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Abstract: Background: Metabolic syndrome (MS) is closely linked to obesity; however, not all
individuals with obesity will develop obesity-related complications and a metabolically healthy
obesity (MHO) group is also described. Objective: To perform a multivariate analysis (MVA) of
the anthropometric and biochemical data in pediatric patients with obesity to reveal a “phenotype”
predictive for MS. Methods: We analyzed 528 children with obesity (OB) and 119 normal-weight
pediatric patients (NW). Adiposity indices were recorded, and MS was detected. MVA was performed.
Results: Analysis of the structure of correlation of the variables showed that the variables of waist
circumference (WC), body mass index (BMI), and estimated fat mass (eFM) were positively correlated
with each other as a whole. In addition, the variables of the triglycerides (TG), triglyceride–glucose
(TyG) index, and visceral adiposity index were positively correlated with each other as a whole,
although none were correlated with the variables of BMI z-score, waist-to-height ratio, WC, eFM, or
weight. The variables that related to insulin resistance (IR) and dyslipidemia were crucial for the early
stratification of patients at risk of MS. Conclusions: Independently of body weight, IR, dyslipidemia,
hypertriglyceridemia, and fat distribution seem to be the strongest MS risk factors. The early detection
of and intervention in these modifiable risk factors are useful to protect children’s health.

Keywords: obesity; pediatrics; metabolic syndrome; metabolic phenotype; children

1. Introduction

Childhood obesity is one of the most serious public health issues in pediatrics [1–3].
The problem is global, and it is increasingly affecting many low- and middle-income
countries, especially in urban settings. According to the World Health Organization (WHO),
overweight and obesity are defined as abnormal or excessive fat accumulation that presents
a risk to health [2]. Obesity-related complications can be identified at an early age, with
important health and economic consequences [4].

In particular, metabolic syndrome (MS) has been closely linked to overweight and
obesity in pediatrics. The prevalence of MS increases with the severity of obesity [5], and is
a predictor of type 2diabetes (T2D), cardiovascular diseases (CVDs), and all-cause mortality
in adults [4]. MS prevalence in pediatrics ranges from 0.3% to 26.4%, according to the
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large number of different pediatric definitions of MS and several population studies [6].
Dysglycemia/insulin resistance (IR), hypertension, high levels of triglycerides (TG), and
low high-density lipoprotein cholesterol (HDL cholesterol) are included as inter-related
components of MS [7–14].

The pathogenesis of MS is complex, and many aspects have still not fully been eluci-
dated [14,15]; body composition and body-fat distribution are critical actors in the risk of
development of insulin resistance (IR) [16]. Body mass index (BMI), waist circumference
(WC), and waist to height ratio (WHtR) are usually considered good markers of MS [17].
Novel adiposity indices, including body shape index (ABSI), triponderal mass index (TMI),
conicity index (ConI), Visceral Adiposity Index (VAI), and non-linear equations to estimate
fat mass (eFM), have recently been proposed as markers of cardiometabolic risk [17–26].

However, not all individuals with obesity will develop obesity-related complica-
tions. According to the literature, a metabolically healthy obesity (MHO) group can be
described [27]. The underlying mechanisms of metabolic regulation are unclear; adipokine
levels, visceral fat contents, percentages of ectopic fat, and different biochemical profiles
have been reported in MHO individuals compared with patients with metabolic complica-
tions [28]. The definition of clinical patterns related to metabolic risk in pediatrics may lead
to more appropriate health preventive strategies.

Multivariate analysis (MVA) is used in medical research due to its ability to explore the
structure of correlations and retrieve relevant associations within the data [29,30]. Studies
on the inter-relationship of new adiposity indices with different metabolic phenotypes and
cardiometabolic risk markers, according to sex, are limited in pediatrics [31].

We performed an MVA of the anthropometric and biochemical parameters, i.e., the
“metabolic phenotype”, in children and adolescents with obesity, in order to identify clinical
patterns among highly interrelated clinical variables and biomarkers predictive of MS. The
early detection of specific metabolic phenotypes may be important for the tailored treatment
and care of pediatric patients with obesity.

2. Materials and Methods
2.1. Patients

We retrospectively analyzed 528 Caucasian children and adolescents (274 females and
258 males, aged 11 years old (interquartile range (IQR) 9–12.2 years) with obesity referred to
the Vittore Buzzi Children’s Hospital, Milan and the San Paolo University Hospital of Milan,
by their general practitioner or primary care pediatrician. Patients were referred between
May 2019 and May 2021. Exclusion criteria were known secondary obesity conditions, the
use of any ongoing medical therapy, and concomitant chronic or acute illnesses.

As a control group, we considered 119 healthy Caucasian children and adolescents
comparable for age and sex: 59 males, 60 females, with a mean age 11 years (9–13 IQR), who
were enrolled as controls for other metabolic studies. All the parents or guardians gave their
consent to retrospectively enroll the subjects in other studies for clinical research purposes,
epidemiology, studies of pathologies, and training, aiming to improve knowledge, care,
and prevention.

In all subjects, clinical evaluations and biochemical profiles were considered.
All participants or their responsible guardians provided written consent after being

informed about the nature of the study. The study (protocol numbers 2015/ST/135 MI,
2020/ST/234 MI) was approved by the institutional ethics committee, and the study was
conducted in accordance with the Helsinki Declaration of 1975, as revised in 2008.

2.2. Clinical Examination

In all of the participants, their height, weight, pubertal stage, waist circumference
(WC), WHtR, measurement, DBP and SBP were considered. Standing height was measured
using a Harpenden Stadiometer, with the child in an upright position, without shoes, with
their heels together and toes apart, their hands by their sides, and the head aligned in the
Frankfort horizontal plane [32,33]. Weight was quantified with participants not wearing
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shoes and in light clothing, standing upright in the center of the scale platform [32,33].
Using a flexible inch tape, the waist circumference was measured at the midpoint between
the lower border of the rib cage and the iliac crest [32,33]. Blood pressure was measured
twice, consecutively, using a mercury sphygmomanometer, with an appropriately sized
cuff on the right arm, which was slightly flexed at heart level. The second BP measurement
was used for analysis [32,33].

Pubertal stages were classified according to Marshall and Tanner [34,35] as follows:
Prepubertal stage 1 = Tanner 1; Middle puberty stage 2 = Tanner 2–3; Late puberty
stage 3 = Tanner 4–5.

BMI was calculated as the body weight (kilograms) divided by height (meters squared)
and was transformed into BMI z-scores using WHO reference values [36].

According to the BMI z-score WHO classification [36] all subjects were classified
into children with normal-weight (NW; −2 ≤ BMI z-score ≤1) and with obesity (OB;
BMI z-score ≥ 2).

Adiposity indices, including ABSI; TMI; VAI; ConI; and eFM, were considered and
calculated as follows:

• ABSI = 1000 × WC × Wt −2/3 × Ht5/6 [37];
• TMI = weight (kg)/height (m)3 [26];
• ConI = WC/(0.109 × (Wt/Ht)0.5) [38];
• VAI [39] Male = [WC/(39.68 + (1.88 × BMI))] × (TG/1.03) × (1.31/HDL-C); Female =

[WC/(36.58 + (1.89 × BMI))] × (TG/0.81) × (1.52/HDL-C);
• Fat Mass (eFM) = weight − exp(0.3073 × height2 −10.0155 × d-growth-standards/

standards/body-mass-index-for-age-bmi-for-age weight − 1 + 0.004571 × weight −
0.9180 × ln(age) + 0.6488 × age0.5 + 0.04723 × male + 2.8055) [40] (exp = exponential
function, ln = natural logarithmic transformation, male = 1, female = 0).

2.3. Biochemical Evaluation

At enrollment, subjects underwent a blood draw in a fasting state between 8:30 a.m.
and 9:00 a.m., and the plasma glucose; insulin; triglycerides (TG); and total and HDL
cholesterol levels were evaluated. As a surrogate of insulin resistance (IR), the homeostasis
model assessment—insulin resistance (HOMA-IR) index and triglyceride—glucose (TyG)
index were assessed as follows:

• HOMA-IR= (fasting plasma insulin (mU/L) × fasting plasma glucose (mg/dL))/405 [41];
• TyG-index= ln(fasting triglycerides (mg/dL) × fasting plasma glucose (mg/dL)/2) [41].

Metabolic syndrome was defined as the presence of at least three of the follow-
ing risk factors: BMI ≥ 2 z score and/or WHtR > 0.5 [42], SBP ≥ 130 mmHg and/or
DBP ≥ 85 mmHg; glycemia ≥ 100 mg/dL and/or HOMA-IR ≥ 2.5 if prepubertal stage 1
or ≥4 if pubertal stage 2, 3 [43]; HDL cholesterol <40 mg/dL in females and <50 mg/dL in
males; triglycerides ≥ 100 mg/dL (<10 years) or ≥130 mg/dL (≥10 years).

In addition to BMI, we also considered WHtR, because it is helpful in detecting
children with a higher likelihood of presenting metabolic and cardiovascular risks [42],
and it is more appropriate than WC alone to track changes in abdominal adiposity among
adolescents [44].

As previously reported [31], a pathological level of fasting blood glucose (FBG) and/or
IR was used as a marker of gluco-metabolic derangement, because impaired fasting glu-
cose is rare in childhood and IR precedes glucose abnormalities [45]. The euglycemic–
hyperinsulinemic clamp is the gold standard for measuring IR; however, this method is
invasive, time-consuming, and is difficult to apply with pediatric patients.

2.4. Statistical Analysis

Univariate statistical analyses were performed to study the anthropometric and
metabolic characteristics of children with NW and OB included in the analysis. We esti-
mated the density function of the analyzed variables by applying a nonparametric method
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of kernel density estimation, representing the function by means of violin graphs, includ-
ing a bar graph showing the mean and standard deviation values. Thus, we obtained a
complete distribution view. The graphs were grouped according to obesity status (NW, OB).

To investigate the potential association between anthropometric and metabolic vari-
ables characterizing the children, principal components’ analysis was performed on the
group of the children with obesity. This method allowed us to reduce the dimensionality
of the dataset by projecting each data point onto the first principal components (up to
three), preserving as much variation in the data as possible. We explored the metabolic and
anthropometric profiles of normal weight observations by passively projecting them onto
the spaces defined by the three first PCs.

To explore possible differences and similarities among observations of OB children
that might define more characterizing but hidden subgroups, a cluster analysis technique
was applied to all observations in the dataset, considering all anthropometric and metabolic
variables analyzed in previous analyses, for construction of the distance matrix. First,
hierarchical cluster analysis using Ward’s method produced a dendrogram for estimating
the number of likely clusters within the sample. We made cuts at the points of change
between successive fusion levels to define likely cluster boundaries. The derived number
of clusters was sub-specified using k-means cluster analysis, the main clustering technique.
To achieve repeatability and stability in each model, the k-means algorithm was run
50 times with random starting points. Clusters defined by the k-means algorithm were
subsequently projected into subspaces defined by principal component 1 (PC1) 1, PC2, and
PC3, calculated by performing PCA only on OB children.

Further univariate statistical analysis was performed to study the different characteris-
tics of the clusters defined in the analysis. We produced a table in which all anthropometric
and metabolic variables are summarized as the mean (sd) and stratified by cluster. In
addition, violin plots were produced to visually capture the differences between clusters.
All the statistical analyses were performed using R software (version 4.1.2). The packages
used for multivariate analysis were ‘FactoMineR’ (version 2.4), ‘factoextra’ (version 1.0.7),
and ‘stats’ (version 3.6.2).

3. Results
3.1. Univariate Analysis

For the OB group, 528 observations were available, whereas for the NW children
group, 119 observations were available. The main statistics of the variables considered in
the univariate analysis for both groups of children are presented in Table 1. OB and NW
were comparable for age and sex. As expected, significant differences were noted for all
the anthropometric and metabolic variables, between the two groups.

Table 1. Descriptive statistics of children with obesity (OB) and the control group (NW).

Children with Obesity Children with Normal Weight

Level F M Level F M

n 274 254 60 59

Age (median (IQR))
(years)

10.00 (9.00,
12.00)

11.00 (9.25,
13.00)

10.00 (9.00,
11.25)

12.00 (11.00,
13.00)

Weight (median
(IQR)) (kg)

58.25 (45.65,
73.50)

60.70 (49.78,
72.95)

35.55 (32.20,
39.90)

37.50 (29.75,
49.00)

Height (median
(IQR)) (cm)

146.00 (136.00,
155.30)

149.00 (140.00,
157.78)

143.55 (135.70,
152.50)

146.80 (136.80,
154.30)

BMI (median (IQR))
(kg/m2)

27.01 (24.43,
30.25)

27.26 (25.03,
29.68)

17.50 (16.17,
18.94)

17.33 (15.77,
20.07)
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Table 1. Cont.

Children with Obesity Children with Normal Weight

Level F M Level F M

n 274 254 60 59

WC (median (IQR))
(cm)

84.00 (79.00,
92.50)

88.20 (81.50,
94.88)

62.75 (60.00,
66.25)

61.00 (57.50,
73.00)

WC/Ht (median
(IQR)) 0.59 (0.55, 0.63) 0.59 (0.57, 0.63) 0.43 (0.42, 0.47) 0.44 (0.41, 0.47)

Total Cholesterol
(median (IQR))

(mg/dL)

149.00 (135.00,
168.75)

154.00 (138.00,
175.75)

156.00 (130.00,
166.50)

154.00 (144.00,
174.00)

HDL Cholesterol
(median (IQR))

(mg/dL)

45.00 (39.00,
52.00)

46.00 (39.00,
53.00)

56.00 (46.75,
60.00)

54.00 (49.00,
65.00)

LDL Cholesterol
(median (IQR))

(mg/dL)

86.20 (72.45,
101.15)

90.20 (75.40,
106.05)

85.90 (68.65,
101.80)

87.80 (81.60,
107.80)

TG (median (IQR))
(mg/dL)

81.00 (62.00,
108.00)

72.50 (58.00,
107.00)

43.50 (34.00,
63.75)

49.00 (40.00,
57.00)

Fasting Glucose
(median (IQR))

(mg/dL)

80.00 (75.00,
86.00)

84.00 (78.25,
88.00)

75.00 (67.00,
78.25)

76.00 (71.50,
82.00)

Insulin (median
(IQR)) (µU/mL)

14.20 (10.43,
21.25)

13.70 (8.72,
19.70) 5.60 (4.00, 7.28) 5.00 (2.88, 8.50)

HOMA_IR (median
(IQR)) 2.85 (1.96, 4.24) 2.71 (1.76, 4.11) 0.99 (0.73, 1.35) 0.94 (0.51, 1.60)

Pubertal_stage (%) 1 81 (29.6) 51 (20.1) 1 14 (23.3) 12 (20.3)

2 138 (50.4) 163 (64.2) 2 34 (56.7) 41 (69.5)

3 55 (20.1) 40 (15.7) 3 12 (20.0) 6 (10.2)

SBP (median (IQR))
(mmHg)

110.00 (105.00,
120.00)

111.00 (105.00,
120.00)

100.00 (95.00,
106.25)

105.00 (100.00,
110.00)

DBP (median
(IQR)) (mmHg)

62.00 (57.00,
70.00)

61.00 (58.00,
70.00)

60.00 (60.00,
70.00)

65.00 (60.00,
70.00)

VAI (median (IQR)) 1.38 (0.99, 2.03) 1.96 (1.37, 3.01) 0.53 (0.47, 0.97) 0.86 (0.81, 1.13)

ABSI (median
(IQR)) 0.05 (0.04, 0.05) 0.05 (0.04, 0.05) 0.05 (0.05, 0.06) 0.05 (0.05, 0.06)

TMI (median
(IQR))

18.76 (17.48,
20.26)

18.51 (17.12,
20.00)

12.04 (11.46,
13.74)

12.21 (11.36,
13.01)

ConI (median
(IQR)) 3.94 (3.75, 4.12) 4.05 (3.85, 4.20) 3.64 (3.54, 3.74) 3.66 (3.52, 3.79)

TyG Index (median
(IQR)) 8.09 (7.81, 8.40) 8.04 (7.72, 8.42) 7.36 (7.21, 7.67) 7.51 (7.19, 7.75)

eFM (median
(IQR)) (kg)

24.42 (18.13,
31.23)

23.45 (19.13,
29.09) 9.75 (7.56, 11.95) 7.45 (5.35, 11.97)

BMI z-score
(median (IQR)) 2.74 (2.42, 3.11) 2.97 (2.57, 3.48) 0.40 (−0.42,

0.96)
0.12 (−0.77,

0.64)

MS (%) 0 197 (71.9) 136 (53.5) 0 59 (98.3) 59 (100.0)

1 77 (28.1) 118 (46.5) 1 1 (1.7) 0 (0.0)

The continuous variables are reported as the median and IQR, whereas categorical variable are reported as
frequencies and percentages.
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3.2. Multivariate Analysis
3.2.1. Principal Component Analysis

The first three principal components explained 56% of the variance in the data (PC1
= 30%, PC2 = 13%, PC3 = 13%). The projections of the original variables onto the three
planes are shown in Figure 1. The first axis (PC1) was characterized primarily by variables
such as WC, eFM, BMI, and weight (which were highly correlated according to the BMI
formula), but also influenced to a lesser degree by the variables of insulin and HOMA-IR
(also highly correlated according to the HOMA-IR formula). The second axis (PC2) was
mainly characterized by the variables WC/Ht, BMI z-score, height, and age. The third axis
(PC3) was characterized to a great degree by the variables of fasting TG and TyG index,
and to a smaller degree by the variable VAI.
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Figure 1. In these panels, the correlations are represented as vectors of each variable projected in
the new subspaces defined by the principal components derived by the multivariate analysis (PCA).
For clarity reasons, only the variables that contributed the most to the definition of the PCs and are
represented more in the plane are displayed (a–c). The more the variables are correlated, the more
they are projected on the same line. If they are positively correlated, they show the same direction;
otherwise, they go in the opposite direction. On the other hand, if the variables are uncorrelated, they
tend to project perpendicularly to form an angle of 90◦.

It appeared that variables such as SBP and DBP were not well represented and did not
contribute to the definition of the first three principal components.

In all the planes defined by the PCs, it appeared that the variables WC, BMI, and eFM
were clustered and positively correlated with PC1. In the plane defined by PC1 and PC2
and the plane defined by PC1 and PC3, the variables of fasting TG, TyG index, and VAI
were positively correlated with each other and with PC3, although neither were correlated
with the variables of BMI z-score, WC/Ht, BMI, WC, eFM, and weight.

In the next step, we analyzed the three planes defined by the PCs for the distribution
of all observations in the dataset, by passively projecting the NW with the OB children. As
shown in Figure 2, in the plane defined by PC1 with either of the other two dimensions,
it was clear that observations related to NW children (absence of obesity) clustered in the
region of the plane where PC1 is negative, in the opposite direction to where the vectors of
the projections of the variables were related to the obesity point. Observations related to
the group of OB children are observed much more frequently in the positive values of PC1.
Overall, PC1, resulting from the principal component analysis conducted on the OB dataset
and characterized by anthropometric variables, was critical in describing the differences
between the group of OB children and the group of NW children, as would be expected.
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Figure 2. In this panels, the obesity (OB) observations (orange points) are projected in the subspaces
defined by the first three principal components that explained the most variability in the dataset. The
NW (light blue points) are passively projected in the subspaces. As can be observed in figure (a–c),
the NW observations clustered in a region of the space where PC1 is negative.

Interestingly, four of the NW observations, when projected with the OB observations,
were in the same region of space defined by PC1 and PC2, where the OB points were present.
In fact, they showed greater values of mean insulin, HOMA-IR, fasting TG, TyG-index, and
VAI than the overall NW children.

3.2.2. Cluster Analysis

The hierarchical cluster analysis was conducted in concordance with the Ward method,
which resulted in the definition of three clusters. We pre-specified the number of groups
computed with the hierarchical algorithm in the k-means algorithm: 50 random repetitions
were used. We confirmed the best number of groups found by the k-means algorithm
by plotting the sum of squares of the groups in function of the number of clusters to
be considered; the best trade-off was in three clusters which we called subgroup 1 (S1),
subgroup 2 (S2), and subgroup 3 (S3).

By projecting the observation grouped by the different clusters onto the subspaces
defined by the first three principal components, it was clear that S2 and S3 were more
clustered and centered, whereas S1 was more disperse, particularly in the direction of the
third principal components, as shown in Figure 3. It also appears that the three subgroups
differentiated in the direction of the first principal component. Moreover, if we projected
the observations labeled by the condition of MS on the subspaces and compared them with
the subgroups defined by the k-means algorithm, the group of MS = 1 overlapped with S1,
whereas MS = 0 overlapped with S2 and S3.
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Figure 3. In this panel, only the obesity (OB) observations are projected in the new subspaces
defined by the first three principal components obtained with multivariate analysis (PCA). Here, the
observations are stratified by the inclusion of one of the three clusters obtained with the k-means
algorithm (the three ellipses) and by the condition of having (triangle shape) metabolic syndrome
(MS) or not (circle shape). As shown in figure (a) and figure (b), the pattern of MS mainly follows the
first principal component (PC1): as the values of PC1 increase, the prevalence of MS also increases.

The violin plots produced to explore the distribution of the anthropometric and
metabolic variables in each cluster clearly showed that cluster S2 and cluster S3 had a
similar profile with respect to S1, where most of the cases instead showed greater means
in all the variables studied. Interestingly, we found evidence of a difference between the
groups for all the anthropometric variables, except for the variables of ConI and ABSI.
From Table 2, which summarizes the distributions of the three clusters, it is clear that S1
has the greatest values for the anthropometric and metabolic variables.

From examining the relative proportions of children with metabolic syndrome in
the different subgroups, it appeared that some of the observations of the S1 which, if
projected to the subspace defined by the PCs, should be characterized by elevated values of
anthropometric and metabolic variables, still did not have MS. In addition, some children
of cluster S2, the one characterized by the lowest values of PC1, were also characterized as
having MS. Finally, a high proportion of the observations in S3 (intermediate) still did not
have MS. We summarized the distribution of the variables for the observations of cluster
S2 with MS in Table 2.
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Table 2. Table 2 summarizes the descriptive statistics of the OB observations stratified by the three
clusters obtained with the k-means algorithm. Here, the continuous variables are reported as the
median and IQR, whereas categorical variables are reported as frequencies and percentage. S1 has
the greatest prevalence of MS, followed by S3 and S2. In addition, the table reports the descriptive
statistics of a particular sub-cluster of S2 children which contains observations that even though are
characterized by lower values of the variables positively associated with PC1, still they are classified
as having MS. In fact, they show higher values in the insulin, HOMA-IR, TyG index, VAI, and fasting
TG variables compared with the median values of the S2 cluster.

Level Children in
Subgroup 1 (S1)

Children in
Subgroup 2 (S2)

Children in
Subgroup 3 (S3)

Children in
Subgroup 2 with MS

n 61 230 237 44

Weight (median
(IQR)) (kg) 82.50 (70.50, 95.60) 46.00 (40.15, 52.25) 69.90 (62.42, 77.00) 46.00 (42.50, 52.70)

Height (median
(IQR)) (cm)

156.00 (149.50,
163.50)

136.50 (128.50,
142.00)

155.00 (150.40,
161.85) 139.00 (131.00, 145.70)

BMI (median
(IQR)) (kg/m2) 33.50 (31.05, 36.47) 24.69 (23.45, 26.13) 28.76 (27.08, 30.55) 24.87 (23.97, 25.71)

WC (median
(IQR)) (cm)

102.00 (97.00,
109.00] 80.00 (75.00, 83.88] 90.00 (86.00, 96.00] 81.50 (78.75, 83.25]

WC/Ht (median
(IQR)) 0.66 (0.63, 0.70) 0.59 (0.56, 0.62) 0.58 (0.54, 0.62) 0.59 (0.56, 0.63)

Total Cholesterol
(median (IQR])

(mg/dL)

160.00 (139.00,
186.00]

155.50 (140.00,
177.00]

148.00 (132.00,
162.00) 152.00 (143.75, 181.00)

HDL Cholesterol
(median (IQR))

(mg/dL)
39.00 (35.00, 45.00) 48.00 (41.00, 55.00) 45.00 (40.00, 51.00) 39.50 (35.00, 46.00)

LDL Cholesterol
(median (IQR))

(mg/dL)

85.60 (71.40,
103.80)

91.60 (75.45,
108.00) 84.20 (73.40, 97.40) 92.20 (77.50, 109.15)

TG (median (IQR))
(mg/dL)

128.00 (102.00,
193.00) 71.00 (56.00, 94.00) 76.00 (59.00, 99.00) 124.00 (77.00, 156.25)

Fasting Glucose
(median (IQR))

(mg/dL)
87.00 (80.00, 92.00) 80.00 (76.00, 85.00) 82.00 (76.00, 89.00) 82.00 (79.00, 85.00)

Insulin (median
(IQR)) (µU/mL) 30.30 (22.10, 38.10) 9.95 (7.00, 14.20) 16.10 (12.20, 20.80) 13.90 (9.78, 18.10)

HOMA-IR
(median (IQR)) 6.30 (4.70, 7.88) 2.01 (1.40, 2.86) 3.18 (2.20, 4.31) 2.88 (2.07, 3.75)

SBP (median
(IQR)) (mmHg)

123.00 (115.00,
130.00)

106.00 (100.00,
111.00)

115.00 (110.00,
122.00) 105.00 (98.00, 111.50)

DBP (median
(IQR)) (mmHg) 68.00 (60.00, 74.00) 60.00 (55.00, 65.00) 65.00 (60.00, 70.00) 60.00 (53.75, 65.00)

VAI (median
(IQR)) 3.82 (2.20, 5.13) 1.43 (0.95, 2.04) 1.64 (1.18, 2.43) 2.97 (1.90, 4.20)

ABSI (median
(IQR)) 0.05 (0.04, 0.05) 0.04 (0.04, 0.05) 0.05 (0.05, 0.05) 0.05 (0.04, 0.05)

TMI (median
(IQR)) (kg/m3) 21.56 (20.02, 24.04) 18.26 (17.12, 19.90) 18.43 (17.32, 19.80) 17.79 (16.64, 19.19)
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Table 2. Cont.

Level Children in
Subgroup 1 (S1)

Children in
Subgroup 2 (S2)

Children in
Subgroup 3 (S3)

Children in
Subgroup 2 with MS

n 61 230 237 44

ConI (median
(IQR)) (cm) 4.16 (3.99, 4.28) 4.00 (3.82, 4.15) 3.94 (3.74, 4.11) 4.08 (3.87, 4.23)

TyG Index (median
(IQR)) 8.59 (8.36, 9.02) 7.97 (7.68, 8.24) 8.06 (7.78, 8.33) 8.52 (8.15, 8.77)

eFM (median
(IQR)) (kg) 36.52 (32.26, 40.76) 17.84 (15.32, 20.75) 27.91 (24.50, 30.91) 17.78 (16.03, 20.17)

BMI z-score
(median (IQR)) 3.45 (2.98, 3.95) 2.92 (2.58, 3.55) 2.68 (2.39, 2.97) 2.83 (2.55, 3.18)

MS (%) 0 4 (6.6) 186 (80.9) 143 (60.3) 44 (100.0)

1 57 (93.4) 44 (19.1) 94 (39.7)

The observations of S2 with MS were characterized by lower values of eFM, waist,
WHtR, and BMI z-scores, but by surprisingly higher values of TyG index, TG, VAI, HOMA-
IR, and insulin. In contrast, the observations of S1 without MS were characterized by lower
values of TG, insulin, HOMA-IR, and VAI, but with the highest values for eFM, WC, and
WHtR. Finally, the observation of S3 without MS presented lower values for TG, insulin,
HOMA-IR, and VAI, and intermediate values for eFM, waist, and WHtR.

By considering the graphs of the observations projected onto the principal components
labeled for their subgroups and for the condition of MS, it seemed that the presentation of
MS generally follows the first principal component, although in several cases, this pattern
is not respected.

4. Discussion

We have presented a multivariate MVA. We noted that the metabolic risk is not only
related to body weight. The variables related to IR and dyslipidemia, such as high TG
levels and fat accumulation, were crucial for the early stratification of patients at risk of MS.

MS is characterized by interconnected risk factors of metabolic origin, leading to
CVD and T2D and an increasing mortality risk in adult age [7–9,46]. One recent review
reinforced the evidence that obesity (and related IR) is a consistent single risk factor
for T2D; therefore, it is crucial for limiting the progression of obesity [47]. There are
different dysregulated metabolic pathways (increased free fatty acid flux from adipose
tissue, increased hepatic de novo lipogenesis from excessive carbohydrate consumption,
and hypertriglyceridemia) that accelerate the progression from normal to impaired glucose
tolerance test and diabetes [48]. Adipose tissue expansion leads to the overproduction of
adipocytokines, further exacerbating metabolic dysfunction. Excesses or deficiencies of
adipocytokines such as leptin or adiponectin further affect insulin sensitivity [49]. The
complex interactions between glucotoxic and lipotoxic effects which ensue during IR
in children with obesity can worsen IR, and consequently, exacerbate dyslipidemia and
hyperglycemia due to positive feedback loops; this clearly indicates that more appropriate
and complex statistical modeling should be employed [47,50].

A revision of the classification could provide a powerful tool to individualize treatment
regimens and identify individuals with an increased risk of complications at diagnosis.
We stratified patients into three subgroups with differing disease progression and diabetic
complication risks. This new sub-stratification might represent a first step towards precision
medicine in diabetes.

Due to different definitions, the MS prevalence in pediatrics remains unclear, and
varies widely depending on the different definitions utilized [15]. It is reported more
frequently in subjects who are overweight (11.9%) and with obesity (29.2%) [15,51,52];
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however, unhealthy normal-weight patients and metabolically healthy obesity (MHO) has
also been reported [28]. We noted that some of the NW observations projected with the OB
observations were in the same space where the OB values were present, as defined by PC1
and PC2. On the other hand, some OB observations were far away from the mean center of
the OB group and were closer to the mean center of the NW group. These data confirmed
that the pathogenic mechanism of the metabolic regulation may be multifactorial, and
excessive fat accumulation in tandem with a normal BMI does not protect against metabolic
risks [16].

In adults, higher levels of adiponectin, lower visceral fat contents, and lower percent-
ages of ectopic fat, such as in the muscles and liver, have been reported in MHO individuals
compared with patients with metabolic complications [53–55]. In unhealthy normal-weight
subjects, metabolic risks such as elevated glucose, insulin resistance, dyslipidemia, and
hypertension are more strongly associated with high subcutaneous abdominal fat mass,
visceral obesity, or fatty liver [56]. Cota et al. reported that the presence of normal-weight
obesity in adolescents was associated with the accumulation of abdominal fat and an
unfavorable lipid profile [16].

Our analysis supports the role of IR and dyslipidemia, such as high TG levels, and fat
distribution as principal players interested in the risk stratification for MS. We noted that
both the HOMA-IR and TyG Index are involved; these two indices have been proposed as
simple surrogates with high sensitivity in recognizing IR and are considered as optimal
predictors of metabolic and cardiovascular diseases in normoglycemic [57] and pre-diabetic
patients [58,59]. Compared with other IR indicators, the TyG index mainly quantifies
IR in muscle and represents a better indicator for peripheral IR, which could also be of
interest in NW or underweight [60] patients in which a relatively low leg fat mass and high
subcutaneous abdominal fat mass are present. Studies have shown that TyG, independent
of body weight, is related to a risk of diabetes [61], hypertension [62], and non-alcoholic
fatty liver disease [63], and it can predict the development of cardiovascular events [64].

We confirmed that, in addition to BMI, other anthropometric measures, such as WC
and WHtR, may be useful to identify abdominal obesity. Additionally, the evaluation of
new adiposity indices, particularly VAI and eFM, may be helpful in clinical practice to
estimate the role of body fatness and fat distribution, when instrumentation to estimate the
body composition is not available, and for the early detection of at-risk children [17–26]. In
contrast, compared with the reported data in adults, blood pressure is not included in the
parameters that contribute to definitions of the principal components of risk. The roles of IR
and hyperinsulinemia in the pathogenesis of essential hypertension have been extensively
reported [65,66]; the instauration of metabolic alterations may precede hypertension, and
the time of exposure may trigger the manifestation and evolution [67,68].

In the literature, debates remain as to whether MHO represents a unique subset of
people with obesity, or is simply a group which is in transition to the later development
of metabolically unhealthy obesity (MUO) [69]. As reported by Blüher [70], the principal
factors associated with the conversion of MHO to MUO are a decline in insulin sensitivity
and an increase in fasting blood glucose [71]. In our population, the distribution of the
clinical and biochemical variables stratified by the clusters clearly represented a condition
in which S2 and S3 were more similar to each other with respect to S1, suggesting that a
transitional phase could exist and that the IR, earlier than hyperglycemia, initiates different
pathogenic pathways which increase metabolic risk and result in the full expression of the
MS [72,73].

The concordant profiles of IR and triglycerides in subgroups support the notion that
hyperinsulinemia could induce an increased transcription of genes for lipogenic hepatic,
leading to increased TG production and influencing the severity of metabolic involve-
ment [15]. The hypothesis that triglycerides may be an earlier dismetabolic marker could
also be considered [74]. As reported elsewhere [75], hypertriglyceridemic waist phenotypes,
characterized by increased TG levels and WC, can be used to predict cardiovascular risk in
adult men. Despite high triglycerides levels being a modifiable cardiovascular risk factor,
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they contribute to oxidative damage [33] which may play a causative role in the synergistic
effects of the MS components.

The MHO concept may be a model to better understand the mechanisms linking obe-
sity with cardiometabolic diseases [76]. In pediatrics, this aspect is particularly interesting
to explore, in order to define preventive measures and to adopt a tailored monitoring.

We recognize that there are some limitations to this study, starting with its retrospective
cross-sectional nature. Additionally, we considered indirect indices of body fatness and fat
distribution; a comparison with body compositions estimated from bio-impedance could
improve the validity of our findings. Finally, we only considered anthropometric and
biochemical parameters to stratify the metabolic risk; moreover, additional factors such as
genetic contribution, dietary intake, physical activity level, composition, and the diversity
of the microbiota could also be considered. Despite the limitations, this type of analysis is
interesting to consider for the health assessments of pediatric patients with obesity.

5. Conclusions

Here, we considered different anthropometric measures and biochemical variables to
improve the early stratification of pediatric patients at risk of MS, independently of body
weight. A transitional phase from MHO to MUO may not be excluded in pediatrics.

The early detection of the interrelated variables and interventions on these modifiable
risk factors is useful to protect pediatric health. Cluster analysis may help in identifying
specific patient characteristics related to disease and therapeutic responses leading to a
personalized medicine.
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the Metabolic Syndrome. Taiwan. J. Obstet. Gynecol. 2017, 56, 133–138. [CrossRef] [PubMed]
13. Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.S.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al.

Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [CrossRef]
14. Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The

Metabolic Syndrome. Endocr. Rev. 2008, 29, 777–822. [CrossRef] [PubMed]
15. Al-Hamad, D.; Raman, V. Metabolic Syndrome in Children and Adolescents. Transl. Pediatr. 2017, 6, 397–407. [CrossRef]

[PubMed]
16. Cota, B.C.; Priore, S.E.; Ribeiro, S.A.V.; Juvanhol, L.L.; de Faria, E.R.; de Faria, F.R.; Pereira, P.F. Cardiometabolic Risk in

Adolescents with Normal Weight Obesity. Eur. J. Clin. Nutr. 2021, 1–8. [CrossRef] [PubMed]
17. Freedman, D.S.; Kahn, H.S.; Mei, Z.; Grummer-Strawn, L.M.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. Relation of Body Mass

Index and Waist-to-Height Ratio to Cardiovascular Disease Risk Factors in Children and Adolescents: The Bogalusa Heart Study.
Am. J. Clin. Nutr. 2007, 86, 33–40. [CrossRef]

18. Tee, J.Y.H.; Gan, W.Y.; Lim, P.Y. Comparisons of Body Mass Index, Waist Circumference, Waist-to-Height Ratio and a Body
Shape Index (ABSI) in Predicting High Blood Pressure among Malaysian Adolescents: A Cross-Sectional Study. BMJ Open 2020,
10, e032874. [CrossRef] [PubMed]

19. Emerging Risk Factors Collaboration; Wormser, D.; Kaptoge, S.; Di Angelantonio, E.; Wood, A.M.; Pennells, L.; Thompson, A.;
Sarwar, N.; Kizer, J.R.; Lawlor, D.A.; et al. Separate and Combined Associations of Body-Mass Index and Abdominal Adiposity
with Cardiovascular Disease: Collaborative Analysis of 58 Prospective Studies. Lancet 2011, 377, 1085–1095. [CrossRef]

20. Wang, F.; Chen, Y.; Chang, Y.; Sun, G.; Sun, Y. New Anthropometric Indices or Old Ones: Which Perform Better in Estimating
Cardiovascular Risks in Chinese Adults. BMC Cardiovasc. Disord. 2018, 18, 14. [CrossRef] [PubMed]

21. Bozorgmanesh, M.; Sardarinia, M.; Hajsheikholeslami, F.; Azizi, F.; Hadaegh, F. CVD-Predictive Performances of “a Body Shape
Index” versus Simple Anthropometric Measures: Tehran Lipid and Glucose Study. Eur. J. Nutr. 2016, 55, 147–157. [CrossRef]

22. Mameli, C.; Krakauer, N.Y.; Krakauer, J.C.; Bosetti, A.; Ferrari, C.M.; Moiana, N.; Schneider, L.; Borsani, B.; Genoni, T.; Zuccotti, G.
The Association between a Body Shape Index and Cardiovascular Risk in Overweight and Obese Children and Adolescents.
PLoS ONE 2018, 13, e0190426. [CrossRef]

23. Peterson, C.M.; Su, H.; Thomas, D.M.; Heo, M.; Golnabi, A.H.; Pietrobelli, A.; Heymsfield, S.B. Tri-Ponderal Mass Index vs Body
Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017, 171, 629–636. [CrossRef] [PubMed]

24. Ramírez-Vélez, R.; Correa-Bautista, J.E.; Carrillo, H.A.; González-Jiménez, E.; Schmidt-RioValle, J.; Correa-Rodríguez, M.;
García-Hermoso, A.; González-Ruíz, K. Tri-Ponderal Mass Index vs. Fat Mass/Height3 as a Screening Tool for Metabolic
Syndrome Prediction in Colombian Children and Young People. Nutrients 2018, 10, 412. [CrossRef] [PubMed]

25. de Oliveira, R.G.; Guedes, D.P. Performance of Anthropometric Indicators as Predictors of Metabolic Syndrome in Brazilian
Adolescents. BMC Pediatr. 2018, 18, 33. [CrossRef] [PubMed]

26. Leone, A.; Vizzuso, S.; Brambilla, P.; Mameli, C.; Ravella, S.; De Amicis, R.; Battezzati, A.; Zuccotti, G.; Bertoli, S.; Verduci, E.
Evaluation of Different Adiposity Indices and Association with Metabolic Syndrome Risk in Obese Children: Is There a Winner?
Int. J. Mol. Sci. 2020, 21, 4083. [CrossRef]

27. Damanhoury, S.; Morrison, K.M.; Mian, R.; McPhee, P.G.; Kozyrskyj, A.L.; Newton, A.S.; Buchholz, A.; Chanoine, J.-P.; Hamilton, J.;
Ho, J.; et al. Metabolically Healthy Obesity in Children Enrolled in the CANadian Pediatric Weight Management Registry
(CANPWR): An Exploratory Secondary Analysis of Baseline Data. Clin. Obes. 2021, 12, e12490. [CrossRef] [PubMed]

28. Chashmniam, S.; Hashemi Madani, N.; Nobakht Mothlagh Ghoochani, B.F.; Safari-Alighiarloo, N.; Khamseh, M.E. The
Metabolome Profiling of Obese and Non-Obese Individuals: Metabolically Healthy Obese and Unhealthy Non-Obese Paradox.
Iran. J. Basic Med. Sci. 2020, 23, 186–194. [CrossRef] [PubMed]

29. Rajalahti, T.; Kroksveen, A.C.; Arneberg, R.; Berven, F.S.; Vedeler, C.A.; Myhr, K.-M.; Kvalheim, O.M. A Multivariate Approach
to Reveal Biomarker Signatures for Disease Classification: Application to Mass Spectral Profiles of Cerebrospinal Fluid from
Patients with Multiple Sclerosis. J. Proteome Res. 2010, 9, 3608–3620. [CrossRef]

30. Rajalahti, T.; Kvalheim, O.M. Multivariate Data Analysis in Pharmaceutics: A Tutorial Review. Int. J. Pharm. 2011, 417, 280–290.
[CrossRef] [PubMed]

31. Calcaterra, V.; Verduci, E.; De Silvestri, A.; Magenes, V.C.; Siccardo, F.; Schneider, L.; Vizzuso, S.; Bosetti, A.; Zuccotti, G. Predictive
Ability of the Estimate of Fat Mass to Detect Early-Onset Metabolic Syndrome in Prepubertal Children with Obesity. Children
2021, 8, 966. [CrossRef]

32. Calcaterra, V.; Winickoff, J.P.; Klersy, C.; Schiano, L.M.; Bazzano, R.; Montalbano, C.; Musella, V.; Regalbuto, C.; Larizza, D.;
Cena, H. Smoke exposure and cardio-metabolic profile in youth with type 1 diabetes. Diabetol. Metab. Syndr. 2018, 10, 53.
[CrossRef]

http://doi.org/10.1016/j.clindermatol.2017.09.004
http://www.ncbi.nlm.nih.gov/pubmed/21068471
http://doi.org/10.2174/1570161114666161007164510
http://doi.org/10.1542/pir.2014-0095
http://www.ncbi.nlm.nih.gov/pubmed/27139327
http://doi.org/10.1016/j.tjog.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28420495
http://doi.org/10.1159/000479510
http://doi.org/10.1210/er.2008-0024
http://www.ncbi.nlm.nih.gov/pubmed/18971485
http://doi.org/10.21037/tp.2017.10.02
http://www.ncbi.nlm.nih.gov/pubmed/29184820
http://doi.org/10.1038/s41430-021-01037-7
http://www.ncbi.nlm.nih.gov/pubmed/34711932
http://doi.org/10.1093/ajcn/86.1.33
http://doi.org/10.1136/bmjopen-2019-032874
http://www.ncbi.nlm.nih.gov/pubmed/31932391
http://doi.org/10.1016/S0140-6736(11)60105-0
http://doi.org/10.1186/s12872-018-0754-z
http://www.ncbi.nlm.nih.gov/pubmed/29378513
http://doi.org/10.1007/s00394-015-0833-1
http://doi.org/10.1371/journal.pone.0190426
http://doi.org/10.1001/jamapediatrics.2017.0460
http://www.ncbi.nlm.nih.gov/pubmed/28505241
http://doi.org/10.3390/nu10040412
http://www.ncbi.nlm.nih.gov/pubmed/29584641
http://doi.org/10.1186/s12887-018-1030-1
http://www.ncbi.nlm.nih.gov/pubmed/29415673
http://doi.org/10.3390/ijms21114083
http://doi.org/10.1111/cob.12490
http://www.ncbi.nlm.nih.gov/pubmed/34617401
http://doi.org/10.22038/IJBMS.2019.37885.9004
http://www.ncbi.nlm.nih.gov/pubmed/32405361
http://doi.org/10.1021/pr100142m
http://doi.org/10.1016/j.ijpharm.2011.02.019
http://www.ncbi.nlm.nih.gov/pubmed/21335075
http://doi.org/10.3390/children8110966
http://doi.org/10.1186/s13098-018-0355-0


J. Clin. Med. 2022, 11, 1856 14 of 15

33. Calcaterra, V.; De Giuseppe, R.; Biino, G.; Mantelli, M.; Marchini, S.; Bendotti, G.; Madè, A.; Avanzini, M.A.; Montalbano, C.;
Cossellu, G.; et al. Relation between circulating oxidized-LDL and metabolic syndrome in children with obesity: The role of
hypertriglyceridemic waist phenotype. J. Pediatr. Endocrinol. Metab. 2017, 30, 1257–1263. [CrossRef] [PubMed]

34. Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [CrossRef]
[PubMed]

35. Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [CrossRef]
[PubMed]

36. WHO. Child Growth Standards. Available online: https://www.who.int/tools/child-growth-standards (accessed on 2
February 2022).

37. Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS
ONE 2012, 7, e39504. [CrossRef] [PubMed]

38. Mangla, A.G.; Dhamija, N.; Gupta, U.; Dhall, M. Anthropometric Markers as a Paradigm for Obesity Risk Assessment. J. Biosci.
Med. 2020, 8, 1–16. [CrossRef]

39. Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral
Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care 2010, 33,
920–922. [CrossRef] [PubMed]

40. Licenziati, M.R.; Iannuzzo, G.; Morlino, D.; Campana, G.; Renis, M.; Iannuzzi, A.; Valerio, G. Fat Mass and Vascular Health in
Overweight/Obese Children. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1317–1323. [CrossRef]

41. Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin
Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419.
[CrossRef] [PubMed]

42. Maffeis, C.; Banzato, C.; Talamini, G.; Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology.
Waist-to-Height Ratio, a Useful Index to Identify High Metabolic Risk in Overweight Children. J. Pediatr. 2008, 152, 207–213.
[CrossRef]

43. d’Annunzio, G.; Vanelli, M.; Pistorio, A.; Minuto, N.; Bergamino, L.; Iafusco, D.; Lorini, R.; Diabetes Study Group of the Italian
Society for Pediatric Endocrinology and Diabetes. Insulin Resistance and Secretion in Healthy Italian Children and Adolescents:
A Multicentre Study. Acta Bio-Med. Atenei Parm. 2009, 80, 21–28.

44. Videira-Silva, A.; Fonseca, H. The effect of a physical activity consultation on body mass index z-score of overweight adolescents:
Results from a pediatric outpatient obesity clinic. Eur. J. Pediatrics 2017, 176, 655–660. [CrossRef]

45. Pratley, R.E.; Weyer, C. The Role of Impaired Early Insulin Secretion in the Pathogenesis of Type II Diabetes Mellitus. Diabetologia
2001, 44, 929–945. [CrossRef] [PubMed]

46. Hadjiyannakis, S. The Metabolic Syndrome in Children and Adolescents. Paediatr. Child Health 2005, 10, 41–47. [CrossRef]
47. Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr. Diabetes Rev.

2020, 16, 220–229. [CrossRef] [PubMed]
48. Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte Dysfunctions Linking Obesity to Insulin Resistance and Type 2

Diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [CrossRef] [PubMed]
49. Roth, C.L.; Reinehr, T. Roles of Gastrointestinal and Adipose Tissue Peptides in Childhood Obesity and Changes after Weight

Loss Due to Lifestyle Intervention. Arch. Pediatr. Adolesc. Med. 2010, 164, 131–138. [CrossRef]
50. Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.;

Almgren, P.; et al. Novel Subgroups of Adult-Onset Diabetes and Their Association with Outcomes: A Data-Driven Cluster
Analysis of Six Variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [CrossRef]

51. Friend, A.; Craig, L.; Turner, S. The Prevalence of Metabolic Syndrome in Children: A Systematic Review of the Literature. Metab.
Syndr. Relat. Disord. 2013, 11, 71–80. [CrossRef] [PubMed]

52. Agudelo, G.M.; Bedoya, G.; Estrada, A.; Patiño, F.A.; Muñoz, A.M.; Velásquez, C.M. Variations in the Prevalence of Metabolic
Syndrome in Adolescents According to Different Criteria Used for Diagnosis: Which Definition Should Be Chosen for This Age
Group? Metab. Syndr. Relat. Disord. 2014, 12, 202–209. [CrossRef]

53. Aguilar-Salinas, C.A.; García, E.G.; Robles, L.; Riaño, D.; Ruiz-Gomez, D.G.; García-Ulloa, A.C.; Melgarejo, M.A.; Zamora, M.;
Guillen-Pineda, L.E.; Mehta, R.; et al. High Adiponectin Concentrations Are Associated with the Metabolically Healthy Obese
Phenotype. J. Clin. Endocrinol. Metab. 2008, 93, 4075–4079. [CrossRef] [PubMed]

54. Karelis, A.D.; Faraj, M.; Bastard, J.-P.; St-Pierre, D.H.; Brochu, M.; Prud’homme, D.; Rabasa-Lhoret, R. The Metabolically Healthy
but Obese Individual Presents a Favorable Inflammation Profile. J. Clin. Endocrinol. Metab. 2005, 90, 4145–4150. [CrossRef]

55. Brochu, M.; Tchernof, A.; Dionne, I.J.; Sites, C.K.; Eltabbakh, G.H.; Sims, E.A.; Poehlman, E.T. What Are the Physical Characteristics
Associated with a Normal Metabolic Profile despite a High Level of Obesity in Postmenopausal Women? J. Clin. Endocrinol.
Metab. 2001, 86, 1020–1025. [CrossRef]

56. Kwon, B.-J.; Kim, D.-W.; Her, S.-H.; Kim, D.-B.; Jang, S.-W.; Cho, E.-J.; Ihm, S.-H.; Kim, H.-Y.; Youn, H.-J.; Seung, K.-B.; et al.
Metabolically Obese Status with Normal Weight Is Associated with Both the Prevalence and Severity of Angiographic Coronary
Artery Disease. Metabolism 2013, 62, 952–960. [CrossRef]

http://doi.org/10.1515/jpem-2017-0239
http://www.ncbi.nlm.nih.gov/pubmed/29127769
http://doi.org/10.1136/adc.44.235.291
http://www.ncbi.nlm.nih.gov/pubmed/5785179
http://doi.org/10.1136/adc.45.239.13
http://www.ncbi.nlm.nih.gov/pubmed/5440182
https://www.who.int/tools/child-growth-standards
http://doi.org/10.1371/journal.pone.0039504
http://www.ncbi.nlm.nih.gov/pubmed/22815707
http://doi.org/10.4236/jbm.2020.82001
http://doi.org/10.2337/dc09-1825
http://www.ncbi.nlm.nih.gov/pubmed/20067971
http://doi.org/10.1016/j.numecd.2020.12.017
http://doi.org/10.1007/BF00280883
http://www.ncbi.nlm.nih.gov/pubmed/3899825
http://doi.org/10.1016/j.jpeds.2007.09.021
http://doi.org/10.1007/s00431-017-2892-1
http://doi.org/10.1007/s001250100580
http://www.ncbi.nlm.nih.gov/pubmed/11484070
http://doi.org/10.1093/pch/10.1.41
http://doi.org/10.2174/1573399814666180608074510
http://www.ncbi.nlm.nih.gov/pubmed/29879890
http://doi.org/10.1038/nrm2391
http://www.ncbi.nlm.nih.gov/pubmed/18401346
http://doi.org/10.1001/archpediatrics.2009.265
http://doi.org/10.1016/S2213-8587(18)30051-2
http://doi.org/10.1089/met.2012.0122
http://www.ncbi.nlm.nih.gov/pubmed/23249214
http://doi.org/10.1089/met.2013.0127
http://doi.org/10.1210/jc.2007-2724
http://www.ncbi.nlm.nih.gov/pubmed/18682512
http://doi.org/10.1210/jc.2005-0482
http://doi.org/10.1210/jcem.86.3.7365
http://doi.org/10.1016/j.metabol.2013.01.006


J. Clin. Med. 2022, 11, 1856 15 of 15

57. Navarro-González, D.; Sánchez-Íñigo, L.; Pastrana-Delgado, J.; Fernández-Montero, A.; Martinez, J.A. Triglyceride-Glucose Index
(TyG Index) in Comparison with Fasting Plasma Glucose Improved Diabetes Prediction in Patients with Normal Fasting Glucose:
The Vascular-Metabolic CUN Cohort. Prev. Med. 2016, 86, 99–105. [CrossRef] [PubMed]

58. Shimodaira, M.; Niwa, T.; Nakajima, K.; Kobayashi, M.; Hanyu, N.; Nakayama, T. Serum Triglyceride Levels Correlated with
the Rate of Change in Insulin Secretion over Two Years in Prediabetic Subjects. Ann. Nutr. Metab. 2014, 64, 38–43. [CrossRef]
[PubMed]

59. Freedman, D.S.; Srinivasan, S.R.; Harsha, D.W.; Webber, L.S.; Berenson, G.S. Relation of Body Fat Patterning to Lipid and
Lipoprotein Concentrations in Children and Adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 1989, 50, 930–939.
[CrossRef]

60. Calcaterra, V.; Biganzoli, G.; Pelizzo, G.; Cena, H.; Rizzuto, A.; Penagini, F.; Verduci, E.; Bosetti, A.; Lucini, D.; Biganzoli, E.; et al.
A Multivariate Pattern Analysis of Metabolic Profile in Neurologically Impaired Children and Adolescents. Children 2021, 8, 186.
[CrossRef] [PubMed]

61. Zhang, M.; Wang, B.; Liu, Y.; Sun, X.; Luo, X.; Wang, C.; Li, L.; Zhang, L.; Ren, Y.; Zhao, Y.; et al. Cumulative Increased Risk
of Incident Type 2 Diabetes Mellitus with Increasing Triglyceride Glucose Index in Normal-Weight People: The Rural Chinese
Cohort Study. Cardiovasc. Diabetol. 2017, 16, 30. [CrossRef] [PubMed]

62. Sánchez-Íñigo, L.; Navarro-González, D.; Pastrana-Delgado, J.; Fernández-Montero, A.; Martínez, J.A. Association of Triglycerides
and New Lipid Markers with the Incidence of Hypertension in a Spanish Cohort. J. Hypertens. 2016, 34, 1257–1265. [CrossRef]
[PubMed]

63. Zhang, S.; Du, T.; Zhang, J.; Lu, H.; Lin, X.; Xie, J.; Yang, Y.; Yu, X. The Triglyceride and Glucose Index (TyG) Is an Effective
Biomarker to Identify Nonalcoholic Fatty Liver Disease. Lipids Health Dis. 2017, 16, 15. [CrossRef] [PubMed]

64. Sánchez-Íñigo, L.; Navarro-González, D.; Fernández-Montero, A.; Pastrana-Delgado, J.; Martínez, J.A. The TyG Index May Predict
the Development of Cardiovascular Events. Eur. J. Clin. Investig. 2016, 46, 189–197. [CrossRef] [PubMed]

65. Hsu, C.-N.; Hou, C.-Y.; Hsu, W.-H.; Tain, Y.-L. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects.
Int. J. Mol. Sci. 2021, 22, 11872. [CrossRef] [PubMed]

66. Soleimani, M. Insulin Resistance and Hypertension: New Insights. Kidney Int. 2015, 87, 497–499. [CrossRef]
67. Raitakari, O.T.; Juonala, M.; Kähönen, M.; Taittonen, L.; Laitinen, T.; Mäki-Torkko, N.; Järvisalo, M.J.; Uhari, M.; Jokinen, E.;

Rönnemaa, T.; et al. Cardiovascular Risk Factors in Childhood and Carotid Artery Intima-Media Thickness in Adulthood: The
Cardiovascular Risk in Young Finns Study. JAMA 2003, 290, 2277–2283. [CrossRef] [PubMed]

68. Nittari, G.; Scuri, S.; Petrelli, F.; Pirillo, I.; di Luca, N.M.; Grappasonni, I. Fighting Obesity in Children from European World
Health Organization Member States. Epidemiological Data, Medical-Social Aspects, and Prevention Programs. Clin. Ter. 2019,
170, e223–e230. [CrossRef] [PubMed]

69. Muñoz-Garach, A.; Cornejo-Pareja, I.; Tinahones, F.J. Does Metabolically Healthy Obesity Exist? Nutrients 2016, 8, 320. [CrossRef]
[PubMed]

70. Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [CrossRef]
71. Bell, J.A.; Hamer, M.; Batty, G.D.; Singh-Manoux, A.; Sabia, S.; Kivimäki, M. Incidence of Metabolic Risk Factors among Healthy

Obese Adults: 20-Year Follow-Up. J. Am. Coll. Cardiol. 2015, 66, 871–873. [CrossRef] [PubMed]
72. Alberti, K.G.M.M.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The Metabolic Syndrome—A New

Worldwide Definition. Lancet 2005, 366, 1059–1062. [CrossRef]
73. Johnson, R.J.; Perez-Pozo, S.E.; Sautin, Y.Y.; Manitius, J.; Sanchez-Lozada, L.G.; Feig, D.I.; Shafiu, M.; Segal, M.; Glassock, R.J.;

Shimada, M.; et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocr. Rev. 2009, 30,
96–116. [CrossRef] [PubMed]

74. Hübers, M.; Geisler, C.; Plachta-Danielzik, S.; Müller, M.J. Association between Individual Fat Depots and Cardio-Metabolic
Traits in Normal- and Overweight Children, Adolescents and Adults. Nutr. Diabetes 2017, 7, e267. [CrossRef] [PubMed]

75. Lemieux, I.; Poirier, P.; Bergeron, J.; Alméras, N.; Lamarche, B.; Cantin, B.; Dagenais, G.R.; Després, J.-P. Hypertriglyceridemic
Waist: A Useful Screening Phenotype in Preventive Cardiology? Can. J. Cardiol. 2007, 23, 23B–31B. [CrossRef]

76. Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically Healthy Obesity: Facts and Fantasies. J. Clin. Investig. 2019, 129, 3978–3989.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.ypmed.2016.01.022
http://www.ncbi.nlm.nih.gov/pubmed/26854766
http://doi.org/10.1159/000360012
http://www.ncbi.nlm.nih.gov/pubmed/24732283
http://doi.org/10.1093/ajcn/50.5.930
http://doi.org/10.3390/children8030186
http://www.ncbi.nlm.nih.gov/pubmed/33804501
http://doi.org/10.1186/s12933-017-0514-x
http://www.ncbi.nlm.nih.gov/pubmed/28249577
http://doi.org/10.1097/HJH.0000000000000941
http://www.ncbi.nlm.nih.gov/pubmed/27136314
http://doi.org/10.1186/s12944-017-0409-6
http://www.ncbi.nlm.nih.gov/pubmed/28103934
http://doi.org/10.1111/eci.12583
http://www.ncbi.nlm.nih.gov/pubmed/26683265
http://doi.org/10.3390/ijms222111872
http://www.ncbi.nlm.nih.gov/pubmed/34769303
http://doi.org/10.1038/ki.2014.392
http://doi.org/10.1001/jama.290.17.2277
http://www.ncbi.nlm.nih.gov/pubmed/14600186
http://doi.org/10.7417/CT.2019.2137
http://www.ncbi.nlm.nih.gov/pubmed/31173054
http://doi.org/10.3390/nu8060320
http://www.ncbi.nlm.nih.gov/pubmed/27258304
http://doi.org/10.1210/endrev/bnaa004
http://doi.org/10.1016/j.jacc.2015.06.014
http://www.ncbi.nlm.nih.gov/pubmed/26271072
http://doi.org/10.1016/S0140-6736(05)67402-8
http://doi.org/10.1210/er.2008-0033
http://www.ncbi.nlm.nih.gov/pubmed/19151107
http://doi.org/10.1038/nutd.2017.20
http://www.ncbi.nlm.nih.gov/pubmed/28481336
http://doi.org/10.1016/S0828-282X(07)71007-3
http://doi.org/10.1172/JCI129186
http://www.ncbi.nlm.nih.gov/pubmed/31524630

	Introduction 
	Materials and Methods 
	Patients 
	Clinical Examination 
	Biochemical Evaluation 
	Statistical Analysis 

	Results 
	Univariate Analysis 
	Multivariate Analysis 
	Principal Component Analysis 
	Cluster Analysis 


	Discussion 
	Conclusions 
	References

