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Abstract

In this paper we investigate the approximation of continuous functions on the Wasser-
stein space by smooth functions, with smoothness meant in the sense of Lions differ-
entiability. In particular, in the case of a Lipschitz function we are able to construct a
sequence of infinitely differentiable functions having the same Lipschitz constant as
the original function. This solves an open problem raised in [12]. For (resp. twice)
continuously differentiable function, we show that our approximation also holds for
the first-order derivative (resp. second-order derivatives), therefore solving another
open problem raised in [12].
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1 Introduction

In the present paper our aim is to find smooth approximations of continuous functions
u : P2(Rd) → R, where P2(Rd) is the space of probability measures on (Rd,B(Rd))

endowed with the 2-Wasserstein metric W2 (see (2.2)). Here smooth is meant in the
sense of Lions differentiability, whose main features are recalled in Section 3. We
show that when u is continuous there exists a sequence {uk}k ∈ C∞(P2(Rd)) which
converges to u uniformly on compact subsets of P2(Rd). If in addition u is uniformly
(resp. Lipschitz) continuous then each uk is also uniformly (resp. Lipschitz) continuous,
with the same modulus of continuity (resp. Lipschitz constant) as u, therefore solving
an open problem raised in [12, Remark 3.2-(i)]. Moreover, for u ∈ C1(P2(Rd)) (resp.
u ∈ C2(P2(Rd))) we show that the convergence also holds for the first-order derivative
(resp. second-order derivatives), therefore solving another open problem raised in [12,
Remark 3.2-(ii)].

The smooth approximating sequence {uk}k ∈ C∞(P2(Rd)) is constructed relying on
the empirical distribution, similarly to what is done in [4, 11] in the proof of Itô’s formula
along a flow of measures (see [4, Theorem 5.92] and [11, Proposition 5.1]), although there
it is not really a smoothing as both u and uk are of class C2(P2(Rd)), but rather a way to
approximate a function u on P2(Rd) by functions defined on finite-dimensional spaces.
On the other hand, in [12, Section 3] an approximating sequence {uk}k ∈ C∞(P2(Rd))

for a continuous function u is built relying on the idea of discretizing a generic probability
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measure µ ∈P2(Rd) by a sequence of discrete distributions {µk}k ⊂P2(Rd). However,
as mentioned in [12, Remark 3.2], such an approximation does not satisfy certain
properties (unless imposing stronger assumptions on u) that are instead satisfied by our
approximating sequence.

The existence of a smooth approximating sequence for continuous functions
u : P2(Rd)→ R plays a relevant role in different contexts, as for instance in the study of
mean field games or mean field control problems (for which we refer to [3, 4, 9]). We men-
tion in particular [14] where the approximating sequence constructed in [12] was used
and forced the authors to impose stronger assumptions on the coefficients of the mean
field optimal stopping problem, which can be avoided by relying on our approximating
sequence. We also mention [6] and [10], where a smooth approximating sequence is used
to prove the comparison theorem for viscosity solutions of the Hamilton-Jacobi-Bellman
of the mean field control problem and of the backward Kolmogorov equation associated
to the nonlinear filtering equation. We finally mention again [4, 11] where a smooth
approximating is constructed in order to prove Itô’s formula along a flow of probability
measures.

The rest of the paper is organized as follows. In Section 2 we introduce the notations,
the probabilistic setting, and the Wasserstein space (P2(Rd),W2). We also prove some
specific properties of such a space that are used in the subsequent sections. Section 3
is devoted to recall the main features of Lions differentiability. Finally, Section 4
contains the main results of the paper, namely Theorem 4.2, concerning the smooth
approximations of a continuous function u : P2(Rd)→ R, and Theorem 4.4, regarding
the approximation of first and second-order derivatives.

2 Probabilistic setting and Wasserstein space

Let (Ω,F ,P) be a probability space. Given a random variable ξ : Ω→ Rd we denote
by Pξ its law on (Rd,B(Rd)), where B(Rd) denotes the Borel σ-algebra on Rd. Moreover,
we denote by L2(Ω,F ,P;Rd) (or simply L2) the space of (equivalence classes of) Rd-
valued random variables on (Ω,F ,P). We also denote by ‖ξ‖L2 the L2-norm of a random
variable ξ ∈ L2(Ω,F ,P;Rd).

In the sequel we always impose the following assumption on the probability space
(Ω,F ,P).

Assumption (HU). There exists a real-valued random variable U defined on (Ω,F ,P)

having uniform distribution on [0, 1].

The above assumption is equivalent to other requirements on (Ω,F ,P), as established
in the following lemma.

Lemma 2.1. Let (Ω,F ,P) be a probability space. Then, for every d ∈ N and p ∈ [1,∞),
the following statements are equivalent.

1) (Ω,F ,P) satisfies Assumption (HU).

2) For every probability µ on (Rd,B(Rd)), with finite p-th moment, that is
∫
Rd
|x|pµ(dx) <

∞, there exists an Rd-valued random variable ξ on (Ω,F ,P) with distribution µ.

3) For every probability µ on (Rd,B(Rd)) there exists an Rd-valued random variable ξ
on (Ω,F ,P) with distribution µ, that is Pξ = µ.

4) (Ω,F ,P) is atomless: for every A ∈ F , with P(A) > 0, there exists B ∈ F , with B ⊂ A,
such that 0 < P(B) < P(A).

ECP 28 (2023), paper 30.
Page 2/11

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP538
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On smooth approximations in the Wasserstein space

Proof. The equivalence between items 1) and 2), and similarly between items 1) and 3),
can be proved proceeding along the same lines as in the proof of [7, Lemma 2.1] (notice
that in [7, Lemma 2.1] the probability µ has finite second moment; however, the same
proof works for a generic probability µ).

Let us prove the equivalence between items 1) and 4). The implication 4) =⇒
1) follows from [2, Proposition 9.1.11]. On the other hand, let A ∈ F be such that
P(A) > 0 and define F : [0, 1] → [0, 1] as F (x) = P(A ∩ {U ≤ x}), ∀x ∈ [0, 1]. Notice
that F (0) = 0 and F (1) = P(A). Moreover, if xn ↓ x then limn F (xn) = limnP(A ∩ {U ≤
xn}) = P(A ∩ {U ≤ x}) = F (x); similarly, if xn ↑ x then limn F (xn) = limnP(A ∩ {U ≤
xn}) = P(A ∩ {U < x}) = P(A ∩ {U ≤ x}) = F (x). This shows that F is a continuous
function. Then, there exists b ∈ (0, 1) such that F (b) > 0, that is P(B) > 0, where
B = A ∩ {U ≤ b}.

For every d ∈ N, let P(Rd) denote the family of all probabilities on (Rd,B(Rd)). We
define

P2(Rd) :=

{
µ ∈P(Rd) :

∫
Rd
|x|2 µ(dx) < +∞

}
.

Remark 2.2. Since (Ω,F ,P) satisfies Assumption (HU), by Lemma 2.1 it holds that

P2(Rd) =
{
Pξ : ξ ∈ L2(Ω,F ,P;Rd)

}
. (2.1)

Given µ, ν ∈P2(Rd), a probability π on (Rd ×Rd,B(Rd ×Rd)) is called coupling (or
transport plan) of µ and ν if π has µ as first marginal and ν as second marginal, namely
µ(B) = π(B × Rd) and ν(B) = π(Rd × B), for every B ∈ B(Rd). We denote by Π(µ, ν)

the family of all couplings of µ and ν. Notice that Π(µ, ν) is non-empty since the product
measure µ⊗ ν belongs to Π(µ, ν). We endow P2(Rd) with the 2-Wasserstein metric

W2(µ, ν) := inf
π∈Π(µ,ν)

{(∫
Rd×Rd

|x− y|2 π(dx, dy)

)1/2}
. (2.2)

It can be shown thatW2 is a metric on P2(Rd) and (P2(Rd),W2) is a complete separable
metric space, see [1, Chapter 7] or [15, Chapter 6].

Remark 2.3. Since (Ω,F ,P) satisfies Assumption (HU), by Lemma 2.1 it holds that

W2(µ, ν) = inf
ξ,η∈L2

Pξ=µ,Pη=ν

‖ξ − η‖L2 . (2.3)

Then, given ξ, η ∈ L2(Ω,F ,P;Rd) with laws µ and ν, respectively, it follows directly
from (2.3) that

W2(µ, ν) ≤ ‖ξ − η‖L2 . (2.4)

We denote ‖µ‖2 :=W2(µ, δ0) =
( ∫
Rd
|x|2 µ(dx)

)1/2
, for every µ ∈P2(Rd), where δ0 is

the Dirac delta centered at 0. We observe that if ξ ∈ L2(Ω,F ,P;Rd) has distribution µ,
then

‖µ‖2 = ‖ξ‖L2 . (2.5)

We end this section with a useful technical result.

Lemma 2.4. Let n ∈ N and x1, . . . , xn, y1, . . . , yn ∈ Rd. Then

W2

(
1

n

n∑
i=1

δxi ,
1

n

n∑
i=1

δyi

)
≤

√√√√ 1

n

n∑
i=1

|xi − yi|2. (2.6)
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Proof. Let ξ be a random variable with law 1
n

∑n
i=1 δxi . Let us introduce the mapping

ψ : {x1, . . . , xn} → {y1, . . . , yn} such that ψ(xi) = yi for i = 1, . . . n. Then, the random
variable η := ψ(ξ) has law 1

n

∑n
i=1 δyi . Thus, from (2.4) it follows that

W2

(
1

n

n∑
i=1

δxi ,
1

n

n∑
i=1

δyi

)
≤
√
E [|ξ − η|2] =

√
E [|ξ − ψ(ξ)|2] =

√√√√ 1

n

n∑
i=1

|xi − yi|2.

3 Lions differentiability

There are different definitions of differentiability for functions defined on the Wasser-
stein space P2(Rd). In the present paper we consider the notion introduced by P.-L.
Lions in the series of lectures [9]. In this section we recall the main features of such a
notion, while we refer to [4, Chapter 5] for more details.

Definition 3.1. Let u : P2(Rd)→ R. The function ũ : L2(Ω,F ,P;Rd)→ R given by

ũ(ξ) = u(Pξ), ∀ ξ ∈ L2(Ω,F ,P;Rd),

is said to be the lifting of u.

Definition 3.2. Let u : P2(Rd) → R and µ0 ∈ P2(Rd). The function u is said to be
Lions differentiable or L-differentiable at µ0 if there exists ξ0 ∈ L2(Ω,F ,P;Rd), with
Pξ0 = µ0, and ũ is Fréchet differentiable at ξ0.

Definition 3.3. Let u : P2(Rd) → R. Suppose that its lifting ũ is everywhere Fréchet
differentiable. The function u is said to admit L-derivative if there exists a function ∂µu
on P2(Rd), with µ0 7→ ∂µu(µ0)(·) ∈ L2(Rd,B(Rd), µ0;Rd) and

Dũ(ξ0) = ∂µu(µ0)(ξ0), P-a.s.

for every ξ0 ∈ L2(Ω,F ,P;Rd), Pξ0 = µ0. We refer to ∂µu as the L-derivative of u.

Proposition 3.4. Let u : P2(Rd)→ R. Suppose that its lifting ũ is everywhere Fréchet
differentiable and Dũ : L2(Ω,F ,P;Rd)→ L2(Ω,F ,P;Rd) is a continuous function. Then,
for every µ0 ∈P2(Rd), there exists a Borel-measurable function gµ0

: Rd → Rd such that

Dũ(ξ0) = gµ0
(ξ0), P-a.s.

for every ξ0 ∈ L2(Ω,F ,P;Rd) with Pξ0 = µ0.

Proof. See [4, Proposition 5.25].

Proposition 3.5. Let u : P2(Rd)→ R. Suppose that its lifting ũ is everywhere Fréchet
differentiable and Dũ : L2(Ω,F ,P;Rd)→ L2(Ω,F ,P;Rd) is a continuous function. Then,
there exists at most one map ∂µu : P2(Rd)→ R satisfying:

1) ∂µu is continuous on P2(Rd)×Rd.

2) ∀ ξ0 ∈ L2(Ω,F ,P;Rd), Pξ0 = µ0,

Dũ(ξ0) = ∂µu(µ0)(ξ0), P-a.s.

If such a function exists then we say that u admits continuous L-derivative.

Proof. See [4, Remark 5.82].
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Definition 3.6. Let C1(P2(Rd)) be the class of continuous functions u : P2(Rd) → R

which admit continuous L-derivative.

Now, let u : P2(Rd)→ R be of class C1(P2(Rd)). Then, we can consider the deriva-
tives of the function (x, µ) 7→ u(µ)(x), that is the second-order derivatives of u:

• for every fixed µ ∈P2(Rd), the derivative of the function x 7→ u(µ)(x), denoted by
∂x∂µu(µ)(x):

∂x∂µu : P2(Rd)×Rd −→ Rd×d;

• for every fixed x ∈ Rd, the derivative of the function µ 7→ u(µ)(x), denoted by
∂2
µu(µ)(x, y):

∂2
µu : P2(Rd)×Rd ×Rd −→ Rd×d.

Definition 3.7. Let C2(P2(Rd)) be the class of functions u ∈ C1(P2(Rd)) which admit
continuous second-order derivatives ∂x∂µu and ∂2

µu.

Similarly, considering higher-order derivatives we can give the definition of the class
Ck(P2(Rd)), for every k ∈ N. As an example, we report all the third-order derivatives:

∂2
x∂µu : P2(Rd)×Rd −→ Rd×d×d,

∂µ∂x∂µu : P2(Rd)×Rd ×Rd −→ Rd×d×d,

∂x∂
2
µu : P2(Rd)×Rd ×Rd −→ Rd×d×d,

∂y∂
2
µu : P2(Rd)×Rd ×Rd −→ Rd×d×d,

∂3
µu : P2(Rd)×Rd ×Rd ×Rd −→ Rd×d×d.

For a careful analysis of higher-order Lions derivatives beyond order 2 we refer to the
recent paper [13], where a clever multi-index notation is introduced (see [13, Section
2.1]) and also a Schwarz theorem for multivariate Lions derivatives is provided, see [13,
Theorem 3.9] (for the second-order case see [4, Corollary 5.89] and [5, Remark 4.16]).
Finally, we give the following definition.

Definition 3.8. Let C∞(P2(Rd)) be the class of continuous functions u : P2(Rd)→ R

which admit continuous derivatives of any order.

4 Smooth approximations in the Wasserstein space

We begin recalling the following classical definition.

Definition 4.1. We say that w : [0,∞)→ [0,∞) is a modulus of continuity if w is contin-
uous, non-decreasing, concave, and w(0) = 0.

We can now state one of the main results of the paper.

Theorem 4.2. Let u : P2(Rd) → R be a continuous function. Then, there exists a
sequence {uk}k in C∞(P2(Rd)) such that

lim
k→∞

sup
µ∈M

|uk(µ)− u(µ)| = 0, (4.1)

for any compact set M ⊂P2(Rd). Moreover, if u is uniformly continuous with modulus of
continuity w then every function uk is also uniformly continuous with the same modulus
of continuity w.
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Proof. We split the proof into four steps.

Step I. Definition of u ? γk. We proceed as in [4, Lemma 5.95] and consider a se-
quence {γk}k of C∞ functions γk : Rd → Rd having compact support and such that
(γk, Dxγk, D

2
xγk)(x) → (x, Id, 0) uniformly on compact sets of Rd as k → ∞, where Id

stands for the identity matrix of order d and 0 denotes the zero matrix of dimension d× d.
We also suppose that |Dxγk(x)| ≤ 1, for every k ∈ N and x ∈ Rd. Then, we define

(u ? γk)(µ) = u(µ ◦ γ−1
k ), ∀µ ∈P2(Rd).

Notice that u ? γk is continuous and bounded (see [4, Lemma 5.94]). Moreover, if u is
uniformly continuous with modulus w then u ? γk is also uniformly continuous with the
same modulus of continuity. As a matter of fact, it holds that∣∣u(µ ◦ γ−1

k )− u(ν ◦ γ−1
k )
∣∣ ≤ w(W2(µ ◦ γ−1

k , ν ◦ γ−1
k )
)
.

Recalling (2.3) we find

W2(µ ◦ γ−1
k , ν ◦ γ−1

k ) = inf
ξ,η∈L2

Pξ=µ,Pη=ν

‖γk(ξ)− γk(η)‖L2 .

Since |Dxγk(x)| ≤ 1, for every k ∈ N and x ∈ Rd, we get ‖γk(ξ)− γk(η)‖L2 ≤ ‖ξ − η‖L2 ,
from which we conclude that∣∣(u ? γk)(µ)− (u ? γk)(ν)

∣∣ =
∣∣u(µ ◦ γ−1

k )− u(ν ◦ γ−1
k )
∣∣ ≤ w(W2(µ, ν)

)
. (4.2)

Step II. Definitions of vk,n, vk,n,m and pointwise convergence (4.4). For every k, n ∈ N,
let vk,n : P2(Rd)→ R be given by

vk,n(µ) = E

[
(u ? γk)

(
1

n

n∑
i=1

δξi

)]
, ∀µ ∈P2(Rd), (4.3)

where ξ1, . . . , ξn are independent and identically distributed Rd-valued random variables
on (Ω,F ,P) with distribution µ. Let also ρ : Rd → R be the probability density function of
the standard multivariate normal distribution, that is ρ(x) = 1

(2π)d/2
e−

1
2 |x|

2

, ∀x ∈ Rd. For

every m ∈ N, let ρm(x) = mdρ(mx), ∀x ∈ Rd, and, given n ∈ N, define hk,n,m : Rdn → R

as

hk,n,m(x1, . . . , xn) =

∫
Rdn

(u ? γk)

(
1

n

n∑
i=1

δxi−yi

)
ρm(y1) · · · ρm(yn) dy1 · · · dyn,

for every x1, . . . , xn ∈ Rd. Notice that hk,n,m is of class C∞(Rdn). Now, define
vk,n,m : P2(Rd)→ R as follows

vk,n,m(µ) = E
[
hk,n,m(ξ1, . . . , ξn)

]
=

∫
Rdn

E

[
(u ? γk)

(
1

n

n∑
i=1

δξi−yi

)]
ρm(y1) · · · ρm(yn)dy1 · · · dyn,

for every µ ∈P2(Rd), where ξ1, . . . , ξn are independent and identically distributed Rd-
valued random variables on (Ω,F ,P) with distribution µ. Notice that vk,n,m is also given
by

vk,n,m(µ) = E

[
(u ? γk)

(
1

n

n∑
i=1

δξi−Zi

)]
, ∀µ ∈P2(Rd),

where Z1, . . . , Zn are independent and identically distributed Rd-valued random variables
on (Ω,F ,P) having multivariate normal distribution N (0,m2Id) (Id denotes the identity
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matrix of order d) and being independent of ξ1, . . . , ξn. It is easy to see that vk,n,m ∈
C∞(P2(Rd)). As a matter of fact, from [4, formula (5.37)] it follows that

∂µvk,n,m(µ)(x1) = nE
[
∂x1

hk,n,m(x1, ξ2, . . . , ξn)
]
,

∂2
µvk,n,m(µ)(x1, x2) = n(n− 1)E

[
∂x2

∂x1
hk,n,m(x1, x2, ξ3, . . . , ξn)

]
,

...

∂nµvk,n,m(µ)(x1, . . . , xn) = n! ∂xn · · · ∂x1
hk,n,m(x1, . . . , xn),

∂n+1
µ vk,n,m(µ)(x1, . . . , xn, xn+1) = 0.

Moreover, from the formulae above we deduce that derivatives with respect to the
spatial variables x1, . . . , xn, . . . are also smooth, thanks to the smoothness of hk,n,m.
Furthermore, we observe that any higher-order Lions derivative involving more than
n derivatives in measure is identically equal to zero. Finally, since hk,n,m has compact
support, all Lions derivatives of vk,n,m are bounded, although not necessarily uniformly
with respect to k, n,m.

Now, notice that, for every µ ∈P2(Rd),

lim
m→∞

vk,n,m(µ) = vk,n(µ), lim
n→∞

vk,n(µ) = (u ? γk)(µ). (4.4)

As a matter of fact, regarding the first limit in (4.4) we begin noting that

hk,n,m(x1, . . . , xn) =

∫
Rdn

(u ? γk)

(
1

n

n∑
i=1

δxi−yi

)
ρm(y1) · · · ρm(yn) dy1 · · · dyn

m→∞−→ (u ? γk)

(
1

n

n∑
i=1

δxi

)
,

for every x1, . . . , xn ∈ Rd. Then, by the boundedness of u ? γk, we find

E
[
hk,n,m(ξ1, . . . , ξn)

] m→∞−→ E

[
(u ? γk)

(
1

n

n∑
i=1

δξi

)]
.

Similarly, the second limit in (4.4), that is vk,n(µ)−uk(µ) = E
[
u
(

1
n

∑n
i=1 δξi

)]
−u(µ)

n→∞−→ 0,
follows from the continuity of u and the Glivenko-Cantelli convergence in the Wasserstein
distance (see [4, Section 5.1.2]), namely from limn→∞W2

(
1
n

∑n
i=1 δξi , µ

)
= 0, P-a.s.

Step III. The case with u uniformly continuous. Let us now suppose that u is uniformly
continuous. Recall from Step I that u ? γk is also uniformly continuous with the same
modulus w. Let µ, ν ∈P2(Rd) and consider n independent and identically distributed
Rd×Rd-valued random variables (ξ1, η1), . . . , (ξn, ηn), with ξi (resp. ηi) having distribution
µ (resp. ν). Then (recalling (4.2))

|vk,n,m(µ)− vk,n,m(ν)|

≤
∫
Rdn

E

[∣∣∣∣(u ? γk)

(
1

n

n∑
i=1

δξi−yi

)
− (u ? γk)

(
1

n

n∑
i=1

δηi−yi

)∣∣∣∣]ρm(y1) · · · ρm(yn) dy1 · · · dyn

≤
∫
Rdn

E

[
w

(
W2

(
1

n

n∑
i=1

δξi−yi ,
1

n

n∑
i=1

δηi−yi

))]
ρm(y1) · · · ρm(yn) dy1 · · · dyn

Now, by (2.6) and Jensen’s inequality (recall that w is concave), we find

E

[
w

(
W2

(
1

n

n∑
i=1

δξi−yi ,
1

n

n∑
i=1

δηi−yi

))]
≤ w

(√√√√ 1

n

n∑
i=1

‖ξi − ηi‖2L2

)
.
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Recalling that (ξ1, η1), . . . , (ξn, ηn) are identically distributed, we conclude that |vk,n,m(µ)−
vk,n,m(ν)| ≤ w(‖ξ1 − η1‖L2). From the arbitrariness of ξ1, η1, we find |vk,n,m(µ) −
vk,n,m(ν)| ≤ w(‖ξ − η‖L2), ∀ ξ, η ∈ L2, with Pξ = µ and Pη = ν. By (2.3) there ex-
ists a sequence {(ξk, ηk)}k ∈ L2(Ω,F ,P;Rd)×L2(Ω,F ,P;Rd), with Pξk = µ and Pηk = ν,
such that W2(µ, ν) = limk→∞ ‖ξk − ηk‖L2 . From the continuity of w we conclude that
|vk,n,m(µ)− vk,n,m(ν)| ≤ w

(
W2(µ, ν)

)
.

Step IV. Uniform convergence on compact sets and definition of uk. In this final step
we suppose that u is continuous, but not necessarily uniformly continuous, and let M
be a compact subset of P2(Rd). Notice that the restriction of u to M is uniformly
continuous. Then, by the same argument as in Step III we deduce that the double
sequence {vk,n,m}n,m is equicontinuous on M . As a consequence, recalling also the
convergences (4.4), we deduce from [8, Lemma D.1] that, for every fixed k ∈ N, there
exists a subsequence {vk,n,mn}n which converges pointwise to u ? γk on P2(Rd). Now,
notice that the following convergences hold

lim
n→∞

vk,n,mn(µ) = (u ? γk)(µ), lim
k→∞

(u ? γk)(µ) = u(µ), ∀µ ∈P2(Rd).

Then, we can apply again [8, Lemma D.1] and deduce the existence of a subsequence
{uk}k := {vk,nk,mnk }k. Since {uk}k is equicontinuous (and clearly also equibounded) on

every compact subset M of P2(Rd), by the Ascoli-Arzelà theorem it follows that (4.1)
holds.

Remark 4.3. Let u : P2(Rd)→ R be Lipschitz continuous:

|u(µ)− u(ν)| ≤ LW2(µ, ν), ∀µ, ν ∈P2(Rd),

for some constant L ≥ 0. Then, it follows from Theorem 4.2 that there exists a sequence
{uk}k in C∞(P2(Rd)) such that

|uk(µ)− uk(ν)| ≤ LW2(µ, ν), ∀µ, ν ∈P2(Rd), ∀ k ∈ N

and
lim
k→∞

sup
µ∈M

|uk(µ)− u(µ)| = 0,

for any compact set M ⊂P2(Rd).

We end this section proving another main result of the paper, concerning the approxi-
mation of first and second-order derivatives.

Theorem 4.4. Let u : P2(Rd) → R be a continuous function. Then, there exists a
sequence {uk}k ⊂ C∞(P2(Rd)) such that (4.1) holds, moreover

1) if u ∈ C1(P2(Rd)) then

lim
k→∞

sup
(µ,x)∈M×K

|∂µuk(µ)(x)− ∂µu(µ)(x)| = 0, (4.5)

for any compact sets M ⊂P2(Rd) and K ⊂ Rd;

2) if in addition u ∈ C2(P2(Rd)) then

lim
k→∞

sup
(µ,x,y)∈M×K×K

(∣∣∂x∂µuk(µ)(x)− ∂x∂µu(µ)(x)
∣∣ (4.6)

+
∣∣∂2
µuk(µ)(x, y)− ∂2

µu(µ)(x, y)
∣∣) = 0,

for any compact sets M ⊂P2(Rd) and K ⊂ Rd.
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Proof. We proceed as in Step I of the proof of Theorem 4.2 and consider, for every k ∈ N,
u ? γk, which is bounded (together with its derivatives), see [4, Lemma 5.94]. We split
the rest of the proof into two steps.

Step I. Proof of item 1). For every k, n ∈ N, let vk,n be the function given by (4.3). Notice
that

∂µvk,n(µ)(x) = E

[
∂µ(u ? γk)

(
1

n

n∑
j=2

δξi +
1

n
δx

)
(x)

]
.

Now, let us consider the sequence {vk,n,m}m∈N defined in the proof of Theorem 4.2, that
is

vk,n,m(µ) = E
[
hk,n,m(ξ1, . . . , ξn)

]
,

where hk,n,m is of class C∞(Rdn). For every j = 1, . . . , n−1, let vjk,n,m : Rdj×P2(Rd)→ R

be given by
vjk,n,m(x1, . . . , xj , µ) = E

[
hk,n,m(x1, . . . , xj , ξj+1, . . . , ξn)

]
,

for every (x1, . . . , xj , µ) ∈ Rdj ×P2(Rd). Let also vnk,n,m : Rdn → R be given by vnk,n,m ≡
hk,n,m. Notice that

vk,n,m(µ) =

∫
Rd
v1
k,n,m(x, µ)µ(dx),

vjk,n,m(x1, . . . , xj , µ) =

∫
Rd
vj+1
k,n,m(x1, . . . , xj , x, µ)µ(dx), j = 1, . . . , n− 1,

vn−1
k,n,m(x1, . . . , xn−1, µ) =

∫
Rd
vnk,n,m(x1, . . . , xn−1, x)µ(dx).

Hence, to obtain the L-derivative of vk,n,m we can apply iteratively [4, formula (5.37)]
together with [4, Proposition 5.35], from which we obtain

∂µvk,n,m(µ)(x)

=
1

n

n∑
k=1

E

[ ∫
Rdn

∂µ(u ? γk)

(
1

n

n∑
i 6=k

δξi−yi +
1

n
δx−yk

)
(x− yk)ρm(y1) . . . ρm(yn)dy1 . . . dyn

]
.

By symmetry,

∂µvk,n,m(µ)(x)

= E

[ ∫
Rdn

∂µ(u ? γk)

(
1

n

n∑
i=2

δξi−yi +
1

n
δx−y1

)
(x− y1) ρm(y1) . . . ρm(yn)dy1 . . . dyn

]
.

Then, for every µ ∈P2(Rd) and x ∈ Rd, it holds that

lim
m→∞

∂µvk,n,m(µ)(x) = ∂µvk,n(µ)(x), lim
n→∞

∂µvk,n(µ)(x) = ∂µ(u ? γk)(µ)(x). (4.7)

The above convergences can be proved proceeding as in Step II of the proof of Theo-
rem 4.2, exploiting the fact that ∂µ(u ? γk) is bounded, and also the following result:

lim
n→∞

W2

(
1

n

n∑
i=2

δξi +
1

n
δx, µ

)
= 0.

Indeed, it holds

W2

(
1

n

n∑
i=2

δξi +
1

n
δx, µ

)
≤ W2

(
1

n

n∑
i=2

δξi +
1

n
δx,

1

n

n∑
i=1

δξi

)
+W2

(
1

n

n∑
i=1

δξi , µ

)
. (4.8)

ECP 28 (2023), paper 30.
Page 9/11

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP538
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On smooth approximations in the Wasserstein space

Looking at the right hand side of (4.8), we have that
{
W2

(
1
n

∑n
j=1 δξi , µ

)}
n

converges
almost surely to zero as n→∞ (see [4, Section 5.1.2]). By (2.6), it follows that

W2

(
1

n

n∑
j=2

δξi +
1

n
δx,

1

n

n∑
j=1

δξi

)
≤ 1

n
‖ξ1 − x‖L2 ,

which also tends to zero as n → ∞. Finally, by the pointwise convergences (4.7) we
can proceed as in Step IV of the proof of Theorem 4.2 to find a sequence {uk}k such
that (4.5) holds.

Step II. Proof of item 2). Regarding ∂2
µvk,n,m, proceeding as in Step I for the function

µ 7→ ∂µvk,n,m(µ)(x), with x ∈ Rd fixed, we obtain

∂2
µvk,n,m(µ)(x, z) = E

[ ∫
Rdn

∂µ(u ? γk)

(
1

n

n∑
i=3

δξi−yi

+
1

n
δx−y1 +

1

n
δz−y2

)
(x− y1, z − y2)ρm(y1) · · · ρm(yn)dy1 · · · dyn

]
.

On the other hand, concerning the derivative ∂x∂µvk,n,m, for every fixed y1, . . . , yn ∈ Rd,
let us define the map gξ1,...,ξn,y1,...,yn : Rd ×Rd → R as follows:

gξ1,...,ξn,y1,...,yn(x, z) = ∂µ(u ? γk)

(
1

n

n∑
i=2

δξi−yi +
1

n
δx−y1

)
(z − y1), ∀ (x, z) ∈ Rd ×Rd.

The partial derivative of gξ1,...,ξn,y1,...,yn with respect to x can be computed thanks to [4,
Proposition 5.35]:

∂xgξ1,...,ξn,y1,...,yn(x, z) =
1

n
∂2
µ(u ? γk)

(
1

n

n∑
i=2

δξi−yi +
1

n
δx−y1

)
(z − y1, x− y1). (4.9)

Thus, noting that

∂µvk,n,m(µ)(x) = E

[∫
Rdn

gξ1,...,ξn,y1,...,yn(x, x) ρm(y1) . . . ρm(yn)dy1 . . . dyn

]
,

by the usual chain rule combined with (4.9), we obtain

∂x∂µvk,n,m(µ)(x) =
1

n
E

[ ∫
Rdn

∂2
µ(u ? γk)

(
1

n

n∑
i=2

δξi−yi

+
1

n
δx−y1

)
(x− y1, x− y1) ρm(y1) · · · ρm(yn)dy1 · · · dyn

]
+ E

[ ∫
Rdn

∂x∂µ(u ? γk)

(
1

n

n∑
i=2

δξi−yi +
1

n
δx−y1

)
(x− y1) ρm(y1) · · · ρm(yn)dy1 · · · dyn

]
.

As in Step I, we can conclude that, for every µ ∈P2(Rd) and x, z ∈ Rd,

lim
m→∞

∂2
µvk,n,m(µ)(x, z) = ∂µvk,n(µ)(x, z), lim

n→∞
∂2
µvk,n(µ)(x, z) = ∂2

µ(u ? γk)(µ)(x, z),

lim
m→∞

∂x∂µvk,n,m(µ)(x) = ∂x∂µvk,n(µ)(x), lim
n→∞

∂x∂µvk,n(µ)(x) = ∂x∂µ(u ? γk)(µ)(x).

Finally, using the pointwise convergences above and proceeding as in Step IV of the
proof of Theorem 4.2 we can find a sequence {uk}k such that (4.6) holds.
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