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Millions of infants are born prematurely every year worldwide. Prematurity,
particularly at lower gestational ages, is associated with high mortality and
morbidity and is a significant global health burden. Pregnancy complications
and preterm birth syndrome strongly impact neonatal clinical phenotypes
and outcomes. The vascular endothelium is a pivotal regulator of fetal
growth and development. In recent years, the key role of uteroplacental
pathologies impairing endothelial homeostasis is emerging. Conditions
leading to very and extremely preterm birth can be classified into two main
pathophysiological patterns or endotypes: infection/inflammation and
dysfunctional placentation. The first is frequently related to chorioamnionitis,
whereas the second is commonly associated with hypertensive disorders of
pregnancy and fetal growth restriction. The nature, timing, and extent of
prenatal noxa may alter fetal and neonatal endothelial phenotype and
functions. Changes in the luminal surface, oxidative stress, growth factors
imbalance, and dysregulation of permeability and vascular tone are the
leading causes of endothelial dysfunction in preterm infants. However, the
available evidence regarding endothelial physiology and damage is limited in
neonates compared to adults. Herein, we discuss the current knowledge on
endothelial dysfunction in the infectious/inflammatory and dysfunctional
placentation endotypes of prematurity, summarizing their molecular features,
available biomarkers, and clinical impact. Furthermore, knowledge gaps,
shadows, and future research perspectives are highlighted.

KEYWORDS

endothelial dysfunction, endothelium, glycocalyx, preterm infant, preterm birth,

chorioamnionitis, dysfunctional placentation, fetal growth restriction
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2022.1041919&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2022.1041919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2022.1041919/full
https://www.frontiersin.org/articles/10.3389/fped.2022.1041919/full
https://www.frontiersin.org/articles/10.3389/fped.2022.1041919/full
https://www.frontiersin.org/articles/10.3389/fped.2022.1041919/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2022.1041919
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Amelio et al. 10.3389/fped.2022.1041919
Prematurity: endotypes and
endothelium

Preterm birth is defined as birth prior to 37 weeks of gestational

age (GA). Prematurity, particularly in the lowest gestational age

ranges, is the leading cause of infant mortality and morbidity,

accounting for up to 35% of all deaths among newborns, and also

may lead to severe complications as well as prolonged stays in

neonatal intensive care units (NICUs) (1–3). Although

considerable progress has been made in identifying factors that

contribute to preterm birth and its complications, several gaps

remain in our understanding of the pathogenesis, pathology, and

clinical management of the condition. Preterm delivery is induced

by the interaction of various medical and genetic causes but also

by environmental and socioeconomic determinants (4, 5). In

recent years, two broad pathophysiological patterns have been

identified as responsible for the majority of very and extremely

preterm births (i.e., GA less than 32 weeks): intrauterine

infection/inflammation (Table 1) and dysfunctional placentation
TABLE 1 Infectious/inflammatory endotype.

Classification and epidemiology

Conditions • Preterm labor
• PROM
• Cervical insufficiency
• Placental abruptiona

Physiopathology FIRS with cytokine storm and leukocyte activation,
frequently associated with infectious placental
pathology

Placental hallmarks Histological corioamnionitis

Timing of trigger Acute

Delivery Mostly spontaneous onset of labor

Gestational Age (mean)b <28 weeks, decreasing frequency with advancing
GA

Birth weight percentile Low, normal, or high

Endothelial dysfunction and clinical implications

Endothelial features Luminal endothelial surface transformations:
glycocalyx shedding, adhesion molecules
exposure, activation and consumption of platelets
and coagulation factors, dysregulated vascular
permeability, including the blood-brain barrier

Endothelial biomarkers • Syndecan-1, Heparan sulfate, Hyaluronan,
• P-selectin, E-selectin, ICAM-1, VCAM-1,
• Ang-1, Ang-2
• TF

Alarming cardiovascular
implications

Myocardial dysfunction, systemic hypotension,
tachycardia, distributive shock in severe sepsis

Endothelium-associated
complications

Diffused tissue edema, brain white matter injury,
hemostatic incompetence

PROM, premature rupture of membranes; FIRS, fetal inflammatory response

syndrome; GA, gestational age; Ang, angiopoietin; TF, tissue factor.
aAlthough a 9-fold higher risk in CA and PROM, placental vascular

abnormalities and severe hypertensive disorders are other established risk

factors for abruption, requiring a heedful anamnestic evaluation to classify

the endotype properly (6, 7).
bConsidering cohorts of very preterm infants (8, 9).
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(Table 2) (10). These patterns involve specific cellular and

biochemical pathways, representing two distinct endotypes of

prematurity (11, 12).

The term endotype refers to “a subtype of a condition,

which is defined by a distinct functional or pathophysiological

mechanism” (13). Endotypes are thus a different form of

classification from clinical phenotypes and describe distinct

disease entities with a defining etiology and/or a consistent

pathophysiological mechanism (13, 14). Although the term

endotype has been applied mainly to studies of respiratory

and allergic diseases, its use is increasingly extended to other

areas of medicine (14–19). In line with the approach of

personalized medicine, endotyping will facilitate the design of

more targeted therapeutic and prognostic approaches (14–17,

19). Various epidemiological studies have suggested a

correlation between endotypes of prematurity and neonatal

phenotypes, although much remains to be explained about

how antenatal events determine the outcomes (8, 9, 11, 20).

The vascular endothelium (VE) is a monolayer of cells

covering the luminal surface of blood vessels (21). The VE

plays an essential role in vascular homeostasis and regulates

several pathways that could reveal information about the
TABLE 2 Dysfunctional placentation endotype.

Classification and Epidemiology

Conditions • Preeclampsia
• Fetal growth restriction

Physiopathology Reduced trophoblast invasion with feto-placental
underperfusion

Placental hallmarks Vascular underperfusion lesions

Timing of trigger Chronic

Delivery Mostly medically indicated

Gestational Age (mean)a >28 weeks, increasing frequency with advancing
GA

Birth weight percentile Low

Endothelial dysfunction and Clinical Implications

Endothelial features Malperfusion, oxidative stress, imbalance of
angiogenic and vasomotor factors leading to
fetal developmental reprogramming with long-
term outcomes

Endothelial biomarkers • H2O2, malondialdehyde, protein carbonyl
groups, glutathione peroxidase

• sFlt-1, sEng, VEGF, PlGF, IGF-1
• ADMA, Nitrate, Nitrite, CO, H2S, ET-1

Alarming cardiovascular
implications

Myocardial remodeling and hypertrophy, transient
systemic hypotension, persistent pulmonary
hypertension, vascular stiffness

Endothelium-associated
complications

BPD-associated pulmonary hypertension, ROP,
metabolic syndrome in adulthood

GA, gestational age; H2O2, hydrogen peroxide; sFlt-1, soluble fms-like tyrosine

kinase-1; sEng, soluble endoglin; VEGF, vascular endothelial growth factor;

PlGF, placental growth factor; IGF-1, ADMA, asymmetric dimethylarginine;

CO, carbon monoxide; H2S, hydrogen sulfide; ET-1, endothelin-1; BPD,

bronchopulmonary dysplasia; ROP, retinopathy of prematurity.
aConsidering cohorts of very preterm infants (8, 9).
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neonatal endotype-phenotype correlation (22). In particular,

endothelial cells and pericytes interact with soluble mediators

of inflammation, modulate vascular permeability and

coagulation balance, drive angiogenesis, and regulate vascular

tone through continuous endocrine-paracrine activity (23, 24).

Conversely, VE undergoes changes in its properties when

exposed to injuries, shifting towards a proinflammatory,

procoagulative, and vasoconstrictive phenotype, resulting in

the condition known as endothelial dysfunction (25).

Over the past two decades, endothelial pathways have

proved to be an effective diagnostic and therapeutic target in

several adult inflammatory diseases, increasing interest in the

role played by VE in many medical areas, including

prematurity-related complications. To date, examples of this

research are already available, such as antiangiogenetic

therapy with anti-Vascular Endothelial Growth Factor (VEGF)

drugs for retinopathy of prematurity (ROP) (26). Moreover,

several studies documented endothelial dysfunction in former

premature adults, with increased incidence of high blood

pressure, type 2 diabetes, and stroke, suggesting that

prematurity may be the origin of an unfavorable endothelial

phenotype (20, 27–29). Interestingly, the placental and

pregnancy studies revealed that this endothelial dysfunction

may have started very early and be related to the adverse

intrauterine environment induced by the pregnancy

complications that lead to preterm birth (30, 31).

Gaps in knowledge about endothelial dysfunction in

preterm infants limit progress on prevention, early diagnosis,

and treatment of the condition. Furthermore, characterizing

endothelial profiles in fetuses and preterm infants is highly

challenging due to the “endothelial developmental physiology”

process (32–34). Several factors, such as GA, partial arterial

oxygen pressure (PaO2), and placental vascular growth

factors, expose the immature VE to continuous dynamic

events during the antenatal period. Additionally, simultaneous

maturation of the hemostatic and immune systems, closely

connected to the VE, adds additional complexity to

understanding the process (35, 36). Thus, we should not

consider fetal endothelial physiology as static but consider it a

developmental process that continues in postnatal life and

progressively approaches the adult phenotype.

Classifying prematurity into endotypes can provide a

systematic model for approaching the physiopathology of

“endothelial phenotypes” commonly encountered in NICU,

such as systemic hypotension, pulmonary hypertension,

generalized tissue edema, and thrombotic or hemorrhagic

events.

Rather than surveying all known mechanisms of

endothelial damage in prematurity, this review focuses on

the main endothelial features of the infectious/inflammatory

and dysfunctional placentation endotypes, highlighting their

peculiar pathways and clinical implications in the neonatal

setting.
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Infectious/inflammatory endotype

Classification and pathogenesis

The infectious/inflammatory endotype is associated with

preterm labor, premature rupture of membranes (PROM) out

of labor, cervical insufficiency, and placental abruption (10,

37, 38) (Table 1). These conditions, even though distinct, are

frequently associated with chorioamnionitis, defined as an

acute inflammation of the membranes and chorion of the

placenta, typically caused by an ascending microbial infection

(39, 40). Of note, placental abruption can also be associated

with placental vascular abnormalities and severe hypertensive

disorders, requiring a heedful anamnestic evaluation to

classify the endotype properly (6, 7).

The incidence of chorioamnionitis becomes higher as GA

decreases and can be as high as 90% in infants at 24 weeks of

GA and then progressively decreases to 10% in late preterm

infants (GA > 34 weeks) (41). In addition, a growing number

of individual studies and meta-analyses show an association

between chorioamnionitis and increased risk of developing

complications of prematurity such as necrotizing enterocolitis

(NEC), early- and late-onset sepsis, periventricular

leukomalacia, bronchopulmonary dysplasia (BPD), ROP,

intraventricular hemorrhage, or patent ductus arteriosus (8,

42–51). However, a common conundrum in perinatal

medicine is the extent to which chorioamnionitis, as well as

other pregnancy complications, harms preterm infants

through triggering prematurity or through disturbances in

fetal homeostasis and development.

During chorioamnionitis, the infection invades the decidua

and the amniotic cavity leading to neutrophilic infiltration of

the chorioamnion and causing an increase in

proinflammatory cytokine concentrations in the amniotic fluid

(52, 53). As inflammation progresses, immune cells can

penetrate blood vessels and infiltrate the umbilical cord,

resulting in funisitis, which reflects a systemic inflammatory

response syndrome called Fetal Inflammatory Response

Syndrome (FIRS) (54).

The term FIRS was initially coined in 1998 to identify an

elevated concentration of fetal plasma interleukin (IL)-6 in

response to an intra-amniotic infection in spontaneous

preterm labor (54). However, the type, kinetics, and effects of

its numerous proinflammatory markers were characterized

only subsequently and still remain incomplete. Moreover, due

to practical and ethical limitations, most of the information

available derives from preclinical studies (30).

The incidence of FIRS, likewise for histological

chorioamnionitis, is inversely related to GA, and its extent is

proportional to the maturity of the immune system (55). In

this context, premature infants exposed to an infectious/

inflammatory endotype may manifest a broad spectrum of

endothelial dysfunction phenotypes. However, the FIRS model
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is the condition that best characterizes the endothelial response

of the fetus and preterm infant to this group of adverse

antenatal conditions. Therefore, in the following paragraphs,

we will summarize the endothelial pathways with an increased

risk of being affected by a systemic inflammatory response

syndrome in the setting of an infectious/inflammatory

endotype of prematurity (Figure 1, Table 1).
Role of the endothelial glycocalyx

Molecular basis
Communication between the bloodstream and endothelial

surface plays a crucial role during systemic inflammation.

Under physiological conditions, this interaction is mediated

by the endothelial glycocalyx, an antiadhesive and

anticoagulant layer that covers the luminal endothelial surface

(56). The endothelial glycocalyx is mainly composed of

proteoglycans, macromolecules with a protein core anchored
FIGURE 1

Longitudinal section of a blood vessel: endothelial phenotype in physiological
shedding following endogenous and/or exogenous proinflammatory stimuli; (
and diapedesis of neutrophils; (C) Ang-2 exocytosis with increased vascular lea
adhesion molecules; (D) subendothelial TF exposure, activation, and consum
angiopoietin 2; CF, clotting factor; E-sel, E-selectin; GAGs, glycosaminoglyc
tissue factor; Tie-2, tyrosine kinase receptor. Created with BioRender.com.
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to the endothelial surface or released soluble in the

extracellular compartment (57). A large amount of

glycosaminoglycan, mostly heparan sulfate and hyaluronan,

gives the endothelial glycocalyx great hydrophilicity, which

allows for trapping a fixed noncirculating plasma volume of

approximately one liter in adults (58). The result is a soluble

gel-like network, whose geometry changes depending on the

vascular bed, volume load, and blood flow rates, and that acts

as a mechanotransducer, translating shear stress into cellular

signaling processes (59). Moreover, the negative charge of

glycosaminoglycans repels endothelial glycocalyx interaction

with negatively charged proteins as well as white and red

blood cells and platelets, maintaining an oncotic gradient that

limits vascular leakage (60). Conversely, entrapped plasma-

and endothelium-derived proteins help in reducing hydraulic

conductivity, maintaining an anticoagulant phenotype, and

guaranteeing cell signaling (61).

In addition, glycoproteins are essential for leukocyte

recruitment, platelet activation, and hemostatic function (59).
conditions and infectious/inflammatory endotype. (A) Acute glycocalyx
B) unveiling and overexpression of membrane glycoproteins, adhesion,
kage, further glycocalyx shedding via heparanase and up-regulation of
ption of clotting factors and platelets. Ang-1, angiopoietin 1; Ang-2,
ans; PG, proteoglycan; P-sel, P-selectin; RB cell, red blood cell; TF,
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The endothelial glycocalyx coating provides a physical barrier

that prevents the indiscriminate activation of all these

pathways. However, it undergoes significant changes in acute

inflammation, especially when exposed to lipopolysaccharides

(LPS) (62). Following neutrophilic activation, the release of

reactive oxygen species (ROS), reactive nitrogen species

(RNS), and tumor necrosis factor-α (TNF-α) lead to

glycocalyx degradation via heparanase (62, 63). This process

promotes endothelial glycocalyx shedding and severely affects

its functions (64).

Perinatal evidence and perspectives
Experimental models showed that endothelial glycocalyx is

expressed early in ontogenesis for normal vasculogenesis and

angiogenesis (65, 66). Many proteins constituting the

glycosaminoglycans are expressed even before the onset of

vascular circulation (67). Furthermore, during embryological

development, endothelial glycocalyx appears from the very

first moment blood flow emerges, and the glycosaminoglycan

structure shows a regular composition similar to the adult in

a quail embryo model (68). A human in vivo study

investigated endothelial glycocalyx thickness by testing the

perfused boundary region, an inverse measure of glycocalyx

thickness, in a population of full-term and preterm infants

(69). Interestingly, premature neonates in the lowest GA

group had the largest endothelial glycocalyx dimensions at

birth, which highlights the relevance of endothelial glycocalyx

in the development of the circulatory system (69).

All inflammation conditions, such as sepsis,

autoinflammatory diseases, surgery, and trauma, can cause

endothelial glycocalyx damage (60, 70). Although the evidence

is not robust, this process may also occur in preterm infants.

At follow-up, the cohort of neonates in the lowest GA group

showed a progressive thinning of the glycocalyx, expressed as

an increase of the perfused boundary region, reaching lower

glycocalyx dimensions compared to infants of higher GA.

This suggests that peri- and postnatal inflammatory insults

may damage glycocalyx integrity (69). Moreover, degradation

of the endothelial glycocalyx layer (shedding) has also been

demonstrated in a cohort of neonates undergoing cardiac

surgery (71). Interestingly, high preoperative doses of

corticosteroids seem to confer protection to the endothelial

glycocalyx through unresolved mechanisms, opening the

hypothesis of benefits on endothelial glycocalyx induced by

antenatal steroids (72, 73).

Syndecan-1 (an anchored protein core), heparan sulfate,

and hyaluronan are the three well-established biomarkers of

endothelial glycocalyx disruption (60, 70). The products of

glycosaminoglycan chains increased in the plasma and urine

of patients during and after the inflammatory event,

generating a further amplification of the inflammatory

cascade. Vascular loss of syndecan-1 resulted in reduced

expression of shear stress compensating pathways, such as
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nitric oxide (NO) production (74). Moreover, hyaluronan

fragments activate nuclear factor-κβ (NF-κβ) signaling, which

produces proinflammatory cytokines and chemokines. At the

same time, serum heparan sulfate induces myocardial

dysfunction, which plays a crucial role in systemic

hypotension and organ hypoperfusion during neonatal septic

shock (64, 75, 76).

Clinical studies targeting the perinatal role of the

endothelial glycocalyx in the infectious/inflammatory

endotype may have great diagnostic and therapeutic

perspectives for patient-tailored care. The endothelial

glycocalyx breakdown could be crucial in septic preterms and

infants with non-infectious hemodynamic imbalances (76).

Unstable hemodynamic conditions are expected in very

preterm infants in the first days of life and are usually treated

with high intravenous volume administration and inotropes

(77). Nevertheless, fluid overload may promote adverse

outcomes through endothelial glycocalyx disruption,

worsening of myocardial dysfunction, vascular leak, systemic

inflammatory cascade, and organ damage (60). Likewise,

excessive use of vasoactive amines has a potentially harmful

effect on endothelial glycocalyx (78).

Interestingly, preclinical data showed that colloids favor

endothelial glycocalyx restoration (79–83). Therefore, besides

volume, the choice of fluid therapy could also affect the

endothelial phenotype (79). Indeed, albumin is a physiological

component of endothelial glycocalyx and possesses pleiotropic

physiological activities, including antioxidant effects and

protective effects on vessel wall integrity (84). However, so far,

there are no supporting trials for albumin first-line use in this

clinical setting (85). In conclusion, targeted therapies that

preserve endothelial glycocalyx shedding may potentially have

protective cardiovascular effects. However, these clinical

applications still need a long way to go.
Adhesion molecules unveiling and
overexpression

Molecular basis
As a result of damage to the endothelial glycocalyx,

adhesion molecules are exposed to the denuded VE, which

induces the recruitment of leukocytes and platelets, promoting

endothelial dysfunction (86, 87). The endothelial glycoproteins

responsible for leukocyte adhesion mainly belong to the

selectins family (P- and E-selectin) and the endothelial

immunoglobulin superfamily, such as the intercellular

adhesion molecule 1 (ICAM-1) and the vascular cell adhesion

molecule 1 (VCAM- 1). Their constitutive expression varies

significantly between tissues, and their kinetic upregulation is

diversified (88). Especially, ICAM-1 has a broad physiological

expression in most vascular beds, P-selectin is stored

and rapidly mobilized by Weibel-Palade bodies, while
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E-selectin and VCAM-1 have a low constitutive expression,

rising mainly during inflammatory stimulus via nuclear

transcription (89–91).

The complex cascade mechanisms triggered by adhesion

molecules are finely regulated (89, 91, 92). Briefly, initial

adhesive interactions between leukocytes and venular

endothelium are carried out by P- and E-selectins via low-

affinity interactions that lead to leukocyte tethering and

rolling on the endothelial surface. Subsequently, leukocyte

activation reinforces this interaction, exposing leukocyte

integrins and binding the endothelial immunoglobulin

superfamily (89). Then, having reached a stable adhesion,

platelet endothelial cell adhesion molecule-1 (PECAM-1) and

other endothelial immunoglobulins permit leukocyte

diapedesis through the intercellular spaces (93).

The systemic inflammatory response, including FIRS,

intensifies this process by overexpressing adhesion molecules.

The mechanism involves several molecular pathways:

cytokines, endotoxins, shear stress, ROS, RNS, and

imbalance of glucose and cholesterol are the main biological

regulators (90).

Perinatal evidence and perspectives
Despite some differences due to a reduced baseline exposure

of glycoproteins and delayed recruitment of neutrophils in

tissue, evidence suggests that the adhesion molecules of

preterm infants are not anergic to proinflammatory stimuli

(76). Ex vivo studies demonstrated that human umbilical vein

endothelial cells (HUVECs) of extremely low birth weight

infants (ELBW) could upregulate E-selectin, VCAM-1, and

ICAM-1 in response to TNF-α and IL-1β (94). This setting is

reliable as the fetal sheep undergoes cytokine changes as early

as 5 h after the intraamniotic injection of LPS and up to 15

days after the onset of inflammation (95). Furthermore, the

comparative study of neonatal and adult selectins showed

effective functionality in vitro, with no differences in rolling

speed or number of adherent cells (96). However, in vivo

characterization of adhesion molecules on premature neonates

has been scarcely investigated.

The cord blood sample of ELBW infants showed enhanced

exposure and shedding of soluble E-selectin and ICAM-1 in

patients with funisitis, demonstrating that chorioamnionitis

with funisitis induces a significant glycoprotein overexpression

with soluble forms increased in the fetal circulation (97).

The transient vascular shedding of glycoprotein suggested

using soluble adhesion molecules as a surrogate marker to

assess the endothelial inflammatory response severity. Several

studies on term infants with sepsis exploited this process,

finding greater sensitivity and predictivity than C-reactive

protein alone (98–100). However, the clinical use of these

markers in preterm infants is limited by physiological fetal

immaturity and a lack of normality curves adapted for GA

(96, 101, 102). This mainly concerns selectins, whose
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transcription factor, NF-κβ has a GA-dependent capacity (94).

Amelio et al. supported these findings by showing lower

plasma E-selectin levels in preterm infants compared to a

control group of healthy full-term infants, despite having a

predominantly inflammatory endotype with higher VCAM-1

level (103). Therefore, the clinical application of these markers

requires further research.
Angiopoietins imbalance and vascular
leakage

Molecular basis
Emerging evidence points toward a “double barrier

concept” in which both the endothelial cell layer with its

multiple intercellular junctions and endothelial glycocalyx play

a role in maintaining the vascular barrier (104). Although

both layers must be compromised to obtain a major increase

in vascular permeability, a slight increase in cell permeability

in a damaged endothelial glycocalyx may be sufficient to

generate vascular leakage (105). In addition, paracellular and

transcellular pathways are linked to water and macromolecule

leakage from the endothelial cell layer (106). The first is

regulated by endothelial cleft, with ROS and TNF-α

stimulating the opening of tight, adherent, and gap junctions

(107, 108). The second is controlled by proinflammatory

mediators known to accelerate caveolae formation, leading to

trans-endothelial hyperpermeability (109). Several growth

factors and receptor systems are involved in these processes.

However, the angiopoietin (Ang)/tyrosine kinase receptor with

immunoglobulin and epidermal growth factor homology

domain 2 (Tie-2) signaling pathway seems particularly relevant.

The angiopoietin family (Ang-1, Ang-2, Ang-3, Ang-4) was

initially discovered as a regulator of angiogenesis and

subsequently demonstrated a key role in several inflammatory

diseases through modulation of the Tie-2 receptor (22). Ang-1

is a potent stabilizer of endothelial cell contacts, modulating

the VEGF/NO pathway (110). It is constitutively expressed by

pericytes, smooth muscle cells, and fibroblasts and promotes

endothelial quiescence by enhancing cell survival and

downregulating proinflammatory and pro-coagulating

pathways (111). In addition, Ang-1 has cardiovascular

protective effects, showing a therapeutic impact in the post-

ischemic myocardium by improving cardiac function, scar

thickness, and scar area fraction (112).

Ang-2 is a competitive inhibitor of Ang-1. It is undetectable

in quiescent VE but increases dramatically via rapid exosomal

secretion during hypoxic or inflammatory injury. Assisted by

VEGF, Ang-2 promotes destabilization of both layers of the

vascular barrier: it reduces endothelial glycocalyx thickness by

activating heparanase and increasing soluble heparan sulfate.

Moreover, Ang-2 subverts intercellular junctions inducing

paracellular gap formation and increasing the surface
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expression of cell adhesion molecules, worsening edema and

tissue neutrophil recruitment (105, 113). All these properties

indicate Ang-2 as an important mediator of LPS-induced

endothelial glycocalyx damage (105, 114). Ang-3 in mice and

Ang-4 in humans are interspecies orthologs (115). They are

both Tie-2 agonists, although they are still poorly

characterized (116).

Perinatal evidence and perspectives
Plasma imbalance of the Ang-2/Ang-1 ratio has been

demonstrated in acute lung injury, sepsis, trauma, and multi-

organ dysfunction in full-term neonates, children, and adults,

also exhibiting a predictive value on mortality (117–120).

Ang/Tie-2 pathway is directly involved in the infectious/

inflammatory endotype of prematurity. A placental

immunohistochemical study demonstrated a significant

increase in Tie-2 angiopoietin receptors in chorioamnionitis

and funisitis (121). Furthermore, a higher concentration of

Ang-2 was found in the amniotic fluid of women with

preterm labor and intra-amniotic inflammation compared to

women with preterm birth without inflammation (122). A

plasma imbalance towards Ang-2 was shown from the first

hours of life in a cohort of very preterm infants, suggesting

an antenatal origin of this endothelial phenotype (103).

Moreover, Ang-2 concentrations were inversely related to GA,

suggesting a co-dependence between prematurity and

endothelial permeability (103, 122).

Finally, the Ang/Tie-2 system may play a role in the close

correlation between the infectious/inflammatory endotype and

adverse neurological outcomes. During FIRS, the impaired

integrity of the blood-brain barrier (BBB) increases the

permeability to proinflammatory cells and cytokines, which

causes a direct injury to neurons and oligodendrocytes of the

developing brain (123). Preclinical models show that Ang-2

increases BBB permeability via paracellular and transcellular

routes (124). Furthermore, Ang-2 levels were upregulated in

patients affected by cerebrovascular disorders associated with

BBB alterations (124). However, to our knowledge, there are

still no studies on the correlation between Ang-2 and

neurological outcomes in preterms.
Hemostatic changes

Hemostatic changes in infants with an infectious/

inflammatory endotype also deserve attention. Besides

leukocyte diapedesis and vascular leakage, vascular surface

mutation activates platelets and coagulation. Moreover,

inflammation downregulates anticoagulant proteins and

inhibits the fibrinolytic system, according to the

immunothrombosis process (125, 126). On the other hand, in

advanced septic states, an indiscriminate activation leads to

the consumption of hemostatic factors, resulting in
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disseminated intravascular coagulation (DIC) and subsequent

hypocoagulability (127). However, the evidence for a hyper-

or hypocoagulant endothelial phenotype during FIRS is

currently scarce.

Despite expressing different concentrations of pro- and

anticoagulant factors, premature infants are hemostatically

competent, and viscoelastic tests of infants with systemic

inflammation have shown significant but not univocal

alterations of the hemostatic balance (128–136). In addition,

recent studies have observed a lengthening of coagulation

times during neonatal sepsis and post-surgery, so the bleeding

risk in these newborns must be considered (130). However, as

in adults, an opposite prothrombotic switch cannot be

excluded in the initial phase of the infectious/inflammatory

endotype (137).

In this regard, the high levels of IL-1β observed in FIRS

showed procoagulant and permeabilizing effects on HUVECs

through a rapid and dose-dependent increase in tissue factor

activity (138). Similarly, HPA increased coagulation activity

via the stimulation of tissue factor expression in endothelial

cells (139). Therefore, exploring the tissue factor pathway

could bridge coagulation, angiopoietins, and endothelial

glycocalyx shedding in the perinatal period (103). Further

viscoelastic studies will help to better characterize the

perinatal hemostatic peculiarities related to this endotype.
Dysfunctional placentation endotype

Classification and pathogenesis

The placenta is the maternal-fetal interface, and its vascular

development is crucial for maintaining proper fetal growth

through efficiently delivering nutrients and oxygen (140). The

unique characteristics of the placental and umbilical cord

vascular endothelium provide information on the events

occurring on both sides. Therefore, several studies have

investigated the physiology and diseases of placentogenesis,

providing helpful information on the aberrant pathways

leading to several disorders of pregnancy (141, 142).

The dysfunctional placentation endotype mainly encloses

hypertensive disorders of pregnancy, including gestational

hypertension, preeclampsia, and eclampsia, as well as fetal

growth restriction (FGR), defined as the failure of a fetus to

achieve its genetic growth potential (10, 141).

Severe dysfunctional placentation endotype may require the

earlier birth of the infant, balancing the neonatal risks of

prematurity with the fetal risk of carrying on a pregnancy

burdened by pathology.

These conditions are among the most significant

contributing factor to perinatal morbidity and mortality,

affecting up to 12%–16% of pregnant patients (143, 144).

Furthermore, FGR is the leading risk factor for stillbirth and
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may increase the risk of developing several complications of

prematurity, including BPD and ROP (9, 145–148).

Preeclampsia and FGR are often associated and share

similar pathogenesis, such as reduced trophoblast invasion

and impaired perfusion in the uteroplacental compartment,

leading to harmful effects to the fetus (149, 150). Usually, the

expression of integrins, cadherins, and metalloproteases allows

the cytotrophoblasts to penetrate the uterine wall between the

6th and 8th week of gestation, differentiating into an

endothelial phenotype and transforming the spiral arteries

into large vessels with low vascular resistance (140). These

steps increase the blood flow directed to the intervillous space

and the fetus during early development. Conversely, failure of

this process leads to narrow, high-strength, high-pressure

spiral arteries, resulting in chronic placental hypoperfusion

(151). The hallmarks of this impaired uteroplacental blood

flow are maternal vascular underperfusion lesions on placental

histology (152).

The mismatch between fetoplacental blood demand and

adequate uteroplacental supply promotes blood flow

turbulence, hyperinflammatory state, and placental endothelial

dysfunction (151, 153, 154). An increase in maternal

inflammatory cytokines, acute phase proteins, and systemic

endothelitis is well documented in severe preeclampsia,

mainly when associated with FGR (155, 156). On the fetal

side, the consequence is a preferential blood flow

redistribution to the vital organs (brain, myocardium, and

adrenal glands) at the expense of other organs (157).

Furthermore, the high placental resistance associated with

FGR may lead to increased cardiac afterload, resulting in

myocardial remodeling and hypertrophy, increased vascular

tone, vascular stiffness, and risk of perinatal hypotension and

persistent pulmonary hypertension (157).

Despite overlaps with previously described inflammatory

pathways, the different triggers and chronic exposure of this

endotype lead to typical molecular and phenotypic features

that are reviewed below and summarized in Figure 2 and

Table 2.
Perfusion mismatch and oxidative distress

Molecular basis
Deficient spiral arterial remodeling leads to high velocity

and pulsatile inflow in the intervillous space, greater

intermittent perfusion of the placenta, atherotic changes with

vascular wall deposition of foam cells, platelet aggregation,

and fibrinoid necrosis (150). In addition, impaired perfusion

induces hypoxia/reperfusion injury with increased oxidative

stress (158).

Highly reactive free radicals can negatively affect lipids,

proteins, or nucleic acids (158). ROS and RNS play an

important physiological role at normal levels, acting as second
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messengers in many signaling pathways (159, 160). However,

cell damage and cell death are triggered when ROS and RNS

production overwhelms antioxidant capacity (158, 161–168).

Pregnancy represents, per se, a state of oxidative stress

resulting from the increased metabolic activity in the placental

mitochondria and the reduced scavenging power of

antioxidants but this imbalance increases as a consequence of

placental dysfunction (169–171). Indeed, free radical species

inevitably rise with cascade effects on inflammation,

angiogenesis, and vascular contractility. The overexpression of

free radicals and acute phase proteins is an established process

in pregnancies complicated by preeclampsia or FGR, involving

even severe cardiovascular effects (172, 173).

Perinatal evidence and perspectives
Several studies investigated, through cord blood samples

analysis, the oxidant and antioxidant state of newborns of

preeclamptic women, with or without FGR, compared to

newborns from physiological pregnancies (156, 174–183).

Different analytical methods and some biomarkers have been

used to measure oxidative stress, such as direct detection of

ROS (e.g., hydrogen peroxide, H2O2), indirect research of the

peroxidation products of lipids and proteins (e.g.,

malondialdehyde and protein carbonyl levels), and activity

evaluation of antioxidant enzymes (e.g., glutathione

peroxidase). Many studies found a cord blood profile

comparable to the maternal one, with a higher level of ROS

and lower antioxidant activity in the offspring of preeclamptic

women, suggesting that the mother and fetus are subjected to

a pro-oxidant environment (156, 174–176). Moreover,

preclinical data from ewe’s model support that chronic

hypoxia exposure significantly increases fetal plasma urate

concentration from oxidative stress (184).

Neonates of preeclamptic women with associated hemolysis,

elevated liver enzymes, and low platelets (HELLP) syndrome

showed higher oxidative stress up to seven days of life

compared to a group with preeclampsia but without HELLP

(185). Hence, fetal oxidative stress appears to be proportional

to the extent of maternal endothelial dysfunction and remains

even after the interruption of placental circulation. In

addition, preterm infants have a lower antioxidant reserve,

being more susceptible to oxidative stress injury (186).

Moreover, for the same GA, lower-weight infants have less

tolerance to oxidative stress, especially when comparing small

for gestation age (SGA) and adequate for gestational age

(AGA) (187–189).

The direct correlation between oxidative stress and early

neonatal outcomes has been the subject of a few studies with

inconclusive results (179, 180, 190). Conversely, late

consequences of oxidative stress from dysfunctional

placentation have been more extensively investigated. Lipid

peroxidation levels remain higher until adolescence in infants

exposed to perinatal complications, including an adverse
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FIGURE 2

Longitudinal section of a blood vessel: endothelial phenotype in physiological conditions and dysfunctional placentation endotype. (A) Malperfusion
phenomena with shear stress, hypoxia, reperfusion injury, atherosclerosis, and ROS production; (B) high levels of HIF-1α and AT1-AA with increased
synthesis of sFlt-1 and sEng, reduced free circulating VEGF, PlGF, TGF-β, and reduced angiogenesis; (C) high levels of ADMA and ET-1 and low levels
of gasotransmitters with increased vasoconstriction, smooth muscle layer proliferation, and epigenetic mutations. ADMA, asymmetric
dimethylarginine; AT1-AA, angiotensin II type 1 agonistic receptor autoantibody; cGMP, cyclic guanosine monophosphate; CO, carbon monoxide;
eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; ET-A/B, endothelin-1 receptor A/B; H2S, hydrogen sulfide; HIF-1α, hypoxia-inducible
factor 1α; Katp, potassium channel; PlGF, placental growth factor; RB cell, red blood cell; ROS, reactive oxygen species; sEng, soluble endoglin;
sFlt-1, soluble fms-like tyrosine kinase-1; TGF-β, transforming growth factor-β; NO, nitric oxide; VEGF, vascular endothelial growth factor.
Created with BioRender.com.
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intrauterine environment (191). Moreover, FGR rat models

proved that impairment of hepatic and muscular

mitochondrial oxidative processes predisposes to improper

glucose metabolism, insulin resistance, and diabetes typical of

these infants (192–194). Finally, preliminary data show that

the maternal total antioxidant status may predict infant motor

development at one year of corrected age in preeclampsia (178).

All these findings report a persistent cellular inheritance

in subjects exposed to placental dysfunction, suggesting

developmental programming influenced by oxidative stress

(195). In this direction, studies indicate that using a ROS-

targeted therapy with antioxidants may be a promising

approach in perinatal medicine, especially for fetal

neuroprotection (196). However, many proposed drugs are

still under investigation for routine clinical use, such as

vitamins, melatonin, lycopene, selenium, acetylsalicylic
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acid, L-ergothioneine, and mitochondria-specific drugs

(197–210).
Angiogenic factors imbalance

Molecular basis
The main effect of malperfusion and oxidative stress is the

decreasing activity of three pivotal factors, VEGF, placental

growth factor (PlGF), and transforming growth factor-β

(TGF-β), which play a crucial role in placental and fetal

angiogenesis (31, 211). Indeed, soluble fms-like tyrosine

kinase-1 (sFlt-1), an inhibitory receptor for VEGF and PlGF,

and soluble endoglin (sEng), a co-receptor for TGF-β, are

over-expressed during malperfusion contributing to reducing

the activity of VEGF, PlGF, and TGF-β (31). Their
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antiangiogenic role is exerted by binding their circulating

ligands and preventing proangiogenic effects on native

endothelial cell-surface receptors (31, 154). In turn, the

persistent increase in sFlt-1 and the decrease in VEGF can

worsen oxidative stress and impair vascular reactivity,

contributing to endothelial dysfunction (212).

There are mainly two pathways that regulate angiogenic

factors imbalance. First, hypoxia-inducible factors (HIFs) are

oxygen-sensitive transcriptional factors that regulate the

expression of the multiple vascular growth factors involved in

angiogenesis (213). Specifically, HIF-1α is a subunit of HIF-1

that is rapidly inactivated and degraded in normoxia,

stimulating the sFlt-1 and sEng transcription (214). In a

transgenic mouse model, embryonic overexpression of HIF-1α

leads to placental malformations (215). HIF-1α increases in

women with preeclampsia and FGR (216, 217). Second, there

is a typical deviation of the renin-angiotensin-aldosterone

system with reduced plasma renin activity and the

development of circulatory volume in preeclampsia.

Characterization of this pathway identified a pathognomonic

circulatory protein in preeclamptic women: angiotensin II

type 1 agonistic receptor autoantibody (AT1-AA), inhibiting

trophoblastic invasiveness by stimulating the expression of

sFlt-1 and sEng (218, 219).

Over the past ten years, several studies investigated the

imbalance of angiogenic factors in placental dysfunction,

demonstrating increased concentrations of sFLT-1 and sENG

and contextual reduction of PlGF in the plasma of women

with preeclampsia and/or FGR compared to healthy controls

(143, 220, 221).
Perinatal evidence and perspectives
Maternal plasma concentration of sFlt-1 was correlated with

doppler abnormalities of the uterine and umbilical arteries on

prenatal ultrasound evaluations in women with PE or FGR

(222). In addition, a low plasma angiogenic index-1 (PlGF/

sFLT-1 ratio) at 20–23 weeks of gestation identified patients

with high maternal vascular underperfusion lesions and a

higher incidence of preterm delivery (223). Moreover, the

reduced placental angiogenic index-1, measured by enzyme-

linked immunosorbent assays, strongly increased the risk of

fetal death (224). Likewise, the increased sFlt-1/PlGF ratio

correlated with fetal death, FGR, HELLP, and placental

abruption in PE with high oxidative stress (225). These

findings confirm that maternal endothelial dysfunction

severity influences fetal and neonatal outcomes.

Angiogenic biomarkers in feto-placental circulation are less

studied. However, sFLT-1 appears to increase in preeclamptic

women’s neonates, while data on VEGF levels are conflicting

(211, 226–231). In FGR, an overall reduction in proangiogenic

factors is established (226, 229). A low circulating level of

insulin-like growth factor-1 (IGF-1), an anabolic hormone
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with proangiogenic effects, is among the documented

metabolic problems of infants with a history of FGR (232).

An extensive analysis of angiogenic factors in a large cohort

of infants with both endotypes of prematurity evaluated the

correlation between plasma angiogenic factors at birth and

placental histology (152). Two findings of this study are

particularly relevant: (1) VEGF and PlGF were decreased in

infants from pregnancies with maternal vascular

underperfusion lesions; (2) more than 50% of severe maternal

vascular underperfusion lesions were associated with FGR,

while acute inflammation was associated with no or mild

maternal vascular underperfusion lesions. Therefore, although

preclinical and clinical data showed a reduction of

proangiogenic factors even in the infectious/inflammatory

endotype, a severe antiangiogenic imbalance is characteristic

of chronic inflammation induced by dysfunctional

placentation and should be considered in FGR (233, 234).

The consequences of angiogenic inhibition are significant.

Pulmonary vasculature immaturity and poor lung growth

secondary to FGR increase respiratory complications in

extreme prematurity, causing high mortality in this group of

infants (235). BPD development is extensively established in

FGR, particularly when BPD is associated with pulmonary

hypertension (11, 145, 152, 236–238). Conversely, preserving

vascular growth with an sFlt-1 inhibitor or recombinant IGF-

1 promotes alveolarization and sustains the architecture of the

distal airspace in preclinical models (239–241). In this regard,

the disruption of angiogenesis appears to be a connecting

bridge between dysfunctional placentation and BPD.

Additionally, the prenatal impairment of VEGF, PlGF, and

IGF-1 pathways, associated with the increase in oxidative

stress, mimics the pathogenesis of the first stage of ROP,

suggesting a direct association between ROP and

dysfunctional placentation (242, 243).
Vasomotor regulation impairment

Molecular basis
Placental dysfunction is accompanied by marked alterations

in vasoactive mediators, particularly gasotransmitters and

endothelin-1 (ET-1) (244–246). Gasotransmitters, such as NO,

hydrogen sulfide (H2S), and carbon monoxide (CO), are

endogenously-produced, volatile molecules characterized by a

high reactivity and free diffusion through cell membranes

(247). Gasotransmitters exert a synergistic action of smooth

muscle relaxation: NO and CO through an increase of cyclic

guanosine monophosphate (cGMP) and H2S through KATP

channels mediated hyperpolarization (247, 248).

In particular, NO is the main mediator of endothelium-

dependent vasodilation, which plays a pivotal role in

maintaining vascular tone (160, 249–251). It is generated via

L-arginine oxidation by a family of NO synthase (NOS)
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enzymes (252). All isoforms of NOS can be endogenously

inhibited by asymmetric dimethylarginine (ADMA), a

methylated product of L-arginine synthesized by protein

arginine methyltransferase (PRMT) and degraded by

dimethylarginine dimethylaminohydrolase (DDAH) (226, 253).

Under physiological conditions, maternal gasotransmitters

concentrations are significantly higher throughout pregnancy

than in non-pregnant women (246, 254). They participate in

trophoblast invasion and apoptosis, regulate placental blood

pressure, exert antiplatelet properties in the intervillous space,

enhance VEGF, and reduce sFLT-1 expression (246, 255, 256).

Conversely, their reduced bioavailability, especially of NO, is

one of the leading causes of abnormal placentation and

endothelial dysfunction in preeclampsia (254).

ET-1 concentrations are also pathological in dysfunctional

placentation (257). ET-1 is a vasoconstrictor and mitogenic

peptide constitutively synthesized by endothelial cells and

syncytiotrophoblasts. It can be overexpressed, mobilizing its

stores in the Weibel-Palade bodies by several proinflammatory

stimuli, such as hypoxia, cytokines, ROS, and shear stress (258).

ET-1 induces cell proliferation and vasoconstriction binding ET-

A and ET-B membrane receptors on vascular smooth muscle

cells, which can persist for several hours, despite the short

plasma half-life of ET-1 (257). Differently, endothelial ET-B

receptors lead to NO-mediated vasodilation (259).
Perinatal evidence and perspectives
In general, gasotransmitters production and bioactivity are

significantly reduced in preeclamptic women (246). However,

there are important differences in the studies that focus on NO

levels and endothelial NOS (eNOS) expression in preeclampsia

(260). Moreover, nitrate and nitrite used to evaluate NO

production are affected by diet and plasma clearance (244).

Nevertheless, a meta-analysis showed an overall reduction in

maternal serum NO level in preeclampsia and an increased risk

of the condition related to genetic variations of eNOS (261).

Additionally, ADMA and cGMP levels are consistently higher

and lower, respectively, before and during the onset of

preeclampsia, indicating decreased maternal NO bioactivity

(255). These findings are supported by experimental evidence of

impaired NO-mediated relaxation in vessels exposed to plasma

of preeclamptic subjects and by the occurrence of FGR in

pregnant rats following NOS inhibition (262–266).

Besides maternal NO levels, fetal and neonatal levels are

reduced. A study by Aikio et al. found perinatal undetectable

nitrate and nitrite values on airway specimens in a group of

very preterm infants affected by maternal preeclampsia

compared to higher values in infants with infectious/

inflammatory endotype (267). Moreover, recent clinical data

show higher levels of ADMA and PRMT-1 in the placenta

and cord blood of FGR patients, associated with a decrease in

ADMA’s metabolizer DDAH-1, NO, and eNOS (226).
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In addition, ex vivo experiments on HUVECs showed a

reduction in angiogenesis with an increase in sFlt-1 after

stimulation with high doses of ADMA (226). Interestingly, the

link between NO bioavailability and vascular growth

restriction is confirmed in cases of PROM-associated

oligohydramnios. Although PROM is classified in the other

endotype, it has pathophysiological overlaps with these

processes. When oligohydramnios lasts more than a week, it

can lead to lung growth restriction, locally simulating the lung

condition of FGR (268). In the same study by Aikio et al., a

group of very preterm infants affected by PROM with hypoxic

respiratory failure showed undetectable perinatal nitrate and

nitrite levels on airway specimens and pulmonary

hypertension responsive to inhaled NO. For these reasons, the

pulmonary endothelial consequences discussed in this

endotype should be considered when approaching a newborn

affected by long-lasting oligohydramnios (267).

In contrast to the vasodilatory gasotransmitters, ET-1 levels

are increased in preeclampsia in correlation with the severity of

the condition (257). Furthermore, ET-1 levels correlate with

increased levels of sFLT-1 and sENG, and HIF-1 appears to

regulate its synthesis (245). ET-1 physiologically contributes

to high fetal pulmonary vascular resistance. Preclinical models

of chronic fetal pulmonary hypertension showed a 3-fold

higher ET-1, decreased ET-B receptor-mediated vasodilation,

enhanced ET-A receptor-mediated vasoconstriction, and

impaired angiogenesis (269, 270). Conversely, chronic

intrauterine antagonism of the ET-A receptor reduces fetal

pulmonary artery pressure, right ventricular hypertrophy, and

distal muscularization of small pulmonary arteries, reducing

pulmonary vascular resistance at birth and confirming the

link between ET-1 and FGR (271).

Finally, increasing evidence indicates epigenetic pathways

regulating the alterations in endogenous vasoactive mediators in

the fetus (272). Histone modifications regulate eNOS expression

in human umbilical artery endothelial cells (HUAEC) in patients

with placental insufficiency and lead to an ET-1 increase in

pulmonary vascular endothelial cells with persistent effects weeks

after birth in a rat model of FGR (273, 274). In turn, the

placental nitrergic system controls epigenetic mechanisms,

including the function of histone deacetylase (256). Experimental

data suggest that NO, ADMA, and PRMT imbalances could

participate in fetal epigenetic reprogramming, providing a

biological link between dysfunctional placentation and adult

cardiovascular disease in FGR infants (256). This evidence may

explain the long-term cardiovascular effects typical of the

placental dysfunction endotype and strengthens maternal

treatment as the best preventive strategy. However, research in

the neonatal period is also necessary to design appropriate

preventive and/or therapeutic strategies for endothelial

dysfunction. Identifying epigenetic biomarkers, such as plasma

microRNAs, would allow early screening and follow-up for

high-risk individuals, avoiding long-term complications (275).
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Conclusions

Pretermbirth syndrome impairsnumerous endothelial pathways

with potentially severe early and late neonatal adverse outcomes.

Endotyping prematurity is a pathophysiological-based approach

useful for neonatologists to predict the main endothelial features of

each preterm infant, frame its early and late cardiovascular risk

factors, anticipate and prevent associated hemodynamic

complications, and design personalized therapeutic strategies.

Of note, the classification into endotypes is a dichotomous

model and, therefore, has inherent limits to consider. First, in

endothelial phenotypes, elements common to both endotypes

coexist. Any cause of premature birth inevitably leads to an

overlap of intrauterine inflammatory pathways, making them

characteristic and not exclusive to a single endotype. On the

other hand, each endotype has an inter-individual variability

depending on trigger severity, timing, fetal development, and

genetic background. Lastly, there is always the superimposition

of postnatal “hits”, such as acidosis, hypoxia, hyperglycemia,

mechanical ventilation, and sepsis, which further compromise

endothelial function (60, 76, 236, 276). Hence, identifying,

understanding, and quantifying the contribution of pre- and

postnatal processes to endothelial dysfunction is challenging and

requires an early endothelial evaluation to limit confounding

factors (103). Although many fetal processes are not fully

understood, the available endothelial biomarkers to perform this

evaluation in NICU are numerous (76, 103, 152, 175, 260). They

await further studies to validate their diagnostic and therapeutic

potential. We believe that advancing endothelial characterization

could be a promising way to provide patient-tailored care to the

most vulnerable newborns.
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