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 CURRENT
OPINION Dietary fats as regulators of neutrophil plasticity:

an update on molecular mechanisms
www.co-clinicalnutrition.com
Anna Parolini, Lorenzo Da Dalt, Giuseppe Danilo Norata
and Andrea Baragetti
Purpose of review

Contemporary guidelines for the prevention of cardio-metabolic diseases focus on the control of dietary fat
intake, because of their adverse metabolic effects. Moreover, fats alter innate immune defenses, by eliciting
pro-inflammatory epigenetic mechanisms on the long-living hematopoietic cell progenitors which, in the
bone marrow, mainly give rise to short-living neutrophils. Nevertheless, the heterogenicity of fats and the
complexity of the biology of neutrophils pose challenges in the understanding on how this class of nutrients
could contribute to the development of cardio-metabolic diseases via specific molecular mechanisms
activating the inflammatory response.

Recent findings

The knowledge on the biology of neutrophils is expanding and there are now different cellular networks
orchestrating site-specific reprogramming of these cells to optimize the responses against pathogens. The
innate immune competence of neutrophil is altered in response to high fat diet and contributes to the
development of metabolic alterations, although the precise mechanisms are still poorly understood.

Summary

Defining the different molecular mechanisms involved in the fat-neutrophil crosstalk will help to reconcile the
sparse data about the interaction of dietary fats with neutrophils and to tailor strategies to target neutrophils
in the context of cardio-metabolic diseases.
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INTRODUCTION other nutrients (20–40 g of fats are consumed during
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During evolution mammals adapted to states of
nutritional scarcity or to those of abundant avail-
ability of food and multiple nutritional sources, by
developing the capability of alternating state of fast-
refeeding, which probably have guaranteed an evo-
lutionary advantage due to the potential beneficial
metabolic effects [1–3]. Over time, however,
changes in dietary habits, with an easier access to
caloric-dense foods occurred. Today, as a conse-
quence of industrial processing used to refine food
flavor and to prolong stability and shelf-life most of
the food consumed in daily life is composed by
“complex matrices” [4], being poor in healthy
nutrients (fibers, vitamins, minerals, and other
plant-derived molecules and antioxidants), but
enriched in refined sugars and mechanically proc-
essed fats (either as saturated, mono- or poly-unsa-
turated fatty acids), cholesterol, salt, white flour and
food additives. Among these nutrients, the content
of refined fats represents a critical concern. Indeed,
the consumption of fat is more elevated to that of
each meal on average [5]), and meals are commonly
served thrice/four times daily [5,6] not only in more
developed, but also in emerging low-to-middle
income countries. The accumulation of calorie-
dense fatty nutrients, together with a hardly bal-
anced energy expenditure (more than a quarter of
the global adult population is insufficiently active
compared to recommendations [7]) favors the
Volume 27 � Number 5 � September 2024

mailto:andrea.baragetti@unimi.it


KEY POINTS

� Dietary guidelines for the prevention of cardio-
metabolic diseases take particular attention on the
intake of dietary fats but cannot capture the
inflammatory aspects related to neutrophil.

� Sparse and contrasting data are available from
experimental models are available regarding the
precise mechanisms by which fats activates neutrophils.

� Neutrophils behave in a plastic manner in response to
high fat diet and they contribute to the development of
cardio-metabolic diseases.

Dietary fats as regulators of neutrophil plasticity: an update on molecular mechanisms Parolini et al.
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establishment of dominant genetic and epigenetic
pathways [8], making the storage of energy as fats in
ectopic sites, principally visceral adipose tissue and
liver, redundant in some circumstances. Fatty acids
(FAs) are released in tissues after the hydrolysis of
the triglycerides present in the food matrices that,
once absorbed in the intestine, are packed into lip-
oproteins. As such, there is a delicate balance
between the delivery of FAs from triglycerides
(TGs) to peripheral cells and their storage in differ-
ent tissues. In the case of chronic intake of fatty
food, the body initially compensates by increasing
the storing capacity until a low-grade inflammatory
status develops, which, in turn, triggers both insu-
lin-resistance [9,10] and the activation of different
immune cell subsets, including the innate immune
arm, via an immune-metabolic regulation [11,12].

In search of effective prevention and treatment
of the epidemiologically relevant burden of cardio-
metabolic diseases, current guidelines are concord-
ant in advising to reduce the dietary intake of satu-
rated FAs, and cholesterol and, to increase the
consumption of mono- or polyunsaturated FAs
[13]. Whether this approach, which is effective in
improving metabolic homeostasis, by reducing
insulin resistance and ectopic adiposity, also coun-
teracts the systemic low-grade inflammation is not
fully understood. Yet, inconsistent associations
between a lower consumption of saturated FAs
and a higher intake of mono-/polyunsaturated
FAs, with increased plasmatic levels of surrogate
markers of low-grade inflammation, have been
found in large epidemiological studies [14–16]. Sim-
ilarly, nutritional interventional trials indicated
that, whereas applying the recommendations from
guidelines is effective in improving metabolic
homeostasis, a beneficial effect in reducing low-
grade inflammation is questionable [16]. It is
obvious that multiple factors might contribute to
these contrasting results. The search of biomarkers,
that can be easily quantified is critical and will
1363-1950 Copyright © 2024 The Author(s). Published by Wolters Kluwe
further contribute to clarify the dichotomy on the
pro- or an anti-inflammatory effect of the food
matrices. By using multiarray approaches in plasma,
we recently identify an association between the con-
sumption of unhealthy fat enriched foods with a set
of multiple inflammatory proteins that were clus-
tered into biologically relevant pathways related to
the activation and the chemotaxis of innate immune
cells, mainly neutrophils [17

&

]. Being an observatio-
nal analysis, further studies are required to draw a
solid demonstration about a causal effect of dietary
fats on the activation of neutrophils. This gap is the
consequence of the large bounce of data regarding
the reactivity of neutrophils against dietary fats,
obtained mainly in vitro. Hence, the conclusion that
saturated FAs promote the pro-inflammatory activa-
tion of neutrophils while the opposite is true for poly-
unsaturated FAs could be too simple.
Mechanisms by which dietary fats interact
with neutrophils

Short-chain saturated FAs, which originate mostly
from the microbial fermentation of fibers complex
carbohydrates (that are abundant in vegetables,
fruits, legumes, and whole grains [18,19]), in the
gut could play different roles in neutrophils
(Table 1). Butyrate, for instance, exerts favorable
metabolic effects by reducing insulin resistance
[20], favoring the transition of monocytes to pro-
resolutive anti-inflammatory macrophages, via the
inhibition of histone deacetylases (HDACs) [21] and
promoting anti-atherosclerotic effects [22]. Yet
whether butyrate promotes the pro-resolutive func-
tion of neutrophils is unclear. Indeed, some studies
indicate that butyrate up-regulates the generation of
hydrogen peroxide but, at the same time, reduces
that of myeloperoxidase-mediated oxidants (which
are critical in killing microorganisms and in induc-
ing tissue injury [23]). Other studies suggest that
butyrate impairs the capacity of neutrophils to pro-
duce oxidative species in an HDACs-dependent
mechanism, and this results into the protection
against inflammatory bowel disease [24] (Table 1).
Furthermore, other studies suggested that the down-
regulation of the nicotinamide adenine dinucleo-
tide phosphate, an oxidase complex component
required for the generation of reactive oxygen spe-
cies in neutrophils, impairs the antimicrobicidal
activity in the lung [25]. Acetate, by contrast, while
promoting glucose intolerance [26] and supporting
pro-inflammatory mechanisms on lymphocytes
(which promote atherosclerosis [27]), sustains the
pro-resolutive activity of neutrophils against C. dif-
ficile infection, via the interaction with the G-pro-
tein coupled free fatty acids receptor, type 2 (FFAR2),
r Health, Inc. www.co-clinicalnutrition.com 435



Table 1. Effect of dietary fats on metabolism and on the activity of neutrophils

Fatty acid Effect on metabolism Effect on neutrophils

Palmitate (16 : 0)
C16H32O2

" Ectopic adiposity [31]
" Insulin resistance [31,38]
" Glucose intolerance [55–57]

" NETosis [40,41]
NLRP3 inflammasome activation and IL-1b release [55]
" Oxidative stress [55]
# Autophagy [55]

Butyrate (4 : 0)
C4H8O2

# Insulin resistance [20]
# Glucose intolerance [26]
Antiatherosclerotic effects [22]

Unclear effects on oxidative species production [23–25]
# Myeloperoxidase-mediated oxidants [23]

Acetate
C2H4O2

" Glucose intolerance [26] Induction of a pro-resolutive phenotype [28,29]
" Neutrophil recruitment [30]
NLRP3 inflammasome activation and IL-1b release [30]

Oleate (18 : 1 n-9)
C18H34O2

# Insulin resistance [42–44]
" Cardio-metabolic fitness [45,46]

" NETosis [40,41]
# NLRP3 inflammasome activation [59]

Linoleate (18 : 2 n-9,12)
C18H32O2

" Insulin sensitivity [47] " NETosis [40,41]
# NLRP3 inflammasome activation [58]

DHA (22 :6 n-3)
C22H32O2

Metabolic improvement [58] # Chemotaxis [48]
# NLRP3 inflammasome activation [58]

EPA (20 :5 n-3)
C20H30O2

Cardiovascular protection [52]
Metabolic improvement [58]

# Chemotaxis [48]
# NLRP3 inflammasome activation [58]
# Membrane rigidity and consequent # inflammatory cytokines

production [51]

The table lists the dietary fats for which the effects on metabolism and on the activity of neutrophils are recognized from literature. For each information, the
number of the reference that is also present in the main text is reported. “"” indicates increase while “#” indicates reduction.
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that is highly expressed on the membrane of these
cells [28,29] (Fig. 1). The activation of the FFAR2
further augments the recruitment of neutrophils to
the inflammatory sites, facilitating the activation of
the inflammasome system, a complex of cytosolic
multiprotein oligomers, that physiologically assem-
bles upon the recognition of either pathogens or
inflammatory stimuli, and promotes the release of
interleukin 1beta (IL-1b) [30]. IL-1 b, in turn, boosts
the expression of anti-inflammatory interleukin 22
(IL-22) by innate lymphoid cells which contributed
to the surveillance against pathogen associated
invasion of the basolateral membrane of enterocytes
[29] (Table 1).

All the types of saturated FAs from diet induce
adverse metabolic effects, including ectopic adipose
tissue deposition and hepatic insulin resistance [31].
Those favor the development of metabolic syn-
drome [32], and, in parallel, stimulate a series of
pro-inflammatory mechanisms on monocytes [33]
and on tissue residentmacrophages [34–36]. In spite
of these findings, whether and how saturated FAs
activate neutrophils, either to produce reactive oxy-
gen species or to release microbicidal and pathogen
killing proteins embedded in DNA strands, known
as neutrophil extracellular traps (NETs), is yet less
clear (Fig. 1). Few data from in-vitro experiments
suggest that the length of the alkyl chain might
differentially impact the responsewith the saturated
436 www.co-clinicalnutrition.com
FAs with at least six carbons in alkyl chain promot-
ing the production of radical oxygen specifies while
other fatty acids with a similar size [e.g. tricaprin
(TC10 : 0), caproic acid (C6 : 0), caprylic acid (C8 : 0)
and capric acid (C10 : 0)] do not [37]. Moreover,
palmitic acid (C16 : 0), which promotes insulin
resistance [38] and atherosclerosis during diabetes
[39], could induce the release of NETs in a dose-
dependent manner [40,41]. Similarly, oleic acid
(C18 : 1) and linoleic acid (C18 : 2) could also trigger
the release of NETs in a dose dependent manner,
although, differently from palmitic acid, could also
exert beneficial metabolic effects (improving insulin
resistance in experimental models [42–44], favoring
cardio-metabolic fitness in humans [45,46], which in
turn improves insulin sensitivity [47]) (Table 1). His-
torically poly-unsaturated fats, including omega-3
FA, were shown to exert an anti-inflammatory effect
by attenuating the chemotactic response of neutro-
phils and the generation of leukotriene (LT) B4 upon
stimulationwith calcium ionophores [48]. Nodaway,
we recognize that the biochemical interaction of
these fats with the cell membrane depends on their
biochemistry and profoundly impacts the activation
of downstream intracellular signals. Yet, while doco-
sahexaenoic acid (DHA, a 22-carbon alkyl chain
omega-3 with 6 unsaturated bonds) increases the
rigidityof themembraneand results in anonuniform
stretching related to the presents of cholesterol
Volume 27 � Number 5 � September 2024



FIGURE 1. Resume of the mechanisms by which dietary fats interact with neutrophils. The figure resumes the main canonical
mechanisms of interaction between dietary fats and the neutrophils that have been described in literature so far. “ATP”,
adenosine triphosphate; “FFAR2”, free fatty acid receptor 2 [also termed G-protein coupled receptor 43 (GPR43)]; “NLRP3”,
NOD-like receptor protein 3; “OXPHOS”, oxidative phosphorylation; “ROS”, reactive oxygen species; “TLR4”, Toll-like
receptor 4; IL1b, interleukin 1 beta.
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aggregates (which could be beneficial on neuronal
stability and function [49,50]), eicosapentaenoic acid
(EPA, a 20-carbon alkyl chain omega-3 with 5 unsa-
turated bonds) improves the fluidity of the mem-
brane [51], an effect that, in endothelial cells,
results into cardiovascular protection [52] and, in
neutrophils, reduces the productionof inflammatory
cytokines ((Table 1).

Despite this evidence, identifying the precise
mechanistic interactions of these dietary fats with
neutrophils still appears more complex than
expected. The downstream effects of the interaction
between FAs and the FFARs on the membrane of
neutrophils are not completely clear and it is con-
ceivable that some FAs would induce anti-inflam-
matory responses while others would favor a pro-
inflammatory response [53

&

]. For instance, the acti-
vation of the FFARs by omega-3 FA inhibit the
signaling of the toll-like receptors (TLRs), via acti-
vating peroxisome proliferator-activated receptor
gamma (PPAR-gamma) [54]. In neutrophils, TLRs
can be activated not only by lipopolysaccharide
(LPS) and bacterial pathogens, but also by saturated
FAs, favoring the transcription of the pro-IL-1b
which, along with the cleavage of pro-caspase 1 into
caspase 1 by the NOD-like receptor protein 3
(NRLP3) inflammasome machinery, is released
extracellularly as IL-1b to promote inflammation
1363-1950 Copyright © 2024 The Author(s). Published by Wolters Kluwe
(Fig. 1). Differently from cholesterol that, as crystals,
activates the inflammasome by eliciting long-last-
ing epigenetic mechanisms [55], the activity of FAs
on the inflammasome is controversial. Palmitate
impairs glucose tolerance, increases insulin resist-
ance in vivo [56–58] and activates the NLRP3 inflam-
masome which fuels mitochondrial oxidative stress
and inactivates autophagy [56]. On the other hand,
unsaturated FAs, protect from its over-activation. In
a murine model of insulin-resistance induced by
HFD feeding, the stimulation of bone marrow mac-
rophages with omega-3 FAs suppressed the activa-
tion of the NLRP3 inflammasome, thereby
inhibiting IL-1b secretion and resulting in improved
metabolic alterations in vivo [59] (Table 1). Further-
more, oleic acid, reduces the secretion of IL-1b by
bone marrow-derived macrophages upon previous
stimulation with either LPS or palmitate, supporting
that mono-unsaturated FAs can also prevent the
over-activation of the NLRP3 inflammasome via
the activation of the AMPK pathway [60] (Table 1).

Unfortunately, we do not still have a complete
knowledge of the biochemical interaction of FAs
with the complex biological systems either on the
cell membrane or in the intracellular space in neu-
trophils. Furthermore, translating data obtained in
vitro isolated neutrophils appears more difficult as,
in vivo, the biology of neutrophils is far complex
r Health, Inc. www.co-clinicalnutrition.com 437
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than previously known. Indeed, a dynamic “plasti-
city” of these innate immune cells, which can adapt
their structure and function during different stages
of their half-life (both immediately after their pro-
duction in the bone marrow (BM), as a consequence
of the exposure to the peripheral environment and/
or the homing in tissues upon acute inflammatory
stimuli, during their disposal in the spleen or when
they are called back to BM for re-cycling), is today
recognized [61

&&

]. We are currently expanding our
understanding on the multitude of mechanisms by
which these cells relocate in different tissues and
reprogram their peripheral function. It is therefore
plausible that different types of FAs deriving from
diet can promote or derail intra-cellular mecha-
nisms in neutrophils, in a site-specific manner, as
a function of the local demands of these cells to fight
against pathogens.
The effect of dietary fats on the plasticity of
neutrophils: towards an “immune-
metabolic” perspective

So far, cholesterol, but not FAs, has been described as
the key activator of the NLRP3 inflammasome in the
hematopoietic stem cells, turning on, in an epige-
netic manner, the expression of genes that encode
for pro-inflammatory and hyper-proliferating sig-
nals, including Il-1b [62,63]. Of note, the activation
of the inflammasome has been shown also to play a
crucial role in the engraftment of hematopoietic
stem cells in the BM, favoring the interaction of
the G-protein coupled CXCR4 receptor with its
constitutive ligand, CXCL12, or Stromal cell derived
factor 1 (SDF-1), which reinforce the interaction
between integrin a4b1 and its counter receptor
VCAM-1 in the stromovascular structure of the
niche [64,65]. This mechanism anchors the hema-
topoietic cell lineages, including the myeloid cell
precursors such as the common monocytoid pro-
genitors (CMPs), that give rise to monocytes, and
the granulocytic progenitor cells (GMPs), which
differentiate to neutrophils [66–69] (Fig. 2). Chronic
feeding with a high fat diet (HFD) results into a
robust expansion of the granulocytic compartment
which acquires a pro-inflammatory phenotype [70],
suggesting that some dietary fats can trigger the
activation of the inflammasome also at the cell
progenitor levels. Moreover, in mice fed a HFD,
alarmins like S100A8 and S100A9, produced by neu-
trophils that infiltrate the visceral adipose tissue,
stimulate the release of IL-1b by local macrophages
in a TLR4/MyD88/NLRP3 inflammasome-axis
dependent manner. IL-1b, in turn, stimulates mye-
lopoiesis in the bone marrow [71]. This observation
indicates that the inhibition of TLR4 ligands or the
438 www.co-clinicalnutrition.com
NLRP3-IL-1b signaling axis could be an efficient
strategy to reduce inflammation and improve insu-
lin resistance induced by HFD feeding. It is also
plausible, although not tested yet, that the HFD
could influence the production of NETs, an activity
that has been shown to depend on the NLRP3
inflammasome activation as well [72].

FAs reach theBMembedded in lipoproteins.After
getting in themedullarymicroenvironment through
the central nutricia artery that ramifies in deep of the
endosteum (the vascular membrane lining the
medullary cavity). Here lipoproteins are hydrolyzed
by lipases that are expressed on the membrane of
endothelial cells. Of note, these lipases are regulated
by severalmediators, and, among them, a critical role
is played by the Angiopoietin-like protein 3
(Angptl3), which does not only inhibit the activity
on the lipoprotein lipases, but also promotes the
expansion of the hematopoietic stem and progenitor
cells [73]. FAs released by the lipases can be directly
recognized by scavenger receptors, including cluster
of differentiation 36 (CD36), which have been dem-
onstrated to impact the proliferation of hemato-
poietic cells. The expression of CD36 on the
membrane of hematopoietic stem cells increases dur-
ing LPS treatment or following S. typhimurium infec-
tion and is critically involved in the transport of FAs
into the mitochondria. This process is mediated by
carnitine palmitoyltransferase 1 A (CPT1A), which
enables the metabolic switch from glycolysis to FA
beta-oxidation thus promoting cell survival [74].
Besides, part of the pool of FAs released after the
hydrolysis of TGs can be also stored as bone marrow
adipose tissue “BMAT”, which represents the third
largest adipose store in the body in physiology and
increases its volume in chronic and acute cardio-
metabolic conditions [75,76].BMATlocalizes inprox-
imityof theniches, suggesting that abalancebetween
the energy storage and release with lipolysis is crucial
for the hematopoietic cells residing nearby [77].
Indeed, the BMAT itself is essential for the hemato-
poietic expansion, by releasing the stem cell factor in
BM [75]. Furthermore, BMAT is spatially organized to
provide sufficient energy to sustain the differentia-
tion of all the hematopoietic cells stages [78] (Fig. 2).
Yet, an increased density of BMAT is commonly
found in the proximal tibia, where it can support
the proliferation and the replication of the erythro-
blasts, themyeloid and the granulocyte lineages [79].

At cellular level, FAs represent a normal key
substrate for the mitochondria to fuel energy-yield-
ing cellular mechanisms, including division, pro-
liferation, chemotaxis, and many others. The
intracellular availability of FAs favors the activity
of essential cellular pathways. While hematopoietic
stem cells, physiological relymostly on an anaerobic
Volume 27 � Number 5 � September 2024



FIGURE 2. Plastic shape of mature neutrophils from their progenitors in the bone marrow. The figure summarizes the
development from hematopoietic stem cells to neutrophils and the changes in cellular metabolic demands that are favored by
a different extra-cellular environment over the different regions of the bone marrow. “BMAT”, bone marrow adipose tissue;
“CMP”, common monocytoid progenitors; “FA”, fatty acid; “GMP”, granulocytic progenitor cells; “OXPHOS”, oxidative
phosphorylation. [CMPs], which give rise to monocytes, and he [GMPs].
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metabolism, given that they reside in the hypoxic
conditions within the “niche” [80], CMPs and
GMPs, by contrast, which move towards more oxy-
genated and vascularized areas of the BM, need
easier access to the FAs substrates to turn on an
oxidative, mitochondrial-dependent and more
energy-yielding metabolism. Then, the mature neu-
trophils, which are the downstream lineage of GMPs
departing from the BM and released in the vascula-
ture, further undergo an immunometabolic re-
shape, becoming short-living cells that, pro-
grammed to promptly release their bactericidal
arsenal and to eventually undergo suicidal release
of NETs to kill pathogens or external invaders, pre-
dominantly rely on anaerobic metabolism [81]
(Fig. 2). Therefore, while these metabolic changes
are well balanced in physiology, it is obvious that an
intracellular excess of FAs could drive the overacti-
vation ofmitochondria, resulting into an increase of
oxidative stress and inflammation [80,82]. These
changes in cellular metabolism could be useful
when certain immune cells should exert their
1363-1950 Copyright © 2024 The Author(s). Published by Wolters Kluwe
cytotoxic activity but could be detrimental if it
becomes uncontrolled.

We are now aware that the biology of neutro-
phils is even far more complex. A spectrum of neu-
trophils entities exists, presenting with different
intracellular architecture, abilities to egress from
BM niches and to distribute among tissues, and that
differ according to site-specific pathophysiological
demands. This phenotypic “plasticity”, does not
only rely on the anchoring system mediated by
the interaction between Cxcl12 and CXCR4 but,
also, on the expression of CXCR2, another G-pro-
tein coupled receptor on the membrane of neutro-
phils that, by binding with different affinity to up to
eleven chemokines produced by macrophages and
epithelial cells in response to inflammatory stimuli,
activates downstream signals that regulate the che-
motaxis, the phagocytotic potential and the release
of NETs, therefore representing a second key orches-
trator of the entire life-cycle of the cells [83,84].
CXCR2 and CXCR4 are reciprocal regulator of their
membrane expression on these cells not only in
r Health, Inc. www.co-clinicalnutrition.com 439
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physiology, in a circadian manner, but also during
acute infections [84,85]. We only recently demon-
strated that derailing this interaction, via the use of
transgenic mice models where the expression of
either CXCR2 or CXCR4 was ablated with the Cre
recombinase technology, is also relevant to promote
the development of metabolic alterations induced
by HFD feeding, including visceral obesity, insulin
resistance, liver steatosis and inflammation [86

&&

].
Our data thus extend the relevance of a “plastic
vision” of neutrophils in the context of chronic
cardio-metabolic diseases, although the underlying
mechanisms andwhether the CXCR2/CXCR4 axis is
also essential to regulate the uptake, the utilization
of FAs and the immune-metabolic behavior of neu-
trophils in periphery remains unexplored.
CONCLUSION

The immune-inflammatory consequences of the car-
dio-metabolic alterations induced fats-enriched diets
pose critical challenges for the development of effec-
tive programs for the prevention and treatment of
epidemiologically relevant chronic diseases associ-
ated with the adherence to fats enriched diets. More-
over, the contemporary guidelines used for the risk
assessment only rely on the classical risk factors and
cannot consider the underlying inflammatory risk.
Therefore, a goodproportionof “apparentlyhealthy”
subjects who, although exposed to none or few risk
factors, daily consume fats enrichedmeals anddonot
adhere to healthy lifestyle, are more likely under-
estimated for their risk of a faster development of
cardio-metabolic alterations. The need of a deep
understanding of the relationship between nutrition
and inflammation isneededandneutrophils appear a
core cell compartment for this purpose. However,
remarkable, yet unknown, degree of plasticity of
neutrophils, coupled with their pervasive role for
the maintenance of tissue metabolic homeostasis,
draws an “immuno-metabolic” role of these cells in
cardio-metabolic diseases. With the currently avail-
able therapeuticoptions, this complex scenariocould
perhaps complicate the possibility to target neutro-
phils but, at the same time, might pave the roads
towards future interventions to shaping the molec-
ular and behavioral landscape of neutrophils, as a
proxy to endorse an efficient and tailored anti-
inflammatory approach to reduce the individual risk
of developing cardiometabolic diseases.
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