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a b s t r a c t

Here we propose and analyze a mathematical model that aims to describe the
marble sulphation process occurring in a given material. The model accounts for
rugosity as well as for damaging effects. This model is characterized by some
technical difficulties that seem hard to overcome from a theoretical viewpoint.
Therefore, we introduce some physically reasonable modifications in order to
establish the existence of a suitable notion of solution on a given time interval.
Numerical simulations are presented and discussed, also in view of further research.
©2023 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Predicting the behavior of monumental stones under weathering and other damage phenomena is a
difficult and greatly relevant problem for people working in the field of conservation and restoration of
cultural heritage. Several factors contribute to this kind of processes, which are eventually the results of
the interaction of various mechanisms, including chemical reactions and mechanically induced stresses, see
for instance [1–4].

During the last twenty years advanced mathematical models have been proposed to describe some of these
damage phenomena, with a specific focus on chemical aggression. In [5,6], a family of models was introduced
to describe the aggression mechanisms due to sulphur dioxide (SO2), which reacts with calcium carbonate
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of stones to produce, after a possibly complicated chain of reaction, an external layer of gypsum (CaSO4),
hich is more liable to deteriorate. Other phenomena, as the effect of high permeability, swelling and the
ffects of humidity, were considered in [7,8]. These models were analyzed in depth in [9–12], where some
nalytical results were established, also with respect to the qualitative behavior of the materials.

In [13], we studied the same basic sulphation model of [5], but introducing a new coupling between bulk
nd surface evolution equations to include the effects of surface rugosity, i.e. the local microscopic variation
f a surface with respect to a flat configuration.

In the present paper we are going to perform another step in building an effective damage theory of stones,
y coupling the chemical effect considered by the model in [13] with elastic damage due to mechanical stress
ntroduced in [14], partially inspired by the results in [15]. For a first attempt to consider a coupling between
hemical and mechanical phenomena see also [16], where the alternative Barenblatt–Kachanov framework
as considered.
To be more specific, here we consider a monument made of a calcium carbonate stone, located in a smooth

ounded domain Ω ⊆ R3, with boundary Γ , and subjected to a degradation process during a time interval
0, T ), for any given T > 0. To describe this phenomenon, we introduce the following variables: s is the SO2
orous concentration inside the material, c stands for the local density of CaCO3, u accounts for (small)
lastic displacements, and χ is a damage parameter. On the boundary Γ we model the rugosity through a
ariable r (see [13] for more details).

Let us focus on the new unknown χ, which can be interpreted as a macroscopic measure of the state of
amage of the material (see [14,15]). More precisely, referring to the phase transition theory (in solids), χ
tands for the local proportion of the unbroken bonds at the microscopic level. This means that

• χ = 1 represents completely undamaged material;
• χ = 0 represents completely damaged material;
• χ ∈ (0, 1) represents intermediate cases.

It is known that damage may be viewed as the losing of stiffness of the material, so that we are assuming
that the stiffness matrix degenerates (for the complete damage model) once χ vanishes somewhere.

Let us now introduce some other meaningful physical quantities needed to model the phenomenon. We
enote by ϕ(c, χ) the porosity of the material, which depends on the state of the microscopic cohesion as
ell as on c. We also assume that the diffusion coefficient for the gradient of χ may depend on both χ and c
nd we denote it by a(χ, c). The function w(c, χ) is a cohesive function forcing χ towards 1 and decreasing
s χ ↘ 0 and as c decreases (i.e. we suppose that gypsum is less cohesive than marble). The stiffness of
he material is assumed degenerating once χ = 0 and equal to χ2. Following [15], we also take a scalar
isplacement u for the sake of simplicity. Then a possible model reads as follows

roblem P . Find (s, c, r, χ, u) such that

∂t(ϕ(c, χ)s) − div (ϕ(c, χ)∇s) = −ϕ(c, χ)sc, in Ω × (0, T ),
ϕ(c, χ)∂ns = −ν(r)(s− se), on Γ × (0, T ),
∂tc = −ϕ(c, χ)cs, in Ω × (0, T ),
∂tr + ∂I[0,+∞)(r) + Ψ ′(r) +G(r, c, s, χ) ∋ F, on Γ × (0, T ),
∂tχ− div (a(c, χ)∇χ) + ∂I[0,1](χ) ∋ W (χ, c) − χk(c)|∇u|2, in Ω × (0, T ),
∂nχ = 0, on Γ × (0, T ),
− div (χ2k(c)∇u) = f, in Ω × (0, T ),
u = uΓ , on Γ × (0, T ),
s(0) = s0, c(0) = c0, χ(0) = χ0, in Ω , r(0) = r0, on Γ ,
2
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where se, Ψ , F , f , uγ , s0, c0, χ0 are given functions and the following relations hold:

0 ≤ c0(x) ≤ C0, 0 ≤ s0(x) ≤ S0, ∀x ∈ Ω , (1.1)
r0 ≥ 0, on Γ , 0 ≤ se ≤ S0, on Γ , (1.2)
0 ≤ χ0(x) ≤ 1, ∀x ∈ Ω , ∂nχ0 = 0, on Γ , (1.3)
ϕ(c, χ) = (A+Bc)(1 + χ0 − χ) := ϕ1(c)ϕ2(χ), (1.4)
A > 0, A+BC0 > 0, B ≤ (S0)−1, (1.5)
a(c, χ) = (γc+ δ) (χ+ 1), with γσ + δ ≥ γ1 > 0, ∀σ ∈ [0, C0], (1.6)
k(c) = αc+ β, α ≥ 0, β > 0, (1.7)
W (χ, c) = ηc(1 − χ), η > 0, (1.8)
ν(·) ≥ 0, in R, (1.9)
ϕ(c0, χ0)∂ns0 = −ν(r0)(s0 − se), on Γ . (1.10)

The function G accounts for the effects of c, s and χ on the rugosity r and satisfies G(r, 0, s, χ) =
G(r, c, 0, χ) = 0. A tentative expression for a function G depending on ϕ1(c) is given in [13, Eq.(5.2)], when
G does not depend on χ. The function Ψ is sufficiently smooth and represents a non-monotone potential
depending on r. The function F takes into account possible external actions responsible for the formation
of rugosity on the boundary, like, for instance, wind, rain or temperature variations, while f stands for the
volume forces acting on the body. The existence of a solution to the full problem P seems hard to establish for
the following reasons: the too strong dependence of ϕ on χ and of G on its variables and, more importantly,
the degeneracy of the stationary equation for u. In the latter case, we observe that the regularity we can
obtain for χ seems too low to proceed using known techniques. Therefore we introduce some physically
reasonable modifications that allow us to establish the existence of a (weak) solution.

First of all, we replace χ by its time relaxation as follows. Let us take h > 0 fixed and introduce
kh(t) = 1

he
−t/h. Hence, we consider

χ̂(t) = (kh ∗ χ)(t) + hkh(t)χ0 =
∫ t

0
kh(t− s)χ(s) ds+ hkh(t)χ0. (1.11)

Remark 1.1. The choice of the variable χ̂ in the porosity ϕ and the diffusion coefficient a corresponds to
introduce a time relaxation on the phase variable χ.

Indeed, we could introduce χ̂ as the solution of the initial value problem

h∂tχ̂+ χ̂ = χ, χ̂(0) = χ0.

We point out that (cf. (1.11))
χ̂(t) ≤ 1 + χ0 − e−T/h, ∀t ∈ [0, T ].

Thus, we deduce that
1 + χ0 − χ̂(t) ≥ e−T/h > 0.

Moreover, from (1.4) we can infer that for c ∈ [0, C0] there holds

ϕ(c, χ̂) ≥ min{A+BC0, Ae
−T/h} = m > 0. (1.12)

Concerning G we require that it acts as a suitable weak–strong continuous operator with respect to its
variables (see (2.10) below). In the equation for u we add the term ε|∇u|2∇u for some fixed ε > 0. Thanks

to this penalization of the energy functional, we can handle the degeneracy as well as to have a sufficiently

3
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smooth right hand-side in the evolution equation for χ (cf. [15] where a quadratic penalization suffices).
nce we prove the existence of a solution, we shall also analyze what happens when ε goes to 0 along the

ines of [15]. Summing up, we consider the following regularized problem

roblem Pε. Find (s, c, r, χ, u) such that

∂t(ϕ(c, χ̂)s) − div (ϕ(c, χ̂)∇s) = −ϕ(c, χ̂)sc, in Ω × (0, T ),
ϕ(c, χ̂)∂ns = −ν(r)(s− se), on Γ × (0, T ),
∂tc = −ϕ(c, χ̂)cs, in Ω × (0, T ),
∂tr + ∂I[0,+∞)(r) + Ψ ′(r) +G(r, c, s, χ) ∋ F, on Γ × (0, T ),
∂tχ− div (a(c, χ̂)∇χ) + ∂I[0,1](χ) ∋ W (χ, c) − χk(c)|∇u|2, in Ω × (0, T ),
∂nχ = 0, on Γ × (0, T ),
− div (ε|∇u|2∇u+ χ2k(c)∇u) = f, in Ω × (0, T ),
u = uΓ , on Γ × (0, T ),
s(0) = s0, c(0) = c0, χ(0) = χ0, in Ω , r(0) = r0, on Γ .

Our main theoretical result is the existence of a suitable notion of solution to problem Pε. Then we discuss
he limit case ε ↘ 0 and we propose and investigate some numerical simulations.

The plan of the paper is as follows. In the next section we report our main assumptions, we define a
uitable notion of solution for problem Pε and we state our main result. Section 3 is devoted to the time
iscretization of problem Pε, by giving a full proof of the existence of these solutions and their uniform
ounds. To pass to the limit with respect to the time step, we introduce a standard time interpolation of
he discrete solution, to reformulate the problem in a continuum time setting (see Section 3.4). In Section 4,
e pass into the limit as the time step τ → 0 and we find a solution to problem Pε. What happens as ε
oes to 0 is discussed in Section 5. There, making some restrictions, we show that the limit problem has
solution which is weaker than the previous one since a Radon measure (defect measure) appears on the

ight-hand side of the equation for χ (cf. [15] and below). Finally, in Section 6, some numerical tests are
roposed to understand the analytical difficulties given by the lack of regularity of the damage function χ

ompared with its time relaxation χ̂.
Observe that in the equation for χ the mutual interaction between chemical and mechanical degradation

s taken into account as well as the behavior of the nonlinear term χ|∇u|2. Actually, according to [15], the
o-called internal stress √

χ∇u is a good descriptor of the internal behavior of the material. The lack of
trong convergence for such a term when ε goes to 0 yields a supplementary term, called defect measure, on
he right-hand side of the equation for χ, which corresponds to the emergence of a full damage, namely a
et where χ = 0. The localization of this set was analyzed in the case of a pure damage system (see [15]).

In our more complicated case this is a possible subject of future investigations.

2. Assumptions and main theorem

In this section we introduce additional assumptions on the data and we formulate the main theorem giving
first a rigorous definition of a solution to Problem Pε.

In addition to the relations (1.1)–(1.10) we consider the following regularity assumptions on the data

c0, s0 ∈ H2(Ω), (2.1)
r0 ∈ L2(Γ ), W (r0) ∈ L1(Γ ), (2.2)
s ∈ H1/2(Γ ), (2.3)
e

4
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uΓ ∈ W 3/4,4(Γ ), (2.4)
χ0 ∈ H2(Ω), (2.5)
Ψ ∈ W 2,∞(R), (2.6)
F ∈ L2(0, T ;L2(Γ )), (2.7)
f ∈ L∞(0, T ;L2(Ω)), (2.8)
ν ∈ W 1,∞(R). (2.9)

n the account of the above assumptions, note that some inequalities and identities in (1.1)–(1.10) must
ow be understood almost everywhere.

As far as the function G we suppose

G : L∞(0, T ;L2(Γ ))4 → L∞(0, T ;L2(Γ )), (2.10)
∥G(v)∥L∞(0,T ;L2(Γ)) ≤ CG∥v∥L∞(0,T ;L2(Γ))4 ,

∀ vn ⇀ v in L2(0, T ;L2(Γ ))4 ⇒ G(vn) → G(v) in L2(0, T ;L2(Γ )).

emark 2.1. For an analysis on functions G with a regularizing effect on the boundary see for instance
he friction models in [17].

Let us denote by ũΓ the harmonic extension uΓ to Ω . We can now formulate our rigorous notion of
olution to problem Pε, namely,

efinition 2.2. (s, c, r, χ, ζ, u) is called a solution to problem Pε if

s ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), s ∈ [0, S0], a.e. in Ω × (0, T ), (2.11)
c ∈ W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)), c ∈ [0, C0], a.e. in Ω × (0, T ), (2.12)
r ∈ H1(0, T ;L2(Γ )), r ≥ 0, a.e. on Γ × (0, T ), (2.13)
χ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), χ ∈ [0, 1], a.e. in Ω × (0, T ), (2.14)
ζ ∈ L2(0, T ;L2(Ω)), (2.15)
u ∈ L∞(0, T ;W 1,4(Ω)), (2.16)∫

Ω

∂t(ϕ(c, χ̂)s)v +
∫
Ω

ϕ(c, χ̂)∇s · ∇v +
∫
Γ

ν(r)(s− se)v (2.17)

= −
∫
Ω

ϕ(c, χ̂)scv, ∀ v ∈ H1(Ω), a.e. in (0, T ),

∂tc = −ϕ(c, χ̂)cs, a.e. in Ω × (0, T ), (2.18)
∂tr + ξ + Ψ ′(r) +G(r, c, s, χ) = F, ξ ∈ ∂I[0,+∞)(r), a.e. on Γ × (0, T ), (2.19)∫

Ω

∂tχw +
∫
Ω

a(c, χ̂)∇χ · ∇w +
∫
Ω

ζw (2.20)

=
∫
Ω

(W (χ, c) − χk(c)|∇u|2)w, ∀w ∈ H1(Ω), a.e. in (0, T ),

ζ ∈ ∂I[0,1](χ), a.e. on Ω × (0, T ), (2.21)∫
Ω

(ε|∇u|2∇u+ χ2k(c)∇u) · ∇(z − ũΓ ) =
∫
Ω

f(z − ũΓ ), (2.22)

∀ z ∈ W 1,4(Ω) s.t. z − ũΓ ∈ W 1,4
0 (Ω), a.e. in (0, T ),

s(0) = s0, c(0) = c0, χ(0) = χ0, a.e. in Ω , r(0) = r0, a.e. on Γ . (2.23)

Our existence result is given by

5
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Theorem 2.3. Let (1.1)–(1.10) and (2.1)–(2.10) hold. Then problem Pε has a solution in the sense of
Definition 2.2.

Remark 2.4. In the simplified model [13] damage is not considered, that is, only equations related to
the variables s, c, r are analyzed. For the corresponding initial and boundary value problem we proved the
existence of a global solution. We take this opportunity to correct a mistake done in [13, 3.3], namely, in (3.25)
the Gronwall lemma should be preliminarily used to handle the first and the sixth term on the left-hand
side of (3.25).

The proof of Theorem 2.3 is split into two sections. Section 3 is devoted to introduce a time discretization
scheme and obtain a number of suitable a priori estimates. These estimates are then used in Section 4 to
pass to the limit with respect to the time step and conclude the proof.

3. Time discretization of Pε

Here and in the following sections, the dependence on ε of the solutions to Problem Pε and to its
iscretized version will be omitted for the sake of simplicity.

We introduce τ = T
N , for N ∈ N\{0} so that we have a partition of [0, T ] given by tn = nτ , n = 0, . . . , N .

We first define the discretized convolution by setting

χ̂0 = χ0, χ̂i = τ

i∑
j=1

(kh)i−j+1χj + hχ0(kh)i, i = 1, . . . , N, (3.1)

here (kh)i is an approximation of the kernel kh given by (kh)i = 1
he

−(iτ)/h. Then, recalling (2.7) and (2.8),
we set

Fi(τ) = 1
τ

∫ iτ

(i−1)τ

F (t)dt, (3.2)

and
fi(τ) = 1

τ

∫ iτ

(i−1)τ

f(t)dt.

bserve that Fi ∈ L2(Γ ) and fi ∈ L2(Ω) for i = 1, . . . , N .

.1. Problem PN
ε

The discretized version of Pε can be written as follows.

roblem PN
ε . Find vectors

(s1, . . . , sN ) ∈ H2(Ω)N (3.3)

(c1, . . . , cN ) ∈ H2(Ω)N (3.4)

(r1, . . . , rN ) ∈ L2(Γ )N (3.5)

(χ1, . . . , χN ) ∈ H1(Ω)N (3.6)

(u1, . . . ., uN ) ∈ W 1,4(Ω)N (3.7)

uch that, for i = 1, . . . , N ,

χ ∈ [0, 1], r ≥ 0, c ∈ [0, C ], s ∈ [0, S ], (3.8)
i i i 0 i 0

6
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ϕ(ci, χ̂i)si − ϕ(ci−1, χ̂i−1)si−1

τ
− div (ϕ(ci−1, χ̂i−1)∇si) (3.9)

= −ϕ(ci−1, χ̂i−1)si−1ci, a.e. in Ω ,

ϕ(ci−1, χ̂i−1)∂nsi = −ν(ri)(si − se), a.e. on Γ , (3.10)
ci − ci−1

τ
= −ϕ(ci−1, χ̂i−1)cisi−1, a.e. in Ω , (3.11)

ri − ri−1

τ
+ ξi + Ψ ′(ri) +G(ri−1, ci−1, si−1, χi−1) = Fi, (3.12)

ξi ∈ ∂I[0,+∞)(ri), a.e. on Γ ,

χi − χi−1

τ
− div (a(ci−1, χ̂i−1)∇χi) + ζi = W (χi−1, ci−1) − χik(ci−1)|∇ui|2, (3.13)

ζi ∈ ∂I[0,1](χi), a.e. in Ω ,

∂nχi = 0, a.e. on Γ , (3.14)

− div (ε|∇ui|2∇ui + χ2
i k(ci−1)∇ui) = fi, a.e. in Ω , (3.15)

ui = uΓ , a.e. on Γ , (3.16)

where (s0, c0, r0, χ0) satisfies (2.1), (2.2), and (2.5).

3.2. Existence of a discrete solution

We proceed by induction on i. Thus, we suppose to know

(sj , cj , rj , χj , uj) ∈ H2(Ω) ×H2(Ω) × L2(Γ ) ×H2(Ω) ×W 1,4(Ω), (3.17)
χj ∈ [0, 1], rj ≥ 0, (3.18)
cj ∈ [0, C0], sj ∈ [0, S0], (3.19)

for j = 0, . . . , i− 1. Then we observe that we also know χ̂j for j = 0, . . . , i− 1 (see (3.1)). We now look for
(si, ci, ri, χi, ui) ∈ H2(Ω) × H2(Ω) × L2(Γ ) × H1(Ω) × W 1,4(Ω) solving (3.8)–(3.16). Note that, since χ0
and c0 are given, then u0 can be introduced as the unique solution to the boundary value problem (see also
(1.7))

−div (ε|∇u0|2∇u0 + βχ2
0∇u0) = f0, a.e. in Ω and u0 = uΓ , a.e. on Γ .

Step 1. Thanks to (3.11) we get ci ∈ H2(Ω) from

ci

(
1
τ

+ ϕ(ci−1, χ̂i−1)si−1

)
= 1
τ
ci−1. (3.20)

oreover, ci ∈ [0, C0] for any i, since by induction it follows from (3.20) that ci ≥ 0 and consequently that
i ≤ ci−1. In addition, we can infer from (3.11) that, independently of i,

1
τ

∥ci − ci−1∥L∞(Ω) ≤ C. (3.21)

tep 2. Let us rewrite (3.12) as follows

(Id+ τ∂W )(ri) + τΨ ′(ri) ∋ ri−1 − τG(ri−1, ci−1, si−1, χi−1) + τFi. (3.22)

sing [18, Corollary 2.7] and exploiting the fact that Ψ ′ is Lipschitz, we get the existence and uniqueness
2
f the solution ri ∈ L (Γ ) and ri ≥ 0.

7
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Step 3. We now substitute the obtained solution ri in (3.10) as well as χ̂i and ci in (3.9). Thus, we can solve

ϕ(ci, χ̂i)si − τdiv (ϕ(ci−1, χ̂i−1)∇si) = −τϕ(ci−1, χ̂i−1)si−1ci + ϕ(ci−1, χ̂i−1)si−1 (3.23)

equipped with the resulting boundary condition (3.10). Using Lax–Milgram theorem and standard results
for elliptic equations, we get that there exists a unique solution si ∈ H2(Ω). Moreover, we observe that
letting τ sufficiently small, the right hand side of (3.23) turns out to be non negative by induction (see also
(1.4)–(1.5)). The positivity of si can be proved by a maximum principle argument (it is a standard matter
testing the equation by −(si)−). Then, we prove that zi = si − S0 ≤ 0. To this aim we test the following
equation

ϕ(ci, χ̂i)zi − τdiv (ϕ(ci−1, χ̂i−1)∇zi) = −τϕ(ci−1, χ̂i−1)zi−1ci + ϕ(ci−1, χ̂i−1)zi−1 (3.24)

by (si − S0)+. Due to the fact that the right hand side is non-positive by induction (indeed zi−1 ≤ 0 once
i−1 ≤ S0) and the fact that the boundary condition turns out to be (see (1.2), (1.9), and (3.10))

ϕ(ci−1, χ̂i−1)∂nzi + ν(ri)zi = −ν(ri)(S0 − se), (3.25)

e eventually deduce the result and thus si ∈ [0, S0].
Step 4. Here we aim to solve (3.13)–(3.16) once ci, ri, si are known. Due to the fact that the two equations

re coupled by implicit contributions, we use a fixed point argument.
Suppose χi = χ̄i is given in (3.15) and such that

χ̄i ∈ L2(Ω), χ̄i ∈ [0, 1], a.e. in Ω . (3.26)

hen standard arguments entail that there exists a unique solution ui ∈ W 1,4(Ω) to the resulting equation
equipped with (3.16) (see also (2.8)). Thus we can define a map by setting

ui = T1(χ̄i). (3.27)

Recalling that ũΓ denotes the harmonic extension of uΓ , if we test (3.15) by ui − ũΓ then we obtain

ε

∫
Ω

|∇ui|4 +
∫
Ω

χ̂2
i k(ci−1)|∇ui|2

=
∫
Ω

fi(ui − ũΓ ) + ε

∫
Ω

|∇ui|2∇ui∇ũΓ +
∫
Ω

χ̂2
i k(ci−1)∇ui∇ũΓ .

hen, by Young’s inequality, we deduce (this estimate holds for any i)

∥∇ui∥L4(Ω) ≤ C. (3.28)

ote in particular that ∇ũΓi
is bounded in L2 and that ci−1 is uniformly bounded. Observe that C depends

n ε > 0.
We can now consider (3.13) with ui = T1(χ̄i) and look for a solution to

χi − τdiv (a(ci−1, χ̂i−1)∇χi) + τζi + τχik(ci−1)|∇ui|2 = χi−1 + τW (χi−1, ci−1), (3.29)

ubject to (3.14).
Note that the operator τ(∂I[0,1] +k(ci−1)|∇ui|2Id) is a maximal monotone graph, so that standard results

1
nsure the existence and uniqueness of a solution χi := T2(ui) ∈ H (Ω). Moreover, it follows that χi ∈ [0, 1]
8
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almost everywhere in Ω . In particular, if we test (3.29) by χi, exploiting the monotonicity of ∂I[0,1], we find

1
2

∫
Ω

|χi|2 + τ

∫
Ω

a(χi−1, ci−1)|∇χi|2 +
∫
Ω

χ2
i k(ci−1)|∇ui|2 (3.30)

≤ c(1 +
∫
Ω

|W (χi−1, ci−1)|2) ≤ c.

o that we have
∥χi∥H1(Ω) ≤ c. (3.31)

Testing (3.29) by ζi, using monotonicity arguments and (1.6), we (formally) obtain (see, for instance, [18]
for a rigorous justification)∫

Ω

χiζi ≥ 0,
∫
Ω

a(χi−1, ci−1)∇χi∇ζi ≥ 0, −
∫
Ω

χik(ci−1)ζi|∇ui|2 ≤ 0.

hus, by Young’s inequality we finally get

∥ζi∥L2(Ω) ≤ c. (3.32)

oreover, on account of the boundedness of χi|∇ui|2 in L2(Ω) (see (3.28) and (3.31)), by comparison in
3.29) we deduce that −div (a(χi−1, ci−1)∇χi) is bounded in (H1(Ω))∗.

We now investigate the properties of the operator T (χ̄i) = T2(T1(χ̄i)). We first point out that (3.31) (see
lso (3.26) and (3.28)) implies that T is a compact operator in L2(Ω). Let us prove that T is also a continuous
perator. Take χ̄in → χ̄i in L2(Ω). Then, by (3.28), the Poincaré inequality and weak compactness results,
e infer, up to a (not relabeled) subsequence, that

uin := T1(χ̄in) → ui weakly in W 1,4(Ω). (3.33)

n addition, we can test Eq. (3.15) written for χ̄in and uin by uin − ũΓ . This gives

ε1/4∥∇uin∥L4(Ω) + ∥χ̄2
in∇uin∥L2(Ω) ≤ c, (3.34)

or c independent of n. Hence, after observing that, at least for some subsequence, χ̄in → χ̄i in Ls(Ω), for
ll s < +∞, we find that χ̄in strongly converges in L2(Ω). Thus for some subsequence it also converges
lmost everywhere in Ω and it is uniformly bounded. On account of this, exploiting (3.33) and (3.34), we
an identify the weak limit

(χ̄in)∇uin → (χ̄i)∇ui weakly in L2(Ω). (3.35)

n the other hand, using lower semicontinuity, we find uin → ui in W 1,4(Ω). Indeed we know that

|∇uin|2∇uin → µi weakly in(W 1,4(Ω))∗

nd we can pass to the (weak) limit in Eq. (3.15) written for n. Then, we test it by uin − ũΓ and exploit
he above weak convergence and lower semicontinuity results. This yields

lim sup
n→+∞

ε

∫
Ω

|∇uin|4 (3.36)

≤ − lim inf
n→+∞

(∫
Ω

χ̄2
ink(ci−1)|∇uin|2 −

∫
Ω

fi(uin − ũΓ )

−ε
∫
Ω

|∇uin|2∇uin∇ũΓ −
∫
Ω

χ̂2
ink(ci−1)∇uin∇ũΓ

)
≤ ε

∫
µi∇ui,
Ω

9
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where we have used the (weak) limit equation. Consequently, by (3.36) we can infer that µi = |∇ui|2∇ui

nd
∫
Ω

|∇uin|4 →
∫
Ω

|∇ui|4, so that
uin → ui in W 1,4(Ω). (3.37)

Writing (3.29) at step n, by (3.31) and (3.32) we deduce (at least for some subsequence)

χin → χi strongly in L2(Ω), (3.38)
χin → χi weakly in H1(Ω), (3.39)
ζin → χi weakly in L2(Ω). (3.40)

n the other hand, by semicontinuity, we can identify ζi ∈ ∂I[0,1](χi). Moreover, we get

χin|∇uin|2 → η weakly in L2(Ω), (3.41)

here we identify η = χi|∇ui|2 due to the fact that we can extract a subsequence converging almost
verywhere in Ω , exploiting (3.37) and (3.38). Thus, we can pass to the limit also in (3.29) as n → +∞
nd identify χi = T2(ui) and thus χi = T (χ̄i). By means of the Schaeffer Theorem, we can ensure the
xistence of a discrete solution for any i, once τ is fixed.

.3. Uniform bounds for the discrete solution

We already obtained some bounds which hold for any i ∈ N. Indeed, from (3.21) we deduce

∥ci∥L∞(Ω) +
ci − ci−1

τ


L∞(Ω)

≤ C. (3.42)

n the other hand, we can rewrite (3.28) in terms of the solution

∥ui∥W 1,4(Ω) ≤ C. (3.43)

oreover, due to the definition of ∂I[0,1], we know that χi ∈ [0, 1] almost every where in Ω , for any i.

3.3.1. First estimate
We test (3.12) by ri. Recalling that

∫
Γ
ξiri ≥ 0, we have

1
2τ

∫
Γ

(|ri|2 − |ri−1|2 + |ri − ri−1|2) (3.44)

≤
∫
Γ

(|Ψ ′(ri)| + |G(ri−1, si−1, ci−1, χi−1)| + |Fi|)|ri|.

hen, summing up for i = 1, . . . , N , multiplying by τ and using Young’s inequality, we deduce

1
2∥rN ∥2

L2(Γ) + 1
2

N∑
i=1

∫
Γ

|ri − ri−1|2 (3.45)

≤ 1
2∥r0∥2

L2(Γ) + 1
4∥rN ∥2

L2(Γ)

+ τ2
(

∥Ψ ′(rN )∥2
L2(Γ) + ∥G(rN−1, sN−1, cN−1, χN−1)∥2

L2(Γ) + ∥FN ∥2
L2(Γ)

)
+ τ

N−1∑
i=1

(
∥Ψ ′(ri)∥L2(Γ) + ∥G(ri−1, si−1, ci−1, χi−1)∥L2(Γ) + ∥Fi∥L2(Γ)

)
∥ri∥L2(Γ).
10
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Thus, thanks to the Young inequality, we get for any i

∥ri∥2
L2(Γ) ≤ C. (3.46)

e now test (3.12) by ri−ri−1
τ . This yields (see (2.6) and (2.7))∫

Γ

⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐2 ≤
∫
Γ

(|Ψ ′(ri)| + |G(ri)|)
⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐+
∫
Γ

|Fi|
⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐ (3.47)

≤ 1
2

∫
Γ

⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐2 + C(1 +
∫
Γ

|Fi|2),

where C depends in particular on ∥Ψ ′∥L∞ and CG in (2.10). Here we have also used the fact that by
monotonicity we can infer ∫

Γ

ξi(ri − ri−1) ≥ 0. (3.48)

Summing up (3.47) for i = 1, . . . , N , multiplying by τ and recalling (3.2), (2.6) and (2.7), we get

τ

N∑
i=1

ri − ri−1

τ

2

L2(Γ)
≤ C. (3.49)

.3.2. Second estimate
We test (3.9) by si. Recalling [19, Proof of Lemma 4.3], observe that there holds

1
τ

∫
Ω

1
2ϕ(ci, χ̂i)|si|2 − 1

2ϕ(ci−1, χ̂i−1)|si−1|2 (3.50)

+ 1
τ

∫
Ω

1
2ϕ(ci−1, χ̂i−1)|si − si−1|2 +

∫
Ω

ϕ(ci−1, χ̂i−1)|∇si|2

= −
∫
Ω

ϕ(ci−1, χ̂i−1)si−1cisi − 1
τ

∫
Ω

1
2(ϕ(ci, χ̂i) − ϕ(ci−1, χ̂i−1))|si|2

= −
∫
Ω

ϕ(ci−1, χ̂i−1)si−1cisi − 1
τ

∫
Ω

B(ci − ci−1)ϕ2(χ̂i)|si|2

− 1
τ

∫
Ω

ϕ1(ci−1)(χ̂i − χ̂i−1)|si|2.

n the other hand, we have

(χ̂i − χ̂i−1) = τ(kh)1χi + hχ0((kh)i − (kh)i−1) (3.51)

= τ

h
e− iτ

h χi + χ0(e− iτ
h − e− (i−1)τ

h ).

Then, using the mean value theorem, we get

|χ̂i − χ̂i−1| ≤ τC. (3.52)

Summing up for i = 1, . . . , N , multiplying by τ , using (1.4), (3.42), (3.51), (3.52), and the uniform bound
on χi, we obtain, exploiting Young’s inequality,∫

Ω

1
2(ϕ(cN , χ̂N )|sN |2 − 1

2ϕ(c0, χ̂0)|s0|2) +
N∑

i=1

∫
Ω

1
2ϕ(ci−1, χ̂i−1)|si − si−1|2 (3.53)

+ τ

N∑∫
ϕ(ci−1, χ̂i−1)|∇si|2 + τ

N∑∫
ν(ri)|si|2
i=1 Ω i=1 Γ

11
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T
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≤ τ

N∑
i=1

∫
Ω

|ϕ(ci−1, χ̂i−1)si−1cisi| + Cτ

N∑
i=1

∫
Ω

|ci − ci−1

τ
∥ϕ2(χ̂i)∥si|

2

+ τC

N∑
i=1

∫
Ω

|ϕ1(ci−1)||si|2 + τ

N∑
i=1

∫
Γ

ν(ri)sise

≤ Cτ

(
N∑

i=1

∫
Ω

|si|2 +
N∑

i=1

∫
Γ

ν(ri)|se|2
)

+ τ

2

N∑
i=1

∫
Γ

ν(ri)|si|2.

hus, at least for τ sufficiently small, we infer that

∫
Ω

|sN |2 +
N∑

i=1

∫
Ω

|si − si−1|2 + τ

N∑
i=1

∫
Ω

|∇si|2 + τ

N∑
i=1

∫
Γ

|si|2 (3.54)

≤ C

(
1 + τ

N−1∑
i=1

∫
Ω

|si|2
)

and the discrete Gronwall Lemma entails

∥si∥2
L2(Ω) + τ

N∑
i=1

∥∇si∥2
L2(Ω) ≤ C. (3.55)

3.3.3. Third estimate
We want to test (3.9) by si−si−1

τ . We show the computations term by term. From the first one in the left
and-side we get∫

Ω

ϕ(ci, χ̂i)si − ϕ(ci−1, χ̂i−1)si−1

τ

(
si − si−1

τ

)
(3.56)

=
∫
Ω

ϕ(ci, χ̂i)
⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 +
∫
Ω

(ϕ(ci, χ̂i) − ϕ(ci−1, χ̂i−1))si−1

τ

(
si − si−1

τ

)
=
∫
Ω

ϕ(ci, χ̂i)
⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 +
∫
Ω

B(ci − ci−1)ϕ2(χ̂i)
si−1

τ

(
si − si−1

τ

)
+
∫
Ω

ϕ1(ci−1)(χ̂i − χ̂i−1)si−1

τ

(
si − si−1

τ

)
.

onsidering the diffusion term we obtain (see [19, Proof of Lemma 4.3])

∫
Ω

ϕ(ci−1, χ̂i−1)∇si∇
(
si − si−1

τ

)
(3.57)

=
∫
Ω

ϕ(ci−1, χ̂i−1) 1
2τ (|∇si|2 − |∇si−1|2 + |∇(si − si−1)|2)

= 1
2τ

∫
Ω

(ϕ(ci, χ̂i)|∇si|2 − ϕ(ci−1, χ̂i−1)|∇si−1|2)

− 1
2τ

∫
Ω

(ϕ(ci, χ̂i) − ϕ(ci−1, χ̂i−1))|∇si|2

+ 1
2τ

∫
Ω

ϕ(ci−1, χ̂i−1)|∇(si − si−1)|2
12
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and the contribution of the boundary term is∫
Γ

ν(ri)(si − se)
(
si − si−1

τ

)
(3.58)

=
∫
Γ

ν(ri)(si − se)
(

(si − se) − (si−1 − se)
τ

)
=
∫
Γ

ν(ri)
1
2τ (|si − se|2 − |si−1 − se|2 + |si − si−1|2)

= 1
2τ

∫
Γ

(ν(ri)|si − se|2 − ν(ri−1)|si−1 − se|2)

− 1
2τ

∫
Γ

(ν(ri) − ν(ri−1))|si−1 − se|2 + 1
2τ

∫
Γ

ν(ri)|si − si−1|2.

ombining (3.56)–(3.58), we find

∫
Ω

ϕ(ci, χ̂i)
⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 + 1
2τ

∫
Ω

(ϕ(ci, χ̂i)|∇si|2 − ϕ(ci−1, χ̂i−1)|∇si−1|2) (3.59)

+ 1
2τ

∫
Ω

ϕ(ci−1, χ̂i−1)|∇(si − si−1)|2

+ 1
2τ

∫
Γ

(ν(ri)|si − se|2 − ν(ri−1)|si−1 − se|2) + 1
2τ

∫
Γ

ν(ri)|si − si−1|2

= −
∫
Ω

B(ci − ci−1)ϕ2(χ̂i)
si−1

τ

(
si − si−1

τ

)
−
∫
Ω

ϕ1(ci−1)(χ̂i − χ̂i−1)si−1

τ

(
si − si−1

τ

)
+ 1

2τ

∫
Ω

(ϕ(ci, χ̂i) − ϕ(ci−1, χ̂i−1))|∇si|2 + 1
2τ

∫
Γ

(ν(ri) − ν(ri−1))|si−1 − se|2

−
∫
Ω

ϕ(ci−1, χ̂i−1)ci−1si−1

(
si − si−1

τ

)
.

hen, adding the left hand side of (3.59) for i = 1, . . . , N , multiplying by τ , using (1.12), (3.51), and Young’s
nequality, we deduce the estimate from below

τm

N∑
i=1

∫
Ω

⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 + 1
2m

∫
Ω

|∇sN |2 − 1
2

∫
Ω

(ϕ(c0, χ̂0))|∇s0|2 (3.60)

+ 1
2

N∑
i=1

∫
Ω

ϕ(ci−1, χ̂i−1)|∇(si − si−1)|2

+ 1
2

∫
Γ

ν(rN )|sN − se|2 − 1
2

∫
Γ

(ν(r0))|s0 − se|2 + 1
2

N∑
i=1

∫
Γ

ν(ri)|si − si−1|2

≤ τ

N∑
i=1

∫
Ω

ϕ(ci, χ̂i)
⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 + 1
2

∫
Ω

(ϕ(cN , χ̂N ))|∇sN |2 − 1
2

∫
Ω

(ϕ(c0, χ̂0)stmip)|∇s0|2

+ 1
2

N∑
i=1

∫
Ω

ϕ(ci−1, χ̂i−1)|∇(si − si−1)|2

+ 1
2

∫
Γ

(ν(rN ))|sN − se|2 − 1
2

∫
Γ

(ν(r0))|s0 − se|2 + 1
2

N∑
i=1

∫
Γ

ν(ri)|si − si−1|2.
13
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Adding now the right hand side of (3.59) for i = 1, . . . , N , multiplying by τ , and arguing as above, we infer
hat it is bounded by

τ
m

2

N∑
i=1

∫
Ω

⏐⏐⏐⏐si − si−1

τ

⏐⏐⏐⏐2 + Cτ

N∑
i=1

(∫
Ω

⏐⏐⏐⏐ci − ci−1

τ

⏐⏐⏐⏐2 |si−1|2 +
∫
Ω

|si−1|2
)

(3.61)

+ Cτ

N∑
i=1

∫
Ω

(⏐⏐⏐⏐ci − ci−1

τ

⏐⏐⏐⏐+ 1
)

|∇si|2 + 1
2τ

N∑
i=1

∫
Γ

∥ν′∥L∞

⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐ |si−1 − se|2.

ere we have used the mean value theorem and the following inequality

|ϕ(ci, χ̂i) − ϕ(ci−1, χ̂i−1)| ≤ C(|ci − ci−1| + τ). (3.62)

oncerning the last term on the right hand side of (3.61), we have (see (3.49))

τ

2

N∑
i=1

∫
Γ

∥ν′∥L∞

⏐⏐⏐⏐ri − ri−1

τ

⏐⏐⏐⏐ |si−1 − se|2 (3.63)

≤ τ

2

N∑
i=1

∥ν′∥L∞

ri − ri−1

τ


L2(Γ)

∥si−1 − se∥2
L4(Γ)

= τ

2 ∥ν′∥L∞

r1 − r0

τ


L2(Γ)

∥s0 − se∥2
L4(Γ)

+ τ

2

N−1∑
i=1

∥ν′∥L∞

ri+1 − ri

τ


L2(Γ)

∥si − se∥2
L4(Γ).

On account of (3.60) and (3.61), using Sobolev embeddings and trace theorems, and exploiting (3.21), (3.49),
(3.55), we infer that

τ

N∑
i=1

si − si−1

τ

2

L2(Ω)
+ ∥sN ∥2

H1(Ω) (3.64)

≤ C

(
1 + τ

N−1∑
i=1

(
1 +

ci − ci−1

τ


L∞(Ω)

+
ri+1 − ri

τ


L2(Γ)

)
∥si∥2

H1(Ω)

)
,

o that the discrete Gronwall Lemma yields

τ

N∑
i=1

si − si−1

τ

2

L2(Ω)
+ ∥si∥2

H1(Ω) ≤ C. (3.65)

n addition, a comparison in (3.11) gives
∥ci∥H1(Ω) ≤ C. (3.66)

.3.4. Fourth estimate
We test (3.13) by χi−χi−1

τ . Recalling that
∫
Ω
ζi(χi − χi−1) ≥ 0, we obtain∫

Ω

⏐⏐⏐⏐χi − χi−1

τ

⏐⏐⏐⏐2 + 1
2τ

∫
Ω

a(ci−1, χ̂i−1)(|∇χi|2 − |∇χi−1|2 + |∇(χi − χi−1)|2) (3.67)

≤
∫
Ω

|W (χi−1, ci−1)|
⏐⏐⏐⏐χi − χi−1

τ

⏐⏐⏐⏐+
∫
Ω

|χik(ci)||∇ui|2
⏐⏐⏐⏐χi − χi−1

τ

⏐⏐⏐⏐ .

14
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We now multiply by τ , sum for i = 1, . . . ., N , and use Young’s inequality. Thus, we get

τ

2

N∑
i=1

∫
Ω

⏐⏐⏐⏐χi − χi−1

τ

⏐⏐⏐⏐2 + 1
2

∫
Ω

a(cN , χ̂N )(|∇χN |2 − 1
2

∫
Ω

a(c0, χ0)|∇χ0|2 (3.68)

+ τ

N∑
i=1

∫
Ω

a(ci−1, χ̂i−1)|∇(χi − χi−1)|2)

≤ τ

2

N∑
i=1

∫
Ω

(
|W (χi−1, ci−1)|2 + |χik(ci)|2|∇ui|4

)
+ τ

N∑
i=1

1
2τ

∫
Ω

(a(ci, χ̂i) − a(ci−1, χ̂i−1))|∇χi|2

≤ τ

2

N∑
i=1

∫
Ω

(
|W (χi−1, ci−1)|2 + |χik(ci)|2|∇ui|4

)
+ τ

2

N∑
i=1

C

(⏐⏐⏐⏐ci − ci−1

τ

⏐⏐⏐⏐+ 1
)

|∇χi|2.

Here, we have used (1.6) and the fact that (see (3.51) and (3.62))

|a(ci, χ̂i) − a(ci−1, χ̂i−1)| ≤ C(|ci − ci−1| + τ). (3.69)

herefore, taking τ sufficiently small, using (1.6), (3.8), (3.42), and (3.43), we infer

τ

N∑
i=1

∫
Ω

⏐⏐⏐⏐χi − χi−1

τ

⏐⏐⏐⏐2 +
∫
Ω

|∇χN |2 + τ

N∑
i=1

∫
Ω

|∇(χi − χi−1)|2 (3.70)

≤ C

(
1 + τ

N−1∑
i=1

|∇χi|2
)
,

where C > 0 also depends on ε, and the discrete Gronwall Lemma yields

τ

N∑
i=1

χi − χi−1

τ

2

L2(Ω)
+ ∥∇χi∥2

L2(Ω) ≤ C. (3.71)

e now (formally) test (3.13) by ζi. Exploiting the monotonicity of the subdifferential and (1.6), we deduce
hat ∫

Ω

−div (a(ci−1, χ̂i−1)∇χi)ζi ≥ 0.

We recall that this argument can be made rigorous by using the Yosida approximation of ∂I[0,1] (see, for
nstance, [20, 2.2.4]). Arguing as we did for (3.71), we then find

τ

N∑
i=1

∥ζi∥2
L2(Ω) ≤ C. (3.72)

.4. The interpolation system
Let (vi)i=0,1,....,N be a given vector. We will use the following notation for the related interpolation
15
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f
c

functions defined on [0, T ] (recall that τ = T/N)

v̄τ (t) = vi, (3.73)
ṽτ (t) = vi−1, (3.74)

vτ (0) = v0, vτ (t) = γi(t)vi + (1 − γi(t))vi−1, γi(t) = t− (i− 1)τ
τ

, (3.75)

or t ∈ ((i− 1)τ, iτ ] and i = 1, . . . , N . Recalling the discrete system (3.9)–(3.16), we formulate the
orresponding continuous version on [0, T ]

∂t(ϕ(cτ , χ̂τ )sτ ) − div (ϕ(c̃τ , ˜̂χτ )∇s̄τ ) = −ϕ(c̃τ , ˜̂χτ )s̃τ c̄τ , a.e. in Ω × (0, T ), (3.76)
ϕ(c̃τ , ˜̂χτ )∂ns̄τ = −ν(r̄τ )(s̄τ − se), a.e. on Γ × (0, T ), (3.77)
∂tcτ = −ϕ(c̃τ , ˜̂χτ )c̄τ s̃τ , a.e. in Ω × (0, T ), (3.78)
∂trτ + ξ̄τ + Ψ ′(r̃τ ) +G(r̃τ , c̃τ , s̃τ , χ̃τ ) = Fτ , (3.79)
ξ̄τ ∈ ∂I[0,+∞)(r̄τ ), a.e. on Γ × (0, T ),
∂tχτ − div (a(c̃τ , ˜̂χτ )∇χ̄τ ) + ζ̄τ , (3.80)
= W (χ̃τ , c̃τ ) − χ̄τk(c̃τ )|∇ūτ |2, a.e. in Ω × (0, T ), ζ̄τ ∈ ∂I[0,1](χ̄τ ),
∂nχ̄τ = 0, a.e. on Γ × (0, T ), (3.81)
− div (ε|∇ūτ |2∇ūτ + χ̄2

τk(c̃τ )∇ūτ ) = fτ , a.e. in Ω × (0, T ), (3.82)
ūτ = uΓ , a.e. on Γ × (0, T ), (3.83)
sτ (0) = s0, cτ (0) = c0, χτ (0) = χ0, a.e. in Ω , rτ (0) = r0, a.e. on Γ . (3.84)

Observe that the following estimates hold (see (3.42), (3.43), (3.66), (3.49), (3.65), (3.71))

∥sτ ∥H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) + ∥s̄τ ∥L∞(0,T ;H1(Ω)) + ∥s̃τ ∥L∞(0,T ;H1(Ω)) ≤ C, (3.85)
∥cτ ∥W 1,∞(0,T ;L∞(Ω))∩L∞(0,T ;H1(Ω)) + ∥c̄τ ∥L∞(0,T ;L∞(Ω))∩L∞(0,T ;H1(Ω)) (3.86)
+ ∥c̃τ ∥L∞(0,T ;L∞(Ω))∩L∞(0,T ;H1(Ω)) ≤ C,

∥rτ ∥H1(0;T ;L2(Γ)) + ∥r̄τ ∥L∞(0,T ;L2(Γ)) + ∥r̃τ ∥L∞(0,T ;L2(Γ)) ≤ C, (3.87)
∥ūτ ∥L∞(0,T ;W 1,4(Ω)) ≤ C, (3.88)
∥χ̄τ ∥L∞(0,T ;L∞(Ω))∩L∞(0,T ;H1(Ω)) + ∥χ̃τ ∥L∞(0,T ;L∞(Ω))∩L∞(0,T ;H1(Ω)) ≤ C, (3.89)
∥χτ ∥H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) ≤ C. (3.90)

Moreover, we get (see (3.8), (3.73), (3.90))

∥χτ ∥L∞(0,T ;L∞(Ω)) ≤ C, (3.91)

and, by comparison in (3.79), it follows that

∥ξ̄τ ∥L2(0,T ;L2(Γ)) ≤ C. (3.92)

Observe also that (see (3.72))
∥ζ̄τ ∥L2(0,T ;L2(Ω)) ≤ C. (3.93)

On the other hand, (3.51) entails

∥χ̂ ∥ + ∥ ˜̂χ ∥ ≤ C. (3.94)
τ W 1,∞(0,T ;L∞(Ω)) τ W 1,∞(0,T ;L∞(Ω))

16



E. Bonetti, C. Cavaterra, F. Freddi et al. Nonlinear Analysis: Real World Applications 73 (2023) 103886

U
(

a
b

I

I
r

Note that the generic C > 0 also depends on ε. Then, arguing as in [21, (4.36)] we deduce that

∥sτ − s̄τ ∥L2(0,T ;L2(Ω)) + ∥sτ − s̃τ ∥L2(0,T ;L2(Ω)) ≤ C
√
τ , (3.95)

∥χτ − χ̄τ ∥L2(0,T ;L2(Ω)) + ∥χτ − χ̃τ ∥L2(0,T ;L2(Ω)) ≤ C
√
τ , (3.96)

∥cτ − c̄τ ∥L∞(0,T ;L2(Ω)) + ∥cτ − c̃τ ∥L∞(0,T ;L2(Ω)) ≤ Cτ, (3.97)
∥rτ − r̄τ ∥L∞(0,T ;L2(Γ)) + ∥rτ − r̃τ ∥L∞(0,T ;L2(Γ)) ≤ Cτ. (3.98)

sing now weak–strong compactness results, passing to the limit as τ ↘ 0, up to subsequences, we find
s, χ, c, r, u, ξ, ζ) such that

sτ ⇀
∗ s in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), (3.99)

s̄τ ⇀
∗ s in L∞(0, T ;H1(Ω)), s̃τ ⇀

∗ s in L∞(0, T ;H1(Ω)), (3.100)
sτ → s in C0([0, T ];Lq(Ω)), 2 ≤ q < 6, (3.101)
χτ ⇀

∗ χ in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), (3.102)
χ̄τ ⇀

∗ χ, χ̃τ ⇀
∗ χ in L∞(0, T ;H1(Ω)), (3.103)

χτ → χ in C0([0, T ];Lp(Ω)), 2 ≤ p < +∞, (3.104)
cτ ⇀

∗ c in W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)), (3.105)
c̄τ ⇀

∗ c, c̃τ ⇀
∗ c in L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)), (3.106)

cτ → c in C0([0, T ];Lp(Ω)), 2 ≤ p < +∞, (3.107)
rτ ⇀ r in H1(0, T ;L2(Γ )), (3.108)
r̄τ ⇀

∗ r, r̃τ ⇀
∗ r in L∞(0, T ;L2(Γ )), (3.109)

ūτ ⇀
∗ u in L∞(0, T ;W 1,4(Ω)), (3.110)

ξ̄τ ⇀ ξ in L2(0, T ;L2(Γ )), (3.111)
ζ̄τ ⇀ ζ in L2(0, T ;L2(Ω)). (3.112)

Observe now that there hold

c̃τ → c in L∞(0, T ;Lp(Ω)), c̄τ → c in L∞(0, T ;Lp(Ω)), 2 ≤ p < +∞, (3.113)

as τ ↘ 0. Indeed, recalling (3.8), on account of (3.86), (3.97) and (3.107), we obtain∫
Ω

|c̃τ − c|p ≤ C
(∫

Ω

|c̃τ − cτ |p +
∫
Ω

|cτ − c|p
)

(3.114)

≤ C
(∫

Ω

|c̃τ − cτ |p−2|c̃τ − cτ |p +
∫
Ω

|cτ − c|p
)

≤ C
(∫

Ω

|c̃τ − cτ |2 +
∫
Ω

|cτ − c|p
)

nd the right hand side tends to zero as τ ↘ 0. The same calculations can be performed for c̄τ . Analogously,
y means of (3.89), (3.90), (3.91), (3.96), (3.104), we find

χ̃τ → χ in L∞(0, T ;Lp(Ω)), χ̄τ → χ in L∞(0, T ;Lp(Ω)), 2 ≤ p < +∞. (3.115)

n addition, recalling (3.104), we deduce the following

χ̂τ → χ̂ in C0([0, T ];Lq(Ω)), 2 ≤ q < 6. (3.116)

n order to prove the strong convergence of rτ we show that for any sequence τm → 0, m → +∞, then
:= r defines a Cauchy sequence.
m τm

17
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(
R

To this aim, using (3.79) we deduce the identity∫ t

0

∫
Γ

∂t(rm − rn)(rm − rn) +
∫ t

0

∫
Γ

(ξ̄m − ξ̄n)(rm − rn) (3.117)

= −
∫ t

0

∫
Γ

(Ψ ′(r̃m) − Ψ ′(r̃n))(rm − rn)

−
∫ t

0

∫
Γ

(G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n))(rm − rn),

which entails

1
2

∫ t

0

d

dt
∥rm − rn∥2

L2(Γ) ≤
∫ t

0

∫
Γ

|Ψ ′(r̃m) − Ψ ′(r̃n)||rm − rn| (3.118)

+
∫ t

0

∫
Γ

|G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n)||rm − rn|.

Integrating (3.118) in time and recalling (2.6), we get

1
2∥(rm − rn)(t)∥2

L2(Γ) ≤ C

∫ t

0

∫
Γ

|r̃m − r̃n||rm − rn| (3.119)

+
∫ t

0

∫
Γ

|G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n)||rm − rn|

≤ C

∫ t

0

∫
Γ

[(|r̃m − rm| + |r̃n − rn|)|rm − rn| + |rm − rn|2]

+
∫ t

0
∥G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n)∥2

L2(Γ) +
∫ t

0
∥rm − rn∥2

L2(Γ)

≤ C

∫ t

0
[∥r̃m − rm∥2

L2(Γ) + ∥r̃n − rn∥2
L2(Γ)]

+
∫ t

0
∥G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n)∥2

L2(Γ) +
∫ t

0
∥rm − rn∥2

L2(Γ).

Thus an application of Gronwall’s Lemma gives

∥(rm − rn)∥2
L∞(0,T ;L2(Γ)) ≤ C

(
∥r̃m − rm∥2

L∞(0,T ;L2(Γ)) + ∥r̃n − rn∥2
L∞(0,T ;L2(Γ)) (3.120)

+ ∥G(r̃m, c̃m, s̃m, χ̃m) −G(r̃n, c̃n, s̃n, χ̃n)∥2
L∞(0,T ;L2(Γ))

)
.

Hence, on account of (2.10), (3.98), (3.100), (3.103), (3.106), and (3.109), we deduce that rτ is strongly
convergent in L∞(0, T ;L2(Γ )). Finally, combining this result again with (3.98) we can conclude that

r̄τ → r in L∞(0, T ;L2(Γ )), r̃τ → r in L∞(0, T ;L2(Γ )). (3.121)

. Proof of Theorem 2.3

Here we pass to the limit as τ → 0 along a suitable subsequence in a convenient reformulation of (3.76)–
3.84). The goal is to show that (s, χ, c, r, u, ξ, ζ), which already satisfies (2.11)–(2.16), solves (2.17)–(2.23).
ecalling (1.11), (1.4), and (1.6), we first observe that (3.104), (3.107), and (3.113) imply

ϕ(cτ , χ̂τ ) → ϕ(c, χ̂) in C0([0, T ];Lp(Ω)), (4.1)
ϕ(c̃τ , ˜̂χτ ) → ϕ(c, χ̂) in L∞(0, T ;Lp(Ω)),
a(c̃τ , ˜̂χτ ) → a(c, χ̂) in L∞(0, T ;Lp(Ω)),
18
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where 2 ≤ p < +∞. Let us multiply (3.76) on Ω × (0, T ) by the test function

v(x, t) = φ(t)ψ(x), φ ∈ C∞([0, T ]) : φ(T ) = 0, ψ ∈ W 1,p(Ω), p > 2.

On account of (3.77), we get

−
∫ T

0

∫
Ω

ϕ(cτ , χ̂τ )sτ∂tv +
∫ T

0

∫
Ω

ϕ(c̃τ , ˜̂χτ )∇s̄τ · ∇v (4.2)

= −
∫ T

0

∫
Ω

ϕ(c̃τ , ˜̂χτ )s̃τ c̄τv +
∫
Ω

ϕ(cτ , χ̂τ )(0)sτ (0)φ(0)ψ −
∫ T

0

∫
Γ

ν(r̄τ )(s̄τ − se)v.

By means of (3.100), (3.101), (3.113), (3.121), and (4.1), we obtain (see also (2.9))

−
∫ T

0

∫
Ω

ϕ(c, χ̂)s∂tv +
∫ T

0

∫
Ω

ϕ(c, χ̂)∇s · ∇v (4.3)

= −
∫ T

0

∫
Ω

ϕ(c, χ̂)scv +
∫
Ω

ϕ(c, χ̂)(0)s(0)φ(0)ψ −
∫ T

0

∫
Γ

ν(r)(s− se)v.

Thus recalling (2.11)–(2.12) and using a density argument we recover (2.17).
Concerning (3.78), exploiting (3.100), (3.105), (3.113), and (4.1), we easily deduce (2.18). On the other

hand, on account of (2.6), (2.7), (2.10), (3.108), (3.111), (3.121), and using a well known result of maximal
monotone operator theory (see, e.g., [20, Prop.2.2(iv)]), from (3.79) we deduce (2.19). Let us now multiply
(3.82) by z − ũΓ ∈ W 1,4

0 (Ω), with z ∈ W 1,4(Ω). This gives∫
Ω

ε|∇ūτ |2∇ūτ · ∇(z − ũΓ ) +
∫
Ω

χ̄2
τk(c̃τ )∇ūτ · ∇(z − ũΓ ) =

∫
Ω

fτ (z − ũΓ ). (4.4)

Observe that, due to (3.110) and (3.88), we have

|∇ūτ |2∇ūτ ⇀
∗ η in L∞(0, T ;L4/3(Ω)). (4.5)

On the other hand, thanks to (3.96) and (3.115), we get

χ̄2
τ → χ2 in L∞(0, T ;Lp(Ω)), 2 ≤ p < +∞ (4.6)

and, owing to (1.7) and (3.113), we deduce

k(c̃τ ) → k(c) in L∞(0, T ;Lp(Ω)), 2 ≤ p < +∞. (4.7)

Hence, from (4.4) we obtain (recalling again (3.110))∫
Ω

εη · ∇(z − ũΓ ) +
∫
Ω

χ2k(c)∇u · ∇(z − ũΓ ) =
∫
Ω

f(z − ũΓ ). (4.8)

To identify η we use a well-known argument (see, e.g., [22]). Indeed, first let us take z = ūτ in (4.4). This
yields ∫

Ω

ε|∇ūτ |4 = −
∫
Ω

χ̄2
τk(c̃τ )|∇ūτ |2 (4.9)

+
∫
Ω

χ̄2
τk(c̃τ )∇ūτ · ∇ũΓ −

∫
Ω

ε|∇ūτ |2∇ūτ · ∇ũΓ +
∫
Ω

fτ (ūτ − ũΓ ).
19
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Thus we get (cf. (4.5))

lim sup
τ→0

∫
Ω

ε|∇ūτ |4 ≤ − lim inf
τ→0

∫
Ω

χ̄2
τk(c̃τ )|∇ūτ |2 (4.10)

+
∫
Ω

χ2k(c)∇u · ∇ũΓ −
∫
Ω

εη · ∇ũΓ +
∫
Ω

f(u− ũΓ ).

Observe now that
χ̄τ

√
k(c̃τ )∇ūτ ⇀ z in L2(Ω)

nd, using strong and weak convergence, we get

z = χ
√
k(c)∇u.

herefore we have ∫
Ω

χ2k(c)|∇u|2 ≤ lim inf
τ→0

∫
Ω

χ̄2
τk(c̃τ )|∇ūτ |2,

so that from (4.10) we deduce

lim sup
τ→0

∫
Ω

ε|∇ūτ |4 (4.11)

≤ −
∫
Ω

χ2k(c)|∇u|2 +
∫
Ω

χ2k(c)∇u · ∇ũΓ −
∫
Ω

εη · ∇ũΓ +
∫
Ω

f(u− ũΓ ).

hen, recalling (4.8), we infer

lim sup
τ→0

∫
Ω

ε|∇ūτ |4 ≤ −
∫
Ω

χ2k(c)∇u · ∇(u− ũΓ ) −
∫
Ω

εη · ∇ũΓ +
∫
Ω

f(u− ũΓ ) (4.12)

=
∫
Ω

εη · ∇u.

s a consequence, using a monotonicity argument (see, for instance, [22]), we obtain (see (4.5))

|∇ūτ |2∇ūτ ⇀
∗ |∇u|2∇u in L∞(0, T ;L4/3(Ω)). (4.13)

n addition, we deduce (see, e..g., [18])

∇ūτ → ∇u in L4((0, T ) × Ω). (4.14)

inally, let us write the weak formulation of (3.80) and (3.81), namely,∫ t

0

∫
Ω

∂tχτv +
∫ t

0

∫
Ω

a(c̃τ , ˜̂χτ )∇χ̄τ · ∇v +
∫ t

0

∫
Ω

ζ̄τv (4.15)

=
∫ t

0

∫
Ω

w(χ̃τ , c̃τ )v −
∫ t

0

∫
Ω

χ̄τk(c̃τ )|∇ūτ |2v,

for any v ∈ W 1,p(Ω) with p > 2.
In the first and second term of the left-hand side of (4.15), we pass to the limit thanks to (3.90) and

(3.102) and thanks to (3.89) and (4.1), respectively. Similarly, by means of (1.8), (3.113), and (3.115), we
pass to the limit in the first term of the right-hand side. On the right-hand side of (4.15), we pass to the
limit in the second term making use of (3.104), (4.7), (4.14). To identify the weak limit of ζ̄τ we use (3.112)
and (3.115) and standard monotonicity arguments (see, for instance, [18]). Then, using a density argument,

we recover (2.22). Initial conditions (2.23) clearly hold (see (3.84)).
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5. Letting ε go to 0

The goal of this section is to show that there exists a suitable solution to the problem without penalization
n the displacement equation (i.e. ε = 0). We are able to prove this result under some restrictions, namely,
e need to suppose f ≡ 0 and ũΓ ≡ 0 and let a(·, ·) be a positive constant (see, however, Remark 5.5 below).

n order to make the argument rigorous we add a viscosity term in the equation for u, namely, −σ∆∂tu for
ome given σ > 0. This can be viewed as a (quasi-static) viscoelastic modification of the elasticity equation.
he existence of a solution for the corresponding initial and boundary value problem Pε,σ can be proven
rguing as for problem Pε. Then we proceed to find a priori bounds which are independent of ε and σ. One
ould let σ go to zero first and showing that a solution to Pε satisfies the uniform a priori bounds needed

to pass to the limit as ε ↘ 0 along a suitable subsequence. However, just for the sake of simplicity, here we
take σ = ε.

Therefore, let us consider the following modification of problem Pε.

Problem P ⋆
ε . Find (s, c, r, χ, u) such that

∂t(ϕ(c, χ̂)s) − div (ϕ(c, χ̂)∇s) = −ϕ(c, χ̂)sc, in Ω × (0, T ),
ϕ(c, χ̂)∂ns = −ν(r)(s− se), on Γ × (0, T ),
∂tc = −ϕ(c, χ̂)cs, in Ω × (0, T ),
∂tr + ∂I[0,+∞)(r) + Ψ ′(r) +G(r, c, s, χ) ∋ F, on Γ × (0, T ),
∂tχ− div (a(c, χ̂)∇χ) + ∂I[0,1](χ) ∋ W (χ, c) − χk(c)|∇u|2, in Ω × (0, T ),
∂nχ = 0, on Γ × (0, T ),
− div (−ε∇∂tu+ ε|∇u|2∇u+ χ2k(c)∇u) = 0, in Ω × (0, T ),
u = 0, on Γ × (0, T ),
s(0) = s0, c(0) = c0, χ(0) = χ0, in Ω , r(0) = r0, on Γ .

We then define a weak solution to Problem P ⋆
ε as follows

efinition 5.1. We call (s, c, r, χ, ζ, u) a solution to problem P ⋆
ε if

s ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), s ∈ [0, S0], a.e. in Ω × (0, T ), (5.1)

c ∈ W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)), c ∈ [0, C0], a.e. in Ω × (0, T ), (5.2)

r ∈ H1(0, T ;L2(Γ )), r ≥ 0, a.e. on Γ × (0, T ), (5.3)

χ ∈ H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H1(Ω)), χ ∈ [0, 1], a.e. in Ω × (0, T ), (5.4)

ζ ∈ L2(0, T ;L2(Ω)), (5.5)

u ∈ L∞(0, T ;W 1,4
0 (Ω)) ∩H1(0, T ;H1

0 (Ω)), (5.6)

nd ∫
Ω

∂t(ϕ(c, χ̂)s)v +
∫
Ω

ϕ(c, χ̂)∇s · ∇v +
∫
Γ

ν(r)(s− se)v (5.7)

= −
∫
Ω

ϕ(c, χ̂)scv, ∀ v ∈ H1(Ω), a.e. in (0, T ),

∂tc = −ϕ(c, χ̂)cs, a.e. in Ω × (0, T ), (5.8)
′
∂tr + ξ + Ψ (r) +G(r, c, s, χ) = F, ξ ∈ ∂I[0,+∞)(r), a.e. on Γ × (0, T ), (5.9)
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e

T

H

∫
Ω

∂tχw +
∫
Ω

a(c, χ̂)∇χ · ∇w +
∫
Ω

ζw (5.10)

=
∫
Ω

(W (χ, c) − χk(c)|∇u|2)w, ∀w ∈ H1(Ω), a.e. in (0, T ),

ζ ∈ ∂I[0,1](χ), a.e. on Ω × (0, T ), (5.11)∫
Ω

(ε∇∂tu+ ε|∇u|2∇u+ χ2k(c)∇u) · ∇z = 0, (5.12)

∀ z ∈ W 1,4
0 (Ω), a.e. in (0, T ),

s(0) = s0, c(0) = c0, χ(0) = χ0, u(0) = u0ε, a.e. in Ω , (5.13)
r(0) = r0, a.e. on Γ . (5.14)

The technique used to prove Theorem 2.3 can be easily adapted in this case. More precisely, we can
stablish the following

heorem 5.2. Let (1.1)–(1.10) and (2.1)–(2.10) hold. Suppose, in addition, that

u0 ∈ W 1,4
0ε (Ω) s.t.

√
ε∥u0ε∥W 1,4(Ω) + ∥χ2

0k(c0)∇u0ε∥L2(Ω) ≤ C, (5.15)

where C > 0 is independent of ε. Then problem P ⋆
ε has a solution in the sense of Definition 5.1.

The main result of this section is

Theorem 5.3. Let the assumptions of Theorem 5.2 hold and let a(·, ·) = 1. Then there exists a suitable
subsequence {εn}n∈N converging to 0 such that a sequence of solutions (sεn , cεn , rεn , χεn , ζεn) to P ⋆

ε converges
to (s, c, r, χ, ζ) satisfying

s ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), s ∈ [0, S0], a.e. in Ω × (0, T ), (5.16)
c ∈ W 1,∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;H1(Ω)), c ∈ [0, C0], a.e. in Ω × (0, T ), (5.17)
r ∈ H1(0, T ;L2(Γ )), r ≥ 0, a.e. on Γ × (0, T ), (5.18)
χ ∈ H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H1(Ω)), χ ∈ [0, 1], a.e. in Ω × (0, T ), (5.19)
ζ ∈ L2(0, T ;L2(Ω)), (5.20)∫

Ω

∂t(ϕ(c, χ̂)s)v +
∫
Ω

ϕ(c, χ̂)∇s · ∇v +
∫
Γ

ν(r)(s− se)v (5.21)

= −
∫
Ω

ϕ(c, χ̂)scv, ∀ v ∈ H1(Ω), a.e. in (0, T ),

∂tc = −ϕ(c, χ̂)cs, a.e. in Ω × (0, T ), (5.22)
∂tr + ξ + Ψ ′(r) +G(r, c, s, χ) = F, ξ ∈ ∂I[0,+∞)(r), a.e. on Γ × (0, T ), (5.23)∫

Ω

∂tχw +
∫
Ω

∇χ · ∇w +
∫
Ω

ζw (5.24)

=
∫
Ω

(W (χ, c) − ς · ς)w−
∫
Ω

wdµ, ∀w ∈ C∞
c (Ω), a.e. in (0, T ),

ζ ∈ ∂I[0,1](χ), a.e. on Ω × (0, T ), (5.25)∫
Ω

χ3/2
√
k(c)ς · ∇z = 0, ∀ z ∈ H1

0 (Ω), a.e. in (0, T ), (5.26)

s(0) = s0, c(0) = c0, χ(0) = χ0, a.e. in Ω , (5.27)
r(0) = r0, a.e. on Γ . (5.28)

2 2 3
√
χ k(c )∇u } .
ere µ is a (positive) Radon measure and ς is the L (0, T ; (L (Ω)) )-weak limit of { εn εn εn n∈N
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F

i

Remark 5.4. Theorem 5.2 does not require that f and ũΓ vanish. In Theorem 5.3 one may relax the
restrictions by assuming that f and ũΓ suitably go to 0 as ε goes to 0.

Proof. Let (s, c, r, χ, ζ, u) be a solution to P ⋆
ε (we omit its dependence on ε for the sake of simplicity). The

first step is to show that this solution satisfies some a priori estimates which are uniform with respect to ε.
rom now on C > 0 stands for a generic constant which is independent of ε.

Observe that the a priori bounds on s, c and χ (see (5.1)–(5.2) and (5.4)) are satisfied and they are
ndependent of ε. These bounds, on account of (1.11) and (5.8), entail

∥χ̂∥W 1,∞(0,T ;L∞(Ω)) ≤ C, ∥c∥W 1,∞(0,T ;L∞(Ω)) ≤ C. (5.29)

Moreover, recalling (5.9) and using again a result from maximal monotone operator theory (see, e.g., [18,
Theo.3.6]), we also have

∥r∥H1(0,T ;L2(Γ)) ≤ C. (5.30)

Take now v = s in (2.17). This gives∫
Ω

∂t(ϕ(c, χ̂)s)s+
∫
Ω

ϕ(c, χ̂)|∇s|2 +
∫
Γ

ν(r)s2 =
∫
Γ

ν(r)ses−
∫
Ω

ϕ(c, χ̂)s2c. (5.31)

Observe that ∫
Ω

∂t(ϕ(c, χ̂)s)s = 1
2
d

dt

∫
Ω

ϕ(c, χ̂)s2 −
∫
Ω

(ϕ1(c, χ̂)∂tc+ ϕ2(c, χ̂)∂tχ̂)s2. (5.32)

Here ϕj , j = 1, 2, are the first partial derivatives of ϕ(·, ·). Thus, integrating in time (5.31) and using (5.32),
we get

1
2

∫
Ω

ϕ(c, χ̂)s2 +
∫ t

0

∫
Ω

ϕ(c, χ̂)|∇s|2 +
∫
Γ

ν(r)s2 (5.33)

= 1
2

∫
Ω

ϕ(c0, χ̂0)s2
0 +

∫ t

0

∫
Γ

ν(r)ses−
∫
Ω

ϕ(c, χ̂)s2c

+
∫ t

0

∫
Ω

(ϕ1(c, χ̂)∂tc+ ϕ2(c, χ̂)∂tχ̂)s2.

Recalling (1.4) and (2.9), thanks to (5.29) and to Young’s inequality and Gronwall’s lemma we get

∥s∥H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) ≤ C. (5.34)

As we pointed out at the beginning of this proof, we already have a uniform bound in H1(0, T ;L2(Ω)).
Consider (5.10) and observe that holds almost everywhere in Ω × (0, T ), namely

∂tχ− ∆χ = −ζ +W (χ, c) − χk(c)|∇u|2.

This can be viewed as a linear parabolic equation with an L2 source and an H1 initial datum satisfying a

homogeneous Neumann boundary conditions. Therefore the following identity holds (which can be formally
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A

obtained multiplying by ∂tχ and integrating in space and time)∫ t

0

∫
Ω

|∂tχ|2 + 1
2

∫
Ω

|∇χ|2 (5.35)

= 1
2

∫
Ω

|∇χ0|2 −
∫ t

0

∫
Ω

ζ∂tχ+
∫ t

0

∫
Ω

(W (χ, c) − χk(c)|∇u|2)∂tχ.

We can now take z = ∂tu in (5.12). This entails∫
Ω

ε|∇∂tu|2 + d

dt

∫
Ω

ε

4 |∇u|4 +
∫
Ω

χ2k(c)∇u · ∇∂tu = 0, (5.36)

so that ∫
Ω

χ2k(c)∇u · ∇∂tu = 1
2
d

dt

∫
Ω

χ2k(c)|∇u|2 − 1
2

∫
Ω

∂t

[
χ2k(c)

]
|∇u|2, (5.37)

but ∫
Ω

∂t

[
χ2k(c)

]
|∇u|2 =

∫
Ω

[
2χk(c)∂tχ+ χ2k′(c)∂tc

]
|∇u|2. (5.38)

Thus, thanks to (5.8), we deduce (see also (1.7))∫
Ω

∂t

[
χ2k(c)

]
|∇u|2 =

∫
Ω

[
2χk(c)∂tχ− αχ2ϕ(c, χ̂)cs

]
|∇u|2. (5.39)

We now integrate (5.36) in time, taking (5.37) and (5.39) into account. This gives∫ t

0

∫
Ω

ε|∇∂tu|2 +
∫
Ω

ε

4 |∇u|4 +
∫
Ω

χ2k(c)|∇u|2 +
∫ t

0

∫
Ω

[α
2 χ

2ϕ(c, χ̂)cs
]

|∇u|2 (5.40)

=
∫
Ω

ε

4 |∇u0ε|4 +
∫
Ω

χ2
0k(c0)|∇u0ε|2 +

∫ t

0

∫
Ω

χk(c)∂tχ|∇u|2.

dding (5.35) and (5.40) together, we obtain∫ t

0

∫
Ω

|∂tχ|2 + 1
2

∫
Ω

|∇χ|2 (5.41)

+
∫ t

0

∫
Ω

ε|∇∂tu|2 +
∫
Ω

ε

4 |∇u|4

+
∫
Ω

χ2k(c)|∇u|2 +
∫ t

0

∫
Ω

[α
2 χ

2ϕ(c, χ̂)cs
]

|∇u|2

= 1
2

∫
Ω

|∇χ0|2 +
∫
Ω

ε

4 |∇u0ε|4 +
∫
Ω

χ2
0k(c0)|∇u0ε|2

−
∫ t

0

∫
Ω

ζ∂tχ+
∫ t

0

∫
Ω

W (χ, c)∂tχ.

Thus the following inequality holds (see (5.11) and (5.15))∫ t

0

∫
Ω

[
|∂tχ|2 + ε|∇∂tχ|2

]
+ 1

2

∫
Ω

|∇χ|2 (5.42)

+
∫ t

0

∫
Ω

ε|∇∂tu|2 +
∫
Ω

ε

4 |∇u|4 +
∫
Ω

χ2k(c)|∇u|2

≤ C +
∫ t

0

∫
Ω

W (χ, c)∂tχ.
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Then, using (5.29) and Gronwall’s inequality, we deduce

∥χ∥H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) +
√
ε∥∇∂tu∥L2(0,T ;(L2(Ω))3) (5.43)

+
√
ε∥∇u∥2

L∞(0,T ;(L4(Ω))3) + ∥χ
√
k(c)∇u∥L∞(0,T ;(L2(Ω))3) ≤ C.

Finally, integrating in time (5.8) and taking the gradient of both sides, we find

∇c(t) = ∇c0 −
∫ t

0
∇ [ϕ(c, χ̂)cs] dτ. (5.44)

Multiplying (5.44) by ∇c(t) and integrating over Ω , thanks to (5.34) and (5.43), we infer

∥∇c∥L∞(0,T ;(L2(Ω))3) ≤ C,

so that
∥c∥L∞(0,T ;H1(Ω)) ≤ C. (5.45)

Arguing now as in [15, 4.2-3], we obtain

∥ζ∥L2(0,T ;L2(Ω)) ≤ C, (5.46)
∥
√
χk(c)∇u∥L2(0,T ;L2(Ω)3) ≤ C. (5.47)

We now have all the ingredients to find a suitable subsequence {εn}n∈N converging to 0 such that
(sεn , cεn , rεn , χεn , ζεn) converges, as dictated by the above a priori estimates, to (s, c, r, χ, ζ) satisfying
(5.16)–(5.20). Moreover, arguing as in the proof of Theorem 2.3 (see 3.4 and Section 4) and using the
arguments devised in [15, 4.4], we can prove that (s, c, r, χ, ζ) satisfies (5.21)–(5.28). Let us detail the latter
argument. Indeed, up to subsequences, we have that√

χεnk(cεn)∇uεn ⇀ ς in L2(0, T ; (L2(Ω))3).

hus, on account of the strong convergences of {χεn}n∈N and {cεn}n∈N, we obtain

χεnk(cεn)∇uεn ⇀ χ3/2
√
k(c)ς in L2(0, T ; (L2(Ω))3).

lso, recalling [15, 4.4], we find a positive Radon measure (defect measure) µ such that, in the sense of
easures,

χεnk(cεn)|∇uεn |2 ⇀ ς · ς + µ.

inally, observing that
εn∇uεn → 0 in L2(0, T ; (L2(Ω))3),

e have all the ingredients to recover (5.24) and (5.26). For the other equations we can proceed in a standard
ay. ■

emark 5.5. Observe that, if a(·, ·) is given by (1.6) then the second term in (5.35) can be (formally)
reated as follows ∫

Ω

a(c, χ̂)∇χ · ∇∂tχ = 1
2

∫
Ω

a(c, χ̂) d
dt

|∇χ|2

= 1
2
d

dt

∫
Ω

a(c, χ̂)|∇χ|2 −
∫
Ω

[a1(c, χ̂)∂tc+ a2(c, χ̂)∂tχ̂] |∇χ|2.

Here aj , j = 1, 2, are the first partial derivatives of a(·, ·). Therefore, on account of (5.29), we get∫ t

0

∫
Ω

a(c, χ̂)∇χ · ∇∂tχ = 1
2

∫
Ω

a(c, χ̂)|∇χ(t)|2 − 1
2

∫
Ω

a(c0, χ̂0)|∇χ0|2

≤ C

∫ t

0

∫
Ω

|∇χ|2.

herefore, one can argue as above.
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Fig. 1. Notched square marble prism in plane strain condition under tension and attached by pollution.

6. Numerical simulations

In this section some numerical simulations are performed with the aim to illustrate the capability of the
proposed approach. In particular, our attention is focused on estimating the influence of considering χ̂ defined
in (1.11) instead of χ and to validate the convergence result of (3.41). For this purpose, a simplified version
of problem P is considered in order to limit the numerical difficulties. In particular, the rugosity r is kept
constant so its equation is not taken into account. We recall that the influence of rugosity has been deeply
investigated in [13]. Moreover, ∂tχ is neglected and a(·, ·) is assumed to be independent of the damage.

Then, the corresponding system of equations is numerically solved in an uncoupled fashion. More precisely,
at each time step the chemistry equations are solved with a fully implicit finite elements scheme for s
and c, keeping χ fixed. Subsequently, the mechanical equilibrium and damage evolution are obtained with
an alternate minimization algorithm which, in short, consists in solving a sequence of minimization sub-
problems for u at fixed χ and for χ at fixed u. The time is discretized in n constant time intervals. For
the numerical simulations, a specific code have been developed using FEniCS, an open-source finite-element
computing platform for solving partial differential equations, which leans on PETSc [23], a suite of data
structures and routines for scalable (parallel) solutions, and TAO [24], a toolkit for advanced optimization
problems which includes the GPCG algorithm.

A two-dimensional notched square specimen of marble Ω of sides L is considered. The notch simulates a
uperficial imperfection of the solid. The setup is reported in Fig. 1. The domain is invested by a polluted
ir flow along the left vertical boundary and along the notch whereas the other faces are isolated. The
istribution of the pollutant SO2 is constant with a concentration equal to s0. Moreover, the material is

homogeneous so that the initial calcite concentration is c0, whilst the initial concentration of SO2 within the
olid is null.

A time dependent vertical displacement is applied on the horizontal bases according to Fig. 1 whereas
he remaining portion of the boundary is unconstrained and stress free. The main idea is to applied a load
o a portion of material that has been affected by the sulphation process.

We consider a representative solid with L = 1 mm and a notch deep equal to 0.05 mm. We restrict the
nalysis to the case of an isotropic material in plane strain condition. Thus, the term k(c) is strictly correlated

to the fourth order elasticity tensor C = 2µI+λI ⊗ I, being µ and λ the Lamé coefficients depending on the
elastic modulus E and the Poisson coefficient ν, I the fourth-order identity tensor and I the second-order
dentity tensor.
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Table 1
Values of the adopted coefficients in the computation.

E (MPa) ν w (MPa) A B a b

Marble 50 000 0.2 0.002 0.1 0.1 0.04 0.01
Gypsum 7000 0.2 0.0001157

Fig. 2. Damage evolution for t ∈ {0.72, 0.7295, > 0.734}..

A unitary time interval is considered divided into 2000 time steps. The applied vertical displacement
assumes the following load history⎧⎪⎨⎪⎩

u(t) = 0 for t < 0.715 ,
u(t) = ū ∗ (t− 0.715) for 0.715 ≤ t < 0.735 ,
u(t) = 0.02 ∗ ū for 0.735 ≤ t ≤ 1 .

(6.1)

with ū = 7.5 × 10−2 mm/s. The adopted material constants are listed in Table 1. The domain is
decomposed with an unstructured triangular linear finite elements with mesh size h = 0.0025 mm.

The evolution of s, c and χ is illustrated through color maps plotted at different time steps in Figs. 2–6.
The sulphation process, reported in Fig. 3 at different time steps, initially evolve in an almost homogeneous
way despite the presence of the notch. In fact, the transition front presents a smooth profile similar to the
external border of the solid. Accordingly, the concentration of SO2 plotted in Fig. 5, follows the sulphation
profile within the solid. The process is damage free as long as the mechanical action is not applied. During the
displacement application a fracture initiates at the notch tip and propagates brutally up to the sulphation
front as illustrated in Fig. 2a. Now the sulphation process changes completely. The SO2 quickly penetrates
the damaged area see Fig. 6 and at the same time this material portion begins its transformation into
gypsum. The fracture bifurcates at the sulphation front as clearly outlined in Fig. 2b. Initially, there is stable
propagation in the direction parallel to the transition zone. Subsequently, the propagation, as can be seen in
Fig. 2c, becomes brutal and involves the entire specimen. The size of the diffusion zones of these fractures
are different. The initial crack presents a very thin transition zone that increases as the crack reaches the
sulphation front. The transition is wider as fracture reaches the pristine material fully composed by marble.

The mutual interaction between chemical process and mechanical degradation is evident. In fact, fractures
propagate in the zones affected by the chemical reaction and at the same time s penetrates in the damaged
zones as clearly shown in Figs. 4, 6 thus inducing the transformation of marble into gypsum in the cracked
areas.

Subsequently, the solutions obtained with χ̂ and χ are compared. The term χ̂ of (1.11) is approximated
through a fourth degree Newton–Cotes numerical integration scheme. The solution in term of c and s along a
line crossing the fracture placed at x1 = 0.3 (assuming a reference system with origin in the lower left corner
of the domain) is plotted in Fig. 7 for several subsequent steps once crack has occurred. The behavior of c

is only delayed in considering χ̂ instead of χ. This phenomenon is the one expected by observing Eq. (2.18)
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Fig. 3. Evolution of c for t ∈ {0.05, 0.3, 0.72}.

Fig. 4. Evolution of c for t ∈ {0.74, 0.8, 1}.

Fig. 5. Evolution of concentration of SO2 for t ∈ {0.05, 0.3, 0.72}.

Fig. 6. Evolution of concentration of SO2 for t ∈ {0.74, 0.8, 1}.
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Fig. 7. Evolution of c and s of χ and χ̂ across the fracture locate at x1 = 0.3 mm.

Fig. 8. Map of χ after complete rupture for h ∈ {0.005, 0.00125} mm.

hat governs the evolution of c. The situation is much more intricate in case the evolution of s is considered.
n fact, the reaction diffusion Eq. (2.18) permits to have both a delay and an acceleration of the solution
ith χ̂ compared to the one obtained with only χ. It should be underlined the fact that the difference of the

wo solutions is extremely limited and additional spatial regularity is not appreciable by the adoption of χ̂
nstead of χ demonstrating that its introduction is for pure mathematical purpose.

Finally, the attention is focused on the convergence result (3.41). The problem has been solved adopting
wo additional mesh sizes with h ∈ {0.005, 0.00125} mm. The two damage paths obtained with the
ifferent meshes are reported in Fig. 8 and are qualitatively similar to the one of Fig. 2c. Subsequently,
he term χ|∇u|2 is calculated as a post-processing task and illustrated in Fig. 9 for the three cases h ∈
0.005, 0.0025, 0.00125}. In particular, the maps of Fig. 9 outline that non-negligible values are visible only
n the fully damaged portion of the solid regardless of the adopted mesh. This aspect is much more evident if
he value χ|∇u|2 is plotted across the fracture located at x1 = 0.1 mm as in Fig. 10. The spatial distribution

2
f χ|∇u| is similar to a step function with a value that increases as the mesh size decreases.
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Fig. 9. Map of χ|∇u|2 after complete rupture for h ∈ {0.005, 0.0025, 0.00125} mm.

Fig. 10. Term χ|∇u|2 calculated along a line located at x1 = 0.1 mm for three mesh refinements h ∈ {0.005, 0.0025, 0.00125}.

7. Conclusions and future work

In this work a model for marble sulphation process taking mechanical damage and surface rugosity into
account is proposed and analyzed theoretically and numerically. More precisely, some existence results are
given and simple numerical simulations are presented to illustrate specific features of the solution. From
the theoretical viewpoint, it would be interesting, though challenging, to characterize in some rigorous way
the regions where complete damage appears (in this direction see, for instance, [15, Sec.5]). Speaking of
applications, at the present stage, the model is meant to be used in the analysis of a real work of art.
To this end two natural developments are possible. Firstly, an extensive experimental campaign has to be
performed in order to fit the parameters of the proposed model. Secondly, suitable numerical techniques
have to be studied and implemented in order to simulate and reproduce the main phenomena described

by the models. Due to the high-nonlinear and non-convex nature of problems, ad hoc algorithms should
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[

f

T

f

G
t

w
t
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be developed. In particular, properties of consistency, stability, convergence, and, possibly, error estimates
should be investigated. The numerical finite element parallel implementation should include mesh adaptive
strategy to reduce computation time and increase precision in the process zones.
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Appendix

Discrete Gronwall Lemma (see [25, Prop.2.2.1]) Let a = t0 < t1 < · · · < tM = b be a partition of
a, b], and suppose that ϕ and ψ are non-negative step functions, with values ϕk and ψk, respectively, on

the intervals [tk−1, tk), k = 1, . . . ,M . Suppose that, for some fixed p ≥ 1, there exists σ ≥ 0 such that the
ollowing inequality holds for k = 1, . . . ,M ,

ϕp
k ≤ σp +

∫ tk−1

a

ψϕdt = σp +
k−1∑
m=1

ψmϕm(tm − tm−1).

hen, the following bounds are valid

ϕp−1(t) ≤ σp−1 +
(

1 − 1
p

)∫ t

a

ψ(τ) dτ, a < t < b, p > 1, (A.1)

ϕ(t) ≤ σ exp
(∫ t

a

ψ(τ) dτ
)
, a < t < b, p = 1. (A.2)

In particular, we have

ϕp−1
k ≤ σp−1 +

(
1 − 1

p

) k−1∑
m=1

ψm(tm − tm−1), p > 1, (A.3)

ϕk ≤ σ exp
(

k−1∑
m=1

ψm(tm − tm−1)
)
, p = 1, (A.4)

or k = 1, . . . ,M .

ronwall Lemma (see [26, Thm.2.1]) Let g(t) ∈ C0([0, T ]) a non-negative function fulfilling, for any
∈ [0, T ],

g2(t) ≤ g2
0 + 2

∫ t

0
∥g∥C0([0,τ ])h(τ) dτ +

∫ t

0
∥g∥2

C0([0,τ ])λ(τ) dτ (A.5)

+
(∫ t

0
∥g∥C0([0,τ ])µ(τ) dτ

)2

+ c∥g∥2
C0([0,t]),

here g0 ≥ 0, h, λ, and µ are non-negative functions belonging to L1(0, T ), and c is a positive constant such
hat c < 1. Then, there exists a constant C (possibly depending on λ, µ, c, T , but not on g, g0, h, and t)
uch that

g(t) ≤ C

(
g0 +

∫ T

h(τ) dτ
)
, ∀ t ∈ [0, T ].
0

31



E. Bonetti, C. Cavaterra, F. Freddi et al. Nonlinear Analysis: Real World Applications 73 (2023) 103886
References

[1] G.G. Amoroso, V. Fassina, Stone Decay and Conservation—Atmospheric Pollution, Cleaning, Consolidation and
Protection, Elsevier, Science Publishers, Amsterdam, 1983.

[2] K.L. Gauri, J.K. Bandyopadhyay, Carbonate Stone: Chemical Behavior, Durability, and Conservation, Wiley, 1999.
[3] F.H. Haynie, Deterioration of marble, Durability Build. Mater. 1 (1982/83) 241–254.
[4] B.G.D. Hoke, D.L. Turcotte, Weathering and damage, J. Geophys. Res. 107 (2002) 2210–2215.
[5] D. Aregba-Driollet, F. Diele, R. Natalini, A mathematical model for the sulphur dioxide aggression to calcium carbonate

stones: numerical approximation and asymptotic analysis, SIAM J. Appl. Math. 64 (2004) 1636–1667.
[6] C. Giavarini, M.L. Santarelli, R. Natalini, F. Freddi, A non-linear model of sulphation of porous stones: Numerical

simulations and preliminary laboratory assessments, J. Cult. Herit. 9 (2008) 14–22.
[7] G. Al̀ı, V. Furuholt, R. Natalini, I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with

high permeability. Part I: modeling and qualitative analysis, Transp. Porous Media 69 (2007) 109–122; Part II:
numerical approximation, Transp. Porous Media 69 (2007) 175–188.

[8] F. Clarelli, A. Fasano, R. Natalini, Mathematics and monument conservation: free boundary models of marble sulfation,
SIAM J. Appl. Math. 69 (2008) 149–168.

[9] G. Al̀ı, R. Natalini, I. Torcicollo, Global existence for a 1D parabolic–elliptic model for chemical aggression in permeable
materials, Nonlinear Anal. RWA 21 (2015) 1–12.

[10] F.R. Guarguaglini, R. Natalini, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium
carbonate stones, Nonlinear Anal. 6 (2005) 477–494.

[11] F.R. Guarguaglini, R. Natalini, Nonlinear transmission problems for quasilinear diffusion systems, Netw. Heterog. Media
2 (2007) 359–381.

[12] F.R. Guarguaglini, R. Natalini, Fast reaction limit and large time behavior of solutions to a nonlinear model for
sulphation phenomena, Comm. Partial Differential Equations 32 (2007) 163–189.

[13] E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli, R. Natalini, A nonlinear model for marble sulphation including surface
rugosity: Theoretical and numerical results, Commun. Pure Appl. Anal. 18 (2019) 977–998.
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