically reversible species [58], or the significant peak potential differences that are often 

observed for a given electroactive molecule upon changing the supporting electrolyte, on account 

of different tendency to ionic couple formation.  

Remarkably, when considering the study cases provided in the above cited papers, the selectors 

can be considered “multipurpose”, because a given selector is effective with even very different 



probes, and a given probe can be discriminated by various selectors, although with different 

efficiency. This can be explained by the good number of elements available for probe/selector 

coordination (heteroatoms, (hetero)aromatic rings and  conjugated systems) in the reported 

examples.  

 

Figure 2. Chiral voltammetry basic features. 

However, besides such “molecular interaction” effect, an “electromagnetic” effect should be 

considered, too [59], related to the - vs - spin electrons in rototranslational motion across the 

chiral interphase being promoted or hampered by the latter’s chiral magnetic field, in turn 

modulated by the presence of a second chiral magnetic field corresponding to the chiral probe. 

Indeed, referring to Scheme 1, voltammetry case (I) must also include voltammetry case (IIb),  and 
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the concurrent presence of two chiral selectors should be considered, resulting in two contributions. 

It is worthwhile noticing that such considerations are possible on account of the electron flux being 

intrinsically unidirectional, i.e. perpendicular to the electrochemical interphase, while the parallel 

spectroscopic case (I), involving unpolarized light, implies infinite planes.  

Of course a key issue is to evaluate the extent of such “electromagnetic” contribution.  

The different interaction of - vs - spin electrons with a chiral magnetic field corresponding to a 

chiral molecular layer of (R)- or (S)- configuration, particularly modifying an electrode surface 

across which the chiral rototranslational motion of electrons takes place, is a fascinating subject 

that has been the object of extensive investigations (e.g. [59-85]), particularly by Naaman and 

colleagues [59-80], who termed it CISS (“chiral-induced spin selectivity”).   

They observed that - vs - spin polarization induced by a molecular chiral electrode surface can 

be impressive, even surpassing common inorganic spin-filters [60], pointing to competitive 

applications such as molecular spin filters or giant magnetoresistive molecular spin valves [86-88] 

in spintronics, a field of great current applicative interest [89-92]. They also pointed out that to 

justify such high spin polarizations an unusually high spin-orbit coupling should be considered, of 

several orders of magnitude greater that normal cases of organic molecules [60]. To justify it, spin 

transport has been modelled in the electromagnetic field of an helical molecular structure 

[60,63,71,81,82] resulting in estimated energy splittings of even several hundreds of meV [60]  

between the two spin states. Also the tunneling probability for the favoured spin has been estimated 

to be enhanced with respect to normal cases by even 1-2 orders of magnitude [63]. The importance 

of electron correlation has also been pointed out [84], with the estimated spin polarization 

increasing in molecular chains with the number of ionic sites and laps.  

To study the CISS effect, spin-specific/enriched currents were typically generated using a 

magnetic electrode under magnetic field [61,62] (which actually adds a further actor, although a 

“false”, i.e. non time-invariant [93-95], chirality one), then evaluating their variations upon 

crossing the chiral layer under study [62]. More recently, however, a protocol based on a working 

electrode modified with a circuit implementing Hall effect has been proposed to avoid the presence 

of the magnetic field. [59] Actually spin-specific currents can also be produced by the CISS effect 

itself, at an electrode modified with a chiral molecular layer [93].Very recently, spin-dependent 

charge transfer at chiral electrodes has been probed by magnetic resonance [69]. Moreover, 

Kelvin-probe experiments resulted in potential differences up to about one hundred mV. The CISS 

effect has been shown to be appliable to enhance water splitting [66,78], to achieve asymmetric 

reactions [75] enantiomer separation [70] and enantiomer bio-recognition [63], and to propagate 

along achiral low-resistance molecular wires [72].  

Fascinatingly, the CISS effect has also been related to the intriguing subject of biological 

homochirality [96]. 

Returning to the present issue, in principle the spin electron polarization upon interaction with the 

chiral probe could be sufficient as a selector for enantiomer discrimination, even without a 

molecular one, and would represent the electrochemical parallel of the ECD experiment. However 

unlike the spectroscopic case, (a) the approach based on two molecular actors has so far been very 



successful (it would be however interesting to evaluate how much is the spin polarization 

contribution) and (b) at least so far, evaluation of - vs - spin ratio is still critical/not trivial 

respect to evaluation of L-CPL to R-CPL ratio in spectroscopy. Were it to become easily 

accessible, an “electrochemical spin dicroism” could be developed for electrochemical enantiomer 

discrimination in the absence of molecular selectors! 

2.c Substituting a “truly” chiral actor with a “falsely” chiral one: application of an external 

magnetic field 

Achiral polarizable substrates can also give circular dichroism response under magnetic field 

application, proportionally to magnetic field intensity and presenting mirror image spectra upon 

inverting magnetic field orientation. Such "magnetic circular dichroism” (MCD) has been 

explained in terms of perturbation of electronic energy levels by an external static magnetic field 

and can be the sum of three contributions [97-99]: a first one, temperature-independent, of 

sigmoidal shape, related to loss of degeneration in excited states; a weak second one, also 

temperature-independent, bell-shaped, related to mixing of close excited states; and a third one, 

also bell-shaped and more intense, related to loss of degeneration in ground state, dominant 

especially at low temperatures, being linked to population distribution in vsground 

sublevels. MCD is a well-established technique, exploited for molecular property elucidation (for 

example it has been widely applied to property elucidation of porphyrin and phthalocyanins 

properties since the ‘70s [100]) e.g. to resolve degenerate levels.  

In a certain way, one might consider the combination achiral molecule+magnetic field as a [false] 

chirality probe substituting the [true] chirality molecular one. It must however be remarked that, 

as it was clearly pointed out by Barron [94,95], an external applied magnetic field can only result 

in “false”, i.e. non time-invariant, chirality, unlike the “true”, i.e. time-invariant, chirality of a 

chiral molecular magnetic field..  

Simmetrically, mirror image spectra can be also obtained when working on chiral molecules with 

unpolarized light, by application of a magnetic field (“magneto-chiral dichroism” [101,102]). In 

this case the polarized light chiral actor is substituted by the combination of normal light+magnetic 

field. 

Do similar considerations also apply to chiral voltammetry?  

Magnetoelectrochemistry phenomena have been studied in the last two centuries since the first 

Faraday experiments (who incidentally in such context discovered the polarized light rotation 

under magnetic field, “Faraday effect”), encompassing magnetic field effects on electron transport  

(e.g. Lorentz force as well as Hall and spin Hall [90] effects) and on electrode processes, (involving 

interphase capacitance and electron transfer as well reactant diffusion/diffusion issues [103-107]). 

For example, chiral surfaces have been successfully prepared by electrodeposition exploiting 

magnetodynamic effects [105], and autonomous Janus swimmers driven by Lorentz force have 

been recently presented [108]. 

In the present context, performing voltammetry of an achiral molecule under magnetic field, a 

Zeeman effect must take place, resulting in loss of degeneration of - vs - spin levels and - vs 



- electron unbalance; and, of course, upon inverting the magnetic field orientation the opposite 

situation must be obtained. However, the two situations are enantiomeric, i.e. energetically 

coincident and undistinguishable from the voltammetry “scalar” point of view.  

Simmetrically, performing voltammetry of the achiral probe on a chiral electrode, a Zeeman effect 

must take place (as already above discussed); in this case the effect is a true chirality one, 

originating from a magnetic field of chiral molecular origin, and therefore time-invariant. Again, 

however, the situations obtained with (R)- vs (S)- layers are enantiomeric and undistinguishable 

from the voltammetry point of view.  

A ”scalar” energy difference can be obtained by applying both magnetic fields, e.g. the molecular 

and the external one. In fact this implies a double splitting effect, modifying the couple of 

enantiomeric and therefore energetically equivalent combinations into two couples of 

diastereomeric and therefore energetically different ones). (Figure 3 bottom) 

Actually, very successful “pseudochiral voltammetry” experiments were recently obtained with 

achiral Fe(II)|Fe(III) redox couples (ferrocyanide|ferricyanide or ferrocene|ferricinium) working 

on chiral electrodes under magnetic field [93,46-48]. Potential differences were observed of 

hundreds of mVs, symmetrically upon inverting either magnetic field orientation or chiral surface 

configuration. A further analogy with MCD [97] is the dependence on the applied magnetic field 

strength (the observed potential differences regularly decrease with increasing magnet distance) 

and also, possibly, the temperature effect [93]. Importantly, while a similar phenomenon was 

observed with different chiral oligomer layers, it was entirely absent when the electrode was 

modified with an oligomer film of similar molecular properties but achiral.[93] 

Looking at Scheme 1, this striking experiment, which implies spin-resolved electron energy levels 

(or, from the electrochemical perspective, spin-resolved electrochemical potentials), could 

correspond to either situations (IIIb) (considering the achiral probe+magnetic field combination to 

replace the chiral probe) or (IV) (regarding the chiral surface as probe, and the combination of -

/ - electron + magnetic field to replace the chiral selector).   

From a further different perspective, application of the external magnetic field can enable to 

highlight the molecular spin filter properties of the chiral film on the electrode surface, and to 

discriminate its configuration; moreover, modulating the magnetic field can enable to modulate 

spin polarization and energy difference. In this light, it has been proposed that such setup could be 

looked at as a solution-based equivalent of magnetoresistance determination in all-solid devices 

(except for the distinction between electron transfer and electron transport)  [93] 

 

 



 

 

Figure 3 A “pseudochiral voltammetry” experiment obtained working on a chiral electrode with achiral 

probe under magnetic field. [93] Figure elements reproduced from Ref. 93 with permission from the Royal 

Society of Chemistry. 

 



2.d Focusing on the molecular chiral actors involved: structure-activity relationship analogies  

Beautiful analogies also concern the relationship between the structural features of the involved 

molecular actors and the observed chiroptical / chiral voltammetry effects. 

i) Both techniques share the same ideal selector features: inherently chiral molecules 

As mentioned above, the stereogenicity element should be as strictly related as possible to the 

optically/redox active site(s).  In this light, chiral spectroscopy and chiral voltammetry share the 

same ideal chiral actor features. In particular, huge chirality manifestations are observed both in 

chiroptical spectroscopy ([12,15], following the old concept of “Inherently Dissymmetric 

Chromophores and Circular Dichroism” [110])  and in chiral voltammetry [41-51,53-55,57] with 

“inherently chiral” molecules, in which the source of both chirality and key functional properties 

coincides, while generally less effective discrimination is obtained when the stereogenic element 

is a localized, often peripheral, stereocentre (e.g. [111,112] vs [53-55,57] concerning chiral vs 

inherently chiral ionic liquid based media).  

  

SCHEME 2 

For example, very effective are inherently chiral selectors having as molecular backbone a 

conjugated electroactive (hetero)aromatic system featuring an helical or axial (atropisomeric) 

stereogenic element, their molecular design being also tailored to promote 

propagation/amplification of stereogenicity from monomer to oligomer and supramolecular 

structures. Such systems can give both intense, well defined ECD signals (as well as neat circularly 

polarized luminescence and VCD), and large potential differences (up to some hundreds of mVs) 

when employed as one of the chiral molecular actors in voltammetry [41,47,112,113].  

Remarkably, a given selector appears highly effective with very different chiral probes; this can 

be justified by the presence of many heteroatoms and aromatic systems available for coordination, 

consistently with recent chiral voltammetry tests in systematic sequences of molecular probes or 

selectors (e.g.[45,49,51,56]); however, the helical or foldamer structure of the inherently chiral 

actor should also powerfully enhance the electron orbital-spin coupling and therefore the 
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“electromagnetic” contribution to the enantiomer discrimination. Actually with such selectors the 

above impressive magnetoelectrochemistry effect can also be observed [46-48,93]. 

 

ii) Both techniques highlight coupling effects of interacting chromophores/redox sites 

Inherently chiral selectors with axial stereogenicity consisting of two equivalent and reciprocally 

interacting redox centres/chromophores (the two symmetrical moieties), like the biindole-based 

monomer described in [47], also provide very nice model cases to highlight similar energy splitting 

effects in spectroscopy and in voltammetry. (Figure 4) 

From the perspective of intramolecular electronic transitions, the interaction between the two 

equivalent chromophores results in an energy level degeneration removal and a wavelength 

splitting, which however is usually difficult to resolve in UV-vis spectroscopy, only corresponding 

to a slight signal broadening.  Instead the same effect (“exciton coupling” resulting in “Davydov 

splitting”) becomes evident in CD, since in this case the two components have opposite sign: thus 

a typical sigmoidal pattern appears (the larger the , the better defined is such pattern) [12,15,26] 

(Figure 4 top). The effect is modulated by the angle between the two equivalent chromophores, is 

affected by the chromophore environment and working conditions, and can provide important 

information about the molecule conformation [12,15] in case the magnetic dipole transition 

moment contribution can be well represented by two independent electric dipole transition 

moments dissymmetrically disposed [114]  

The voltammetry pattern of the same molecule features a typical first oxidation twin peak system 

which is related to the presence of two equivalent, reciprocally interacting redox sites, mainly 

localized in the two moieties of the atropisomeric biindole core, which is the electron richest part 

of the molecule. (This is confirmed by the observation that oligomerization, requiring radical 

cation formation on the thiophene terminals, does not occur when limiting the potential in the 

range of the twin peak system, and can only be obtained at potentials corresponding to the 

subsequent oxidation peak system).  

Also in this case the effect provides interesting information on the molecular properties (in 

particular, the peak splitting increases with the extent of reciprocal interaction/electronic 

communication [115]) and is affected from the redox site environment (for example the peak 

splitting decreases upon increasing the solvent polarity [47,115]). 

 

 

 

Figure 4. (following page) A comparative study case of equivalent, reciprocally interacting 

chromophores/redox sites in ECD and in CV. Figure elements reproduced from Ref. 47 with 

permission from the Royal Society of Chemistry. 



 

 

 



iii) Exploiting the intrinsic reciprocal connection of the three outstanding properties in 

inherently chiral molecules 

Finally, an attractive property of the above inherently chiral molecules is that since chirality, 

optical activity and electrochemical activity all originate from the main backbone, they are 

reciprocally strictly linked. For example, chiroptical activity can be regularly and reversibly 

modulated by electrochemistry, as nicely demonstrated in CD spectroelectrochemistry 

experiments. [41,112] 

3. Conclusions and perspectives 

Absorption spectroscopy and voltammetry, having well known analogies and connections, share 

even more fascinating similarities and connections at a superior complexity level, when 

“upgrading” them with the ability to discriminate between enantiomer probes, which requires 

implementation of a chiral selector.  

Both “molecular” selectors, having significantly different coordination ability for the probe 

enantiomers, and “electromagnetic” selectors (L- vs R- circularly polarized light components for 

spectroscopy, - vs - spin electrons in voltammetry) can be considered in both techniques. 

In the more mature area of chiral spectroscopy, the technique of choice for enantiodiscrimination, 

electronic circular dichroism, is based on the second alternative, which requires no development/ 

consumption of high-value reagents and is not probe-destructive, and is made possible by the 

commercial availability of instrumentation enabling to evaluate differential adsorption of the 

polarized light components. In the “younger” chiral voltammetry technique, very good results in 

terms of enantiomer potential differences have been so far obtained with molecular chiral selectors, 

which in voltammetry case is not critical concerning material quantity (for example, working with 

chirally modified electrodes requires very little selector quantities) and is not probe-destructive. 

However, recent evidence concerning the differential interactions of - vs - spin electrons with 

molecular chiral magnetic fields at the electrode surface (CISS effect) suggest that an additional 

contribution be present besides the molecular one, and could be even exploited alone, analogously 

to the dichroism technique, should it become reasonably feasible from a technical point of view.  

Another analogy between spectroscopy and voltammetry is the possibility of applying an external 

magnetic field, which may be regarded as replacing a chiral actor (although with “false chirality”), 

as in the well established magnetic circular dichroism technique, and in intriguing recent 

magnetoelectrochemistry experiments. 

Many analogies and connections also concern the molecular side of the enantiodiscrimination 

events. In both techniques  circular dichroism and voltammetric enantiomer discrimination   

outstanding performances can be obtained with inherently chiral molecular actors. In this context,   

a helical or atropisomeric molecular structure, in which a conjugated molecular backbone with a 

tailored torsion is the source of both chirality and optical as well as electrochemical activity, offers 

a fascinating and useful reciprocal three-fold connection of functional properties. Such molecular 

design results inter alia in nice cases of equivalent and reciprocally interacting 



chromophores/redox sites, evidenced both by sigmoidal patterns in CD and by twin peak splitting 

in CV. 

The powerful chirality manifestations of inherently chiral molecules can be justified by both 

molecular considerations (many heteroatoms and aromatic rings available for molecular 

interactions) and electromagnetic ones (powerful molecular chiral magnetic field, for which they 

can be regarded as excellent potential molecular spin filters). Discriminating between the two 

contributions in order to rationalize and exploit the impressive observed phenomena represents a 

very desirable target as well as a fascinating challenge. 
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Abstract. Absorption spectroscopy and voltammetry, of known analogies and connections, share 

even more fascinating similarities and connections at a higher complexity level, when “upgrading” 

them with the ability to discriminate between enantiomers by chiral selector implementation. In 

both techniques either “molecular” selectors or “electromagnetic” ones (L- vs R- circularly 

polarized light components for spectroscopy, - vs - spin electrons for voltammetry) can be 

considered; moreover, external magnetic field application can replace a truly chiral actor. A 

tentative schematization is provided. Analogies and connections also concern molecular features 

of the enantiodiscrimination actors. In both techniques outstanding performances are obtained with 

inherently chiral molecules, in which a conjugated backbone with tailored torsion is source of 

chirality as well as spectroscopic and electrochemical activity, in an attractive three-fold 

interconnection. Their outstanding effects can be justified by a combination of chemical and 

electromagnetic properties (excellent potential molecular spin filters), a fascinating challenge for 

future developments.  
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1. Well known analogies and connections between Voltammetry and Electronic Absorption 

Spectroscopy in the study of active molecules and molecular materials 

The steadily growing search for molecules and molecular materials with advanced functional 

properties often involves systems that include sites with interesting electronic features, making 

them at the same time spectroscopically and electrochemically active, i.e. both chromophores and 

redox sites. To experimentally investigate and rationalize such electronic properties, electronic 

absorption spectroscopy and voltammetry are usually applied in sinergy, with well-known 

reciprocal connections. The first one accounts for intramolecular electronic transitions driven by 

increasing energy in terms of decreasing wavelength of incident light; the second one accounts for 

electron transfer processes to/from electrode (oxidations/reductions) driven by increasing energy 

in terms of increasingly positive/negative electrode potentials. In turn, measured quantities, i.e. 

absorbance in the first case and current intensity in the second case, share dependency on (i) 

chromophore/redox site concentration, (ii) geometric parameters (optical path length, electrode 

surface), as well as (iii) molecular parameters accounting for the process mechanism (molar 

extinction coefficient, accounting for light-matter interaction, in the first case; energy barrier 

symmetry factor, number of exchanged electrons etc. in the second case). Accordingly, molecular 

identification/discrimination together with information about molecular energy levels can be 

achieved considering absorption wavelengths/potentials for electron transfer, while quantification 

is feasible by considering absorption/current intensities. 

Actually the information obtained from the two approaches about energy levels is not expected to 

coincide, considering the significantly different conditions (homogeneous phase, organic solvent, 

even apolar, with no electrolyte, no net charge formation… in the first case; heterogeneous 

conditions, electrolyte medium, net charge formation… in the second case); nor is expected to 

coincide with values obtained by other approaches such as theoretical computations (usually in 

vacuum) or, for molecular solids, photoelectron spectroscopies (aggregation effects...).[1-3] 

However, for example, HOMO-LUMO energy gaps obtained (in eV) from first absorption 

wavelengths (maxima or onset ones [4]) according to  

h (J s)  c(m s-1)/(max/onset(m)  qe(C e-1))                                         

are often similar to those obtained from first oxidation and first reduction potentials (formal, or 

peak, or onset ones [4]) in voltammetry experiments, according to 

   1e  [EI a - EI c]V    

Notably, however, only electrochemical experiments make it possible to estimate single HOMO 

or LUMO levels,  

ELUMO (eV)  −1e  [(E I c /V(Fc+|Fc) + 4.8 V (Fc+|Fc vs zero)]  

EHOMO (eV)  −1e  [(EI a /V(Fc+|Fc) + 4.8 V (Fc+|Fc vs zero)]  

on the basis of the estimation of the energy level of the reference intersolvental reference couple 

Fc+|Fe respect to vacuum (here considered as 4.8 eV, but for which actually there is a range of 

proposed literature values, being an extrathermodynamic quantity [5]). 

Moreover, there can be exceptions in which the two approaches yield remarkably different results, 

particularly if first oxidation and/or first reduction in the voltammetry experiment do not involve 

the same HOMO and LUMO energy levels as in the spectroscopic experiments, like e.g. when in 



large molecules easiest oxidation and easiest reduction involve different sites that are reciprocally 

distant and not communicating. 

2.  The two techniques at a higher selectivity level: discriminating enantiomers of chiral 

advanced molecules and molecular materials  

Many optically and electrochemically active molecules of high relevance, for example among 

natural or synthetic active pharmaceutical ingredients/nutrients, catalysts, materials for optics and 

spintronics..., are chiral. Endowing spectroscopy and voltammetry with the ability to discriminate 

between their enantiomers is important, as an alternative or at least a complement to expensive 

and destructive separation by enantioselective chromatographic techniques.  

In achiral environments the enantiomers of chiral electroactive molecules have identical physico-

chemical properties and therefore result in identical absorption spectra or voltammetry patterns. 

Therefore, achieving enantiomer recognition, thus upgrading spectroscopy or voltammetry to 

chiral spectroscopy or chiral voltammetry, requires implementation of a suitable chiral selector 

able to significantly interact with the chiral probe, resulting in diastereomeric and therefore 

energetically distinguishable situations.  

As we will discuss further on, the selector can be either a “molecular” one, i.e. the (R)- or (S)- 

enantiomer of a second chiral molecular species besides the chiral probe, or an “electromagnetic”, 

one, also truly chiral: in particular, the L- and R- circularly polarized light components, or the - 

and β-spin electrons in rototranslational motion across the electrochemical interphase.  

Of course, in order to achieve transduction of the recognition event, at least one chromophore 

or/and redox site, respectively for chiral spectroscopy or/and chiral voltammetry, must either be 

present in the probe and/or in the selector, or, if necessary, provided by a third, possibly achiral, 

co-actor [6]. In any case, such active sites should be possibly strictly related to (e.g. located close 

to, coupled with, or, best of all, coincident with) the stereogenic element which enables chiral 

recognition. In such perspective, particularly attractive are “inherently chiral” molecular selectors 

in which the main molecular backbone, based on a conjugated (hetero)aromatic system featuring 

an helical or axial stereogenic element, is the source of both chirality and key electron 

absorption/electron transfer properties.[7-9] 

In summary, at least two chiral actors (probe/selector, although it should be remarked that 

discriminating between probe and selector is only a matter of perspective…) and at least one 

chromophore/redox site must be present in the environment were the enantiorecognition event has 

to be achieved and detected. A tentative comparative schematization of possible cases is provided 

in Scheme 1. 

 

Scheme 1. (following page) A tentative schematization of possible enantiodiscrimination 

strategies in chiral electronic absorption spectroscopy or chiral voltammetry, with related 

implications. 
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 2.a Achieving enantiodiscrimination in electronic spectroscopy with truly chiral actors  

 

In principle, enantiodiscrimination could be achieved in absorption or emission spectroscopy with 

both chiral actors being “molecular” ones, provided that their combination results in significant 

variation in absorption wavelength or/and intensity for at least one chromophore belonging to one 

or both chiral actors (or to a third auxiliary achiral co-actor).  

Although a significant number of such cases have been studied, especially for colorimetric/visual 

readout of the recognition event (like e.g. [10,11]), this approach does not look very popular, 

possibly since it requires development, preparation and bulk consumption of specific, powerful 

chiral molecular selectors, and is probe-destructive. 

Such onerous requirement is instead not necessary working with polarized light, in the well-

established technique of circular dichroism [12-21,23].  

Plane polarized light PL can be regarded (Figure S1 in SI) as the sum of two helix-like left-handed 

and right-handed circularly polarized light components, L-CPL and R-CPL (which in turn can be 

regarded as the sum of two perpendicular PLs with  /2 phase difference). When PL passes 

through a chiral sample, its L-CPL and R-CPL components proceed at different speed; as a result, 

• if the wavelength is such that no absorption can take place, the light exiting the chiral 

sample is still plane polarized, but rotated by a given  angle (the observed quantity in the 

popular polarimetry technique). Such rotation depends on the light wavelength, which is 

the object of the optical rotation dispersion ORD technique, analyzing L-CPL vs R-CPL 

propagation speed differences [21,22];  

• if the light wavelength  is such that it can be also absorbed by the sample, the light exiting 

the sample is elliptically polarized, as a consequence of the two CPL components being 

absorbed with different molar extinction coefficients L and R, resulting in different AL 

and AR absorbances (“Cotton effect”). Recording the ellipticity , or its proportional 

quantities R−L or AR−AL, as a function of incident PL wavelength, provides circular 

dichroism CD spectra [12,15,23] or, more precisely, E[lectronic]CD spectra, to distinguish 

them from V[ibrational]CD spectra, which can be obtained in the infrared range [24,25]. 

ECD signals are located in correspondence of UV-Vis absorption ones, but, unlike them, being 

differential quantities they can be either positive or negative, and are perfectly specular for the 

enantiomers of a given chiral molecule.  

It is worthwhile recalling that extinction coefficient , accounting for efficiency of photon/matter 

interaction, depends on both electric and magnetic transition dipole moments, accounting for 

electron density redistribution (translational and rotational displacement, respectively) in transition 

between different energy levels implying different orbital (electron density) shapes. In achiral UV-

Vis absorption spectroscopy the electric transition dipole moment is usually the prevailing one, 

and allowed and forbidden transitions are defined considering it only. Instead, in chiral 

spectroscopy both dipole moments are important, involving chiral charge displacement along e.g. 

a helical path (in the asymmetric chiral magnetic field corresponding to the chiral sample) [12] 



Simulation of CD spectra with theoretical computations enables to assign absolute configuration 

to the two enantiomers. [15,19,26]  

Conformation [13], supramolecular [14] and solid-state effects [17,20,27-29] can result in 

significant modulation of ECD spectra. The ECD technique is particularly useful when studying 

chiral macromolecules (including both natural and synthetic ones), to account for the presence of 

a regular "secondary" chiral structure [13,30] (Figure S1 in SI). In particular, the more regular and 

stable the “secondary” helical/foldamer chiral structure of the macromolecule, the more evident 

its ECD response, which can instead nearly cancel for chiral polymers with “random coil” features 

and/or resulting from non-regioregular oligomerization. [28,31] Accordingly, the ECD of a given 

chiral macromolecule remarkably changes if the latter conformation changes (at constant 

configuration) e.g. as a function of pH, solvent, light, electric charge etc..[29]  

Symmetrically to ECD, in emission spectroscopy with PL excitation, chiral samples can fluoresce 

with PL, consisting of two circularly polarized components of different intensity (Circularly 

polarized luminescence, CPL). [32-35] 

2.b Achieving enantiodiscrimination at the electrochemical interphase with truly chiral actors  

In chiral voltammetry the most desirable transduction mode of the enantiomer recognition event 

is in terms of a significant, possibly wide, potential difference for the two electroactive probe 

enantiomers in the presence of the chiral enantiopure selector. (Figure 1) In fact, a potential 

difference can enable direct enantiomer recognition (also combined with quantitative estimation 

from peak currents) and/or selective enantiomer activation, [7] from the microscopic scale up to, 

fascinatingly, the macroscopic one, in many smart device architectures [36-40] 

The most favourable circumstance is when a neat potential difference between two well-defined 

peaks with linear dynamic range for currents is observed for the two enantiomers simultaneously 

present, enabling to estimate enantiomeric excesses. [41,42] This optimal situation can be easier 

achieved for chemically reversible electron transfer processes, which result in little or no surface 

conditioning by the first enantiomer electrode process with respect to the second one. [41,42] 

It must be underlined that there is obviously no a priori relationship between the combination of 

probe/enantiomer absolute configurations and the peak sequence, being the (R)- and (S)-

descriptors assigned according to an abstract convention. Instead, specular potential differences 

must be obtained upon inverting either probe or selector configuration (Figure 1); such double 

inversion test provides the soundest reliability test for the enantiodiscrimination protocol, enabling 

to rule out possible other causes for the observed potential differences. [41] 

Actually many cases have been recently presented of significant and even wide potential 

differences, obtained for various probe enantiomers by implementing molecular chiral selectors at 

the electrochemical interphase, either as confined solid selector layer/network, modifying the 

electrode surface with suitable chiral selector films [41-51], or as expanded semisolid selector 

network, exploiting media of high local order at the interphase with a charged achiral electrode 

like ionic liquids or deep eutectic solvents, implemented with chirality [52-57].  



Since in the voltammetry case the enantiodiscrimination process is intrinsically hetereogeneous, 

taking place at the interphase rather than in the bulk, only minimal quantities of the molecular 

selector can be employed, e.g. modifying the electrode surface by electrodeposition of a very thin 

chiral selector layer [41-51] or working with screen-printed cells with a thin layer of ionic liquid 

modified with a chiral additive (or itself chiral)[53-55,57]. Moreover, the modified surface could 

be recycled (at least in favourable cases with no filming/conditioning products) and in any case 

the experiment is non-destructive for the bulk probe. Furthermore, local cage/structuring/electro-

magnetic effects can enhance probe/selector interactions respect to bulk conditions. 

Notably, the observed potential shifts (up to some hundreds mVs) are consistent with mild 

coordination, considering e.g. the well known Kolthoff and Lingane treatment for ligand effect on 

electrochemically reversible species [58], or the significant peak potential differences that are often 

observed for a given electroactive molecule upon changing the supporting electrolyte, on account 

of different tendency to ionic couple formation.  

Remarkably, when considering the study cases provided in the above cited papers, the selectors 

can be considered “multipurpose”, because a given selector is effective with even very different 

probes, and a given probe can be discriminated by various selectors, although with different 

efficiency. This can be explained by the good number of elements available for probe/selector 

coordination (heteroatoms, (hetero)aromatic rings and  conjugated systems) in the reported 

examples.  

 

However, besides such “molecular interaction” effect, an “electromagnetic” effect should be 

considered, too [59], related to the - vs - spin electrons in rototranslational motion across the 

chiral interphase being promoted or hampered by the latter’s chiral magnetic field, in turn 

modulated by the presence of a second chiral magnetic field corresponding to the chiral probe. 

Indeed, referring to Scheme 1, voltammetry case (I) must also include voltammetry case (IIb),  and 

the concurrent presence of two chiral selectors should be considered, resulting in two contributions. 

It is worthwhile noticing that such considerations are possible on account of the electron flux being 

intrinsically unidirectional, i.e. perpendicular to the electrochemical interphase, while the parallel 

spectroscopic case (I), involving unpolarized light, implies infinite planes.  

Of course a key issue is to evaluate the extent of such “electromagnetic” contribution.  

The different interaction of - vs - spin electrons with a chiral magnetic field corresponding to a 

chiral molecular layer of (R)- or (S)- configuration, particularly modifying an electrode surface 

across which the chiral rototranslational motion of electrons takes place, is a fascinating subject 

that has been the object of extensive investigations (e.g. [59-85]), particularly by Naaman and 

colleagues [59-80], who termed it CISS (“chiral-induced spin selectivity”).   

They observed that - vs - spin polarization induced by a molecular chiral electrode surface can 

be impressive, even surpassing common inorganic spin-filters [60], pointing to competitive 

applications such as molecular spin filters or giant magnetoresistive molecular spin valves [86-88] 

in spintronics, a field of great current applicative interest [89-92]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chiral voltammetry basic features. 

They also pointed out that to justify such high spin polarizations an unusually high spin-orbit 

coupling should be considered, of several orders of magnitude greater that normal cases of organic 

molecules [60]. To justify it, spin transport has been modelled in the electromagnetic field of an 

helical molecular structure [60,63,71,81,82] resulting in estimated energy splittings of even several 

hundreds of meV [60]  between the two spin states. Also the tunneling probability for the favoured 

spin has been estimated to be enhanced with respect to normal cases by even 1-2 orders of 

magnitude [63]. The importance of electron correlation has also been pointed out [84], with the 

estimated spin polarization increasing in molecular chains with the number of ionic sites and laps.  

To study the CISS effect, spin-specific/enriched currents were typically generated using a 

magnetic electrode under magnetic field [61,62] (which actually adds a further actor, although a 
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“false”, i.e. non time-invariant [93-95], chirality one), then evaluating their variations upon 

crossing the chiral layer under study [62]. More recently, however, a protocol based on a working 

electrode modified with a circuit implementing Hall effect has been proposed to avoid the presence 

of the magnetic field. [59] Actually spin-specific currents can also be produced by the CISS effect 

itself, at an electrode modified with a chiral molecular layer [93].Very recently, spin-dependent 

charge transfer at chiral electrodes has been probed by magnetic resonance [69]. Moreover, 

Kelvin-probe experiments resulted in potential differences up to nearly one hundred mV.[76] The 

CISS effect has been shown to be appliable to enhance water splitting [66,78], to achieve 

asymmetric reactions [75] enantiomer separation [70] and enantiomer bio-recognition [63], and to 

propagate along achiral low-resistance molecular wires [72].  

Fascinatingly, the CISS effect has also been related to the intriguing subject of biological 

homochirality [96]. 

Returning to the present issue, in principle the spin electron polarization upon interaction with the 

chiral probe could be sufficient as a selector for enantiomer discrimination, even without a 

molecular one, and would represent the electrochemical parallel of the ECD experiment. However 

unlike the spectroscopic case, (a) the approach based on two molecular actors has so far been very 

successful (it would be however interesting to evaluate how much is the spin polarization 

contribution) and (b) at least so far, evaluation of - vs - spin ratio is still critical/not trivial 

respect to evaluation of L-CPL to R-CPL ratio in spectroscopy. Were it to become easily 

accessible, an “electrochemical spin dichroism” could be developed for electrochemical 

enantiomer discrimination in the absence of molecular selectors! 

2.c Substituting a “truly” chiral actor with a “falsely” chiral one: application of an external 

magnetic field 

Achiral polarizable substrates can also give circular dichroism response under magnetic field 

application, proportionally to magnetic field intensity and presenting mirror image spectra upon 

inverting magnetic field orientation. Such "magnetic circular dichroism” (MCD) has been 

explained in terms of perturbation of electronic energy levels by an external static magnetic field 

and can be the sum of three contributions [97-99]: a first one, temperature-independent, of 

sigmoidal shape, related to loss of degeneration in excited states; a generally weak second one, 

also temperature-independent, bell-shaped, related to mixing of close excited states; and a third 

one, also bell-shaped and more intense, related to loss of degeneration in ground state, dominant 

especially at low temperatures, being linked to population distribution in − vs − ground 

sublevels. MCD is a well-established technique, exploited for molecular property elucidation (for 

example it has been widely applied to property elucidation of porphyrin and phthalocyanins 

properties since the ‘70s [100]) e.g. to resolve degenerate levels.  

In a certain way, one might consider the combination achiral molecule+magnetic field as a [false] 

chirality probe substituting the [true] chirality molecular one. It must however be remarked that, 

as it was clearly pointed out by Barron [94,95], an external applied magnetic field can only result 

in “false”, i.e. non time-invariant, chirality, unlike the “true”, i.e. time-invariant, chirality of a 

chiral molecular magnetic field. 



Symmetrically, mirror image spectra can be also obtained when working on chiral molecules with 

unpolarized light, by application of a magnetic field (“magneto-chiral dichroism” [101,102]). In 

this case the polarized light chiral actor is substituted by the combination of normal light+magnetic 

field. 

Do similar considerations also apply to chiral voltammetry?  

Magnetoelectrochemistry phenomena have been studied in the last two centuries since the first 

Faraday experiments (who incidentally in such context discovered the polarized light rotation 

under magnetic field, “Faraday effect”), encompassing magnetic field effects on electron transport  

(e.g. Lorentz force as well as Hall and spin Hall [90] effects) and on electrode processes, (involving 

interphase capacitance and electron transfer as well reactant diffusion/diffusion issues [103-107]). 

For example, chiral surfaces have been successfully prepared by electrodeposition exploiting 

magnetodynamic effects [105], and autonomous Janus swimmers driven by Lorentz force have 

been recently presented [108]. 

In the present context, performing voltammetry of an achiral molecule under magnetic field, a 

Zeeman effect must take place, resulting in loss of degeneration of - vs - spin levels and - vs 

- electron unbalance; and, of course, upon inverting the magnetic field orientation the opposite 

situation must be obtained. However, the two situations are enantiomeric, i.e. energetically 

coincident and undistinguishable from the voltammetry “scalar” point of view.  

Symmetrically, performing voltammetry of the achiral probe on a chiral electrode, a Zeeman 

effect must take place (as already above discussed); in this case the effect is a true chirality one, 

originating from a magnetic field of chiral molecular origin, and therefore time-invariant. Again, 

however, the situations obtained with (R)- vs (S)- layers are enantiomeric and undistinguishable 

from the voltammetry point of view.  

A ”scalar” energy difference can be obtained by applying both magnetic fields, e.g. the molecular 

and the external one. In fact this implies a double splitting effect, modifying the couple of 

enantiomeric and therefore energetically equivalent combinations into two couples of 

diastereomeric and therefore energetically different ones). (Figure 2 bottom) 

Actually, very successful “pseudochiral voltammetry” experiments were recently obtained with 

achiral Fe(II)|Fe(III) redox couples (ferrocyanide|ferricyanide or ferrocene|ferricinium) working 

on chiral electrodes under magnetic field [93,46-48]. Potential differences were observed of 

hundreds of mVs, symmetrically upon inverting either magnetic field orientation or chiral surface 

configuration. A further analogy with MCD [97] is the dependence on the applied magnetic field 

strength (the observed potential differences regularly decrease with increasing magnet distance) 

and maybe also the temperature effect [93]. Importantly, while a similar phenomenon was 

observed with different chiral oligomer layers, it was entirely absent when the electrode was 

modified with an oligomer film of similar molecular properties but achiral.[93] 

 



 

 

Figure 2. A “pseudochiral voltammetry” experiment obtained working on a chiral electrode with achiral 

probe under magnetic field. [93] Figure elements reproduced from Ref. 93 with permission from the Royal 

Society of Chemistry. 

 



In the frame of Scheme 1, this striking experiment, which implies spin-resolved electron energy 

levels (or, from the electrochemical perspective, spin-resolved electrochemical potentials), could 

correspond to either situations (IIIb) (considering the achiral probe+magnetic field combination to 

replace the chiral probe) or (IV) (regarding the chiral surface as probe, and the combination of -

/ - electron + magnetic field to replace the chiral selector).   

From a further different perspective, application of the external magnetic field can enable to 

highlight the molecular spin filter properties of the chiral film on the electrode surface, and to 

discriminate its configuration; moreover, modulating the magnetic field can enable to modulate 

spin polarization and energy difference. In this light, it has been proposed that such setup could be 

looked at as a solution-based equivalent of magnetoresistance determination in all-solid devices 

(except for the distinction between electron transfer and electron transport)  [93] 

 

2.d Focusing on the molecular chiral actors involved: structure-activity relationship analogies  

Beautiful analogies also concern the relationship between the structural features of the involved 

molecular actors and the observed chiroptical / chiral voltammetry effects. 

i) Both techniques share the same ideal selector features: inherently chiral molecules 

As mentioned above, the stereogenicity element should be as strictly related as possible to the 

optically/redox active site(s).  In this light, chiral spectroscopy and chiral voltammetry share the 

same ideal chiral actor features. In particular, huge chirality manifestations are observed both in 

chiroptical spectroscopy ([12,15], following the old concept of “Inherently Dissymmetric 

Chromophores and Circular Dichroism” [110])  and in chiral voltammetry [41-51,53-55,57] with 

“inherently chiral” molecules, in which the source of both chirality and key functional properties 

coincides, while generally less effective discrimination is obtained when the stereogenic element 

is a localized, often peripheral, stereocentre (e.g. [111,112] vs [53-55,57] concerning chiral vs 

inherently chiral ionic liquid based media).  
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For example, very effective are inherently chiral selectors having as molecular backbone a 

conjugated electroactive (hetero)aromatic system featuring an helical or axial (atropisomeric) 

stereogenic element, their molecular design being also tailored to promote 

propagation/amplification of stereogenicity from monomer to oligomer and supramolecular 

structures. Such systems can give both intense, well defined ECD signals (as well as neat circularly 

polarized luminescence and VCD), and large potential differences (up to some hundreds of mVs) 

when employed as one of the chiral molecular actors in voltammetry [41,47,112,113].  

Remarkably, a given selector appears highly effective with very different chiral probes; this can 

be justified by the presence of many heteroatoms and aromatic systems available for coordination, 

consistently with recent chiral voltammetry tests in systematic sequences of molecular probes or 

selectors (e.g.[45,49,51,56]); however, the helical or foldamer structure of the inherently chiral 

actor should also powerfully enhance the electron orbital-spin coupling and therefore the 

“electromagnetic” contribution to the enantiomer discrimination. Actually with such selectors the 

above impressive magnetoelectrochemistry effect can also be observed [46-48,93]. 

 

ii) Both techniques highlight coupling effects of interacting chromophores/redox sites 

Inherently chiral selectors with axial stereogenicity consisting of two equivalent and reciprocally 

interacting redox centres/chromophores (the two symmetrical moieties), like the biindole-based 

monomer described in [47], also provide very nice model cases to highlight similar energy splitting 

effects in spectroscopy and in voltammetry. (Figure 3) 

From the perspective of intramolecular electronic transitions, the interaction between the two 

equivalent chromophores results in an energy level degeneration removal and a wavelength 

splitting, which however is usually difficult to resolve in UV-vis spectroscopy, only corresponding 

to a slight signal broadening.  Instead the same effect (“exciton coupling” resulting in “Davydov 

splitting”) becomes evident in CD, since in this case the two components have opposite sign: thus 

a typical sigmoidal pattern appears (the larger the , the better defined is such pattern) [12,15,26] 

(Figure 3 top). The effect is modulated by the angle between the two equivalent chromophores, is 

affected by the chromophore environment and working conditions, and can provide important 

information about the molecule conformation [12,15] in case the magnetic dipole transition 

moment contribution can be well represented by two independent electric dipole transition 

moments dissymmetrically disposed [114]. 

 

 

 

Figure 3. (following page) A comparative study case of equivalent, reciprocally interacting 

chromophores/redox sites in ECD and in CV. Figure elements reproduced from Ref. 47 with 

permission from the Royal Society of Chemistry. 

  



 

 

 



The voltammetry pattern of the same molecule features a typical first oxidation twin peak system 

which is related to the presence of two equivalent, reciprocally interacting redox sites, mainly 

localized in the two moieties of the atropisomeric biindole core, which is the electron richest part 

of the molecule. (This is confirmed by the observation that oligomerization, requiring radical 

cation formation on the thiophene terminals, does not occur when limiting the potential in the 

range of the twin peak system, and can only be obtained at potentials corresponding to the 

subsequent oxidation peak system).  

Also in this case the effect provides interesting information on the molecular properties (in 

particular, the peak splitting increases with the extent of reciprocal interaction/electronic 

communication [115]) and is affected from the redox site environment (for example the peak 

splitting decreases upon increasing the solvent polarity [47,115]). 

iii) Exploiting the intrinsic reciprocal connection of the three outstanding properties in 

inherently chiral molecules 

Finally, an attractive property of the above inherently chiral molecules is that since chirality, 

optical activity and electrochemical activity all originate from the main backbone, they are 

reciprocally strictly linked. For example, chiroptical activity can be regularly and reversibly 

modulated by electrochemistry, as nicely demonstrated in CD spectroelectrochemistry 

experiments. [41,112] 

 

1. Conclusions and perspectives 

Absorption spectroscopy and voltammetry, having well known analogies and connections, share 

even more fascinating similarities and connections at a superior complexity level, when 

“upgrading” them with the ability to discriminate between enantiomer probes, which requires 

implementation of a chiral selector.  

Both “molecular” selectors, having significantly different coordination ability for the probe 

enantiomers, and “electromagnetic” selectors (L- vs R- circularly polarized light components for 

spectroscopy, - vs - spin electrons in voltammetry) can be considered in both techniques. 

In the more mature area of chiral spectroscopy, the technique of choice for enantiodiscrimination, 

electronic circular dichroism, is based on the second alternative, which requires no development/ 

consumption of high-value reagents and is not probe-destructive, and is made possible by the 

commercial availability of instrumentation enabling to evaluate differential adsorption of the 

polarized light components. In the “younger” chiral voltammetry technique, very good results in 

terms of enantiomer potential differences have been so far obtained with molecular chiral selectors, 

which in voltammetry case is not critical concerning material quantity (for example, working with 

chirally modified electrodes requires very little selector quantities) and is not probe-destructive. 

However, recent evidence concerning the differential interactions of - vs - spin electrons with 

molecular chiral magnetic fields at the electrode surface (CISS effect) suggest that an additional 

contribution be present besides the molecular one, and could be even exploited alone, analogously 

to the dichroism technique, should it become reasonably feasible from a technical point of view.  



Another analogy between spectroscopy and voltammetry is the possibility of applying an external 

magnetic field, which may be regarded as replacing a chiral actor (although with “false chirality”), 

as in the well established magnetic circular dichroism technique, and in intriguing recent 

magnetoelectrochemistry experiments. 

Many analogies and connections also concern the molecular side of the enantiodiscrimination 

events. In both techniques − circular dichroism and voltammetric enantiomer discrimination −  

outstanding performances can be obtained with inherently chiral molecular actors. In this context,   

a helical or atropisomeric molecular structure, in which a conjugated molecular backbone with a 

tailored torsion is the source of both chirality and optical as well as electrochemical activity, offers 

a fascinating and useful reciprocal three-fold connection of functional properties. Such molecular 

design results inter alia in nice cases of equivalent and reciprocally interacting 

chromophores/redox sites, evidenced both by sigmoidal patterns in CD and by twin peak splitting 

in CV. 

The powerful chirality manifestations of inherently chiral molecules can be justified by both 

molecular considerations (many heteroatoms and aromatic rings available for molecular 

interactions) and electromagnetic ones (powerful molecular chiral magnetic field, for which they 

can be regarded as excellent potential molecular spin filters). Discriminating between the two 

contributions in order to rationalize and exploit the impressive observed phenomena represents a 

very desirable target as well as a fascinating challenge. 
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Itemized reply to Referee Issues 

 

We are indeed delighted with the Referee’s kind appreciation! 

 

Concerning the points raised:  

 

• “Authors use the term "actors", it is not clear why authors do not use the proper word 
which is "system". This is a scientific paper going to be published in a scientific journal” 

 

Actually we really feel that “system” does not fit our intended meaning, nor have we found a more 

appropriate term than “actor”, which is used here in a generic meaning of “taking part to an 

(inter)action”,  and can be found also as “molecular actor(s)” in recent scientific papers.  

Thus we have now specified in the (newly added) supporting information, to justify our adoption of 

the “actor” term in the present context: 
“As in various examples including recent scientific papers, the term has been employed in the 

present discussion in its original generic meaning (also accounted for in dictionaries, according to 

the Latin meaning “who does/acts”), i.e. to indicate an entity (molecular or electromagnetic in 

our cases) which is taking active part to the described interactions/recognition events.” 

 

• Figure 1. Frankly speaking a reader of Current Opinion in Electrochemistry is supposed to 

know everything it is shown there. Figure 1 should be simply dropped. Making also the 

manuscript a bit more compact. 

 

We are not sure that an electrochemistry researcher not dealing with chirality issues can be 

undoubtedly assumed to be an expert of circular dichroism fundamentals. Thus we have followed 

the Referee advice to drop Figure 1 from the main paper to make it more compact, but have 

moved it (with a slight modification) to the supporting information in case it can be useful to the 

reader. 

 

In the revised Manuscript we are submitting, we have also  

• made a few small corrections in the paper (besides renumbering figures, of course) 

• added in the supporting information some explanation about enantiomer descriptors used 

in the molecular case and in the spectroscopic one, since we realized that comparing R/S 

vs R/L could be somehow puzzling for the reader 

• added a possible TOC image 

• as already mentioned, added a small supporting information file with the above elements 
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