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ABSTRACT: Structure-based models have been instrumental in simulating
protein folding and suggesting hypotheses about the mechanisms involved.
Nowadays, at least for fast-folding proteins, folding can be simulated in explicit
solvent using classical molecular dynamics. However, other self-assembly
processes, such as protein aggregation, are still far from being accessible. Recently,
we proposed that a hybrid multistate structure-based model, multi-eGO, could
help to bridge the gap toward the simulation of out-of-equilibrium, concentration-
dependent self-assembly processes. Here, we further improve the model and show
how multi-eGO can effectively and accurately learn the conformational ensemble
of the amyloid β42 intrinsically disordered peptide, reproduce the well-established folding mechanism of the B1 immunoglobulin-
binding domain of streptococcal protein G, and reproduce the aggregation as a function of the concentration of the transthyretin
105−115 amyloidogenic peptide. We envision that by learning from the dynamics of a few minima, multi-eGO can become a
platform for simulating processes inaccessible to other simulation techniques.

1. INTRODUCTION
Molecular dynamics (MD) simulations, based on conventional
transferable molecular mechanics force fields, have become a
standard tool in biological research thanks to their ability to
resolve the atomic details of many molecular processes.1 This
success is the result of a combination of increased computa-
tional resources and associated software, improved sampling
methods, more accurate force fields, and better methods for
integrating simulations with experimental information.2 In
addition, intrinsically disordered proteins (IDPs) or regions
have highlighted the need to complement the structure with
dynamics by challenging the sequence-structure paradigm.3

Notably, the revolution in AI-based structure prediction tools
has further widened the scope of simulations by allowing the
study of systems whose structure has not yet been
experimentally determined.4,5

Despite these advances, conventional atomistic MD
simulations are still limited to the study of relatively few
molecules on a time scale of tens of microseconds.6−8 To
overcome size and time scale limitations, one can limit the
scope of the simulation technique to specific subdomains and
use simplified models.9 This strategy is exemplified by the
Martini force field,10 which focuses mainly on folded proteins
and lipid membranes and allows the simulation of large protein
complexes in a realistic environment. More recently, other
simplified models have emerged, focusing on IDPs and their
interaction processes in the context of liquid−liquid phase
separation.11−14 We are also seeing the first examples of

simplified models resulting from machine-learned potentials
trained on classical force fields.15 Since the 1990s, structure-
based models have played a key role in elucidating the protein
folding process by learning a system-dependent potential that
should have an absolute energy minimum centered on the
chosen folded structure.16

Recently, building on the observation that the amyloid
structure could be the most stable one that protein molecules
can adopt under physiological conditions,17 we have revisited
structure-based models to incorporate information from
multiple minima with the aim of describing the aggregation
of a peptide into an amyloid fibril.18 Our model, called multi-
eGO, allowed us to qualitatively capture the experimental
macroscopic features of protein aggregation, including kinetics
and fibril morphology, and to shed light on the microscopic
features of the process.18

Multi-eGO is a hybrid transferable/structure-based model
defined from a combination of simulations and structures.
Only the heavy atoms (nonhydrogens) are included to
maintain atomic resolution. Bonds, angles, dihedrals, and
default C(12) values are based on the GROMOS54a7 force
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field,19 being already optimized without nonpolar hydrogens,
dihedral terms for the φ and ψ torsions and some 1−4
nonbonded interactions (i.e., pairs of atoms that are separated
by three consecutive covalent bonds) are specifically
reoptimized. Attractive nonbonded interactions are obtained
from either a PDB structure or an MD simulation and
parametrized using the Lennard−Jones (LJ) potential. The
structure-based potential is defined by pairs of atoms within a
0.55 nm cutoff, with an interaction strength rescaled using
contact probabilities. The εi,j of the LJ potential was
heuristically defined as
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where ε0 is the maximum interaction energy provided in the
input, Pi,jMD is the population for the contact between atoms i,j
as obtained from a training MD simulation, and PthresholdMD is a
minimum population that should be considered. Such LJ
parametrization allowed an increase in protein flexibility when
combined with the transferable bonded terms.
Encouraged by our previous results, we built a multi-eGO

model to simulate the amyloid β42 peptide (Aβ42)20,21 using
previously published MD trajectories22 for training (with the
only difference that we set Pthreshold to 0.01 compared to the
0.09 value used in our previous work). As shown in Figure 1,
the original multi-eGO parametrization does not allow us to
capture the training Aβ42 conformational ensemble with any
ε0 value. Our interpretation is that this is due to the imbalance
between the highly populated local contacts and the very
weakly populated contacts between distant residues, which are
typical IDPs such as Aβ42. Our hypothesis was supported by
the impossibility of learning contacts using the smaller epsilon
value and the impossibility of getting to a compact structure at
a larger epsilon. These results indicate the need to improve eq
1 to better account for the polymer properties.
In what follows, we therefore present a reformulation of the

multi-eGO model in which following Bayesian statistics, we
update a prior polymer model with additional information
learned from training simulations. We show how this leads to a
more complete description of attractive and repulsive
interactions. We demonstrate that the updated multi-eGO

can correctly learn the dynamics of an IDP such as Aβ42, can
be used to describe the folding mechanism of a small protein
such as the B1 immunoglobulin-binding domain of strepto-
coccal protein G (GB1),23 and can still reproduce the recently
published results on the aggregation of the transthyretin 105−
115 amyloidogenic peptide (TTR105−115).

18,24 We therefore
propose this improved multi-eGO as a model that, using only
the information that can be generated with conventional MD,
can approximate processes on size and time scales that are
orders of magnitude larger than the state of the art.

2. THEORY
2.1. Multi-eGO: A Bayesian Reformulation. Equation 1

introduced above suggests, in the form on the right side, that
the MD contact probabilities are weighted by a uniform,
uninformative, prior distribution. Proteins are polymers with a
local geometry described by the Ramachandran plot, and as
such, the contact probabilities between atoms along the chain
are influenced by the chain geometry. A more informative prior
would be that of a self-avoiding chain with local geometries as
close as possible to those of proteins. We call random coil
(RC) probability distribution the contact pair distribution
resulting from a simulation of such a model (cf., next section).
Consideration of this new prior leads to a reformulated
equation for the interaction energy

= ·
P

P

P Pln
ln

max( , )i,j
0
intra

threshold
RC

i,j
MD

i,j
RC

threshold
RC

(2)

where Pi,jMD and Pi,jRC are the fraction of frames with a native
contact in the MD and RC simulations, respectively. In this
new parametrization, the information on the prior model is
retained until a minimum value PthresholdRC is reached. This
equation is the core of the new multi-eGO, and it is important
to note that it is meant to account in general for any prior
assumptions, which means that other prior models can be used
for specific problems, as will be shown later for intermolecular
interactions. Another important consequence of this formula is
that if Pi,j

RC > Pi,jMD, the sign of the energy changes, indicating the
need to introduce repulsive interactions. Notably, this is similar
to approaches previously introduced to reweight statistical
potentials used in protein structure prediction.25

Figure 1. Original multi-eGO fails to reproduce the conformational dynamics of the Aβ42 monomer. (a) Probability density function (pdf) for the
backbone radius of gyration of Aβ42 for a training simulation (charmm22*, blue)22 and for an original multi-eGO simulation with ε0 = 0.275 kJ/
mol (red) and ε0 = 1 kJ/mol (green). (b) Comparison of the per-residue probability contact map for the training and original multi-eGO
simulation with ε0 = 1 kJ/mol and a representative structure from the multi-eGO simulation. The colored bar represents the contact probability. (c)
Comparison of the per-residue probability contact map for the training and original multi-eGO simulation with ε0 = 0.275 kJ/mol and a
representative structure from the multi-eGO simulation. The color bar represents the contact probability.
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2.2. Multi-eGO Prior, Random Coil, Model. In the new
formulation of multi-eGO, the prior is essential to define the
nonbonded interaction strength. Therefore, we reoptimized
the local geometries of the model to obtain the most
informative prior possible by reparametrizing the default
C(12) parameters of the LJ potential, the 1−4 excluded volume
pairs, and the dihedral parameters. First, bonds, angles, and
proper and improper dihedrals were taken from the
GROMOS54a719 force field as before. C(12) values for the
GROMOS54a7 atom types were scaled down so that the
atomic radius is defined as the distance at which the repulsion
is equal to the thermal energy at 300 K (kBT = 2.49 kJ/mol).
In the case of oxygen−oxygen interactions, we introduced a
scaled-up C(12) (11.4-fold larger than the obtained by the
procedure described above) to account for their strong
electrostatic repulsion. We then introduced new 1−4 pairs,
defined only by their C(12), to account for the correct local
excluded volume potential. The newly introduced pairs include
C−1−Cβ, Cβ−O, Cβ−N+1, N−N+1, C−C+1, C−Cγ, and N−Cγ,
most of which were added based on.26,27 1−4 C(12) were fine-
tuned using different dipeptides to match a corresponding
target Ramachandran distribution, as obtained from an explicit
solvent simulation using the CHARMM22* force field.28

Finally, the parameters corresponding to the φ and ψ backbone
dihedrals were optimized to minimize the difference between
the Ramachandran distributions. The dipeptides used were
glycine dipeptide, proline dipeptide, alanine dipeptide, and
valine dipeptide, the latter two being used to represent residues
with small and bulky side chains, respectively. The small amino
acids include alanine, serine, and threonine, while the valine
dipeptide was chosen as a proxy for the other 15 amino acids.
This distinction was necessary because bulky amino acids
behave differently toward the upper left corner (extended β
conformation) of the Ramachandran distribution. Bulky amino
acids generally have less extended β conformations and a
smoother β distribution overall, requiring separately optimized
dihedral parameters.
2.3. Attractive Interactions. Nonbonded interactions in

multi-eGO are implemented using the LJ potential, i.e.,
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6 , with repulsive inter-

actions defined only by the value C(12) = 4εσ.12 To generate
the model potential, we then set both ε and σ. As already
introduced above, ε is defined as in eq 2 from the ratio
between the contact probability of a pair of atoms as observed
in the training MD simulation and in the corresponding RC
simulation (i.e., a simulation based only on the multi-eGO
prior model). As a rule, the RC simulation must be performed
at the same temperature as the corresponding training MD.
The multi-eGO simulation can then be performed at a different
temperature, but given the simplified nature of the interactions,
the extrapolation in temperature will add additional approx-
imations. The contact probability between two atoms is
defined here as Pi,j = ∫ 0

Ri,jd

cut

Pi,j(x)dx, i.e., the probability of
observing the i,j pair in the distance range [0, Ri,j

cut]. In the
original multi-eGO, Ri,j

cut was set to 0.55 nm irrespective of the
i,j pair, but it should be noted that in a conventional MD
simulation, certain atom types can hardly form interactions in
this distance due to their size, e.g., α carbons, while for other
pairs, this distance is far too permissive, e.g., nitrogen−oxygen
forming a hydrogen bond. Therefore, we have introduced a
variable =R f C C( )i,j

cut
cut i

(12)
j
(12) 1/24, where the cutoff factor fcut

= 1.45 is chosen so that the atom forming pairs are subject to
80% of the standard LJ attraction. In LJ, σ is related to the
position of the minimum of the potential as = r

2
min
1/6 , where

rmin should be considered as the interaction length. To estimate
rmin from our simulations, we use an exponential averaging with
a resolution of 0.1 nm
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From eq 2, it is clear that ε can tend to zero if Pi,j
RC−Pi,jMD, but

as the value of ε decreases, the LJ potential becomes
increasingly permissive with respect to distances shorter than
σ, thus suggesting that ε should not become too small to
prevent atoms from exploring unphysical conformations.
Consequently, we can introduce a minimum fraction of ε0intra
below, which we do not define as an attractive interaction.
Given this minimum fraction fε and eq 2, an attractive
interaction is defined if and only if Pi,j

MD > (Pthreshold
RC )−fε

max(Pi,j
RC, Pthreshold

RC ). Here, we set fε = 0.2 by default so that ε
is not less than 0.2ε0intra. However, in this way, attractive
interactions can still be defined for pairs of atoms with very
small Pi,jMD, for which the estimate of both Pi,jMD and rmin may be
poor due to limited statistical sampling. We would therefore
like to add an additional condition for learning attractive
interactions, namely, Pi,j

MD > Pthreshold
MD . Given a value for PthresholdMD ,

it is possible to define
=P P( ) f

threshold
RC

threshold
MD 1/1 in such a way that the two

conditions do not overlap. Now let us consider the case of two
different training MD simulations, one for a system exploring a
very homogeneous conformational ensemble and the other
exploring a very heterogeneous one. Using a single Pthreshold

MD can
lead to learning irrelevant contacts in the first case and
discarding relevant ones in the second. To obtain an adaptive
Pthreshold
MD , we instead set Plearn as the fraction of the total contact

population to learn from a training simulation. We sort all Pi,jMD

in descending order and normalize them by the total contact
population ∑Pi,j

MD, and then we take PthresholdMD as the Pi,jMD value
associated with a cumulative sum equal to Plearn. Our default
choice is Plearn = 0.9995, where a value too small would result
in poor learning of the training simulations, while a value too
large may result in learning of numerical noise.
2.4. Repulsive Interactions. Equation 2 can also lead to

negative ε, as mentioned above, but LJ is not well-defined in
this case. Instead, repulsive interactions can be implemented by
setting C(6) = 0 and C(12) > 0. We derived a general formula to
update our default C(12) (cf. Section 2.2) by observing the
following approximate relationship between the probability of
a contact and its interaction length rmin in the RC and MD
simulations

=P C r P C r: exp( / ) : exp( / )i,j
RC
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12
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i,j
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12

RC MD (4)

where C̃i,j
(12) is the updated effective value we wish to set to

reproduce the training MD simulation. From the above
relationship, we can see that
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which we regularize as in eq 2 to obtain
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Equation 6 is applied whenever Pi,j
MD < max (Pi,j

RC, PthresholdRC )
but greater than 0. Here, the second term of the sum allows the
standard Ci,j

(12) to be scaled up or down, while the first term is
added on top. We also consider the case of (PthresholdRC )−fϵ max
(Pi,jRC, Pthreshold

RC ) > Pi,j
MD > max (Pi,j

RC, PthresholdRC ); in this case, we

use the = i
k
jjj y

{
zzzC C

r

ri,j
(12)

i,j
(12)

12
minMD

minRC
relationship because the first

term would have a negative sign and could result in
meaningless Ci,j

(12) coefficients. Importantly, with respect to
the case of attractive interactions, it is now possible for Pi,jMD

and/or Pi,jRC to be less than PthresholdMD , in which case the
corresponding rmin is set to Ri,j

cut. Finally, to avoid unphysical
interactions, the learned Ci,j

(12) is limited to between 1/10 and
20 times the default one. 1−4 interactions are rescaled
according to the same rules, but to avoid possible distortions of
the Ramachandran space, their Ci,j

(12) values cannot change
more than a factor of 1.5. For all of the pairs of atoms not
included in the attractive or repulsive cases, the prior Ci,j

(12) is
retained.
2.5. Intermolecular Interactions. Intramolecular geo-

metries are generally compatible with intermolecular geo-
metries, while the opposite is not true (i.e., some
intermolecular contacts cannot be formed intramolecularly
because of the constraints imposed by the polymer geometry).
Therefore, in multi-eGO, when we learn an intramolecular
interaction, it is applied intermolecularly, while the opposite is
not true. If both intermolecular and intramolecular interactions
are learned for the same pair of atoms, then both are retained
and applied under the appropriate conditions. To estimate the
intermolecular contact probabilities and interaction lengths, we
analyze a training simulation containing N copies of a molecule
for the probability that a pair of atoms form at least one
intermolecular contact per molecule in each frame. This
follows from the assumption that the contact strength should
not depend on the coordination, i.e., the interactions are
simply two-body. The interaction length for a pair is calculated
using eq 3 over the distribution of the intermolecular pair
distances. The interaction strength is then set according to eqs
2 and 6 with the possibility of setting ε0inter ≠ ε0intra, but using an
ad hoc prior model. The intermolecular prior model should
estimate the probability of trivial intermolecular interactions
resulting only from random collisions associated with the shape
of the molecules and their concentration. In general, to avoid
any issue in the entropic contributions of the model, our
current approach is to run a simulation at the same
concentration as the one we want to run in production,
using a force field trained only for intramolecular interactions.
It should be noted that an intermolecular prior model is only
needed to learn intermolecular interactions specifically, not for
the intramolecular model applied intermolecularly.
2.6. Learning from Multiple MD Simulations. A key

feature of multi-eGO is its ability to learn from multiple MD
simulations, generally associated with different free energy
minima of the system. A prototypical example is that of
amyloid fibrils, where we can provide for training a simulation

of the monomer protein in solution, the free energy minimum
at low concentration, and that of the protein in an amyloid
fibril, the free energy minimum at high concentration. When
merging contacts learned from different sources, we follow the
following rules: (1) among multiple contacts for a given i,j pair,
we chose the one with the shortest estimated interaction length
as defined above (that is, for pairs with Pi,j > Pthreshold

MD , we use eq
3, otherwise rmin = Ri,j

cut); (2) among several attractive and
repulsive contacts for a given i,j pair with the same rmin, we
chose the attractive one with the largest ε; and (3) among
several repulsive contacts for a given i,j pair, we chose the one
with the smallest Ci,j

(12). Another implemented option is to set
an ensemble as the check data set. Setting an ensemble as such
forces multi-eGO to perform a check on repulsive interactions
to ensure compatibility with the check data set. The Ci,j

(12) of
repulsive contacts for which rmin

check < rmin
train are rescaled by (rmin

check/
rmin
train)12.

3. SIMULATIONS DETAILS
All MD simulations were performed using the GROMACS29

software suite. Metadynamics30 simulations were performed
using the PLUMED2 library.31,32 Unless explicitly stated, all
simulations were performed using the same 4-step protocol
consisting of (1) energy minimization using the steepest
descent algorithm until the maximum force converges to a
value <1000 kJ mol−1nm−1, (2) conjugate-gradient minimiza-
tion until the maximum force converges to a value <10 kJ
mol−1 nm−1, (3) positionally restrained relaxation for 4 ns at
constant pressure and temperature, and (4) the production
simulation. Explicit solvent MD simulations were performed
using the leapfrog algorithm with a time step of 2 fs and
LINCS restraints33 for hydrogen atoms. Nonbonded inter-
actions are cut off at 1 nm using PME for long-range
electrostatics.34 Temperature and pressure are controlled by
stochastic velocity rescaling35 and cell rescaling36 algorithms,
respectively. Multi-eGO simulations were performed using
stochastic dynamics integration with a time step of 5 fs and a
relaxation time of 25 ps. The cutoff for the LJ interactions is set
specifically for each system as 2.5σmax. A 10% larger radius is
used for the neighbor lists, which are updated every 20 steps.
All scripts and parameters to generate a multi-eGO force

field are publicly available on GitHub (cf. Notes). All
simulations performed in this work are publicly available via
Zenodo (cf. Notes).
3.1. Aβ42. The training trajectories for Aβ42 are publicly

available and published in ref. 22 They include 315 μs of
sampling at 278 K. An RC simulation was performed at the
same temperature for 1 μs. Different ε0 values were then tested
to maximize the agreement with the target radius of the
gyration probability distribution until an optimal value of 0.335
kJ/mol was found. Production multi-eGO simulations were run
in triplicate at the same temperature for 2 μs each. Clustering
analyses were performed with the cluster module of
GROMACS using the gromos algorithm described in ref 37
using the root-mean-square deviation (RMSD) of the
backbone atom positions as a metric and a cutoff of 0.8 nm.
3.2. Protein GB1. The explicit solvent training simulation

was performed using the CHARMM22* force field28 in
conjunction with the TIP3P water model.38 A dodecahedral
box was constructed 0.7 nm from the protein surface to
minimize the number of explicit water molecules. The system
charge was neutralized using a NaCl concentration of 0.2 mM.
After energy minimization and temperature and density
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equilibration, production was performed for 1 μs of
simulations in the NPT ensemble (T = 300 K, P = 1 bar).
The RC simulation was also performed for 1 μs at 300 K. To
calibrate the multi-eGO energy scale ε0, we used the melting
temperature and its microscopic implications. First, we
performed metadynamics simulations at the experimental
melting temperature23 Tm = 360 K to determine the ε0 value
at which the folded and unfolded states are equally populated.
For these simulations, we used the all-atom RMSD with
respect to the crystal structure as a collective variable, adding
Gaussians every 500 steps, with an initial height of 1.2 kJ/mol,
a bias factor of 15, and a width of 0.025 nm. Following the
identification of an appropriate ε0 = 0.235 kJ/mol, we prepared
200 starting configurations extracted from the RC simulation.
We then ran 200 independent simulations at 300 K until the
folded structure (i.e., all-atom RMSD with respect to the
crystal structure of less than 0.3 nm) was reached. The data
were analyzed using Biotite.39

3.3. TTR105−115 Peptide. The training trajectory for
TTR105−115 was performed in our previous work18 using the
a99SB-disp force field,40 for 1.6 μs at 300 K. The RC
simulation was performed for 500 ns at the same temperature.
The ε0 for the intramolecular interactions of the multi-eGO
simulation was tuned by maximizing the agreement of the
radius of gyration probability distribution, and the best result
was found for ε0 = 0.275 kJ/mol.
A training trajectory for the TTR105−115 fibril was performed

using the 2M5M PDB structure,41 consisting of 84 monomers,
in a box containing 23,000 water molecules. The system was
parametrized using the CHARMM22* force field28 and the
TIP3P water model.38 The fibril was found to be unstable, so

the simulation was run with a position restraint on all of the
backbone and Cβ carbons of the system for 150 ns. To weight
the intermolecular interactions, 2 μs multi-eGO simulations of
80 monomers at concentrations of 13, 10, and 7 mM were
performed, trained only on the monomer MD, with ε0 = 0.275
kJ/mol. The ε0 for the intermolecular interactions was also set
at 0.275 kJ/mol after a stable fibril structure was verified.
Aggregation kinetics simulations were set up to generate boxes
of 4000 monomers at concentrations of 13, 10, and 7 mM.
Three initial configurations were generated for each concen-
tration and first equilibrated using the monomer-only force
field. Simulations were then run at 310 K and followed until
aggregation.

4. RESULTS
4.1. Multi-eGO Can Reproduce the Conformational

Ensemble of an Intrinsically Disordered Protein. In
Figure 1, we have shown how our first multi-eGO
implementation was unable to learn the heterogeneous
conformational ensemble of Aβ42, as represented by its radius
of gyration probability distribution and per-residue average
contact map. We attribute this limitation to the imbalance
between local and long-range interactions. In fact, the contact
probability weighting equation heuristically introduced in our
previous publication, eq 1 in the Introduction, can be rewritten
as the ratio between a training probability and an
uninformative uniform prior. By introducing a polymer-
informed prior, cf. Section 2, we can weight each contact by
its probability of forming as a consequence of the polymer
geometry alone. As shown in Figure 2a, the distribution of the
contact probabilities in the training simulation peaks for atoms

Figure 2. Reformulated multi-eGO model can reproduce the conformational dynamics of Aβ42 IDP. (a) Comparison of the atom-pair contact
probabilities for the training (red dots) and RC (blue dots) simulations. The lines represent the PthresholdMD (red) and PthresholdRC (blue) values. (b)
Comparison of the radius of gyration probability density function (calculated using the backbone atoms) for the training (blue), multi-eGO
(orange), and RC (green) simulations. (c) The contact probability map per residue for the training (upper diagonal) and multi-eGO (lower
diagonal) simulations. The color bar represents the contact probability. (d) Clustering analysis of multi-eGO and training simulations. The clusters
are comparable in population size and in terms of order. A representative configuration is shown for each cluster.
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close in sequence, decreasing with distance, but with some
regions still showing low but non-negligible values with respect
to Pthreshold

MD (e.g., 0.0007). On the contrary, the contact
probabilities in the RC simulation are equally peaked for
atoms close in sequence but systematically drop to zero for
atoms further apart, at some point becoming smaller than the
PthresholdRC value (e.g., 0.0001). The comparison of the two
distributions allows a better understanding of how the multi-
eGO model works by immediately highlighting that some
distant contacts are very important compared to the
probability of their formation by chance.
In Figure 2b, we show how this multi-eGO reformulation

allows us to improve the agreement of the radius of gyration
distribution not only to overlap at the maximum, where we
find most of the closed conformations, but also to show how
the simulations now match the tail, i.e., the open
conformations with fewer contacts. The contact map analysis
shown in Figure 2c further confirms the accuracy of the model,
showing a strong resemblance to the training, with an average
error of around 3.5%. Finally, we performed a clustering
analysis37 on the combined trajectories of the multi-eGO
simulation and the training to understand how the individual
states are distributed. Remarkably, our analysis revealed that
the six most representative clusters are equally represented in
the training and multi-eGO conformational ensembles, as
shown in Figure 2d.
Taking all of the results together, it is safe to say that the

conformational ensemble sampled by multi-eGO is in
quantitative agreement with the training ensemble used.
4.2. Multi-eGO Can Simulate the Folding Mechanism

of a Small Protein. Having shown that multi-eGO can learn

the conformational ensemble of an IDP, one can ask how it
performs in a conventional structure-based modeling task, i.e.,
describing the folding mechanism of a folded protein. A system
often studied by Go̅ models is protein GB1.42−44 The folding
of this protein has been well characterized experimentally,
showing that its C-terminal hairpin folds first, followed by its
N-terminal one and the α-helix.45 To set up the model, we ran
a training simulation of the folded protein and an RC
simulation. Comparing the probability distribution of contact
pairs in Figure 3a, we observe high probability contacts both
close and farther apart in the sequence for the training
simulation, as expected for a stable folded protein, while the
RC simulation shows an identical behavior as previously shown
for Aβ42, with highly probability contacts found only close in
the sequence. After training a multi-eGO model to recover the
experimental melting temperature of 360 K and setting ε0 to
0.235 kJ/mol, we ran 200 independent folding simulations,
starting from RC configurations, see Figure 3b. The cumulative
distribution function of the folding times in Figure 3c shows a
typical Poisson distribution (p-value of 0.994 from a
Kolmogorov−Smirnov test) with an average folding time of
17.4 ns. This time is nominal and when compared with the
experimental time scale of 10 ms45 gives an idea of the speed-
up achieved by multi-eGO.
To analyze the GB1 folding mechanism, we evaluated the

folding time for each secondary structure element, i.e., the N-
and C-terminal β-hairpins and the central α-helix, as the time
at which each secondary structure was stably formed in the
folding simulation; see Figure 3d. The analysis clearly
highlights the C-terminal hairpin as the element that generally
folds first. This is a way to measure the progress of the folding

Figure 3. Multi-eGO can reproduce the folding mechanism of GB1. (a) Comparison of the atom-pair contact probabilities for the training (red
dots) and RC (blue dots) simulations. The lines represent the PthresholdMD (red) and PthresholdRC (blue) values. (b) Time evolution of the RMSD with
respect to the folded state for the 200 multi-eGO folding trajectories. (c) Cumulative distribution function (cdf) of the folding time distribution for
the 200 multi-eGO folding trajectories (blue bars), fitted with the cdf of the Poisson distribution (red line) and associated p-value. (d) Cumulative
distribution function for the folding times of the three GB1 secondary structure elements.
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process and clearly indicates an asymmetric folding that starts
preferentially from the C-terminal and ends with either the α-
helix or the N-terminal hairpin, as previously reported.43,44,46

This result suggests that multi-eGO can correctly learn the
native state energy of a folded protein and extrapolate about
the folding mechanism.
4.3. Multi-eGO Can Still Qualitatively Describe the

Aggregation Kinetics of TTR105−115. In our previous
work,18 we showed that multi-eGO could simulate the
aggregation kinetics of TTR105−115 as a function of the initial
monomer concentration, qualitatively reproducing the ex-
pected kinetics and structural features. After reformulating
multi-eGO, we replicated these simulations. To train the
model, we used the previously generated simulation of the
monomer, a simulation of the fibril (with the caveat that
having observed the fibril to be unstable in solution, we ran the
simulation using positional restraints). We also ran an RC
simulation of the monomer and three intermolecular prior
simulations (at concentrations of 13, 10, and 7 mM), which are
required to weight the intermolecular contacts (cf. Section 2).
In Figure 4a, we compare the probabilities for the
intermolecular contact pair from the training and the prior
simulations. The training simulation showed many highly
probable intermolecular contacts due to the stable fibril
conformation. On the contrary, the prior simulation displayed
low probability contacts resulting from the random collisions.
From the training and RC simulations, we set ε0intra to 0.275

kJ/mol by maximizing the agreement between the radius of
gyration probability distribution for the monomer training and

multi-eGO simulations. In Figure 4b, we show the overlap
between the radius of gyration probability distributions for the
training, original, and reformulated multi-eGO simulations. It is
apparent how the reformulated multi-eGO better reproduces
the training simulation. Next, we verified that the same value
can be used for ε0inter, resulting in a stable fibril conformation.
Finally, aggregation kinetics were simulated in triplicate with
starting monomer concentrations of 13, 10, and 7 mM using
4000 monomers. In Figure 4c, we plotted the fraction of fibril
mass as the normalized number of monomers involved in an
aggregate of at least 10 monomers as a function of the
simulation time. The curves showed the expected sigmoidal
shape with an increasing lag time with a decreasing
concentration. To compare simulations and experiments, we
calculated the log−log of both aggregation half-times and
concentrations. Both the experimental and simulation data
show a linear trend with comparable slopes of −2.1 ± 0.1 and
−2.4 ± 0.2, indicating macroscopically comparable kinetics. As
in our previous work, the resulting fibrils lack the central cavity
while exhibiting correct antiparallel stacking and head-to-tail
lateral growth, allowing us to confirm that the reformulated
model can still qualitatively describe the aggregation of the
TTR105−115 peptide.

18,41

Simplified models for biomolecular simulations have been
developed to overcome the time scale and size limitations of
conventional molecular mechanics MD. Structure-based
models, often at α-carbon resolution, have been used mainly
to study not only protein folding16 but also large conforma-
tional changes,47−49 metamorphic proteins,50,51 and the folding

Figure 4. Multi-eGO simulations of TTR105−115 aggregation as a function of the initial monomer concentration. (a) Comparison of the
intermolecular contact probabilities of atom pairs for the training (red dots) and 13 mM RC (blue dots) simulations. The lines represent the
PthresholdMD (red) and PthresholdRC (blue) values. (b) Comparison of the radius of the gyration probability density function (calculated using the backbone
atoms) for the training monomer (red), reformulated multi-eGO (blue), and original multi-eGO (green) simulations. (c) Simulated aggregation
kinetics. Curves represent the normalized number of monomers involved in an aggregate of at least 10 monomers as a function of nominal
simulation time. (d) Log−log plot of the half-times as a function of the initial monomer concentration, experimental values (red) are taken from
ref. 18 Both sets can be fitted by a straight line with slopes γ = −2.1 ± 0.1 and γ = −2.4 ± 0.2 for the experimental and simulated data, respectively.
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upon binding of disordered proteins with different part-
ners.52,53 With multi-eGO, we aim to develop a platform that,
building on the increasing availability of high-quality MD
simulations (see, e.g., ref 54), can then be used to study
processes involving multiple molecules and long time scales
while maintaining atomistic resolution and, indirectly, some
chemical specificity. This work, by introducing a well-defined
theoretical framework for learning from both homogeneous
and heterogeneous conformational ensembles, is our second
step in this direction.
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