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Abstract
Nowadays, in many different fields, massive data are available and for several rea-
sons, it might be convenient to analyze just a subset of the data. The application of
the D-optimality criterion can be helpful to optimally select a subsample of observa-
tions. However, it is well known that D-optimal support points lie on the boundary of
the design space and if they go hand in hand with extreme response values, they can
have a severe influence on the estimated linear model (leverage points with high influ-
ence). To overcome this problem, firstly, we propose a non-informative “exchange”
procedure that enables us to select a “nearly” D-optimal subset of observations with-
out high leverage values. Then, we provide an informative version of this exchange
procedure, where besides high leverage points also the outliers in the responses (that
are not necessarily associated to high leverage points) are avoided. This is possible
because, unlike other design situations, in subsampling from big datasets the response
values may be available. Finally, both the non-informative and informative selection
procedures are adapted to I-optimality, with the goal of getting accurate predictions.
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1 Introduction

Recently, the theory of optimal design has been exploited to draw a subsample from
huge datasets, containing the most information for the inferential goal; see Drovandi
et al. (2017), Wang et al. (2019), Deldossi and Tommasi (2022) among others. Unfor-
tunately, Big Data sets usually are the result of passive observations, so some high
leverage values in the covariates and/or outliers in the response variable (denoted by
Y) may be present. In this study, we assume that a small percentage of the data are
outliers and the goal is to provide a precise estimate of the model parameters or an
accurate prediction for the model that generates the majority of the data.

The most commonly applied criterion is the D-optimality. It is well known that D-
optimal designs tend to lie on the boundary of the design region thus, in the presence
of high leverage values, all of them would be selected. Since this circumstance could
have a severe influence on the estimated model (leverage points with high influence),
we propose an “exchange” procedure to select a “nearly” D-optimal subset which does
not include high leverage values. Avoiding high leverage points, however, does not
guard from all the outliers in Y. Therefore, we also modify the previous method to
exploit the information about the responses and avoid the selection of the abnormal
Y-values. The first proposal is a non-informative procedure, as it is not based on the
response observations, while the latter is an informative exchange method.

Finally, both these exchange algorithms are adapted to the I-criterion, which aims
at providing accurate predictions in a set of covariate-values (called prediction set).

Notation and motivation of the work are introduced in Sect. 2. Section3 describes
the novelmodified exchange algorithm to obtain both non-informative and informative
D-optimal subsampleswithout outliers. InSect. 4weadapt our proposal to I-optimality,
to select a subsample with the goal of obtaining accurate predictions. In Sect. 5 we
develop some simulations and a real data example, to assess the performance of the
proposed subsampling methods. Finally, in Appendix we suggest a procedure for the
initialization of these algorithms.

2 Notation andmotivation of the work

Assume that N independent responses have been generated by a super-population
model

Yi = x�
i β + εi , i = 1, . . . , N ,

where � denotes transposition, β = (β0, β1, . . . , βk)
� is a vector of unknown coef-

ficients, x�
i = (1, x̃�

i ) where x̃i = (xi1, . . . , xik)�, for i = 1, . . . , N , are N iid
repetitions of a k-variate explanatory variable, and εi are iid random errors with zero
mean and equal variance σ 2.

D = {(x̃�
1 ,Y1), . . . , (x̃

�
N ,YN )} indicates the available dataset, which is assumed

to be a tall dataset, i.e. with k << N .
The population under study is denoted by U = {1, . . . , N } and sn ⊆ U denotes a

sample without replications of size n from U (i.e. a collection of n different indices
from U ).
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Accounting for outliers... 1121

Herein, we describe a new sampling method from a given dataset D, with the goal
of selecting n observations (k < n << N ) to produce an efficient parameter estimate
or an accurate prediction for the model generating the whole dataset apart from a few
outliers, i.e. a small quantity of points that take “abnormal” values with respect to the
rest of the data and that possibly have been generated by a different model.

Given a sample sn = {i1, . . . , in}, let X be the n × (k + 1) matrix whose rows
are x�

i , for i ∈ sn , and let Y = (Yi1 , . . . ,Yin )
� be the n × 1 vector of the sampled

responses.We consider the OLS estimator of the coefficients of the linear model based
on the sample sn :

β̂ = (X�X)−1X�Y

=
(

N∑
i=1

xi xTi Ii

)−1 N∑
i=1

xi Yi Ii ,

where

Ii =
{
1 if i ∈ sn
0 otherwise

, with i = 1, . . . , N (1)

denotes the sample inclusion indicator.
To improve the precision of β̂, we suggest to select the sample sn according to

D-optimality. We denote the D-optimum sample as

s∗
n = arg sup

sn={I1,...,IN }

∣∣∣∣∣
N∑
i=1

xi x�
i Ii

∣∣∣∣∣ .

When D contains outliers, s∗
n may include them, because D-optimal support points

usually lie on the boundary of the experimental region. Example 1 illustrates this issue.

Example 1 An artificial dataset D with N = 10000 observations has been generated
from a simple linear model,

Yi = β0 + β1xi + εi , i = 1, . . . , N ,

in the following way:
for i = 1, . . . , 9990, β = (1.5, 2.7)�, xi ∼ N (3, 4), εi ∼ N (0, 92);
for i = 9991, . . . , 10000, β = (1.5,−2.7)� xi ∼ N (3, 20), εi ∼ N (0, 202).
The left-hand side of Fig. 1displays these last 10 observations which are isolated with
respect to the majority of the data, generated from the first distribution. The right-hand
side of Fig. 1 emphasises the D-optimal subsample of size n = 100, s∗

n . As expected,
all the abnormal values in X are included in s∗

n because they maximize the determinant
of the information matrix [s∗

n has been obtained by applying the function od_KL of
the R package OptimalDesign (Harman and Filová, 2019)].

A similar behaviourwould be displayed also by the I-optimal subsample, that should
be applied to get accurate predictions (see Sect. 4). To avoid the inclusion of outliers
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1122 L. Deldossi et al.

Fig. 1 Outliers (in red) and the D-optimal sample (in blue). (Color figure online)

when applying the D- or I-optimal subsampling, we propose a modification of the well
known exchange algorithm.

Before describing our proposal, we recall that a tool to identify an outlier in the
factor-space is the leverage score, hii = x�

i (X�X)−1xi . Points which are isolated
in the factor-space (i.e., far located from the main body of points) can be thought of
as outliers and are characterized by high leverage values [see Chatterjee and Hadi
(1986)]. Actually, an observation xi , with i = 1, · · · , n, such that

hii > ν1
k + 1

n
,

where ν1 is a tuning parameter usually set equal to 2 [see for instance Hoaglin and
Welsch (1978)], that is called a high leverage point. In general, high leverage points
allow to reduce the variance of the parameters’ estimates and in the literature many
leverage-based sampling procedure have been proposed [see, among others Ma et al.
(2015)]. But consider that if these high leverage points are associated to outlying
response values, their inclusion in the samplemay lead tomisleading inferential results.
For this reason, our aim is to avoid these points.

3 Modified exchange algorithms

The common structure of the t-th iteration of an exchange algorithm consists in adding
a unit, chosen from a list of candidate points C(t), to the current sample s(t)

n , and then
deleting an observation from it. The choice of the augmented and deleted points is
based on the achievement of some optimality criterion. For instance, for D-optimality,
Algorithm 1 describes the classical exchange procedure [see Chapter 12 in Atkinson
et al. (2007)].

Our main idea is to modify Algorithm 1 by not proposing for the exchange the high
leverage points, thus avoiding the inclusion in the sample of high leverage scores with
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Algorithm 1 Exchange Algorithm for D-optimality

Require: Design matrix X , sample size n, initial sample s(0)n , tmax , Ñ
Ensure: D-optimal sample
1: Set t = 0
2: while t < tmax do
3: Select randomly Ñ units from

{
U − s(t)n

}
to form the set of candidate points for the exchange, C(t)

4: Select from C(t) the observation ja = argmax
j∈C(t)

x�
j (X�

t X t )
−1x j

5: Add unit ja to s(t)n to form the augmented sample s(t)n+1 of size n + 1

6: From s(t)n+1 identify the unit with the smallest prediction variance im = argmin
i∈s(t)n+1

hii

7: Remove unit im from s(t)n+1 to obtain the updated sample s(t+1)
n

8: Set t = t + 1
9: end while

abnormal responses, which could lead to wrong inferential conclusions. This goal is
reached by:

(a) Switching the augmentation and deletion steps;
(b) Changing the set C(t) where the observation to be added is searched.

If the information about the responses is not exploited in step b (to identify C(t)), then
the modified D-optimal sample is non-informative for the parameters of interest. The
non-informative procedure is described in detail in Subsect. 3.1.

Preventing high leverage points, however, does not guard from all the outliers in
Y : there may exist points that are in the core of the data with respect to the features,
while being abnormal with respect to the response variable. In Subsect. 3.2 we propose
another version of the algorithm, where (in step b) we employ the responses to remove
the outliers in Y . Note that the obtained optimal subsample becomes informative
because of the dependence on the Y values.

3.1 Non-informative D-optimal samples without high leverage points

Let s(t)
n be the current sample of size n and s(0)

n an initial samplewhich does not include
high leverage points (see Algorithm 5 in Appendix for a detailed procedure to get a
convenient initial sample).

To update s(t)
n , firstly we remove from it the unit im with the smallest leverage score,

im = argmin
i∈s(t)n

x�
i (X�

t X t )
−1xi = argmin

i∈s(t)n

hii ,

thus obtaining a reduced sample of size n − 1, where X t denotes the design matrix
associated to s(t)

n .
Let X−

t be the design matrix attained by leaving out the row xim from X t . Subse-

quently, we add the unit ja ∈ C(t) with the largest leverage score x�
ja
(X−

t
�
X−
t )−1x ja ,
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1124 L. Deldossi et al.

where the set of candidate points for the exchange at the current iteration is

C(t) =
{
j : himim < himim (x j ) < ν1

k + 1

n

}
, (2)

(X−
t

�X−
t )−1 = (X�

t X t )
−1 + (X�

t X t )
−1

xim x
T
im

1 − xTim (X�
t X t )−1xim

(X�
t X t )

−1, (3)

[see Searle (1982) p. 153 to get (3)] and himim (x j ) is the leverage score obtained by

exchanging xim with x j for j ∈ {U − s(t)
n }. The next theorem provides an analytical

expression for himim (x j ), which reduces the computational burden of the algorithm.

Theorem 1 Let jX t be the design matrix obtained from X t exchanging xim with x j ,
then

himim (x j ) = x�
j

(
jX�

t jXt

)−1
x j (4)

where (
jX�

t jXt

)−1 = (X�
t X t )

−1 − (X�
t X t )

−1 A
d

(X�
t X t )

−1, (5)

with

A = x�
im (X�

t X t )
−1x j (x j x�

im + xim x
�
j ) + [1 − x�

im (X�
t X t )

−1xim ] x j x�
j

− [1 + x�
j (X�

t X t )
−1x j ] xim x�

im ;
d = [1 − x�

im (X�
t X t )

−1xim ] [1 + x�
j (X�

t X t )
−1x j ] + [x�

im (X�
t X t )

−1x j ]2.

Proof Expression (5) can be obtained fromLemma 3.3.1 in Fedorov (1972) after some
cumbersome algebra. ��

In force of the upper bound in (2), our proposal is to consider as candidates for
the exchange only observations in {U − s(t)

n } which are not high leverage points. In
addition, to speed up the algorithm we reduce the number of exchanges by imposing
the lower bound in (2). Without this lower bound, if himim (x j ) ≤ himim , the new
observation j could be removed at the subsequent iteration.

Algorithm 2 outlines the steps to select a D-optimal subsample without high
leverage points.

3.2 Informative D-optimal sample without outliers

Whenever the response values are available, this information should be exploited by
the exchange algorithm, obtaining an informative D-optimal subsample.

According to Chatterjee and Hadi (1986) an influential data point in Y is an obser-
vation that strongly influences the fitted values. To identify these influential values, we
adopt Cook’s distance, but other measures can be similarly applied. Cook’s distance
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Algorithm 2 Non-informative D-optimal sample without high leverage points

Require: Design matrix X , sample size n, initial sample s(0)n , ν1, tmax , Ñ
Ensure: D-optimal sample without high leverage points
1: Set t = 0
2: while t < tmax do
3: Identify the unit im = argmin

i∈s(t)n

hii

4: From (3), compute the inverse of the information matrix without im : (X
−�
t X−

t )−1

5: Select randomly Ñ units from
{
U − s(t)n

}
6: From (4), compute himim (x j ) ( j = 1, . . . , Ñ ), to identify the set of candidate points C(t) according

to (2)
7: Select from C(t) the observation ja = argmax

j∈C(t)
x�
j (X−�

t X−
t )−1x j

8: Update s(t)n by replacing unit im with ja , to form s(t+1)
n

9: Set t = t + 1
10: end while

for the i-th observation, Ci , quantifies how much all of the fitted values in the model
change when the i-th data point is deleted:

Ci = (Ŷ − Ŷ (i))
�(Ŷ − Ŷ (i))

(k + 1)σ̂ 2

= (Yi − Ŷi )2

(k + 1)σ̂ 2 · hii
(1 − hii )2

, i = 1, . . . , n, (6)

where Ŷ = Xβ̂
�
, σ̂ 2 is the residual mean square estimate of σ 2 and Ŷ (i) = Xβ̂

�
(i)

is the vector of predicted values when the i-th unit is removed from the data set D.
According to a general practical rule, any observation with a Cook’s distance larger
than 4/n may be considered as an influential point.

To get an informative D-optimal sample, Algorithm 2 is modified by including the
additional steps illustrated in Algorithm 3.

Algorithm 3 Informative optimal subsample without outliers: additional steps to be
included between 7 and 8 in Algorithm 2 (and Algorithm 4)
Require: Dataset D, sample size n
Ensure: Informative D-optimal sample without outliers
1: Compute Cook’s distance for unit ja :

C ja =
(
Y ja − Ŷ ja

)2
(k + 1) σ̂ 2 · himim (x ja )(

1 − himim (x ja )
)2

2: if C ja < 4/n then
3: go ahead to step 8 of Algorithm 2 (and Algorithm 4)
4: else
5: reject the exchange and go back to step 5 of Algorithm 2 (and Algorithm 4)
6: end if
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1126 L. Deldossi et al.

Fig. 2 Subsamples (in green) of the artificial dataset ofExample 1, obtained applying: Iboss, SimpleRandom
Sampling, Non-informative D-optimal sampling, Informative D-optimal sampling. The black line is the true
regression model, while the green line is the fitted model based on the subsample (of size n = 100) selected
according to the different procedures. (Color figure online)

Example 2 Figure2 illustrates the performance of the proposed algorithms in com-
parison with the Iboss subsampling method [proposed by Wang et al. (2019)] and the
simple random sample, in the artificial dataset of Example 1.

As expected, the Iboss algorithm provides a subset similar to the D-optimal sample
(cfr. with Fig. 1) since it selects the points on the boundary of the design space, thus
including most of the outliers. As a consequence, the true model and the fitted model
are quite distinct. Neither the simple random sample produces a good filted model, as
it includes an outlier. The non-informative selection procedure seems to improve the
fit of the true model, even if the best performance is obtained using the informative
selection approach, which doesn’t include outliers.

Remark Let us note that an increase of tmax and Ñ would lead to an improvement of
the D-optimal subsamples, because of a better chance of exchanging sample points.
In particular, it is reasonable to consider Ñ = N − n whenever N is not too large.

4 Optimal subsampling to get accurate predictions

If we are interested in obtaining accurate predictions on a set of values X0 =
{x01, . . . , x0N0} instead of a precise parameter estimation, then we should select the

observations minimizing the overall prediction variance. Let Ŷ0i = β̂
�
x0i be the pre-

diction of μ0i = E(Y0i |x0i ) at x0i , i = 1, . . . , N0. The prediction variance at x0i ,
also known as “mean squared prediction error” is

MSPE(Ŷ0i |x0i , X) = E[(Ŷ0i − μ0i )
2|x0i , X].
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Accounting for outliers... 1127

If X0 is the N0 × k matrix whose i-th row is x�
0i , then a measure of the overall mean

squared prediction error is the sum of the prediction variances in X0:

N0∑
i=1

MSPE(Ŷ0i |x0i , X) = σ 2 trace[X0 (X�X)−1X�
0 ]. (7)

The following sample

s In = arg inf
sn={I1,...,IN }

trace

⎡
⎣

(
N∑
i=1

xi x�
i Ii

)−1

X�
0 X0

⎤
⎦

minimizes the overall prediction variance (7) and is called I-optimal. It is well known
that to produce accurate predictions it would be advisable to avoid outliers. An I-
optimal subsample without high leverage points can be obtained by modifying the
deletion and augmentation steps of the exchange algorithm described in Sect. 3.1
accordingly to the I-criterion. The current sample s(t)

n should be updated by removing
the unit im which minimises the increase in the overall mean squared prediction error.
From the results given in Appendix A ofMeyer and Nachtsheim (1995), the increment
in the overall mean squared prediction error due to the omission of the unit i is given
by

h̃i i = x�
i (X�

t X t )
−1 X�

0 X0 (X�
t X t )

−1 xi
1 − xTi (X�

t X t )−1xi
,

where X t is the n × k matrix whose rows are xTi with i ∈ s(t)
n .

Subsequently, to obtain again a sample of size n, from a set C(t) of candidate points,
we should add the unit ja which maximize the decrease in the overall mean squared
prediction error:

ja = arg max
j∈C(t)

x�
j (X−�

t X−
t )−1 X�

0 X0 (X−�
t X−

t )−1 x j

1 + xTj (X
−�
t X−

t )−1x j
,

where X−
t is the design matrix obtained by removing the row xim from X t and

(X−�
t X−

t )−1 can be computed from (3).
The set of candidate points should be composed by units that are not at risk to be

deleted at the next iteration and are not high leverage points:

C(t) =
{
j : h̃imim (x j ) > h̃imim ∩ himim (x j ) < ν1

k + 1

n

}
, (8)

where himim (x j ) is given in (4),

h̃imim (x j ) = xTj ( jX�
t jXt )

−1 X�
0 X0 ( jX�

t jXt )
−1 x j

1 − xTj ( jX
�
t jXt )−1x j

, (9)
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1128 L. Deldossi et al.

jX t is the matrix obtained from X t by exchanging xim with x j and ( jX�
t jXt )

−1 can
be computed from Eq. (5).

Algorithm 4 summarizes the steps to select a non-informative I-optimal sample,
while to obtain its informative version, it is enough to incorporate the additional steps
of Algorithm 3.

Algorithm 4 Non-informative I-optimal sample without high leverage points

Require: Design matrix X , sample size n, initial sample s(0)n , prediction-set X0 = {x01, . . . , x0N0 }, ν1,
tmax , Ñ

Ensure: I-optimal sample without high leverage points
1: Set t = 0
2: while t < tmax do
3: Identify the unit

im = argmin
i∈s(t)n

x�
i (X�

t X t )
−1 X�

0 X0 (X�
t X t )

−1 xi

1 − xTi (X�
t X t )−1xi

4: From (3), compute the inverse of the information matrix without im : (X
−�
t X−

t )−1

5: Select randomly Ñ units from
{
U − s(t)n

}
6: From (4) and (9), compute himim (x j ) and h̃im im (x j ) ( j = 1, . . . , Ñ ), to identify the set of candidate

points C(t) according to (8)
7: Select from C(t) the observation

ja = argmax
j∈C(t)

x�
j (X−�

t X−
t )−1 X�

0 X0 (X−�
t X−

t )−1 x j

1 + xTj (X−�
t X−

t )−1x j

8: Update s(t)n by replacing unit im with ja , to form s(t+1)
n

9: Set t = t + 1
10: end while

5 Numerical studies

5.1 Simulation results

In this section, we evaluate the performance of our proposals through a simulation
study. We generate H × S random datasets of size N = 106, each one including
Nout = 500 high leverage points/outliers (with H = 30 and S = 50). The computation
of somemetricswill illustrate the validity of our procedures in selectingD- or I-optimal
subsamples without outliers.

Precisely, for each h = 1, . . . , H , N iid repetitions of a 10-variate explanatory
variable h x̃i = (xi1, . . . , xi10)� are generated as follows:

1. xi1, xi2 and xi3, for i = 1, . . . , N , are independently distributed as U (0, 5);
2. (xi4, xi5, xi6, xi7)� is distributed as a multivariate normal r.v. with zero mean and

2.a. For i = 1, . . . , (N − Nout ): covariance matrix �1 = [ars], with arr = 9 and
ars = −1 (r �= s), r , s = 1, . . . , 4;

2.b. For i = (N − Nout ) + 1, . . . , N : covariance matrix �1.out = [ars], with
arr = 25 and ars = 1 (r �= s), r , s = 1, . . . , 4;
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Accounting for outliers... 1129

3. (xi8, xi9)�, for i = 1, . . . , N , is distributed as a multivariate t-distribution with 3

degrees of freedom and scale matrix �2 =
[

1 0.5
0.5 1

]
;

4. xi10, for i = 1, . . . , N , is distributed as a Poisson distribution P(5).

For each generated N × (k + 1) design matrix hX , whose i-th row is hx�
i = (1, h x̃

�
i )

(i = 1, . . . , N ), we have simulated S = 50 independent N × 1 response vectors hYs
(with s = 1, . . . , S), whose i-th item is

hYs,i = hx�
i β + εsi , i = 1, . . . , N ,

with

(i) β = (1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1) and σ = 3 for i = 1, . . . , N − Nout

(ii) β =(1, 1, 1, 1,−2,−2,−2,−2, 1,−1,−1), σ =20 for i=(N−Nout )+1, . . . , N .

At each simulation step (h, s), to draw subsamples from the simulated dataset:

hDs = {(hx�
1 , h ys,1), . . . , (hx�

N , h ys,N )},

we have applied the following algorithms (h = 1, . . . , H and s = 1, . . . , S):

1. Non-informative I (Algorithm 4)
2. Non-informative D (Algorithm 2)
3. Informative I (Algorithms 4 and 3)
4. Informative D (Algorithms 2 and 3)
5. Simple random sampling (SRS): passive learning selection

To assess these subsampling techniques, we have generated a test set of size NT =
500, without high leverage points and outliers (i.e. with Nout = 0):

DT = {(xT 1, yT 1), . . . , (xT NT , yT NT )}.

Finally, to implement the I-optimality procedure, we have generated a prediction
region X0 without high leverage points. In addition, to compare the performance of
the distinct subsamples in terms of prediction ability on X0, we have generated also
the corresponding responses (without outliers). Let

D0 = {(x01, y01), . . . , (x0N0 , y0N0)}

be the prediction set, where N0 = 500.
A subsample selected from the dataset hDs (generated at the (h, s)-th simulation

step) is denoted by s(h,s)
n , and

I (h,s)
i =

{
1 if i ∈ s(h,s)

n

0 otherwise
, i = 1, . . . , N , (10)

is the corresponding sampling indicator variable, for h = 1, . . . , H and s = 1, . . . , S.
At each simulation step (h, s):

123



1130 L. Deldossi et al.

Table 1 Monte Carlo averages
MSPEX0 and Log(det) for the
subsamples of size 500 obtained
from the different algorithms (in
bold the best values assumed by
the Monte Carlo averages and
Log(det))

Algorithm MSPEX0 Log(det)

Non-inf. I 0.0857 93.4269

Non-inf. D 0.0947 94.3877

Inf. I 0.0938 92.0869

Inf. D 0.1030 92.7748

SRS 0.2056 82.5234

Bold values assumed by the Monte Carlo averages ande Log(det)

(a) To evaluate the performance of the subsampling techniques with respect to D- and
I-optimality criteria, we have computed:
– The average mean squared prediction error in X0 [from (7)]:

MSPE(h,s)
X0

= σ 2
trace

[(∑N
i=1 hxi hx�

i I
(h,s)
i

)−1
X�
0 X0

]
N0

;

– The logarithm of the determinant of the information matrix:

Log(det)(h,s) = log

∣∣∣∣∣
N∑
i=1

hxi hx
�
i I

(h,s)
i

∣∣∣∣∣ ;
(b) To assess the predictive ability of the selection algorithms, we have considered:

– The average squared prediction error in X0 and in XT = {xT 1, . . . , xT NT }:

SPE(h,s)
X0

=
∑N0

i=1(ŷ
(h,s)
0i − μ0i )

2

N0
and SPE(h,s)

XT
=

∑NT
i=1(ŷ

(h,s)
T i − μT i )

2

NT
,

where ŷ(h,s)
0i = h β̂s

�
x0i , ŷ

(h,s)
T i = h β̂s

�
xT i , μ0i = β�x0i , μT i = β�xT i and h β̂s

is the OLS estimate of β based on the subsample s(h,s)
n ;

– The standard error in the prediction set D0 and in the test set DT :

SE(h,s)
D0

=
∑N0

i=1

(
ŷ(h,s)
0i − y0i

)2
N0

and SE(h,s)
DT

=
∑NT

i=1

(
ŷ(h,s)
T i − yT i

)2
NT

.

Table 1displays the following Monte Carlo averages,

MSPEX0 =
∑H

h=1
∑S

s=1 MSPE(h,s)
X0

HS
and Log(det) =

∑H
h=1

∑S
s=1 Log(det)

(h,s)

HS
,

for the different sampling strategies: non-inf. I, non-inf. D, inf. I, inf. D and SRS,
respectively. The results have been obtained having set n = 500, Ñ = 1000, tmax =
500, ν1 = 2 and ν2 = 3.
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FromTable 1, the non-informative procedures seem to provide subsamples “nearly”
D- and I-optimal that do not include high leverage points (they would be exactly D-
and I-optimal if they allowed for these abnormal values). This result is consistent with
the definitions of I- and D-optimality.

Table 2 instead lists the following Monte Carlo averages:
SPEX0 = ∑H

h=1
∑S

s=1 SPE
(h,s)
X0

/HS , SPEXT = ∑H
h=1

∑S
s=1 SPE

(h,s)
XT

/HS,

SED0 = ∑H
h=1

∑S
s=1 SE

(h,s)
D0

/HS and SEDT = ∑H
h=1

∑S
s=1 SE

(h,s)
DT

/HS,
for the different subsamples. These quantities enable to assess the predictive ability
of the subsampling techniques. From Table 2, we can appreciate the prominent role
of the informative procedures. In fact, when the database includes outliers in Y which
are not associated with high leverage points (as in this simulation study), only the
informative procedures are able to exclude them providing accurate predictions.

From the last row of Table 2, the SRS seems to behave quite well: it is fast, easy
to be implemented and provides good predictions compared to the informative I-
optimal subsampling. However, such a nice performance is due to the low percentage
of outliers present in the artificial datasets. Figure3 displays the superiority of the
informative procedures with respect to the passive learning selection (SRS), as the
percentage of the outliers increases. Of course, we consider a short range for the
percentage of outliers because outliers are (by definition) a few isolated data points.

Comparing the third and the fourth rows of Table 2, informative I-optimal subsam-
ples seem outperform the D-optimal ones only slightly, despite I-optimality should
reflect the goal of getting accurate predictions. This happens because the prediction set
X0 has a similar shape as the dataset. When X0 defines a specific subset of covariate-
values, then the superiority of I-optimality emerges. See for instance the values of
SPEX0 and SPEXT in Table 3, where X0 and XT involve only positive values of the
features.

Table 2 Monte Carlo averages
SPEX0 , SPEXT

, SED0 and
SEDT for the subsamples of size
500 obtained from the different
algorithms (in bold the minimal
values assumed by the Monte
Carlo averages)

Algorithm SPEX0 SPEXT
SED0 SEDT

Non-inf. I 6.5104 6.8020 16.0792 16.3538

Non-inf. D 6.1011 6.2945 15.5982 15.7969

Inf. I 0.1464 0.1494 9.4445 9.5337

Inf. D 0.1594 0.1601 9.4564 9.5448

SRS 0.2629 0.2671 9.5683 9.6594

Bold minimal values assumed by the Monte Carlo averages

Table 3 Monte Carlo averages
SPEX0 , SPEXT

, SED0 and
SEDT for the subsamples of size
500 obtained from the different
algorithms, when X0 and XT
are subsets of positive values (in
bold the minimal values assumed
by the Monte Carlo averages)

Algorithm SPEX0 SPEXT
SED0 SEDT

Non-inf. I 5.2506 5.1314 14.7100 13.9918

Non-inf. D 14.8542 14.6276 24.3856 23.5669

Inf. I 0.1038 0.1084 9.3807 9.2020

Inf. D 0.1544 0.1546 9.4306 9.2514

SRS 0.3150 0.3256 9.5963 9.4073

Bold minimal values assumed by the Monte Carlo averages
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Fig. 3 Monte Carlo averages SPEX0 , SPEXT
, SED0 and SEDT for subsamples of size 500, including a

different percentage of outliers (inf. I=black, inf. D=red, SRS=green). (Color figure online)

Remark Actually, to take into account the randomness of the SRS technique, we
have drawn NSRS = 50 different independent SRSs from each dataset hDs , for h =
1, . . . , H and s = 1, . . . , S; the Monte Carlo averages for SRS are based also on these
additional observations.

5.2 Real data example

In this section we apply our proposal to the diamonds data set in the ggplot2
package. This dataset contains the prices and the specifications for more than 50000
diamonds. More specifically, 7 features are included:

– The carat x1, which is the weight of the diamond and ranges from 0.2 to 5.01;
– The quality of the diamond cut x2, which is coded by one if the quality is better
than “Very Good” and zero otherwise;

– The level of diamond color x3, which is coded by one if the quality is better than
“level F” and zero otherwise;

– A measurement of the diamond clearness x4, which takes value one if the quality
is better than “SI1” and zero otherwise;

– The total depth percentage x5;
– The width at the widest point x6;
– The volume of the diamond x7.

To avoid a multicollinearity problem, x1 has not been considered in the analysis,
because it is highly correlated with x7 (the volume). Furthermore, to obtain a better
fit of the data, the quadratic effect of x7 has been included in the model, where the
response variable Y is the logarithm of the price (log10).
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Table 4 Cross-validation
averages of MSPEX0 , Log(det),
SED0 and SEDT for the
subsamples of size 100 obtained
from the different algorithms,
when X0 and XT include
diamonds with a volume larger
than 200 mm3 (in bold the best
values assumed by the
Cross-validation averages)

Algorithm MSPEX0 Log(det) SED0 SEDT

Non-inf. I 0.0452 65.2964 0.0083 0.0092

Non-inf. D 0.0602 69.4402 0.0569 0.0549

Inf. I 0.0454 65.1758 0.0079 0.0084

Inf. D 0.0620 65.9726 0.0097 0.0122

SRS 0.0998 60.9025 0.0117 0.0109

The dataset contains some outliers, such as observation NO.24068 which cor-
responds to a diamond with an unusually large width that makes the price too
high.

Let us assume that the goal is the prediction of the price of the diamonds with a
volume larger than 200 mm3. Therefore, to apply the I-optimality strategy, we have
randomly selected a prediction set X0 from all the diamonds with x7 larger than 200
mm3. Then, the remaining dataset has been divided in fourfolds of the same size to
compare the different subsampling techniques through a cross-validation approach. In
rotation, one fold represents the test set, while the others form the training set, from
which subsample of size n are selected according to the different algorithms. In each
test set only diamonds with volume larger than 200 mm3 are considered; in addition,
the outliers (if present) are removed. In this example we have set n = 100, Ñ = 2000,
tmax = 2000.

The first two columns of Table 4 show that the minimum value of the MSPEX0 is
associated to the non-informative I-Algorithm, while the maximum value of Log(Det)
corresponds to the non-informative D-optimal subsample. This result is consistent
with the definitions of I- and D-optimality and with the results of the simulation study
in Sect. 5. With regards to the predictive ability of the subsampling techniques, we can
observe that the I-informative procedure leads to the minimum values of the Cross-
validation averages SED0 and SEDT (last two columns of Table 4). Differently from the
simulation study, in this real data example, also the non-informative I-criterion seems
to perform properly. This is due to the fact that in the diamonds dataset most of the
outliers in Y are associated with high leverage points and thus also the non-informative
procedure is able to exclude them providing accurate predictions.

6 Discussion

Recent advances in technology have brought the ability to collect, transfer and store
large datasets. The availability of such a huge amount of data is a great challenge
nowadays. However, very often Big Datasets contain noisy data because they are the
result of a passive observation and not of a well planned survey. Moreover, huge
datasets may not be queried for free; typically agencies that create and manage huge
databases, enable to download data by paying a price per MB. Furthermore, there are
circumstances where the value of the response variable may be obtained only for a
restricted number of units.

123



1134 L. Deldossi et al.

For this reason, we suggest to consider only a subsample of the dataset excluding
abnormal values, with the idea that a subset of a few relevant data may be more
“informative” than a huge quantity of raw, redundant, and noisy observations. The
theory of optimal design is a guide to drawa subsample containing themost informative
observations, but optimal subsamples frequently lie on the boundary of the factor-
domain, including all the outliers. Two modifications of the well-known exchange
algorithm are herein proposed to select “nearly” optimal subsampleswithout abnormal
values:

– A non-informative procedure, that avoids the inclusion of high leverage points,
can be applied whenever information about the responses is not available or is too
expensive to have it;

– An informative procedure, that excludes outliers in the response besides high
leverage points, can be used whenever the responses are available.

A simulation study confirms that D-optimal subsampling should be applied if the
inferential goal is precise estimation of the parameters, while informative I-optimal
algorithm should be applied to get accurate predictions on a specified prediction set.

A limitation of these methods is that they are model-based, while in the real-
life problems the model is unknown. This relevant issue will be handled in a future
research by adapting the algorithms to optimality criteria for model selection, possibly
combined with D- and I-criteria.

Finally, another challenging future development could be the extension of the pro-
posed algorithms to the generalised linear model, because the definition of outliers
and high leverage points, in this context, is not straightforward.
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Appendix

The following algorithm provides a "good" initial sample for Algorithms 2 and 4.
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Algorithm 5 Initialization step for Algorithms 2 and 4

Require: Design matrix X , sample size n, ν2, tmax , Ñ

Ensure: s(0)n : initial sample without high leverage points

1: From U select without replacement a simple random sample of size n, r (0)
n

2: Set t = 0
3: while t < tmax do
4: Compute the leverage scores for the current sample

hii = x�
i (X�

t X t )
−1xi , where i ∈ r (t)

n
5: Identify unit im = argmax

i∈r (t)n

hii

6: if himim < ν2
k+1
n then

7: Set s(0)n = r (t)
n and stop the iterative procedure

8: else
9: Select randomly Ñ units from

{
U − r (t)

n

}
Let x j , with j = 1, . . . , Ñ , the observations for these units

10: Compute ( j X�
t j X t )

−1 from (5), where jXt is the design matrix
obtained from Xt exchanging xim with x j

11: Determine the leverage scores himim (x j ) = x�
j ( j X�

t j X t )
−1x j

12: Identify the set of points candidate for the exchange with im :

C(t) =
{
j : himim (x j ) < ν2

k+1
n

}
13: Select at random a unit ja from C(t)

14: Determine r (t+1)
n by replacing unit im with ja in r (t)

n
15: Set (X�

t+1X t+1)
−1 = ( ja X

�
t ja X t )

−1

16: Set t = t + 1
17: end if
18: end while

References

Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. Oxford University Press,
Oxford

Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression.
Stat Sci 1(3):379–416

DeldossiL,TommasiC (2022)Optimal design subsampling fromBigDatasets. JQualTechnol 54(1):93–101
Drovandi CC, Holmes CC, McGree JM, Mengersen K, Richardson S, Ryan EG (2017) Principles of

experimental design for big data analysis. Stat Sci 32(3):385–404
Fedorov VV (1972) Theory of optimal experiments. Academic Press, New York
Harman R, Filová L (2019) OptimalDesign: a toolbox for computing efficient designs of experiments.

R package version 1.0.1. https://CRAN.R-project.org/package=OptimalDesign
Hoaglin DC, Welsch RE (1978) The hat matrix in regression and ANOVA. Am Stat 32(1):17–22
Ma P, Mahoney MW, Yu B (2015) A statistical perspective on algorithmic leveraging. J Mach Learn Res

16(27):861–911
Meyer RK, Nachtsheim CJ (1995) The coordinate-exchange algorithm for constructing exact optimal

experimental designs. Technometrics 37(1):60–69
Searle SR (1982) Matrix algebra useful for statistics. Wiley, New York
Wang H, Yang M, Stufken J (2019) Information-based optimal subdata selection for Big Data linear

regression. J Am Stat Assoc 114(525):393–405

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://CRAN.R-project.org/package=OptimalDesign

	Accounting for outliers in optimal subsampling methods
	Abstract
	1 Introduction
	2 Notation and motivation of the work
	3 Modified exchange algorithms
	3.1 Non-informative D-optimal samples without high leverage points
	3.2 Informative D-optimal sample without outliers

	4 Optimal subsampling to get accurate predictions
	5 Numerical studies
	5.1 Simulation results
	5.2 Real data example

	6 Discussion
	Acknowledgements
	Appendix
	References




