
Submitted 26 October 2021
Accepted 3 March 2022
Published 15 April 2022

Corresponding author
Alessandro D’Amelio,
alessandro.damelio@unimi.it

Academic editor
Carlos Fernandez-Lozano

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.929

Copyright
2022 Boccignone et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

pyVHR: a Python framework for remote
photoplethysmography
Giuseppe Boccignone1, Donatello Conte2, Vittorio Cuculo1,
Alessandro D’Amelio1, Giuliano Grossi1, Raffaella Lanzarotti1 and
Edoardo Mortara1

1PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
2 Laboratoire d’Informatique Fondamentale et Appliquée de Tours, Université de Tours, Tours, France

ABSTRACT
Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate
(HR) variability from videos in realistic environments. A number of effective methods
relying on data-driven, model-based and statistical approaches have emerged in the
past two decades. They exhibit increasing ability to estimate the blood volume pulse
(BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore,
learning-based rPPG methods have been recently proposed. The present pyVHR
framework represents a multi-stage pipeline covering the whole process for extracting
and analyzing HR fluctuations. It is designed for both theoretical studies and practical
applications in contexts where wearable sensors are inconvenient to use. Namely,
pyVHR supports either the development, assessment and statistical analysis of
novel rPPG methods, either traditional or learning-based, or simply the sound
comparison of well-established methods on multiple datasets. It is built up on
accelerated Python libraries for video and signal processing as well as equipped with
parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU.
The whole accelerated process can be safely run in real-time for 30 fps HD videos with
an average speedup of around 5. This paper is shaped in the form of a gentle tutorial
presentation of the framework.

Subjects Human-Computer Interaction, Computer Vision
Keywords Remote photoplethysmography, Contactless monitoring, Deepfake Detection, Heart
Rate Estimation, Deep rPPG

INTRODUCTION
Heart rate variability can be monitored via photoplethysmography (PPG), an optoelec-
tronic measurement technology first introduced in Hertzman (1937), and then largely
adopted due to its reliability and non-invasiveness (Blazek & Schultz-Ehrenburg, 1996).
Principally, this technique captures the amount of reflected light skin variations due to the
blood volume changes.

Successively, remote-PPG (rPPG) has been introduced. This is a contactless technique
able to measure reflected light skin variations by using an RGB-video camera as a virtual
sensor (Wieringa, Mastik & Steen, 2005; Humphreys, Ward & Markham, 2007). Essentially,
rPPG techniques leverage on the RGB color traces acquired over time and processed
to approximate the PPG signal. As a matter of fact, rPPG has sparked great interest by

How to cite this article Boccignone G, Conte D, Cuculo V, D’Amelio A, Grossi G, Lanzarotti R, Mortara E. 2022. pyVHR: a Python
framework for remote photoplethysmography. PeerJ Comput. Sci. 8:e929 http://doi.org/10.7717/peerj-cs.929

https://peerj.com/computer-science
mailto:alessandro.damelio@unimi.it
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.929
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.929

1Freely available on GitHub: https:
//github.com/phuselab/pyVHR.

fostering the opportunity for measuring PPG at distance (e.g., remote health assistance)
or in all those cases where contact has to be prevented (e.g., surveillance, fitness, health,
emotion analysis) (Aarts et al., 2013;McDuff, Gontarek & Picard, 2014; Ramírez et al.,
2014; Boccignone et al., 2020b; Rouast et al., 2017). Indeed, the rPPG research field has
witnessed a growing number of techniques proposed for making this approach more
and more robust and thus viable in contexts facing challenging problems such as subject
motion, ambient light changes, low-cost cameras (Lewandowska et al., 2011; Verkruysse,
Svaasand & Nelson, 2008; Tarassenko et al., 2014; Benezeth et al., 2018;Wang et al., 2016;
Wang, Stuijk & De Haan, 2015; Pilz et al., 2018; De Haan & Van Leest, 2014). More
recently, alongside the traditional methods listed above, rPPG approaches based on deep
learning (DL) have burst into this research field (Chen & McDuff, 2018; Niu et al., 2019;
Yu et al., 2020; Liu et al., 2020; Liu et al., 2021; Gideon & Stent, 2021; Yu et al., 2021).

The blossoming of the field and the variety of the proposed solutions raise the issue,
for both researchers and practitioners, of a fair comparison among proposed techniques
while engaging in the rapid prototyping and the systematic testing of novel methods.
Under such circumstances, several reviews and surveys concerning rPPG (McDuff et
al., 2015; Rouast et al., 2018; Heusch, Anjos & Marcel, 2017a; Unakafov, 2018;Wang et
al., 2016;McDuff & Blackford, 2019; Cheng et al., 2021;McDuff, 2021; Ni, Azarang &
Kehtarnavaz, 2021) have conducted empirical comparisons, albeit suffering under several
aspects, as discussed in ‘Related Works’.

To promote the development of new methods and their experimental analysis,
in Boccignone et al. (2020a) we proposed pyVHR, a preliminary version of a framework
supporting the main steps of the traditional rPPG pulse rate recovery, together with a
sound statistical assessment of methods’ performance. Yet, that proposal exhibited some
limits, both in terms of code organization, usability, and scalability, and since it was
suitable for traditional approaches only. Here we present a new version of pyVHR,1 with
a totally re-engineered code, which introduces several novelties.

First of all, we provide a dichotomous view of remote heart rate monitoring, leading to
two distinct classes of approaches: traditional methods (section ‘Pipeline for Traditional
Methods’) and DL-based methods (section ‘Pipeline for Deep-Learning Methods’).
Moreover, concerning the former, a further distinction is setup, concerning the Region
Of Interest (ROI) taken into account, thus providing both holistic and patch-based
methods. The former takes into account the whole skin region, extracted from the face
captured in subsequent frames. Undoubtedly, it is the simplest approach, giving satisfying
results when applied on video acquired in controlled contexts. However, in more complex
settings the illumination conditions are frequently unstable, giving rise to either high
variability of skin tone or shading effects. In these cases the holistic approach is prone to
biases altering subsequent analyses. Differently, the patch-based approach employs and
tracks an ensemble of patches sampling the whole face. The rationale behind this choice
is twofold. On the one hand, the face regions affected by either shadows or bad lighting
conditions can be discarded, thus avoiding uncorrelated measurements with the HR
ground-truth. On the other hand, the amount of observations available allows for making

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 2/37

https://github.com/phuselab/pyVHR
https://github.com/phuselab/pyVHR
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

the final HR estimate more robust, even through simple statistics (e.g., medians), while
controlling the confidence levels.

Second, the framework is agile, covers each stage of the pipeline that instantiates it,
and it is easily extensible. Indeed, one can freely embed new methods, datasets or tools for
the intermediate steps (see section ‘Extending the Framework’) such as for instance: face
detection and extraction, pre- and post-filtering of RGBs traces or BVPs signals, spectral
analysis techniques, statistical methods.

pyVHR can be easily employed for many diverse applications such as anti-spoofing,
aliveness detection, affective computing, biometrics. For instance, in section ‘Case Study:
DeepFake detection with pyVHR’ a case study on the adoption of rPPG technology for a
Deepfake detection task is presented.

Finally, computations can be achieved in real-time thanks to the NVIDIA GPU
(Graphics Processing Units) accelerated code and the use of optimized Python primitives.

Related works
In the last decade the rPPG domain has witnessed a flourish of investigations (McDuff
et al., 2015; Rouast et al., 2018; Heusch, Anjos & Marcel, 2017a; Unakafov, 2018;Wang
et al., 2016;McDuff & Blackford, 2019; Cheng et al., 2021;McDuff, 2021; Ni, Azarang &
Kehtarnavaz, 2021). Yet, the problem of a fair and reproducible evaluation has been in
general overlooked. It is undeniable that theoretical evaluations are almost infeasible,
given the complex operations or transformations each algorithm performs. Nevertheless,
empirical comparisons could be very informative if conducted in the light of some
methodological criteria (Boccignone et al., 2020a). In brief: pre/post processing standard-
ization; reproducible evaluation; multiple dataset testing; rigorous statistical assessment.

To the best of our knowledge, a framework respecting all these criteria was missing
until the introduction of the early version of pyVHR Boccignone et al. (2020a).

In Heusch, Anjos & Marcel (2017a) a Python collection of rPPG algorithms is pre-
sented, without claiming to be complete in the method assessment.

Interestingly, in Unakafov (2018), the authors highlight the dependency of the
pulse rate estimation on five main steps: ROI-selection, pre-processing, rPPG method,
post-processing, pulse rate estimation. They present a theoretical framework to assess
different pipelines in order to find out which combination provides the most precise PPG
estimation; results are reported on the DEAP dataset (Koelstra et al., 2011). Unfortunately,
no code has been made available.

In Pilz (2019) a MATLAB toolbox is presented, implementing two newly proposed
methods, namely Local Group Invariance (LGI) (Pilz et al., 2018) and Riemannian-PPGI
(SPH) (Pilz, 2019), and comparing them to the GREEN channel expectation (Verkruysse,
Svaasand & Nelson, 2008) baseline, and two state-of-the-art methods, i.e., Spatial
Subspace Rotation (SSR) (Wang, Stuijk & De Haan, 2015), and Projection Orthogonal
to Skin (POS) (Wang et al., 2016).

InMcDuff & Blackford (2019) the authors propose iPhys, a MATLAB toolbox
implementing several methods, such as Green Channel, POS, CHROM (De Haan &
Jeanne, 2013), ICA (Poh, McDuff & Picard, 2010), and BCG (Balakrishnan, Durand &

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 3/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

Table 1 A comparison of the freely available rPPG frameworks. Check signs mark conditions fulfilled; crosses, those neglected.

Lang. Modular Deep-Ready Multi-Data Stat. Assessment

pyVHR Python X X X X

McDuff & Blackford (2019) MATLAB × × × ×

Heusch, Anjos & Marcel (2017a) Python × × × ×

Pilz (2019) MATLAB × × X ×

Guttag, 2013). The toolbox is presented as a bare collection of method implementations,
without aiming at setting up a rigorous comparison framework on one or more datasets.
It is worth noticing that all these frameworks are suitable for traditional methods only.
Table 1 summarizes at a glance the main differences between pyVHR and the already
proposed frameworks.

INSTALLATION
The quickest way to get started with pyVHR is to install the miniconda distribution, a
lightweight minimal installation of Anaconda Python.

Once installed, create a new conda environment, automatically fetching all the
dependencies based on the adopted architecture—with or without GPU—, by one of the
following commands:

1 $ conda env create --file https :// github.com/phuselab/pyVHR/blob/pyVHR_CPU/
pyVHR_CPU_env.yml

for CPU-only architecture, or
1 $ conda env create --file https :// github.com/phuselab/pyVHR/blob/main/pyVHR_env.

yml

for a CPU architecture with GPU support. The latest stable release build of pyVHR can be
installed, inside the newly created conda environment, with:

1 $ pip install pyvhr -cpu

for CPU-only, or
1 pip install pyvhr

for CPU with GPU support.
The source code for pyVHR can be found on GitHub at https://github.com/phuselab/

pyVHR and it is distributed under the GPL-3.0 License. On GitHub, the community can
report issues, questions as well as contribute with code to the project. The documentation
of the pyVHR framework is available at https://phuselab.github.io/pyVHR/.

PYVHR PIPELINE FOR TRADITIONAL METHODS
In this section, we introduce the pyVHRmodules to be referred by traditional rPPG
methods. They are built on top of both APIs developed for the purpose, and open-source
libraries. This pipeline follows a software design strategy that assemble sequential modules
or stages, with the output of a stage serving as input to one or more subsequent stages.
This responds to the need for the framework to be flexible and extensible in order to be
more maintainable and improvable over time with innovative or alternative techniques.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 4/37

https://peerj.com
https://github.com/phuselab/pyVHR
https://github.com/phuselab/pyVHR
https://phuselab.github.io/pyVHR/
http://dx.doi.org/10.7717/peerj-cs.929

2Available at: https://sites.google.com/view/
ybenezeth/ubfcrppg.

10 20 30 40 50
Time (sec)

95

100

105

110

115

B
P
M

Ground Truth

Estimated

Figure 1 Prediction example. Predictions on the Subject1 of the UBFC Dataset.
Full-size DOI: 10.7717/peerjcs.929/fig-1

The pipeline Stages
The Pipeline() class implements the sequence of stages or steps that are usually required
by the vast majority of rPPG methods proposed in the literature, in order to estimate the
BPM of a subject, given a video displaying his/her face. Eventually, going through all these
steps in pyVHR is as simple as writing a couple of lines of Python code:

1 from pyVHR.analysis.pipeline import Pipeline
2

3 pipe = Pipeline ()
4 time , BPM , uncertainty = pipe.run_on_video(’/path/to/vid.avi’)

Calling the run_on_video()method of the Pipeline() class starts the analysis of the
video provided as argument and produces as output the time step of the estimated BPM

and related uncertainty estimate. Figure 1 depicts the predicted BPM on Subject1 of
the UBFC2 dataset (Bobbia et al., 2019) (blue trajectory). For comparison, the ground
truth BPM trajectory (as recorded from a PPG sensor) is reported in red.

On the one hand the above-mentioned example witnesses the ease of use of the package
by hiding the whole pipeline behind a single function call. On the other hand it may be
considered too constraining as hinders the user from exploiting its full flexibility. Indeed,
the run_on_video()method can be thought of as a black box delivering the desired
result with the least amount of effort, relying on default parameter setting.

Nevertheless, some users may be interested in playing along with all the different
modules composing the pyVHR pipeline and the related parameters. The following
sections aim at describing in detail each of such elements. These are shown in Fig. 2B and
can be recapped as follows:
1. Skin extraction: The goal of this first step is to perform a face skin segmentation in

order to extract PPG-related areas; the latter are subsequently collected in either a
single patch (holistic approach) or a bunch of ‘‘sparse’’ patches covering the whole
face (patch-wise approach).

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 5/37

https://sites.google.com/view/ybenezeth/ubfcrppg
https://sites.google.com/view/ybenezeth/ubfcrppg
https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-1
http://dx.doi.org/10.7717/peerj-cs.929

holisticpatches

ICA, PCA, POS,
CHROM, GREEN,
PBV, SSR, LGI

ICA, PCA, POS,
CHROM, GREEN,
PBV, SSR, LGI

ICA, PCA, POS,
CHROM, GREEN,
PBV, SSR, LGI

ROI
Selection

pre-
filt

pre-
filt

pre-
filt

PSD
max

PSD
max

PSD
max

post-
filt

post-
filt

post-
filt

avg

avg

avg

Traditional

Methods

Deep Learning

based Methods

 post-filt PSD max

 Direct BPM estimation

(a)

(b)

Figure 2 The pyVHR pipeline at a glance. (A) The multi-stage pipeline of the pyVHR framework for BPM
estimate through PSD analysis exploiting end-to-end DL-based methods. (B) The multi-stage pipeline for
traditional approaches that goes through: windowing and patch collection, RGB trace computation, pre-
filtering, the application of an rPPG algorithm estimating a BVP signal, post-filtering and BPM estimate
through PSD analysis.

Full-size DOI: 10.7717/peerjcs.929/fig-2

2. RGB signal processing: The patches, either one or more, are coherently tracked and
are used to compute the average colour intensities along overlapping windows, thus
providing multiple time-varying RGB signals for each temporal window.

3. Pre-filtering: Optionally, the raw RGB traces are pre-processed via canonical filtering,
normalization or de-trending; the outcome signals provide the inputs to any subse-
quent rPPG method.

4. BVP extraction: The rPPG method(s) at hand is applied to the time-windowed signals,
thus producing a collection of heart rate pulse signals (BVP estimates), one for each
patch.

5. Post-filtering: The pulse signals are optionally passed through a narrow-band filter in
order to remove unwanted out-of-band frequency components.

6. BPM estimation: A BPM estimate is eventually obtained through simple statistics
relying on the apical points of the BVP power spectral densities.

Skin extraction
The skin extraction step implemented in pyVHR consists in the segmentation of the face
region of the subject. Typically, the regions corresponding to the eyes and mouth are
discarded from the analysis. This can be accomplished by pyVHR in two different ways,
denoted as:
1. the Convex-hull extractor,
2. the Face parsing extractor.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 6/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-2
http://dx.doi.org/10.7717/peerj-cs.929

3Available for download at https://github.
com/partofthestars/LGI-PPGI-DB.

(A) Convex Hull (B) BiSeNet

Figure 3 Comparison of the two implemented skin extraction methods.Output of the Convex-hull ap-
proach (A) and face parsing by BiSeNet (B) on a subject of the LGI-PPGI dataset (Pilz et al., 2018).

Full-size DOI: 10.7717/peerjcs.929/fig-3

The Convex-hull extractor considers the skin region as the convex-hull of a set of the
468 facial fiducial points delivered by the MediaPipe face mesh (Lugaresi et al., 2019).
The latter provides reliable face/landmark detection and tracking in real-time. From
the convex-hulls including the whole face, pyVHR subtracts those computed from the
landmarks associated to the eyes and mouth. The resulting mask is employed to isolate
the pixels that are generally associated to the skin. An example is shown in the left image
of Fig. 3 on a subject of the LG-PPGI dataset (Pilz et al., 2018).3

Alternatively, the Face parsing extractor computes a semantic segmentation of the
subject’s face. It produces pixel-wise label maps for different semantic components (e.g.,
hair, mouth, eyes, nose, c...), thus allowing to retain only those related to the skin regions.
Face semantic segmentation is carried over with BiSeNet (Yu et al., 2018), which supports
real-time inference speed. One example is shown in the right image of Fig. 3.

Both extraction methods are handled in pyVHR by the SignalProcessing() class. The
following lines of code set-up the extractor with the desired skin extraction procedure:

1 from pyVHR.extraction.sig_processing import SignalProcessing
2

3 sig_processing = SignalProcessing ()
4 if skin_method == ’convexhull ’:
5 sig_processing.set_skin_extractor(SkinExtractionConvexHull(target_device))
6 elif skin_method == ’faceparsing ’:
7 sig_processing.set_skin_extractor(SkinExtractionFaceParsing(target_device))

Holistic approach
The skin extraction method paves the way to the RGB trace computation which is
accomplished in a channel-wise fashion by averaging the facial skin colour intensities.
This is referred to as the holistic approach, and within the pyVHR framework it can be
instantiated as follows:

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 7/37

https://github.com/partofthestars/LGI-PPGI-DB
https://github.com/partofthestars/LGI-PPGI-DB
https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-3
http://dx.doi.org/10.7717/peerj-cs.929

Figure 4 Landmarks automatically tracked byMediaPipe and correspondent patch tracking on a sub-
ject of the LGI-PPGI dataset (Pilz et al., 2018).

Full-size DOI: 10.7717/peerjcs.929/fig-4

1 sig = sig_processing.extract_holistic(videoFileName)

Patch-based approach
In contrast to the holistic approach, the patch-based one takes into account a bunch
of localized regions of interest, thus extracting as many RGB traces as patches. Clearly,
imaging photoplethysmography in unconstrained settings is sensitive to subjects changing
pose, moving their head or talking. This calls for a mechanism for robust detection and
tracking of such regions.

To such end, pyVHR again relies on the MediaPipe Face Mesh, which establishes a
metric 3D space to infer the face landmark screen positions by a lightweight method to
drive a robust and performant tracking. The analysis runs on CPU and has a minimal
speed or memory footprint on top of the inference model.

The user can easily select up to 468 patches centered on a subset of landmarks and
define them as the set of informative regions on which the subsequent steps of the
pipeline are evaluated. An example of landmark extraction and tracking is shown in Fig. 4.
Note that eventually, a patch may disappear due to subject’s movements, hence delivering
only partial or none contribution.

It is worth noting how the user is allowed to arbitrarily compose its own set of patches
by exploiting pyVHR utility functions. In the example below, three patches have been
selected corresponding to the forehead, left and right cheek areas. Usually, several patches
are chosen in order to better control the high variability in the results and to achieve high
level of confidence, while making smaller the margin of error.

As for the holistic approach, video loading and patch extraction are handled by few
APIs available in the SignalProcessing() class, as shown in the following script.

1 from pyVHR.extraction.utils import MagicLandmarks
2

3 ldmks_list = [MagicLandmarks.cheek_left_top [16], MagicLandmarks.cheek_right_top
[14], MagicLandmarks.forehead_center [1]]

4 sig_processing.set_landmarks(ldmks_list)
5 # set squares patches side dimension
6 sig_processing.set_square_patches_side (28.0)
7 #Extract square patches and compute the RGB trajectories as the channel -wise mean
8 sig = sig_processing.extract_patches(videoFileName , ’squares ’, ’mean’)

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 8/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-4
http://dx.doi.org/10.7717/peerj-cs.929

RGB signal computation
In this step, the skin regions detected and tracked on the subject’s face are split in
successive overlapping time windows. Next, the RGB traces associated to each region
are computed by averaging their colour intensities. More formally, let us consider an
RGB video v ∈Rw×h×3×T of T frames containing a face, split on P (possibly overlapped)
patches. Once the ith patch has been selected, an RGB signal qi(t) is computed. Denote
{pji(t)}

Ni
j=1 the set of Ni pixels belonging to the ith patch at time t , where pji(t) ∈ [0,255]

3.
Then, qi(t) is recovered by averaging on pixel colour intensities, i.e.,

qi(t)=
1
Ni

Ni∑
j=1

pji(t), i= 1,...,P.

In the time-splitting process, fixed an integer τ > 0, qi(t) is sliced into K overlapping
windows ofM =WsFs frames, thus obtaining

qki (t)= qi(t)w (t−kτFs), k= 0,...,K −1.

where Fs represents the video frame rate,Ws the window length in seconds, while w is the
rectangular window defined as:

w(t)=

{
1, 0≤ t <M
0, otherwise.

(1)

In order for the signal segments to actually overlap, the overlap inequality τ <Ws must
be verified.

Figure 5 shows how the above described patch-based split and tracking procedure is
put in place.

In pyVHR , the extraction of the windowed RGB signals is computed by the following
code snippet.

1 from pyVHR.extraction.utils import sig_windowing , get_fps
2

3 Ws = 6 #window lenght in seconds
4 overlap = 1 #window overlap in seconds
5 fps = get_fps(videoFileName)
6

7 windowed_sig , timesES = sig_windowing(sig , Ws, overlap , fps)

Notably, beside being able to switch between convex-hull and face parsing, the user can
easily change the main process parameters such as the window length and the amount of
frame overlapping.

Methods for BVP estimation
Given that the framework can rely on holistic-wise and patch-wise processing, pyVHR
estimates the BVP signal either from a single trace or leveraging on multiple traces. In
both cases it employs a wide range of state of the art rPPG methods.

In particular, the windowed RGB traces qki (t) (i= 1,...,P , with P = 1 in the holistic
case) of length K are given in input to the rPPG method at hand, which outputs the
signals yki (t) representing the estimated BVP associated to the ith patch in the k-th time
window.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 9/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

tim
e (

 fra
mes)

Figure 5 Patch tracking within a frame temporal window on a subject of the LGI-PPGI dataset (Pilz et
al., 2018).

Full-size DOI: 10.7717/peerjcs.929/fig-5

The many methods that have been proposed in the recent literature mostly differ in the
way of combining such RGB signals into a pulse-signal. The pool of methods provided
by pyVHR , together with a description of the main concepts grounding them, is provided
in Table 2. A review of the principles/assumptions behind each of the implemented
algorithms is out of the scope of the present work. The interested reader might refer to
Wang et al. (2016),McDuff et al. (2015) and Rouast et al. (2018).

Currently, the package implements the following methods for the estimation of
the pulse signal from the RGB traces: GREEN (Verkruysse, Svaasand & Nelson, 2008),
CHROM (De Haan & Jeanne, 2013), ICA (Poh, McDuff & Picard, 2010), LGI (Pilz et al.,
2018), PBV (De Haan & Van Leest, 2014), PCA (Lewandowska et al., 2011), POS (Wang et
al., 2016), SSR (Wang, Stuijk & De Haan, 2015). However, the user may define any custom
method for estimating BVP by extending the pyVHR.BVP.methodsmodule.

The BVP signal can be estimated in pyVHR as follows:
1 bvp = RGB_sig_to_BVP(windowed_sig , fps , method=cpu_POS)

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 10/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-5
http://dx.doi.org/10.7717/peerj-cs.929

Table 2 Traditional rPPG algorithms implemented in pyVHR.

Method Description

GREEN (Verkruysse, Svaasand & Nelson, 2008) The Green (G) temporal trace is directly considered as an
estimate of the BVP signal. Usually adopted as a baseline
method.

ICA (Poh, McDuff & Picard, 2010) Independent Component Analysis (ICA) is employed to
extract the pulse signal via Blind Source Separation of
temporal RGB mixtures.

PCA (Lewandowska et al., 2011) Principal Component Analysis (PCA) of temporal RGB
traces is employed to estimate the BVP signal.

CHROM (De Haan & Jeanne, 2013) A Chrominance-based method for the BVP signal
estimation.

PBV (De Haan & Van Leest, 2014) Computes the signature of blood volume pulse changes
to distinguish the pulse-induced color changes from
motion noise in RGB temporal traces.

SSR (S2R) (Wang, Stuijk & De Haan, 2015) Spatial Subspace Rotation (SSR); estimates a spatial
subspace of skin-pixels and measures its temporal
rotation for extracting pulse signal.

POS (Wang et al., 2016) Plane Orthogonal to the Skin (POS). Pulse signal
extraction is performed via a projection plane orthogonal
to the skin tone.

LGI (Pilz et al., 2018) Local Group Invariance (LGI). Computes a feature
representation which is invariant to action and motion
based on differentiable local transformations.

Figure 6 depicts the BVP signals estimated by four different rPPG methods imple-
mented in pyVHR (POS, GREEN, CHROM, PCA), on the same time window using the
holistic patch.

Pre and post-filtering
pyVHR offers simple APIs to apply filters on either the RGB traces qi(t) (pre-filtering)
or the estimated pulse signal yi(t) (post-filtering). A set of ready to use filters are imple-
mented, namely:

• Band Pass (BP) filter : filters the input signal using a bandpass N -th order Butterworth
filter with a given passband frequency range.
• Detrending : subtracts offsets or linear trends from time-domain input data.
• Zero-Mean: Removes the DC component from a given signal.

However, the user can adopt any custom filter complying with the function signature
defined in pyVHR.BVP.filters. The following provides an example of how to detrend an
RGB trace qi(t):

1 filtered_sig = apply_filter(sig , detrend)

Additionally, a Band-Pass filter can be applied on the estimated BVP signals yi(t) in
order to rule out the frequencies that leave outside the feasible range of typical heart rates
(which is usually between 40 Hz and 200 Hz):

1 filtered_bvp = apply_filter(bvp , BPfilter ,
2 params ={’order’:6,’minHz’:0.65,’maxHz’:4.0,’fps’:fps})

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 11/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

(A) POS (B) GREEN

(C) CHROM (D) PCA

Figure 6 Predicted BVP signals. An example of estimated BVP signals on the same time window by four
different methods. (A) POS. (B) GREEN. (C) CHROM. (D) PCA.

Full-size DOI: 10.7717/peerjcs.929/fig-6

From BVP to BPM
Given the estimated BVP signal, the beats per minute (BPM) associated to a given time
window can be easily recovered via analysis of its frequency domain representation. In
particular, pyVHR estimates the Power Spectral Density (PSD) of the windowed pulse
signal yki (t) via discrete time Fourier transform (DFT) using the Welch’s method. The
latter employs both averaging and smoothing to analyze the underlying random process.

Given a sequence yki (t), call S
k
i (ν) its power spectra (periodogram) estimated via the

Welch’s method. The BPM is recovered by selecting the normalized frequency associated
to the peak of the periodogram:

ν̂ki = argmax
ν∈�

{
Ski (ν)

}
,

corresponding to the PSD maxima as computed by Welch’s method on the range�=
[39,240] of feasible BPMs.

The instantaneous BPM associated to the k-th time window (k ∈ 1,...,K) for the ith
patch (i ∈ 1,...,P), is recovered by converting the normalized peak frequency ν̂ki into an
actual frequency,

ĥki = ν̂
k
i
Fs
L
,

where Fs is the video frame rate and L is the DFT size. Figure 7 shows the Welch’s esti-
mates for the BVP signals of Fig. 6. The peak in the spectrum represents the instantaneous
Heart Rate (ĥki).

When multiple patches have been selected (P > 1), the predicted BPM for the k-th
time window can be obtained resorting to simple statistical measures. Specifically, pyVHR
computes the median BPM value of the predictions coming from the P patches.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 12/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-6
http://dx.doi.org/10.7717/peerj-cs.929

(A) POS

50 75 100 125 150 175 200 225
Frequency (Hz)

0.00

0.02

0.04

0.06

0.08

0.10

P
S

D

(B) GREEN

50 75 100 125 150 175 200 225
Frequency (Hz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
S

D

(C) CHROM

50 75 100 125 150 175 200 225
Frequency (Hz)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

P
S
D

(D) PCA

Figure 7 Estimated PSD. Estimated Power Spectral Densities (PSD) for the BVP signals plotted in Fig. 6.
The BPM estimate, given by the maxima of the PSD, is represented by the blue dashed line. (A) POS. (B)
GREEN. (C) CHROM. (D) PCA.

Full-size DOI: 10.7717/peerjcs.929/fig-7

Formally, call H k the ordered list of P BPM predictions coming from each patch in the
k-th time window; then:

ĥk =median(H k)=


H k
[
P−1
2

]
if P is odd(

H k [P
2 −1

]
+H k [P

2

])
2

if P is even.
(2)

Note that if the number of patches P = 1 (i.e., a single patch has been selected or the
holistic approach has been chosen), then:

ĥk =H k
[0]. (3)

Moreover, when multiple patches have been selected, a measure of variability of the
predictions can be computed in order to quantify the uncertainty of the estimation. In
particular, pyVHR computes the Median Absolute Deviation (MAD) as a robust measure
of statistical dispersion. TheMAD is defined as:

MADk
=median(|H k

− ĥk |). (4)

Clearly, theMAD drops to 0 when P = 1. Figure 8 depicts the distribution of predicted
BPM in a given time window, when P = 100 patches are employed. The results from
different methods are shown for comparison. Note how the median is able to deliver
precise predictions, while the MAD represents a robust measure of uncertainty.

Computing the BPM from the BVP signal(s) can be easily accomplished in pyVHR as
follows:

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 13/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-7
http://dx.doi.org/10.7717/peerj-cs.929

Figure 8 Distribution of BPM predictions by four methods on P patches. (A) POS. (B) GREEN. (C)
CHROM. (D) PCA. Kernel Density Estimates (KDEs) of the predicted BPMs in a time window from P =
100 patches. The ultimate BPM prediction is given by the median (gold dashed line). The uncertainty es-
timate delivered by the Median Absolute Deviation (MAD) is shown by the golden band around the me-
dian. The blue dashed line represents the actual BPM.

Full-size DOI: 10.7717/peerjcs.929/fig-8

1 from pyVHR.BPM.BPM import BVP_to_BPM , multi_est_BPM_median
2

3 bpmES = BVP_to_BPM(bvp , fps)
4 # median BPM from multiple estimators BPM
5 bpm , uncertainty = multi_est_BPM_median(bpmES)

The result along with the ground-truth are shown in Fig. 9.

Efficient computation and GPU acceleration
Most of the steps composing the pipeline described above are well suited for parallel
computation. For instance, the linear algebra operations involved in the pulse signal
recovery from the RGB signal or, more generally, the signal processing steps (e.g., filtering,
spectral estimation, etc.), not to mention the skin segmentation procedures from high
resolution videos.

To such end, pyVHR exploits the massive parallelism of Graphical Processing Units
(GPUs). It is worth mentioning that GPUs are not strictly required to run pyVHR code;
nevertheless, in some cases, GPU accelerated code allows to run the pipeline in real-time.

Figure 10 shows the average per-frame time requirement for getting through the whole
pipeline when using the POSmethod. It is worth noticing that, when using the Holistic
approach (or equivalently one single patch), a video frame can be processed in less than
0.025 seconds, regardless of the adopted architecture (either CPU or GPU). This means

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 14/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-8
http://dx.doi.org/10.7717/peerj-cs.929

10 20 30 40 50
Time (sec)

95

100

105

110

115

B
P
M

Ground Truth

Estimated

Figure 9 Comparison of predicted vs ground truth BPMs using the patch-wise approach. Predicted
BPM (blue) for the Subject1 of the UBFC Dataset. The uncertainty is plotted in shaded blue, while the
ground truth is represented by the red line.

Full-size DOI: 10.7717/peerjcs.929/fig-9

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time(s)

CPU

GPU

A
rc

h
it

e
ct

u
re

per Frame Time Requirements

Holistic

Patches

Figure 10 Per-frame time requirements. Average time requirements to process one frame by the Holis-
tic and Patches approaches when using CPU vs. GPU accelerated implementations. The green dashed line
represents the real-time limit at 30 frames per second (fps).

Full-size DOI: 10.7717/peerjcs.929/fig-10

that the whole pipeline can be safely run in real-time for videos at 30 frames per second
(the 30 fps time limit is represented by the dashed green line).

Obviously, when multiple patches are employed (in the example of Fig. 10, P = 100
patches are used), the average time required by CPUs to process a single frame rises up
to about 0.12 seconds. Notably, the adoption of GPU accelerated code allows to run
the whole pipeline in real-time, even when using a huge number of patches. Indeed, the
ratio to CPU time and GPU time, i.e., the speedup defined as timeseq/timeparall, is about
5. Remarkably, similar gain in performances are observed if adopting any other rPPG
method.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 15/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-9
https://doi.org/10.7717/peerjcs.929/fig-10
http://dx.doi.org/10.7717/peerj-cs.929

The result shown in Fig. 10 refers to the following hardware configuration: Intel Xeon
Silver 4214R 2.40 GHz (CPU), NVIDIA Tesla V100S PCIe 32GB (GPU). Similar results
were obtained relying on a non-server configuration: Intel Core i7-8700K 4.70 GHz
(CPU), NVIDIA GeForce GTX 960 2GB (GPU). The maximum RAM usage for 1 min HD
video analysis is 2.5 GB (average is 2 GB); the maximum GPU memory usage for 1 min
HD video analysis is 1.8 GB (average is 1.4 GB).

In the following it is shown how to enable CUDA GPU acceleration on different steps
in the Pipeline:

• Skin extraction: Convex Hull and Face Parsing. The user can easily choose to run this
step with CPU or GPU:

1 target_device = ’GPU’ # or ’CPU’
2 sig_processing = SignalProcessing ()
3 sig_processing.set_skin_extractor(
4 SkinExtractionConvexHull(target_device))
5 sig_processing.set_skin_extractor(
6 SkinExtractionFaceParsing(target_device))
7

• rPPG Methods: the package contains different version of the same method. For
example the CHROMmethod is implemented for both CPU and GPU.

1 bvp = RGB_sig_to_BVP(sig , fps , device_type=’cuda’, method=cupy_CHROM)
2 bvp = RGB_sig_to_BVP(sig , fps , device_type=’cpu’, method=cpu_LGI)
3

• BPM Estimation:
1 bpmES = BVP_to_BPM_cuda(bvp , fps) #GPU
2 bpmES = BVP_to_BPM(bvp , fps) #CPU
3

GUI for online processing
Besides being used as a Python library, pyVHRmakes available a Graphical User Interface
(GUI). It provides access to most of the available functionalities, while showing the BPMs
estimation process in real-time. It is straightforward to use and it allows for setting up the
pipeline parameters and the operating mode, by choosing either a webcam or a video file.

To start the GUI, one can run the command:
1 $ Python pyVHR/realtime/GUI.py

Figure 11 shows a screenshot of the GUI during the online analysis of a video. On the
top right are presented the video file name, the video FPS, resolution, and a radio button
list to select the type of frame displayed. The original or segmented face can be visualized
either selecting the Original Video or the Skin option, while the Patches radio button
enables the visualization of the patches (in red). The Stop button ends the analysis, and
results can be saved on disk by pushing the Save BPMs button.

PYVHR PIPELINE FOR DEEP-LEARNING METHODS
Recent literature in computer vision has given wide prominence to end-to-end deep
neural models and their ability to outperform traditional methods requiring hand-crafted

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 16/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

Figure 11 The graphical user interface. A screenshot of the graphical user interface (GUI) for online
video analysis. The plot on the left shows the predicted BPMs, while on the right it is shown the processed
video frames (captured with a webcam) with an example of the segmented skin and the tracked patches.

Full-size DOI: 10.7717/peerjcs.929/fig-11

feature design. In this context, learning frameworks for recovering physiological signals
were also born (Chen & McDuff, 2018; Niu et al., 2019; Yu et al., 2020; Yu et al., 2021;
Gideon & Stent, 2021; Liu et al., 2021; Nowara, McDuff & Veeraraghavan, 2020). The end-
to-end nature of the DL based approaches is reflected by a much simpler pipeline; indeed,
these methods typically require as input raw video frames that are processed by the DL
architecture at hand and produce either a BVP signal or the estimated heart rate, directly.
Figure 2A depicts at a glance the flow of stages involved in the estimation of heart rate
using DL based approaches. Clearly, this gain in simplicity comes at the cost of having
to train the model on huge amounts of data, not to mention the issues related to the
assessment of the model’s generalization abilities.

In the last few years the literature has witnessed a flourish of DL-based approaches(for
two recent reviews see Cheng et al. (2021) and Ni, Azarang & Kehtarnavaz (2021).
Nonetheless, despite the claimed effectiveness and superior performances, few solutions
have been made publicly available (both in terms of code and learned model weights).
This raises issues related to proper reproducibility of the results and the method assess-
ment. For instance, a recent efficient neural architecture called MTTS-CAN has been
proposed in Liu et al. (2020) being a valuable contribution since the pre-trained model
and code are released. It essentially leverages a tensor-shift module and 2D-convolutional
operations to perform efficient spatial temporal modeling in order to enable real-time
cardiovascular and respiratory measurements. MTTS-CAN can be framed as an end-
to-end model since it does not need any pre-processing step before data is fed into the
network, except performing trivial image normalizations. MTTS-CAN is included in the
pyVHR framework, and below it is shown how practical is to extend the framework with
similar DL-based approaches provided that the pre-trained model is available.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 17/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-11
http://dx.doi.org/10.7717/peerj-cs.929

As for the pipeline for traditional methods shown in previous section, pyVHR also
defines a sequence of stages that allows to recover the time varying heart rate from a
sequence of images displaying a face. These are detailed in the following.

The stages for end-to-end methods
Given a video displaying a subject face, the DeepPipeline() class performs the necessary
steps for the rPPG estimate using a chosen end-to-end DL method. Specifically, the
pipeline includes the handling of input videos, the estimation from the sequence of raw
frames and, eventually, the pre/post-processing steps. The following code snippet carries
out the above procedure with few statements:

1 from pyVHR.analysis.pipeline import DeepPipeline
2

3 pipe = DeepPipeline ()
4 time , BPM = pipe.run_on_video(’/path/to/vid.avi’, method=’MTTS_CAN ’)

Figure 2A summarizes the steps involved in a run_on_video() call on a given input
video. As in the pipeline using traditional methods (see section ‘Pipeline for Traditional
Methods’), after a predetermined chain of analysis steps it produces as output the
estimated BPM and related timestamps (time).

For instance, consider the MTTS-CANmodel currently embedded into the DeepPipeline()
class; it estimates the rPPG pulse signal from which the BPM computation can be carried
out by following the very same procedure outlined in section ‘From BVP to BPM’, namely
time windowing and spectral estimation. Eventually, some optional pre/post filtering
operations (section ‘Pre and Post-Filtering’) can be performed.

The following few lines of Python code allow to carry out the above steps explicitly:
1 from pyVHR.extraction.sig_processing import SignalProcessing
2 from pyVHR.extraction.utils import get_fps
3 from pyVHR.BPM import BVP_to_BPM
4 from pyVHR.utils.errors import BVP_windowing
5

6 sp = SignalProcessing ()
7 frames = sp.extract_raw(’/path/to/videoFileName ’)
8 fps = get_fps(’/path/to/videoFileName ’)
9

10 bvps_pred = MTTS_CAN_deep(frames , fps)
11

12 winsize = 6 #6\ s long time window
13 bvp_win , timesES = BVP_windowing(bvp_pred , winsize , fps , stride =1)
14 bpm = BVP_to_BPM(bvp_win , fps)

In order to embed a new DL-method, the code above should be simply modified
substituting the function MTTS_CAN_deep with a new one implementing the method at
hand, while respecting the same signature (cfr. ‘Extending the Framework’).

ASSESSMENT OF RPPG METHODS
Does a given rPPG algorithm outperforms the existing ones? To what extent? Is the
difference in performance significantly large? Does a particular post-filtering algorithm
cause an increase/drop of performance?

Answering all such questions, calls for a rigorous statistical assessment of rPPG
methods. As a matter of fact, although the field has recently experienced a substantial

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 18/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

gain in interest from the scientific community, it is still missing a sound and reproducible
assessment methodology allowing to gain meaningful insights and delivering best
practices.

By and large, novel algorithms proposed in the literature are benchmarked on non-
publicly available datasets, thus hindering proper reproducibility of results. Moreover,
in many cases, the reported results are obtained with different pipelines; this makes
it difficult to precisely identify the actual effect of the proposed method on the final
performance measurement.

Besides that, the performance assessment mostly relies on basic and common-sense
techniques, such as roughly rank new methods with respect to the state-of-the-art.
These crude methodologies often make the assessment unfair and statistically unsound.
Conversely, a good research practice should not limit to barely report performance
numbers, but rather aiming at principled and carefully designed analyses. This is in
accordance with the growing quest for statistical procedures in performance assessment
in many different fields, including machine learning and computer vision (Demšar, 2006;
Benavoli et al., 2017; Torralba & Efros, 2011; Graczyk et al., 2010; Eisinga et al., 2017).

In the vein of its forerunner (Boccignone et al., 2020a), pyVHR deals with all such
problems by means of its statistical assessment module. The design principles can be
recapped as follows:

• Standardized pipeline:When setting up an experiment to evaluate a new rPPG
algorithm, the whole pipeline (except the algorithm) should be held fixed.
• Reproducible evaluation: The evaluation protocol should be reproducible. This entails
adopting publicly available datasets and code.
• Comparison over multiple datasets: In order to avoid dataset bias, the analysis should be
conducted on as many diverse datasets as possible.
• Rigorous statistical assessment: The reported results should be the outcome of proper
statistical procedures, assessing their statistical significance.

The workflow of the Statistical Assessment Module is depicted in Fig. 12.
In a nutshell, each video composing a particular rPPG dataset is processed by the pyVHR

pipeline as described above. Moreover, the package provides primitives for loading and
processing real BVP signals as recorded from pulse-oximeters. Such signals undergo a
treatment similar to the estimated BVP. In particular, the original BVP signal g (t) is sliced
into overlapping time windows; for each window the ground truth BPM hk (the BPM
associated to the k-th time window, with k = 1,...,K) is recovered viamaximization of
the Power Spectral Density (PSD) estimate provided by the Welch’s method.

Finally, the estimated (ĥk) and ground truth (hk) BPM signals are compared with one
another exploiting standard metrics (c.f.r ‘Metrics’). Eventually, statistically rigorous
comparisons can be effortlessly performed (c.f.r ‘Significance Testing’).

Notably, the many parameters that make up each step of the pipeline (from the ROI
selection method to the pre/post filtering operations, passing through the BVP estimation
by one or multiple rPPG algorithms) can be easily specified in a configuration (.cfg) file.
Setting up a .cfg file allows to design the experimental procedure in accordance with the

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 19/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

BVP Signal

Estimated BVP/BPM

Spectral Analysis Real BPM

pyVHR Pipeline

 D2.cfg

Metrics

MAE
RMSE
PCC
CCC
SNR

Hypotheses

vs.

Datasets

 D1.cfg Dn.cfg

Figure 12 The assessment module at a glance.One or more datasets are loaded; videos are processed by
the pyVHR pipeline while ground-truth BPM signals are retrieved. Predicted and real BPM are compared
with standard metrics and the results are rigorously analyzed via hypothesis testing procedures.

Full-size DOI: 10.7717/peerjcs.929/fig-12

principles summarized above. A brief description of the implemented comparison metrics
and the .cfg file specifications are provided in the following Sections.

Metrics
pyVHR provides common metrics to evaluate the performance of one or more rPPG
methods in estimating the correct heart rate (BPM) over time. These are briefly recalled
here.

In order to measure the accuracy of the BPM estimate ĥ, this is compared to the
reference BPM as recovered from contact BVP sensors h. To this end, the reference BVP
signal g (t) is splitted into overlapping windows, similarly to the procedure described in
section ‘Methods for BVP estimation’ for the estimated BVP, thus producing K windowed
signals g k (k ∈ 1,...,K). The reference BPM is found via spectral analysis of each window,
as described in section ‘From BVP to BPM’. This yields the K reference BPM hk to be
compared to the estimated one ĥk by adopting any of the following metrics:

Mean Absolute Error (MAE). The Mean Absolute Error measures the average absolute
difference between the estimated ĥ and reference BPM h. It is computed as:

MAE=
1
K

∑
k

|ĥk−hk |.

Root Mean Squared Error (RMSE). The Root-Mean-Square Error measures the
difference between quantities in terms of the square root of the average of squared
differences, i.e.,

RMSE=
1
K

√∑
k

(ĥk−hk)2.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 20/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-12
http://dx.doi.org/10.7717/peerj-cs.929

Pearson Correlation Coefficient (PCC). Pearson Correlation Coefficient measures the
linear correlation between the estimate ĥ and the ground truth h. It is defined as:

PCC=
∑

k(ĥ
k
− µ̂)(hk−µ)
σ1σ2

,

here µ̂ and µdenote the means of the respective signals, while σ1 and σ2 are their standard
deviations.

Concordance Correlation Coefficient (CCC). The Concordance Correlation
Coefficient (Lawrence & Lin, 1989) is a measure of the agreement between two quantities.
Like Pearson’s correlation, CCC ranges from -1 to 1, with perfect agreement at 1. It is
defined as:

CCC =
2σ12

(µ̂−µ)2+σ 2
1 +σ

2
2

where µ̂ and µdenote the means of the prediceted and reference BPM traces, respectively.
Likewise, σ1 and σ2 are their standard deviations, while σ12 is their covariance.

Signal to Noise Ratio (SNR). The SNR (De Haan & Jeanne, 2013) measures the ratio
of the power around the reference HR frequency plus the first harmonic of the estimated
pulse-signal and the remaining power contained in the spectrum of the estimated BVP.
Formally it is defined as:

SNR=
1
K

∑
K
10log10

∑
v(U

k(v)Sk(v))2∑
v(1−U k(v))Sk(v)2

(5)

where Sk(v) is the power spectral density of the estimated BVP in the k-th time window
and U k(v) is a binary mask that selects the power contained within±12 BPM around the
reference Heart Rate and its first harmonic.

The configuration (.cfg) file
The .cfg file allows to set up the experimental procedure for the evaluation of models. It
is structured into 6 main blocks that are briefly described here:

Dataset. This block contains the information relative to a particular rPPG dataset,
namely its name, and its path.

1 [DATASET]
2 dataset = DatasetName
3 path = None
4 videodataDIR= /path/to/vids/
5 BVPdataDIR = /path/to/gt/
6 ...
7

Filters. It defines the filtering methods to be eventually used in the pre/post filtering
phase. In the following example a band-pass butterworth filter of 6-th order
is defined, with a passing band between 40 Hz and 240 Hz.

1 [BPFILTER]
2 path = None
3 name = BPfilter
4 params = {’minHz’:0.65, ’maxHz’:4.0, ’fps’:’adaptive ’, ’order

’:6}
5

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 21/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

RGB Signal. Defines all the parameters for the extraction of the RGB signal (e.g., ROI
selection method, temporal windowing size, number and type of patches to
be used, etc.).

1 [SIG]
2 ...
3 winSize = 6
4 skin_extractor = convexhull
5 approach = patches
6 ...
7

BVP. Sets up the rPPG method to be adopted for the estimation of the BVP
signal. Multiple methods can be provided in order to compare them. In this
example two methods will be analyzed, namely POS and GREEN (adopting
their CPU implementations).

1 [BVP]
2 methods = [’POS’, ’GREEN’]
3 ...
4

Methods. It allows to configure each rPPG method to be analyzed (e.g., eventual
parametrs and pre/post filters). The two methods chosen above are
configured here. In particular, POS will not employ any pre/post filtering,
while for the GREENmethod, the above-defined band pass filter will be
applied for both pre and post filtering.

1 [POS]
2 ...
3 name = cpu_POS
4 device_type = cpu
5 pre_filtering = []
6 post_filtering = []
7

8 [GREEN]
9 ...
10 name = cpu_GREEN
11 device_type = cpu
12 pre_filtering = [’BPFILTER ’]
13 post_filtering = [’BPFILTER ’]
14

The experiment on the dataset defined in the .cfg file can be simply launched as:
1 from pyVHR.analysis.pipeline import Pipeline
2

3 pipe = Pipeline ()
4 results = pipe.run_on_dataset(’/path/to/config.cfg’)
5 results.saveResults("/path/to/results.h5")

In the above code, the run_on_datasetmethod from the Pipeline class, parses the
.cfg file and initiates a pipeline for each rPPG method defined in it. The pipelines are
used to process each video in the dataset. Concurrently, ground truth BPM data is loaded
and comparison metrics are computed w.r.t. the predictions (cfr. Figure 12). The results
are delivered as a table containing for each method the value of the comparison metrics
computed between ground truth and predicted BPM signals, on each video belonging to

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 22/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

the dataset, which are then saved to disk. The same considerations hold for the definition
of .cfg files associated to DL-based methods. Clearly, in this case the information related
to the RGB Signal block are unnecessary.

Significance testing
Once the comparison metrics have been computed for all the considered methods, the
significance of the differences between their performance can be evaluated. In other
words, we want to ensure that such difference is not drawn by chance, but it represents
an actual improvement of one method over another.

To this end, pyVHR resorts to standard statistical hypothesis testing procedures. Clearly,
the results eventually obtained represent a typical repeated measure design, in which two
or more pipelines are compared on paired samples (videos). A number of statistical tests
are available in order to deal with such state of affairs.

In the two populations case, typically, the paired t -test is employed; alternatively some
non-parametric versions of the paired t -test are at hand, namely the Sign Test or the
Wilcoxon signed ranks Test; in general the latter is preferred over the former due to its
higher power. For the same reason it is recommended to adopt the parametric paired t -
test instead of the non-parametric Wilcoxon test. However, the use of the paired t -test is
subject to the constraint of normality of the populations. If such condition is not met, a
non-parametric test should be chosen.

Similarly, with more than two pipelines, repeated measure ANOVA is the parametric
test that is usually adopted. Resorting to ANOVA, requires Normality and Heteroskedas-
ticity (equality of variances) conditions to be met. Alternatively, when these cannot be
ensured, the Friedman Test is chosen.

In pyVHR the Normality and Heteroskedasticity conditions are automatically checked
via the Shapiro–Wilk Normality test and, depending on the Normality with Levene’s test
or Bartlett’s tests for homogeneity of the data.

In the case of multiple comparisons (ANOVA/Friedman), a proper post-hoc analysis
is required in order to establish the pairwise differences among the pipelines. Specifically,
the Tukey post-hoc Test is adopted downstream to the rejection of the null hypothesis of
ANOVA (the means of the populations are equal), while the Nemenyi post-hoc Test is
used after the rejection of the Friedman’s null hypothesis of equality of the medians of the
samples.

Besides the significance of the differences, it is convenient to report their magnitude,
too. The effect size can be computed via the Cohen’s d in case of Normal of populations;
the Akinshin’s γ is used otherwise.

The two populations case
pyVHR automatically handles the above significance testing procedure within the
StatAnalysis() class, by relying on the Autorank Python package (Herbold, 2020).
StatAnalysis() ingests the results produced at the previous step and runs the appro-
priate statistical test on a chosen comparison metric:

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 23/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

1 from pyVHR.analysis.stats import StatAnalysis
2

3 st = StatAnalysis("/path/to/results.h5")
4 # -- box plot statistics (medians)
5 st.displayBoxPlot(metric=’CCC’)
6

7 #testing
8 st.run_stats(metric=’CCC’)

The output of the statistical testing procedure is reported as follows:

The Shapiro–Wilk Test rejected the null hypothesis of normality for the populations
POS (p< 0.01) and GREEN (p< 0.01). (...) the Wilcoxon’s signed rank test has been
chosen to determine the differences in the central tendency; median (MD) and median
absolute deviation (MAD) are reported for each population. The test rejected the null
hypothesis (p< 0.01) that population POS (MD= 1.344± 1.256,MAD= 0.688) is
not greater than population GREEN (MD= 2.297±3.217,MAD= 1.429). Hence, we
assume that the median of POS is significantly larger than the median of GREEN with a
large effect size (γ =−0.850).

As it can be observed, the appropriate statistical test for two non-normal populations
has been properly selected. The Concordance Correlation Coefficient (CCC) for the
method POS turned out to be significantly larger than the CCC of the method GREEN.
Besides being significant, such difference is substantial, as witnessed by the large effect
size.

The more-than-two populations case
Suppose now to structure the above .cfg in order to run three methods instead of two.
This would be as simple as extending the ‘‘BVP’’ and ‘‘Methods’’ blocks as follows:

1 ###BVP###
2 [BVP]
3 methods = [’POS’, ’GREEN’, ’CHROM’]
4 ...
5 ### METHODS ###
6 [POS]
7 ...
8

9 [GREEN]
10 ...
11

12 [CHROM]
13 ...
14 name = CHROM
15 pre_filtering = [’BPFILTER ’]
16 post_filtering = [’BPFILTER ’]

Re-running the statistical analysis would yield the following output:

The Shapiro–Wilk Test rejected the null hypothesis of normality for the populations
CHROM (p< 0.01), POS (p< 0.01), and GREEN (p< 0.01). Given that more than
two populations are present, and normality hypothesis has been rejected, the non-
parametric Friedman test is chosen to inspect the eventual significant differences
between the medians of the populations. The post-hoc Nemenyi test is then used

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 24/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

GREEN CHROM POS

0

0.2

0.4

0.6

0.8

1

Metric: CCC

Figure 13 Box plots showing the CCC values distribution for the POS, CHROM and GREENmethods on
the UBFC2 dataset.

Full-size DOI: 10.7717/peerjcs.929/fig-13

to determine which differences are significant. The Friedman test rejected the null
hypothesis (p< 0.01) of equality of the medians of the populations CHROM (MD=
1.263±1.688,MAD= 0.515,MR= 1.385), POS (MD= 1.344±1.513,MAD= 0.688,
MR= 1.769), and GREEN (MD= 2.297±4.569,MAD= 1.429,MR= 2.846). (...) the
post-hoc Nemenyi test revealed no significant differences within the following groups:
CHROM and POS, while other differences are significant.

Notably, the presence of more than two non-normal populations leads to the choice
of the non-parametric Friedman Test as omnibus test to determine if there are any
significant differences between the median values of the populations.

The box-plots showing the distributions of CCC values for all methods on the UBFC
dataset is provided in Fig. 13, while the output of the post-hoc Nemenyi test can be
visualized through the Critical Difference (CD) diagram (Demšar, 2006) shown in Fig. 14;
CD Diagrams show the average rank of each method (higher ranks meaning higher
average scores); models whose difference in ranks does not exceed the CDα (α = 0.05)
are joined by thick lines and cannot be considered significantly different.

Comparing deep and traditional pipelines
How does a given DL-based rPPG method compares to the above mentioned traditional
approaches? The following code snippet allows to run both the traditional and deep
pipelines. The results are saved to the same folder, which is then fed as input to the
StatAnalysis class; the join_data =True flag allows to merge the results yielded by
the two pipelines, thus enabling the statistical comparison between the chosen methods.

1 from pyVHR.analysis.stats import StatAnalysis

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 25/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-13
http://dx.doi.org/10.7717/peerj-cs.929

123

GREEN
POS

CHROM

CD

Figure 14 Results of the statistical assessment procedure. CD diagram displaying the results of the
Nemenyi post-hoc test on the three populations (POS, CHROM and GREEN) of CCC values on the UBFC2
dataset.

Full-size DOI: 10.7717/peerjcs.929/fig-14

2 from pyVHR.analysis.pipeline import Pipeline , DeepPipeline
3

4 #Pipeline for Traditional Methods
5 traditional_pipe = Pipeline ()
6 traditional_results = traditional_pipe.run_on_dataset(’/path/to/trad_config.cfg’)
7 traditional_results.saveResults("/path/to/results_folder/traditional_results.h5")
8

9 #Pipeline for Deep Methods
10 deep_pipe = DeepPipeline ()
11 deep_results = deep_pipe.run_on_dataset(’/path/to/deep_config.cfg’)
12 deep_results.saveResults("/path/to/results_folder/deep_results.h5")
13

14 #Statistical Analysis
15 st = StatAnalysis("/path/to/results_folder/", join_data=True)
16 # -- box plot statistics
17 st.displayBoxPlot(metric=’SNR’)
18 #Significance testing on the SNR metric
19 st.run_stats(metric=’SNR’)

In this case, the Signal-to-Noise Ratio (SNR) has been chosen as comparison metric;
Fig. 15 qualitatively displays the results of the comparison of the above mentioned
traditional methods with the MTTS-CAN DL-based approach (Liu et al., 2020). The
outcome of the statistical assessment is shown in the CD diagram of Fig. 16.

EXTENDING THE FRAMEWORK
Besides assessing built-in methods on public datasets included in the framework, the
platform is conceived to allow the addition of new methods or datasets. This way, it is
possible to assess a new proposal, comparing it against built-in methods, and testing it
on either already included datasets or on new ones, this exploiting all the pre- and post-
processing modules made available in pyVHR . The framework extension can be achieved
following simple steps as described in the subsequent subsections.

Adding a new method
In this section we show how to add to the pyVHR framework either a new traditional or
learning-based method called MY_NEW_METHOD.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 26/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-14
http://dx.doi.org/10.7717/peerj-cs.929

GREEN CHROM POS MTTS_CAN

−4

−2

0

2

4

6

8

10

Metric: SNR

Figure 15 Box plots showing the SNR values distribution for the POS, CHROM, MTTS-CAN and GREEN
methods on the UBFC1 dataset.

Full-size DOI: 10.7717/peerjcs.929/fig-15

1234

GREEN
MTTS_CAN POS

CHROM

CD

Figure 16 Results of the statistical assessment procedure. CD diagram displaying the results of the Ne-
menyi post-hoc test on the four populations (POS, CHROM, MTTS-CAN and GREEN) of SNR values on the
UBFC1 dataset.

Full-size DOI: 10.7717/peerjcs.929/fig-16

In the first case, to exploit the pyVHR built-in modules the new function should receive
as input a signal in the shape produced by the built-in pre-processing modules, together
with some other parameters required by the method itself. Specifically, this results in a
signature of the form:

1 MY_NEW_METHOD(signal , **kargs)

where signal is a Numpy array in the form (P, 3, K); P is the number of considered
patches (it can be 1 if the holistic approach is used), 3 is the number of RGB Channels and
K is the number of frames. **kargs refers to a dictionary that contains all the parameters
required by the method at hand. A proper function implementing an rPPG method must
return a BVP signal as a Numpy array of shape (P,K).

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 27/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-15
https://doi.org/10.7717/peerjcs.929/fig-16
http://dx.doi.org/10.7717/peerj-cs.929

In case of DL-based method, the new function should receive as input the raw frames

as a Numpy array in the form (H,W,3,K), where H,W denote the frame dimensions. The
output of the new method could be either a BVP signal or the HR directly.

Accordingly, the signature becomes:
1 MY_NEW_METHOD(frames , fps)

Both for traditional and DL-based method, the function call MY_NEW_METHOD can now
be embedded into the proper Pipeline, and assessed as described earlier. In order to do
so, the .cfg file should be tweaked as follows:

1 [MY_NEW_METHOD]
2 path = ’path/to/module.py’
3 name = ’MY_NEW_METHOD ’
4 ...

Moreover, the methods block of the .cfg file is supposed to contain a specific listing
describing MY_NEW_METHOD, providing the path to the Python module encoding the
method and its function name.

Adding a new dataset
Currently pyVHR provides APIs for handling five datasets commonly adopted for the
evaluation of rPPG methods, namely LGI-PPGI (Pilz et al., 2018), UBFC (Bobbia et al.,
2019), PURE (Stricker, Müller & Gross, 2014), MAHNOB-HCI (Soleymani et al., 2011),
and COHFACE (Heusch, Anjos & Marcel, 2017a). However, the platform allows to add
new datasets favoring the method assessment on new data. A comprehensive list of the
datasets that are typically employed for rPPG estimation and evaluation is reported in
Table 3.

The framework conceives datasets as a hierarchy of classes (see Fig. 17) that allows to
describe a new dataset by inheriting from the Dataset base class and implementing few
methods for loading videos and ground truth PPG data.

Specifically, the following two functions should be supplied:

• a loadFilenames() function to load video files in a Python list; this function has no
inputs and defines two class variables, namely videoFilenames and BVPFilenames.
These are both Python lists containing, respectively, video and ground-truth BVP
filenames from the dataset);
• a readSigfile(filename) function loading and returning the ground-truth BVP
signal given a video filename.

The new dataset can then be included in the testing via the .cfg file as described in
the paragraph Dataset of section ‘The configuration (.cfg) file’. As for the addition of
new method, also in case of adding a new dataset the .cfg file should be completed by
specifying the path pointing to the new dataset class:

1 [DATASET]
2 dataset = DatasetName
3 path = /path/to/datasetClass/
4 videodataDIR= /path/to/videos/
5 BVPdataDIR = /path/to/gtfiles/
6 ...
7

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 28/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

4Available at GitHub: https://github.com/
ondyari/FaceForensics.

Table 3 A list of datasets commonly used for rPPG. The left-most column collects the dataset names
and introducing papers; second column, the number of subjects involved; third column, the task or con-
dition under which data have been collected (Stationary: subject are asked to sit still; Interaction: emula-
tion of a human–computer interaction scenario via a time sensitive mathematical game; Multiple: more
than one condition has been considered while recording subjects, such as Steady, Talking, Head Motion
etc ; Physical Activities: subjects are recorded while performing activities such as speaking, rowing, exercis-
ing on a stationary bike etc ; Stress Test: participants are subject to tasks with different levels of difficulty
inspired by the Trier Social Stress Test; Emotion Elicitation: participants were shown fragments of movies
and pictures apt at eliciting emotional reactions). In the last column, datasets whose handling APIs are
currently available in pyVHR have been checked.

Dataset Subjects Task/Condition pyVHR

UBFC1 (Bobbia et al., 2019) 8 Stationary X

UBFC2 (Bobbia et al., 2019) 42 Interaction X

PURE (Stricker, Müller & Gross, 2014) 10 Multiple X

LGI-PPGI (Pilz et al., 2018) 25 (6 available) Multiple X

MAHNOB-HCI (Soleymani et al., 2011) 27 Emotion elicitation X

COHFACE (Heusch, Anjos & Marcel, 2017b) 40 Stationary X

UBFC-Phys (Sabour et al., 2021) 56 Stress test ×

AFRL (Estepp, Blackford & Meier, 2014) 25 Multiple ×

MMSE-HR (Zhang et al., 2016) 140 Simulating facial expressions ×

OBF (Li et al., 2018) 106 Multiple ×

VIPL-HR (Niu et al., 2018) 107 Multiple ×

ECG-Fitness (Špetlík, Franc & Matas, 2018) 17 Physical activities ×

CASE STUDY: DEEPFAKE DETECTION WITH PYVHR
DeepFakes are a set of DL based techniques allowing to create fake videos by swapping the
face of a person by that of another. This technology has many diverse applications such
as expression re-enactment (Bansal et al., 2018) or video de-identification (Bursic et al.,
2021). However, in recent years the quality of deepfakes has reached tremendous levels of
realism, thus posing a series of treats related to the possibility of arbitrary manipulation of
identity, such as political propaganda, blackmailing, and fake news (Mirsky & Lee, 2021).

As a consequence, efforts have been devoted to the study and the development of
methods allowing to discriminate between real and forged videos (Tolosana et al., 2020;
Mirsky & Lee, 2021). Interestingly enough, one effective approach is represented by the
exploitation of physiological information (Hernandez-Ortega et al., 2020; Ciftci, Demir
& Yin, 2020; Qi et al., 2020) . Indeed, signals originating from biological action such as
heart beat, blood flow, or breathing are expected to be (in large part) disrupted after face-
swapping. Therefore, methods such as remote PPG can be adopted in order to evaluate
their presence.

In the following, it is shown how pyVHR can be effectively employed to easily perform a
DeepFake detection task. To this end, we rely on the FaceForensics++4 dataset (Rössler
et al., 2019) consisting of 1,000 original video sequences (mostly frontal face without
occlusions) that have been manipulated with four automated face manipulation methods.

Each video, either original or swapped is fed as input to the pyVHR pipeline; then, the
estimated BVPs and the predicted BPMs can be analyzed in order to detect DeepFakes.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 29/37

https://github.com/ondyari/FaceForensics.
https://github.com/ondyari/FaceForensics.
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.929

Figure 17 Class diagram of dataset hierarchy of classes.
Full-size DOI: 10.7717/peerjcs.929/fig-17

It is reasonable to imagine that the BVP signals estimated on original videos would have
much lower complexity if compared with the swapped ones, due to the stronger presence
of PPG related information that would be possibly ruled out during swapping procedures.
As a consequence, BVP signals from DeepFakes would perhaps exhibit higher levels of
noise and hence more complex behaviour.

There exist many ways of measuring the complexity of a signal; here we choose to
compute the Fractal Dimension (FD) of BVPs; in particular the Katz’s method (Katz,
1988) is employed.

The FD of the BVP estimated from the ith patch on the k-th time window (Dk
i) can be

computed as Katz (1988):

Dk
i =

log10(L/a)
log10(d/a)

,

where L is the sum of distances between successive points, a is their average, and d is the
maximum distance between the first point and any other point of the estimated BVP
signal.

The FD associated to a given video can then be obtained via averaging:

F̂Dvid =
1
PK

P∑
i=0

K∑
k=0

Dk
i .

Similarly, one could consider adopting the average Median Absolute Deviation (MAD)
of the BPM predictions on a video as a predictor of the presence of DeepFakes:

ˆMADvid =
1
K

K∑
k=0

MADk .

Figure 18 shows how the FaceForensics++ videos lie in the 2-dimensional space
defined by the average Fractal Dimension (F̂D) of predicted BVPs using the POSmethod
and the average MADs of BPM predictions (ˆMAD), when considering the original and
swapped videos with the FaceShifter method.

It is easy to see how adopting these simple statistics on pyVHR’s predictions allows to
discriminate original videos from DeepFakes. In particular, learning a baseline Linear

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 30/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-17
http://dx.doi.org/10.7717/peerj-cs.929

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
BVP Fractal Dimension

0

10

20

30

40

50

B
P
M

 A
v
e
ra

g
e
 M

A
D

Real

Fake

Figure 18 Deepfake detection results. The 1,000 FaceForensics++ original videos (blue) and their
swapped versions (yellow) represented in the 2-D space of BVP Fractal Dimension vs. BPMs average
MAD. The green and red half-spaces are simply learned via a linear SVM.

Full-size DOI: 10.7717/peerjcs.929/fig-18

SVM for the classification of Real vs. Fake videos generated by the FaceShifter method,
yields an average 10-fold Cross-Validation Accuracy of 91.41%± 2.05. This result is
comparable with state of the art approaches usually adopting much more complex
solutions.

CONCLUSIONS
In recent years, the rPPG-based pulse rate recovery has attracted much attention due to
its promise to reduce invasiveness, while granting higher and higher precision in heart
rate estimation. In particular, we have witnessed the proliferation of rPPG algorithms
and models that accelerate the successful deployment in areas that traditionally exploited
wearable sensors or ambulatory monitoring. These two trends, combined together, have
fostered a new perspective in which advanced video-based computing techniques play a
fundamental role in replacing the domain of physical sensing.

In this paper, in order to allow the rapid development and the assessment of new
techniques, we presented an open and very general framework, namely pyVHR . It allows
for a careful study of every step, and no less important, for a sound comparison of
methods on multiple datasets.

pyVHR is a re-engineered version of the framework presented in Boccignone et al.
(2020a) but exhibiting substantial novelties:

• Ease of installation and use.
• Two distinct pipelines for either traditional or DL-based methods.
• Holistic or patch processing for traditional approaches.
• Acceleration by GPU architectures.
• Ease of extension (adding new methods or new datasets).

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 31/37

https://peerj.com
https://doi.org/10.7717/peerjcs.929/fig-18
http://dx.doi.org/10.7717/peerj-cs.929

The adoption of GPU support allows the whole process to be safely run in real-time for
30 fps HD videos and an average speedup (timeseq/timeparall) of around 5.

Besides addressing the challenges of remote Heart Rate monitoring, we also expect that
this framework will be useful to researchers and practitioners from various disciplines
when dealing with new problems and building new applications leveraging rPPG
technology.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the University of Milan through the APC initiative. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The University of Milan through the APC initiative.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Giuseppe Boccignone conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Donatello Conte and Giuliano Grossi analyzed the data, performed the computation
work, authored or reviewed drafts of the paper, and approved the final draft.
• Vittorio Cuculo performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.
• Alessandro D’Amelio conceived and designed the experiments, performed the compu-
tation work, prepared figures and/or tables, and approved the final draft.
• Raffaella Lanzarotti conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the paper, and approved the final draft.
• Edoardo Mortara performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub: https://github.com/phuselab/pyVHR.
The UBFC data used in the experiments is available at: https://sites.google.com/view/

ybenezeth/ubfcrppg.
The FaceForensics++ dataset used in the case study is available at GitHub: https:

//github.com/ondyari/FaceForensics.
The LGI-PPGI dataset is available at GitHub: https://github.com/partofthestars/LGI-

PPGI-DB.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 32/37

https://peerj.com
https://github.com/phuselab/pyVHR
https://sites.google.com/view/ybenezeth/ubfcrppg
https://sites.google.com/view/ybenezeth/ubfcrppg
https://github.com/ondyari/FaceForensics
https://github.com/ondyari/FaceForensics
https://github.com/partofthestars/LGI-PPGI-DB
https://github.com/partofthestars/LGI-PPGI-DB
http://dx.doi.org/10.7717/peerj-cs.929

REFERENCES
Aarts LA, Jeanne V, Cleary JP, Lieber C, Nelson JS, Oetomo SB, VerkruysseW.

2013. Non-contact heart rate monitoring utilizing camera photoplethysmogra-
phy in the neonatal intensive care unit A pilot study. Early Human Development
89(12):943–948 DOI 10.1016/j.earlhumdev.2013.09.016.

Balakrishnan G, Durand F, Guttag J. 2013. Detecting pulse from head motions in video.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 3430–3437.

Bansal A, Ma S, Ramanan D, Sheikh Y. 2018. Recycle-gan: unsupervised video retarget-
ing. In: Proceedings of the european conference on computer vision (ECCV). 119–135.

Benavoli A, Corani G, Demšar J, ZaffalonM. 2017. Time for a change: a tutorial for
comparing multiple classifiers through Bayesian analysis. The Journal of Machine
Learning Research 18(1):2653–2688.

Benezeth Y, Li P, Macwan R, Nakamura K, Gomez R, Yang F. 2018. Remote heart
rate variability for emotional state monitoring. In: 2018 IEEE EMBS international
conference on biomedical & health informatics (BHI). Piscataway: IEEE, 153–156.

Blazek V, Schultz-Ehrenburg U. 1996.Quantitative Photoplethysmography: basic facts
and examination tests for evaluating peripheral vascular funktions. Düsseldorf: VDI-
Verlag.

Bobbia S, Macwan R, Benezeth Y, Mansouri A, Dubois J. 2019. Unsupervised skin
tissue segmentation for remote photoplethysmography. Pattern Recognition Letters
124:82–90 DOI 10.1016/j.patrec.2017.10.017.

Boccignone G, Conte D, Cuculo V, DAmelio A, Grossi G, Lanzarotti R. 2020a. An
open framework for remote-PPG methods and their assessment. IEEE Access
8:216083–216103 DOI 10.1109/ACCESS.2020.3040936.

Boccignone G, de’Sperati C, GranatoM, Grossi G, Lanzarotti R, Noceti N, Odone
F. 2020b. Stairway to Elders: bridging space, time and emotions in their social
environment for wellbeing. In: ICPRAM. 548–554.

Bursic S, D’Amelio A, GranatoM, Grossi G, Lanzarotti R. 2021. A quantitative eval-
uation framework of video de-identification methods. In: 2020 25th international
conference on pattern recognition (ICPR). 6089–6095.

ChenW,McDuff D. 2018. Deepphys: video-based physiological measurement using
convolutional attention networks. In: Proceedings of the european conference on
computer vision (ECCV). 349–365.

Cheng C-H,Wong K-L, Chin J-W, Chan T-T, So RH. 2021. Deep learning methods
for remote heart rate measurement: a review and future research agenda. Sensors
21(18):6296 DOI 10.3390/s21186296.

Ciftci UA, Demir I, Yin L. 2020.How do the hearts of deep fakes beat? Deep fake
source detection via interpreting residuals with biological signals. In: 2020 IEEE
international joint conference on biometrics (IJCB). Piscataway: IEEE, 1–10.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 33/37

https://peerj.com
http://dx.doi.org/10.1016/j.earlhumdev.2013.09.016
http://dx.doi.org/10.1016/j.patrec.2017.10.017
http://dx.doi.org/10.1109/ACCESS.2020.3040936
http://dx.doi.org/10.3390/s21186296
http://dx.doi.org/10.7717/peerj-cs.929

DeHaan G, Jeanne V. 2013. Robust pulse rate from chrominance-based rPPG. IEEE
Transactions on Biomedical Engineering 60(10):2878–2886
DOI 10.1109/TBME.2013.2266196.

DeHaan G, Van Leest A. 2014. Improved motion robustness of remote-PPG by using
the blood volume pulse signature. Physiological Measurement 35(9):1913–1926
DOI 10.1088/0967-3334/35/9/1913.

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7:1–30.

Eisinga R, Heskes T, Pelzer B, Te Grotenhuis M. 2017. Exact p-values for pairwise
comparison of Friedman rank sums, with application to comparing classifiers. BMC
Bioinformatics 18(1):68 DOI 10.1186/s12859-017-1486-2.

Estepp JR, Blackford EB, Meier CM. 2014. Recovering pulse rate during motion artifact
with a multi-imager array for non-contact imaging photoplethysmography. In: 2014
IEEE international conference on systems, man, and cybernetics (SMC). Piscataway:
IEEE, 1462–1469.

Gideon J, Stent S. 2021. The way to my heart is through contrastive learning: remote
photoplethysmography from unlabelled video. In: Proceedings of the IEEE/CVF
international conference on computer vision. Piscataway: IEEE, 3995–4004.

Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M , et al, GrundmannM.
2019.Mediapipe: a framework for building perception pipelines. ArXiv preprint.
arXiv:1906.08172.

GraczykM, Lasota T, Telec Z, Trawiński B. 2010. Nonparametric statistical analysis
of machine learning algorithms for regression problems. In: Setchi R, Jordanov I,
Howlett RJ, Jain LC, eds. Knowledge-based and intelligent information and engineering
systems. Berlin, Heidelberg: Springer, 111–120.

Herbold S. 2020. Autorank: a python package for automated ranking of classifiers.
Journal of Open Source Software 5(48):2173 DOI 10.21105/joss.02173.

Hernandez-Ortega J, Tolosana R, Fierrez J, Morales A. 2020. Deepfakeson-phys: deep-
fakes detection based on heart rate estimation. ArXiv preprint. arXiv:2010.00400.

Hertzman AB. 1937. Photoelectric plethysmography of the fingers and toes in man.
In: Proceedings of the society for experimental biology and medicine. 529–534
DOI 10.3181/00379727-37-9630.

Heusch G, Anjos A, Marcel S. 2017a. A reproducible study on remote heart rate
measurement. ArXiv preprint. arXiv:1709.00962.

Heusch G, Anjos A, Marcel S. 2017b. A reproducible study on remote heart rate
measurement. ArXiv preprint. arXiv:1709.00962.

Humphreys K,Ward T, Markham C. 2007. Noncontact simultaneous dual wavelength
photoplethysmography: a further step toward noncontact pulse oximetry. Review of
Scientific Instruments 78(4):044304 DOI 10.1063/1.2724789.

Katz MJ. 1988. Fractals and the analysis of waveforms. Computers in Biology and Medicine
18(3):145–156 DOI 10.1016/0010-4825(88)90041-8.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 34/37

https://peerj.com
http://dx.doi.org/10.1109/TBME.2013.2266196
http://dx.doi.org/10.1088/0967-3334/35/9/1913
http://dx.doi.org/10.1186/s12859-017-1486-2
http://arXiv.org/abs/1906.08172
http://dx.doi.org/10.21105/joss.02173
http://arXiv.org/abs/2010.00400
http://dx.doi.org/10.3181/00379727-37-9630
http://arXiv.org/abs/1709.00962
http://arXiv.org/abs/1709.00962
http://dx.doi.org/10.1063/1.2724789
http://dx.doi.org/10.1016/0010-4825(88)90041-8
http://dx.doi.org/10.7717/peerj-cs.929

Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A,
Patras I. 2011. Deap: a database for emotion analysis; using physiological signals.
IEEE Transactions on Affective Computing 3(1):18–31.

Lawrence I, Lin K. 1989. A concordance correlation coefficient to evaluate reproducibil-
ity. Biometrics 45:255–268.

LewandowskaM, Rumiński J, Kocejko T, Nowak J. 2011.Measuring pulse rate with a
webcam - A non-contact method for evaluating cardiac activity. In: 2011 federated
conference on computer science and information systems (FedCSIS). 405–410.

Li X, Alikhani I, Shi J, Seppanen T, Junttila J, Majamaa-Voltti K, TulppoM, Zhao G.
2018. The obf database: a large face video database for remote physiological signal
measurement and atrial fibrillation detection. In: 2018 13th IEEE international
conference on automatic face & gesture recognition (FG 2018). Piscataway: IEEE,
242–249.

Liu X, Fromm J, Patel S, McDuff D. 2020.Multi-task temporal shift attention networks
for on-device contactless vitals measurement. Advances in Neural Information
Processing Systems 33:19400–19411.

Liu X, Jiang Z, Fromm J, Xu X, Patel S, McDuff D. 2021.MetaPhys: few-shot adaptation
for non-contact physiological measurement. In: Proceedings of the conference on
health, inference, and learning. 154–163.

McDuff D. 2021. Camera measurement of physiological vital signs. ArXiv preprint.
arXiv:2111.11547.

McDuff D, Blackford E. 2019. iPhys: an open non-contact imaging-based physiological
measurement toolbox. In: 2019 41st annual international conference of the IEEE
engineering in medicine and biology society (EMBC). Piscataway: IEEE, 6521–6524.

McDuff DJ, Estepp JR, Piasecki AM, Blackford EB. 2015. A survey of remote optical
photoplethysmographic imaging methods. In: 2015 37th annual international
conference of the IEEE engineering in medicine and biology society (EMBC). Piscataway:
IEEE, 6398–6404.

McDuff D, Gontarek S, Picard R. 2014. Remote measurement of cognitive stress via
heart rate variability. In: 2014 36th annual international conference of the IEEE
engineering in medicine and biology society. Piscataway: IEEE, 2957–2960.

Mirsky Y, LeeW. 2021. The creation and detection of deepfakes: a survey. ACM Comput-
ing Surveys (CSUR) 54(1):1–41.

Ni A, Azarang A, Kehtarnavaz N. 2021. A review of deep learning-based contactless heart
rate measurement methods. Sensors 21(11):3719 DOI 10.3390/s21113719.

Niu X, Han H, Shan S, Chen X. 2018. VIPL-HR: a multi-modal database for pulse
estimation from less-constrained face video. In: Asian conference on computer vision.
562–576.

Niu X, Shan S, Han H, Chen X. 2019. Rhythmnet: end-to-end heart rate estimation
from face via spatial-temporal representation. IEEE Transactions on Image Processing
29:2409–2423.

Nowara E, McDuff D, Veeraraghavan A. 2020. The benefit of distraction: denoising re-
mote vitals measurements using inverse attention. ArXiv preprint. arXiv:2010.07770.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 35/37

https://peerj.com
http://arXiv.org/abs/2111.11547
http://dx.doi.org/10.3390/s21113719
http://arXiv.org/abs/2010.07770
http://dx.doi.org/10.7717/peerj-cs.929

Pilz C. 2019. On the vector space in photoplethysmography imaging. In: Proceedings of
the IEEE/CVF international conference on computer vision workshops. Piscataway:
IEEE.

Pilz CS, Zaunseder S, Krajewski J, Blazek V. 2018. Local group invariance for heart rate
estimation from face videos in the wild. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops. Piscataway: IEEE, 1254–1262.

PohM-Z, McDuff DJ, Picard RW. 2010. Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Optics Express
18(10):10762–10774 DOI 10.1364/OE.18.010762.

Qi H, Guo Q, Juefei-Xu F, Xie X, Ma L, FengW, Liu Y, Zhao J. 2020. DeepRhythm:
exposing deepfakes with attentional visual heartbeat rhythms. In: Proceedings of the
28th ACM international conference on multimedia. 4318–4327.

Ramírez GA, Fuentes O, Crites SL, JimenezM, Ordonez J. 2014. Color analysis of facial
skin: detection of emotional state. In: 2014 IEEE conference on computer vision and
pattern recognition workshops. Piscataway: IEEE, 474–479.

Rössler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. 2019. FaceForen-
sics++: learning to detect manipulated facial images. In: International conference on
computer vision (ICCV).

Rouast PV, AdamMT, Cornforth DJ, Lux E,Weinhardt C. 2017. Using contactless
heart rate measurements for real-time assessment of affective states. In: Information
Systems and Neuroscience. Cham, Switzerland: Springer, 157–163.

Rouast PV, AdamMTP, Chiong R, Cornforth D, Lux E. 2018. Remote heart rate
measurement using low-cost RGB face video: a technical literature review. Frontiers
of Computer Science 12(5):858–872 DOI 10.1007/s11704-016-6243-6.

Sabour RM, Benezeth Y, De Oliveira P, Chappe J, Yang F. 2021. Ubfc-phys: a multi-
modal database for psychophysiological studies of social stress. IEEE Transactions on
Affective Computing Epub ahead of print Feb 3 2021 DOI 10.1109/TAFFC.2021.3056960.

Soleymani M, Lichtenauer J, Pun T, Pantic M. 2011. A multimodal database for
affect recognition and implicit tagging. IEEE Transactions on Affective Computing
3(1):42–55.

Špetlík R, Franc V, Matas J. 2018. Visual heart rate estimation with convolutional neural
network. In: Proceedings of the british machine vision conference, Newcastle, UK. 3–6.

Stricker R, Müller S, Gross H-M. 2014. Non-contact video-based pulse rate measure-
ment on a mobile service robot. In: 23rd IEEE international symposium on robot and
human interactive communication. Piscataway: IEEE, 1056–1062.

Tarassenko L, Villarroel M, Guazzi A, Jorge J, Clifton DA, Pugh C. 2014. Non-contact
video-based vital sign monitoring using ambient light and auto-regressive models.
Physiological Measurement 35(5):807–831 DOI 10.1088/0967-3334/35/5/807.

Tolosana R, Vera-Rodriguez R, Fierrez J, Morales A, Ortega-Garcia J. 2020. Deepfakes
and beyond: a survey of face manipulation and fake detection. Information Fusion
64:131–148 DOI 10.1016/j.inffus.2020.06.014.

Torralba A, Efros AA. 2011. Unbiased look at dataset bias. In: CVPR 2011. 1521–1528.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 36/37

https://peerj.com
http://dx.doi.org/10.1364/OE.18.010762
http://dx.doi.org/10.1007/s11704-016-6243-6
http://dx.doi.org/10.1109/TAFFC.2021.3056960
http://dx.doi.org/10.1088/0967-3334/35/5/807
http://dx.doi.org/10.1016/j.inffus.2020.06.014
http://dx.doi.org/10.7717/peerj-cs.929

Unakafov AM. 2018. Pulse rate estimation using imaging photoplethysmography: generic
framework and comparison of methods on a publicly available dataset. Biomedical
Physics & Engineering Express 4(4):045001 DOI 10.1088/2057-1976/aabd09.

VerkruysseW, Svaasand LO, Nelson JS. 2008. Remote plethysmographic imaging using
ambient light. Optics Express 16(26):21434–21445 DOI 10.1364/OE.16.021434.

WangW, den Brinker AC, Stuijk S, de Haan G. 2016. Algorithmic principles of remote
PPG. IEEE Transactions on Biomedical Engineering 64(7):1479–1491.

WangW, Stuijk S, De Haan G. 2015. A novel algorithm for remote photoplethys-
mography: spatial subspace rotation. IEEE Transactions on Biomedical Engineering
63(9):1974–1984.

Wieringa FP, Mastik F, Steen AFWvd. 2005. Contactless multiple wavelength photo-
plethysmographic imaging: a first step toward ‘‘SpO2 Camera’’Technology. Annals of
Biomedical Engineering 33(8):1034–1041 DOI 10.1007/s10439-005-5763-2.

Yu Z, Li X, Niu X, Shi J, Zhao G. 2020. Autohr: a strong end-to-end baseline for remote
heart rate measurement with neural searching. IEEE Signal Processing Letters
27:1245–1249 DOI 10.1109/LSP.2020.3007086.

Yu Z, Shen Y, Shi J, Zhao H, Torr P, Zhao G. 2021. PhysFormer: facial video-based
physiological measurement with temporal difference transformer. ArXiv preprint.
arXiv:2111.12082.

Yu C,Wang J, Peng C, Gao C, Yu G, Sang N. 2018. Bisenet: bilateral segmentation
network for real-time semantic segmentation. In: Proceedings of the European
conference on computer vision (ECCV). 325–341.

Zhang Z, Girard JM,Wu Y, Zhang X, Liu P, Ciftci U, Canavan S, Reale M, Horowitz
A, Yang H. 2016.Multimodal spontaneous emotion corpus for human behavior
analysis. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. Piscataway: IEEE, 3438–3446.

Boccignone et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.929 37/37

https://peerj.com
http://dx.doi.org/10.1088/2057-1976/aabd09
http://dx.doi.org/10.1364/OE.16.021434
http://dx.doi.org/10.1007/s10439-005-5763-2
http://dx.doi.org/10.1109/LSP.2020.3007086
http://arXiv.org/abs/2111.12082
http://dx.doi.org/10.7717/peerj-cs.929

