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1 — ABSTRACT

This work explores the benefits of integrating computational structural biology tech-

niques with experimental data to overcome the inherent limitations of each approach.

Integrative modelling provides a more comprehensive understanding of the structure,

dynamics, and function of complex biomolecular systems. Experimental data can guide

computational methods, improving accuracy, reducing limits and approximations, and

validating results, while computational techniques inspire new experimental designs and

provide explanations for observed phenomena. In this work, I have reported on some

personal contributions that exemplify the application of computational techniques in the

context of integrative modelling, with a particular focus on three main manuscripts. The

first paper describes the development of a small-angle scattering model for the in sil-

ico reconstruction of scattering intensities from atomic coordinates during molecular dy-

namics (MD) simulations. This model can be coupled with restraining strategies, such

as metainference, to generate conformational ensembles at atomistic resolution in agree-

ment with the experimental data using MD simulations. This approach was used to

determine the closed state conformations of the human gelsolin, a plasma protein. The

second manuscript investigates the inactivation mechanism of the human olfactory re-

ceptor OR51E2. MD simulations revealed that calcium ions play a key role in stabilising

the inactive state of the protein. This study integrates different computational techniques

to propose a novel molecular mechanism of receptor inactivation and provides a ratio-

nale for future experimental validation. The third manuscript explores the molecular

basis of a pale green phenotype in the barley population TM2490, linked to a mutation in

magnesium chelatase subunit I, an enzyme involved in the chlorophyll synthesis path-

way. AI-based structural modelling and molecular docking studies elucidate how this

mutation might affect ATP binding, providing insights for future crop breeding strate-

gies aimed at improving photosynthetic efficiency.

1



2 — INTRODUCTION

2.1 Introduction to Biomolecules

2.1.1 Definition and Role in Cellular Functions and Life Processes

Biomolecules are the building blocks of life and play a central role in the structure, func-

tion and regulation of cells and tissues in all living organisms. These organic molecules

include proteins, nucleic acids (DNA and RNA), carbohydrates and lipids. Among these,

deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins are not only directly

associated with the storage, transmission and execution of genetic information, but are

also involved in various cellular processes such as regulation, signalling and catalysis.

Deoxyribonucleic Acid (DNA)

DNA is a biomolecule that acts as the genetic blueprint for an organism. It consists of two

strands that coil around each other to form a double helix, a structure first described by

James Watson and Francis Crick in 1953.1 Each strand is composed of simpler molecules,

called nucleotides, which contain a sugar group, a phosphate group, and a nitrogenous

base. The sequence of the nucleobases (adenine, thymine, cytosine, and guanine) en-

codes the genetic information necessary for the development, functioning, growth, and

reproduction of all living organisms and many viruses.2

The primary function of DNA is to serve as a repository for genetic information. This

information is used in the synthesis of proteins, which are responsible for most cellular

functions.3 The ability of DNA to replicate allows genetic information to be transferred

from cell to cell and from parent to offspring.4 Mutations in the DNA sequence can lead

to the emergence of new variants that can either cause disease or facilitate evolutionary

adaptations, illustrating its dual role in maintaining stability and facilitating variability.5
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Ribonucleic Acid (RNA)

RNA plays a major role in the translation of the genetic code from DNA into proteins, a

process that is fundamental to all forms of life.6 This molecule exhibits structural similar-

ities to DNA but typically exists as a single strand.7 Furthermore, it contains the pentose

sugar ribose, which has a hydroxyl moiety at the carbon in position 2, in contrast to the

hydrogen atom in deoxyribose in DNA. Additionally, the base thymine is substituted

by the base uracil, which lacks a methyl group on the carbon atom at position 5. The

synthesis of RNA molecules from DNA templates is called transcription.8

There are several types of RNA, each serving different functions within the cell:

• Messenger RNA (mRNA): Responsible for the transfer of genetic information from

DNA to the ribosomes, the macromolecular complexes responsible for protein syn-

thesis. It acts as a template for the assembly of amino acids into proteins, based on

the sequence of codons (combinations of three nucleotides) it contains.9,10

• Transfer RNA (tRNA): It assists in the delivery of the appropriate amino acid to

the ribosome during the process of protein synthesis. The tRNA molecule, by as-

sociating to the codon sequence on the mRNA through its anticodon, it allows the

addition of amino acids to the growing polypeptide chain.11 The standard genetic

code uses 64 codons to encode the 20 standard amino acids and the stop signals

for translation. Not all of these codons require unique tRNAs because of the phe-

nomenon known as ’wobble base pairing’, which allows a single tRNA to recognise

multiple codons.12,13

• Ribosomal RNA (rRNA): Structural component of ribosomes which, together with

ribosomal proteins, are the sites of protein synthesis. The rRNA molecules en-

sure proper alignment of mRNA and tRNAs and catalyse the formation of peptide

bonds.14

• Regulatory RNAs: Include microRNAs (miRNAs15) and small interfering RNAs

(siRNAs16), which are involved in gene regulation by interfering with the transla-

tion and stability of specific mRNAs. These molecules can promote mRNA degra-

dation, prevent translation initiation, and even influence chromatin structure to

modulate gene expression and silence genes at the transcriptional level.17
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The versatility of RNA goes far beyond its role as an intermediary between DNA and

proteins. Its capabilities include genetic regulation,18,19 structural functions and even

catalytic activity, as in ribozymes.20,21 RNA also serves as the genetic material in many

viruses22 and is involved in intracellular signalling, highlighting its diverse functions in

biological processes.

Proteins

Proteins are the biochemical ”workhorses” of the cell, performing a wide range of func-

tions necessary for the survival and proliferation of living organisms. These biomolecules

consist of one or more polypeptide chains, which are polymers of amino acids covalently

linked together by peptide bonds. The specific sequence of amino acids in a protein de-

termines its three-dimensional structure, which in turn determines its function.6,23

Proteins have many functions in the cell, including:

• Enzymatic Activity: It refers to the ability of proteins, called enzymes, to catalyse

biochemical reactions, ensuring compatibility with the timescales required to sus-

tain life. For example, DNA polymerase catalyses the synthesis of new strands of

DNA during cell replication, while lactase cleaves lactose, a disaccharide sugar, into

glucose and galactose, two monosaccharides, aiding the digestion of dairy prod-

ucts. Enzymes lower the activation energy required for reactions, making biolog-

ical processes occur at specific rates and in a controlled manner, providing proper

timing and coordination in the biological context.6,24

• Structural Support: Structural proteins provide support and shape to cells, tis-

sues, and even viruses. For example, in multicellular organisms, collagen strength-

ens and stabilises connective tissue, providing elasticity and resilience,25 while

actin and tubulin form the cytoskeleton of cells, giving them shape and enabling

movement.26,27 In viruses, capsid proteins form a protective shell around the viral

genome, ensuring structural integrity and aiding infection of the host.28

• Transport and Storage: Certain proteins are involved in the transport of molecules.

For example, haemoglobin in red blood cells binds and transports oxygen from the

lungs to tissues throughout the body, ensuring efficient oxygen delivery to support

cellular respiration.29 Other proteins, such as ferritin, have a storage function by

sequestering iron in a safe, bioavailable form, maintaining iron homeostasis and
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preventing toxicity.30

• Signalling and Communication: Proteins are essential in cellular signalling path-

ways, mediating communication within and between cells. Receptors on the cell

surface detect external signals, such as hormones and neurotransmitters, and ini-

tiate a cascade of intracellular events leading to a cellular response. For example,

insulin receptors on the membrane of muscle, fat and liver cells respond to insulin

levels, facilitating the regulation of glucose uptake and maintaining blood sugar

balance.6

• Immune Response: Proteins have many roles in the immune response. For ex-

ample, antibodies are specialised proteins that recognise and bind to specific anti-

gens (molecules found on the surface of pathogens, foreign substances or abnormal

cells such as cancerous or damaged cells), leading to their neutralisation or mark-

ing them for destruction.31 The preoteins of the complement system collaborate to

directly target and degrade invading pathogens.32 In addition, cytokines act as sig-

nalling proteins that help coordinate the immune response, directing the activation

and movement of immune cells to sites of infection, injury, or cellular abnormal-

ity.33

• Gene Regulation: Gene regulation is mediated by several classes of proteins. Tran-

scription factors bind to specific DNA sequences and control the activation or re-

pression of target genes.34 Other proteins, such as histone modifiers,35 chromatin

remodelers,36 and RNA-binding proteins,37 regulate gene expression by altering

chromatin structure or influencing mRNA stability. Together, these proteins coordi-

nate development, cellular differentiation, and responses to environmental stimuli,

allowing cells to adapt, grow, repair, and maintain homeostasis.

The Interconnected Role of DNA, RNA, and Proteins

The central dogma of molecular biology describes the flow of genetic information within

a biological system: DNA → RNA → Protein.38 DNA provides long-term storage of ge-

netic information, which is transcribed into RNA, the intermediate that directs the syn-

thesis of proteins. The proteins then perform the functions necessary for the cell to sur-

vive, grow and reproduce. This flow of information is possible because biomolecules

do not work in isolation. Their functions are closely interconnected. This network of
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interactions and feedbacks enables cells to respond dynamically to changes in their envi-

ronment, to adapt to new conditions and, ultimately, to sustain and perpetuate life.6,24

2.1.2 Historical Perspective

The study and comprehension of biomolecules has experienced a profound transforma-

tion over the past two centuries, in parallel with advances in scientific methods and tech-

nologies. The journey from the initial identification to the description of the structure

and function of biomolecules in contemporary science has been marked by a series of

landmark discoveries.

Early Recognition and the Identification of Nucleic Acids

The earliest investigations into the molecular basis of life began in the 19th century. In

1869, Friedrich Miescher, a Swiss biochemist, first identified a novel phosphorus-containing

substance in the nuclei of white blood cells, which he described as ”nuclein”. This sub-

stance was later identified as DNA. Miescher’s discovery marked the beginning of the

field of molecular biology, although the role of DNA in heredity was not yet under-

stood.39,40

The identification of nucleic acids as carriers of genetic information took several decades.

In the early 20th century, Phoebus Levene made a significant contributions to the field of

molecular biology by identifying the components of nucleic acids: the sugar, phosphate,

and nitrogenous bases. He also distinguished between RNA and DNA, although he in-

correctly postulated that DNA was made up of equal amounts of bases.41 Despite this

inaccuracy, Levene’s work laid the foundation for understanding the basic components

of nucleic acids.

The Role of DNA in Heredity

The function of DNA as the hereditary material was established through a series of ex-

periments conducted in the mid-20th century. The work of Frederick Griffith in 1928

provided the first indication of the role of DNA in heredity through his transformation

experiments with Streptococcus pneumoniae, where he observed that a ”transforming prin-

ciple” could transfer genetic traits between bacterial strains.42 However, it was not until

1944 that Oswald Theodore Avery, Colin Munro MacLeod, and Maclyn McCarty identi-

fied DNA as this ”transforming principle”, demonstrating conclusively that DNA carries

genetic information.43
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This finding was further confirmed in 1952 by the Hershey-Chase experiment, led by

Alfred Day Hershey and Martha Cowles Chase. Using bacteriophages labelled with ra-

dioactive isotopes, they showed that DNA, not protein, was the genetic material trans-

ferred from viruses to bacterial cells. Together, these experiments shifted the scientific

consensus, solidifying the recognition of DNA as the molecule responsible for heredity.44

The Discovery of the DNA Double Helix

The structure of DNA was elucidated in 1953, representing a milestone in the field of

molecular biology. James Watson and Francis Crick,1 using experimental data from Ros-

alind Franklin and Maurice Wilkins, proposed the double helix model of DNA.45,46 This

model, which is characterised by two antiparallel strands wound around each other with

complementary base pairing (adenine with thymine, cytosine with guanine), provided a

structural basis for understanding the replication and transmission of genetic informa-

tion.

The model proposed by Watson and Crick suggested a mechanism by which genetic

information could be copied and transmitted across generations. The complementary

nature of the base pairs indicated that each strand could serve as a template for the syn-

thesis of a new complementary strand during DNA replication. This breakthrough laid

the groundwork for a molecular understanding of the principles of inheritance initially

proposed by Gregor Mendel in the 19th century, thereby establishing a direct link between

the concept of genes and a physical structure.6,47

RNA and the Central Dogma

Following the discovery of the DNA double helix, research efforts have also focused on

understanding the function of RNA in gene expression. The identification of mRNA by

François Jacob and Jacques Lucien Monod in 1961 helped to understand the process by

which genetic information is transferred from DNA to protein.48 This discovery helped

to formulate the central dogma of molecular biology.

The central dogma elucidated the function of RNA as an intermediary that transcribes

genetic information from DNA and translates it into proteins. The subsequent identifica-

tion of tRNA and rRNA, and their respective functions in translation, provided further

insight into the process by which the genetic code is decoded and proteins are synthe-

sised.

7



Advancements in Protein Structure Determination

In parallel with advances in nucleic acid research, significant progress was made in un-

derstanding the structure of proteins. The first protein structures were determined using

X-ray crystallography in the 1950s, with the structures of myoglobin and haemoglobin

being described by John Cowdery Kendrew and Max Ferdinand Perutz, respectively.49,50

These studies revealed the complex three-dimensional shapes that proteins can adopt

and highlighted the importance of structural biology in understanding protein function.

The realisation that proteins are not just static structures but dynamic entities capable

of adopting multiple conformations shifted the focus to understanding the relationship

between protein dynamics and function. Techniques such as nuclear magnetic resonance

spectroscopy and small-angle scattering allowed dynamic aspects to be studied in addi-

tion to structure.

The Rise of Integrative Modelling and Computational Biology

The late 20th and early 21st centuries witnessed a revolution in the field of molecular

biology with the advent of computational methods. The development of quantum and

molecular mechanics simulations, molecular docking approaches, bioinformatics tools,

and artificial intelligence applied to biology has transformed the ability to study biomolecules.51–55

Coupling these techniques with experimental data enhances the ability to explore the

structure and dynamics of biomolecules, and provides insights into the structure-function

relationships.

Integrative modelling, which combines data from multiple experimental sources with

computational methods, has emerged as a powerful tool in structural biology. By provid-

ing a more complete and accurate picture of the molecular behaviour, these approaches

are improving the understanding of biological processes, including those related to dis-

ease mechanisms and drug discovery.

Historical details of computational biology are discussed in section 2.5.3.

2.2 Structure of Biomolecules

2.2.1 Primary to Quaternary Structures

Before understanding how biomolecules perform their different functions in biological

systems, it is necessary to know how they are structurally organised. Proteins and nucleic
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acids exhibit a hierarchy of structural organisation, ranging from simple linear chains to

complex three-dimensional architectures. The specific functions of the biomolecules are

intimately connected to their structural organisation at each level of complexity.

Primary Structure

The primary structure of a biomolecule refers to its linear sequence of monomeric units.

In the case of proteins, this sequence consists of amino acids linked by peptide bonds

to form a polypeptide chain. The order of the amino acids is determined by the genetic

code encoded in the DNA, and it is this specific sequence that ultimately determines the

higher order structures and functions of the protein.23 For nucleic acids such as DNA and

RNA, the primary structure refers to the sequence of nucleotides, each of which consists

of a sugar, a phosphate group and a nitrogenous base.24

The primary structure contains the information necessary for the molecule to fold into

its functional form. Any alteration in the primary sequence, such as a point mutation

in DNA or a substitution of an amino acid in a protein, can have a significant impact

on the function of the molecule, potentially leading to dysfunctional proteins and dis-

ease states.56 The importance of primary structure is underlined by the principle of se-

quence specificity, whereby a single change in the sequence can alter the properties of the

molecule and its interactions with other molecules.

Secondary Structure

Secondary structure refers to the regular, repeating folding patterns within a polypeptide

chain that result from hydrogen bonding between the backbone amides. In proteins, the

two most common types of secondary structure are the alpha-helix and the beta-sheet:

• The alpha-helix is a right-handed coiled structure, stabilised by hydrogen bonds

between the carbonyl oxygen of one amino acid and the amide hydrogen of another

amino acid four residues down the chain. This structure is commonly found in

the transmembrane regions of proteins and serves as a structural scaffold in many

proteins.57–59

• The beta-sheet consists of beta strands that are aligned next to each other, forming

a sheet-like arrangement. These strands can be oriented in parallel or antiparallel

configurations, and the structure is stabilised by hydrogen bonds between carbonyl

oxygens and amide hydrogens on adjacent strands. Beta-sheets provide significant
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stability to the protein and are commonly found in the core regions of globular

proteins.60

The formation of secondary structures in proteins is primarily driven by interactions in-

volving the backbone. Although the backbone is chemically identical in all proteins (N-

Cα-C-O), the local environment created by the sequence of side chains and their interac-

tions influences which secondary structures are stabilised.61

In nucleic acids, secondary structure includes elements such as double-stranded helices

in DNA, hairpins, loops and bulges in RNA.62,63 The secondary structures are stabilised

by hydrogen bonds between complementary bases. Similar to proteins, the secondary

structure of RNA is closely linked to its function.64 For instance, considering tRNA, the

secondary structure allows the molecule to interact with mRNA and ribosomes during

protein synthesis.11

Tertiary Structure

The tertiary structure of a biomolecule refers to its overall three-dimensional shape formed

by the spatial arrangement of secondary structural elements and their side chains or

bases. In proteins, this level of structure results from various interactions, including hy-

drogen bonds, ionic bonds, hydrophobic interactions and van der Waals forces, as well

as disulphide bridges between cysteine residues.65 The tertiary structure is stabilised by

the interactions between the side chains of the amino acids, which can be hydrophobic or

hydrophilic, charged or uncharged, influencing how the protein folds and interacts with

its environment.66,67

Tertiary structures create specific geometric shapes and chemical environments necessary

for the biological function of the protein. The three-dimensional conformation of a pro-

tein determines its ability to interact with other molecules, including substrates, ligands,

and other proteins. For example, the active site of an enzyme, responsible for catalysing

biochemical reactions, is directly shaped by the tertiary structure of the protein. Alter-

ations to this structure can result in changes or loss of function.68

In nucleic acids, tertiary structures include the supercoiling69 of DNA and the complex

folding of RNA molecules into globular shapes.64 These structures are essential for func-

tions such as the compact packaging of DNA in the nucleus and the catalytic activities of

ribozymes.18
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Quaternary Structure

Quaternary structure is the highest level of organisation and refers to the assembly of

multiple polypeptide chains (subunits) into a functional, multi-subunit complex. These

subunits may be identical or different, and they interact through non-covalent interac-

tions, such as hydrogen bonds, ionic interactions, and hydrophobic effects, as well as

covalent bonds like disulphide bonds. The quaternary structure is stabilised by the same

types of interactions that govern the tertiary structure but involves more complex inter-

subunit associations. The quaternary structure allows regulation of activity through co-

operative binding and allosteric effects, where binding of a molecule to one subunit can

influence the activity of the entire complex.70

Quaternary structures are less common in nucleic acids, but are exemplified by the pack-

aging of DNA with histone proteins to form nucleosomes,71,72 the basic units of chro-

matin structure in eukaryotic cells. This organisation allows DNA to be efficiently com-

pacted (although each human cell is only a few micrometres in diameter, it contains ap-

proximately 2 metres of DNA6) and is involved in the regulation of gene expression.73

Importance of Structure in Biological Molecules

The structural organisation of biomolecules from the primary to the quaternary level is

crucial because structure dictates function. The specific three-dimensional shapes of pro-

teins and nucleic acids enable these molecules to perform their biological roles with high

specificity and efficiency. In proteins, shape determines their ability to interact with other

molecules, catalyse chemical reactions and transmit signals within and between cells. For

nucleic acids, structure is key to their ability to store and transfer genetic information and

to participate in the regulation of gene expression.

2.2.2 Techniques for Structural Determination

Determining the three-dimensional structures of biomolecules is an essential step in un-

derstanding their function and interaction within biological systems. Several experimen-

tal techniques have been developed for structural determination, each with its own ad-

vantages and limitations. The most prominent of these are X-ray crystallography, nu-

clear magnetic resonance (NMR) spectroscopy, cryo-electron microscopy (cryo-EM) and

electron paramagnetic resonance (EPR) spectroscopy. These methods provide detailed

insights into the atomic and molecular arrangements of biomolecules.
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X-ray Crystallography

X-ray crystallography is a powerful and widely used technique for determining the atomic

structure of biomolecules, particularly proteins and nucleic acids. The process involves

crystallising the biomolecule of interest and then irradiating it with X-ray beams. The

X-rays are diffracted by the electrons in the crystal, producing a diffraction pattern that

can be analysed to reconstruct a three-dimensional electron density map. From this map,

the positions of the individual atoms within the molecule can be deduced with high pre-

cision.74

• Pros: The main advantage of X-ray crystallography is its ability to produce high-

resolution structural data, often at atomic resolution. This precision allows the de-

tailed architecture of biomolecules to be visualised, including the positioning of

side chains and interactions with ligands or other molecules. X-ray crystallogra-

phy has been used to determine the structures of a wide range of biological macro-

molecules, from small peptides to large protein complexes, providing essential in-

sights into their function and mechanism.75,76

• Cons: Despite its strengths, X-ray crystallography has several limitations. A major

challenge is the need for high-quality crystals, which can be difficult to obtain, par-

ticularly for large, flexible or membrane-associated proteins.77 The crystallisation

process can also introduce artefacts, potentially leading to structures that do not

fully represent the molecule in its native state.78 In addition, the technique gener-

ally provides a static picture of the molecule, with limited information about con-

formational flexibility or transient structural states.

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy is another important tool for struc-

tural determination and is particularly suited to the study of biomolecules in solution,

which more closely mimics physiological conditions. This technique exploits the mag-

netic properties of certain atomic nuclei, most commonly hydrogen (1H), but also carbon

(13C), nitrogen (15N), and phosphorus (31P). When placed in a strong magnetic field and

subjected to radio frequency pulses, these nuclei resonate at characteristic frequencies,

providing detailed information about their chemical environment.79
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NMR spectroscopy yields structural information by analysing various parameters, in-

cluding chemical shifts, which indicate the electronic environment surrounding a nu-

cleus, and scalar J coupling constants, which provide information about the bonding

between nuclei. In addition, nuclear Overhauser effects (NOEs) measure the through-

space interactions between nuclei that are close together but not necessarily bound.80 By

studying these interactions, researchers can infer the relative distances and angles be-

tween atoms, which are crucial for determining three-dimensional structure.81,82

• Pros: One of the key advantages of NMR is the ability to study biomolecules in

a solution state, which more closely resembles a physiological environment than

the crystalline state required for X-ray crystallography. This capability makes NMR

particularly valuable for the study of small to medium-sized proteins and nucleic

acids, including those that are difficult to crystallise. NMR can provide informa-

tion on secondary and tertiary structure and, in favourable cases, can achieve near-

atomic resolution.83

• Cons: NMR spectroscopy has inherent limitations, primarily related to the size of

the biomolecule under study. As the molecular weight increases, the complexity

of the NMR spectra also increases, making it challenging to resolve overlapping

signals and interpret the data. This limitation typically restricts the use of NMR

to biomolecules smaller than 50 kDa, although advances in NMR techniques and

isotopic labelling have extended this range.84 In addition, NMR requires relatively

large amounts of highly purified samples, which can be a limitation for certain

biomolecules.85

Cryo-Electron Microscopy

Cryo-electron microscopy is an increasingly popular technique for structural determina-

tion, particularly of large macromolecular complexes. Cryo-EM involves the rapid freez-

ing of samples to cryogenic temperatures. This rapid freezing prevents the formation of

ice crystals, thereby preserving the sample in a near-native hydrated state without the

artefacts that can be introduced by crystallisation or chemical fixation.86 The sample is

then analysed using an electron microscope: electrons are passed through the sample and

the scattered electrons are collected to produce high-resolution two-dimensional images.

The images represent different orientations of the molecule. Thousands to hundreds of
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thousands of these 2D projections are then aligned computationally and combined us-

ing advanced image processing algorithms to reconstruct a detailed three-dimensional

model of the molecule.87,88

• Pros: Cryo-EM is particularly useful for studying large complexes that are often dif-

ficult to crystallise. The method has advanced significantly in recent years, with im-

provements in electron detectors and image processing algorithms enabling near-

atomic resolution for many biomolecules. Cryo-EM allows the visualisation of large

and heterogeneous assemblies, providing insights into their structural organisation

and interactions.89

• Cons: While cryo-EM has many strengths, it also has limitations. The resolution

achieved can vary depending on the quality of the sample preparation, the stabil-

ity of the complex, and the imaging conditions. Achieving high resolution often

requires a large number of images and advanced computational resources, which

can be time consuming and resource intensive. In addition, cryo-EM is generally

less suitable for small proteins (typically below 100 kDa) due to the lower contrast

and signal-to-noise ratio in the resulting images.90–92

Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance (EPR) spectroscopy is a technique used to study molecules

containing unpaired electrons, such as free radicals and transition metal complexes. EPR

detects the energy transitions of unpaired electrons as they absorb microwave radiation

in the presence of an external magnetic field, providing detailed information about the

electronic environment.93

In structural biology, EPR is often used in combination with a method known as site-

directed spin labelling (SDSL),94,95 in which specific amino acid residues within a protein

are systematically replaced by cysteine residues, which can then be chemically modified

to attach a paramagnetic probe, such as a nitroxide spin label. These spin labels introduce

unpaired electrons into the protein, making it EPR-active.

EPR spectroscopy can then measure the interactions between the spin labels to provide

information about the distance and relative orientation between the labelled sites.

• Pros: EPR allows to investigate the structural organisation of biomolecules that

contain paramagnetic centres or that can be modified to include spin labels. It can
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provide distance measurements in the range of 1.5 to 8 nanometres.96,97 This makes

EPR particularly useful for studying larger protein complexes and for gaining in-

sight into the spatial arrangement of specific sites within a molecule.

• Cons: The main limitation of EPR is its dependence on the presence of unpaired

electrons, which are not naturally present in most biological molecules. The intro-

duction of spin labels can sometimes alter the native structure or function of the

protein, potentially affecting the accuracy of the structural data obtained. In addi-

tion, EPR typically provides less detailed structural information than X-ray crys-

tallography or NMR spectroscopy and often requires the use of complementary

techniques to build comprehensive structural models.98

Final thoughts on Structural Determination Techniques

Each of these structural determination techniques provides unique insights into the archi-

tecture of biomolecules. Understanding their strengths and limitations allows the selec-

tion of the appropriate method for specific structural questions. Integrating data from

multiple techniques can provide a more complete picture of biomolecular structures,

which is an important step in the process of characterising their function and interac-

tions.

2.3 Structure-Function Relationship

2.3.1 Concept of Structure-Function Relationship

The relationship between structure and function is a fundamental principle in molecular

biology that provides the basis for understanding the role of biomolecules within biolog-

ical systems: as discussed earlier, this concept can be summarised as ”structure dictates

function”. The specific three-dimensional arrangement of atoms within a biomolecule di-

rectly determines its biological activity and interactions. The shape, charge distribution,

hydrophobicity and flexibility of a molecule determine how it recognises and interacts

with other molecules, catalyses chemical reactions and performs its functions within the

cell. To understand the role and function of a biomolecule, it is necessary to consider how

its structure affects its activity, as changes in structure often lead to alterations or loss of

function, potentially resulting in disease states or dysfunctional biological processes.6
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Enzymes and Catalytic Function

Enzymes are one of the best examples of structure-function relationships. These biolog-

ical catalysts accelerate chemical reactions by lowering the activation energy required.

The active site of an enzyme, typically a small pocket or groove, is uniquely shaped to

bind specific substrates. The precise arrangement of amino acid residues within the ac-

tive site facilitates proper substrate positioning, stabilizes the transition state, and enables

the conversion of substrates into products.99

A classic example is the enzyme lysozyme, which is able to hydrolyse the β-(1,4)-glycosidic

bonds in peptidoglycans, structural components of the bacterial cell walls.100 The struc-

ture of lysozyme contains a deep cleft shaped to accommodate the peptidoglycan layer

of bacterial cell walls. The active site residues of lysozyme interact specifically with the

substrate, facilitating the cleavage of glycosidic bonds and ultimately leading to the lysis

of bacterial cells. Detailed knowledge of the structure of lysozyme, obtained by X-ray

crystallography, has provided insights into its catalytic mechanism and revealed how

specific interactions and conformations enable its function.101

DNA Structure and Genetic Information Storage

The double helix structure of DNA is another example of the structure-function paradigm.6

The specific arrangement of the two antiparallel strands and the complementary base

pairing not only stabilise the DNA molecule, but also ensure the faithful replication and

storage of genetic information. The uniform DNA diameter and the helical twist enable

it to store vast amounts of information in a compact form that fits within the confines of

a cell nucleus.

In addition, understanding the structural features of DNA has led to insights into the

mechanisms of replication, transcription and repair. The recognition of specific DNA

sequences by proteins such as transcription factors and DNA polymerases is based on

molecular interactions determined by the structure of DNA. The helical shape and ma-

jor and minor grooves of DNA allow specific protein domains to recognise base se-

quences without unwinding the helix, illustrating how structural conformation is intri-

cately linked to its role in genetic regulation.102

Hemoglobin and Oxygen Transport

Haemoglobin, the oxygen-carrying protein in red blood cells, is a clear example of the

importance of quaternary structure for function. Haemoglobin consists of four subunits,
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each containing a haem group, a heterocyclic organic ring called porphyrin which coor-

dinates an iron ion capable of binding an oxygen molecule. The cooperative binding of

oxygen is a direct consequence of the quaternary structure of haemoglobin. When a haem

group binds oxygen, it induces a conformational change in the haemoglobin molecule

that increases the oxygen affinity of the remaining haem groups. This cooperative bind-

ing mechanism, which is essential for efficient oxygen transport and release, is made

possible by the specific arrangement and interaction of the haemoglobin subunits.103

Structural studies of haemoglobin have also shed light on several pathological condi-

tions. For example, in sickle cell anaemia, a single amino acid substitution in the beta

chain of haemoglobin (glutamic acid to valine) causes haemoglobin molecules to aggre-

gate into fibrous structures, distorting the red blood cells into a sickle shape. This struc-

tural change impairs the ability of haemoglobin to transport oxygen and leads to the

clinical symptoms of the disease.104 Understanding the structural basis of haemoglobin

function and its pathological variants highlights the importance of structure in both nor-

mal physiology and disease states.

Antibodies and Immune Response

Antibodies are specialised proteins of the adaptive immune system that recognise and

bind to specific antigens, such as pathogens, foreign substances, or damaged cells, and

mark them for destruction. The ability of antibodies to selectively bind to a wide range of

antigens is due to their hypervariable region, the structure of which can adapt to different

shapes and chemical properties.105 The structure of the variable region, formed by loops

known as complementarity determining regions (CDRs), determines the specificity and

affinity of the antibody for its antigen. The structural understanding of antibody-antigen

interactions has not only provided insights into immune recognition, but has also facili-

tated the design of therapeutic antibodies.106

G Protein-Coupled Receptors and Signal Transduction

G protein-coupled receptors (GPCRs) are a large family of membrane proteins involved

in cellular signalling. These receptors transduce the signal into the cell upon binding

of extracellular ligands, triggering a variety of physiological responses. The structure of

GPCRs is characterised by seven transmembrane alpha helices.107

Structure determination of GPCRs has revealed how ligand binding to the extracellular

side induces conformational changes that are transmitted across the membrane. These
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changes lead to the activation of intracellular G proteins, triggering downstream sig-

nalling pathways.108 The detailed understanding of GPCR structures has driven drug

development, making this family of receptors a common target for pharmaceuticals.109

The design of drugs that can specifically modulate GPCR activity is guided by insights

into their structural conformation and ligand binding mechanisms.110

Final thoughts on Structure-Function Relationship

The previous examples support the concept that the structure of a molecule determines

its function. By determining the three-dimensional arrangements of atoms and their cor-

responding specific interactions, structural biology provides insights into how molecules

perform their activity. Understanding structural details can provide the basis for eluci-

dating the mechanisms underlying biological processes, designing drugs and developing

therapeutic strategies. This knowledge can be used to explore how dynamic properties

further modulate function.

2.3.2 Limitations of Solely Structural Approaches

While the determination of biomolecular structures has been essential to the understand-

ing of biological function, it is widely recognised that structure alone often does not pro-

vide a complete picture of how biomolecules function. The traditional view that the static

three-dimensional shape of a molecule completely determines its function is limited by

the complexity and dynamic nature of biological systems.111 Although high-resolution

structures obtained by techniques such as X-ray crystallography and cryo-electron mi-

croscopy have provided invaluable insights, these static snapshots represent only one

aspect of biomolecular behaviour. In many cases, understanding the full range of the

function of a moleculer requires consideration of its dynamic properties and conforma-

tional flexibility.112

Conformational Flexibility and Function

A major limitation of purely structural approaches is the inability to capture the dynamic

nature of biomolecules. Proteins and nucleic acids do not adopt a single, rigid confor-

mation, but exist as ensembles of multiple conformations in equilibrium. Conforma-

tional changes and, more generally, the intrinsic dynamics of the molecule are required

to exert their biological function. For example, enzymes often undergo significant struc-

tural rearrangements upon substrate binding, a phenomenon known as induced fit.113
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In addition to induced fit, enzymes can also sample different conformations, and the

substrate selectively binds and stabilises the conformation most favourable for catalysis.

This adaptability, described as conformational selection model, allows the enzyme to cre-

ate an optimal environment for catalysis, increasing reaction rates and specificity.114,115

However, a static structural snapshot of the enzyme, whether in its unbound or bound

form, may not fully capture the dynamic conformational changes required for its func-

tion. While structural studies of the bound enzyme can provide valuable insights into

the active site and substrate interactions, they often miss the dynamic processes that oc-

cur during catalysis. Similarly, proteins with allosteric sites show how structural changes

in one region of a protein can reverberate and influence activity at a distant location.116

Allosteric regulation is widely diffuse in biological processes, such as the regulation of

metabolic pathways and signal transduction.117

Limitations in Capturing Transient States

Another limitation of static structural approaches is their inability to capture transient

intermediates. Many biological processes, such as enzyme catalysis, signal transduction,

and even protein folding itself, involve short-lived intermediates that determine the out-

come of these processes. These intermediates are typically difficult to observe using tra-

ditional structural techniques because they exist only briefly and at low concentrations

relative to stable conformations.118

For example, protein folding involves the formation of transient intermediates that can

lead either to correctly folded, functional proteins or to misfolded, non-functional or toxic

species.119 Misfolding can lead to conditions such as Alzheimer and Parkinson diseases

where protein aggregates are a hallmark.120,121 Traditional structural methods can reveal

the structure of the fully folded or aggregated states, but provide limited information

about the intermediates that are crucial for understanding the folding pathway and the

points at which misfolding occurs.56

Structural Heterogeneity in Macromolecular Complexes

Biomolecular complexes often exhibit structural heterogeneity, where different subunits

or domains can adopt multiple conformations simultaneously or sequentially. This het-

erogeneity can be essential for the function of large macromolecular assemblies such

as ribosomes, spliceosomes and viral capsids, which perform complex, multi-step pro-

cesses. Static structural methods may only capture one or a few of these conformational
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states, potentially leading to an incomplete or misleading understanding of how these

complexes function.122

For example, the ribosome undergoes many conformational changes during translation,

including interactions with mRNA, tRNAs and various translation factors. Cryo-EM

studies have provided snapshots of different states of the ribosome,123 but to capture

the full range of motions and transitions involved in translation, the dynamic nature of

these interactions must be taken into account. Relying solely on static structures may

miss the coordinated and sequential steps of protein synthesis.

Challenges in Drug Design and Functional Modulation

Drug design requires an understanding of the dynamic aspects of protein targets in order

to develop effective therapeutics. Traditional drug design approaches often focus on the

structure of the active site of a protein in a static conformation. However, many drug

targets, particularly those involved in signalling pathways, are inherently flexible and

exist in multiple conformations. Drugs that stabilise specific active or inactive states of a

target protein can lead to more effective and selective therapies.124

The Role of Environmental Factors

Biomolecular function is also influenced by the local environment, including pH, ionic

strength and the presence of other macromolecules. These factors can induce conforma-

tional changes or alter the stability of certain states. Structural studies conducted in isola-

tion may not fully represent conditions within a living cell, where the crowded environ-

ment and interactions with other cellular components can significantly affect molecular

structure and function. This phenomenon, known as the ”molecular crowding effect”,

together with the other environmental factors, underlines the importance of studying

biomolecules under conditions that closely mimic and reproduce physiological or rele-

vant environments to gain accurate insights into their behaviour.125

Limitations in Understanding Disordered Regions

A major drawback of traditional structural approaches is the difficulty in capturing the

conformational properties of intrinsically disordered regions (IDRs) or IDR-like regions

of proteins. These regions, which lack a stable, well-defined structure, are highly flexible

and often play a critical role in protein function. IDRs are involved in diverse biological

processes such as signal transduction, molecular recognition and regulation by adopt-

ing multiple conformations depending on their interaction partners.126,127 The dynamic
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nature of these regions allows them to participate in a wide range of interactions and

functional states, which cannot be fully appreciated using static snapshots provided by

methods such as X-ray crystallography or cryo-electron microscopy.128 Without the abil-

ity to observe these flexible regions, structural methods miss important functional aspects

of proteins, leading to an incomplete understanding of their role in cellular processes.

2.4 Dynamics of Biomolecules

2.4.1 Importance of Dynamics of Biomolecules

Biomolecules are dynamic entities, constantly undergoing conformational changes and

fluctuations. Unlike the determination of the static structures, which provide a snapshot

of a biomolecule, like a single movie frame, the study of the dynamics means taking into

account the motions that a molecule experiences over time. These motions can range

from rapid, local fluctuations of atomic positions to large-scale conformational changes

involving entire domains or multiple subunits. Without considering the dynamic be-

haviour of biomolecules, it is not possible to fully understand their ability to interact

with other molecules, respond to environmental changes and carry out their biological

functions effectively.112

Conformational Flexibility and Function

As discussed in the previous section, conformational flexibility refers to the ability of a

biomolecule to adopt multiple conformations or shapes, essential for exerting its func-

tion. This flexibility allows molecules to interact with different partners, bind to differ-

ent substrates and participate in complex regulatory networks. Proteins can undergo

conformational changes that expose or conceal binding sites, allowing them to regulate

interactions with other proteins. These dynamic changes are extremely important, for

example, in signalling pathways, where proteins must respond rapidly to cellular signals

by changing their conformation to modulate their activity and interactions.129 Another

example is the tumour suppressor protein p53, which has a dynamic behaviour that al-

lows it to bind to different DNA sequences and interact with multiple protein partners

to regulate a wide range of cellular processes, including DNA repair, cell cycle arrest and

apoptosis.130
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Role of Dynamics in Protein Folding and Stability

Protein folding is another area that relies heavily on dynamics. To become functional,

proteins must adopt specific three-dimensional structures, a process that involves explor-

ing conformational space to reach the energetically favourable folded state. The dynamic

nature of folding allows proteins to navigate different pathways and overcome kinetic

barriers to achieve their correct conformations.56 An example of this is the role of molec-

ular chaperones, which assist in protein folding by interacting with partially folded states

and facilitating their proper folding. These dynamic interactions prevent aggregation and

enhance protein stability within the cellular environment.131

Intrinsically Disordered Regions and Their Functional Roles

IDRs and intrinsically disordered proteins (IDPs), although being common in the pro-

teomes of all the living kingdoms,132 are extreme cases of dynamic biomolecules. Unlike

proteins with well-defined structures, IDRs and IDPs lack a stable tertiary structure un-

der physiological conditions.133 Instead, they exist as flexible, dynamic ensembles of con-

formations. This intrinsic disorder allows them to perform a wide range of interactions

and functions, often serving as hubs in cellular signalling networks.134

IDRs can bind to multiple partners with high specificity and low affinity, enabling them

to act as molecular scaffolds or hubs that bring together different signalling molecules.

The dynamic nature of IDRs allows them to adopt different conformations depending on

their interaction partners, facilitating the regulation of complex cellular processes.135

Nucleic Acid Dynamics and Function

The biological functions of nucleic acids are strictly related to their dynamic properties.

Although DNA is often represented as a static double helix, it undergoes several dynamic

processes, including bending, twisting and unwinding. Processes such as replication,

transcription and repair depend on these dynamic movements.136 The flexibility of DNA

allows it to wrap around histone proteins to form nucleosomes and higher order chro-

matin structures that regulate gene expression and access to genetic information. RNA

molecules, particularly non-coding RNAs, exhibit considerable conformational flexibil-

ity, enabling them to perform a wide range of functions. The dynamic nature of RNA

allows it to respond to environmental signals by changing its conformation, thereby mod-

ulating its activity and interactions.137
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2.4.2 Experimental Techniques for Studying Dynamics

To study the dynamics of molecules, a variety of experimental techniques have been de-

veloped to provide detailed information about the motions and conformational changes

that biomolecules undergo. These techniques include nuclear magnetic resonance (NMR)

relaxation, Förster resonance energy transfer (FRET), time-resolved spectroscopy and

small-angle scattering (SAS). Each of these techniques offers unique insights into dif-

ferent aspects of molecular dynamics, ranging from local atomic motions to large-scale

conformational changes.

Nuclear Magnetic Resonance Relaxation

NMR relaxation is a powerful technique for studying biomolecular dynamics, particu-

larly at the atomic level. In NMR spectroscopy, relaxation refers to the process by which

nuclear spins return to their equilibrium state after being perturbed by a radiofrequency

pulse. The rates of relaxation, known as the longitudinal and transverse relaxation times,

are sensitive to the motions of the nuclei and their interactions with the local magnetic

environment.138 By analysing these relaxation rates, it is possible to gain insight into the

timescales and amplitudes of atomic motions within biomolecules.139

NMR relaxation provides valuable information about both fast (picosecond to nanosec-

ond) and slow (microsecond to millisecond) dynamics. Fast dynamics are often associ-

ated with local motions such as bond vibrations, side-chain rotations and loop flexibility.

Slow dynamics can reflect larger conformational changes such as domain movements,

folding/unfolding events or ligand interactions.140 This technique can also identify re-

gions of a protein that exhibit different dynamic behaviours, such as rigid core regions

versus flexible surface loops, providing a comprehensive picture of the dynamic land-

scape of the molecule.141

Förster Resonance Energy Transfer

FRET is a technique used to study the distance and orientation between two chromophores,

typically called donor and acceptor.142 When the donor chromophore is excited by a

specific wavelength of light, it can non-radiatively transfer energy to the acceptor chro-

mophore if they are in close proximity (typically within 1-10 nm). The efficiency of

this energy transfer is highly sensitive to the distance between the donor and acceptor,

making FRET an excellent tool for studying molecular interactions and conformational
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changes.143

FRET is particularly valuable for studying the dynamics of biomolecules in real time and

in living cells.144 It can be used to monitor conformational changes, protein-protein in-

teractions and the assembly or disassembly of macromolecular complexes. By labelling

specific sites within a molecule with donor and acceptor fluorophores, it is possible to

observe changes in FRET efficiency that correspond to changes in distance, revealing dy-

namic processes such as the opening and closing of enzyme active sites, the folding of

proteins, or the conformational changes of nucleic acids during processes such as tran-

scription and replication.145

Time-Resolved Spectroscopies

Time-resolved spectroscopy includes a range of techniques that allow the temporal evo-

lution of biomolecular processes to be recorded. These techniques involve monitoring

changes in the absorption, emission or scattering of light by a sample following a rapid

perturbation, such as a laser pulse. The ability to measure changes on timescales ranging

from femtoseconds to milliseconds makes time-resolved spectroscopy ideal for studying

fast dynamic processes that are otherwise difficult to detect.146

Time-resolved spectroscopy provides insight into the mechanisms of biochemical re-

actions, conformational transitions and energy transfer processes. For example, time-

resolved fluorescence spectroscopy can monitor the dynamics of protein folding by ob-

serving changes in the fluorescence of tryptophan residues or labelled probes.147 Time-

resolved infrared and Raman spectroscopy can be used to study changes in secondary

structure and hydrogen bonding during enzyme catalysis or protein-ligand binding. By

capturing the temporal sequence of events, these techniques can reveal intermediates and

transition states, providing a deeper understanding of the pathways and mechanisms un-

derlying biomolecular function.148

Small-Angle Scattering

Small-angle scattering (SAS) techniques, including small-angle X-ray scattering (SAXS)

and small-angle neutron scattering (SANS), are powerful tools for studying the overall

shape, size and conformational flexibility of biomolecules in solution.149 In these tech-

niques, a beam of monochromatic X-rays (photons) or neutrons is directed at a sample

and the scattered radiation is measured at small angles relative to the incident beam. The

scattering pattern resulting from this interaction provides information about the distri-
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bution of electron density (in SAXS) or nuclear density (in SANS), which can be used to

reconstruct the three-dimensional shape and structural properties of the sample.

SAXS is based on the scattering of X-rays by electrons in the sample. It provides insight

into the electron density distribution within biomolecules. The technique is particularly

useful for studying biological macromolecules such as proteins, nucleic acids and their

complexes in their native solution state. SAXS data can be used to determine the radius

of gyration (a measure of the compactness of the molecule), the maximum dimension

(Dmax) and the molecular weight of the sample. SAXS can also provide low resolution

shape reconstructions and information on the flexibility and conformational changes of

biomolecules.150

SANS, on the other hand, leverages the scattering of neutrons by nuclei. One of the

main advantages of SANS over SAXS is its sensitivity to light elements such as hy-

drogen, which are abundant in biological samples. In addition, the neutron scattering

lengths for different isotopes of the same element can vary significantly. This property

forms the basis of contrast variation (or contrast matching), a powerful technique used

in SANS to selectively highlight or mask specific components within complex biological

systems.151 The contrast variation technique in SANS takes advantage of the different

scattering properties of hydrogen (H) and its isotope deuterium (D).152 By replacing hy-

drogen atoms with deuterium in specific parts of a molecule, it is possible to adjust the

scattering contrast between different regions of the sample. This ability to selectively vary

the contrast is crucial for studying multi-component systems such as protein-lipid com-

plexes, protein-nucleic acid assemblies or large protein complexes.153 In practice, contrast

variation is achieved by preparing samples in solvents with different ratios of H2O (bulk

water) and D2O (deuterated water). By adjusting the D2O concentration it is possible

to match the scattering length density of the solvent to that of specific components of

the sample. When the scattering length density of the solvent is matched to a particular

part of the sample, that part becomes effectively ”invisible” to neutrons, allowing other

components to be studied in isolation. This selective focus provides unique insights into

the organisation, conformation and interactions of complex biological structures.154 For

example, in the study of membrane proteins, contrast variation can be used to match

the scattering signal of the lipid bilayer with that of the solvent. This matching allows

the signals from the lipid bilayer and the solvent to be subtracted from the total solution
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signal, providing a direct measurement of the signal from the embedded protein. This

technique isolates the scattering signals of individual molecules from the overall com-

plex, facilitating detailed studies of protein-lipid or protein-protein interactions within

membranes.

SAXS and SANS are particularly useful for studying large biomolecules and complexes

that are difficult to crystallise, as these techniques do not require the sample to be in

a crystalline state. Instead, they allow the analysis of biomolecules in their functional

environment, often providing more physiologically relevant information than crystallog-

raphy or other structural biology techniques. In addition, these methods are well suited

to the study of dynamic processes such as protein folding, conformational changes upon

ligand binding, and the assembly or disassembly of macromolecular complexes. The abil-

ity to study samples in solution allows SAXS and SANS to monitor structural changes in

real time, providing insight into the kinetics and mechanisms underlying these biological

processes.155

Integrating Techniques for Comprehensive Dynamics Studies

Each of these experimental techniques offers unique advantages for studying biomolec-

ular dynamics, capturing a wide range of motions ranging from local atomic fluctuations

to large-scale conformational changes. Together, these methods collectively provide a

deeper and more comprehensive understanding of how biomolecules function within

their native environment. By integrating data from multiple techniques, the inherent lim-

itations of individual methods can be overcome to provide a comprehensive view of dy-

namic processes. For example, combining NMR relaxation with SAXS not only provides

information about the local flexibility but also reveals global conformational changes,

offering a detailed picture of molecular behaviour. Similarly, FRET measurements can

complement time-resolved spectroscopy by providing real-time, distance-dependent ob-

servations of specific molecular interactions, enhancing the understanding of dynamic

assemblies and conformational transitions.
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2.5 Introduction to Computational Biology

2.5.1 Definition and Role of Computational Biology

Computational biology is an interdisciplinary field that combines principles from biol-

ogy, computer science, mathematics and physics to analyse and model biological sys-

tems. It focuses on the development and application of in silico techniques to understand

the complexity of biological data and to predict the behaviour of biological systems. In

the context of biomolecular research, computational biology contributes to the study of

the structures and dynamics of biomolecules, providing insights that complement exper-

imental data.

Defining Computational Biology

At its core, computational biology is the use of algorithms, mathematical models and

computer simulations to study biological phenomena. It comprises a wide range of

approaches, including molecular dynamics simulations,156 quantum mechanics,157 ma-

chine learning158 and bioinformatics.159 These methods are used to model not only the

structure but also the behaviour of biological molecules, to analyse large data sets and to

predict the outcome of biological interactions. Computational biology provides a theoret-

ical framework for understanding the principles of life at the molecular level, providing

insights that are often difficult or impossible to obtain using experimental techniques

alone.

Role in Studying Biomolecular Structures

One of the fundamental approaches is homology modelling, which predicts the three-

dimensional structure of a biomolecule based on its similarity to known structures.160

By aligning the sequence of the target protein with that of a homologous protein with a

known structure, it is possible to build a model that approximates the structure of the

target. This method is particularly useful for proteins that have significant sequence sim-

ilarity to known structures, allowing reliable predictions to be made even in the absence

of direct experimental data.161 One of the most widely used homology modelling tools is

SWISS-MODEL, which provides an automated online platform for generating high qual-

ity structural models.162

Ab initio or de novo methods, on the other hand, predict protein structures from scratch, re-

lying exclusively on the physical and chemical principles that govern protein folding.163
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These methods do not require a homologous template and can model proteins with

novel folds. Although computationally intensive, ab initio techniques have advanced

significantly with the development of sophisticated algorithms and increased computing

power, allowing the prediction of complex structures.164

The advent of artificial intelligence (AI) has revolutionised structure prediction, as demon-

strated by the success of AlphaFold54 and RoseTTAFold.165 AI-based structure prediction

methods use deep learning algorithms trained on large datasets of known protein struc-

tures to predict the folding patterns of proteins. AlphaFold, for example, has achieved

remarkable accuracy in predicting protein structures, approaching the level of precision

achieved by experimental methods.166 These AI-driven techniques are now widely used

in structural biology, providing fast and reliable structural models to guide experimental

design and functional analysis.167

Role in Understanding Biomolecular Dynamics

Beyond static structures, computational biology can shed light on the dynamic aspects

of biomolecules. Dynamics is essential for understanding how biomolecules interact,

change shape and achieve their biological functions. Computational approaches such

as molecular dynamics (MD) simulations are powerful tools that model the movements

of atoms within a biomolecule over time, providing a detailed view of the behaviour

of the molecule in its, although limited, native environment. MD simulations can cap-

ture a wide range of motions, from fast, local fluctuations such as bond vibrations and

side-chain rotations, to more substantial conformational changes that can occur on mi-

crosecond to millisecond timescales.168 Simulations can provide insights into how local

motions contribute to overall molecular function, stability and interactions with other

molecules.

While MD simulations are increasingly able to approach the timescales on which signifi-

cant conformational changes can be observed, they often excel at revealing smaller scales.

MD simulations model the atomic-scale motions of biomolecules over time, revealing, for

example, how proteins fold and how ligands bind to receptors.169 MD can simulate the

complex environments in which biomolecules operate, including solvent effects, ionic

strength and temperature variations.156 In addition to MD simulations, quantum me-

chanics/molecular mechanics (QM/MM) methods are used to study enzyme catalysis

at a more detailed level.170 These hybrid methods combine quantum mechanical calcu-
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lations for the reactive site with molecular mechanics for the surrounding environment,

providing a more accurate description of the catalytic process.171 Understanding enzyme

catalysis through computational methods not only reveals the mechanisms of action, but

also aids the design of inhibitors and the engineering of enzymes for industrial applica-

tions.172

Exploring Molecular Interactions and Complex Formation

Computational biology can be applied to the study of biomolecular interactions and com-

plex formation. Molecular docking simulations are widely used to predict how small

molecules, such as drugs, interact with larger biomolecular targets, such as proteins or

nucleic acids.173 By modelling the binding affinity and orientation of ligands, computa-

tional approaches can identify potential drug candidates and predict their efficacy.

In recent years, AI-based methods have significantly advanced the prediction of protein-

protein and protein-ligand interactions. Tools such as AlphaFold Multimer174 extend the

capabilities of single-chain structure prediction to multi-chain complexes, enabling accu-

rate modelling of protein complexes. These AI approaches predict the interface residues

and overall architecture of the complexes, providing insights into how proteins interact

to form functional assemblies.

Understanding the Effects of Mutations

Another important application of computational biology is to understand the effects of

genetic mutations on the structure and function of biomolecules. Mutations can alter

the stability, folding and interactions of biomolecules, leading to changes in cellular be-

haviour. Computational models can predict the effects of specific mutations on the struc-

ture and dynamics of proteins, providing insights into the molecular basis of genetic

disorders.175

Scoring functions are widely used in computational biology to predict the effects of mu-

tations.176 These functions evaluate the stability of protein structures and the effects of

amino acid substitutions, leading to the identification of potentially deleterious muta-

tions or, conversely, driving the design of desired properties. AI tools have further en-

hanced mutation analysis by using machine learning algorithms trained on experimental

mutation data to predict the consequences of mutations. These tools can distinguish be-

tween benign and pathogenic mutations, predict changes in binding affinity, and identify

potential drug resistance mutations.177–179
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Generate Hypotheses and Drive Experiments

One of the key strengths of computational biology is its ability to generate hypothe-

ses about molecular function. By simulating molecular processes and analysing large

datasets, computational methods can identify patterns and predict outcomes that guide

experimental research. This iterative process of testing and refining computational pre-

dictions with experimental data accelerates the discovery of new biological principles

and therapeutic targets.

Computational biology also makes it possible to explore specific scenarios in advance of

the experiment. For example, by simulating the effects of different environmental con-

ditions, such as temperature or pH, it is possible to predict how these factors will affect

function and stability, and then design the experiment according to the results obtained

in silico.

2.5.2 Computational Biology Limitations

While computational biology provides powerful tools for the study of biomolecular struc-

ture and dynamics, it is important to recognise the inherent limitations and challenges

associated with these approaches. Despite their potential to provide detailed insights

into molecular behaviour, computational methods face several limitations that can affect

the accuracy and reliability of their predictions.

Sampling Limitations in Molecular Dynamics

One of the main limitations of MD simulations is sampling. Capturing the full range of

relevant conformational states and dynamic behaviours is often challenging due to the

limited timescales that can be practically simulated. While dedicated hardware has ex-

tended the achievable simulation timescales to milliseconds,180,181 many biologically im-

portant processes, such as large-scale conformational shifts, protein folding or rare bind-

ing events, can occur on timescales of milliseconds to seconds or longer. These events

are often not captured in typical MD simulations, leading to incomplete sampling and

potentially missing critical aspects of molecular function.182

In addition, MD simulations can become trapped in local energy minima, especially

when exploring complex energy landscapes with multiple conformational states. This

can lead to biased sampling, where certain states are overrepresented while others that

may be biologically relevant are not adequately explored. Enhanced sampling methods,
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such as replica exchange183 or metadynamics184 have been developed to address these

limitations, but they present their own challenges and may not always be applicable to

all systems.185

Accuracy and Limitations of Force Fields

The accuracy of MD simulations is highly dependent on the force fields (FFs) used to

model the interactions between atoms. FFs are mathematical functions that describe

the potential energy of a system based on the positions of its atoms. While significant

progress has been made in developing FFs that accurately represent a wide range of

biomolecular interactions, they are still approximations that cannot capture all the details

and nuances of real molecular interactions.186,187 Limitations in FF accuracy can lead to

errors in predicted structures, binding affinities and reaction mechanisms.188

For example, FFs may struggle to accurately model interactions involving metal ions,

charged groups, or highly polarised environments, which are common in biological sys-

tems. Additionally, the treatment of solvent effects, hydrogen bonding, and dispersion

forces may not be sufficiently precise, leading to deviations from experimental obser-

vations. These limitations underscore the need for continuous refinement of FFs and

validation of simulation results against experimental data.189

See section 2.6.1 for more information on FFs.

Challenges in Quantum Mechanics Calculations

Quantum mechanics (QM) methods provide a more detailed description of molecular

interactions by explicitly considering the electronic structure of atoms. These methods

can be used to study chemical reactions, enzyme catalysis and interactions involving

electronic transitions.68 However, the high level of detail provided by QM calculations

comes at a significant computational cost. QM methods are inherently slower than clas-

sical MD simulations, limiting their applicability to small systems or specific regions of

interest within larger molecules.171

The computational cost of QM methods increases rapidly with the size of the system,

making it difficult to apply these techniques to large biomolecules or complex environ-

ments. Hybrid methods, such as quantum mechanics/molecular mechanics (QM/MM),

combine the accuracy of QM for the active site with the efficiency of classical mechanics

for the surrounding environment.190 While QM/MM methods have extended the appli-

cability of QM calculations, they still face challenges in balancing accuracy and compu-
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tational feasibility.191

Limitations in Molecular Docking and Scoring Functions

Molecular docking is a widely used computational technique for predicting how small

molecules will bind to target proteins. While docking provides valuable insight into po-

tential binding modes and affinities, it is not without limitations. Docking algorithms

are often based on simplified representations of both the ligand and the target protein,

which cannot fully capture the flexibility and conformational changes that occur upon

binding.192 As a result, docking predictions can sometimes be inaccurate or fail to iden-

tify the true binding mode.193

Scoring functions, which evaluate the binding affinity of a docked complex, are another

source of limitations.176 These functions are based on empirical or theoretical models

that estimate the strength of the interactions between the ligand and the target. How-

ever, scoring functions may not take into account all relevant factors such as solvation

effects, entropic contributions or the dynamic nature of the binding process.194,195 This

can lead to false positives or negatives in virtual screening campaigns, highlighting the

need for more sophisticated scoring methods and the integration of additional experi-

mental data.196

Limitations of AI-Based Structure Prediction

The advent of artificial intelligence (AI) applied to biology has significantly advanced

structure prediction. However, AI-based structure prediction methods have their limita-

tions. These algorithms are trained on large datasets of known protein structures, which

means that their predictive power is highest for proteins that are similar to those already

present in the training set. Novel protein folds or structures that do not have close ho-

mologs in the training data may be predicted with lower accuracy.197

In addition, AI-based methods face challenges in predicting the structures of intrinsically

disordered regions. Because IDRs lack a stable three-dimensional structure, AI tools can

identify these regions but cannot provide detailed structural information. This limitation

reflects a broader challenge in computational biology: capturing the behaviour of flexible,

dynamic regions that do not conform to well-defined, stable structures. As a result, while

AI tools are excellent at predicting structured regions, they provide limited insight into

the functional roles of disordered regions.128
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Computational Power and Environmental Impact

Another significant limitation is the intensive computing power required for many com-

putational biology approaches. High-performance computing (HPC) resources are often

required to perform MD simulations, QM calculations and AI-based predictions. Access

to such resources can be a barrier for researchers with limited computing infrastructure.

In addition, the environmental impact of computational research is increasingly recog-

nised, as the energy consumption of HPC facilities contributes to carbon emissions and

climate change.198 The demand for computing power is expected to grow as the complex-

ity and size of simulations increase, highlighting the need for more efficient algorithms

and sustainable computing practices.199

2.5.3 Historical Perspective

The field of computational biology has undergone a remarkable evolution, paralleling

advances in computing power, algorithms and the growth of biological data. This jour-

ney from early computational analyses to the sophisticated simulations and models of

today has been marked by a number of key developments.

Early Computational Biology: The Foundation

The roots of computational biology can be traced back to the mid-20th century when

early computers were first applied to biological problems. One of the earliest and most

influential works was the development of the mathematical model of enzyme kinetics

by Leonor Michaelis and Maud Leonora Menten in 1913, which laid the foundations for

quantitative biology.200 However, it was not until the 1960s that computers began to be

used extensively in biological research.

In the 1960s and 1970s, pioneers such as Margaret Oakley Dayhoff began using comput-

ers to compare protein sequences, leading to the creation of the first protein sequence

databases and the Atlas of Protein Sequence and Structure.201 Dayhoff’s work laid the

foundations for bioinformatics by introducing the concept of evolutionary trees and the

first methods for sequence alignment, which are crucial for understanding molecular

evolution and the relationships between different species.

The Advent of Sequence Analysis and Molecular Modelling

The explosion of molecular biology in the 1970s, marked by advances in DNA sequencing

and the discovery of restriction enzymes, accelerated the need for computational tools. In
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the 1980s, the development of sequence alignment algorithms, such as the Needleman-

Wunsch202 (1970) and Smith-Waterman203 (1981) algorithms, provided the basis for com-

paring DNA and protein sequences. These methods made it possible to identify homol-

ogous sequences and conserved motifs, which are essential for understanding functional

domains in proteins.

In parallel with these developments, the field of molecular modelling began to take

shape. Early molecular dynamics simulations, pioneered by Martin Karplus and col-

leagues in the late 1970s, demonstrated the potential of computational methods to study

the structural dynamics of proteins.204 This era also saw the development of the Ra-

machandran plot by Gopalasamudram Narayana Iyer Ramachandran in 1963, which

provided insights into the allowable angles of peptide backbones, information used to

predict protein structure.205

Introduction of Protein Structure Databases

The 1970s and 1980s saw the establishment of structural biology databases. The Protein

Data Bank (PDB), founded in 1971, became a central repository for 3D structural data of

biological macromolecules.206 This resource enabled researchers worldwide to access and

analyse protein structures and catalysed the development of structural bioinformatics

and molecular visualisation tools such as Visual Molecular Dynamics207 (VMD, 1995),

developed by Klaus Shulten and colleagues, and PyMOL208 (2000), developed by Warren

Lyford DeLano and colleagues.

The Human Genome Project and the Rise of Bioinformatics

The launch of the Human Genome Project (HGP) in 1990 marked a turning point for com-

putational biology.209,210 The HGP drove the development of new computational meth-

ods for sequencing, assembling and annotating genomic data. The sheer volume of data

generated required advances in data storage, management and analysis, leading to the

establishment of bioinformatics as a discipline in its own right.211

During this period, the BLAST algorithm, developed by Stephen Frank Altschul and

colleagues in 1990, revolutionised sequence analysis. BLAST allowed rapid comparison

of nucleotide and protein sequences against large databases and became an indispensable

tool in genomics.212

Computational Phylogenetics and Evolutionary Biology

The 1990s also saw significant advances in computational phylogenetics, with the devel-
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opment of maximum likelihood and Bayesian methods for reconstructing evolutionary

trees. Tools such as PHYLIP (1980), PAUP (1996) and MrBayes (2001) became standard in

the analysis of evolutionary relationships, providing insights into the origins and diver-

sification of species based on genetic data.213–216

Structural Biology and Computational Advancements in the 21st Century

In the early 21st century, computational biology continued to expand, driven by exponen-

tial increases in computing power and the availability of high-throughput experimental

data. The integration of computational methods with experimental techniques such as X-

ray crystallography, NMR spectroscopy, SAS techniques, and cryo-electron microscopy

has led to more accurate and detailed structural models of macromolecules.

Major milestones include the development of Rosetta217 (1999), a software suite for pro-

tein structure prediction and design, and the success of the Critical Assessment of Struc-

ture Prediction (CASP) experiments initiated in 1994.218 CASP provided a platform for

assessing the accuracy of computational protein structure predictions and has guided

improvements in modelling techniques over the years.166

The Genomics Revolution and Systems Biology

The sequencing of the human genome, completed in 2003, and subsequent advances in

next-generation sequencing technologies have transformed computational biology. The

ability to sequence whole genomes rapidly and cost-effectively has led to the emergence

of comparative genomics, personalised medicine and metagenomics.214 Databases such

as GenBank and the European Nucleotide Archive (ENA) have grown exponentially,

providing vast resources for comparative analyses.219 The recognition that biological

systems function as complex networks of interacting components gave rise to systems

biology in the early 2000s.220 Computational models began to incorporate data from ge-

nomics, transcriptomics, proteomics and metabolomics to provide a holistic view of cel-

lular function. The development of tools for network analysis and pathway modelling,

such as Cytoscape221 (2002), facilitated the understanding of complex biological systems.

AI and Machine Learning Transform Computational Biology

In recent years, the advent of artificial intelligence and machine learning has transformed

computational biology. Techniques such as AlphaFold,54 developed by DeepMind, and

RoseTTAFold,222 developed by David Baker’s lab, have achieved unprecedented accu-

racy in predicting protein structures directly from amino acid sequences, overcoming
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challenges that have persisted for decades. The success of AlphaFold in the CASP14

competition in 2020 marked a turning point, demonstrating that AI could predict protein

structures with atomic-level accuracy.166,223

Machine learning approaches have also been applied to other areas of computational

biology, including drug discovery, where AI models are used to predict drug-target in-

teractions, optimise drug design and identify potential therapeutic targets.224–227

The Rise of CRISPR and Genome Editing Technologies

The discovery of CRISPR-Cas9 as a genome editing tool in 2012 had a profound impact

on computational biology.228,229 The ability to precisely edit genomes required the devel-

opment of computational tools to design and evaluate guide RNAs, predict off-target ef-

fects, and analyse the results of genome editing experiments. Databases and tools such as

CRISPRseek230 and CRISPRdirect231 have become essential resources for working with

CRISPR technology.

2.6 Computational Techniques for Studying Biomolecules

In this section I describe the basics of the techniques I have used most in the projects I

have contributed to.

2.6.1 Details of Molecular Dynamics

Molecular dynamics (MD) simulations are computational methods widely used to ex-

plore and predict the structure, behaviour, and thermodynamic properties of molecu-

lar systems that are too complex for traditional experimental approaches.232–234 In MD,

a system is represented as a model of interacting particles and its evolution over time

is tracked through a dynamic trajectory derived by numerical integration of Newton’s

equations of motion.233 Different theoretical frameworks can be employed to describe

these models. For example, quantum mechanics (QM) approaches explicitly model elec-

trons and calculate interaction energies by solving the electronic structures of molecules.

However, due to the high computational requirements, QM methods are generally lim-

ited to relatively small systems of only a few hundred atoms.235 For larger and more com-

plex systems, molecular mechanics (MM) approaches are used, which treat molecules as

collections of atoms or groups of atoms, thereby reducing the computational effort.232
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However, MM approaches lack the ability to model chemical reactions because they do

not allow for changes in the topology of the system, such as bond breaking or forma-

tion. In classical MD simulations, atoms are often modelled as rigid spheres connected

by springs, representing the electron clouds involved in covalent bonding. The Born-

Oppenheimer approximation is often used, which assumes that the electrons instanta-

neously adapt to the motion of the nuclei, effectively decoupling their motion.234 This

allows only the motion of the nuclei to be included in the calculation. The force acting on

each atom in the system is calculated from the positions of all the other atoms, as defined

by the following equation:

−→
Fi(t) = mi

−→ai (t) = mi
d−→vi (t)

dt
= mi

d2−→ri (t)
dt2

In this equation,
−→
Fi(t) represents the force on atom i, mi is the mass of atom i, −→ai (t) is its

acceleration, −→vi (t) is its velocity, −→ri (t) is its position, and t denotes time. An appropriate

time step, typically around 2 femtoseconds to match the fastest vibrational frequencies

(such as C-H bond vibrations), is chosen to integrate Newton’s equations and update

atomic positions. Initial positions are usually derived from crystallographic data.236 The

calculation of new atomic positions requires the definition of both velocities and forces:

velocities are often sampled from a Boltzmann distribution, while forces are derived as

the negative gradient of the potential energy described by the force field equations. A

major challenge in MD simulations is the handling of the huge number of atoms in bi-

ological systems, which can reach hundreds of thousands or more, especially when sol-

vent molecules are taken into account. Since the Newton’s equations of motion cannot

be solved analytically for such large systems, numerical integrators are used. These algo-

rithms approximate solutions and update atomic positions (ri) based on initial positions,

velocities and the steric energy of the system. The approximation is often based on the

Taylor series, which predicts the behaviour of a function around a given point:237,238

−→ri (t + ∆t) = −→ri (t) + ∆−→ri (t)
∆t

∆t + 1
2

d2−→ri (t)
∆t2 ∆t2 + ...

−→vi (t + ∆t) = −→vi (t) + d−→vi (t)
∆t

∆t + 1
2

d2−→vi (t)
∆t2 ∆t2 + ...

−→ai (t + ∆t) = −→ai (t) + d−→ai (t)
∆t

∆t + ...
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These series can be more concisely expressed as:

−→ri (t + ∆t) = −→ri (t) + −→vi (t)∆t + 1
2

−→ai (t)∆t2 + ...

The Verlet integrator is one of the most frequently used methods due to its accuracy and

simplicity. It calculates new atomic positions by expanding −→ri (t) at times t + ∆t and

t − ∆t, incorporating acceleration to provide:

−→ri (t + ∆t) = 2−→ri (t) − −→ri (t − ∆t) + −→ai (t)∆t2 + ...

Except for the initial step, where velocities are required to calculate −→ri (t) from −→ri (t − ∆t),

velocities are not explicitly calculated but can be derived using:

−→vi (t) =
−→ri (t + ∆t) − −→ri (t − ∆t)

2∆t
+ ...

MD simulations fundamentally rely on force fields to model how the energy of a system

varies with the positions of its atoms. A force field (FF) is essentially a set of mathe-

matical expressions and parameters designed to approximate the potential energy of a

molecular system. These parameters can be derived from various experimental tech-

niques, including X-ray diffraction, electron diffraction, NMR and infrared spectroscopy,

as well as from ab initio or semi-empirical quantum mechanical calculations.237 By re-

placing the real potential energy with a simplified model, force fields achieve a balance

between computational efficiency and the ability to accurately reproduce the physical

and chemical properties of the system. Numerous force fields have been developed, each

calibrated against empirical data to ensure that its set of parameters reproduces specific

physicochemical properties in agreement with experimental observations.237 Despite dif-

ferences in complexity between different force field models, a generalised expression for

a force field can be expressed as:

U =
∑

bonds

1
2kb(r − r0)2 +

∑
angles

1
2ka(θ − θ0)2 +

∑
torsions

Vn

2 [1 + cos(nθ − δ)]

+
∑

improper

Vimp +
∑
LJ

4ϵij

(
σ12

ij

r12
ij

−
σ6

ij

r6
ij

)
+
∑
elec

qiqj

rij
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The first four terms of this expression capture intramolecular interactions, including bond

stretching, angle bending, dihedral torsion, and improper torsions, which help to main-

tain molecular planarity. The last two terms represent intermolecular interactions: the

12-6 Lennard-Jones potential accounts for repulsive and van der Waals forces, while

Coulombic interactions describe electrostatic forces between charged particles.237 Bond

stretching is typically modelled using a harmonic potential, where the bond length de-

viations from the equilibrium position follow a quadratic function. This harmonic ap-

proximation is usually effective for small displacements, but fails to accurately describe

bond stretching beyond 10% of the equilibrium bond length, making it unsuitable for

modelling bond breakage events that occur during chemical reactions. Similarly, angular

deflection, which describes the deviation of bond angles from their equilibrium values, is

often represented by a harmonic potential that captures the energy cost associated with

these deviations. Torsional interactions play a crucial role in defining the conformational

preferences of macromolecules. These torsional energies are usually modelled by a co-

sine function, which can account for multiple periodic minima corresponding to differ-

ent stable conformations. The parameters for these torsional potentials are often derived

from high-level ab initio quantum calculations and further refined on the basis of exper-

imental data. Improper torsions are also considered to enforce the planarity of certain

structural elements, such as aromatic rings and peptide bonds, where simple torsional

potentials may not provide sufficient constraints.237 In addition to these intramolecular

forces, intermolecular interactions are essential for accurate modelling of molecular sys-

tems. The Lennard-Jones potential captures both the short-range repulsive interactions

(arising from the Pauli exclusion principle) and the longer-range van der Waals attrac-

tions, which are required to model non-bonded interactions. Electrostatic interactions

are governed by Coulomb’s law, which calculates the force between charged particles

scaled by their partial charges and the distance between them.

2.6.2 Details of Molecular Docking

Molecular docking is a computational technique used in structural biology and drug dis-

covery to predict the putative binding sites of a small molecule, known as a ligand, on

a target macromolecule. By simulating the specific interactions between the ligand and

its target, docking helps to elucidate the binding mode, approximate the binding affinity
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and provide a molecular description, even at the atomistic level, of the ligand-receptor

relationship, which is the basis for drug design and discovery.239,240 This technique sup-

ports drug development at various stages, including the study of molecular activity, the

optimisation of lead compounds and the virtual screening of large compound libraries

to identify potential drug candidates. Identifying the most favourable binding pose of

the ligand to the target protein requires a combination of search algorithms to explore

the conformational space of the ligand and scoring functions to evaluate and rank the

potential binding poses based on their predicted binding affinities.241

Scoring functions are required for the docking process as they quantify the quality of the

interaction between the ligand and the target molecule and guide the identification of the

best binding pose. These functions can be divided into three main types: empirical, force

field based and knowledge based.242 Empirical scoring functions use a weighted sum of

interaction terms derived from experimental binding data to approximate binding affin-

ity. Force field-based scoring functions calculate the interaction energy using classical

force fields, taking into account van der Waals interactions, electrostatic forces and hy-

drogen bonding. Knowledge-based scoring functions, on the other hand, derive their

parameters from statistical analysis of known protein-ligand complexes, using structural

data to generate the scoring.243

Search algorithms used in molecular docking are designed to efficiently navigate confor-

mational space given the large number of possible ligand poses. These algorithms are

generally divided into systematic and stochastic methods.241 Systematic search meth-

ods scan the conformational space in a predefined, deterministic manner, often using

grid-based approaches to explore the possible poses. Although thorough, these methods

can be computationally expensive and may not be practical for systems with a high de-

gree of flexibility. Stochastic search methods, such as genetic algorithms, Monte Carlo

simulations and simulated annealing, introduce random variations into the ligand con-

formation and iteratively refine these variations based on scoring function evaluations.

These methods are particularly well suited to high-dimensional problems, such as flexi-

ble ligand-protein docking, because they can efficiently sample a wider range of confor-

mations without the need for exhaustive searching.243

In most molecular docking simulations, the target system is treated as a rigid structure

while the ligand is allowed to explore different conformations. This approach simplifies
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the computational requirements, but can overlook significant induced-fit effects where

the protein undergoes conformational changes upon ligand binding. Advanced dock-

ing methods take into account protein flexibility, either by modelling it explicitly or by

using ensemble docking techniques that consider multiple protein conformations.244,245

Ligand flexibility is also a critical factor, as ligands with numerous rotatable bonds have

a larger conformational space, which can exponentially increase the complexity and time

required for docking simulations.

The evaluation of docking results involves more than just identifying the lowest energy

binding site. A thorough evaluation requires consideration of the chemical and struc-

tural complementarity between the ligand and the protein binding site. Key factors in-

clude hydrogen bonding, hydrophobic interactions, electrostatic complementarity and

steric fit. In addition, it is important to evaluate the predicted binding affinities against

experimental data, if available, to validate the accuracy of the docking predictions.243

2.6.3 Deep Learning Models in Structure Prediction and Protein Design

The computational approaches based on deep learning models use large datasets and

complex algorithms to predict the three-dimensional structures of proteins from their

amino acid sequences and to design new proteins with specific functions or to modify

existing proteins to enhance or change their properties. Models such as AlphaFold and

RoseTTAFold have set new benchmarks in structure prediction accuracy, while denoising

diffusion models such as RFDiffusion and other generative methods have opened up new

avenues in protein design.

Protein Structure Prediction

Traditional methods of structure prediction, such as homology and ab initio modelling, of-

ten struggle with accuracy and scalability, especially for proteins without close homologs

in existing structural databases.246 Machine learning models, particularly those based

on deep learning, have dramatically improved the accuracy of structure prediction. In

particular, AlphaFold, developed by DeepMind, and RoseTTAFold, developed by David

Baker’s group, have demonstrated the ability to predict protein structures with near-

experimental accuracy.54,222

AlphaFold uses a deep neural network architecture that combines multiple sequence

alignments (MSAs), evolutionary couplings and structural templates to predict distances
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and angles between residues, which are then used to generate a three-dimensional struc-

ture. The model uses a combination of convolutional neural networks (CNNs) to capture

local sequence features and attention mechanisms to model long-range interactions. The

output of these networks is fed into a gradient descent-based structure refinement pro-

cess, which iteratively improves the accuracy of the predicted structure.54

Similarly, RoseTTAFold222 integrates a three-track neural network architecture that si-

multaneously processes sequence information, pairwise distances and predicted coor-

dinates, allowing iterative refinement and direct prediction of atomic coordinates. This

approach significantly reduces the computational complexity and time required for struc-

ture prediction, making it suitable for high throughput applications.222

De Novo Protein Design and Protein Modification

Machine learning models are also driving innovation in de novo protein design and the

modification of existing proteins.247 In de novo design, the aim is to create entirely new

proteins that do not exist in nature but have specific structural or functional properties. In

protein modification, existing proteins are modified to increase their stability, alter their

function, redesign regions to remove or include new domains, or improve their binding

affinity to other molecules, such as drugs or substrates.

Generative models, including variational autoencoders (VAEs), generative adversarial

networks (GANs) and, more recently, denoising diffusion models, are at the forefront of

de novo protein design.248,249 These models are trained on datasets of protein sequences

and structures and learn to generate new sequences that fold into stable and functional

three-dimensional structures. Denoising diffusion models,226 for example, start with a

random cloud of backbone atoms and iteratively refine it by removing ”noise” to gener-

ate a structure with the desired features. Another model, called Protein Message Passing

Neural Network225 (ProteinMPNN), predicts the sequence that encodes for that struc-

ture. This approach allows the generation of novel proteins that meet specific design

criteria, such as binding to a particular target.250 In the context of modifying existing

proteins, these models can be adapt to redesign specific regions of a protein, such as the

scaffold around an active site.251
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2.7 Integrative Modelling: Combining Computational and Ex-

perimental Approaches

While computational methods provide powerful tools for simulating biomolecular be-

haviour and predicting structures, they are often limited by approximations, sampling

issues and the inherent assumptions of their models. Similarly, experimental techniques

provide direct observations and empirical data, but can be limited by resolution limita-

tions, sample preparation challenges and the static nature of the information they pro-

vide. Integrative modelling seeks to exploit the strengths of both computational and ex-

perimental approaches, creating a synergistic framework that overcomes the limitations

of each method and provides a more comprehensive understanding of biomolecular sys-

tems.

2.7.1 The Importance of Combining Approaches

Experimental data can provide validation for computational predictions, ensuring that

the models accurately represent biological reality. Computational methods, such as molec-

ular dynamics simulations, rely on force fields and parameters that approximate the in-

teractions between atoms and molecules. While these models have been refined over

time, they are still subject to inaccuracies and may not fully capture the complexity of

real molecular interactions. By incorporating experimental data, such as NMR and SAS

restraints or cryo-EM density maps, computational models can be corrected and refined

to better match observed behaviour, improving the reliability and accuracy of predic-

tions. Experimental data can helping to overcome sampling limitations and reduce the

conformational space that needs to be explored. Indeed, molecules can adopt numer-

ous conformations, and reaching the functionally relevant states within this space can

be challenging. Experimental techniques, such as FRET, DEER, or SAS, can provide in-

formation about the likely conformations or distances within a molecule, which can be

used to restrain or bias simulations towards these regions. This targeted approach allows

focus on specific relevant states.

The integration of experimental data can help to bridge the limitations of each experimen-

tal technique by providing complementary information. For example, X-ray crystallog-

raphy provides high-resolution structures of static conformations, but may not capture
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dynamic aspects or transient states. NMR spectroscopy provides information on molecu-

lar dynamics, but may lack the spatial resolution of crystallography. Cryo-EM can image

large complexes under near-native conditions, but may struggle with smaller or more

flexible proteins. By combining data from different experimental techniques within a

computational framework, integrative modelling can provide a holistic view that cap-

tures both structural detail and dynamic behaviour, providing insights not possible with

any single method.

Integrative modelling addresses the limitations of both computational and experimen-

tal approaches by creating a feedback loop where experimental data validate and refine

computational models, and computational predictions guide and interpret experimental

results. This iterative process enhances the reliability and accuracy of biomolecular stud-

ies. For instance, when studying protein-ligand interactions, experimental techniques

such as X-ray crystallography or cryo-EM can provide structural snapshots of the bind-

ing site, while molecular dynamics simulations can explore the binding pathway and

dynamics.

Integrative modelling also provides a framework for studying systems that are inacces-

sible to traditional methods alone. For example, intrinsically disordered regions, which

lack stable structures and are highly dynamic, cannot be assessed using techniques that

require well-defined structures, such as X-ray crystallography. By combining experimen-

tal techniques that capture dynamic behaviour, such as NMR and SAXS, with compu-

tational simulations, integrative modelling can provide insights that generate conforma-

tional ensembles in agreement with experimental data.

2.7.2 Techniques for Integrative Modelling

Integrative modelling combines computational simulations with experimental data to

construct detailed and accurate representations of biomolecular systems. By integrating

these two approaches, it is possible to leverage the strengths of each, using experimen-

tal data to validate and refine computational models, while computational techniques

provide dynamic and structural insights that extend beyond experimental observations.

Several methodologies have been developed to facilitate this integration, ensuring that

computational models reflect biologically relevant behaviours and conformations.
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Data Reweighting

A posteriori reweighting is used to adjust the results of computational techniques that

generate molecular conformations to better match experimental data.252 For example, af-

ter performing an MD simulation, the frames of the resulting conformational ensemble

can be reweighted based on experimental observations. This process involves assign-

ing different weights to the simulated conformations, favouring those that are in better

agreement with experimental data such as NMR chemical shifts, FRET or DEER derived

distances, SAXS radii of gyration. The reweighted ensemble provides a more accurate

representation of the conformational space of the biomolecule, reflecting both the sim-

ulation and the experimental evidence. Reweighting techniques are particularly useful

for interpreting experimental data averaged over multiple states or conformations. By

reweighting the simulation data it is possible to identify the most likely conformational

states and quantify the population of each state. This can lead to more reliable and infor-

mative models.

Simulation Restraints

In contrast to a posteriori reweighting, restraints for simulations incorporate experimen-

tal data directly into the calculation, driving the molecular dynamics to conform with ex-

perimental observations as the simulation progresses. This approach applies restraints,

derived from experimental measurements, to specific degrees of freedom within the sys-

tem. Restraints can be based on data from a variety of experimental techniques, including

NMR, FRET, DEER, SAS, cryo-EM. For example, distance restraints derived from DEER

experiments can be used to maintain specific distances between spin-labelled sites dur-

ing an MD simulation. This ensures that the simulation remains consistent with experi-

mental observations and explores conformations that are experimentally validated. The

restraints, which can be thought of as energy penalties, can be applied using relatively

simple approaches, such as the introduction of linear or harmonic potentials, or through

more sophisticated methodologies, such as metainference.253 Simple harmonic restraints

penalise deviations from experimentally determined measurements, effectively biasing

the simulation towards conformations that satisfy these constraints. Linear restraints,

on the other hand, can provide a softer enforcement of the experimental data, allow-

ing more flexibility in the conformational space while still favouring agreement with

experimental observations. Metainference represents a more advanced approach to ap-
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plying restraints in integrative modelling. It is a Bayesian replica-averaging framework

that operates according to the maximum entropy principle, ensuring that the resulting

ensemble of conformations is as unbiased as possible while still being consistent with

experimental data. In metainference, multiple replicas of the system are simulated si-

multaneously, each preferably representing a different state of the conformational space.

The experimental data are used to apply a global restraint across all replicas, penalis-

ing deviations from the average predicted data to the experimental observables. The

advantage of metainference lies in its ability to account for both the uncertainty in the

experimental data and the variability within the conformational ensemble. By treating

experimental data as probabilistic constraints rather than fixed values, metainference al-

lows for the generation of ensembles that reflect the inherent flexibility and heterogeneity

of biomolecules.254

Data Driven Docking

Data-driven docking is another integrative modelling technique that uses experimental

data to inform and enhance the docking process, improving the accuracy and reliabil-

ity of predicted biomolecular interactions. Traditional docking approaches often assume

that the binding site of a ligand to a protein is unknown, resulting in a blind search of the

entire surface of the target protein. This can lead to numerous false positives and less re-

liable predictions, especially when the target protein has multiple potential binding sites.

Incorporating experimental data into the docking process allows for more targeted and

accurate predictions. If the binding site of the target protein or its homologue is known

from experimental observations, the docking process can be focused on the relevant re-

gion, significantly reducing the search space and increasing the accuracy of the results.

This targeted approach is less ”blind” and allows more accurate predictions of how a lig-

and will interact with the protein. Experimental data can also be used to make docking

more specific by applying constraints based on known interactions or properties. For ex-

ample, if a particular residue is known to play a critical role in binding, this information

can be used to bias the docking process towards conformations that satisfy this interac-

tion. This method is useful for predicting the binding modes of ligands that interact with

proteins through key residues or functional motifs. An example of a software tool that

employs data-driven docking is HADDOCK255,256 (High Ambiguity Driven biomolecu-

lar DOCKing), developed by Alexandre Bonvin and colleagues.
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3 — MANUSCRIPTS

In this chapter, I present personal contributions that illustrate the use of computational

techniques in combination with experimental data to study biomolecular systems. The

work presented here highlights the power of integrative modelling, where the synergy

between computational simulations and experimental observations provides deeper in-

sights into the structure, dynamics and function of biomolecules. By using computational

approaches alongside experimental data, these studies aim to overcome the limitations

of each method and provide more comprehensive and accurate models of biological sys-

tems. The manuscripts included in this chapter serve as practical examples of how in-

tegrative modelling can be used to address complex biological questions and generate

hypotheses that can guide future experimental work.

The first manuscript discusses the development and implementation of a small-angle

scattering model designed to reconstruct in silico scattering intensities directly from the

atomic coordinates of a target system during molecular dynamics simulations. The method

uses a coarse-grained model to efficiently calculate scattering intensities, thereby reduc-

ing computational costs. This model was combined with metainference.253 This Bayesian

replica-averaging framework allows multi-replica MD simulations to be driven to gen-

erate an ensemble of conformations in agreement with experimental data. By dynami-

cally applying experimental restraints, the conformational ensemble of the protein gel-

solin was generated, providing a realistic and accurate representation that matches the

measured scattering data. This integrative approach not only improves the accuracy of

simulations, but also provides insights into structural dynamics and exemplifies how

computational models can be validated or refined using experimental data.

The second manuscript describes the first in silico inactivation of a human olfactory re-

ceptor, OR51E2, highlighting the role of calcium ions in receptor state transitions. Due to

the inherent challenges associated with determining the structures of G protein-coupled
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receptors (GPCRs), particularly olfactory receptors, computational techniques provide

an alternative for studying their activation and inactivation mechanisms. This work inte-

grates several computational methods, including AI-based structure prediction, homol-

ogy modelling and MD simulations. Our results propose a novel molecular mechanism

for olfactory receptor inactivation and provide a basis for experimental validation, illus-

trating how computational hypotheses can guide experimental studies.

The third manuscript explores the molecular mechanisms underlying a phenotype ob-

served in a barley mutant, TM2490, which exhibits a pale green colouration while retain-

ing wild-type growth and morphology. This phenotype is attributed to a missense mu-

tation in the Xan-h gene encoding the magnesium chelatase subunit I (CHLI), an enzyme

involved in chlorophyll synthesis. Although the mutation was experimentally identified

and characterised, the precise molecular rationale connecting the phenotype to the mu-

tation remained unclear. To address this, we used AI-based methods to reconstruct the

structure of the CHLI protein, providing a model to study the effects of the mutation.

Comparative structural analysis and molecular docking simulations were performed to

understand how the mutation alters the structure and function of the protein. Our re-

sults provide a molecular explanation for the observed phenotype, linking the structural

effects of the mutation to the physiological characteristics of the barley mutant. By com-

bining computational modelling with experimental characterisation, this work provides

insights that could drive breeding strategies for crops with improved photosynthetic ef-

ficiency.
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3.1 Accurate and Efficient SAXS/SANS Implementation Includ-

ing Solvation Layer Effects Suitable for Molecular Simula-

tions

The combination of Small-Angle X-ray and Neutron Scattering (SAXS/SANS or SAS)

experiments with molecular dynamics (MD) simulations is an effective strategy for the

characterisation of biomolecules in solution.257 On the one hand, the limited resolution

of SAS benefits from the atomistic detail provided by MD; on the other hand, the integra-

tion of experimental data helps to reduce the inaccuracies of MD. Although promising,

this approach remains hampered by high computational costs. In particular, the multi-

ple scattering intensity calculations performed on-the-fly alongside the MD simulation

make this method prohibitively expensive, even on the latest High-Performance Com-

puting systems. One way to overcome this limitation is to calculate the intensity of the

system of interest on a coarse-grained model, thus aggregating the scattering behaviour

of groups of atoms into larger particles.258 Previously, we presented a hybrid resolution

method that allows atomistic SAXS-restricted MD simulation by using a Martini coarse-

grained approach to efficiently back-calculate scattering intensities;259 in our last work,

we enhance this technique by developing a novel hybrid-SAS method that is faster, more

accurate, extended to the SANS intensity calculation and that is compatible with both

proteins and nucleic acids. Furthermore, an implicit and user-definable solvation layer

contribution is included in the calculation to allow the reconstruction of a more realistic

scattering behaviour in solution. This layer depends on solvent-solute interactions and,

being typically more electron/neutron dense than the bulk solvent, actively contributes

to the scattering signal.260 To ensure a fast and simple use of our method and to broaden

its application, we have included it in PLUMED-ISDB, a module part of PLUMED,261

an open-source software designed to enhance and extend various MD engines or to be

used as a stand-alone package to perform a wide range of advanced analyses of complex

biomolecular systems.
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3.1.1 Personal Contribution

With the exception of the gelsolin experiments, I was actively involved in all aspects of

this work. My contributions included:

1. Design and Development of the Hybrid SAS Model: The hySAS model devel-

opment involved the evaluation of different forward models across multiple sys-

tems (proteins and nucleic acids) to achieve an optimal balance between compu-

tational performance and accuracy. The aim was to reduce computational bottle-

necks while maintaining the fidelity of the in silico reconstruction of the SAS inten-

sity of biomolecules. I explored different modelling strategies, ranging from multi-

resolution system-specific approaches to a transferable fixed-resolution model, lead-

ing to the development of single bead per amino acid and three bead per nucleic

acid mapping. In addition, I assessed other methods and tools that take into ac-

count explicit and implicit solvent effects, which are critical for effective calibration

of our SAS model.

2. Computational Work: I managed the preparation of protein and nucleic acid sys-

tems, performing both standard and enhanced molecular dynamics (MD) simula-

tions. To ensure fast and easy use of our method and to broaden its application,

I contributed to the implementation of the forward model in the PLUMED soft-

ware, which allows hySAS to be coupled with different MD engines and to be used

independently of the force field adopted. I carried out all the analyses, including

evaluating the predictive capabilities of the model, interpreting the experimental

SAS data and evaluating the MD simulation trajectories.

3. Manuscript Writing: I have contributed to the writing of the manuscript in every

part of it.
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ABSTRACT: Small-angle X-ray and neutron scattering (SAXS/
SANS) provide valuable insights into the structure and dynamics of
biomolecules in solution, complementing a wide range of structural
techniques, including molecular dynamics simulations. As contrast-
based methods, they are sensitive not only to structural properties
but also to solvent−solute interactions. Their use in molecular
dynamics simulations requires a forward model that should be as
fast and accurate as possible. In this work, we demonstrate the
feasibility of calculating SAXS and SANS intensities using a coarse-
grained representation consisting of one bead per amino acid and
three beads per nucleic acid, with form factors that can be corrected
on the fly to account for solvation effects at no additional
computational cost. By coupling this forward model with molecular
dynamics simulations restrained with SAS data, it is possible to determine conformational ensembles or refine the structure and
dynamics of proteins and nucleic acids in agreement with the experimental results. To assess the robustness of this approach, we
applied it to gelsolin, for which we acquired SAXS data on its closed state, and to a UP1-microRNA complex, for which we used
previously collected measurements. Our hybrid-resolution small-angle scattering (hySAS) implementation, being distributed in
PLUMED, can be used with atomistic and coarse-grained simulations using diverse restraining strategies.

1. INTRODUCTION
Small-angle scattering (SAS) techniques based on X-rays
(SAXS) or neutrons (SANS) are established, valuable, and
widely used tools in structural biology for the characterization
of biomolecules in solution. These methods allow the size,
shape, stoichiometry, and dynamics of biomolecules to be
assessed under near-physiological conditions, using reasonable
concentrations, and without the need of labeling agents.1,2

Moreover, the size and the disorder level of the system are not
a limitation, enabling the study of diverse biomolecular
species.3−5 Indeed, SAS techniques can efficiently complement
nuclear magnetic resonance (NMR) spectroscopy and
fluorescence resonance energy transfer (FRET) measurements
to provide global features when studying multidomain
proteins, intrinsically disordered proteins, and larger com-
plexes.6 Furthermore, SAS is particularly suitable for the
analysis or the integration with molecular dynamics (MD)
simulations, using either reweighing or restraining techniques.7

This compatibility arises from the relative simplicity of
calculating the forward model from the coordinates of an
atomic resolution structure.

Briefly, the SAS intensity of a randomly oriented, N�atom,
molecule in a vacuum can be calculated by the Debye equation
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The intensity is described as a function of the momentum
transfer q = |q| = 4π (sin θ/λ), where 2θ is the scattering angle,
λ the source wavelength, and rij = |rij| = |ri − rj| is the distance
from the atom i to the atom j, which represents the relative
position of atoms i and j in the sample. The notation ⟨···⟩
refers to the spherical average, required to integrate the
scattered intensity over all directions that have the same
magnitude of q. In the case of SAXS, the radiation−matter
interaction between the X-ray photon and the electron cloud of
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atom i is described by the atomic scattering factor f i(q), which
can be approximated with the Cromer−Mann equation

f q a b q c f q( ) exp ( /4 ) ( )i
k

k k i
1

4
2 atomic= [ ] + =

= (2)

The empirical and atom-type specific parameters ak, bk, and c
are available in the International Tables for Crystallography.8,9

To account for the solvent effects, each atomic scattering factor
f i(q) is modified by subtracting a spherical Gaussian which
depends on ρ0, the electron density of the solvent (e.g., 0.334 e
Å−3 for bulk water), and νi

10 the volume of the solvent
displaced by the atom i, following the expression
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Since the neutron wavelength is significantly larger than the
nucleus dimension, in the case of SANS, the neutron scattering
amplitude results to be isotropic, i.e., independent of the
scattering angle. Therefore, eq 2 can be approximated to
f iatomic(q) = bi. The bi constants, which are available in the
literature,11,12 depend on the number of neutrons and protons
that constitute the nucleus. Consequently, isotopes of the same
element with different numbers of neutrons, such as hydrogen
and deuterium, have different neutron scattering lengths. This
feature provides the basis of the contrast variation technique13

a powerful advantage of neutron scattering over X-rays, which
is usually achieved by using mixtures of hydrogenated and
deuterated water in varying proportions. To account for this
combination in solvent composition, eq 3 is modified to

f q f q f q( ) ( ) ( )i i
atomic

i
solvent

0= (4)

where

b b d db0.1( 2( (1 ) ))O H D= + + (5)

with bO, bH, and bD as the neutron scattering amplitudes of
oxygen, hydrogen, and deuterium, respectively, and d as the
deuterium concentration (from 0 to 1, which corresponds to a
percentage range of 0−100%). The coefficient 0.1 serves as a
scaling factor to account for the 10 electrons per water
molecule when converting from electron to molecule density.
It should be noted that this modification does not consider the
possible effects of hydrogen−deuterium exchange between the
solvent and the solvent-exposed residues of the biomolecule.

Although eq 1 accounts for the solvent displaced by the
solute in the calculation of the scattering signal, it does not
consider the contribution of the solvation shell. This layer
depends on solvent−solute interactions and is typically more
electron-dense than that of the bulk solvent. For example, the
hydration layer has been reported to be up to 20−25% more
electron-dense than bulk water.14−16 This phenomenon can
result in an apparent increase in the radius of gyration of the
solute.17 The contribution of the solvation layer can be
included in calculations through explicit solvent modeling, as
implemented in software such as WAXSiS18,19 and Capri-
qorn20 or implicitly like in CRYSOL21/CRYSON,14 FoXS,22

and Pepsi-SAXS.23 The explicit solvent methods consider the
positions of the solvent atoms in the surrounding shell while
calculating the scattering signal of the molecule in solution.
However, this approach is computationally expensive due to

the large number of solvent atoms that must be considered in
addition to those of the molecule. Furthermore, it may still be
inaccurate because of the limitations of the force field (FF) in
the description of water−water and water-solute interac-
tions.24,25 Implicit solvent modeling methods, on the other
hand, allow the calculation of the solvation layer contribution
to the scattering signal without the need to model the solvent
atoms explicitly. This reduces the computational cost but
results in an approximate representation of the shell.26 In
general, implicit solvent methods require the introduction of a
solvation layer term in eq 3

f q f q f q f q( ) ( ) ( ) ( )i i i i
atomic

0
solvent solvation layer= + (6)

The way the f isolvation layer(q) is calculated is slightly different
depending on the software used. For example, in CRYSOL
2.x,27 this term depends on the contrast between the border
layer, which is considered as an envelope of fixed width
surrounding the particle, and the bulk solvent.

Equation 1 requires the evaluation of all of the pairwise
interatomic distances within the molecule of interest, thus
resulting in N2 calculations, where N is the number of the
atoms involved, making it highly demanding for large
biomolecules. This problem is exacerbated when multiple
evaluations of the scattering profile are required, as in the case
of MD simulations restrained by SAS data, resulting in severe
performance degradation. A successful strategy to mitigate this
computational burden is to coarse-grain the representation of
the molecule.28−32 This simplification can be achieved by
combining the scattering behavior of groups of atoms into
larger beads while preserving the overall scattering properties
of the molecule. This is made possible by the intrinsically low-
resolution nature of SAS data, which are more sensitive to the
overall shape and size of the molecule rather than its atomic
level details. Depending on the specific coarse-graining method
used, both the criteria for assigning atoms to beads and the
placement of their center can vary significantly. In general, for a
coarse-grained system, eq 1 becomes
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where M is the number of beads, Rij is the relative distance
between the center of the bead i and the center of the bead j,
and F(q) is the bead form factor, which mirrors the scattering
intensities of individual beads. There are several approaches to
calculating F(q); among them, the single-bead approximation
(SBA) proposed by Yang et al.28 has proved to be one of the
most computationally streamlined methods, which is fast but
dependable. According to SBA
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where f i′(q) and f k′(q) are the atomic scattering factors of the
atoms i and k belonging to bead j, which are modified to
include only the solvent-excluded volume term as in eqs 3 and
4, for SAXS and SANS, respectively. Niebling et al.32 have
effectively applied the SBA with the Martini 2.233 coarse-
grained scheme to derive SAXS bead form factors for proteins,
and we have further extended it to nucleic acids.34 With this
forward model, we used SAXS data to restrain simulations
based on the Martini force field35 but also based on atomistic
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force fields, for both proteins and nucleic acids. In this latter
hybrid scheme, called the hySAXS approach, the simulation is
performed at atomic resolution, while the SAXS intensity of
the respective frames is calculated on a coarse-grained
model.36−39

Even when the Martini representation is used to determine
the scattering intensity with hySAXS, the study of relatively
large systems can be challenging. Furthermore, this approach
was not designed to account for possible corrections due to the
solvation layer effects. Here, we present a novel hySAS method
for proteins and nucleic acids that is faster and more accurate
with the inclusion of a solvent layer contribution and extended
to the calculation of SANS intensity. As a case study, we
applied the hySAS approach to determine the conformational
ensemble of human gelsolin (GSN). This 83 kDa protein
(reviewed by Nag et al.40) is composed of six homologous
domains (named G1 to G6) connected by flexible linker
regions and is considered a master regulator of actin dynamics,
thanks to its severing and capping activities.41 GSN and the
other members of the superfamily play an important role in
several physiological processes, such as cell division and
mobility, trafficking, signal transduction, immunomodulation,
and inflammation.42,43 GSN is also responsible for a hereditary
amyloidosis,44 and it is involved in several other diseases,
particularly cancer (reviewed by Li et al.45). Each GSN domain
harbors a Ca2+ binding site, and binding to the ion triggers
local changes and domain rearrangements that shift the protein
from a closed to an open conformation.46 In the absence of
Ca2+, the actin binding sites are buried, limiting the ability of
the GSN to interact with actin filaments. In this inactive state,
GSN can be crystallized,47 but the resolution is relatively low
and several stretches of the protein are too flexible to be
modeled; such flexibility has been shown to be relevant for
GSN physiopathology.48−50 In this work, we have determined
the ensemble of gelsolin structures in the closed and inactive
state using SAXS data measured in the absence of calcium.
Furthermore, as a second example of the applicability of
hySAS, we refined a previously published protein−RNA
complex. This newly introduced hySAS and our previous
implementations are already available in the ISDB51 module of
PLUMED52,53 software, an open-source software designed to
enhance and extend various MD engines or to be used as a
stand-alone package to perform a wide range of advanced
analysis of complex biomolecular systems.

2. THEORY AND METHODS
2.1. SAS Form Factors with the Solvation Layer

Contribution. Here, we introduce a novel hySAS method for
proteins and nucleic acids where we use a single-bead (1B)
representation to describe the scattering behavior of an amino
acid and a three-bead (3B) mapping for a nucleotide, one for
the phosphate group, one for the pentose sugar, and one for
the nitrogenous base. This choice allow us to achieve better
performance and to alleviate a source of inaccuracy in the
Martini representation, specifically the need to extrapolate the
bead form factor when it assumes negative values.32

Importantly, to include the solvent layer contribution for
small q values, we reformulate the SBA F(q) as the sum of
three terms
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This approximation allows the Fi
atomic, Fi

solvent, and Fi
mixed terms

to be precalculated separately and for each bead type,
regardless of the solvent-specific ρ0 (and the deuteration
fraction in the case of SANS). Therefore, in addition to the
option of using a buffer other than bulk water, it is possible to
assign modified solvation densities to different beads as a proxy
for the effect of the solvation shell. More precisely, the ρ0 value
of the beads exposed to the solvent can be adjusted to
implicitly include the solvation layer contribution (SLC)
through a user-defined parameter. This correction can be
described as ρ = (ρ0 − SLC parameter). For this purpose, the
solvent-accessible surface area (SASA) for each amino acid,
nucleotide sugar, phosphate group or base is calculated on the
fly during the MD simulation or only for a single frame using
the efficient LCPO method.54 Of note, in the case of SANS,
the hydrogen−deuterium exchange is also considered. To
achieve this result, we have precalculated the three terms of eq
9 for each bead type using both deuterium fatomic(q) and
hydrogen fatomic(q). For the beads exposed to the solvent, each
time eq 9 is solved, the terms obtained with deuterium
fatomic(q) are used instead of those obtained with hydrogen
fatomic(q), with a probability equal to the deuterium
concentration in the buffer. For the same bead type, fsolvent(q)
is identical for SAXS and SANS, both for hydrogenated and
deuterated beads, as it depends exclusively on the parameter ν.
The ρ0 value, the SLC parameter, the SASA threshold to
consider a residue solvated, and the deuterium fraction in
SANS can be defined by the user.
2.2. Bead Form Factor Parametrization and Valida-

tion. We computed the Fi
atomic, Fi

solvent, and Fi
mixed terms of eq

9 for all of the amino acids, as well as for nucleic acid bases, the
pentose sugars, and the phosphate group, for both SAXS and
SANS. Concerning proteins, the three terms per amino acid
were calculated and averaged over 1000 frames extracted at
equidistant intervals from a 2.7 μs MD trajectory of GSN. The
heterogeneous structural composition of this 755-residue
protein makes it an ideal model for a comprehensive
conformational sampling. Indeed, in addition to encompassing
all of the standard amino acids, GSN features an IDP-like N-
terminal region of ∼25 residues and six structured domains
rich in α-helices and β-sheets, connected by flexible linkers. To
validate the transferability of the GSN terms to other systems,
we generated two additional independent term sets, derived
from a 270 ns MD simulation of the B1 immunoglobulin-
binding domain of streptococcal protein G (B1), and from a
1.35 μs trajectory of the green fluorescent protein (GFP). The
three components of the bead form factors of all of the
standard amino acids have been calculated. Furthermore, we
have also included the scattering behavior of the histidine with
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both the δ- and ε-nitrogen of the imidazole ring protonated. A
different strategy was employed for nucleotides. Considering
the lower accuracy of the FF for nucleic acids,55 we preferred
to calculate and average the terms from nonredundant
molecular structures obtained from the Protein Data Bank
(PDB). We used a set of 167 noncomplexed DNA structures56

and a set of 75 RNA structures57 that we had already prepared
and used in our previous work.34 To validate the parameters,
120 DNA and 43 RNA structures with no missing heavy atoms
were selected from these repositories as the training subset,
while the remaining structures were used as the validation
subset. The final terms were computed on the two complete
repositories (Table S1). We derived the form factor
components of the five nucleobases (adenine, cytosine,
thymine, uracil, and guanine), the phosphate group, and the
DNA and RNA pentose sugars. In addition, we included two
other DNA/RNA bead types for the 5′-end and the 3′-end
pentose sugar with a hydroxyl moiety at carbon C5′ and C3′,
respectively. Finally, each term belonging to either a protein or
nucleic acid was fitted to a sixth-order polynomial. This means
that Fi

atomic, Fi
solvent, and Fi

mixed are described by a total of 21
parameters.
2.3. Computational Details. Protein bead form factor

parametrization was performed on mature human GSN. The
initial model was determined from the PDB entry 3FFN,
whose missing loops and N-terminus were reconstructed using
AlphaFold2.58 Regarding the 56 residues B1, and the 230
residues GFP, the structures are based on PDB entries 1PGB
and 1GFL, respectively. All of the structures were prepared
with the following procedure. The histidine orientation and
protonation states were optimized using Schrödinger Maestro
Suite, release 2021-4.59 The topology was built using DES-
Amber59 FF and the system was solvated with the TIP4P-D60

water model in a dodecahedron box with a NaCl concentration
of 100 mM. After two preliminary minimization steps (steepest
descent and conjugate gradient algorithms), a 2 ns long NPT
simulation was performed with the protein atoms restrained to
their minimized positions. For GSN, 675 ns of classical MD
simulation was computed for each of the 4 replicas, collecting a
total of 2.7 μs. For GFP, we ran a single replica MD simulation
of 1.35 μs, while for B1, we ran 4 replicas for 67.5 ns each,
reaching 270 ns.

The plain MD simulations of GSN, B1, and GFP were also
used to evaluate the performance and accuracy of calculating
SAS intensities at different resolutions. For nucleic acids, we
followed the previous procedure to prepare and perform a 35
ns simulation of the 1,187 nucleotides large subunit ribosome
fragment (PDB ID 1Z58) and a 14 ns simulation of single-
stranded 12-mer RNA (AGUAGAUUAGCA). The former was
used to assess the timing of the SAS intensity calculation and
the latter to assess the accuracy.

For the GSN refinement, driven by SAXS-restrained MD
simulation, the previous structure was modified. Since the
experimental SAXS measurements were collected on a full-
length GSN fused to a N-terminal His6-tag, we modeled an
additional 23 residues, corresponding to the sequence
“MGSSHHHHHHSSGLVPRGSHMAS”, resulting in a 778-
residue protein that was prepared as described previously. We
ran 2x 1 μs metainference61 multireplica simulations (10
replicas, 100 ns each), one with and one without the solvation
layer correction enabled. The representative SAXS intensities
selected as restraints range between the q values of 0.01 Å−1

and 0.25 Å−1 with a stride of 0.015 Å−1. The analysis was
performed over the last 50 ns of each trajectory.

Regarding the protein−RNA complex refinement, we
adopted the MD input files prepared in our previous work.34

In summary, AMBER14SB62 FF with parmbsc163 parameters
and the TIP3P64 water model were used to build the topology.
To preserve the protein−RNA interface, we introduce
harmonic biases on the distances between the phenylalanine
residues and bases involved in nonbonded interactions;
furthermore, we also added a restraining potential on the
secondary structures of the protein, following the same
procedure described by Kooshapur et al.65 The metainference
simulations were performed for 4.5 ns with and without the
solvation layer correction activated, using 35 selected SAXS
intensities with q values between 0.008 Å−1 and 0.3 Å−1 as
restraints.

All of the simulations were performed using GROMACS
2021.6,66 PLUMED2,52,53 and the PLUMED-ISDB51 module.
Plots were generated using the matplotlib67 3.6.0 package,
while the open-source software VMD68 and PyMOL69 were
used for structural visualization of biomolecules. Relevant
input files and trajectories are available on Zenodo70 and the
PLUMED-NEST as plumID:23.029.
2.4. Gelsolin Expression, Purification, and SAXS Data

Collection. Recombinant full-length GSN protein, carrying an
N-terminal His6-tag, was produced as previously described.50,71

Briefly, the human plasma isoform of GSN devoid of the signal
peptide (mature form) was produced in Escherichia coli SHuffle
cells (New England Biolabs) upon addition of 0.5 mM IPTG
and incubation for 16 h at 18 °C. Cells were lysed in a Basic Z
Bench top (Constant Systems Limited, U.K.) at 25 kPSI, and
the clarified extract passed through a HisTrap HP column (all
chromatographic media from GE-Healthcare). Further polish-
ing was obtained by anion exchange (Resource Q), followed by
size-exclusion chromatography (HiLoad 16/600 Superdex
200). For SAXS analysis, the protein was diluted to 2.01
mg/mL in 20 mM HEPES, pH 7.4, 100 mM NaCl, and 1 mM
EDTA. GSN batch data were collected at the B21 BioSAXS
beamline of the Diamond Synchrotron (Didcot, Oxfordshire,
UK).72 Data and model are deposited in the SASBDB73 as
SASDSN7.

3. RESULTS AND DISCUSSION
3.1. Single-Bead Mapping for Amino Acids and

Three-Bead Mapping for Nucleotides Are Fast and
Accurate for Small q Values. To assess the impact of the
number of elements in a system on the speed of the SAS
intensity calculation, we compared the time required by
PLUMED to determine intensities from MD trajectory frames.
We used different resolutions, including all-atom (AA), Martini
scheme with transferable parameters (MT), and single-bead
per amino acid (1B)/three beads per nucleotide (3B)
mappings with the corresponding transferable parameters.
For the analysis, we selected a GSN trajectory consisting of
6442 frames to evaluate the performance on proteins and a 500
frames trajectory of a large subunit ribosome fragment to
evaluate nucleic acids. The intensities were calculated for 31 q
values, in the range 1 × 10−10 to 0.3 Å−1, every 0.01 Å−1. As
expected, the resolution had a dramatic effect on the
calculation time. For proteins, it took approximately 5 days
to determine the SAS intensity at AA details (11,558 atoms).
The same calculation was achieved in about 143 min (48.4-fold
speedup) using the MT mapping (1627 beads) and
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Figure 1. SAS intensity calculation timings. (A) The 6442 frame MD trajectory of 755 residues GSN was used as input for PLUMED-ISDB plugin
to calculate the corresponding SAS intensities for 31 q values, using different mapping resolutions. The time required for completion at AA details
(11,558 atoms) is 416,594 s and with MT mapping (1627 beads) is 8,615 s, while for 1B (755 beads) is 1925 s. 1B and MT are 216 times and 48
times faster than AA, respectively. As an example, five residues are shown at atomistic (ball and sticks visualization) and 1B resolution (light blue
beads). (B) The 500 frames MD trajectory of 1187 nucleotide RNA strand was used to calculate the corresponding SAS intensities for 31 q values.
The time required for completion at AA resolution (38,287 atoms) is 432,022 s and for MT mapping (7796 beads) is 15,912 s, while for 3B (3,560
beads) is 3263 s. 3B and MT are 132 times and 27 times faster than AA, respectively. As an example, four nucleotides are shown at atomistic (ball
and sticks visualization) and 3B resolution (nucleobase in blue, pentose sugar in violet, phosphate group in orange). The timings were evaluated
under the same conditions on a single core of a workstation equipped with an Intel Xeon E5-2660v3 CPU.

Figure 2. Validation of the 1B/3B mappings in the calculation of scattering intensities. The SAS profile of each frame from MD trajectories was
calculated at atomic and coarse-grained resolution, for 201 q values ranging from 1 × 10−10 to 0.5 Å−1. (A) Average and standard deviation on 6442
GSN frames of the SAXS residuals between MT and AA (green) and between 1B and AA (orange). (B) Average and standard deviation on 7256
12-mer RNA frames of the SAXS residuals between MT and AA (green) and between 3B and AA (orange). (C) Average and standard deviation on
6442 GSN frames of the SANS residuals between 1B and AA (orange). (D) Average and standard deviation on 7256 12-mer RNA frames of the
SANS residuals between 3B and AA (orange).
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approximately 32 min (216.4-fold speedup) using the 1B
representation (755 beads) (Figure 1A). Similarly, for nucleic
acids, the calculation time reduced from around 5 days at AA
resolution (38,287 atoms) to about 265 min (27.2-fold
speedup) using MT mapping (7796 beads) and about 54
min (132.4-fold speedup) using the 3B representation (3560
beads) (Figure 1B).

In addition to performance evaluation, we also assessed the
accuracy of 1B/3B mappings and parameters in the calculation
of scattering intensities. For this benchmark, we selected 6442
equidistant frames from the GSN MD simulation, 6502 from
B1, 9622 from GFP, and 7256 from the 12-mer RNA strand
and calculated the SAXS and SANS intensity in both coarse-
grained and atomistic details for 201 q values, in the range of 1
× 10−10 to 0.5 Å−1, every 0.0025 Å−1. For each frame and each
q value, the intensity calculated with 1B/3B was compared
with the corresponding intensity at atomistic resolution, which
was taken as the reference. For SAXS we also included the
comparison between MT and AA. The GSN SAXS intensities
calculated with 1B mapping showed better agreement with
those obtained with AA resolution than with MT up to 0.3
Å−1, since the difference (residuals) between 1B and AA
intensities is smaller than the difference between MT and AA
for the same set of q values (Figure 2A). A similar behavior has
been observed also for B1 (Figure S1A, left panel) and GFP
(Figure S1B, left panel) SAXS intensities. This phenomenon,
which is probably amplified by the approximation introduced
in the calculation of the MT bead form factors, shows that for
small q values, the atomic details are not critical in the
determination of the intensity. Considering B1, which is the
worst case scenario we observed, the SAXS intensity computed
with 1B differs by less than 0.5% from that calculated at
atomistic resolution in the range 0−0.3 Å−1. Regarding the
SANS intensity calculation with 1B mapping, the results
obtained for GSN (Figure 2C) and GFP (Figure S1B, right

panel) were comparable to those of SAXS, whereas for B1, the
accuracy decreased, with a maximum difference between 1B
and AA scattering profiles of about 1.5% (Figure S1A, right
panel). As for the proteins, the calculation of the SAXS
intensity on RNA with 3B mapping also proves to be accurate,
with better agreement with AA resolution than with MT
(Figure 2B). Finally, the difference between the RNA SANS
intensity computed with 3B and that computed with AA shows
a level of accuracy close to that observed for SAXS (Figure
2D). These results were obtained without considering the
solvation layer contribution. To assess the transferability and
validate the 1B parameters obtained from GSN, we generated
additional independent sets of parameters from B1 and GFP.
Using the 1B parameters obtained from B1, we calculated the
SAXS intensities on the B1 trajectory frames and compared
them with the corresponding AA intensities. The same B1
frames were employed to calculate the 1B intensity using the
parameters obtained from GSN, and these intensities were also
compared with the AA profiles. The two obtained residuals are
nearly superimposable (Figure S2A), differing from each other
by less than 0.1% at most. We followed the same procedure
with GFP, and similarly, the residuals calculated with the 1B
parameters from GFP are in strong agreement with the
residuals calculated with the 1B parameters from GSN (Figure
S2B). To validate the 3B parameters, the nucleic acid
repositories previously described in Section 2 were divided
into two subsets. We selected 120 DNA and 43 RNA PDB files
as the training set to compute the 3B form factor parameters
since all of the heavy atoms are solved in these structures. We
calculated the SAXS intensity of each structure belonging to
this set with 3B mapping and at AA resolution and evaluated
the respective residuals. We performed the same analysis using
the 3B parameters obtained from the training set on the
remaining 47 DNA and 32 RNA structures, which we
considered as the validation subset. The average of the

Figure 3. Solvation layer contribution in the 1B/3B SAXS intensity calculation. (A) Upper panel: logarithm of the SAXS profile of a representative,
randomly selected, GSN frame calculated using 1B mapping (blue), 1B mapping with the best combination of SLC (0.08) and SC (0.6 nm2) found
for this frame (orange), and using WAXSiS (black). Bottom panel: residuals of 1B (blue) and 1B with SLC (orange) using the WAXSiS intensity as
the reference. (B) Upper panel: logarithm of the SAXS profile of a representative, randomly selected, 12-mer RNA frame calculated using 3B
mapping (blue), 3B mapping with the best combination of SLC (0.120) and SC (1.0 nm2) found for this frame (orange), and using WAXSiS
(black). Bottom panel: residuals of 3B (blue) and 3B with SLC (orange) using the WAXSiS intensity as the reference. All of the SAXS intensities
were calculated for 101 q values, up to 0.3 Å−1.
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residuals from the training set and the average of the residuals
from the validation set differed by a maximum of 0.12%.
Furthermore, although the residuals from the validation set are
more dispersed, the average is closer to the reference than the
average of the residuals from the training set (Figure S3).
3.2. Inclusion of the Solvation Layer Contribution

Allows Matching the SAXS Intensity Calculated by
WAXSiS. The 1B and 3B form factors can be modified to
include the solvation layer contribution in the SAS intensity
calculation. Whether for a single PDB file or an MD trajectory,
this process requires the calculation of the SASA to assess
which beads are exposed to the solvent. This procedure is
performed by the LCPO54 algorithm implemented74 in
PLUMED. The reliability of the method was verified by

comparing the results obtained with LCPO with the results
obtained for the same frames with the sasa module75 integrated
in GROMACS (Figure S4). To evaluate the SLC, we used as a
reference the intensities calculated by WAXSiS (Wide Angle X-
ray Scattering in Solvent), a web server hosted at Saarland
University, which allows the calculation of SAXS/WAXS
profiles based on short MD simulations in an explicit
solvent.18,19 We extracted 10 equidistant frames from each of
the previously described trajectories of GSN, B1, GFP, and 12-
mer RNA. For all of these frames, we calculated the SAXS
intensity using 1B/3B mapping with the SLC parameter set to
0.04, 0.06, 0.07, 0.08, 0.09, 0.095, 0.10, 0.11, and 0.12 and with
the SASA cutoff (SC) of 0.4, 0.6, 0.7, 0.8, 1.0, and 1.2 nm2, in
all of the possible combinations. The same frames were used as

Figure 4. Agreement between hySAS, experimental SAXS data, and WAXSiS for the gelsolin ensembles. (A) Left panel: comparison between the
logarithm of the average GSN SAXS profile calculated using 1B mapping without SLC (blue) and the logarithm of the experimental SAXS data
(black dots). Right panel: comparison between the logarithm of the average GSN SAXS profile calculated using 1B mapping with SLC (orange)
and the logarithm of the experimental SAXS data (black dots). (B) Left panel: comparison between the logarithm of the average GSN SAXS profile
calculated using 1B mapping without SLC (blue) and the logarithm of the average WAXSiS profile (black dashed line). Right panel: comparison
between the logarithm of the average GSN SAXS profile calculated using 1B mapping with SLC (orange) and the logarithm of the average WAXSiS
profile (black dashed line). All of the residuals are calculated as the difference between the two intensities considered.
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input to calculate the SAXS profiles with WAXSiS. We
specified in the web server options an explicit solvent envelope
of 7 Å from the surface of the biomolecule, and we selected the
maximum available simulation length (2 × 106/N−0.77 frames,
where N is the approximate number of atoms in the hydration
layer). As in the previous analyses, we calculated the residuals
between the intensity computed with 1B/3B and the intensity
computed with WAXSiS, that we consider as the reference.
Although some combinations of SLC and SC gave surprising
results, leading to SAXS profiles practically identical to those
calculated by WAXSiS (Figures 3 and S5), we found that using
any of the indicated values of SLC and SC gave a better
agreement with WAXSiS intensity than using 1B/3B without

SLC. For a clearer overview, we computed the root-mean-
square error (RMSE) between the logarithm (base 10) of the
SAXS intensity calculated with AA, MT, and 1B/3B (with all
of the SLC/SC combinations) and the logarithm of the SAXS
intensity calculated with WAXSiS. The results obtained from
all of the extracted frames were averaged for each system
(Table S2). This analysis showed that the 1B/3B with SLC
gave better results than 1B/3B without SLC but also compared
to MT and AA resolution. For GSN, B1, and GFP, the SLC
values that lead to the best results are generally between 0.08
and 0.1 with the SC of 0.7−0.8 nm2. Instead, for the 12-mer
RNA, an SLC greater than 0.1 with SC between 0.8 and 1 nm2

is more in agreement with the reference.

Figure 5. Radius of gyration and probability density histograms of GSN ensembles. The probability density distribution of the radius of gyration
was calculated over 10,000 frames obtained using hySAS with SLC, colored in orange, while the distribution calculated over 10,000 frames obtained
using hySAS without SLC is colored in blue. The area under each histogram integrates to 1.

Figure 6. RMSF analysis of the GSN ensemble (with SLC). The flexibility of the protein was assessed by calculating the root-mean-square
fluctuation of all residues. The residue numbering sequence on the x-axis includes the N-terminal His6-tag (from −23 to −1) and the full-length
human plasma isoform of GSN (1 to 755). The domains sharing the highest sequence and structural similarity are shown with the same color code:
G1 and G4 are colored in orange, G2 and G5 in purple, and G3 and G6 in blue. The linkers and tails are colored in light gray, while the His6-tag is
colored in yellow. On the left, 50 equidistant frames from the analyzed trajectories are superimposed as a representative example of the
conformational ensemble. The GSN structure on the right is that obtained by X-ray crystallography (PDB ID: 3FFN).
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3.3. Solvation Layer Contribution Results in a Smaller
Radius of Gyration and an Overall Decrease in the
Fluctuations of Gelsolin. The size and large structural
variability of GSN made it an excellent candidate to provide a
realistic evaluation of our method and to assess its applicability
to practical scenarios. Specifically, we generated two
independent GSN conformational ensembles through meta-
inference multireplica simulations, using experimental SAXS
data as a restraint and the 1B mapping and parameters to
compute the forward models. One of the two ensembles was
obtained by enabling SLC with a value of 0.08 and with the SC
of 0.7 nm2. We selected these settings based on the result of
the analyses reported in the previous paragraph, as well as

being particularly appropriate for GSN, this combination was
also reasonable for B1 and GFP (Table S2). To define the
ensembles, we considered only the second half of the trajectory
of each replica, where the correlation between the forward
model and the experimental intensity was stably close to 1,
with a constant metainference score. From each ensemble, we
extracted 1,000 equally distant frames, recalculated the SAXS
profile using PLUMED with 1B mapping, and determined the
average profile. For the ensemble frames with hydration layer
correction, we used the same SLC and SC settings as those for
the refinement. The two average profiles, representing the two
ensembles, were directly compared with the experimental
SAXS data (Figure 4A). We observed that both profiles show

Figure 7. Comparison between hySAS, experimental SAXS data, and WAXSiS for UP1-RNA complex models. (A) Left panel: comparison between
the logarithm of the protein−RNA complex SAXS intensity calculated using 1B/3B mapping without SLC (blue) and the logarithm of the
experimental SAXS data (black dots). Right panel: comparison between the logarithm of the protein−RNA complex SAXS intensity calculated
using 1B/3B mapping with the SLC (orange) and the logarithm of the experimental SAXS data (black dots). The upper right section of each panel
shows the protein−RNA complex frame responsible for the relative intensity profile (purple/cartoon representation for UP1, blue/ribbon
representation for 12-mer RNA). (B) Left panel: comparison between the logarithm of the protein−RNA complex SAXS intensity calculated using
1B/3B mapping without SLC (blue) and the logarithm of the WAXSiS profile (black dashed line). Right panel: comparison between the logarithm
of the protein−RNA complex SAXS intensity calculated using 1B/3B mapping with the SLC (orange) and the logarithm of the WAXSiS profile
(black dashed line). All of the residuals are calculated as the difference between the two intensities considered.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00864
J. Chem. Theory Comput. 2023, 19, 8401−8413

8409

59



good agreement with the experimental SAXS data, with a chi-
squared of 0.8 and 1.4 without and with the SLC term,
respectively. To verify that our hydration layer correction is
working properly, we also calculated the SAXS intensities using
the WAXSiS web server and determined the corresponding
average profiles. We compared the PLUMED profile with the
WAXSiS profile of the ensemble obtained without SLC (Figure
4B, left panel) and the PLUMED profile with the WAXSiS
profile of the ensemble obtained with SLC (Figure 4B, right
panel). In this case, we found that the agreement between
PLUMED and WAXSiS is higher when comparing the
intensities calculated from the ensemble with SLC (RMSE:
1.7 × 10−2) than when comparing the intensities calculated
from the ensemble without SLC (RMSE: 6.4 × 10−2). This
indicates that although the hydration layer contribution in the
SAXS intensity calculation is not critical to match the
experimental data, hySAS can match WAXSiS with the
appropriate SLC/SC settings. We analyzed both the ensembles
in terms of radius of gyration and root-mean-square
fluctuations (RMSFs) to gauge the effect of the SLC on the
resulting conformations. Although both the ensembles showed
a bimodal distribution of the radius of gyration, the one
obtained with the inclusion of the SLC was, as possibly
expected, more compact with an average radius of gyration of
3.05 nm, compared to the one generated without the SLC,
which showed an average radius of gyration of 3.14 nm (Figure
5). Interestingly, a similar behavior was observed regarding the
RMSF. The ensemble calculated applying the SLC shows
systematically lower fluctuations, with an average RMSF of
0.26 nm, compared to the other ensemble, which has an RMSF
of 0.38 nm (Figures 6, S6, and S7). Focusing on the SLC-
corrected ensemble, the main contribution to the radius of
gyration and the RMSF comes from the long N-terminal
disordered region with significant fluctuations also found in the
two main linkers connecting the G2 domain to the G3 domain
and the G3 domain to the G4 domain (Figure 6). Referring to
high-resolution data for some of the isolated domains (also in
the presence of Ca2+ and/or actin),76−78 GSN appears
reasonably stable, suggesting that the model with smaller
fluctuations is preferable.
3.4. Solvation Layer Contribution Results in a Lower

Radius of Gyration in the Refinement of a Protein−RNA
Complex. In addition to generating conformational ensem-
bles, hySAS can also be used to refine single structures to
enhance consistency with experimental SAS data. As an
example of the latter application, we choose to improve a
model of a previously published protein−RNA complex.65 This
system consists of the 199-residue unwinding protein 1 (UP1)
interacting with a 12-mer single strand derived from the
primary transcript of the 18a microRNA. The complex was
originally refined using metainference, SAXS, and NMR data as
restraints and successively tested with hySAXS and the Martini
bead form factors.34 Here, we repeated the latter test using the
same input files and data but 1B and 3B mapping to compute
the forward models. We generated a short trajectory with and
without SLC with a value of 0.12 and an SC of 0.8 nm2. From
each trajectory, we obtained a refined structure with a chi-
squared of 1 with respect to the SAXS data (Figure 7A). As for
the GSN, to verify our method, we compared the intensities
computed from the two selected conformations with the
corresponding intensities recalculated with the WAXSiS web
server. We obtained an RMSE of 6.4 × 10−2 between the
PLUMED and the WAXSiS logarithm of the intensities

(Figure 7B, left panel) when using the conformation generated
without employing the hydration layer correction. However,
when using the conformation calculated with the SLC, the
RMSE drops to 1.2 × 10−2 (Figure 6B, right panel). Therefore,
also in this case, the use of our SL allows us to obtain SAS
profiles in agreement with WAXSiS.

Comparing the two resulting refined structures, it is possible
to observe a difference in their radius of gyration, with the one
obtained without using the SLC characterized by a radius of
2.26 nm as observed in our previous work,65 and the one
obtained using the SLC term by a radius of 2.20 nm. This
difference is the result of more relaxed terminal regions of
UP1.

4. CONCLUSIONS
The integration of experimental data in simulations is a
powerful approach to increase the resolution of the former and
the accuracy of the latter.79−81 This integration is based on two
elements: (i) a forward model for the calculation of an
experimental observable, given a conformation and (ii) an
integration strategy (e.g., restraints or reweighting based on
either the maximum entropy principle or Bayesian infer-
ence82,83). The forward model should be accurate and
computationally efficient when the goal is to apply a restraint
in a simulation. In this work, we have presented an
implementation of a SAXS and SANS forward model that
efficiently exploits the limited resolution of these experimental
techniques. In particular, it allows protein and nucleic acid
scattering to be represented by a single-bead per amino acid
and a three-bead per nucleic acid residue, and more
importantly, it enables the effective on-the-fly inclusion of
solute−solvent scattering corrections at no cost. We showed
that the inclusion of this correction modifies the resulting
conformations by mildly decreasing their radius of gyration, as
expected, and matching WAXSiS, a more accurate but
expensive forward model. The method presented here is
already deployed in PLUMED, thus allowing its use in
combination with different molecular dynamics engines,
restraining strategies including metainference61 and maximum
entropy84,85/caliber86 approaches or enhanced sampling
techniques such as metadynamics87 and umbrella sampling.88
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Jussupow, A.; Fernandez, N.; Jones, A. N.; Dallmann, A.; Gabel, F.;
Camilloni, C.; et al. Structural basis for terminal loop recognition and
stimulation of pri-miRNA-18a processing by hnRNP A1. Nat.
Commun. 2018, 9 (1), No. 2479.

(66) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.

(67) Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput.
Sci. Eng. 2007, 9 (3), 90−95.

(68) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular
dynamics. J. Mol. Graphics 1996, 14 (1), 33−38.

(69) Schrödinger, L. L. C. The PyMOL Molecular Graphics System,
Version 2.6.

(70) Ballabio, F.; Capelli, R.; Camilloni, C. Supporting data for: ″An
accurate and efficient SAXS/SANS implementation including
solvation layer effects suitable for restrained Molecular Dynamics
simulations.”. Zenodo: 2023.

(71) Giorgino, T.; Mattioni, D.; Hassan, A.; Milani, M.;
Mastrangelo, E.; Barbiroli, A.; Verhelle, A.; Gettemans, J.; Barzago,
M. M.; Diomede, L.; de Rosa, M. Nanobody interaction unveils
structure, dynamics and proteotoxicity of the Finnish-type amyloido-
genic gelsolin variant. Biochim. Biophys. Acta, Mol. Basis Dis. 2019,
1865 (3), 648−660.

(72) Cowieson, N. P.; Edwards-Gayle, C. J. C.; Inoue, K.; Khunti, N.
S.; Doutch, J.; Williams, E.; Daniels, S.; Preece, G.; Krumpa, N. A.;
Sutter, J. P.; et al. Beamline B21: high-throughput small-angle X-ray
scattering at Diamond Light Source. J. Synchrotron Radiat. 2020, 27
(5), 1438−1446.

(73) Valentini, E.; Kikhney, A. G.; Previtali, G.; Jeffries, C. M.;
Svergun, D. I. SASBDB, a repository for biological small-angle
scattering data. Nucleic Acids Res. 2015, 43 (D1), D357−D363.

(74) Arsiccio, A.; Shea, J.-E. Protein Cold Denaturation in Implicit
Solvent Simulations: A Transfer Free Energy Approach. J. Phys. Chem.
B 2021, 125 (20), 5222−5232.

(75) Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M.
The double cubic lattice method: Efficient approaches to numerical
integration of surface area and volume and to dot surface contouring
of molecular assemblies. J. Comput. Chem. 1995, 16 (3), 273−284.

(76) Takeda, S.; Fujiwara, I.; Sugimoto, Y.; Oda, T.; Narita, A.;
Maéda, Y. Novel inter-domain Ca2+-binding site in the gelsolin
superfamily protein fragmin. J. Muscle Res. Cell Motil. 2020, 41 (1),
153−162.

(77) Bollati, M.; Scalone, E.; Bonì, F.; Mastrangelo, E.; Giorgino, T.;
Milani, M.; de Rosa, M. High-resolution crystal structure of gelsolin
domain 2 in complex with the physiological calcium ion. Biochem.
Biophys. Res. Commun. 2019, 518 (1), 94−99.

(78) Vorobiev, S.; Strokopytov, B.; Drubin, D. G.; Frieden, C.; Ono,
S.; Condeelis, J.; Rubenstein, P. A.; Almo, S. C. The structure of
nonvertebrate actin: Implications for the ATP hydrolytic mechanism.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (10), 5760−5765.

(79) Bonomi, M.; Heller, G. T.; Camilloni, C.; Vendruscolo, M.
Principles of protein structural ensemble determination. Curr. Opin.
Struct. Biol. 2017, 42, 106−116 From NLM..

(80) Orioli, S.; Larsen, A. H.; Bottaro, S.; Lindorff-Larsen, K. How
to learn from inconsistencies: Integrating molecular simulations with

experimental data. Prog. Mol. Biol. Transl. Sci. 2020, 170, 123−176
From NLM..

(81) Habeck, M. Bayesian methods in integrative structure
modeling. Biol. Chem. 2023, 404, 741.

(82) Hummer, G.; Köfinger, J. Bayesian ensemble refinement by
replica simulations and reweighting. J. Chem. Phys. 2015, 143 (24),
No. 243150.

(83) Rangan, R.; Bonomi, M.; Heller, G. T.; Cesari, A.; Bussi, G.;
Vendruscolo, M. Determination of Structural Ensembles of Proteins:
Restraining vs Reweighting. J. Chem. Theory Comput. 2018, 14 (12),
6632−6641.

(84) Cavalli, A.; Camilloni, C.; Vendruscolo, M. Molecular dynamics
simulations with replica-averaged structural restraints generate
structural ensembles according to the maximum entropy principle. J.
Chem. Phys. 2013, 138 (9), No. 094112.

(85) Cesari, A.; Gil-Ley, A.; Bussi, G. Combining Simulations and
Solution Experiments as a Paradigm for RNA Force Field Refinement.
J. Chem. Theory Comput. 2016, 12 (12), 6192−6200.

(86) Capelli, R.; Tiana, G.; Camilloni, C. An implementation of the
maximum-caliber principle by replica-averaged time-resolved re-
strained simulations. J. Chem. Phys. 2018, 148 (18), No. 184114.

(87) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99 (20), 12562−12566.

(88) Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions
in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput.
Phys. 1977, 23 (2), 187−199.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00864
J. Chem. Theory Comput. 2023, 19, 8401−8413

8413

63



Supporting Information for:  
An Accurate and Efficient SAXS/SANS Implementation 
Including Solvation Layer Effects Suitable for Molecular 

Simulations. 
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Type PDB Codes 
RNA 157D, 1CSL, 1D4R, 1DQF, 1DUH, 1DUQ, 1F1T, 1F27, 1FIR, 1G2J, 1I9V, 

1I9X, 1J9H, 1JZV, 1K9W, 1KD5, 1KFO, 1KH6, 1KXK, 1L2X, 1L3Z, 
1MHK, 1MME, 1MSY, 1NBS, 1NUJ, 1P79, 1Q93, 1QBP, 1SA9, 1SDR, 
1T0D, 1T0E, 1U9S, 1X8W, 1X9C, 1X9K, 1XJR, 1Y0Q, 1YFG, 1YKQ, 
1YZD, 1Z43, 1Z58, 205D, 255D, 259D, 280D, 2A0P, 2A2E, 2A64, 2AO5, 
2B8R, 2G3S, 2G91, 2H0S, 2NOK, 2OE6, 2TRA, 333D, 353D, 357D, 
361D, 377D, 387D, 397D, 402D, 405D, 406D, 409D, 413D, 433D, 434D, 
438D, 472D.  

DNA (A-form) 118D, 137D, 138D, 160D, 1D78, 1D79, 1DNZ, 1KGK, 1M77, 1MA8, 
1MLX, 1NZG, 1VJ4, 1VT5, 1VTB, 1XJX, 1Z7I, 1ZEX, 1ZEY, 1ZF1, 1ZF6, 
1ZF8, 1ZF9, 1ZFA, 243D, 260D, 295D, 2D94, 317D, 338D, 344D, 345D, 
348D, 349D, 368D, 369D, 370D, 371D, 395D, 396D, 399D, 414D, 440D, 
9DNA. 

DNA (B-form) 122D, 123D, 158D, 183D, 196D, 1BD1, 1BNA, 1CW9, 1D23, 1D3R, 
1D49, 1D56, 1D8G, 1D8X, 1DOU, 1DPN, 1EDR, 1EHV, 1EN3, 1EN8, 
1EN9, 1ENE, 1ENN, 1FQ2, 1G75, 1I3T, 1IKK, 1J8L, 1JGR, 1L4J, 1L6B, 
1M6G, 1N1O, 1NVN, 1NVY, 1P4Y, 1P54, 1S23, 1S2R, 1SGS, 1SK5, 
1UB8, 1VE8, 1ZF0, 1ZF3, 1ZF4, 1ZF5, 1ZF7, 1ZFB, 1ZFF, 1ZFG, 232D, 
251D, 2D25, 307D, 355D, 3DNB, 403D, 423D, 428D, 431D, 436D, 454D, 
455D, 456D, 460D,463D, 476D, 477D, 5DNB, 9BNA. 

DNA (Z-form) 131D, 145D, 181D, 1D48, 1D53, 1DA2, 1DCG, 1DJ6, 1DNF, 1I0T, 1ICK, 
1JES, 1LJX, 1OMK, 1VTT, 1VTW, 1XA2, 1XAM, 1ZNA, 210D, 211D, 
242D, 292D, 293D, 2DCG, 313D, 314D, 331D, 336D, 351D, 362D, 
400D,417D. 

DNA (Quadruplexes 184D, 190D, 191D, 1BQJ, 1CN0, 1JPQ, 1L1H, 1MF5, 1O0K, 1QYK, 
1QYL, 1V3N, 1V3O, 1V3P, 200D, 241D, 244D, 284D, 352D. 
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Table S1. List of PDB files used to compute the 3B parameters. The underlined 43 codes for RNA 
and 120 for DNA indicate the structures belonging to the initial training set. The remaining 32 
RNA structures and 47 DNA structures were used as the validation set. The final parameters were 
calculated from the full set of 242 PDB structures. 
 

 

Figure S1. Accuracy evaluation of coarse-grained mappings in the calculation of scattering 
intensities. The SAS profile of each frame from MD trajectories was calculated with coarse-
grained mappings and at AA resolution, for 201 𝑞 values ranging from 1⋅10-10 Å-1 to 0.5 Å-1. A) 
Left panel: average and standard deviation on 6,502 B1 frames of the SAXS residuals between MT 
and AA (green), and between 1B and AA (orange). Right panel: average and standard deviation 
of SANS residual between 1B and AA (orange). B) Left panel: average and standard deviation on 
9,622 GFP frames of the SAXS residuals between MT and AA (green), and between 1B and AA 
(orange). Right panel: average and standard deviation of SANS residual between 1B and AA 
(orange). 
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Figure S2. Transferability assessment of 1B parameters. The SAXS profile of each frame from B1 
and GFP MD trajectories was calculated with 1B mapping employing B1 and GFP parameters, 
respectively, with 1B mapping and GSN parameters, and at AA resolution, for 201 𝑞 values 
ranging from 1⋅10-10 Å-1 to 0.3 Å-1 A) Average and standard deviation on 6,502 B1 frames of the 
SAXS residuals between 1B with B1 parameters and AA (blue), and between 1B with GSN 
parameters and AA (red). B) Average and standard deviation on 9,622 GFP frames of the SAXS 
residuals between 1B with GFP parameters and AA (blue), and between 1B with GSN parameters 
and AA (red). 
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Figure S3. Transferability assessment of 3B parameters. The SAXS profile of each structure 
belonging to the training and to the validation sets was calculated with 3B mapping and the 
parameters computed from the PDB training set, and at AA resolution. The intensity was 
calculated for 201 𝑞 values ranging from 1⋅10-10 Å-1 to 0.3 Å-1. In red the average and standard 
deviation on 163 PDB structures (training set) of the SAXS residuals between 3B mapping and 
AA resolution. In blue the average and standard deviation on 79 PDB structures (validation set) 
of the SAXS residuals between 3B mapping and AA resolution. 
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Figure S4. Comparison of SASA calculation between PLUMED LCPO and GROMACS. The SASA 
of each residue of a GSN frame randomly extracted from a MD trajectory was computed using 
the LCPO algorithm implemented in PLUMED (y-axis) and with the sasa module of GROMACS 
(x-axis). Each blue cross represents one residue. 
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Figure S5. The solvation layer contribution in the 1B SAXS intensity calculation. A) Upper panel: 
base 10 logarithm of the SAXS profile of a representative, randomly selected, B1 frame calculated 
using 1B mapping (blue), 1B mapping with the best combination of SLC (0.09) and SC (1.2 nm2) 
found for this frame (orange) and using WAXSiS (black dashed line). Bottom panel: residuals of 
1B (blue) and 1B with SLC (orange) using the WAXSiS intensity as reference. B) Upper panel: 
base 10 logarithm of the SAXS profile of a representative, randomly selected, GFP frame 
calculated using 1B mapping (blue), 1B mapping with the best combination of SLC (0.08) and SC 
(0.7 nm2) found for this frame (orange) and using WAXSiS (black dashed line). Bottom panel: 
residuals of 1B (blue) and 1B with SLC (orange) using the WAXSiS intensity as reference. All the 
SAXS intensities were calculated for 101 𝑞 values, up to 0.3 Å-1. 
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A 

  RMSE (e-02) 

MAPPING SLC 
SC: 
1.2 

SC: 
1.0 

SC: 
0.8 

SC: 
0.7 

SC: 
0.6 

SC: 
0.4 // 

AA // // // // // // // 6.5 
MT // // // // // // // 7.8 
1B // // // // // // // 7.1 
1B 0.040 5.2 4.4 3.7 3.5 3.4 3.6 // 
1B 0.060 4.5 3.5 2.7 2.5 2.4 2.8 // 
1B 0.070 4.2 3.2 2.4 2.2 2.1 2.6 // 
1B 0.080 4.0 2.9 2.2 2.1 2.0 2.4 // 
1B 0.090 3.8 2.7 2.2 2.2 2.1 2.4 // 
1B 0.095 3.7 2.7 2.3 2.2 2.2 2.3 // 
1B 0.100 3.6 2.6 2.3 2.3 2.3 2.4 // 
1B 0.110 3.5 2.6 2.5 2.6 2.6 2.4 // 
1B 0.120 3.4 2.7 2.8 2.8 2.9 2.5 // 

  
B  

  RMSE (e-02) 

MAPPING SLC 
SC: 
1.2 

SC: 
1.0 

SC: 
0.8 

SC: 
0.7 

SC: 
0.6 

SC: 
0.4 // 

AA // // // // // // // 7.5 
MT // // // // // // // 9.0 
1B // // // // // // // 7.2 
1B 0.040 4.7 4.3 4.0 3.9 4.0 4.2 // 
1B 0.060 3.7 3.3 3.0 2.9 3.1 3.4 // 
1B 0.070 3.2 2.9 2.6 2.5 2.7 3.1 // 
1B 0.080 2.8 2.5 2.3 2.2 2.4 2.8 // 
1B 0.090 2.5 2.3 2.0 1.9 2.2 2.6 // 
1B 0.095 2.4 2.2 1.9 1.8 2.1 2.5 // 
1B 0.100 2.2 2.1 1.8 1.6 2.0 2.4 // 
1B 0.110 2.0 2.0 1.6 1.5 1.8 2.3 // 
1B 0.120 1.9 1.9 1.5 1.4 1.8 2.2 // 
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C 

  RMSE (e-02) 

MAPPING SLC 
SC: 
1.2 

SC: 
1.0 

SC: 
0.8 

SC: 
0.7 

SC: 
0.6 

SC: 
0.4 // 

AA // // // // // // // 7.0 
MT // // // // // // // 8.0 
1B // // // // // // // 8.1 
1B 0.040 6.2 5.5 4.6 4.3 4.2 4.2 // 
1B 0.060 5.4 4.5 3.6 3.3 3.3 3.6 // 
1B 0.070 5.1 4.1 3.3 3.1 3.1 3.7 // 
1B 0.080 4.8 3.9 3.2 3.1 3.2 4.0 // 
1B 0.090 4.5 3.7 3.2 3.2 3.5 4.4 // 
1B 0.095 4.4 3.6 3.3 3.3 3.7 4.6 // 
1B 0.100 4.4 3.6 3.4 3.5 3.9 4.8 // 
1B 0.110 4.3 3.5 3.6 3.9 4.4 5.4 // 
1B 0.120 4.2 3.6 4.0 4.4 4.9 5.9 // 

 
D 

  RMSE (e-02) 

MAPPING SLC 
SC: 
1.2 

SC: 
1.0 

SC: 
0.8 

SC: 
0.7 

SC: 
0.6 

SC: 
0.4 // 

AA // // // // // // // 3.9 
MT // // // // // // // 4.7 
3B // // // // // // // 3.8 
3B 0.040 3.1 2.9 2.9 2.9 3.1 3.4 // 
3B 0.060 2.8 2.5 2.5 2.6 2.9 3.3 // 
3B 0.070 2.7 2.4 2.3 2.5 2.8 3.1 // 
3B 0.080 2.5 2.2 2.2 2.3 2.7 3.1 // 
3B 0.090 2.4 2.1 2.0 2.2 2.6 3.1 // 
3B 0.095 2.4 2.0 2.0 2.2 2.5 3.0 // 
3B 0.100 2.3 2.0 1.9 2.1 2.6 3.0 // 
3B 0.110 2.2 1.8 1.8 2.0 2.4 3.0 // 
3B 0.120 2.1 1.7 1.7 1.9 2.3 2.9 // 

 
Table S2. SLC and SC evaluation in SAXS intensity calculation. Each table shows the RMSE 
between the logarithm (base 10) of the SAXS intensity calculated with AA, MT, 1B/3B (with 
different values of SLC/SC) and the logarithm of the SAXS intensity calculated with WAXSiS, 
averaged for 10 equidistant frames extracted from A) GSN, B) B1, C) GFP and D) 12-mer RNA 
MD trajectories. The SC is expressed in nm2. 
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Figure S6. RMSF analysis of the GSN ensemble (without SLC). The flexibility of the protein was 
assessed by calculating the root-mean-square-fluctuation of all residues. The residue numbering 
sequence on the x-axis includes the N-terminal His6-tag (from -23 to -1) and the full-length 
human plasma isoform of GSN (1 to 755). The domains sharing the highest sequence and 
structural similarity are shown with the same colour code: G1 and G4 in orange, G2 and G5 in 
purple, G3 and G6 in blue. The linkers and tails are coloured in light grey while the His6-tag is 
coloured in yellow. On the left, 50 equidistant frames from the analysed trajectories are 
superimposed as a representative example of the conformational ensemble. The GSN structure on 
the right is that obtained by X-ray crystallography (PDB ID: 3FFN). 

 

 

 

 

 

72



 

Figure S7. Difference in RMSF between the residues of the GSN ensemble obtained with SLC 
and the residues of the GSN ensemble obtained without SLC. The residue numbering sequence 
on the x-axis includes the N-terminal His6-tag (from -23 to -1) and the full-length human plasma 
isoform of GSN (1 to 755). The domains sharing the highest sequence and structural similarity 
are shown with the same colour code: G1 and G4 in orange, G2 and G5 in purple, G3 and G6 in 
blue. The linkers and tails are coloured in light grey while the His6-tag is coloured in yellow. 
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3.1.3 Future Perspectives

Following the publication of the manuscript, although the forward model has remained

unchanged, the corresponding code implemented in PLUMED has been continuously

improved in terms of both performance and robustness. Numerous checks have been

added to ensure the quality of the input PDB file required to define the beads, partic-

ularly in the case of the 3B mapping for nucleic acids. These controls are designed to

mitigate, where possible, the generation of incorrect results when the initial structure

contains errors. In addition, two new bead types have been defined: a 5’-phosphorylated

end with an additional hydroxyl moiety at the phosphorus atom for nucleic acids, and

the oxidised cysteine residue involved in a disulfide bridge.

To facilitate the use of hySAS, I have also written a practical manual, which can be found

in the next section, 3.1.4, and on the PLUMED tutorials web page.262 This manual not

only provides tutorials demonstrating the use of hySAS but also includes instructions for

installing and running the tool on high-performance computing (HPC) systems.

Finally, the characterisation of gelsolin continues. This protein undergoes significant do-

main rearrangements with increasing concentrations of calcium ions in solution, transi-

tioning from a closed to an open conformation. To characterise this transition, hySAS will

be used with SAXS data obtained at different calcium concentrations, complemented by

additional techniques:

1. Double Electron-Electron Resonance (DEER) Spectroscopy.96 This technique al-

lows the measurement of distances between paramagnetic tags, in particular ni-

troxide spin labels such as methanethiosulfonate (MTSL), up to 8 nm. By taking

measurements at increasing calcium concentrations and placing the labels at differ-

ent positions on the protein surface, it is possible to determine the relative distances

between domains as the calcium ion concentration in solution increases.

2. Multi-eGO.263,264 This hybrid multistate structure-based model combines classical

molecular dynamics with a structure-based approach. Specifically, electrostatic and

van der Waals interactions are replaced by structure-based contacts, eliminating the

need for electrostatics, explicit water, and hydrogen atoms. This method will enable

efficient sampling of the gelsolin open state.
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3.1.4 Manual

The following manual is available on the PLUMED tutorials website262 under the acces-

sion ID 24.001.

hySAS intro & overview

The combination of Small-Angle X-ray and Neutron Scattering (SAXS/SANS or SAS)

experiments with molecular dynamics (MD) simulations is an effective strategy for the

characterisation of biomolecules in solution. On the one hand, the limited resolution of

SAS can benefit from the MD contribution, and on the other hand, the inaccuracy of MD

can be mitigated by using the experimental data to drive the simulations and generate

conformational ensembles in agreement with the SAS data.

To achieve this result, an energy penalty is introduced to the system potential. This bias

depends on the difference between the SAS experimental data and the SAS profile calcu-

lated in real-time from the system coordinates retrieved from the ongoing simulation. In

this way, all the conformations that are not in agreement with the experimental data are

discouraged.

The predictor used to calculate the SAS intensity from the coordinates of the molecule is

called the “forward model”.

Although very promising, this approach is hampered by its high computational cost.

One way to overcome this limitation is to calculate the intensity of the system of interest

using a coarse-grained model, thus aggregating the scattering behaviour of groups of

atoms into single particles. This does not mean that the simulation is also performed

with a coarse-grained model, but that the SAS signal is calculated at a lower resolution:

the simulation retains all the atomistic details!

Previously, we presented a hybrid resolution method that combines atomistic MD simu-

lations with a Martini coarse-grained SAXS forward model.

We further enhance this technique by developing a novel hybrid-SAS method that is

faster, more accurate, extended to the SANS intensity calculation and that is compatible

with both proteins and nucleic acids. In the new hySAS forward model, an amino acid is

represented by a single bead, while a nucleic acid is represented by three beads: one for

the base, one for the sugar and one for the phosphate group. The centre of each particle

is placed at the centre of mass of the atoms belonging to the bead itself. Protein-nucleic
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acid complexes are also compatible with the method.

In addition, an implicit and user-definable solvation layer contribution is included in the

calculation to allow the reconstruction of a more realistic scattering behaviour in solu-

tion. This layer depends on solvent-solute interactions and, being typically more elec-

tron/neutron dense than the bulk solvent, actively contributes to the scattering signal.

To account for this phenomenon, just for the beads that are exposed to the solvent is ap-

plyied an electron density correction. For this reason, the solvent-accessible surface area

of a bead is calculated from the coordinates of the heavy atoms belonging to that bead

using the LCPO algorithm.

Some additional features are introduced specifically for SANS. It is possible to handle

the percentage of deuterium in solution and implicitly account for hydrogen-deuterium

exchange for the bead that are exposed to the solvent.

As well as generating a conformational ensemble or refining a structure, it is possible to

use the forward model to calculate the SAS profile from a PDB or a trajectory using the

PLUMED driver.

Installing PLUMED2 with ARRAYFIRE support

The purpose of this tutorial is to guide the user step-by-step through the process of com-

piling and installing PLUMED with ARRAYFIRE, an open-source library that supports a

wide range of hardware accelerators for parallel computing.

In this specific scenario, the library is used to take advantage of CUDA-based GPUs to

speed up the SAS calculation (ATOMISTIC / MARTINI / PARAMETERS / ONEBEAD

representations). Furthermore, in order to show a real-life limit case, this installation

example is performed on Leonardo, an HPC hosted by CINECA and managed by the

SLURM scheduler.

To keep the working environment clean and compatible with other setups, in this guide

the modules are not automatically loaded via .bashrc, .bash aliases, or other configura-

tion files, but are invoked during installation and then managed via the SLURM batch

script used to submit jobs to the HPC.

1. Loading essential modules

To install ArrayFire, certain dependencies are required. Often, these dependencies are

already available on HPC systems and can be loaded through modules. It is important
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to note that dependencies may also have their own dependencies, such as compilers or

essential libraries. In general, to view the available modules on a SLURM-based HPC,

you can use the command:

module avail

For a comprehensive list of requirements and additional installation suggestions, please

visit the official ARRAYFIRE GitHub page. Continuing with the Leonardo example, here

is the list of basic modules that can be loaded directly from the shell:

module load profile/lifesc

module load gmp/6.2.1

module load mpfr/4.1.0

module load mpc/1.2.1

module load gcc/11.3.0

module load zlib/1.2.13--gcc--11.3.0

module load openmpi/4.1.4--gcc--11.3.0-cuda-11.8

module load openblas/0.3.21--gcc--11.3.0

module load cblas/2015-06-06--gcc--11.3.0

module load gsl/2.7.1--gcc--11.3.0

module load cuda/11.8

Other required modules are available from Leonardo, but for general purposes and to

provide useful examples, the other dependencies will be installed manually in the next

steps. It is assumed that the downloads are stored in the home folder.

2. Building dependencies from source

Let’s start by creating a folder where all the codes will be installed:

mkdir $HOME/build
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FFTW

Download the “Fastest Fourier Transform in the West” package version 3.3.10:

wget https://www.fftw.org/fftw-3.3.10.tar.gz

Extract the archive:

tar -xzvf fftw-3.3.10.tar.gz

Copy the extracted folder to fftw-3.3.10 f and move into it:

cp -r fftw-3.3.10 fftw-3.3.10_f && cd fftw-3.3.10_f

The FFTW libraries must be built separately with single and double precision support.

The next command configures the installation with 32-bit floating point support:

./configure --prefix=$HOME/build/fftw/ --enable-float --enable-shared

CFLAGS="-march=native" --enable-avx2 --enable-sse2

Configuration details:

--prefix

Specifies the installation directory.

--enable-float

Enables single precision.
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--enable-shared

Enables the compilation of shared libraries.

--enable-avx2 --enable-sse2

Enable the use of AVX2 and SSE2 instructions respectively, which can improve the per-

formance of operations on CPUs that support these instructions.

CFLAGS="-march=native"

Sets compiler options to optimize the code for the specific architecture of the machine on

which it is being compiled.

Compile and install the source code:

make && make install

In case of slowdowns, specify the number of processors to use, in this case 8:

make -j 8

Move to the fftw-3.3.10 folder and configure new instructions with the 64-bit floating

point support:

cd ../fftw-3.3.10

./configure --prefix=$HOME/build/fftw/ --enable-shared

CFLAGS="-march=native" --enable-avx2 --enable-sse2
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Compile and install the source code:

make && make install

Set the LD LIBRARY PATH environment variable directly in the shell:

export LD_LIBRARY_PATH="$HOME/build/fftw/lib/:$LD_LIBRARY_PATH"

Boost

Return to the download folder. Download the “Boost C++” libraries version 1.85.0:

wget https://boostorg.jfrog.io/artifactory/main/release/1.85.0/

source/boost_1_85_0.tar.gz

Extract the archive:

tar -xzvf boost_1_85_0.tar.gz

Move into the boost folder:

cd boost_1_85_0

Initialise the Boost build system:

./bootstrap.sh

80



Install Boost libraries specifying the directory where Boost will be installed:

./b2 install --prefix=$HOME/build/boost

Add the Boost library path to the LD LIBRARY PATH and the include path to the PATH:

export PATH="$HOME/boost/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/build/boost/lib/:$LD_LIBRARY_PATH"

Spdlog

Return to the download folder. Clone and move into the spdlog repository:

git clone https://github.com/gabime/spdlog.git

cd spdlog

Checkout the specific version 1.9.2:

git checkout v1.9.2

Create build directory and navigate into it:

mkdir build && cd build

Run CMake to configure the build:

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/build/spdlog

-DSPDLOG_BUILD_SHARED=ON
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Compile and install the source code:

make && make install

Set the environment variables:

export PATH="$HOME/build/spdlog/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/build/spdlog/lib64/:$LD_LIBRARY_PATH"

Link to libcuda library

The next step can be tricky as it involves identifying a specific CUDA library on the

cluster and linking it to your home directory. As the installation takes place on the login

node, the CUDA drivers may not be directly available during code compilation. As an

alternative, the stub library libcuda.so must be found on the HPC system. If the location

is not clear, use the following command to find it:

find / -name libcuda.so 2>/dev/null

For Leonardo, the libcuda.so compatible with toolkit version 11.8 is located at:

/leonardo/prod/opt/compilers/cuda/11.8/none/lib64/stubs/libcuda.so

Create a folder in your home directory to link the library:

mkdir $HOME/libs && cd $HOME/libs
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Link the library:

ln -s /leonardo/prod/opt/compilers/cuda/11.8/none/lib64/stubs/

libcuda.so libcuda.so.1

Update the LD LIBRARY PATH environment variable:

export LD_LIBRARY_PATH="$HOME/libs/:$LD_LIBRARY_PATH"

3. Building and installing ArrayFire from source

Return to the download folder. Clone the ArrayFire repository:

git clone --recursive https://github.com/arrayfire/arrayfire.git

Move into the arrayfire directory and checkout the specific version (v3.9.0):

cd arrayfire

git checkout v3.9.0

Create a build directory and navigate into it:

mkdir build && cd build

Configure the build system with CMake:

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/build/arrayfire

-DAF_BUILD_OPENCL=OFF -DAF_BUILD_CPU=OFF -DAF_BUILD_CUDA=ON
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-DAF_BUILD_FORGE=OFF -DFFTW_INCLUDE_DIR=$HOME/build/fftw/include

-DFFTWF_LIBRARY=$HOME/build/fftw/lib/libfftw3f.so

-DFFTW_LIBRARY=$HOME/build/fftw/lib/libfftw3.so

-DBoost_DIR=$HOME/build/boost

-DBoost_INCLUDE_DIR=$HOME/build/boost/include

-DCUDA_TOOLKIT_ROOT_DIR=/leonardo/prod/opt/compilers/cuda/11.8/none

-DNVPRUNE=/leonardo/prod/opt/compilers/cuda/11.8/none/bin/nvprune

-Dspdlog_DIR=$HOME/build/spdlog/lib64/cmake/spdlog

Configuration details:

-DCMAKE_INSTALL_PREFIX=$HOME/build/arrayfire

Specifies the installation directory for ArrayFire.

-DAF_BUILD_OPENCL=OFF

Disables the OpenCL backend.

-DAF_BUILD_CPU=OFF

Disables the CPU backend.

-DAF_BUILD_CUDA=ON

Enables the CUDA backend.
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-DAF_BUILD_FORGE=OFF

Disables the Forge library build.

-DFFTW_INCLUDE_DIR=$HOME/build/fftw/include

Specifies the directory containing the FFTW include files.

-DFFTWF_LIBRARY=$HOME/build/fftw/lib/libfftw3f.so

Specifies the single-precision FFTW library.

-DFFTW_LIBRARY=$HOME/build/fftw/lib/libfftw3.so

Specifies the double-precision FFTW library.

-DBoost_DIR=$HOME/build/boost:

Specifies the directory containing Boost.

-DBoost_INCLUDE_DIR=$HOME/build/boost/include

Specifies the Boost include directory.

-DCUDA_TOOLKIT_ROOT_DIR=/leonardo/prod/opt/compilers/cuda/11.8/none

85



Specifies the CUDA toolkit root directory.

-DNVPRUNE=/leonardo/prod/opt/compilers/cuda/11.8/none/bin/nvprune

Specifies the path to the nvprune tool.

-Dspdlog_DIR=$HOME/build/spdlog/lib64/cmake/spdlog

Specifies the directory containing the spdlog CMake configuration files.

Build and install ArrayFire:

make && make install

Check that libafcuda.so is correctly built, all the required shared libraries must be re-

solved:

ldd $HOME/build/arrayfire/lib64/libafcuda.so

Update the LD LIBRARY PATH environment variable:

export LD_LIBRARY_PATH="$HOME/build/arrayfire/lib64/:$LD_LIBRARY_PATH"

4. Installing PLUMED2 with ArrayFire support

Clone the PLUMED repository:

git clone --recursive https://github.com/plumed/plumed2.git
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Navigate to the PLUMED directory:

cd plumed2

Configure the build system:

./configure --prefix=$HOME/build/plumed CC=mpicc CXX=mpicxx

--enable-modules=all --enable-asmjit --enable-fftw

LDFLAGS="-L$HOME/build/arrayfire/lib64/

-Wl,-rpath,$HOME/build/arrayfire/lib64/

-L$HOME/build/fftw/lib/ -Wl,-rpath,$HOME/build/fftw/lib/"

CPPFLAGS="-I$HOME/build/arrayfire/include

-I$HOME/build/fftw/include" --enable-af_cuda --verbose

Configuration details:

CC=mpicc CXX=mpicxx

Specifies the MPI compilers to use.

--enable-modules=all

Enables all PLUMED modules.

--enable-asmjit

Enables the AsmJit library.
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--enable-fftw

Enables FFTW support.

LDFLAGS

Specifies linker flags:

-L$HOME/build/arrayfire/lib64/

Adds the ArrayFire library directory to the linker search path.

-Wl,-rpath,$HOME/build/arrayfire/lib64/

Adds the ArrayFire library directory to the runtime library search path.

-L$HOME/build/fftw/lib/

Adds the FFTW library directory to the linker search path.

-Wl,-rpath,$HOME/build/fftw/lib/

Adds the FFTW library directory to the runtime library search path.

CPPFLAGS
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Specifies preprocessor flags:

-I$HOME/build/arrayfire/include

Adds the ArrayFire include directory to the compiler search path.

-I$HOME/build/fftw/include

Adds the FFTW include directory to the compiler search path.

--enable-af_cuda

Enables ArrayFire CUDA support.

--verbose

Enables verbose output during the configuration process.

Build and install PLUMED:

make && make install

5. Logout & login

To prevent compatibility issues caused by exporting the stub library, completely logout

of the HPC shell and perform a clean login. Avoiding this step could result in “CUDA

device native identification” errors.

6. Write & run the SLURM batch script

Create a SLURM batch file, e.g. RUN.sh, using a text editor:
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vim RUN.sh

Set the job configuration, the modules, the environment variables and run the PLUMED

driver command:

#!/bin/bash

#SBATCH -A _PROJECT_

#SBATCH -p _PARTITION_

#SBATCH --time HH:MM:SS

#SBATCH --job-name=PLUMED_AF

#SBATCH -N 1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=8

#SBATCH --gres=gpu:1

#SBATCH -o OUT.log

### MODULES ###

module load profile/lifesc

module load gmp/6.2.1

module load mpfr/4.1.0

module load mpc/1.2.1

module load gcc/11.3.0

module load zlib/1.2.13--gcc--11.3.0

module load openmpi/4.1.4--gcc--11.3.0-cuda-11.8

module load openblas/0.3.21--gcc--11.3.0

module load cblas/2015-06-06--gcc--11.3.0

module load gsl/2.7.1--gcc--11.3.0

module load cuda/11.8
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### DEPENDENCIES ###

export LD_LIBRARY_PATH="$HOME/build/fftw/lib/:$LD_LIBRARY_PATH"

export PATH="$HOME/build/boost/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/boost/lib/:$LD_LIBRARY_PATH"

export PATH="$HOME/build/spdlog/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/build/spdlog/lib64/:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HOME/build/arrayfire/lib64/:$LD_LIBRARY_PATH"

### PLUMED ###

export PATH="$HOME/build/plumed/bin:$PATH"

export LD_LIBRARY_PATH="$HOME/build/plumed/lib/:$LD_LIBRARY_PATH"

export PKG_CONFIG_PATH=

"$HOME/build/plumed/lib/pkgconfig/:$PKG_CONFIG_PATH"

export PLUMED_KERNEL="$HOME/build/plumed/lib/libplumedKernel.so"

export PLUMED_NUM_THREADS=$SLURM_CPUS_PER_TASK

### CMD ###

plumed driver --plumed plumed.dat --mf_xtc trj.xtc

In this example, the plumed command launches the driver to analyse the molecular dy-

namics trajectory trj.xtc according to the plumed.dat file. For the details regarding the

plumed.datinstructions, refer to the Tutorial 1 of this guide.

Run the SLURM script file:

sbatch RUN.sh

7. Running GROMACS with PLUMED support

In addition to analysing a PDB or MD trajectory with the driver, it is possible to generate

a conformational ensemble that agrees with SAS data using an MD engine. To enable this
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feature in GROMACS, it must be patched with the plumed-patch module and compiled

with MPI support. Here is an example of a SLURM script that, after loading dependen-

cies and environment variables, launches GROMACS with PLUMED support:

#!/bin/bash

#SBATCH -A _PROJECT_

#SBATCH -p _PARTITION_

#SBATCH --time HH:MM:SS

#SBATCH --job-name="hysas_metainference"

#SBATCH -o OUT.log

#SBATCH -N 1

#SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=8

#SBATCH --gres=gpu:4

#SBATCH -o OUT.log

### MODULES ###

module load profile/lifesc

module load gmp/6.2.1

module load mpfr/4.1.0

module load mpc/1.2.1

module load gcc/11.3.0

module load zlib/1.2.13--gcc--11.3.0

module load openmpi/4.1.4--gcc--11.3.0-cuda-11.8

module load openblas/0.3.21--gcc--11.3.0

module load cblas/2015-06-06--gcc--11.3.0

module load gsl/2.7.1--gcc--11.3.0

module load cuda/11.8

92



### DEPENDENCIES ###

export LD_LIBRARY_PATH="$HOME/build/fftw/lib/:$LD_LIBRARY_PATH"

export PATH="$HOME/build/boost/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/boost/lib/:$LD_LIBRARY_PATH"

export PATH="$HOME/build/spdlog/include/:$PATH"

export LD_LIBRARY_PATH="$HOME/build/spdlog/lib64/:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HOME/build/arrayfire/lib64/:$LD_LIBRARY_PATH"

### PLUMED ###

export PATH="$HOME/build/plumed/bin:$PATH"

export LD_LIBRARY_PATH="$HOME/build/plumed/lib/:$LD_LIBRARY_PATH"

export PKG_CONFIG_PATH=

"$HOME/build/plumed/lib/pkgconfig/:$PKG_CONFIG_PATH"

export PLUMED_KERNEL="$HOME/build/plumed/lib/libplumedKernel.so"

### GROMACS ###

source $HOME/build/gmx24_mpi/bin/GMXRC

### EXPORT ###

export OMP_PROC_BIND=true

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

### CMD ###

MPIRUN=$(which mpirun)

MDRUN=$(which gmx_mpi)

NP=‘expr $SLURM_JOB_NUM_NODES \* $SLURM_NTASKS_PER_NODE‘

$MPIRUN -np $NP --map-by socket $MDRUN mdrun -v -deffnm replica -pin on

-ntomp $SLURM_CPUS_PER_TASK -nsteps -1 -dlb yes -nb gpu -bonded gpu

-pme gpu -plumed ../plumed.dat -multidir 0 1 2 3 -cpi replica.cpt

-maxh 23.9
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In this example a single node is dedicated to perform a multidir simulation of 4 replicas,

one for each GPU.

8. Final notes

This guide was written and verified in June 2024, using the latest version of PLUMED

available at that time. The names, paths, and versions of the modules can vary between

HPC systems. Even for Leonardo, a software stack update might make this guide par-

tially incompatible. However, all provided examples should offer a broad logic to cus-

tomize and adapt the installation on local machines or other HPC systems.

Preparing the input files

The hySAS ONEBEAD mapping (1 bead for 1 amino acid, 3 beads for 1 nucleodide)

requires two PDBs, one for the MOLINFO and one for the TEMPLATE actions. This ap-

plies to both SAXS and SAS modules. The MOLINFO PDB may contain atoms, residues,

chains, that are not included for the SAS signal calculation, while the TEMPLATE PDB

must contain only the residues that are used for the ONEBEAD conversion. Some general

rules:

1. Consistency between MOLINFO and TEMPLATE PDBs

The numbering of atoms and residues must be consistent between the MOLINFO and

TEMPLATE PDBs. For example, if MOLINFO is provided with a PDB containing 100

residues, but the SAS calculation is performed on residues in the range 20-80, it is nec-

essary to provide TEMPLATE with a PDB containing only these residues, while main-

taining their numbering: if the 20th residue starts with atom number 319 and the 80th

residue ends with atom number 1325, the TEMPLATE PDB must start with ATOM 319

and residue number 20, and end with ATOM 1325 and residue number 80. Warning: If

a residue is included in the SAS calculation, all corresponding atoms must be present in

the PDB. Missing atoms from a residue will cause the bead mapping step to fail.

2. Consistency between MOLINFO and the molfile

When using the plumed driver, the supplied molfile (PDB, XTC, . . . ) to be analysed must

be consistent with the PDB provided in MOLINFO. Specifically, there must be the same

number of atoms in the same order.

3. MOLINFO PDB numbering

The MOLINFO PDB must start with ATOM number 1. The residue number can start with
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a positive number other than 1.

4. Providing the same file to MOLINFO and TEMPLATE

It is possible to provide MOLINFO and TEMPLATE with the same PDB, taking into ac-

count all three points above.

5. PDB format

The naming conventions for atoms and residues can vary depending on the force field

or software used. This variability, particularly in the case of nucleic acids, is a major

limitation in the hySAS mapping process. Detecting the residue type and analysing the

atoms belonging to a bead is essential to:

· calculate the Solvent-Accessible Surface Area, required to introduce the solvation

layer contribution or the hydrogen-deuterium exchange (SANS only);

· calculate the bead centre of mass, used to define the centre of the bead, a feature

which has a major influence on the final SAS profile calculation.

For these reasons, as a preliminary step, each bead type and atom composition is verified.

In order to perform this process, it is not feasible to consider all possible atom and residue

names.

· Amino acids

Several histidine residue names in different protonation states are accepted: HIS, HIE/HID/

HIP (AMBER), HSE/HSD/HSP (CHARMM).

Besides CYS, the cysteine involved in disulfide bridge is also allowed. In the latter case,

the residue name must be CYX.

· Nucleic acids

Only the AMBER OL3 nomenclature for RNA residue and atom names, and the AMBER

OL15 nomenclature for DNA residue and atom names, are accepted. The easiest way to

convert a PDB to these formats is to use the pdb4amber script which is part of the free

AmberTools suite.
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This is the command:

pdb4amber -i original_DNA.pdb -o DNA_amber.pdb -d -v --add-missing-atoms

Warning: The -d --add-missing-atoms flags combination adds the hydrogen atoms to

the PDB even if they already exist with a different nomenclature. This means that this

step could double the number of atoms in the PDB. A solution could be to remove the

original hydrogens from the PDB allowing the script to add them again with the correct

nomenclature. Note that the order of the atoms in the MOLINFO and TEMPLATE PDBs,

as well as in a previously generated trajectory to be analysed with the driver, must be

consistent.

Alternatively, the LEaP script, also part of the AmberTools suite, can convert the PDB.

Here is a quick step-by-step guide:

- RNA

create a leapRNA.in file:

vim leapRNA.in

copy the following instructions and save the file:

source leaprc.RNA.OL3

rna_molecule = loadpdb original_RNA.pdb

savepdb rna_molecule RNA_amber.pdb

quit
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Command details:

source leaprc.RNA.OL3

Load the parameter set for RNA molecules, specifically the OL3 force field parameters.

rna_molecule = loadpdb original_RNA.pdb

Load the RNA molecule from the specified PDB file (original RNA.pdb) into the LEaP

program and assign it to the variable rna molecule. Replace original RNA.pdb with the

PDB name you wish to convert.

savepdb rna molecule RNA amber.pdb

Save the RNA molecule that was loaded into the LEaP environment into a new PDB file

named RNA amber.pdb. This new PDB file will be formatted according to the conventions

used by the AMBER software suite. Replace RNA amber.pdb with your preferred PDB

name.

Run LEaP:

tleap -s -f leapRNA.in

- DNA

create a leapDNA.in file:

vim leapDNA.in
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copy the following instructions and save the file:

source leaprc.DNA.OL15

dna_molecule = loadpdb original_DNA.pdb

savepdb dna_molecule DNA_amber.pdb

quit

Run LEaP:

tleap -s -f leapDNA.in

6. Special beads

DNA and RNA

Three additional bead types are available for DNA and RNA besides phosphate group,

pentose sugar, and nucleobase:

- 5’-end pentose sugar capped with a hydroxyl moiety at C5’. To enable this, the residue

name in the PDB must be followed by “5”. For example, in the case of cytosine, the

corresponding residue must be edited to DC5 or to C5 in DNA and RNA, respectively.

- 3’-end pentose sugar capped with an hydroxyl moiety at C3’. To enable this, the residue

name in the PDB must be followed by “3”. For example, in the case of cytosine, the cor-

responding residue must be edited to DC3 or to C3 in DNA and RNA, respectively. - 5’-

phosphorylated end with an additional hydroxyl moiety at P. To enable this, the residue

name in the PDB must be followed by “T”. For example, in the case of cytosine, the cor-

responding residue must be edited to DCT or to CT in DNA and RNA, respectively. The

additional O atom can be named in the PDB as OP3 or O3P, while the additional H can

be named HOP3.
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Proteins

An additional bead type is available for proteins:

- Cysteine residue involved in disulfide bridge (the residue in the PDB must be named

CYX).

7. Atom names

For practical purposes, the table below lists all DNA/RNA atom names accepted for each

bead category. Note that an additional bead check is performed to ensure that the correct

atom is associated with the correct nucleotidee bead type. For example, if an O2’ atom

name is detected in a thymine bead, an error message is triggered.

Pentose Bead Atoms Nucleobase Bead Atoms PO Bead Atoms

O5’, C5’, O4’, C4’, O3’,

C3’, O2’, C2’, C1’, H5’,

H5”, H4’, H3’, H2’, H2”,

H2’2, H1’, HO5’, HO3’,

HO2’, H5’1, H5’2, HO’2,

H2’1, H5T, H3T.

N1, N2, N3, N4, N6, N7,

N9, C2, C4, C5, C6, C7, C8,

O2, O4, O6, H1, H2, H3,

H5, H6, H8, H21, H22,

H41, H42, H61, H62, H71,

H72, H73.

P, OP1, OP2, OP3, O1P,

O2P, O3P, HP, HOP3.

Tutorial 1 - Determining a scattering profile with hySAS

In the next example, we calculate the scattering profile of a structure consisting of atoms

1-11558 using the ONEBEAD approach. This structure could be made of protein(s), DNA,

RNA, or complexes. As a first step, let’s create and open the plumed.dat file, which will

contain all the instructions:

vim plumed.dat

The first requirement is to provide the PDB of the structure via MOLINFO, in this case

template AA.pdb. Detailed information about the input file can be found in the technical

support section.
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MOLINFO STRUCTURE=template_AA.pdb

The SAS instructions need the corresponding action option, which can be either SAXS or

SANS. In the following example, we proceed by opening the SAXS action:

MOLINFO STRUCTURE=template_AA.pdb

SAXS ...

The SAXS calculation options must be listed with the appropriate flags, in any order.

Here, we include atoms 1-11878 and specify the ONEBEAD mapping (1 bead for 1 amino

acid, 3 beads for 1 nucleotide). The same template AA.pdb is used for both MOLINFO

and TEMPLATE. The GPU flag allows the calculation of the scattering profile(s) on the

GPU; this feature requires PLUMED to be compiled with support for the ArrayFire li-

brary. See the corresponding technical support section in this manual for more informa-

tion. The electron density of the solvent is set to 0.334 electrons per cubic angstrom (bulk

water) with the SOLVDENS flag. In the example, the solvation layer contribution is ig-

nored by setting SOLVATION CORRECTION=0.00. For this reason, other flags such as

SASA CUTOFF and SOLVATION STRIDE are not required. Further examples are given

at the end of this page.

MOLINFO STRUCTURE=template_AA.pdb

SAXS ...

ATOMS=1-11878

ONEBEAD

LABEL=saxsdata

GPU

TEMPLATE=template_AA.pdb
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SOLVDENS=0.334

SOLVATION_CORRECTION=0.00

After the option flags, the user has to provide the list of q-values for which the corre-

sponding SAS intensity must be calculated. In this example, we provide 121 q-values,

from almost zero to 0.3 Å-1 (which corresponds to the maximum momentum transfer

available for the ONEBEAD mapping), every 0.0025 Å-1. The more the q-values, the

more intensive the calculation. After listing the q-values, the SAXS action must be closed

and the intensities printed. In the case of a trajectory, it is possible to select the printing

frequency. In the example, the intensities are printed at every simulation step, specifying

STRIDE=1. Additional {} brackets have been added to prevent a readability issue, they

are optional to run the code. Save and close the file.

MOLINFO STRUCTURE=template_AA.pdb

SAXS ...

ATOMS=1-11878

ONEBEAD

LABEL=saxsdata

#GPU #This flag requires Arrayfire

TEMPLATE=template_AA.pdb

SOLVDENS=0.334

SOLVATION_CORRECTION=0.00

QVALUE1=0.0000000001

QVALUE2=0.0025

QVALUE3=0.0050

QVALUE4=0.0075

QVALUE5=0.0100

QVALUE6=0.0125

QVALUE7=0.0150
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QVALUE8=0.0175

QVALUE9=0.0200

QVALUE10=0.0225

QVALUE11=0.0250

QVALUE12=0.0275

QVALUE13=0.0300

QVALUE14=0.0325

QVALUE15=0.0350

QVALUE16=0.0375

QVALUE17=0.0400

QVALUE18=0.0425

QVALUE19=0.0450

QVALUE20=0.0475

QVALUE21=0.0500

QVALUE22=0.0525

QVALUE23=0.0550

QVALUE24=0.0575

QVALUE25=0.0600

QVALUE26=0.0625

QVALUE27=0.0650

QVALUE28=0.0675

QVALUE29=0.0700

QVALUE30=0.0725

QVALUE31=0.0750

QVALUE32=0.0775

QVALUE33=0.0800

QVALUE34=0.0825

QVALUE35=0.0850

QVALUE36=0.0875

QVALUE37=0.0900

QVALUE38=0.0925
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QVALUE39=0.0950

QVALUE40=0.0975

QVALUE41=0.1000

QVALUE42=0.1025

QVALUE43=0.1050

QVALUE44=0.1075

QVALUE45=0.1100

QVALUE46=0.1125

QVALUE47=0.1150

QVALUE48=0.1175

QVALUE49=0.1200

QVALUE50=0.1225

QVALUE51=0.1250

QVALUE52=0.1275

QVALUE53=0.1300

QVALUE54=0.1325

QVALUE55=0.1350

QVALUE56=0.1375

QVALUE57=0.1400

QVALUE58=0.1425

QVALUE59=0.1450

QVALUE60=0.1475

QVALUE61=0.1500

QVALUE62=0.1525

QVALUE63=0.1550

QVALUE64=0.1575

QVALUE65=0.1600

QVALUE66=0.1625

QVALUE67=0.1650

QVALUE68=0.1675

QVALUE69=0.1700
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QVALUE70=0.1725

QVALUE71=0.1750

QVALUE72=0.1775

QVALUE73=0.1800

QVALUE74=0.1825

QVALUE75=0.1850

QVALUE76=0.1875

QVALUE77=0.1900

QVALUE78=0.1925

QVALUE79=0.1950

QVALUE80=0.1975

QVALUE81=0.2000

QVALUE82=0.2025

QVALUE83=0.2050

QVALUE84=0.2075

QVALUE85=0.2100

QVALUE86=0.2125

QVALUE87=0.2150

QVALUE88=0.2175

QVALUE89=0.2200

QVALUE90=0.2225

QVALUE91=0.2250

QVALUE92=0.2275

QVALUE93=0.2300

QVALUE94=0.2325

QVALUE95=0.2350

QVALUE96=0.2375

QVALUE97=0.2400

QVALUE98=0.2425

QVALUE99=0.2450

QVALUE100=0.2475

104



QVALUE101=0.2500

QVALUE102=0.2525

QVALUE103=0.2550

QVALUE104=0.2575

QVALUE105=0.2600

QVALUE106=0.2625

QVALUE107=0.2650

QVALUE108=0.2675

QVALUE109=0.2700

QVALUE110=0.2725

QVALUE111=0.2750

QVALUE112=0.2775

QVALUE113=0.2800

QVALUE114=0.2825

QVALUE115=0.2850

QVALUE116=0.2875

QVALUE117=0.2900

QVALUE118=0.2925

QVALUE119=0.2950

QVALUE120=0.2975

QVALUE121=0.3000

... SAXS

PRINT ARG={(saxsdata\.q-.*)} STRIDE=1 FILE=SAXSINT

As an additional example, we provide a SANS action with a different setup. The solvent

layer contribution is set to 80 electrons/nm3. Since we want to calculate the SANS inten-

sity, there will be an automatic conversion from electron density to water molecule den-

sity. Unlike the previous example, the solvation correction is now activated. We specified

the solvent exposed area threshold for a bead to 1 nm2 using the flag SASA CUTOFF.
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The bead exposure is evaluated by the LCPO algorithm, and since calculating it for each

step of the simulation could be computationally expensive, it is possible to set the fre-

quency for the solvent-accessible surface area estimation with the SOLVATION STRIDE

flag. By default, it is set to 10 steps. Finally, the fraction of deuterated solvent is specified

with DEUTER CONC. This information is also used to configure the implicit hydrogen-

deuterium exchange: with a probability equal to the deuterium concentration in the sol-

vent (60% in this case), an exposed bead is considered deuterated.

SANS ...

ATOMS=1-11878

ONEBEAD

LABEL=saxsdata

GPU

TEMPLATE=template_AA.pdb

SOLVDENS=0.334

DEUTER_CONC=0.6

SOLVATION_CORRECTION=0.80

SASA_CUTOFF=1.0

SOLVATION_STRIDE=10

QVALUE1=

QVALUE2=

... SANS

Before running the driver, it is possible to set the number of CPU cores to be used for the

analysis as an environment variable in the terminal where the PLUMED driver will be

launched. In the following example 8 cores are used:

export PLUMED_NUM_THREADS=8
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Finally, run the driver to analyse a:

PDB

plumed driver --plumed plumed.dat --mf_pdb template_AA.pdb

In this case the PDB is the same that is provided to MOLINFO, TEMPLATE and analysed.

Trajectory

plumed driver --plumed plumed.dat --mf_xtc trj.xtc
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Table 1. Description of flags and their default values used in the SAXS/SANS calculation.
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Tutorial 2 - Generating a conformational ensemble with GMX and hySAS

The main purpose of hySAS is to allow an MD engine, independently of the force field,

to generate a conformational ensemble that is in agreement with the experimental data.

To achieve this, a potential is added to the system to discourage conformations that do

not match the measured signal. Here, we propose two examples of coupling methods to

introduce this energy penalty during the MD simulation.

Most of the SAS options have been discussed in Tutorial 1, here we present two addi-

tional flags: EXPINT and SCALE EXPINT. For each QVALUE is required an EXPINT

value, which consists in the experimental intensity measured at that specific momentum

transfer. All the EXPINT values must be rescaled to the SAXS intensity at q = 0. To fa-

cilitate this operation, it is possible to automatically rescale all the experimental intensity

entries with SCALE EXPINT, which allows to provide the intensity at q = 0. In this way,

each EXPINT is divided by SCALE EXPINT.

In general, the more the q-values and the corresponding experimental intensities, the

more intensive the calculation.

1. Harmonic-linear restraint

In this example, the SAXS profile is calculated using the ONEBEAD mapping, specifying

a solvent electron density of 334 electrons/nm3 and a correction of 80 electrons/nm3 for

the beads exposed to the solvent. The solvent-accessible surface calculation, which is

required to assess the beads’ exposure to the solvent, is performed every 10 steps of the

simulation. The theoretical intensity at q = 0 is defined by SCALE EXPINT, while the

experimentally determined intensity for a given QVALUE is reported by EXPINT. All the

EXPINT values are rescaled by the SCALE EXPINT value.

The STATS action is then used to calculate statistical properties between the intensities

computed from the coordinates of the simulated system for each QVALUE and the cor-

responding experimental references defined with EXPINT. Specifically, the correlation

between the in silico intensities and the experimental intensities is considered as an argu-

ment for RESTRAINT, an action from the BIAS module. As additional information useful

to follow the evolution of the simulation, the radius of gyration of the system is printed

every 100 steps. Additional {} brackets have been added to prevent a readability issue,

they are optional to run the code. When curly brackets are used, ensure that the entire

list of arguments is enclosed within one set of curly brackets.
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Detailed information on STATS, RESTRAINT and GYRATION can be found in the PLUMED

manual.

MOLINFO STRUCTURE=template_AA.pdb

SAXS ...

ATOMS=1-11878

ONEBEAD

TEMPLATE=template_AA.pdb

#GPU #This flag requires Arrayfire

SOLVDENS=0.334

SOLVATION_CORRECTION=0.080

SOLVATION_STRIDE=10

SASA_CUTOFF=0.7

SCALE_EXPINT=0.281543E+00

QVALUE1=0.00444189 EXPINT1=0.279832E+00

QVALUE2=0.0133257 EXPINT2=0.266507E+00

QVALUE3=0.0222823 EXPINT3=0.241456E+00

QVALUE4=0.0312965 EXPINT4=0.207871E+00

QVALUE5=0.0402661 EXPINT5=0.170297E+00

QVALUE6=0.0534267 EXPINT6=0.116142E+00

QVALUE7=0.0786047 EXPINT7=0.427377E-01

QVALUE8=0.103746 EXPINT8=0.143592E-01

QVALUE9=0.128888 EXPINT9=0.775681E-02

QVALUE10=0.153991 EXPINT10=0.564444E-02

QVALUE11=0.179113 EXPINT11=0.395988E-02

QVALUE12=0.20428 EXPINT12=0.324523E-02

QVALUE13=0.229423 EXPINT13=0.321736E-02

... SAXS

#### INFO ####
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st_saxs: STATS ARG={(SAXS\.q-.*)} PARARG={(SAXS\.exp-.*)}

rg_saxs: GYRATION TYPE=RADIUS ATOMS=1-11878

#### RESTRAINTS ####

RESTRAINT ARG=st_saxs.corr AT=1 KAPPA=0 SLOPE=-10000

#### OUT ####

PRINT ARG=rg_saxs STRIDE=100 FILE=GYRATION

PRINT ARG={st_saxs.*,(SAXS\.q-.*),

(SAXS\.exp-.*)} STRIDE=100 FILE=STAT_SAXS

PRINT ARG={(SAXS\.q-.*)} STRIDE=100 FILE=SAXSINT

PRINT ARG=st_saxs.corr STRIDE=100 FILE=CORRELATION

Metainference

Changing the coupling method does not affect the main SAXS/SANS actions, which re-

main unchanged. In this example we use metainference, a Bayesian replica-averaging

framework that restrain the average predicted data, in this case the SAXS signal calcu-

lated from the system coordinates, to be close to the experimental observable, generating

an ensemble in accordance to the maximum entropy principle.

Unlike the previous example, we do not use the SCALE EXPINT flag because the EXPINT

values have already been rescaled. In both the examples the maximum momentum trans-

fer accepted for the ONEBEAD mapping is 0.3 Å-1.

MOLINFO STRUCTURE=template_AA.pdb

SAXS ...

LABEL=saxsdata

ATOMS=1-11878

ONEBEAD

TEMPLATE=template_AA.pdb
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#GPU #This flag requires Arrayfire

SOLVDENS=0.334

SOLVATION_CORRECTION=0.080

SOLVATION_STRIDE=10

SASA_CUTOFF=0.7

#QVALUE RANGE 0.01-0.25 (stride: 0.0150014)

QVALUE1=0.0101007 EXPINT1=0.9655268182607186

QVALUE2=0.0251021 EXPINT2=0.8074336052768617

QVALUE3=0.0401035 EXPINT3=0.5867844124283979

QVALUE4=0.0551049 EXPINT4=0.3778068043742405

QVALUE5=0.0701063 EXPINT5=0.2199053983683388

QVALUE6=0.0851077 EXPINT6=0.1176236764450616

QVALUE7=0.1001091 EXPINT7=0.0598961117861482

QVALUE8=0.1151105 EXPINT8=0.0320698663426488

QVALUE9=0.1301119 EXPINT9=0.0197961291442457

QVALUE10=0.1451133 EXPINT10=0.0131910258635653

QVALUE11=0.1601147 EXPINT11=0.0090075507724353

QVALUE12=0.1751161 EXPINT12=0.0070054764797778

QVALUE13=0.1901175 EXPINT13=0.0060413990626627

QVALUE14=0.2051189 EXPINT14=0.0049136955389689

QVALUE15=0.2201203 EXPINT15=0.0039878840479083

QVALUE16=0.2351217 EXPINT16=0.0037107186252386

QVALUE17=0.2501231 EXPINT17=0.0033106578718972

OPTSIGMAMEAN=SEM_MAX

SIGMA_MAX_STEPS=500000

AVERAGING=500

DOSCORE SIGMA_MEAN0=0.5

SCALEDATA SCALE0=1.0
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DSCALE=0.01 SCALE_PRIOR=GAUSSIAN

SIGMA0=0.5 SIGMA_MIN=0.0001 SIGMA_MAX=0.5

NOISETYPE=MGAUSS

... SAXS

#### METAINFERENCE ####

saxsbias: BIASVALUE ARG={(saxsdata\.score)} STRIDE=2

ens: ENSEMBLE ARG={(saxsdata\.q-.*)}

#### STATISTICS ####

statcg: STATS ARG={(ens.*)} PARARG={(saxsdata\.exp-.*)}

#### PRINT ####

PRINT ARG={(ens.*)} STRIDE=1000 FILE=ENS.SAXSINT

PRINT ARG={(saxsdata\.score),(saxsdata\.scale),

(saxsdata\.acceptSigma),

(saxsdata\.sigma.*)} STRIDE=1000 FILE=BAYES.SAXS

PRINT ARG={(saxsdata\.q-.*)} STRIDE=1000 FILE=SAXSINT

PRINT ARG=statcg.* STRIDE=1000 FILE=ST.SAXSCG
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3.2 Calcium-Driven In Silico Inactivation of a Human Olfactory

Receptor

The conformational changes and molecular determinants involved in the activation and

inactivation of olfactory receptors remain poorly understood, largely due to the inherent

challenges in determining the structure of this GPCR family.265 In this study, we perform

the first in silico inactivation of the human olfactory receptor OR51E2, revealing a poten-

tial role for calcium ion in receptor state transitions. Using molecular dynamics simu-

lations, we show that the presence of a divalent ion at the ion binding site, coordinated

by two conserved acidic residues, stabilises the receptor in its inactive state. Conversely,

protonation of these residues alone does not induce inactivation within the microsecond

timescale of our simulations. These results propose a novel molecular mechanism for

olfactory receptor inactivation, provide insights for experimental validation, and suggest

a broader role for divalent ions in GPCR signalling.

3.2.1 Personal Contribution

I was involved in various aspects of this work, including:

1. Preparation of Structural Models. Special attention was paid to the assignment

of protonation states, in particular for residues D69 and E110, belonging to the ion

binding site, under different conditions (no ions, Na+, Ca2+), using the Schrödinger

Maestro suite.266 The preparation also involved using the CHARMM-GUI online

platform267,268 to construct the 3:1 POPC:cholesterol membrane in which the recep-

tor is embedded.

2. Molecular Dynamics Simulation Setup. The simulations were configured using

GROMACS269 and performed on high-performance computing (HPC) systems, to-

taling 81 µs of simulation time. This included:

• 5 µs × 5 replicates for each of the three charged models (with no ions in the

ion binding pocket, with Na+ bound, and with Ca2+ bound);

• 1 µs × 6 replicates for the neutral model with no ions in the ion binding pocket.
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3. Molecular Dynamics Trajectory Analysis. I have developed custom Python3 scripts270

to analyse molecular dynamics trajectories, with a focus on hydrogen bond analy-

sis. These scripts allow the identification of unique interactions by comparing a

selected trajectory with the others, filtering for hydrogen bonds that meet a speci-

fied occupancy threshold.

4. Manuscript Writing. I have contributed to every part of the manuscript.
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ABSTRACT: Conformational changes as well as molecular
determinants related to the activation and inactivation of olfactory
receptors are still poorly understood due to the intrinsic difficulties
in the structural determination of this GPCR family. Here, we
perform, for the first time, the in silico inactivation of human
olfactory receptor OR51E2, highlighting the possible role of
calcium in this receptor state transition. Using molecular dynamics
simulations, we show that a divalent ion in the ion binding site,
coordinated by two acidic residues at positions 2.50 and 3.39
conserved across most ORs, stabilizes the receptor in its inactive
state. In contrast, protonation of the same two acidic residues is
not sufficient to drive inactivation within the microsecond
timescale of our simulations. Our findings suggest a novel
molecular mechanism for OR inactivation, potentially guiding experimental validation and offering insights into the possible
broader role of divalent ions in GPCR signaling.

Olfactory receptors (ORs) are a family of G protein-
coupled receptors (GPCRs) implicated in odor

perception.1 This group of class A GPCRs comprises
approximately 400 members, representing half of the GPCRs
encoded in the human genome.2 The function of ORs is not
limited to olfaction, as they have been identified in various
extranasal tissues and have been shown to play a role in a
plethora of physiological and pathological processes.3,4 This
important clinical perspective, combined with the fact that
non-olfactory GPCRs are the target of 34% of the total number
of FDA-approved drugs,5 makes the study of the OR family
one of the most promising fields for biochemistry and
pharmacology.
Despite their potential as drug targets,6 the study of ORs has

been hindered by the lack of structural data: the first
experimental structure was published in March 2023,7

consisting of human OR51E2 in its active state, bound to an
agonist (propionate) and a mini-G protein. In light of this
limitation, the modeling community has approached the OR
family with different techniques, from homology modeling8−11

to de novo structure prediction.12,13 Such computational
models have provided useful insights into the mechanism of
OR-ligand recognition at the atomistic level as well as
pinpointed crucial residues for OR function, in combination
with experimental mutagenesis data.
Recent cryoEM work by Choi et al.14 unveiled, for the first

time, both the active and inactive conformations of a chimeric
OR, OR52cs, which was constructed using a consensus
sequence strategy based on 26 members of the OR52 family.
The availability of experimental structural data for both

conformational states of the same OR receptor opens the
opportunity for cross-validation of in silico models. Further-
more, this enables a computational exploration of the
activation or inactivation process, aligning with the approach
taken in similar computational studies on other class A
GPCRs.15,16

In this study, we focus on the inactivation of human
OR51E2, leveraging the cryoEM structure of this receptor in
its active state.7 Our primary objective is to simulate the
inactivation of the receptor in silico over a microsecond
timescale, drawing upon the pioneering work of Dror et al. on
the β2-adrenergic receptor.15 Moreover, OR51E2, along with
90% of the OR family members, bears two acidic residues in
the ion binding site13 (2.50 and 3.39 using the Ballesteros−
Weinstein class A GPCR generic numbering17), indicating the
potential involvement of these charged residues in the ion
binding mechanism and conformational dynamics of ORs.
This hypothesis is supported by our previous observations of
sodium-bound OR51E2 in the inactive state.13 Accordingly, we
aim at elucidating the role of the ion binding site for OR
conformational plasticity, also building on previous work on
sodium binding to other non-olfactory class A GPCRs.18,19
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■ SIMULATIONS WITH NO IONS IN THE BINDING
SITE

Initially, the receptor structure was built from its exper-
imentally determined active conformation (PDB code: 8F767),
with the agonist and mini-G protein removed. We employed
the CHARMM-GUI web server20,21 for receptor setup and its
embedding into a 3:1 POPC/cholesterol bilayer (see Methods
section and Supporting Information for further details).
Following system preparation, we adopted a multistep
equilibration protocol, applying restraints to preserve the
initial fold while relaxing the system (refer to Methods), as
done in our previous work.13 This was followed by five
independent unrestrained MD simulations, each lasting 5 μs.
In all five apo OR51E2 replicas, a partial loss of the receptor

fold was consistently observed (see Figure 1a), which is in line

with the results obtained when starting from de novo structures
of OR51E2.13 The region most impacted by this partial
unfolding was the interface between transmembrane helices 6
and 7 (TM6 and TM7, respectively), which widens
significantly during the simulation (from 8 to 15 Å).
Additionally, the expansion of the TM6-TM7 interface

coincides with POPC molecules “diving” into the ion binding
pocket, as their positively charged choline groups orient
toward the charged residues D692.50 and E1103.39 (see Figure
1b). These events clearly indicate a significant charge
imbalance near the ion binding pocket, leading to lipid
snorkeling through the apolar membrane. Within this
structural rearrangement, we observed several phenomena
related to the system conformational dynamics: (i) Water
molecules freely traversed from the intracellular to the
extracellular side of the receptor. (ii) The toggle switch
Y2516.48 established multiple transient interactions with the
charged headgroups of POPC lipids (both choline and
phosphate moieties), E1103.39, and S1113.40. Lastly, (iii) the
negatively charged side chains of D692.50 and E1103.39, whose
charge is locally unbalanced, interacted with nearby polar and
neutral amino acid side chains, and also electrostatically
attracted the charged groups that entered the ion binding site
(see Table S2 in the Supporting Information). Remarkably, we
observed spontaneous binding of a Na+ ion in two out of the
five simulations (see Table S2 and Figure S1). The ion entered
from either the extracellular (replica 4) or intracellular (replica
1) side of the membrane; however, it is important to note that
due to the use of periodic boundary conditions (PBC), the
ionic concentration is nearly identical on both sides of the
membrane.
As an independent confirmation of our observation of an

electrostatic interaction between the ion binding pocket and
charged groups, we considered the final frame of 1 μs
simulation started from the apo structure of OR52cs (retrieved
at https://github.com/sek24/natcomm2023); such simulation
was performed under conditions similar to ours (except for the
use of KCl instead of NaCl). Also in the case of OR52cs, two
POPC molecules snorkel into the ion binding pocket.
However, in our simulations, the two lipid molecules wedge
themselves between TM6 and TM7, while in the simulations
of Choi et al. they do so between TM5 and TM6. In addition,
the final OR52cs frame shows a positively charged ion (K+)
located close to D692.50 and E1103.39, similar to the
spontaneous sodium binding event observed in two of our
replica simulations.

■ SIMULATIONS WITH SODIUM IN THE ION
BINDING SITE

After observing the spontaneous binding of Na+ in the ion
binding site, we carried out a new set of five replica
simulations. In these simulations, Na+ was manually positioned
in the ion binding pocket of the initial structure while retaining
the same procedure and parameters as in the previous section.
The simulation length was 5 μs per replica. This approach
aligns with the observations from our previous work on the de
novo structures of the same receptor in the inactive state,13

which maintained their fold only when sodium was present in
the ion binding pocket. However, here we began with the
cryoEM structure of OR51E2 in the active state7 and
conducted more and longer replicas.
Overall, the simulations involving Na+ showed slightly

enhanced receptor stability (see Figure 2), which is reflected

Figure 1. OR51E2 from simulations without ions in the binding
pocket. (a) Superposition of the cluster centroid obtained from the
five trajectories (blue) started from the cryoEM structure in its active
state (white), evidencing the widening of the TM6-TM7 interface.
(b) Detail of the ion binding pocket, highlighting the interaction
between the charged residues D692.50 and E1103.39 and the two POPC
headgroups entering the receptor bundle. Additionally, Y2516.48 is
oriented toward the ion binding pocket. Hydrogen atoms have been
omitted for clarity, and the distances refer to the frame shown.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Letter
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in less POPC snorkeling into the ion binding pocket (Figure
S4), reduced water permeability (Table S2), and lower RMSD
values (Figure S3) of the Cα atoms of the transmembrane
domains with respect to the cryoEM structure. Differently
from the simulations with no ions, two trajectories (replicas 1
and 3) did not reveal any POPC snorkeling. In the other three
trajectories, we observed the POPC headgroup moving toward
the ion binding site, passing either through the interface
between TM5 and TM6 and interacting mainly with E1103.39
(replica 5 and the last 50 ns of replica 2) or between TM6 and
TM7, engaging residues D692.50 and E1103.39 (replicas 4 and
5). Interestingly, Na+ unbinding was detected in replica 5 in
the last microsecond, where the ion moved to the intracellular
space. Shortly after this event, a second POPC entered the ion
binding site. Finally, a new Na+ ion spontaneously translocated
from the extracellular space to the ion binding site within 1 μs
from the initial dissociation event (Figure S3 and Table S2).

This phenomenon supports, once again, the need for a charged
group at this location, counteracting the negative charge of the
two acidic residues at positions 2.50 and 3.39.
In terms of water permeability, we observed reduced water

passing through the protein compared with the simulations
with no ions (Table S2). This trend was evident in the first
three replicas, particularly in the second trajectory. Consider-
ing that the formation of a hydrated pathway spanning the
receptor is connected to the reorganization of the H-bonds
around the ion binding site,19 we focused on replica 2 to
identify changes in nonbonded interactions at the atomistic
level. Namely, we performed a comparative H-bond analysis
across all 10 replicas described thus far (five with Na+ and five
without) to identify H-bonds that, in terms of occupancy,
exhibited the most significant differences between the second
replica and the others. The interaction between D692.50 and
Y2917.53 was particularly notable. The total occupancy of this
H-bond (i.e., considering both oxygen atoms of the side chain
of D692.50) in the second replica of the Na+-bound system
persisted for 76% of the trajectory. In contrast, replicas 1, 3, 4,
and 5 showed occupancies of 19%, 52%, 3%, and 4%,
respectively. Extending this analysis to the replicas without
the ion in the binding site, this occupancy reached a maximum
of 6% (replica 4), while in all the others it was around 1%.
Y2917.53 has been reported as a conserved residue in class A
GPCRs, implicated in the diffusion of Na+ ions,18,19 in the
formation of a water pathway inside the receptor, and in the
receptor activation mechanism.22 Another interesting H-bond
pattern was observed between S1113.40 and Y2516.48, which is
significantly more frequent in the presence of sodium. This
increased persistence is particularly evident in three out of five
trajectories with sodium (occupancies of 41%, 78%, 92%, 78%,
and 4% in replicas 1−5, respectively). In contrast, only one
replica from the trajectories lacking ions exhibits a stable H-
bond between these two residues (occupancy of 90% in replica
1, 0% in all the others).
To assess the stability of the receptor fold, we performed an

RMSD calculation using the cryoEM structure of OR51E2 in
its active state7 as the reference. Overall, the simulations with
Na+ bound maintained the fold better (i.e., lower RMSD
values, see Figure S3) than the simulations without ions
(Figure S1), with some minor variability among them.
Interestingly, peaks in the RMSD time evolution are linked
to lipid snorkeling and increased water permeability in the
receptor (Figure S4).

■ SIMULATIONS WITH CALCIUM IN THE ION
BINDING SITE

From the previous simulations, we can conclude that the
charge imbalance in the ion binding site is still present, even if
attenuated, when Na+ is bound. Hence, we decided to perform
another round of five independent simulations, positioning a
Ca2+ ion in the binding site while maintaining all of the
simulation parameters previously used (see Methods and
Supporting Information). From a technical point of view, to
minimize the limitations of the point charge representation of
divalent ions, we manually placed calcium in the ion binding
site, rather than trying to simulate its diffusion from the bulk
solvent. Based on sequence analyses, class A GPCRs
containing two acidic residues in the ion binding pocket
have been hypothesized to bind Ca2+;23 however, to the best of
our knowledge, this possibility has not yet been investigated in
the context of ORs.

Figure 2. OR51E2 from simulations with Na+ ion in the binding
pocket. (a) Superposition of the cluster centroid obtained from the
five trajectories (blue) on the cryoEM structure in its active state
(white). (b) Detail of the ion binding pocket, highlighting the
interactions between Na+ and D692.50 and E1103.39, as well as between
POPC and the same two acidic residues. Hydrogen atoms have been
omitted for clarity, and the distances refer to the frame shown.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Letter
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The simulations with Ca2+ bound further support the
stabilization of the receptor fold in the presence of an ion in
the binding site, as observed in some of the Na+-bound
simulations. In addition to the lower RMSD values (Figure
S5), comparison of the RMSF of the three simulation data sets
(Figure S7) further confirms increased stability and reduced
flexibility of the receptor with calcium bound, particularly in
the TM5−TM6−TM7 region. Analysis of the H-bonds across
the five Ca2+-bound replicas did not reveal any exclusive
interactions that are absent in the trajectories with sodium.
Furthermore, in contrast to the simulations with Na+, Y2917.53
is able to form a hydrogen bond with D692.50 in replicas 2 and
4, but only for about 25% of the trajectory. In replicas 1 and 5,
Y2917.53 establishes stable hydrophobic interactions with
V441.53, L622.43, and I2988.50. Generally, in the simulations
with Ca2+, we observed that the side chain of Y2917.53
preferentially orients toward TM1 and TM2. Moreover, the
improved electrostatic complementarity between the +2 charge
of calcium and the −2 charge of the ion binding site appears to
preclude lipid snorkeling, as we did not observe any POPC
head groups reaching the ion binding site over the total
accumulated 25 μs time. In particular, we noticed tight
coordination of the acidic residues D692.50 and E1103.39 with
the Ca2+ ion (Figure 3c). In this context, visual inspection
during the simulation reveals a reduced (almost negligible)
amount of water passing between the two sides of the
membrane through the receptor (Table S2).
The main global dynamic effect observed during the Ca2+-

bound simulations is characterized by the rotational movement
of TM5−TM6 around TM3 acting as a pivot (Figure 3b).
Such conformational change happens early for all of the

replicas, during the first 0.3−0.7 μs, and appears in agreement
with the transition observed for the only experimentally
determined active−inactive pair of an OR to date (Figure 3a).
Specifically, we performed the calculation of RMSD for all 75
μs of the simulations, taking as reference the Cα atoms of TM3,
TM5, and TM6 of the OR52cs structure, as labeled with the
structure alignment tool in the GPCRdb.24 We can observe
that the RMSD distributions (Figure 3d) are closer to the
OR52cs inactive state in the presence of higher-charge ions in
the binding site (no ion > Na+ > Ca2+). Thus, we can consider
the simulations presented in this work as the first observation
of calcium-driven in silico inactivation of a human OR.
Moreover, the TM5−TM6 rotation observed during our
simulations for OR51E2, and by comparison of static
structures of OR52cs, could be considered as the hallmark of
inactivation for the OR family.

■ SIMULATIONS WITH PROTONATED ACIDIC
RESIDUES AT POSITIONS 2.50 AND 3.39

To discriminate if receptor inactivation was due simply to
neutralization of the doubly charged ion binding pocket by
Ca2+, we repeated our calculations with a different, neutral
protonation state of the two acidic residues D692.50 and
E1103.39. Operatively, we equilibrated the system with this new
protonation state and ran six 1 μs-long independent replicas
(that is, longer than the observed timescale for inactivation in
the charged system). From the analysis of the trajectories of
the neutral system, we can observe three main effects. (i) The
receptor undergoes a partial active-to-intermediate transition,
with a rotation of the TM5-TM6 block, but with a smaller
angle with respect to the Ca2+-bound charged system (see

Figure 3. Results of the in silico Ca2+-bound OR51E2 simulations compared to the available experimental structures. (a) Superposition of the active
(orange) and apo (green) structures of OR52cs solved by Choi et al.14 (b) Comparison of the OR51E2 experimental active structure7 (white) and
the cluster centroid obtained from the five trajectories with Ca2+ in the ion binding site (blue). (c) Detail of the ion binding pocket, highlighting the
interactions between Ca2+ and the two acidic residues, D692.50 and E1103.39. Hydrogen atoms have been omitted for clarity, and the distances refer
to the frame shown. (d) Histogram of the RMSD of the simulations performed in these conditions: without ions (light blue), with Na+ (purple),
and with Ca2+ (green) in the ion binding site) with respect to TM3−TM5−TM6 Cα of the apo form of OR52cs.
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Figure 4 and Figure S8). (ii) No positively charged ions enter
the ion binding site, and (iii) we do not observe any lipid
snorkeling by the POPC molecules of the membrane. These
last two observations were not unexpected, given the absence
of charge imbalance in the ion binding pocket upon
protonation of the acidic residues. The absence of ion binding
is in line with a previous work on non-olfactory class A
GPCRs, where the protonation of the sole acidic residue in the
ion pocket facilitates the unbinding of Na+.19 Taken together,
these data indicate that it is not only charge neutralization of

the two acidic residues in the ion binding site that drives the
transition to the inactive state, but also the presence of a
divalent ion. This observation is within the limitations of the μs
timescale of our simulations and the force field representation
of divalent ions and fixed protonation states.

■ DISCUSSION
The conservation of two acidic residues in the ion binding site
of ∼98% of human ORs,13 at positions 2.50 and 3.39 (Figure
5a), raises the question of whether not only monovalent, but
also divalent ions, can occupy this site and modulate receptor
function. The simulations carried out in this work show that
indeed calcium is more efficient than sodium at stabilizing the
inactive state of a prototypical OR, OR51E2. Neutralization of
the ion binding site by protonation of the two acidic residues is
not sufficient to drive receptor inactivation, further supporting
the strict requirement for a divalent ion bound in this pocket to
stabilize the inactive receptor state.

The possibility of divalent ions binding to class A GPCRs
containing two acidic residues in the ion binding site was
already highlighted in the review by Katritch et al. as an
“outstanding question”.23 Besides the conserved D2.50, previous
sequence analyses23,25 have shown that a subset of non-
olfactory class A GPCRs bear a second acidic residue in the ion
binding site. Here, we extended such analyses and estimated
the number to be ∼21%. The second acidic residue is typically
located at position 7.49 (∼18%), but we also observed a non-
negligible number of receptors where it is located at positions
6.44 (∼2%) and 3.39 (∼1%; see Figure 5b and Table S3).
However, as of January 2024, only the experimental structures
of melanocortin receptors26−32 have shown Ca2+ bound to two
aspartates at positions 2.50 and 7.49, acting as a cofactor for

Figure 4. Results of the simulations with protonated residues at
positions 2.50 and 3.39. Superposition of the cryoEM structure in its
active state (white), the cluster centroid obtained from the five
trajectories with Ca2+ bound (blue), and the cluster centroid obtained
from the six trajectories with neutral D2.50 and E3.39 (red). The
progression of TM5−TM6 rotation in the three structures is indicated
with dashed arrows.

Figure 5. Sequence logos depicting conservation of residues lining the
ion binding site in class A GPCRs. (a) Human olfactory receptors,
based on the multiple sequence alignment of 412 sequences in Fierro
et al.36 (b) Human non-olfactory class A GPCRs, using the 286
sequences available in the GPCRdb sequence alignment tool37 as of
January 2024. Sequence logos were generated with WebLogo version
3.7.12,38 and amino acids are colored according to their chemical
properties.
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agonist binding. Instead, experimental structures of proteinase-
activated receptors33,34 and cysteinyl leukotriene receptors,35

also bearing two aspartates at positions 2.50 and 7.49, have
been solved with Na+ and an antagonist bound.
We thus believe that the investigation of calcium ions effect

is an extremely promising venue in the context of GPCRs,39 in
particular for ORs, which also needs an experimental
counterpart. Despite the great advancements in the exper-
imental determination of GPCR structures, the state of the art
in cryoEM is still unable to discriminate between water and
ions.40 A possible help may come from the use of buffers with
higher calcium concentrations, focusing our attention on
possible ion−protein interactions. Moreover, while most non-
olfactory class A GPCRs with a second acidic residue (see
Table S3) bear an aspartate at either position 7.49 (∼86%) or
6.44 (∼8%), the majority of ORs (∼90%) have a longer side
chain acidic residue (glutamate) and at a different position
(3.39).13 This is expected to shift the ion location within the
binding site, thus resulting in different effects of ion binding on
the receptor function. Interestingly, two chemokine receptors
(CCR1 and CCR3) and one peptide receptor (QRFP) also
display glutamate at position 3.39, suggesting the possibility
that calcium might also stabilize the inactive state of these
receptors, similarly to what we proposed here for the ORs.
In summary, in this work we suggest a molecular mechanism

for ORs inactivation, which relies on the presence of calcium in
the ion binding site. In this regard, calcium-mediated OR
inactivation could constitute a negative feedback mechanism to
stop the olfactory signal triggered by odorant binding and
subsequent calcium entry through cyclic nucleotide gated
channels. The work shown here suffers from the technical
limitations of classical modeling approaches in the presence of
divalent ions and fixed protonation states. We envisage the
possibility to use more advanced techniques such as QM/MM,
which proved their efficacy in explaining classical model
shortcomings in polarization effects in GPCRs,41 exploiting the
next generation exascale HPC machines. We hope that these
computationally driven hypotheses could be validated by
means of experimental techniques, highlighting the predictive
power of molecular modeling and simulations to suggest
biologically relevant structure−function relationships. Such
experimental testing could include in vitro assays with varying
concentrations of calcium in the extracellular medium or
structural determination efforts with higher calcium (or
divalent metal analogs) concentrations in the buffers used for
X-ray, cryoEM, or native mass spectrometry.42

■ METHODS
System Preparation. The initial configuration of OR51E2

in its active state was obtained from the Protein Data Bank
(PDB code: 8F767). This structure was preprocessed using the
Protein Preparation Wizard implemented in Schrödinger
Maestro 2023−3,43 which automatically assigns the amino
acid protonation states. In particular, both D692.50 and E1103.39
were predicted to be negatively charged at pH 7.4 and in the
presence of a positively charged ion (either Na+ or Ca2+) in the
ion binding site. Instead, in the absence of ions, both D692.50
and E1103.39 were predicted to be protonated. We refer to
these two alternative protonation states as “charged” and
“neutral” forms of the receptor, respectively. The complete
system was then assembled using the CHARMM-GUI20,21

Web server. First, a disulfide bond was established between
C963.25 and C17845.50; then, a cubic box of dimensions 100 ×

100 × 120 Å3 was defined with the receptor embedded in a
mixed lipid bilayer composed of POPC and cholesterol (3:1
ratio). The receptor-membrane system was then solvated in
water with a NaCl concentration of 0.15 M. In the case of the
calcium-bound simulations, we added a single Ca2+ ion and
neutralized its charge by adding two additional Cl− ions in the
solution. The protein, lipids, and ions were parametrized using
the CHARMM36m force field,44 while water was described
using the TIP3P45 model.
Molecular Dynamics Simulations. In this work, the

equilibration phase of the simulations was conducted following
a protocol presented in our previous work;13 further details are
provided in the Supporting Information. For the subsequent
production phase, we performed unrestrained molecular
dynamics (MD), with a 2 fs time step. Simulations were 5
μs-long for the three charged systems and 1 μs-long for the
neutral apo form. To maintain constant temperature and
pressure conditions at 310 K and 1 bar, respectively, we
employed the velocity rescaling thermostat46 alongside the
semi-isotropic cell rescaling barostat.47 A total of 21
independent runs were executed, comprising (i) five replicates
for each of the three charged models, i.e., without any ions in
the ion binding pocket, with Na+ bound, and with Ca2+ bound
and (ii) six replicates of the neutral model without ions in the
ion binding pocket. Each of these runs was initiated with
distinct initial velocities. The simulations were all carried out
using GROMACS,48 version 2021.2.

■ ASSOCIATED CONTENT

Data Availability Statement
Data needed to reproduce the results shown in this paper
(structures, topology, GROMACS input files, etc.) and the
resulting trajectories are available at Zenodo (https://zenodo.
org/doi/10.5281/zenodo.10589509). All the trajectories com-
puted here for OR51E2 with charged D2.50 and E3.39 have been
also uploaded on the GPCRmd,49 with the accession codes
1976 (no ions), 1977 (Na+-bound), and 1978 (Ca2+-bound).
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00249.

Extended details of the MD simulations and tables with
the Ballesteros−Weinstein numbering of OR51E2, with
the main events observed in every MD replica of the
charged systems and with the list of non-olfactory class
A GPCRs with two acidic residues in the ion binding
site, as well as figures showing the RMSD of all the
replicas of the charged systems with respect to the
experimental structure of OR51E2 in the active state, the
minimum distance analysis between POPC lipid
molecules and the ion binding site, the RMSF for all
the simulations performed for the three charged systems,
and RMSD histograms with respect to OR52cs for all
systems, either charged or neutral (PDF).
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Preparation of the Structural Models

In the initial phase, the cryoEM structure of OR51E2 in its active state (PDB code: 8F761)

was prepared using the Protein Preparation Wizard in Schrödinger Maestro version 2023-3.2

This process involved automated assignment of protonation states for amino acids based on

their microenvironment. D692.50 and E1103.39 were automatically identified as negatively

charged in the presence of a Na+ or Ca2+ ion. In absence of any ions, both D692.50 and

E1103.39 were instead predicted to be protonated. This dependency of the protonation state

of the ion binding site on the presence of ions has also been reported for non-olfactory

class A receptors with a single acidic residue at position 2.50.3 The thus-prepared mod-
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els (neutral apo receptor and charged receptor in either apo, Na+-bound and Ca2+-bound

forms) were then subjected to further refinement using CHARMM-GUI online platform4,5

(https://charmm-gui.org/). This included establishing a disulfide bond between C963.25 and

C17845.50 and setting up a cubic simulation box of dimensions (100 Å)× (100 Å)× (120 Å).

Within this box, the receptor was located at the center, embedded in a membrane comprising

a 3:1 POPC:cholesterol mix. The system, including the lipid bilayer and receptor, was im-

mersed in water with 150 mM NaCl, reflecting standard experimental conditions for GPCRs.

In the replicas with the calcium ion bound, we also added two chloride ions to neutralize the

extra 2+ charge. The CHARMM36m force field6 was used to parameterize proteins, lipids,

and ions, while water molecules were modeled using the TIP3P7 model. When necessary,

we manually positioned the sodium or calcium ion in the ion binding pocket of the olfactory

receptor.

Molecular Dynamics Simulation Protocol

The molecular dynamics simulation protocol adopted was the same as the one presented in

our previous work on inactive models of olfactory receptors.8 In practice, it is an adaptation

and extension of the standard procedure recommended by CHARMM-GUI for transmem-

brane proteins. It includes nine distinct steps (according to the CHARMM-GUI numbering

system, from 0 to 6, plus two additional phases, 7 and 8):

• step 0: 5,000 steps of steepest descent minimization, constraining the protein backbone

(k = 4, 000 kJ/mol/nm2) and side chains (k = 2, 000 kJ/mol/nm2), lipid phosphate

groups (k = 1, 000 kJ/mol/nm2), and dihedrals (k = 1, 000 kJ/mol/rad2).

• Step 1: 125 ps of MD with a time step of 1 fs, restraining the protein backbone

(k = 4, 000 kJ/mol/nm2) and side chains (k = 2, 000 kJ/mol/nm2), phosphate groups

for POPC and hydroxyl group for cholesterol (k = 1, 000 kJ/mol/nm2), and dihedrals

(k = 1, 000 kJ/mol/rad2).
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• Step 2: 125 ps of MD with a time step of 1 fs, restraining the protein backbone

(k = 2, 000 kJ/mol/nm2) and side chains (k = 1, 000 kJ/mol/nm2), phosphate groups

for POPC and hydroxyl group for cholesterol (k = 400 kJ/mol/nm2), and dihedrals

(k = 400 kJ/mol/rad2).

• Step 3: 125 ps of MD with a time step of 1 fs, restraining the protein backbone

(k = 1, 000 kJ/mol/nm2) and side chains (k = 500 kJ/mol/nm2), phosphate groups

for POPC and hydroxyl group for cholesterol (k = 400 kJ/mol/nm2) and dihedrals

(k = 200 kJ/mol/rad2).

• Step 4: 500 ps MD with a time step of 2 fs, restraining the protein backbone (k = 500

kJ/mol/nm2) and side chains (k = 200 kJ/mol/nm2), phosphate groups for POPC

and hydroxyl group for cholesterol (k = 200 kJ/mol/nm2) and dihedrals (k = 200

kJ/mol/rad2).

• Step 5: 500 ps of MD with a time step of 2 fs, restraining the protein backbone

(k = 200 kJ/mol/nm2) and side chains (k = 50 kJ/mol/nm2), phosphate groups

for POPC and hydroxyl group for cholesterol (k = 40 kJ/mol/nm2), and dihedrals

(k = 100 kJ/mol/rad2).

• Step 6: 100 ns MD with a time step of 2 fs, restraining the protein backbone (k = 50

kJ/mol/nm2); this step is 10 times longer than the standard CHARMM-GUI protocol.

• Step 7: 100 ns of MD with a time step of 2 fs, restraining the protein backbone (k = 5

kJ/mol/nm2); this is a completely new step that increases the length of the restrained

equilibration.

The final production phase (step 8) consisted of MD without any restraint, 5 µs long for the

charged systems and 1 µs for the neutral apo receptor. All simulations were performed with

a 2 fs time step. The cutoff for van der Waals and short-range interactions was set to 10 Å

, and long-range electrostatic interactions were calculated using the Ewald smooth particle
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mesh method.9 Temperature control was achieved using the velocity rescale thermostat10 at

310 K, and pressure was maintained at 1 bar using the semi-isotropic cell rescale barostat.11

All simulations were performed with GROMACS12 version 2021.2.

In total, we ran fifteen different production simulations: five replicas starting with no ions

in the binding pocket, five starting with sodium in the ion binding pocket, and five starting

with calcium in the binding pocket. Each simulation with charged D692.50 and E1103.39 was

5 µs-long, while the replicas with protonated acidic residues were 1 µs-long.

Hydrogen Bonds Analysis

The 15 trajectories were analyzed using the ’Hydrogen Bonds’ plugin from the Visual Molec-

ular Dynamics13 (VMD) suite, version 1.9.3. The analysis was configured to identify hydro-

gen bonds involving only polar atoms of the receptor, considering a donor-acceptor distance

within 3.5 Å, and a tolerance of 30° deviation from the linear donor-hydrogen-acceptor an-

gle. For comparison among replicas, a custom Python314 script was developed aimed at

identifying hydrogen bonds in a selected trajectory that were not present in all the other

trajectories, given a specified threshold for the hydrogen bond occupancy percentage.

Cluster Analysis

Cluster analyses were performed on the concatenated trajectories of the five replicas for each

simulation condition (no ions, Na+, and Ca2+, respectively).

The clustering was performed using the gromos method15 implemented in the GROMACS

cluster tool, setting an RMSD cutoff of 4 Å. The RMSD was calculated on the Cα atoms of

the transmembrane helices (TM1 to TM7), as defined in Table S1.
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RMSD and RMSF analyses

All the RMSD and RMSF analyses shown here are performed on the Cα of the transmem-

brane helices of the OR51E2 (see Table S1). For the RMSD, we consider the cryoEM

structure of the receptor in its active state1 as the reference conformation. The RMSF

calculations (Figure S8) have been performed on the concatenated trajectories for each the

three simulation conditions, encompassing 25 µs of dynamics each.
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Table S1: Ballesteros-Weinstein generic numbering for human OR51E2, as listed in the
GPCRdb16 (https://gpcrdb.org/residue/residuetabledisplay, accessed on December 2023).

TM1 TM2 TM3 TM4 TM5 TM6 TM7
1x32 H23 2x37 A56 3x21 S92 4x38 N136 5x32 T191 6x26 S229 7x29 H268
1x33 F24 2x38 P57 3x22 F93 4x39 N137 5x33 L192 6x27 K230 7x30 P269
1x34 W25 2x39 M58 3x23 E94 4x40 T138 5x34 P193 6x28 S231 7x31 I270
1x35 V26 2x40 Y59 3x24 A95 4x41 V139 5x35 N194 6x29 E232 7x32 V271
1x36 G27 2x41 L60 3x25 C96 4x42 T140 5x36 V195 6x30 R233 7x33 R272
1x37 F28 2x42 F61 3x26 L97 4x43 A141 5x37 V196 6x31 A234 7x34 V273
1x38 P29 2x43 L62 3x27 T98 4x44 Q142 5x38 Y197 6x32 K235 7x35 V274
1x39 L30 2x44 C63 3x28 Q99 4x45 I143 5x39 G198 6x33 A236 7x36 M275
1x40 L31 2x45 M64 3x29 M100 4x46 G144 5x40 L199 6x34 F237 7x37 G276
1x41 S32 2x46 L65 3x30 F101 4x47 I145 5x41 T200 6x35 G238 7x38 D277
1x42 M33 2x47 A66 3x31 F102 4x48 V146 5x42 A201 6x36 T239 7x39 I278
1x43 Y34 2x48 A67 3x32 I103 4x49 A147 5x43 I202 6x37 C240 7x40 Y279
1x44 V35 2x49 I68 3x33 H104 4x50 V148 5x44 L203 6x38 V241 7x41 L280
1x45 V36 2x50 D69 3x34 A105 4x51 V149 5x45 L204 6x39 S242 7x42 L281
1x46 A37 2x51 L70 3x35 L106 4x52 R150 5x46 V205 6x40 H243 7x43 L282
1x47 M38 2x52 A71 3x36 S107 4x53 G151 5x47 M206 6x41 I244 7x45 P283
1x48 F39 2x53 L72 3x37 A108 4x54 S152 5x48 G207 6x42 G245 7x46 P284
1x49 G40 2x54 S73 3x38 I109 4x55 L153 5x49 V208 6x43 V246 7x47 V285
1x50 N41 2x55 T74 3x39 E110 4x56 F154 5x50 D209 6x44 V247 7x48 I286
1x51 C42 2x551 S75 3x40 S111 4x57 F155 5x51 V210 6x45 L248 7x49 N287
1x52 I43 2x56 T76 3x41 T112 4x58 F156 5x52 M211 6x46 A249 7x50 P288
1x53 V44 2x57 M77 3x42 I113 4x59 P157 5x53 F212 6x47 F250 7x51 I289
1x54 V45 2x58 P78 3x43 L114 4x60 L158 5x54 I213 6x48 Y251 7x52 I290
1x55 F46 2x59 K79 3x44 L115 4x61 P159 5x55 S214 6x49 V252 7x53 Y291
1x56 I47 2x60 I80 3x45 A116 4x62 L160 5x56 L215 6x50 P253 7x54 G292
1x57 V48 2x61 L81 3x46 M117 4x63 L161 5x57 S216 6x51 L254 7x55 A293
1x58 R49 2x62 A82 3x47 A118 4x64 I162 5x58 Y217 6x52 I255 7x56 K294
1x59 T50 2x63 L83 3x48 F119 4x65 K163 5x59 F218 6x53 G256
1x60 E51 2x64 F84 3x49 D120 4x66 R164 5x60 L219 6x54 L257

2x65 W85 3x50 R121 4x67 L165 5x61 I220 6x55 S258
2x66 F86 3x51 Y122 5x62 I221 6x56 V259
2x67 D87 3x52 V123 5x63 R222 6x57 V260

3x53 A124 5x64 T223 6x58 H261
3x54 I125 5x65 V224 6x59 R262
3x55 C126 5x66 L225 6x60 F263
3x56 H127 5x67 Q226 6x61 G264

5x68 L227
ICL1 ICL2 ECL2 H8

12x48 R52 34x50 P128 45x50 C178 8x47 T295
12x49 S53 34x51 L129 45x51 V179 8x48 K296
12x50 L54 34x52 R130 45x52 H180 8x49 Q297
12x51 H55 34x53 H131 8x50 I298

34x54 A132 8x51 R299
34x55 A133 8x52 T300
34x56 V134 8x53 R301
34x57 L135 8x54 V302

8x55 L303
8x56 A304
8x57 M305
8x58 F306
8x59 K307
8x60 I308
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Table S2: Relevant events observed in each replica.
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Table S3: Non-olfactory class A GPCRs with a second acidic residue in the ion binding site,
besides the first acidic residue at position 2.50. Out of the 286 human sequences available
in the sequence alignment tool of GPCRdb17 as of January 2024, 60 bear a second acidic
residue in the ion binding site, specifically, E3.39 in three receptors, D6.44 in five and D7.49 in
55.

Uniprot ID First Second Uniprot ID First Second
acthr human D2.50 D7.49 mshr human D2.50 D7.49

ccr1 human D2.50 E3.39 ogr1 human D2.50 D7.49

ccr3 human D2.50 E3.39 oxer1 human D2.50 D7.49

cltr1 human D2.50 D7.49 p2ry1 human D2.50 D7.49

ffar2 human D2.50 D7.49 p2ry2 human D2.50 D7.49

ffar3 human D2.50 D7.49 p2ry4 human D2.50 D7.49

fshr human D2.50 D6.44 p2ry6 human D2.50 D7.49

gp132 human E2.50 D7.49 p2ry8 human D2.50 D7.49

gp171 human D2.50 D7.49 p2y10 human D2.50 D7.49

gp174 human D2.50 D7.49 p2y12 human D2.50 D7.49

gp183 human D2.50 D7.49 p2y13 human D2.50 D7.49

gpr17 human D2.50 D7.49 p2y14 human D2.50 D7.49

gpr18 human D2.50 D7.49 par1 human D2.50 D7.49

gpr20 human D2.50 D7.49 par2 human D2.50 D7.49

gpr34 human D2.50 D7.49 par3 human D2.50 D7.49

gpr35 human D2.50 D7.49 par4 human D2.50 D7.49

gpr42 human D2.50 D7.49 pd2r human D2.50 D7.49

gpr4 human D2.50 D7.49 pe2r1 human D2.50 D7.49

gpr55 human D2.50 D7.49 pe2r2 human D2.50 D7.49

gpr87 human D2.50 D7.49 pe2r3 human D2.50 D7.49

hcar1 human D2.50 D7.49 pe2r4 human D2.50 D7.49

hcar2 human D2.50 D7.49 pf2r human D2.50 D7.49

hcar3 human D2.50 D7.49 pi2r human D2.50 D7.49

lpar4 human D2.50 D7.49 psyr human D2.50 D7.49

lpar5 human D2.50 D7.49 ptafr human D2.50 D7.49

lpar6 human D2.50 D7.49 qrfpr human D2.50 E3.39

lshr human D2.50 D6.44 rxfp1 human D2.50 D6.44

mc3r human D2.50 D7.49 rxfp2 human D2.50 D6.44

mc4r human D2.50 D7.49 ta2r human D2.50 D7.49

mc5r human D2.50 D7.49 tshr human D2.50 D6.44
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Figure S1: Time evolution of the root mean square de-
viation (RMSD) for the five MD simulations without
ions in the ion binding site. The vertical dashed lines
indicate the time at which a given event was observed.
Sodium binding to the ion binding site is depicted by
purple dashed lines, while POPC snorkeling into and
out of the ion binding site is represented by black and
grey dashed lines, respectively. The bottom right graph
displays the combined data from all five replicas.
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Figure S2: Time series of the sum of the minimum dis-
tance between the choline groups of POPC and residue
D692.50 and the minimum distance between the choline
groups of POPC and residue E1103.39 in simulations
without ions in the ion binding site. The vertical dashed
lines indicate the time at which a given event was ob-
served. Sodium binding to the ion binding site is de-
picted by purple dashed lines, while POPC snorkeling
into and out of the ion binding site is represented by
black and grey dashed lines, respectively. The bottom
right graph displays the combined data from all five
replicas.
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Figure S3: Time evolution of the root mean square de-
viation (RMSD) for the five MD simulations with Na+

in the ion binding site. The vertical dashed lines in-
dicate the time at which a given event was observed.
Sodium unbinding to the ion binding site is depicted
by purple dashed lines while POPC snorkeling into and
out of the ion binding site is represented by black and
grey dashed lines, respectively. The bottom right graph
displays the combined data from all five replicas.
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Figure S4: Time series of the sum of the minimum dis-
tance between the choline groups of POPC and residue
D692.50 and the minimum distance between the choline
groups of POPC and residue E1103.39 in simulations
with Na+ in the ion binding site. The vertical dashed
lines indicate the time at which a given event was ob-
served. Sodium binding and unbinding in the ion bind-
ing site is depicted by purple dashed lines, while POPC
snorkeling into and out of the ion binding site is repre-
sented by black and grey dashed lines, respectively. The
bottom right graph displays the combined data from all
five replicas.
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Figure S5: Time evolution of the root mean square deviation
(RMSD) for the five MD simulations with Ca2+ in the ion binding
site. The bottom right graph displays the combined data from
all five replicas.
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Figure S6: Time series of the sum of the minimum distance
between the choline groups of POPC and residue D692.50 and
the minimum distance between the choline groups of POPC and
residue E1103.39 in simulations with Ca2+ in the ion binding site.
The bottom right graph displays the combined data from all five
replicas.
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Figure S7: Root mean square fluctuation (RMSF) analysis with secondary structure repre-
sentation. Top: secondary structure representation calculated and generated with SSDraw,18

using as input the chain A of the OR51E2 cryo-EM structure (PDB ID: 8F761). The trans-
membrane (TM) regions, as identified in table S1, are highlighted in red. Bottom: RMSF
of the three sets of simulations.
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Figure S8: Histogram of the RMSD of the simulations with charged D692.50 and E1103.39

performed in this work (without ions, with Na+, and with Ca2+ in the ion binding site)
and of the simulations with neutral D692.50 and E1103.39 with respect to TM3-TM5-TM6
Cα of the apo form of OR52cs. We can observe that also quantitatively the simulations with
neutral binding pocket sampled receptor conformations in between those of the Na+ and
Ca2+ simulations.
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3.2.3 Future Perspectives

Work on OR51E2 continues in two directions:

1. Investigation of Ligand Binding to Inactive OR51E2. Molecular docking and

molecular dynamics simulations are used to explore ligand binding to the inactive

state of OR51E2. Specifically, these methods are used to understand the orientation

and location of different ligands within the receptor and to gain insight into the key

interactions required for ligand binding. Three different ligands have been selected

for this study: propionate, β-ionone, and 13-cis-retinoic acid. The rationale behind

this choice is to explore molecules with diverse functions and structures. Propi-

onate, an odorant that acts as an agonist, has a known binding site in OR51E2.271

In contrast, β-ionone, which acts as an ectopic agonist, binds to a separate site close

to the propionate binding site.272 Finally, 13-cis-retinoic acid is a potential antago-

nist of OR51E2, although its binding mechanism and location within OR51E2 are

currently unknown.273

2. Simulation of OR51E2 with G-Protein Subunits in Membrane. Future work will

involve the modelling and simulating OR51E2, embedded in the membrane, in

complex with Gαs, Gβ, and Gγ subunits , under different ion binding conditions

(no ions, Na+, and Ca2+). The aim is to study how these different ion binding states

influence the conformational changes of the receptor and how these changes are

propagated to the associated G-protein subunits.
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3.3 A Missense Mutation in the Barley Xan-h Gene Encoding the

Mg-Chelatase Subunit I Leads to a Viable Pale Green Line

with Reduced Daily Transpiration Rate

The group of Professor Paolo Pesaresi (Department of Biosciences, University of Milan) is

interested in studying photosynthetic barley mutants from mutagenised collections with

the aim of identifying and characterising traits that can improve crop yield or enhance

agricultural sustainability.274,275 In particular, the barley TM2490 mutant from the TILL-

More276 population shows altered photosynthetic parameters and a pale green coloura-

tion, but retains wild-type-like growth and morphology. This specific trait increases the

availability of photons in the lower leaf layers and reduces the energy dissipated as heat

by leaves exposed to direct sunlight. The group has identified and mapped the mutation

responsible for TM2490 phenotype in CHLI ATPase subunit of magnesium chelatase, an

enzyme that catalyses the insertion of magnesium into protoporphyrin IX and leads to

chlorophyll synthesis.277 This enzyme is highly conserved in all photosynthetic organ-

isms.278 To date, the structure of CHLI has been solved for several organisms but not for

barley. This ATPase subunit assembles as a homo-hexameric ring.

In this context, my aim was to determine a barley CHLI model (HvCHLI) and analyse the

structural context of the TM2490 mutation.

3.3.1 Personal Contribution

My involvement in this work was focused exclusively on the computational aspects,

which included the following tasks:

1. Structure Prediction and Comparative Analysis. I predicted the structure of the

HvCHLI subunit using DeepMind AlphaFold2.54 This was followed by a compara-

tive structural analysis with homologous proteins from different species. The goal

was to identify the key residues that define the ATP binding cleft and to locate and

analyse the specific residue whose mutation leads to the desired phenotype.

2. Molecular Docking. I performed molecular docking of the ATP molecule into the

HvCHLI binding cleft using the Schrödinger Maestro suite.266 The docking process
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was driven by the data from the comparative structural analysis, which was used

as a constraint to accurately place the ATP molecule.

3. Mutation Modelling and Analysis. I modelled the mutation in the context of the

ATP-bound state to identify differences in terms of interaction compared to the

wild-type structure.

I contributed to the manuscript writing of the ”Materials and Methods” and ”Results”

sections related to computational structural biology.
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Abstract
Key message The barley mutant xan-h.chli-1 shows phenotypic features, such as reduced leaf chlorophyll content 
and daily transpiration rate, typical of wild barley accessions and landraces adapted to arid climatic conditions.
Abstract The pale green trait, i.e. reduced chlorophyll content, has been shown to increase the efficiency of photosynthesis 
and biomass accumulation when photosynthetic microorganisms and tobacco plants are cultivated at high densities. Here, 
we assess the effects of reducing leaf chlorophyll content in barley by altering the chlorophyll biosynthesis pathway (CBP). 
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levels at high light intensities. Moreover, the reduced content of leaf chlorophyll is associated with a stable reduction in daily 
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Introduction

Climate change, increasing population growth and scarcity 
of land undermine the current paradigm of modern agri-
culture, and our approach to crop production must become 
more sustainable. While plant architecture and grain yield 
have been widely explored in modern breeding programs, 
photosynthetic traits have generally been neglected, and 
still offer great potential for further crop improvement 
and adaptation to cope with emerging climatic param-
eters (Long et al. 2015). The solar energy conversion effi-
ciency (ECE) index, which is defined as the proportion of 
absorbed radiation that is converted into biomass, relies on 
whole-canopy photosynthetic efficiency, and overall crop 
biomass largely depends upon the ECE (Slattery and Ort 
2021). This factor is especially relevant because ECE often 
falls below half of its theoretical maximum levels in crops 
(Slattery and Ort 2021). Due to competition for light and 
nutrients, which are crucial for reproductive success under 
natural conditions, plants accumulate chlorophylls and 
thylakoid antenna proteins in large excess with respect to 
the optimal required for autotrophic growth (Canham et al. 
2011). In fact, the photosynthetic machinery saturates at 
approximately 25% of the maximum solar flux in C3 plant 
canopies, and this represents a major constraint on produc-
tivity in these species (Jansson et al. 2010). On the other 
hand, in anthropic environments, such as cultivated fields 
characterized by monocultures, competition among indi-
vidual plants is disadvantageous, and new cultivars with 
reduced chlorophyll accumulation might become valuable 
resources. To this end, reduction of leaf chlorophyll con-
tent has been suggested to be highly effective in improv-
ing light penetration under high-density mass cultivation, 
and in mitigating high-light-related photo-oxidative dam-
ages, with great benefits for biomass yield (Melis 2009). 
In addition, the reduction of leaf chlorophyll content in 
crops, i.e. the use of pale green phenotypes, enhances light 
reflectance, which helps to alleviate the effects of heat 
waves triggered by global climate change (Genesio et al. 
2021), and improves the efficiency of water use by reduc-
ing canopy temperature (Drewry et al. 2014; Galkin et al. 
2018). Furthermore, independent studies have predicted 
that reductions in chlorophyll content should increase the 
efficiency of nitrogen use (Walker et al. 2018; Sakowska 
et al. 2018). Pale green crops can be created by manipu-
lating a plethora of processes, such as the biogenesis and/
or accumulation of antenna proteins—also known as the 
truncated light-harvesting antenna (TLA) strategy—and 
pigment biosynthesis (for a review, see Cutolo et al. 2023). 
For instance, increased photosynthetic performance and 
enhanced plant biomass accumulation were observed upon 
cultivation at high density under greenhouse conditions of 

a pale green tobacco line with downregulated expression 
of cpSRP43 (Kirst et al. 2018). This nuclear gene codes for 
the 43-kDa chloroplast-localised signal recognition parti-
cle, which is responsible for the delivery of antenna pro-
teins to the thylakoid membranes (Klimyuk et al. 1999), 
More recently, the barley mutant happy under the sun 1 
(hus1), which carries a premature stop codon in the cor-
responding HvcpSRP43 gene and is characterised by a 50% 
reduction in the chlorophyll content of leaves, was shown 
to accumulate biomass and grains at levels comparable to 
those observed for the control cultivar Sebastian, when 
grown under field conditions at standard density. These 
findings demonstrate that crops can indeed decrease their 
investment in antenna proteins and chlorophyll biosynthe-
sis significantly, without detrimental effects on productiv-
ity (Rotasperti et al. 2022). Conversely, a decrease of about 
26% in biomass production was observed in the case of the 
pale green soybean mutant MinnGold under field condi-
tions (Sakowska et al. 2018). Owing to a missense muta-
tion in the nuclear gene encoding the CHLI subunit of the 
enzyme Mg-protoporphyrin IX chelatase (Mg-chelatase), 
this mutant synthesizes approximately 80% less chloro-
phyll than the green control plants. As the first enzyme 
specific for the chlorophyll biosynthetic pathway, Mg-
chelatase is a multimeric complex that is responsible for 
the insertion of  Mg2+ into the protoporphyrin IX tetrapyr-
role ring. In plants, the enzyme complex consists of three 
subunits (Masuda 2008), designated CHLI (36–46 kDa), 
CHLD (60–87 kDa) and CHLH (120–155 kDa). In the 
presence of  Mg2+ and ATP, the CHLI and CHLD subu-
nits form a double homohexameric ring complex typi-
cal of members of the AAA + [ATPase associated with 
various cellular activities] protein superfamily (Elmlund 
et al. 2008; Lundqvist et al. 2013), which then interacts 
with the CHLH subunit responsible for binding protopor-
phyrin IX and inserting  Mg2+ to form Mg-protoporphyrin 
IX (Farmer et al. 2019; Adams et al. 2020; Willows and 
Beale 1998). The ATP needed for this reaction is hydro-
lysed by the CHLI subunit (Lundqvist et al. 2010), and the 
ATP-binding pocket is formed by two neighbouring CHLI 
subunits via five key interaction motifs (Gao et al. 2020). 
While most photosynthetic species, including barley, 
have only one HvCHLI isoform, Arabidopsis thaliana has 
two CHLI genes, AtCHLI1 and AtCHLI2, with AtCHLI1 
being more highly expressed than AtCHLI2 (Huang and Li 
2009). Extensive characterization of chli mutants has been 
conducted in various land plants, including Arabidopsis, 
barley, maize, rice, pea, strawberry and tea (Zhang et al. 
2023; Ma et al. 2023; H. Zhang et al. 2006; Wu et al. 2022; 
Huang and Li 2009; Braumann et al. 2014). Intriguingly, 
many forward genetic screens in barley mutant populations 
have identified chlorophyll-deficient lines with seedling-
lethal phenotypes, designated as Xantha and Chlorina 
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mutants, including xan-h.38, xan-h.56, xan-h.57, xan-h.
clo125, xan-h.clo157, and xan-h.clo161 (Braumann et al. 
2014; Hansson et al. 1999). These Xantha and Chlorina 
mutants carry nonsense and missense mutations, respec-
tively, in the Xan-h coding region. Interestingly, heterozy-
gous missense mutations display stronger semidominance 
than nonsense mutations (Hansson et al. 2002; Braumann 
et al. 2014).

Alongside its key role in chlorophyll biosynthesis, 
Mg-chelatase has been reported to have a role in 
chloroplast-to-nucleus retrograde communication. Thus, 
the inactivation of Mg-chelatase due to a mutation in 
CHLH resulted in the Arabidopsis gun5 mutant (genomes 
uncoupled 5), which deregulates the expression of the 
Light Harvesting Complex B2 gene (LHCB2) (Mochizuki 
et al. 2001) upon inhibition of chloroplast biogenesis. 
The GUN4 protein (genomes uncoupled 4), a regulatory 
subunit found in oxygenic photosynthetic organisms, 
which binds to CHLH and stimulates its magnesium 
chelatase activity, has also been reported to participate 
in retrograde signalling (Larkin et al. 2003). Similarly, 
chld mutants that are deficient in Mg-chelatase activity 
show plastid-mediated deregulation of selected nuclear 
genes (Brzezowski et al. 2016; Huang and Li 2009). With 
regard to chli mutants, it was reported that A. thaliana 
cs and ch42 and rice chlorina-9 mutants do not show the 
genomes uncoupled phenotype (Mochizuki et al. 2001; 
Zhang et  al. 2006), whereas both the semi-dominant 
Arabidopsis mutant cs215/cs215 and the Atchli1/Atchli1 
Atchli2/Atchli2 double mutant do since they accumulate 
higher levels of Light Harvesting Complex B1 (LHCB1) 
transcripts than the wild type upon impairment of 
chloroplast activity by norflurazon (NF) treatment (Huang 
and Li 2009). In barley, lethal mutations in any of the 
three Mg-chelatase genes cause the genomes uncoupled 
phenotype (Gadjieva et al. 2005).

In this study, we describe the pale green barley mutant 
line TM2490, which was isolated from the TILLMore 
mutagenized population (Talamè et  al. 2008), and is 
characterised by a single point mutation in the Xan-h 
(HORVU.MOREX.r3.7HG0738240) gene, responsible 
for the Arg-to-Lys substitution at position 298 (R298K) 
in the HvCHLI subunit. The homozygous mutant plants 
show reduced leaf chlorophyll content and increased 
photosynthetic efficiency at high light intensities and 
represent the only known viable homozygous xan-h.chli-
1 mutant in barley. In the following, we provide further 
insights into HvCHLI function and chlorophyll accumulation 
in barley and explore the behaviour of the pale green leaf 
phenotype under drought stress conditions.

Results

The pale green phenotype of the TM2490 barley 
mutant is caused by a missense mutation in Xan‑h, 
the single‑copy nuclear gene encoding the HvCHLI 
subunit of Mg‑chelatase

The chemically mutagenized TILLMore population 
(Talamè et al. 2008) was screened for pale green mutants 
with improved photosynthetic performance under field 
conditions (see Materials and Methods). Among  M4 
mutant lines, the TM2490 line was selected based on its 
reduced chlorophyll content, i.e. pale green leaf phenotype 
and enhanced photosynthetic performance with respect 
to the control (cv. Morex). Under controlled greenhouse 
conditions, the growth rate and plant architecture of the 
TM2490 line were similar to those of the wild-type control. 
However, amounts of chlorophylls a and b (Chla + Chlb) 
ranged from 50% of WT levels in the first and second 
leaves to only 25% in the sixth, i.e. penultimate, leaf, 
while no major differences in chlorophyll abundance were 
observed between mutant and control flag leaves (Fig. 1A, 
B). Similarly, in mutant plants, younger leaves showed a 
generally increased photosynthetic efficiency of photosys-
tem II [Y(II)] under light conditions and optimal function-
ality of photosystem II (PSII) under dark conditions (Fv/
Fm) relative to the control plants (Fig. 1C), while at later 
stages no major differences could be observed between 
mutant and control leaves.

To identify the mutation responsible for the pale green 
phenotype, a segregating  F2 population of 565 plants was 
generated by crossing the TM2490 line (background cv. 
Morex) with cv. Barke. About one-quarter of the total 
population (131/565) showed the TM2490-like phenotype 
with reduced chlorophyll content and increased Fv/Fm 
values (WT-like 0.74 ± 0.02 vs TM2490-like 0.81 ± 0.02, 
Student’s t-test < 0.001), typical of monogenic recessive 
inheritance (χ2 test 3:1 WT:mut, not significant). Total 
RNA was then isolated from 100 F2 TM2490-like and 100 
F2 WT-like plants and bulked in an equal ratio to generate 
two distinct RNA pools. Both RNA pools were subjected 
to polyA capture and paired-end sequencing, producing 
approximately 100 million 2 × 150-bp read pairs per pool. 
Reads were mapped on the reference genome sequence 
assembly of barley cv. Morex (Morex V3; Monat et al. 
2019) to identify the allelic variants in each of the two 
pools. Plotting of the allele frequencies over SNP posi-
tions along the barley genome revealed a sharp peak along 
chromosome 7H, corresponding to a 20-Mb region (from 
586.396.977 bp to 606.525.807 bp) in which allelic vari-
ants with frequencies higher than 0.5 and peaking at 1.0 in 
the TM2490-like pool were coupled with frequencies lower 
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Fig. 1  Visible phenotypes of cv. Morex (control) and TM2490 mutant 
plants grown under greenhouse conditions. A Images of cv. Morex 
control plant and the pale green mutant TM2490 from coleoptile to 
flag-leaf stage. Scale bar = 2 cm. B Measurements of apparent chlo-
rophyll content in cv. Morex and TM2490 leaves (expressed as SPAD 
units) carried out on eight independent plants at different develop-

mental stages. C Leaf photosynthetic performance of dark-adapted 
and light-adapted plants measured with the Handy PEA fluorometer 
in eight independent plants. Error bars on the histograms indicate 
standard deviations and the significance of the observed differences 
was assessed using Student’s t-test (*** P < 0.001, ** P < 0.01, * 
P < 0.05)
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than 0.5 in the WT-like pool (Fig. 2A). Within this region, 
the single-copy gene HORVU.MOREX.r3.7HG0738240, 
known as Xan-h locus, carried a G-to-A transition at posi-
tion + 1092 from the translation start codon in TM2490-
like plants (referred to as the xan-h.chli-1 allele in the 
following; Fig.  2B), causing the R298K substitution 
(Fig. S1). The gene is annotated in the Barlex database 
as Mg-protoporphyrin IX chelatase subunit I (HvCHLI), 
a 417-a.a. protein, with a predicted 56-a.a. chloroplast 
transit peptide (cTP) at the N-terminus, which is essential 
for the insertion of  Mg2+ into protoporphyrin IX, the first 
chlorophyll-specific step of tetrapyrrole biosynthesis in 
photosynthetic organisms (Kobayashi et al. 2008; Huang 
and Li 2009). The protein is highly conserved from pho-
tosynthetic bacteria to higher plants as is the Arg residue 
at position 298 (Fig. S1).

To validate the association between the missense 
mutation in the Xan-h locus and the TM2490 phenotype, 
allelism tests were performed, with the aid of the two other 
known mutant alleles at this locus, xan-h.clo161 (Hansson 
et al. 1999) and xan-h.56 (Braumann et al. 2014), both 
of which are recessive chlorotic lethals (see Fig. 2B). To 

this end, homozygous TM2490 (xan-h.chli-1/xan-h.chli-1) 
plants were crossed with heterozygous xan-h.clo161 (Xan-
h/xan-h.clo161) and xan-h.56 (Xan-h/xan-h.56) plants and 
 F1 seedlings were phenotypically and genetically analysed 
at the cotyledon stage. Approximately 50% of  F1 plants, 
carrying both xan-h.chli-1 and either of the Xan-h alleles, 
showed a WT-like photosynthetic and dark-green leaf 
phenotype, while the biallelic xan-h.clo161/xan-h.chli-1 
seedlings were characterised by a dramatic reduction in 
chlorophyll content, impaired PSII activity (Fv/Fm) and 
seedling lethality, similar to those of homozygous xan-h.
clo161 mutant seedlings (Fig. S2A, C, D). The pale green 
phenotype with a significant reduction in leaf chlorophyll 
content was also observed in xan-h.56/xan-h.chli-1 biallelic 
seedlings, despite showing WT-like PSII activity and the 
capability to complete the life cycle (Fig. S2B, E, F).

The functional status of the xan-h.chli-1 mutant allele 
was further investigated by cloning its coding sequence 
into a binary vector under the control of the CaMV35S 
promoter and introducing it into the Arabidopsis Atchli1/
Atchli1 knock-out genetic background by Agrobacterium-
mediated transformation (Huang and Li 2009). BLAST 

Fig. 2  Identification of the TM2490 locus. A Comparison of allele 
frequency distributions in RNAseq pools obtained from WT-like 
and TM2490-like F2 individuals. Allele frequencies are indicated 
on the Y axis, genomic coordinates along Chr7 on the X axis. The 
peak of homozygous alleles in the TM2490-like pool corresponds to 
the 20-Mb candidate region around 6000 Mbp. The red line indicates 
the threshold allele frequency of 0.5. B Schematic representation of 

the Xan-h (HORVU.MOREX.r3.7HG0738240) locus, i.e. the single-
copy gene chosen as the best candidate for the TM2490 phenotype. 
Bars indicate the positions of known lethal mutations within the gene, 
together with the TM2490 mutation, here indicated as xan-h.chli-1, 
with the respective SNPs. Boxes represent exons and lines indicate 
introns
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analyses indeed revealed that the HvCHLI subunit from 
cv. Morex, encoded by a single-copy gene, shares high 
homology with the A. thaliana proteins AtCHLI1 (78% 
identity) and AtCHLI2 (81% identity) (Fig. S1). The Atchli1/
Atchli1 + 35S::Xan-h line, carrying the WT HvCHLI coding 
sequence from cv. Morex and the endogenous Arabidopsis 
AtCHLI2 protein, used here as the control, showed a fully 
complemented phenotype in terms of photosynthetic 
performance and chlorophyll accumulation in T1 lines 
and progenies. In contrast, the 35S::xan-h.chli-1 construct 
only partially complemented the Atchli1/Atchli1 lethal 
phenotype, generating viable plant lines that were similar 
to both barley TM2490 and Arabidopsis cs/cs mutants with 
respect to photosynthetic performance and total chlorophyll 
content (Fig. S3; Kobayashi et al. 2008). Overall, these data 
corroborated the hypothesis that the xan-h.chli-1 mutant 
allele is responsible for the pale green phenotype and the 
altered HvCHLI subunit of the homozygous TM2490 line 
bearing the R298K amino acid substitution that hampers 
chlorophyll biosynthesis.

The xan‑h.chli‑1 barley mutant shows a reduced 
chlorophyll content and increased photosynthetic 
efficiency under high light intensities

To extend the characterization of TM2490-related phenotype 
and minimize any possible influence of other chemically 
induced mutations in the TM2490 genome, the mutant was 
backcrossed with the barley cv. Morex, and  BC2F2 plants 
showing the TM2490 phenotype (referred to as the xan-h.
chli-1 line in the following) were selected for detailed bio-
chemical and physiological characterization, together with 
their wild-type-like siblings (referred to as Xan-h in the 
following). In particular, the second leaves of Xan-h and 
xan-h.chli-1 plants were used for all the analyses reported 
from here on (Fig. 3A). Quantification of leaf pigments by 

high-performance liquid chromatography (HPLC) revealed 
the total chlorophyll content (Chla + Chlb) in xan-h.chli-1 
amounted to about 57% of that in Xan-h, while the ratio 
of Chla to Chlb in the mutant (3.97 ± 0.1) was higher than 
that in the WT (Xan-h 3.29 ± 0.1; see also Table 1). This 
difference was due to the reduced accumulation of Chla 
in xan-h.chli-1 line (59% of the Xan-h level) and an even 
more marked decrease in Chlb (49% of the Xan-h level). 
In addition, the pool of carotenoids associated with photo-
system antenna complexes, such as lutein (Lut) and neox-
anthin (Nx), showed a marked reduction in the mutant (to 
around 54% of Xan-h levels), while the β-carotene (β-Car) 
content, found mainly in photosystem cores, and in part 
also in antenna proteins of photosystem I, was decreased to 
65% of Xan-h control (Table 1), indicating a general altera-
tion of photosystems, albeit more pronounced at the level 
of antenna proteins. To investigate this aspect further, the 
second leaves of Xan-h and xan-h.chli-1 plants were exposed 
to increasing actinic light intensities (0–1287 μmol photons 
 m−2  s−1) and the photosynthetic efficiency was assessed by 
monitoring the performance of PSII. In dark-adapted leaves, 
xan-h.chli-1 showed a higher PSII quantum yield (Fv/Fm), 
which declined more rapidly than in Xan-h upon moder-
ate light illumination [Y(II) less than 200 μmol photons 
 m−2  s−1; Fig. 3B]. Conversely, the PSII quantum yield of 
non-regulated energy dissipation [Y(NO)] was markedly 
higher in xan-h.chli-1 at low-to-moderate light intensities 
– implying rather inefficient photochemical energy conver-
sion overall compared to Xan-h leaves (Fig. 3C). In addition, 
upon exposure to 200–1287 μmol photons  m−2  s−1 of actinic 
light, Y(II) values remained consistently higher in xan-h.
chli-1 than in Xan-h, possibly because the values for PSII 
quantum yield attributable to regulated energy dissipation 
[Y(NPQ)] were consistently lower in xan-h.chli-1 leaves 
(Fig. 3D), while Y(NO) levels were identical in mutant and 
Xan-h samples. To investigate further the photosynthetic 
properties of xan-h.chli-1 leaves, an identical experimental 
set-up was used to assess photosystem I (PSI) activity. The 
quantum yield of PSI [Y(I)] was higher in xan-h.chli-1 under 
dark-adapted conditions and dropped to values lower than 
those seen in Xan-h, between 6 and 95 μmol photons  m−2  s−1 
(Fig. 3E), similarly to the Y(II) trend, and most probably 
because of less efficient energy transfer from the antenna to 
the PSI reaction centre. Furthermore, the Y(NA) parameter, 
i.e. the quantum yield of non-photochemical energy dissi-
pation in PSI due to acceptor-side limitation (Fig. 3F), was 
much higher in xan-h.chli-1 under low to moderate light 
conditions, while it decreased to Xan-h values at higher light 
levels, as soon as the photosynthesis control was engaged 
(Colombo et al. 2016). Similarly, the lower values of Y(ND), 
i.e. the non-photochemical PSI quantum yield due to donor-
side-limited heat dissipation (Fig. 3G), at higher light inten-
sities confirmed the greater efficiency of electron transport 

Fig. 3  Representative phenotypes of Xan-h and xan-h.chli-1 plants at 
the second-leaf stage following growth under greenhouse conditions. 
A Xan-h and xan-h.chli-1 barley leaves were harvested 14 days after 
germination. Note that, in terms of leaf pigment content and photo-
synthetic performance, xan-h.chli-1 plants  (BC2F2 generation) were 
identical to TM2490 plants at the M4 generation. Scale bar = 2  cm. 
Analyses of photosynthetic parameters were performed using the 
Dual-PAM 100 fluorometer. B The effective quantum yield of PSII 
[Y(II)], and quantum yields of non-regulated energy dissipation 
[Y(NO)] (C) and regulated energy dissipation of PSII [Y(NPQ)] (D). 
Measurements used to monitor PSII performance were carried out at 
increasing light intensities (from dark to 1287 μmol photons  m− 2  s− 1; 
3-min exposure to each light intensity). Concomitantly, the effective 
quantum yield of PSI [Y(I)] (E), and the quantum yields of non-pho-
tochemical energy dissipation in PSI owing to acceptor-side limita-
tion [Y(NA)] (F), and donor-side-limited heat dissipation [Y(ND)] 
(G), were determined. Curves show average values of three biological 
replicates, while bars indicate standard deviations. PPFD photosyn-
thetic photon flux density

◂
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from PSII to PSI in xan-h.chli-1 leaves. Overall, our findings 
highlight the low photosynthetic efficiency of xan-h.chli-
1 under low-to-moderate actinic light intensities, although 
this parameter rises at higher intensities, most probably as 
a consequence of the reduced chlorophyll content and light 
absorption capacity of the pale green xan-h.chli-1 leaves.

The functional status of the photosynthetic machinery 
was also analysed at the biochemical level by monitoring 
the protein composition of the thylakoid electron transport 
machinery by means of immunoblot analysis. In agreement 
with the pigment accumulation profile (Table 1), immuno-
blot analyses with antibodies specific for Lhca3, Lhcb1, 
Lhcb2 and Lhcb3 confirmed a general reduction (of at 
least 60%) in antenna proteins in xan-h.chli-1 thylakoids, 
while lesser declines (of 20–40%) were observed for Lhca1, 
Lhca2 and Lhcb4. Only in the case of Lhcb5 were the lev-
els attained identical between mutant and Xan-h samples 
(Fig. 4A). Moreover, in xan-h.chli-1 thylakoid samples the 
levels of PSII core subunits (D1 and CP43) were reduced 
by around 30% and 50%, respectively, similar to what was 
observed for PsbS and two subunits of the Oxygen-Evolving 
Complex (OEC), PsbO and PsbR. Conversely, the PsbQ sub-
unit of OEC showed a much more drastic reduction, accumu-
lating to only around 14% of its level in Xan-h. Similarly to 
PSII, the PSI core subunits, PsaA and PsaD, accumulated in 
xan-h.chli-1 thylakoids to lower levels than in Xan-h, while 
no major differences were observed in the accumulation of 
the cytochrome f subunit (PetA) or the plastocyanin electron 
carrier (PetE).

In order to test the effect of high-light exposure, Xan-h 
and xan-h.chli-1 plants were grown under control conditions 
and then adapted to high-light for 0.5 and 8 h. Immunoblots 
analysis on the photosynthetic machinery and Mg-chelatase 
subunits revealed no major differences between control 
and high-light conditions on most of the subunits analysed 
(Fig. S4). Nevertheless, both genotypes showed a reduced 
accumulation of D1 and D2 PSII core subunits after 30 min 
of high-light exposure, particularly marked in Xan-h thyla-
koids, indicating a higher capability of xan-h.chli-1 leaves 
to better adapt to highlight conditions, in agreement with 
the increased photosynthetic performance under high-light 

regimes (see Fig. 3). The accumulation of D1 and D2 subu-
nits increased in both genotypes after 8 h of high-light expo-
sure, due to their adaptation to the light environment.

Finally, the impact of the decreased chlorophyll and 
thylakoid protein contents on the chloroplast ultrastructure 
in the mutant was investigated by Transmission Electron 
Microscopy (TEM; Fig. 4B). TEM analyses, performed on 
growth-light-adapted plants, showed reduced accumulation 
of starch granules in xan-h.chli-1 chloroplasts when 
compared to Xan-h, while no major alteration in the 
organization of grana and stroma lamellae was observed.

The xan‑h.chli‑1 mutation impairs Mg‑chelatase 
activity

Since the xan-h.chli-1 mutation results in the R298K amino 
acid exchange (Fig. S1), the accumulation and activity of 
Mg-chelatase enzyme was quantified. Immunoblot analyses 
revealed that the HvCHLH subunit accumulated to WT lev-
els, while HvCHLI and HvCHLD were slightly reduced in 
xan-h.chli-1 leaves (Fig. 5A). However, the regulatory subu-
nit HvGUN4 was almost twice as abundant in xan-h.chli-1 
as it was in Xan-h, possibly as a compensatory response 
to the decline in Mg-chelatase activity owing to partial 
impairment of HvCHLI. To test whether the point mutation 
identified in the xan-h.chli-1 allele affects its homodimeriza-
tion, its coding sequence (devoid of the cTP-coding region) 
was tested for homodimer formation in a yeast two-hybrid 
assay, together with the variants xan-h.clo125, xan-h.clo157 
and xan-h.clo161 and compared with the ability of Xan-h 
from cv. Morex to homodimerize as a control. As shown in 
Fig. 5B, colonies expressing Xan-h and xan-h.chli-1 were 
able to grow on selective media, suggesting that the R298K 
missense mutation does not impair homodimer formation. 
In contrast to this result, colonies expressing xan-h.clo125, 
xan-h.clo157 and xan-h.clo161 variants were unable to grow 
on selective media, indicating that lethal mutations hamper 
the ability to form CHLI homodimers (Fig. 5B, Fig. S5). 
Moreover, stromal protein extracts from etiolated Xan-h 
and xan-h.chli-1 seedlings were used to test the activity of 
the Mg-chelatase oligo-enzyme by measuring its ability to 

Table 1  HPLC analysis of second-leaf pigment content in Xan-h and xan-h.chli-1. The pigment content was normalized to leaf fresh weight 
(FW) and is reported as pmol per mg of FW

Average values ± standard deviation of three biological replicates are shown. The significance of the observed differences was evaluated with 
Student’s t-test (*** P < 0.001, ** P < 0.01, * P < 0.05, ns = not significant)
Nx neoxanthin, Lut lutein, Chl chlorophyll, β-Car β-carotene, VAZ violaxanthin + antheraxanthin + zeaxanthin

Nx Lut Chlb Chla β-Car VAZ Chla + Chlb Chla/Chlb

Xan-h 62 ± 11 189 ± 29 478 ± 101 1563 ± 302 182 ± 44 120 ± 20 2041 ± 402 3.29 ± 0.1
xan-h.chli-1 34 ± 9 103 ± 30 235 ± 52 930 ± 203 117 ± 30 104 ± 25 1164 ± 255 3.97 ± 0.1
T-test ** ** *** ** * ns ** ***
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convert deuteroporphyrin IX into Mg-deuteroporphyrin IX 
in vitro. As expected, a marked reduction in Mg-chelatase 
activity was observed in the xan-h.chli-1 protein relative to 
Xan-h samples and the mock control (Fig. 5C).

The R298K substitution in HvCHLI may hamper its 
interaction with ATP

To analyse the consequences of the R298K substitution in 
a structural context, we modelled the configuration of the 
HvCHLI subunit, as described in the Materials and Methods 
section. In general, the HvCHLI ATPase subunit assembles 
as a closed ring and its quaternary structure results from 
the association of six identical monomers (Hansson et al. 
2002; Lundqvist et al. 2010; Fig. 6A). In the reconstructed 
model, R298 protrudes towards the ATP-binding cleft at the 
interface between two monomers (Fig. 6B). This position is 
consistent with the X-ray structure of the Synechocystis sp. 
PCC 6803 substr. Kazusa CHLI subunit (PDB ID 6L8D; 
Gao et al. 2020), in which R298 corresponds to R233. A 
similar situation was also observed for other relevant, highly 
conserved residues, such as R356 (R291 in Synechocystis) 
and D274 (D209 in Synechocystis) (Fig. 6B). These two 
residues, whose replacements lead to lethal mutations in 
xan-h.clo125 (D274N) and xan-h.clo157 (R356K), are also 
located at the ATP-binding pocket. In particular, D274 and 
R356 belong to different alpha-helices of the same chain and 
interact with each other (Fig. 6C and Fig. S6A), establish-
ing an intra-monomer hydrogen bond network that includes 
R393. The disruption of this interaction could affect the 
folding of the monomer and thus the formation of CHLI 
dimer (Fig. 5B and Fig. 6C). On the other hand, the R298K 
substitution does not lead to either the loss or formation of 
significant intra- or inter-monomer contacts (Fig. 6C). To 
further investigate the possible role of R298 in the context 
of the ATP binding site, the structural analysis was extended 
to AAA + proteins that are not related to photosynthesis. In 
particular, the hexameric structure of the chaperone Heat 
Shock Locus U [HSLU, PDB ID: 1DO0; (Bochtler et al. 
2000)] from Escherichia coli, which has been resolved 
by X-ray analysis with its magnesium ion and ATP in the 
binding cleft, was utilised to this purpose. The high degree 
of homology between the ATP-binding domain of HSLU 
and the barley HvCHLI model enabled us to infer distances 
between the magnesium ion and the conserved residues in 
both structures (Fig. S6B). With this information, the mag-
nesium ion was positioned in the binding cleft of the model, 
and the distances were used to constrain the ATP docking 
mode (Fig. 6B, C). The results show that R356, whose hom-
ologue in Synechocystis has been described as part of the S-2 
motif, can establish direct hydrogen-bond interactions with 
ATP (Fig. 6C, left panel), as does the Arg finger R275 (R210 
in Synechocystis). Hydrogen bonds could also be established 

Fig. 4  Biochemical and ultrastructural characterization of thylakoid mem-
branes from Xan-h and xan-h.chli-1. A Immunoblot analyses of thylakoid 
protein extracts from Xan-h and xan-h.chli-1 leaf material, normalized with 
respect to fresh weight and probed with antibodies specific for subunits of thy-
lakoid protein complexes. For relative quantification, 50% and 25% dilutions of 
Xan-h protein extracts were also loaded. One filter (representative of three bio-
logical replicates) is shown for each immunoblot. An SDS-PA gel stained with 
Coomassie Brilliant Blue (CBB) is shown as loading control. B TEM micro-
graphs depict chloroplast ultrastructure in Xan-h (upper panels) and xan-h.chli-
1 (lower panels) samples. S starch granule; Scale bar = 1 µm
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with the ATP molecule by the side-chain of R298 (Fig. 6C, 
left panel). This interaction could be perturbed or prevented 
by the R298K missense mutation, owing to the shorter side-
chain and the presence of only one amino group in lysine 
(Fig. 6C, right panel). Overall, these observations suggest 

that R298K missense mutation might compromise the inter-
action of HvCHLI dimers with ATP.

Fig. 5  Effects of the xan-h.chli-1 mutation on the accumulation, 
assembly and activity of the Mg-Chelatase complex. A Immunoblot 
analyses of total protein extracts (normalized to leaf fresh weight) 
from Xan-h and xan-h.chli-1 plants with antibodies specific for 
HvCHLI, HvCHLD, HvCHLH and HvGUN4, respectively. A CBB-
stained gel corresponding to the RbcL region, and an immunoblot 
showing the histone H3 protein are shown as controls for equal load-
ing. For protein quantification, 50% and 25% dilutions of Xan-h pro-
tein extracts were also loaded. One representative of three biological 
replicates is shown for each immunoblot. B Yeast two-hybrid interac-
tion assays were performed on Xan-h and the mutant allelic variants 
xan-h.chli-1, xan-h.clo125, xan-h.clo157 and xan-h.clo161 in order to 
test their ability to self-interact (homodimerization). As highlighted 
by their growth on selective media (-W-L-H and -W-L-H-A), only the 

colonies expressing the wild-type Xan-h and its mutant xan-h.chli-1 
alleles were able to self-associate. BD, GAL4 DNA-binding domain, 
AD, GAL4 activation domain, -W –L, dropout medium devoid of Trp 
and Leu (permissive medium); -W -L -H, lacking Trp, Leu and His 
(selective medium), and -W -L -H -A, lacking Trp, Leu, His and Ade 
(selective medium). Serial dilutions were prepared for each strain. 
C In  vitro assay of Mg-chelatase activity in etiolated leaf extracts 
from Xan-h and xan-h.chli-1. The fluorescence emission of the Mg-
chelatase product Mg-deuteroporphyrin was recorded from 550 to 
600  nm using an excitation wavelength of 408  nm. Protein extracts 
were normalized to total protein content. One representative chart (of 
three biological replicates) is shown
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Fig. 6  Effect of the xan-h.chli-1 
mutation on the HvCHLI hex-
amer structure. A Model of the 
AAA + ATPase subunit of the 
barley Mg-chelatase enzyme. 
The adjacent monomers are 
coloured in white and cyan. 
Left panel: frontal view of the 
homo-hexameric ring shown in 
cartoon representation; Right 
panel: side view of the ring 
in cartoon representation. B 
Frontal view of a single dimer. 
The two monomers are repre-
sented in transparent cartoon 
and coloured in white (chain 
A) and cyan (chain B), respec-
tively. The constituent atoms of 
R298 in chain A are depicted in 
light grey (C atoms), blue (N), 
red (O), and white (H). D274 
and R356 (S-2) of chain B are 
shown in cyan (C), blue (N), red 
(O), white (H) and represented 
as solid sticks. R298 in chain 
B, D274 and R356 from chain 
A are not highlighted.  Mg2+ is 
shown as a magenta sphere. C 
ATP binding cleft with  Mg2+ 
and docked ATP. The same col-
our scheme is used for D274 
and R356 of chain B, with ATP 
shown in dark grey and P atoms 
in orange H-bonds are repre-
sented as yellow dashed lines
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The reduced Mg‑chelatase activity in xan‑h.
chli‑1 plants does not affect plastid‑to‑nucleus 
retrograde signaling or the expression 
of photosynthesis‑associated nuclear genes

Since Mg-chelatase activity is markedly reduced in xan-h.
chli-1 chloroplast, we investigated the possibility that 
Arabidopsis and barley plants carrying the xan-h.chli-1 
allele might show the genomes uncoupled (gun) phenotype. 
To do so, barley Xan-h, xan-h.chli-1 and xan-h.56 seedlings 
were grown on MS medium in the presence or absence of 
norflurazon (NF), and levels of Lhcb3 and Rbcs transcripts 
were determined. As shown in Fig. S7A, Xan-h and xan-h.
chli-1 seedlings were able to down-regulate the expression 
of Lhcb3 and Rbcs genes in the presence of NF, indicating 
that xan-h.chli-1 mutant does not display the gun phenotype, 
unlike the lethal xan-h.56 allele used here as a positive 
control (Gadjieva et al. 2005). Similarly, Arabidopsis lines 
carry either the Xan-h or the mutant xan-h.chli-1 allele from 
barley under the control of 35SCaMV promoter markedly 
reduced the expression of Lhcb3 and Rbcs genes in the 
presence of NF, like Col-0 and the cs mutant. As expected, 
the gun5 mutant failed to repress the expression of Lhcb3 
and Rbcs genes, supporting the notion that the xan-h.chli-1 
mutation does not affect plastid-to-nucleus communication 
(Fig. S7B).

To further investigate the impact of the xan-h.chli-
1 mutant allele on leaf gene expression, a transcriptomic 
analysis was performed on Xan-h and xan-h.chli-1 leaves 
obtained from plants grown under greenhouse conditions. 
Principal component analysis (PCA) revealed that the four 
transcriptome replicates of each genotype clustered together 
in two clearly separated groups (Fig. 7A). Moreover, differ-
entially expressed genes (DEGs) were identified by filtering 
for the log-fold-change (logFC) and the adjusted p-value 
(padj), which resulted in the identification of 432 up-reg-
ulated and 335 down-regulated genes in xan-h.chli-1 rela-
tive to Xan-h (Fig. 7B; Supplementary data). The relatively 
small number of DEGs agrees with the moderate distance 
between the two PCA clusters. This observation, together 
with the fact that Biological Process Gene Ontology (GO) 
term analysis resulted in no significant GO term enrichment, 
indicates that the xan-h.chli-1 mutant allele does not cause 
major changes at the transcriptional level with respect to its 
Xan-h counterpart. SUBA5 location prediction was applied 
to the Arabidopsis homologs of the up and down-regulated 
genes. Among the up-regulated DEGs, 298 were found in the 
SUBA5 database and most of the encoded proteins were pre-
dicted to be active in the plasma membrane (23%), nucleus 
(21%) and cytosol (19%), while only 8% were targeted to 
plastids (Fig. 7C).

The majority of the 177 down-regulated genes found in 
the SUBA5 database were also predicted to be localized 

to the plasma membrane (27%), the nucleus (24%) or the 
cytosol (16%), while only 7% of the genes encoded plastid 
proteins, further confirming the limited impact of the xan-h.
chli-1 mutation on chloroplast functionality.

In light of the localization of the Mg-chelatase enzyme 
and the pale green phenotype of mutant plants, the 
chloroplast-related DEGs were analysed in detail. Twenty-
three up-regulated nuclear genes were predicted or reported 
to encode proteins active in the chloroplast (Table S2). These 
included the ATNTH1 gene encoding a DNA glycosylase-
lyase involved in base excision repair of oxidative DNA 
damages and an M-type 4 thioredoxin with a role in the 
oxidative stress response. Genes coding for proteins with 
a role in jasmonic-acid-mediated stress responses, such 
as lipoxygenae 2 (LOX2), the lipase DALL4, and the 
allene oxidase synthase (AOS), and in drought and heat-
stress responses, as in the case of Heat Shock Protein 21 
(HSP21) and TRR14, were also upregulated (see Table S2). 
In addition, several upregulated genes are reported to play 
a role during the early stages of chloroplast and seedling 
development, including early light-inducible protein 1 
(ELIP1), plastid transcriptionally active chromosome 18 
(pTAC18), raspberry 3 (RSY3), and arogenate dehydratase 
6 (ADT6). Furthermore, the plastid type I signal peptidase 
1 (PLSP1) and the plastid type I signal peptidase 2B 
(PLSP2B), which remove signal sequences from proteins 
translocated into the thylakoid lumen, were also upregulated.

The thirteen chloroplast-located down-regulated genes 
are mainly involved in protein folding and assembly, such 
as FK506-binding protein 13, a peptidyl-prolyl isomerase 
located in chloroplast thylakoid lumen which is considered 
to act as a protein folding catalyst, and RAF2, Rubisco 
Assembly Factor 2, in fatty acid and lipid biosynthesis, 
such as Acyl Activating Enzyme 16 (AAE16) and UDP-
sulfoquinovose:DAG sulfoquinovosyltransferase 2 (SQD2), 
respectively, and during early developmental stages, as in the 
case of BE1, a putative glycoside hydrolase that plays a vital 
role during embryogenesis and in carbohydrate metabolism, 
and Late Embryogenesis Abundant (LEA) hydroxyproline-
rich glycoprotein, which is thought to function in plant 
development and growth. Strikingly, none of the nuclear 
genes encoding subunits of the thylakoid photosynthetic 
apparatus were among those differentially regulated by the 
xan-h.chli-1 mutant allele.

Moreover,  neither the Mg-chelatase subunits 
nor enzymes involved in chlorophyll biosynthesis 
were found to be differentially expressed. On the 
other hand, the genes Early light-induced protein 1 
(HORVU.MOREX.r3.5HG0482040), which prevents 
excess accumulation of free chlorophyll by inhibiting 
the entire chlorophyll biosynthesis pathway, and the 
Chlorophyllase-2 (HORVU.MOREX.r3.3HG0235790), 
involved in chlorophyll degradation, were found to be 
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up-regulated in the mutant. Three ABA-related genes 
(HORVU.MOREX.r3.6HG0616980, HORVU.MOREX.
r3.6HG0622710, HORVU.MOREX.r3.3HG0288800) 
were also up-regulated in xan-h.chli-1 samples, together 

with the nitrate transporter NPF6.3 (HORVU.MOREX.
r3.7HG0700030) that functions in the stomatal opening 
(Guo et al. 2023).

Fig. 7  Comparative transcriptomic analyses of xan-h.chli-1 and Xan-
h leaves grown under greenhouse conditions. A Principal component 
analysis (PCA) of the four biological replicates for each genotype. 
B Volcano plot of the differentially expressed genes (DEGs) filtered 

by the log of fold change (logFC) and the adjusted p-value (padj). C 
Subcellular localization of DEGs based on information available in 
the SUBA5 database (https:// suba. live/)
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The xan‑h.chli‑1 mutant line is characterised 
by reduced daily transpiration rate

To investigate the growth advantages associated with the 
pale green leaf phenotype, xan-h.chli-1 and Xan-h plants 
were grown in pots in Plantarray, a functional phenotyping 
platform (FPP), in a semi-controlled environmental green-
house, with the aim of detecting small changes in specific 
physiological processes under both optimal and limiting 
watering regimes (Lupo and Moshelion 2024). Plant bio-
mass and water flux measurements performed throughout 
the entire plant life cycle, from January  19th to March  2nd, 
2023, allowed for calculations of transpiration and biomass 
gain of each plant (Appiah et al. 2023). Plants were initially 
grown under well-watered conditions for 23 days, followed 
by an 18-day period of drought-stress, till the late stem elon-
gation stage, and then returned to standard conditions until 
harvesting, at early inflorescence emergence. Under well-
watered conditions, the daily transpiration rate normalized 
to plant fresh weight was significantly lower in xan-h.chli-1 
plants (from 10 to 55% reduction) than in the Xan-h control, 
as shown in Fig. 8A, where data collected during 14 days are 
shown. Similar differences were observed during the drought 
stress period (Fig. 8B), where xan-h.chli-1 plants showed a 
stable reduction in the daily transpiration rate, i.e. around 
40–50% less than the Xan-h control. Strikingly, towards the 
end of the drought-stress period, when plants were under 
severe water deficiency, Xan-h daily transpiration rate 
decreased severely reaching values significantly lower than 
those recorded for xan-h.chli-1, most probably as a conse-
quence of the fact that xan-h.chli-1 plants were better able to 
tolerate the drought stress (Fig. 8B). However, this general 
reduction in transpiration rate came at the expense of total 
biomass accumulation (xan-h.chli-1 16.52 ± 4.42 gr vs. Xan-
h 25.34 ± 2.57 gr; Fig. 8C) and water use efficiency (WUE), 
i.e. biomass gain per ml of transpired water (xan-h.chli-1 
0.00364 ± 0.00064 gr  ml−1 vs Xan-h 0.00446 ± 0.00036 gr 
 ml−1; Fig. 8D).

Discussion

The manipulation of leaf pigment content has been reported 
to enhance light use efficiency in high-density monocultures 
(Kirst et al. 2017). Many genetic targets are available for the 
alteration of leaf chlorophyll levels, as reviewed in Cutolo 
et al. 2023. Recently, we reported on the barley mutant 
happy under the sun 1 (hus1), which is characterised by 
a 50% reduction in the chlorophyll content of leaves, 
owing to a premature stop codon in the HvcpSRP43 gene 
that codes for the 43-kDa chloroplast Signal Recognition 
Particle (Rotasperti et al. 2022). However, when sown at 
standard density under field conditions, the yield of hus1 

plants was comparable to that of the wild type, implying that 
the reduction of leaf chlorophyll content is well tolerated in 
crops.

The xan‑h.chli‑1 barley mutant phenotype is due 
to the reduced activity of Mg‑chelatase enzyme

In the present work, we have characterized a novel 
chlorophyll-deficient mutant in barley. This pale-green 
mutant, xan-h.chli-1, is due to a missense mutation (R298K) 
in a highly conserved residue of the HvCHLI protein—
the smallest subunit of the Mg-chelatase enzyme, which 
catalyses the first unique step in chlorophyll biosynthesis 
(Lundqvist et al. 2010, 2013). Interestingly, while all of the 
mutants previously described at the Xan-h locus in barley 
(xan-h.38, xan-h.56, xan-h.57 and xan-h.clo125, xan-h.
clo157, xan-h-clo161) show a seedling-lethal phenotype 
(Hansson et al. 1999; Braumann et al. 2014), the xan-h.chli-
1 line is viable. This unique phenotype is due to the fact 
that the R298K missense mutation does not dramatically 
affect the accumulation of HvCHLI, nor its ability to form 
homodimers, but rather results in a drastic reduction of the 
Mg-chelatase activity, as experimentally verified in vitro. 
The fact that the xan-h.clo125, xan-h.clo157 and xan-h.
clo161 variants do not form homodimers in yeast two-hybrid 
assays, while the corresponding variants of the Rhodobacter 
capsulatus bchI gene oligomerize on a gel-filtration column 
in the presence of ATP (Hansson et  al. 2002), may be 
ascribed to the relatively low homology (49% identity) 
between their amino-acid sequences.

The introgression of the xan-h.chli-1 mutant allele into 
the lethal Atchli1/Atchli1 mutant background (Huang and 
Li 2009) fully restored plant viability and reverted the 
albino Atchli1/Atchli1 phenotype to a milder pale-green leaf 
colour, similar to those of the Arabidopsis cs/cs (Kobayashi 
et al. 2008) and barley xan-h.chli-1 mutant phenotypes, 
confirming further that this ATPase motor, found in all 
kingdoms of living organisms, shares a common core 
structure and function (Ogura and Wilkinson 2001; Gao 
et al. 2020; Cha et al. 2010; Miller et al. 2014). Furthermore, 
the xan-h.chli-1 allele also attenuated the lethal xan-h.56 
phenotype, as the biallelic mutant xan-h.56/xan-h.chli-1 
shows a pale green leaf phenotype and PSII functionality 
is comparable to that of xan-h.chli-1 leaves. Since the 
homozygous xan-h.56 mutant does not accumulate the 
HvCHLI protein (Braumann et al. 2014), the pale-green 
phenotype of the heterozygote is attributable to the xan-h.
chli-1 allele alone. Conversely, the xan-h.clo161 barley 
mutant showed a reduction in HvCHLI accumulation 
relative to the wild-type, and the semi-dominant nature 
of this mutation indicates that the protein encoded by the 
xan-h.clo161 allele has detrimental effects on the assembly 
and activity of the HvCHLI hexamer (Hansson et al. 2002). 

158



Plant Cell Reports          (2024) 43:246  Page 15 of 23   246 

This accounts for the accumulation of both protein variants 
in the barley biallelic mutant xan-h.clo161/xan-h.chli-
1, in which the interaction of the two variants within the 
HvCHLI hexamer most probably results in a non-functional 
Mg-chelatase and a lethal Chlorina-like phenotype.

Our findings are also in agreement with the localization 
of the R298 residue, which is predicted to reside in the 
ATP-binding pocket and to interact directly with the ATP 

molecule. The model displays conformational similarity 
to the recently published CHLI hexamer structure from 
Synechocystis sp. PCC 6803 (PDB ID 6L8D, Gao et al. 
2020), which exhibits 73% sequence identity with WT 
HvCHLI. In particular, the altered interactions caused by 
the R298K substitution in the ATP-binding pocket suggest 
that the R298 residue is involved in either ATP binding and/
or ATP hydrolysis.

Fig. 8  Relative performance of Xan-h and xan-h.chli-1 plants grown 
under optimal and drought-stress conditions, as estimated by the FPP 
phenotyping platform. A Upper panel: Daily transpiration rate nor-
malized to plant fresh weight (g water/g plant/min) as evaluated for 
14 days under well-watered conditions during daylight exposure from 
6.00 am to 18.00 pm. To avoid overloading the Figure, data obtained 
during the night period are not shown. Lower panel: Photosynthetic 
active radiation intensities (PAR) and vapour pressure deficit (VPD) 
measured by a weather station for the 14 representative days under 
well-watered conditions. B Upper panel: daily transpiration rate nor-
malized to plant fresh weight (g water/g plant/min) as evaluated for 
14  days under drought-stress conditions, automatically maintained 
through the feedback-controlled irrigation system, during daylight 
exposure from 6.00 am to 18.00  pm. Lower panel: photosynthetic 

active radiation intensities (PAR) and vapour pressure deficit (VPD) 
measured by a weather station for the 14  days under drought-stress 
conditions. In all cases, the significance of the data was estimated 
using Student’s t-test (***P < 0.001, **P < 0.01, *P < 0.05). C Plant 
dry weight (g) at the end of the experiment, i.e. upon completion 
of plant life cycle. The plant material was dried at 60  °C for 72  h. 
The significance of the observed differences was evaluated with 
Students t-test (** P < 0.01). D Water use efficiency (WUE) (g dry 
plant/ml water transpired) was measured by the total weight of dry 
plants at the end of the life cycle, normalized to total water transpired. 
Student’s t-test was performed to estimate the significance of the 
observed differences (* P < 0.05). Average data of five biological rep-
licates are shown
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The reduced chlorophyll content in xan‑h.chli‑1 
leaves increases photosynthetic efficiency 
under high light conditions

As expected, pale green xan-h.chli-1 leaves showed a 
reduced content of both Chls a and b and an increase 
in the Chla/Chlb ratio when compared to control plants. 
Furthermore, comparable reductions were observed in the 
accumulation of carotenoids, including β-carotene which 
is preferentially associated with the PSI and PSII cores 
(Caffarri et  al. 2014). This indicates that—unlike the 
alteration of antenna protein biogenesis in hus1 mutant 
(Rotasperti et al. 2022)—the impairment of chlorophyll 
biosynthesis leads to a general destabilization of the entire 
photosynthetic apparatus, as is confirmed by the reduced 
accumulation of antenna proteins and photosystem core 
subunits observed by immunoblots. In addition, the 
reorganization of electron transport in the thylakoids 
of xan-h.chli-1 leaves appears to take place at the post-
transcriptional level, as transcriptomic analysis revealed 
that none of the nuclear genes encoding photosynthesis-
associated proteins were affected in the mutant.

Intriguingly, the reduction of antenna size in xan-h.
chli-1 leaves, together with the decline in photosystem 
core proteins, decreased the efficiency of photosynthesis 
only under low light intensities, whereas photosynthetic 
performance was enhanced relative to WT under high 
light levels, as already reported in the case of hus1 plants 
(Rotasperti et al. 2022). This is most probably due to the 
reduction in thylakoid excitation pressure in xan-h.chli-
1 leaves exposed to high-light intensities, as indicated 
by the lower values of Y(NPQ) and Y(ND) parameters 
and the lower reduction of the abundance of D1 and D2 
PSII core subunits observed upon exposure to highlight 
conditions (see Fig. S4). In this context, the pale green 
phenotype associated with the xan-h.chli-1 mutant allele 
deserves to be investigated for its performance under field 
conditions since this trait has been reported to favour a 
more equal distribution of light under high-density field 
conditions with potential benefits for net photosynthetic 
efficiency across the entire canopy and grain yield (Kirst 
et  al. 2018), as well as for the efficiency of nitrogen 
use (Walker et al. 2018; Sakowska et al. 2018). Unlike 
the soybean mutant MinnGold (Sakowska et al. 2018), 
characterised by a marked decrease in leaf chlorophyll 
content and biomass production under field conditions, 
xan-h.chli-1 shows, indeed, a milder reduction of leaf 
chlorophyll content during the vegetative phase, while 
the chlorophyll content of the flag leaf, which contributes 
largely to grain yield (Niu et al. 2022), is almost identical 
to control plants.

The xan‑h.chli‑1 allelic variant does not alter 
the chloroplast‑to‑nucleus retrograde 
communication and reduces the daily transpiration 
rate

Independent studies have described the Mg-chelatase to have 
a role in chloroplast-to-nucleus retrograde communication 
(Mochizuki et  al. 2001; Larkin et  al. 2003). However, 
xan-h.chli-1 seedlings do not show the genomes uncoupled 
phenotype in the presence of Norflurazon, unlike seedlings 
that carry lethal allelic variants (Gadjieva et al. 2005). This 
is advantageous, since retrograde signalling plays a crucial 
role in the adaptation of plants to changing environments, 
and several gun mutants show impaired responses and 
heightened sensitivity to abiotic challenges (Song et al. 
2018; Marino et al. 2019).

Moreover, xan-h.chli-1 plants are characterised by a 
significantly lower transpiration rate, at the expense of 
total biomass accumulation and WUE, possibly due to the 
reduction of leaf temperature, predicted to be associated with 
the reduced leaf chlorophyll content (Drewry et al. 2014). 
Alternatively, the reduced daily transpiration rate might 
be the consequence of a marked decrease of Mg-chelatase 
activity together with the slight reduction of Mg-chelatase 
abundance, including CHLH subunit reported to bind 
abscisic acid (ABA) and to function in ABA signalling 
and stomatal movement (Shen et al. 2006; Wu et al. 2009). 
Furthermore, a specific role in the modulation of ABA 
signalling in guard cells was attributed to the CHLI subunit 
(Du et al. 2012).

This behaviour, combined with the reduction in Chlb leaf 
content, resembles the high-risk drought escape strategy 
adopted by certain wild barley accessions (Hordeum vulgare 
spp. spontaneum) that are adapted to stable and very dry 
environments where fitness (i.e. reproductive output and 
the quality of offspring) prevails over the achievement 
of the full production potential (Galkin et al. 2018). This 
finding supports the notion that pale-green leaves may have 
beneficial effects in harsh environments, as in the case of 
certain Syrian barley landraces and a few accessions of wild 
barley (Hordeum vulgare spp. spontaneum) in Israel, that 
grow under arid climatic conditions and are characterized by 
a pale green phenotype (Watanabe and Nakada 1999; Tardy 
et al. 1998; Galkin et al. 2018).

Overall, while crop breeding has led to the development 
of high-yielding cultivars, progress toward the development 
of crops that tolerate abiotic stresses has been very slow. 
Thus, the need to reduce the ‘yield gap’ and improve yields 
under a variety of stress conditions is of strategic importance 
for future food security (Sadras and Richards 2014; Cattivelli 
et al. 2008; Araus et al. 2002). In this context, the xan-h.chli-
1 mutant allele and its pale green phenotype have a potential 
for application in breeding programs that deserves to be 
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investigated. To this end, the introgression of the xan-h.chli-
1 allele into elite barley cultivars, and collaboration with 
plant breeders, agronomists and crop physiologists to select 
the most appropriate yield-testing protocols, including te 
definition of growing plant densities and standard parameters 
to define yields are needed. Finally, in the medium term, 
the knowledge gained could be transferred to other cereals, 
including wheat, given the high degree of conservation of 
the chlorophyll biosynthetic pathway and the photosynthetic 
machinery in higher plants.

Materials and methods

Nucleotide and amino acid sequence analysis

Amino-acid and genome sequences of Xan-h (HORVU.
MOREX.r3.7HG0738240), AtCHLI1 (At4g18480) and 
AtCHLI2 (At5g45930) were obtained from the ENSAMBLE-
Plant database (plants.ensembl.org/index.html). Multiple 
sequence alignments were obtained locally with Muscle 
v5 (drive5.com/muscle5/) (Edgar 2022). Subcellular 
localization and chloroplast transit peptide (cTP) predictions 
were identified by TargetP (services.healthtech.dtu.dk/
services/TargetP-2.0/).

Plant material and growth conditions

Barley (Hordeum vulgare) plants were cultivated on acid 
soil (Vigor plant-growth medium, based on Irish and 
Baltic peats, pH 6.0; pot volume 2.5 L; 2 plants per pot) 
supplemented with Osmocote fertilizer under controlled 
greenhouse conditions (around 500–600  µmol photons 
 m−2  s−1 for 16 h and 8 h dark; GreenPower LED toplighting 
linear—Phillips). The greenhouse is located at the 
Botanical Garden “Città Studi” of the Univeristy of Milano 
(45°28′32.2″N—9°14′05.0″E). Temperatures were set to 
20 °C during the day and 16 °C at night, with a relative 
humidity of 60%. High-light exposure was conducted 
by growing plants under control conditions (around 
400–500 µmol photons  m−2  s−1) and transferring them to 
high light (around 1200–1400 µmol photons m −2 s −1) for 
0.5 and 8 h.

Only in the case of Arabidopsis, Columbia-0 (Col-0) and 
mutant lines were grown on soil (acid sphagnum peat, Atami 
Bio-Gromix; pot volume 0.5 L; 5 plants per pot) in a climate 
chamber (Percival CLF AR-66L; 150 µmol photons  m−2  s−1 
for 16 h, and 8 h dark, 22 °C and a relative humidity of 60%), 
placed at the Department of Biosciences of University of 
Milano (45°28′35.6″N 9°14′02.0″E).

The barley TM2490 line was identified among the  M4 
generation of the chemically mutagenized TILLMore 
population (Talamè et al. 2008), which is derived from the 

‘Morex’ cultivar background. Around 4000 M4 lines, grown 
under field conditions at the experimental farming facility 
in Cadriano, Bologna, Italy (44°33′00.0″N 11°23′39.0″E) 
during the growth season 2018–2019, were screened based 
on their photosynthetic performance [Y(II) values], using 
the Handy PEA fluorometer (Hansatech Instruments Ltd., 
UK), and on their leaf apparent chlorophyll content, using 
the SPAD-502 chlorophyll meter (Konica-Minolta, Tokyo, 
Japan).

The  F2 segregating population, generated for mapping 
purposes, was obtained by manually crossing the TM2490 
line with the cv. Barke. The xan-h.chli-1 line was isolated 
from an  F2 population obtained by backcrossing TM2490 
with the barley cv. Morex  (BC2F2). The Arabidopsis Atchli1/
Atchli1 T- DNA insertion mutant (SAIL_230_D11) was 
identified by searching the T-DNA Express database (signal.
salk.edu/cgi-bin/tdnaexpress), while the homozygous line 
cs/cs was provided by Professor Tatsuru Masuda (Kobayashi 
et  al. 2008). The transgenic Arabidopsis lines Atchli1/
Atchli1 + 35S::Xan-h and Atchli1/Atchli1 + 35S::xan-h.chli-1 
were generated by Agrobacterium-mediated transformation 
of the heterozygous Atchli1/AtCHLI1 mutant line with 
either the wild-type Xan-h or the mutant xan-h.chli-1 coding 
sequence from barley, respectively, using the pB2GW7 
plasmid (VIB-UGhent for Plant Systems Biology). Primers 
used for mutant isolation and cloning procedures are listed 
in Table S1.

The phenotyping platform

The functional-phenotyping platform Plantarray (FPP; 
PlantDitech Ltd.; Yavne, Israel) was used to monitor 
plant growth and water balance. The Plantarray is a 
high-throughput functional phenotyping platform that 
continuously and simultaneously measures water flux in the 
soil–plant–atmosphere continuum. The system consists of 
individual, highly sensitive balances, each connected to its own 
control unit. As each measurement unit is connected to the 
water and fertilizer tank separately, individual irrigation and 
fertilization regimes are controlled. Every 3 min, the weight 
of the whole system (i.e., pot, plant, and sensors) is recorded 
and through internal calculations plant net weights, and a 
set of additional physiological plant parameters [e.g., daily 
transpiration (dTR), transpiration rate, and volumetric soil 
water content (SWC)] is obtained. Moreover, environmental 
factors are monitored to calculate vapor pressure deficit (VPD) 
throughout the experiment and to understand the influence 
of these environmental factors in the transpiration and other 
physiological parameter measured on the plants. The data are 
made accessible in real time via the online analysis tool (SPAC 
Analytics), which can also be used for data visualization and 
analysis. The installed feedback irrigation system allows the 
user to establish a standardized drought treatment allowing 
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for comparisons between the plants. Exposing all plants to 
similar drought stress is possible by taking into account each 
plant’s transpiration rate, e.g., by re-irrigating only a certain 
percentage of the previous day transpiration. This mimics 
the gradual development of soil water deficits in the field 
(Dalal et al. 2020). To ensure that occurring water loss was 
solely due to plant transpiration, we covered the soil with a 
styrofoam sheet to prevent soil evaporation. A more detailed 
description of the system and the underlying theory can be 
found in Dalal et al. (2020). The sensors include the HC2-
S3-L meteo probe for relative humidity and temperature in the 
greenhouse (Rotronic, Crawley, United Kingdom), LI-COR 
190 Quantum Sensor for photosynthetically active radiation 
measurements (Lincoln, NE, United States), and a soil 
moisture, electro-conductivity and temperature sensor (5 T, 
Decagon devices, Pullman, WA, United States) incorporated 
in every pot. All plants were exposed to comparable drought 
stress by taking each plant’s transpiration rate into account, as 
previously described (Dalal et al. 2020). Plants were grown 
on the Plantarray system (pot volume 3 L; one seedling per 
pot; potting mix Ökohum” containing plant compost, peat, 
and perlite; Organic matter = 80%, 160 mg/L N, 120 mg/L 
P2O5, and 320 mg/L K20, pH = 5.8), under greenhouse semi-
controlled conditions (Rehovot—31°53′53.7″N 34°48′24.9″E), 
for 43 days from January 19 to March 2, 2023. During the 
whole experiment, artificial light (400-W MT400DL/BH) 
was provided from 5:30 to 18:00 and the temperature was 
maintained at 23 °C/18 °C. The VPD fluctuated between 
0.8 kPa and 2.4 kPa (mean, 1.7 kPa). During the pre-drought 
phase of 24 days, all plants were well-watered at pot capacity 
through nocturnal irrigation. Drought conditions were 
progressively imposed from February 12 to March 2 (18 days) 
by gradually reducing the daily irrigation to 80% of the plants’ 
own previous day transpiration level. After 10 more days on 
the Plantarray (recovery phase, in which irrigation followed 
the well-watered regime again), plants were moved to the 
greenhouse and, upon harvest, total dry biomass weight was 
measured. To determine the dry weight, the plant material 
was dried at 60 °C for 72 h (Appiah et al. 2023). Whole-
plant transpiration rates were derived by multiplying the first 
derivative of the measured load-cell time series by − 1. The 
transpiration was then normalized to the plant’s fresh weight. 
Water-use efficiency (WUE) was calculated as harvest product 
dry weight (g)/water transpired over the entire Plantarray 
growth period (ml) (Jaramillo Roman et al. 2021).

RNAseq analyses for mapping and differential gene 
expression

For gene mapping analyses, RNA was isolated from 100 
wild-type-like and 100 TM2490-like  F2 plants (TM2490 × cv 
Barke) and extracted as previously described (Verwoerd 
et al. 1989). Independent RNA samples were bulked in an 

equal ratio to generate two pools. RNA pools were subjected 
to poly-A capture and paired-end sequencing, producing 
approximately 100 million 2 × 150-bp read pairs per pool 
(47.97 M and 48.89 M 2 × 150 nt paired-end reads, for 
wild-type-like and TM2490-like pools, respectively). Reads 
were mapped to the H. vulgare Morex v3 genome sequence 
(Mascher et  al. 2021). Coherent mapping was obtained 
for 84.5% and 86.1% of pairs for the wild-type-like and 
TM2490-like pools, respectively. Samtools (Danecek et al. 
2021) was used to sort and index the resulting alignment 
files, and FreeBayes (v1.3.2) (Garrison and Marth 2012) 
was used to call variants, employing default parameters 
except for requiring a minimum mapping quality of 20 and 
a minimum base-call quality of 30. Custom Python scripts 
were employed to identify variants segregating between 
pools (allele frequency > 0.1 in both pools and < 0.9 in the 
wild-type-like pool). Variants were binned in 2-Mb intervals 
along the barley genome. Variants in this region (chr7H: 
592500000..605500000) were analysed using the Ensembl-
vep pipeline (McLaren et al. 2016).

For quantitative transcriptomic analyses, total RNA was 
isolated from 14-day-old leaf samples obtained from four 
biological replicates each of Xan-h and xan-h.chli-1 plants. 
Differential gene expression analysis was performed in R 
using the DESeq2 package (Love et al. 2014). DEGs were 
filtered for log of fold change (logFC) > 0.5 and an adjusted 
p-value (padj) < 0.05. The ncbi-blast-2.14.0 + tool (ftp.ncbi.
nlm.nih.gov/blast/executables/blast+/LATEST/) was used 
to perform identifier mapping on the barley genes (i.e., 
proteins in A. thaliana that appear to match the input protein 
sequences of H. vulgare cv. Morex with a given percentage 
of identity). The subcellular localization was predicted 
with SUBA5 (suba.live/index.html). Biological Process 
Gene Ontology (GO) term enrichment was performed 
with agriGO v2.0 (systemsbiology.cau.edu.cn/agriGOv2/
specises_analysis.php?SpeciseID = 1&latin = Arabidopsis_
thaliana) (Tian et al. 2017). The raw RNASeq data have been 
deposited in the NCBI data repository (https:// submit. ncbi. 
nlm. nih. gov/ subs/ biopr oject/) under the bioproject identifier 
PRJNA1052990.

Assay for genomes uncoupled phenotype

Barley and Arabidopsis seeds were surface-sterilized 
and grown for 6 days (100 μmol photons  m−2   s−1 on a 
16 h/8 h light/dark cycle) on Murashige and Skoog medium 
(Duchefa, Haarlem, The Netherlands), supplemented with 
2% (w/v) sucrose and 1.5% (w/v) Phyto-Agar (Duchefa). 
To discriminate the homozygous xan-h.56 mutants, the 
barley seedlings were then transferred onto MS media 
supplemented with 5  µM NF, while  Arabidopsis seeds 
were grown directly on NF-supplemented media. RNA was 
extracted from the seedlings, and cDNA was obtained using 
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the iScript™ gDNA Clear cDNA Synthesis Kit (Bio-Rad). 
The genomes uncoupled (gun) phenotype was identified by 
monitoring the expression of Rbcs and Lhcb3 genes in Xan-
h and xan-h.chli-1, together with Arabidopsis Col-0, cs/cs, 
35S::Xan-h and 35S::xan-h.chli-1 lines, using RT-qPCR. 
Primers are listed in Table S1. Arabidopsis gun5 and barley 
xan-h.56 mutants were used as positive controls for the 
genomes uncoupled phenotype.

Yeast two‑hybrid assay

Coding sequences for Xan-h, xan-h.chli-1, xan-h.clo125, 
xan-h.clo157 and xan-h.clo161, devoid of cTPs, were cloned 
into pGBKT7-GW and pGADT7-GW (Takara Bio) vectors 
through Gateway cloning. Primer sequences are listed in 
Table S1. Yeast strains Y187 and AH109 were transformed 
according to the Clontech User’s Manual (PT1172-1) with 
the vectors pGBKT7 and pGADT7, respectively, harbouring 
the WT Xan-h and the mutant variants. Each Y187 strain 
was mated with the respective AH109 strain and plated on 
synthetic drop-out (SD) medium lacking tryptophan (-W) 
and leucine (-L), to select for positive diploids. To test Xan-
h and mutant variants homodimerization, overnight liquid 
cultures were normalized to OD 0.5 and plated on selective 
media lacking histidine (-W-L–H) and histidine and adenine 
(-W-L-H-A). The growth of yeast culture dilutions was 
observed after three days.

Immunoblot analyses

Thylakoids and total protein extracts were prepared from 
equal amounts of barley leaves (fresh weight) collected 
from 2-week-old seedlings as described previously (Bassi 
and Simpson 1987). Protein extracts were fractionated 
on denaturing 12% (w/v) acrylamide Tris–glycine SDS-
PAGE (Schägger and von Jagow 1987) and transferred to 
polyvinylidene-difluoride (PVDF) membranes (Ihnatowicz 
et  al. 2004). Three replicate filters were probed with 
specific antibodies. Signals were detected by enhanced 
chemiluminescence (GE Healthcare). Antibodies directed 
against Lhca1 (AS01 005), Lhca2 (AS01 006), Lhca3 (AS01 
007), Lhcb1 (AS01 004), Lhcb2 (AS01 003), Lhcb3 (AS01 
002), Lhcb4 (AS04 045), Lhcb5 (AS01 009), D1 (AS05084), 
D2 (AS06 146), CP43 (AS111787), CP47 (AS04 038), PsaA 
(AS06172), PsaD (AS09461), PetA (AS08 306), PetE (AS06 
141), PsbO (AS05092), PsbQ (AS06 142–16), PsbR (AS05 
059), PsbS (AS09533), H3 (AS10710) were obtained from 
Agrisera (Vännäs, Sweden). Antibodies were raised against 
HvCHLI, HvCHLD, HvCHLH as previously described (Lake 
et al. 2004). The HvGUN4-specific antibody was kindly 
provided by Professor Mats Hansson (Lund University, 
Sweden). Three biological replicates were analysed for each 
SDS-PAGE and immunoblot.

Mg‑chelatase activity assay

In-vitro Mg-chelatase activity assays were performed 
according to Hansson et al. (1999). WT and xan-h.chli-
1 seeds were sown in vermiculite and grown in the dark 
for 10 days. Etiolated seedlings were then homogenized in 
0.4 M mannitol, 20 mM Tricine-NaOH pH 9 and 1 mM DTT. 
Intact chloroplasts were enriched by 15-min centrifugation 
at 3000 g and loaded onto a 40% (vol/vol) Percoll cushion 
in homogenization buffer. Gradients were centrifuged for 
15 min at 13,000 g. After washing steps in homogenization 
buffer, chloroplasts were resuspended in 200 μL of lysis 
buffer (20 mM Tricine-NaOH pH 9, 1 mM DTT, 1 mM 
PMSF). After a centrifugation step at 11,000 g for 5 min, 
the recovered supernatants containing the Mg-chelatase 
subunits were adjusted to the same protein concentration. 
The enzymatic assay was carried out by adding 1 μL of the 
reaction cocktail (50 mM ATP, 250 mM creatine phosphate, 
250 mM  MgCl2, and 0.06 mM deuteroporphyrin). Reactions 
were stopped by adding 1 mL acetone/water/25% ammonia 
(80/20/1, vol/vol/vol) and 200 µL heptane was added to 
remove chlorophyll from samples. To measure the relative 
amount of Mg-deuteroporphyrin, the emission spectrum of 
the acetone phase was recorded from 550 to 600 nm using 
an excitation wavelength of 408 nm. Excitation and emission 
slits were set to 5 nm.

Pigment extraction and quantification

Pigments from Arabidopsis and barley were extracted from 
fresh leaves with 90% acetone. To determine Chla and Chlb 
concentrations, spectrophotometric measurements were 
carried out according to Porra et al. (1989) and normalized 
relative to fresh leaf weight. Barley leaf pigment content was 
also estimated by reversed-phase HPLC (Färber et al. 1997) 
normalised to fresh weight. Measurements were performed 
on five biological replicates for each genotype. Apparent 
chlorophyll content was also measured in vivo at different 
development stages using the SPAD-502 chlorophyll meter 
(Konica-Minolta, Tokyo, Japan).

Chlorophyll fluorescence measurements

In-vivo Chla fluorescence was recorded on second barley 
leaves with a Dual PAM 100 (Walz, Effeltrich, Germany) 
according to Barbato et  al. 2020. After 30 min of dark 
adaptation, leaves were exposed to increasing actinic light 
intensities (0–1287 μmol photons  m−2  s−1) and the following 
thylakoid electron-transport parameters were determined: 
the effective quantum yields of PSII [Y(II)] and PSI [Y(I)], 
the PSII quantum yield of non-regulated energy dissipation 
[Y(NO)], the PSII quantum yield of regulated energy dis-
sipation [Y(NPQ)], the quantum yield of non-photochemical 
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energy dissipation in PSI due to acceptor side limitation 
[Y(NA)], and the non-photochemical PSI quantum yield of 
donor-side limited heat dissipation [Y(ND)] parameters. An 
imaging Chl fluorometer (Imaging PAM; Walz) was used to 
measure Chla fluorescence and for in-vivo imaging. Dark-
adapted plants were exposed to the blue measuring beam 
(1 Hz, intensity 4;  F0) and a saturating light flash (intensity 
10) was used to determine Fv/Fm values. A 5-min exposure 
to actinic light (56 μmol photons  m−2  s−1) was then used 
to calculate Y(II). The Handy PEA fluorometer (Hansatech 
Instruments Ltd., UK) was used to measure Fv/Fm values 
in barley plants grown under greenhouse conditions during 
plant growth.

Transmission electron microscopy (TEM)

TEM analyses were performed as described previously 
(Tadini et  al. 2020). Portions (2  mm × 3  mm) of the 
second leaves of Xan-h and xan-h.chli-1 barely plants 
were manually dissected and fixed under vacuum in 2.5% 
(w/v) glutaraldehyde and 0.1 M sodium cacodylate buffer. 
After washing with water several times, samples were 
counterstained with 0.5% uranyl acetate (w/v) overnight 
at 4  °C. Tissues were then dehydrated in increasing 
concentrations of ethanol (70%, 80%, 90%, 100% v/v) and 
permeated twice with 100% (v/v) propylene oxide. Samples 
were gradually infiltrated first with a 1:2 mixture of Epon-
Araldite and propylene oxide for 2  h, then with Epon-
Araldite and propylene oxide (1:1) for 1 h and left in a 2:1 
mixture of Epon-Araldite and propylene oxide overnight 
at room temperature. Epon-Araldite resin was prepared 
by mixing Embed-812, Araldite 502, dodecenylsuccinic 
anhydride (DDSA) and Epon Accelerator DMP-30 
according to the manufacturer’s specifications. Ultra-thin 
sections of 70 nm were cut with a diamond knife (Ultra 
45°, DIATOME) and collected on copper grids (G300-Cu, 
Electron Microscopy Sciences). Samples were observed by 
transmission electron microscopy (Talos L120C, Thermo 
Fisher Scientific) at 120 kV. Images were acquired with 
a digital camera (Ceta CMOS Camera, Thermo Fisher 
Scientific).

HvCHLI hexamer structure prediction

The homo-hexameric ring model of the barley HvCHLI 
ATPase subunit of Mg-chelatase was generated using 
version 3 of Multimer from DeepMind Alphafold2 (Evans 
et al. 2022), allowing for template search with HH-suite 
(Steinegger et al. 2019). The structure underwent relaxation 
by the gradient-descent method using the Amber (Hornak 
et al. 2006) force-field. Additional refinement was performed 
with Protein Preparation Wizard (Madhavi Sastry et al. 
2013) from the Schrödinger Maestro suite, version 13.7.125, 

release 2023-3 (Maestro, Schrödinger, LLC, New York, NY, 
2023). From the same suite, the module Residue Scanning 
and Mutation was used to replace R298 with lysine (K298), 
allowing for side-chain prediction with backbone sampling 
up to 2.5 Å from the mutation site, and Glide XP (Friesner 
et  al. 2006) to perform the docking of ATP. The open-
source software PyMOL (Schrödinger, LLC, The PyMOL 
Molecular Graphics System, Version 2.6) was used for the 
visualisation of the molecular structures and rendering of the 
Figures. The WT model of the HvCHLI subunit is available 
at https:// www. model archi ve. org/ doi/https:// doi. org/ 10. 
5452/ ma- xoqwu, while the R298K model is available at 
https:// www. model archi ve. org/ doi/https:// doi. org/ 10. 5452/ 
ma- tvik6.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00299- 024- 03328-2.
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Supplementary Figures 

 

Figure S1. Alignment of CHLI sequences with Musclev5. The chloroplast transit peptide (cTP) of 

the HvCHLI protein, as predicted by TargetP-2.0 (services.healthtech.dtu.dk/services/TargetP-2.0), is 

highlighted with a light-blue box. Amino-acid substitutions reported as SNPs in barley mutants are 

indicated. Amino-acid positions refer to the barley sequence, including the R298K missense mutation 

as main candidate for the TM2490 pale green phenotype (in red). The degrees of identity between the 

Hordeum vulgare sequence and the analyzed sequences are the following: Arabidopsis thaliana 

AtCHLI1 78%; Arabidopsis thaliana AtCHLI2 81%; Oryza sativa subsp. Japonica OsCHLI 90%; 

Glycine max GmCHLI 77%; Nicotiana tabacum NtCHLI 76%; Solanum lycopersicum SlCHLI 78%; 

Prunus persica PpCHLI 78%; Synechocystis sp. (strain PCC 6803 / Kazusa) SyCHLI 73%; 

Cyanidium caldarium CcCHLI 62%; Euglena gracilis EgCHLI 69%; Cyanophora paradoxa 

CpCHLI 70%; Chlamydomonas reinhardti CrCHLI 66%; Rhodobacter capsulatus RcCHLI 49%. 
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Amino acids showing 100% conservation among the sequences considered are indicated by asterisks, 

while dots and colons indicate degrees of amino-acid conservation greater than 40% and 60%, 

respectively. 
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Figure S2. Western blots and negative controls to validate the yeast two-hybrid data. (A) Western 

blot analysis performed by using a HvCHLI-specific antibody on diploid yeast cells (AH109xY187) 

to confirm the expression of Gal4AD and Gal4BD fusions to Xan-h and its allelic variants xan-h.chli-

1, xan-h.clo125, xan-h.clo157 and xan-h.clo161 (MW between 53 and 57 kDa). Empty plasmids 

expressing Gal4AD and Gal4BD (AD x BD) were used as controls. CBB, Coomassie Brilliant Blue 

staining of a replica SDS-PAGE. (B) To exclude possible growth on selective media due to non-

specific interaction between the different variants and the Gal4 domains used for the assay, each yeast 

strain expressing wild-type and mutant variants of HvCHLI was alternatively mated and tested for 

interaction against either the Gal4BD or the Gal4AD alone. No interaction between HvCHLI and 
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mutant variants with Gal4BD or Gal4AD could be detected, as shown by the lack of yeast growth on 

selective media, devoid of either Trp, Leu and His (-W -L -H) or Trp, Leu, His and Ade (-W -L -H -

A). 

  

171



 

Figure S3. Details of specific properties of the HvCHLI monomer. (A) Detailed view of the D274- 

R356-R393 interaction within the barley HvCHLI monomer. The overall monomer structure is 

represented in transparent cyan cartoon, except for the alpha helices encompassing D274, R356 and 

R393, which are highlighted in solid cyan cartoon. D274, R356 and R393 are depicted as solid sticks 
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and coloured: cyan for C atoms, blue for N, red for O, and white for H-. The hydrogen bond is 

represented as a dashed yellow line. (B) The ATP-binding domain from the protein Heat Shock Locus 

U [HSLU, PDB ID: 1DO0; (Bochtler et al. 2000)] superimposed on the barley HvCHLI model. The 

HSLU domain is presented in solid orange cartoon, whereas the domain from the barley HvCHLI 

model is in light grey. Selected conserved residues from HSLU are represented as solid sticks: C 

atoms are shown in orange, N atoms in blue, O atoms in red, and H atoms in white. Conserved 

residues of the barley model are depicted in the same colour scheme, except that C atoms are shown 

in light grey.  
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Figure S4. Assay for the genomes uncoupled (gun) phenotype in barley and Arabidopsis lines. (A) 

RT-qPCR expression analyses of the photosynthesis-associated nuclear genes Rbcs and Lhcb3 were 

performed on barley Xan-h, xan-h.chli-1 and xan-h.56 lines grown for 6 days under sterile conditions, 

either in the absence of Norflurazon (NF) or on NF-supplemented medium (5 µM) for 4 days. (B) 

The expression of the same genes was also monitored in Arabidopsis Col-0, cs/cs, Atchli1/Atchli1 + 

35S::Xan-h and Atchli/Atchli + 35S::xan-h.chli-1 mutant lines under the same conditions in presence 

or absence of 5 µM Norflurazon. The retrograde-signalling-defective mutant gun5 (Arabidopsis) and 

xan-h.56 (barley) were used as controls for the gun phenotype.  
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3.3.3 Future perspectives

The characterisation of the barley TM2490 mutant continues in two main directions:

1. The TM2490 mutants exhibit a particular sensitivity to low temperatures. While the

wild-type population can grow at temperatures as low as 4°C, the TM2490 mutants

do not show this capability. To investigate this phenomenon, we are performing

molecular dynamics simulations, collecting microsecond trajectories at both 4°C

and 22°C in across multiple replicates. We expect that analysis of the ATP binding

site under these different conditions will provide insight into this phenomenon.

2. The information gained from the previous point will drive a rational design of the

ATP binding pocket with the aim of retaining the pale green phenotype character-

istic of TM2490, but also allowing the plant to thrive at low temperatures.
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4 — ADDITIONAL CONTRIBUTIONS

During my PhD, I had the opportunity to collaborate with research groups across differ-

ent areas of biology, ranging from plant science to human immunology. In these projects,

I applied computational structural biology techniques, including AI-based protein pre-

diction and design, molecular docking, and molecular dynamics simulations. Regardless

of the specific approach, data analysis and data visualisation have always played a pri-

mary role.

Several of these collaborative efforts have resulted in published manuscripts. My main

contributions to these works were in the computational structural biology sections, where

I was involved in both writing and designing figures, particularly those illustrating data

analysis and visualisation of molecular structures. In all the presented works, the integra-

tion of computational approaches with experimental data has enabled the achievement

of otherwise unattainable results. Indeed, while the static structure of a biomolecule can

provide insights, it is often insufficient for interpreting biological phenomena. Combin-

ing computational techniques with experimental data could overcome this limitation,

allowing for a deeper understanding of the function of biomolecules. In silico data can

drive experimental research forward by generating hypotheses and guiding experimen-

tal analyses.

The following section presents the works to which I have contributed.
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The uneven worldwide vaccination coverage against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
emergence of variants escaping immunity call for broadly effec-
tive and easily deployable therapeutic agents. We have previ-
ously described the human single-chain scFv76 antibody, which
recognizes SARS-CoV-2 Alpha, Beta, Gamma and Delta vari-
ants. We now show that scFv76 also neutralizes the infectivity
and fusogenic activity of the Omicron BA.1 and BA.2 variants.
Cryoelectron microscopy (cryo-EM) analysis reveals that
scFv76 binds to a well-conserved SARS-CoV-2 spike epitope,
providing the structural basis for its broad-spectrum activity.
We demonstrate that nebulized scFv76 has therapeutic efficacy
in a severe hACE2 transgenic mouse model of coronavirus dis-
ease 2019 (COVID-19) pneumonia, as shown by body weight
and pulmonary viral load data. Counteraction of infection cor-
relates with inhibition of lung inflammation, as observed by
histopathology and expression of inflammatory cytokines and
chemokines. Biomarkers of pulmonary endothelial damage
were also significantly reduced in scFv76-treated mice. The re-
sults support use of nebulized scFv76 for COVID-19 induced
by any SARS-CoV-2 variants that have emerged so far.

INTRODUCTION
Lung infection from emerging viruses can raise serious public health
concern in the case of pandemics. From the coronavirus disease 2019
(COVID-19) pandemic, caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), we learned how a broad and
timely vaccination campaign, together with adoption of prevention
measures like mask wearing and social distancing and use of antiviral
medications, can reduce deaths and intensive care pressure. The rela-
tively milder disease recently associated with emergence of the Omi-
cron BA.1 and BA.2 variants is raising hope for a weakening of the

pandemic.1 However, because of the uneven worldwide vaccination
coverage and possible emergence of new viral variants escaping
immunity, the evolution of COVID-19 is unpredictable, and re-
occurrence of severe pulmonary diseases cannot be ruled out.2 The
observation of several threatening post-acute sequelae of SARS-
CoV-2 infection particularly affecting the nervous and cardiovascular
systems,3 urgently necessitates easily deployable therapeutic measures
able to control the infection in the early stages. With prospective
COVID-19 pandemic re-exacerbation, and even in the case of transi-
tion into an endemic phase, two types of interventions are being
envisaged: first, to improve vaccine equity worldwide with a possible
update against SARS-CoV-2 variants and second, to validate early-
stage therapeutic protocols preventing worsening of the disease and
ultimately hospitalizations and post-acute sequelae. As of today,
Omicron variants are challenging the efficacy of most injected anti-
bodies.4–10 Because the Omicron variants apparently remain confined
mainly to the upper respiratory tract,11 use of systemic antibodies is
becoming somehow questionable.

We recently described a cluster of human anti-SARS-CoV-2
antibodies in the format of a single-chain variable fragment (scFv)
able to neutralize viral variants in vitro and in animal models.12 We
also showed that such an antibody format is suitable for intra-nasal
or aerosol formulations that might be useful for topical treatment
of upper and lower respiratory tract SARS-CoV-2 infection.12
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In the present work, we show that the scFv76 antibody of the cluster
found previously to be able to react with SARS-CoV-2 Alpha, Beta,
Gamma, and Delta is also resilient to the Omicron BA.1 and BA.2
mutations, substantially retaining neutralizing activity against these
new viral variants. We provide a pre-clinical proof of concept of
the efficacy of nebulized scFv76 in a mouse model of Delta infection,
selected as an aggressive prototype of viral pneumonia. Finally, we
prove, by single-particle cryoelectron microscopy (cryo-EM), the
wide recognition properties of the scFv76 antibody at the molecular
level, showing that it binds to a well-conserved epitope at the tip of
the spike protein in the receptor binding domain (RBD) with an ar-
chitecture that is able to accommodate the mutations found in all
SARS-CoV-2 variants known to date. Our results support use of
the scFv76 antibody for aerosol therapy of COVID-19 induced by
all variants of concern.

RESULTS
ScFv76 efficiently neutralizes SARS-CoV-2 Delta and Omicron

The scFv76 antibody has been described previously to be able to
neutralize the SARS-CoV-2 Alpha, Beta, Gamma, and Delta viral var-
iants in vitro and in animal models.12 To evaluate its reactivity with
the recently emerged Omicron variants, the ability to compete the
binding of the Omicron BA.1 and BA.2 spikes to human ACE2 was
tested by ELISA. The results in Table 1 show that scFv76 can inhibit
Omicron BA.1 and BA.2 spike binding to ACE2 at half maximal
inhibitory concentration (IC50) concentrations of less than 2.5 nM,
which is like the potency against Delta. The binding affinity of
scFv76 to the Delta and Omicron spikes was then tested by Surface
Plasmon Resonance (SPR) showing KD values of 0.6 nM for Delta
and 6.3 and 14.5 nM for BA.1 and BA.2, respectively (Table 2).
Neutralizing activity against SARS-CoV-2 Omicron BA.1 and BA.2
pseudotyped viruses was also exhibited by scFv76 but not by scFv5
(an anti-RBD antibody shown previously to be devoid of neutralizing
activity and used as a negative control),12 with IC50 values of 2.84 and
2.47 nM, respectively (Figure 1A).

Neutralization of infectivity was further tested against authentic
SARS-CoV-2 Delta and Omicron BA.1 viruses by microneutraliza-
tion assay of cytopathic effects (CPEs) in Vero E6 cells. In this assay,
scFv76 exhibited IC50 values of 1.99 and 6.38 nM against the Delta
and Omicron BA.1 variants, respectively, whereas the non-neutral-
izing antibody scFv5 showed no anti-viral activity, as expected
(Figure 1B).

The Omicron BA.2 spike has been shown recently to be more patho-
genic and more efficient in mediating syncytium formation than the
BA.1 spike.13 The ability of scFv76 to prevent SARS-CoV-2 Omicron
BA.1 or BA.2 spike-induced fusion of pulmonary cells was therefore
tested in vitro. As shown in Figure 1C, incubation with nanomolar
concentrations of the scFv76 antibody proved to be significantly effec-
tive at inhibiting fusion between BA.1 and BA.2 spike-expressing hu-
man HEK293T cells and human lung A549 cells stably expressing the
hACE2 receptor (A549 hACE2).

Before an in vivo pharmacology study of nebulized scFv76 in a severe
Delta-induced pneumonia mouse model, its antiviral neutralization
potency was tested in vitro by qRT-PCR in Delta-infected pulmonary
Calu-3 cells in comparison with the non-neutralizing control anti-
body scFv5. As shown in Figure 1D, scFv76 was found to inhibit
infection with an IC50 of 13.5 nM, whereas no activity of the control
antibody at a concentration greater than 200 nM was observed.

Therapeutic efficacy of nebulized scFv76 in a severe SARS-CoV-

2 Delta interstitial pneumonia model

We previously established the biochemical suitability of scFv76 to
aerosol delivery by a mesh nebulizer.12 To test the pharmacological
efficacy of the nebulized antibody, pneumonia infection was estab-
lished in transgenic hACE2 mice by intranasal challenge with
1 � 105 50% tissue culture infectious dose (TCID50) SARS-CoV-2
(strain Delta B.1.617.2). The overall experimental design is shown
in Figure 2A. Different from infected mice treated with vehicle, the
group of mice treated with scFv76 showed significant body weight re-
covery 4 days after infection (Figure 2B). This result correlated with
an about 100-fold reduction in lung viral RNA copy numbers, as as-
sessed by qRT-PCR (Figure 2C), and with a reduction of infectious
viral particles, as measured by TCID50 (Figure 2D). Nebulized
scFv76 reduced infectious virus titers in the lungs to undetectable
levels in three of five mice; significant viral RNA reduction was also
observed in the nasal turbinates (Figure 2E). Histopathological anal-
ysis of lung sections showed a significant reduction of lung interstitial
edema and hematic endoalveolar extravasation, a reduction of cellular
inflammatory infiltrates in the alveolar/interstitial space, and a reduc-
tion of alveolar septal thickening (Figure 3A). Overall, treatment with
nebulized scFv76, but not phosphate-buffered-saline (PBS), was
significantly effective at counteracting the lung inflammation and
damage induced by the Delta virus, as shown in Figure 3B. To further
evaluate the extent of protection conferred by scFv76 nebulization in
Delta-infected mice, qRT-PCR analyses were performed to measure
the mRNA expression of several inflammatory effectors in lung ho-
mogenates harvested 4 days after infection. Data indicate that aerosol

Table 1. ScFv76 spike/ACE2 competition by ELISA

IC50 (nM) (±SE)

Delta Omicron BA.1 Omicron BA.2

scFv76 1.64 (0.25) 1.90 (0.3) 2.4 (0.1)

scFv5 >40 >40 >40

Shown is competition of spike binding to human ACE2 by scFv antibodies, measured by
ELISA. IC50 values (expressed as nanomolar concentration) are the average (±SE) from
3–4 independent experiments.

Table 2. ScFv76 surface plasmon resonance (SPR) data

Spike trimer ka (10
5 M-1 s-1) kd (10

-5 s-1) KD (nM)

Delta 1.1 6.1 0.6

Omicron BA.1 0.7 41.6 6.3

Omicron BA.2 1.2 174.9 14.5
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treatment with scFv76 induced significant reduction of key pro-in-
flammatory cytokines like the interleukins IL6, IL1B, IL21, IL10,
IL4, and tumor necrosis factor alpha (TNF) and the chemokines
CCL2, CCL20, CXCL1, and CXCL10 (Figures 4A and 4B). The lungs
of infected and vehicle-treated mice showed upregulated transcrip-
tion levels of type I interferon (IFNA1 and especially IFNB1) and
type II interferon (IFNG) and of key IFN-modulated genes (IFIT1,
ISG15 and MX1). All of these genes were significantly reduced in
lungs of mice treated with scFv76 (Figures 4A and 4C). Finally, we
evaluated some biomarkers of pulmonary vascular damage, and the
data indicated that the treatment also counteracted upregulation of

Figure 1. Resilience of scFv76 reactivity to the

Omicron BA.1 and BA.2 variants

(A) Neutralization of pseudotyped virus expressing the

SARS-CoV-2 Omicron (B.1.1.529) BA.1 or BA.2 spike,

assessed by luciferase assay in hACE2-expressing

Caco-2 cells. Data are the average (±SD) of two

replicates from one representative experiment. (B)

Neutralization activity of scFv antibodies assessed by

viral titration (Delta and Omicron strains) on Vero E6

cells by microneutralization assay. Data are the average

(±SD) of eight replicates from one representative

experiment. (C) Inhibition of SARS-CoV-2 spike-

mediated cell-cell fusion using HEK293T donor cells

expressing green fluorescent protein (GFP) and

Omicron BA.1 or BA.2 spike or GFP only (mock),

incubated for 1 h with scFv76 or scFv5 (360 nM) and

then overlaid on monolayers of hACE2-expressing A549

cells for 24 h. The overlay of bright-field and

fluorescence images is shown. Scale bar, 200 mm. Cell-

cell fusion quantification is expressed as percentage

relative to control (average ± SD of 5 fields from two

biological replicates). ***p < 0.001 (ANOVA). (D)

Neutralization of the authentic SARS-CoV-2 Delta virus

in Calu-3 cells. Serially diluted (3-fold) Abs were added

to cells 1 h after infection. Quantification of viral load

was done by qRT-PCR 72 h after infection. Data are the

average (±SD) of two independent experiments. The

IC50 value (expressed as nanomolar concentration) is

also shown in (A), (B), and (D).

infection-induced tissue damage molecules,
including adhesion molecules, angiopoietin 2,
and inflammasome effectors such as NLRP3
(Figures 4D and 4E).

Structural bases for broad RBD recognition

of SARS-CoV-2 variants by scFv76

To explore the recognition principles and
rationalize the broad cross-reactivity of scFv76
toward SARS-CoV-2 variants, we determined
the 3D structure of the spike:scFv76 complex
using single-particle cryo-EM. We used a
SARS-CoV-2 Wuhan-Hu-1 6P-stabilized
glycoprotein (native antigen)14 incubated with
scFv76 to assemble the complex. Our single-

particle cryo-EM analysis revealed a homogeneous population of
the spike:scFv76 complex displaying two RBDs in the up conforma-
tion and one down, with one scFv76 fragment bound to the tip of
each RBD (Figure 5A). The final 3D reconstruction had an overall res-
olution of 3.5 Å (Figures S1A and S2); nevertheless, the epitope-para-
tope interface regions were less clearly resolved compared with the
main spike component because of flexibility of the RBDs. To gain bet-
ter insight into the recognition interface structure, we applied a
focused refinement procedure15 to the RBD-down fragment region
that brought the local resolution to 4.0 Å (Figures 5A, S1B, and S2)
and subsequently based our analysis on this structure. The
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scFv76:RBD refined structure showed that the light and heavy chains
of scFv76 contact the tip of the RBD in the up and down conforma-
tions. ScFv76 buries a surface area of�1,082 Å2, based on an approx-
imately equal contributions of the light and heavy chain components.
The scFv76 paratope comprises residues of all three heavy-chain
complementarity-determining regions (CDRs) and two from the
light-chain CDRs (Table 3; Figure 5B). Conversely, the recognition
site lies on the RBD receptor-binding ridge and surrounding areas
(Figure 5C), in full agreement with an alanine scanning analysis re-
ported previously,12 where RBD L455A, F456A, Y473A, N487A and
Y489A mutations strongly reduced scFv76 binding. F456 is located
in the deep groove created between CDRH1 and CDRH2 on one
side and CDRH3 and CDRL3 on the other. The scFv76:RBD interac-
tionmay also be stabilized by several hydrogen bonds (as evaluated on
a 4.0-Å-resolution structure). Among these, RBD D420 interacts with

Figure 2. Therapeutic efficacy of nebulized scFv76

in a mouse SARS-CoV-2 Delta pneumonia model

(A) Study design. Human ACE2 transgenic mice were

exposed by nose only to 2.5 mL of 3 mg/mL scFv76

solution or PBS (as vehicle control) 1 h and 8 h after

SARS-CoV-2 Delta intranasal infection (1 � 105 TCID50/

mouse) and twice per day for 2 additional days. (B) Body

weight changes. Daily body weight from days 0–4 were

recorded for each group and plotted as a percentage

with respect to day 0. Data are the average (±SE). The

day when there was a significant difference in average

percentage of body weight between scFv76-treated or

PBS-treated animals is denoted by **p < 0.01. (C) Lung

viral RNA quantification. On day 4 after infection, lungs

were collected for viral RNA quantification by qRT-PCR.

Each dot represents one mouse. Data are expressed as

copy number per nanogram of total RNA (n = 5). (D)

Lung virus titration. Viral titers in the lung 4 days after

infection were determined by viral 50% tissue culture

infectious dose (TCID50) assay. Each dot represents

one mouse. Data are expressed as TCID50 per milliliter.

(E) Viral RNA quantification in nasal turbinates (NTs).

Quantification by qRT-PCR in NTs and data

representation were done as in (C). Statistical

differences in (B–E) were assessed by Mann-Whitney U

test. Significance is indicated as follows: *p < 0.05,

**p < 0.01, ***p < 0.001.

S56 (CDRH2), and the carbonyl groups of RBD
residues L455 and A475 interact with Y33 and
T28 (both in CDRH1), respectively; the side
chain of RBD Y421 falls close to the P53 back-
bone carbonyl in CDRH2. The angle of
approach of scFv76 to the RBD resembles that
of ACE2; the scFv76 fragment contact region
overlaps with the ACE2 binding interface,
matching the location of 13 of 17 ACE2-binding
residues on the RBD (Figure 5D). In this
respect, the close resemblance of scFv76 and
ACE2 binding modes to the RBD and the
ensuing competition for binding explain, on

structural grounds, the potent scFv76 neutralizing activity. The
scFv76:RBD pose resembles closely that observed for most antibodies
from the VH3-53/VH3-66 germline. Not all such antibodies show
neutralizing activity across SARS-CoV-2 variants, again stressing
the key role of subtle and specific structural variations in the outcome
of epitope-paratope interaction.

A core of 28 epitope residues recognized by scFv76 is conserved in
SARS-CoV-2 Alpha, Beta, Gamma, and Delta variants carrying the
important K417N, E484K, and N501Y mutations (Table 3). In our
refined model, E484 does not directly contact scFv76, consistent
with the previously shown reactivity of scFv76 with E484-mutated
variants.12 We also predict low susceptibility to mutations at K417
and N501 because they are not involved in any polar contact with
scFv76. Both residues are in solvent-exposed regions, allowing
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conformational flexibility; 417N would insert into a large groove
created among CDRs, and 501Y would position the aromatic side
chain beyond scFv76 CDRL3 (Figures 5C and S3). Both mutations
are indeed known to have a limited effect on scFv76 neutralizing po-
wer,12 in keeping with the broad SARS-CoV-2 recognition properties
displayed by scFv76.

Our modeling exercise suggests that the residues building the RBD
epitope, recognized by scFv76, should drop to 23 in the Omicron
BA.1 and BA.2 spike variants (Table 3). This could explain the 10-
and 20-fold affinity reduction forOmicron BA.1 andBA.2, respectively,
compared with the Delta variant. In our model, the five Omicron-
unique side-chain substitutions, occurring in the RBD epitope region
in these variants, are predicted to marginally affect scFv76 binding, as
confirmed by the RBD/ACE2 competition and virus neutralization
data presented here. The S477N, Q493R, G496S, and Q498R substitu-
tions in particular would place the mutated residues in solvent-exposed
regions (Figures 5C and S3). Residue Y505 is located between CDRL1
and CDRL3 in the RBD:scFv76 complex and mostly participates in hy-
drophobic contacts (Figures 5C and S3); the Omicron Y505Hmutation
may follow the same scheme. Such considerations, supporting substan-
tial conservationof theRBD:scFv76 interface in all variants, are in agree-
ment with the functional data reported in this paper that highlight the
resilience of scFv76 to the main SARS-CoV-2 variants, including Om-
icron BA.1 and BA.2.

Figure 3. Therapeutic efficacy of nebulized scFv76

correlates with reduction of inflammatory scores

(A) Histopathological analysis of lung tissue sections from

mice challenged with SARS-CoV-2 Delta and treated by

aerosol with scFv76 or PBS, as described in Figure 2.

Shown are representative pictures of lung sections,

stained with hematoxylin and eosin (H&E), from PBS-

treated (left panel) or scFv76-treated (right panel) mice.

Scale bar, 200 mm; 10� magnification. Inset: 40�
magnification. (B) Scores of overall lung inflammation

(top panel) and lung lesion (bottom panel), measured on

lung sections as in (A). Data are the average (±SE) (n =

5) and are expressed as global score and lung

damaged area (percent), respectively (see scoring

details in Materials and Methods). Statistical analysis

was by Student’s t test. Significance is indicated as

follows: *p < 0.05, **p < 0.01.

DISCUSSION
In the search of easily deployable therapeutic
measures against COVID-19, we recently
described 76clAbs, a cluster of human single-
chain antibody fragments that, in principle,
could bypass all limitations of traditional mono-
clonal antibodies. Use of monoclonal antibodies
for COVID-19 therapy is being challenged by
several issues: (1) difficulties with deployment
of therapy, being monoclonal antibodies paren-
teral drugs to be administered in a hospital envi-
ronment; (2) the risk of antibody-dependent

enhancement (ADE) that can be ignited by different routes involving
the immunoglobulin Fc interaction with the Fc receptor16 or with
ACE2, found recently to possibly act as a secondary receptor,17 or
with Fcg-expressing cells, including monocytes and macrophages
that, by triggering inflammatory cell death, need to abort production
of infectious virus and cause systemic inflammation that contributes
to the severity of COVID-19 pathogenesis;18 and (3) evasion proper-
ties of SARS-CoV-2 variants, particularly recently emerged Omicron
lineages for which most approved and investigational antibodies have
lost their neutralization activity.4–10

The single-chain antibody format, because of its high stability, can be
easily used for self-administrable aerosol treatment. Single-chain an-
tibodies are, in principle, devoid of ADE risk because of lack of an Fc
sequence. 76clAbs, which were selected on the original SARS-CoV-2
Wuhan strain, were found to be resilient to Alpha, Beta, Gamma, and
Delta variant mutations.12 We show that the scFv76 antibody of the
cluster can also recognize and neutralize the infectivity and fusogenic
activity of Omicron BA.1 and BA.2 variants. Single-particle cryo-EM
results point to the peculiar property of this antibody to bind to the up
and down conformations of the spike RBD, recognizing a well-
conserved epitope located at the ACE2 binding interface, thus ac-
counting for its neutralization properties. All mutations in the RBD
of the known SARS-CoV-2 variants are predicted to marginally affect
scFv76 recognition, as confirmed by experimental results. We
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hypothesize that the Omicron variants BA.4 and BA.5 might be still
neutralized by scFv76. The spike mutated residues in these two
variants, relative to Omicron BA.2, are 69-70del, L452R, F486V,
and wild-type amino acid Q493,19 with F486V the only mutation at
the scFv76 binding interface. F486V replaces a bulky apolar side
chain, closing a hydrophobic patch, with a smaller one, possibly
affecting, to a limited degree, the stability of the complex.

Significant therapeutic efficacy of nebulized scFv76 is shown here in a
severe model of SARS-CoV-2 Delta pneumonia. The present data
indicate that aerosol treatment with scFv76 can efficiently control vi-
rus proliferation, significantly reducing lung inflammation and dam-
age. These results encourage further clinical development of scFv76

antibody aerosol therapy as a new opportunity for treatment of
COVID-19, regardless of the variant causing the disease.

MATERIALS AND METHODS
Spike/ACE2 binding competition

For competition experiments, Nunc MaxiSorp plates with 96 wells
were coated with 100 mL/well of SARS-CoV-2 spike1 variant
B.1.617.2 (Delta) protein (His tag) and SARS-CoV-2 spike S1+S2
trimer variant B.1.1.529 (Omicron) protein (ECD, His tag), both
from Sino Biological, and SARS-CoV-2 spike trimer variant BA.2
(Omicron) protein His tag verified by Multiangle Light Scattering
(MALS), from Acro Biosystems, in PBS at a final concentration of
0.5 mg/mL overnight (ON) at +4�C. Plates were blocked with
300 mL/well blocking solution for 2 h at room temperature (RT). After
washing, dilutions of antibodies were added in a volume of 50 mL/well
at double concentration, and after 30-min incubation at 37�C,
1.0 mg/mL human ACE2 protein mouse Fc tag (Sino Biological)
was added and incubated for 1 h at 37�C. Plates were washed 4 times
with PBS/Tween and then incubated for 1 h at RT with 100 mL/well of
an anti-mouse Fc conjugated to alkaline phosphatase (Sigma-
Aldrich), diluted 1:1,000 in blocking buffer. After washing 4 times,
100 mL/well p-nitrophenyl phosphate (pNpp) substrate was added,
and plates were incubated at RT in the dark. Absorbance was re-
corded at 405 nm using a Sunrise Tecan spectrophotometer.

SPR

Kinetic constants were determined using SPR experiments with a Bia-
core T200 instrument (Cytiva). SARS-CoV-2 Spike trimer (T19R,

Figure 4. The therapeutic efficacy of nebulized scFv76 correlates with the reduction of pulmonary inflammatory and vascular damage biomarkers

(A) Heatmap of differential gene expression for inflammatory effectors, as determined by qRT-PCR, in lung homogenates of mice challenged with SARS-CoV-2 Delta and

treated by aerosol with scFv76 or PBS. Data are the average of the log2 expression fold change (FC) obtained from each experimental group (n = 5) with respect to uninfected

mice. Up-regulation appears as shades of red, and down-regulation appears as shades of blue. (B) The mRNA expression level of genes encoding for key chemokines,

assessed by qRT-PCR in samples as in (A). Results are the average (±SE) of expression FC with respect to uninfected mice. (C) The mRNA expression levels of genes

encoding for key inflammatory effectors, assessed by qRT-PCR as above. Results are expressed as in (C). (D) Heatmap of differential gene expression analysis for pulmonary

vascular damage biomarkers. (E) The mRNA expression levels of key pulmonary vascular damage-related genes, assessed and represented as above. Statistical differences

in (B), (C), and (E) were assessed by Student’s t test. Significance is indicated as follows: xp < 0.05 and xxp < 0.01 infected + PBS-treated versus uninfected mice; *p < 0.05,

**p < 0.01, and ***p < 0.001 infected + PBS-treated versus infected + scFv76-treated mice.

Figure 5. ScFv76 broad recognition of SARS-CoV-2 variants

(A) Composite cryo-EM map of the SARS-CoV-2 spike protein with the locally

refined RBD:scFv76 in two orientations. The RBD up or down conformations with

their corresponding scFv76 fragments are labeled. The spike subunits are high-

lighted in green, blue, and yellow, respectively, and the scFv76 fragments bound to

each RBD are shown in light green, light blue, and light yellow. (B) ScFv76 CDR

loops overlaid on the surface representation of the RBD. (C) RBD surface showing

epitope residues as colored in (B). (D) RBD surface showing the ACE2 binding re-

gion in yellow.

Table 3.

Residues from the scFv76 heavy chain component contacting the RBD

G26, F27, T28, A31, N32, Y33 from CDRH1

Y52, P53, G54, S56, F58 from CDRH2

R97, L99, S100, V101, A102, D106, I107 from CDRH3

Residues from scFv76 light chain component contacting the RBD

Q160, S161, V162, S163, S164, Y166 from CDRL1

G226, S227, Y230 from CDRL3

Shown are SARS-CoV-2 RBD residues that are in contact with scFv76. Residues
mutated in Alpha, Beta, Gamma, and Delta variants are shown in italics; residues
mutated in Omicron BA.1 and BA.2 are displayed in italics and bold black, respectively:
R403, T415, G416, K417, D420, Y421, T453, L455, F456, R457, K458, S459, N460, Y473,
Q474, A475, G476, S477, F486, N487, Y489, Q493, S494, Y495, G496, Q498, T500,
N501, V503, Y505.
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G142D, EF156-157del, R158G, L452R, T478K, D614G, P681R, and
D950N) His tag (MALS verified) protein (Acro Biosystems), SARS-
CoV-2 spike S1+S2 trimer variant B.1.1.529 (Omicron) protein
(ECD, His tag, Sino Biological), and SARS-CoV-2 spike trimer
variant BA.2 (Omicron) protein His tag (MALS verified, Acro Bio-
systems), all 1.25 mg/mL in buffer containing 0.01M Hepes pH 7.4,
0.15M NaCl, 0.005% w/w surfactant P20 (HBS-P+ from Cytiva),
were immobilized at 1,000 Resonance Units (RU) level on the surface
of a flow cell of a Series S sensor chip nitrilotriacetic acid (NTA from
Cytiva) using Ni2+-mediated capture followed by an amine coupling
procedure, and another flow cell surface was blank immobilized by
amine coupling with ethanolamine to be used as a control surface.
Then scFv76 was flowed at 30 mL/min on all flow cells at 0.47, 1.40,
4.19, 12.56, 37.67, and 113 nM concentrations in buffer containing
10mM Hepes, 0.15M NaCl, 3mM EDTA disodium dihydrate,
0.005% w/w surfactant P20, pH 7.4 (HBS-EP+ buffer from Cytiva)
for a contact time of 480 s. After a dissociation time of 900 s, all
flow cell surfaces were regenerated by flowing a solution of 4 mM
glycine-HCl and 0.1% sodium dodecyl sulphate (SDS) w/w at
30 mL/min for 30 s. Double-referenced sensorgrams were obtained
by subtraction of blank-immobilized flow cell curves and of zero con-
centration curves from derivatized surface flow cell curves. Kinetic
constants were obtained by BIAevaluation 3.2 software (Cytiva)
fitting with a 1:1 binding model.

Virus neutralization in Calu-3 cells

To measure the SARS-CoV-2-neutralizing capability of scFv76, a live
SARS-CoV-2 assay was performed by measuring the viral load in hu-
man lung adenocarcinoma Calu-3 cells by qRT-PCR 72 h after virus
infection. The experiments were carried out at the François Hyafil
Research Institute (Oncodesign; Villebon-sur-Yvette, France).
Calu-3 cells were seeded in 96-well plates in complete cell culture me-
dium consisting of Minimal Essential Medium (MEM), 1% pyruvate,
1% glutamine, and 10% fetal bovine serum and then infected, at a
multiplicity of infection of 0.01, with SARS-CoV-2 Delta virus pro-
vided by the National Institute of Infectious Diseases (NIID) Japan,
strain hCoV-19/Japan/TY11-330-P1/2021; originally provided by
the Global Initiative on Sharing Avian Influenza Data (GISAID): EP-
I_ISL_ 2158613. One hour after infection, the virus solution was dis-
carded and replaced by a volume of growth medium containing
scFv76 or non-neutralizing scFv5 antibody at a concentration ranging
from 214–2.6 nM in triplicate. The plates were then transferred to a
37�C incubator for 72 h. Finally, the cell culture supernatants were
collected for viral RNA extraction (Macherey Nagel Viral RNA
Kit), and viral RNA copy number was quantified by qRT-PCR, target-
ing a region in the viral ORF1ab gene and using a QuantStudio 7 Real-
Time PCR System (Applied Biosystems). Data were processed using
GraphPad Prism software (v.8.0), and the IC50 values were calculated
using a four-parameter logistic curve fitting approach.

SARS-CoV-2 S-pseudovirus neutralization assays

Generation of SARS-CoV-2 S-pseudovirus and SARS-CoV-2
S-pseudovirus neutralization assays were performed as described pre-
viously.12 The vectors expressing Omicron SARS-CoV-2-spike

(S1+S2)-long (B.1.1.529) and SARS-CoV-2-spike (S1+S2)-long
(B.1.1.529 sublineage BA.2) were obtained from GenScript and Sino
Biological, respectively. Serial (1:3) dilutions (ranging from 35.7–
0.14 nM final concentration) of scFvs were tested in duplicate. Lucif-
erase activity (relative luciferase units [RLU]) was detected 72 h after
infection using the Bright-Glo Luciferase Assay SystemKit (Promega)
in a microplate luminometer (Wallac-PerkinElmer).

Microneutralization assay

Neutralizing antibody titers were tested using a live-virus assay as fol-
lows. ScFv samples were pre-diluted in inoculation medium consist-
ing of Dulbecco’s Modified Eagle’s Medium (DMEM), 2% fetal calf
serum, 1% glutamine), followed by 9 serial dilutions in inoculation
medium. Each serial dilution was then mixed 1:1 with 2,000
TCID50/mL SARS-CoV-2 variant virus (Delta variant strain hCoV-
19/USA/MD-HP05647/2021 and Omicron variant strain hCoV-19/
USA/MD-HP20874/2021) and incubated for 1 h at +37�C ± 2�C
and 5% ± 0.5% of CO2. Thirty-five microliters of each diluted sam-
ple/virus mix were then applied in octuplicate to Vero E6 cells seeded
at a density of 104 cells/well in a 96-well plate on day �1. After 1 h of
incubation at +37�C ± 2�C and 5% ± 0.5% CO2, 65 mL of inoculation
medium (DMEM, 2% fetal calf serum, 1% glutamine) was added per
well. Plates were incubated for 6 days at +37�C± 2�C, 5%± 0.5% CO2.
After this incubation, the cells were inspected for CPEs, and the num-
ber of positive wells (that is, exhibiting CPEs) was recorded. Data
were processed using GraphPad Prism software (v.8.0), and the
IC50 values were calculated using a four-parameter logistic curve
fitting approach.

Cell-cell fusion assay

Human alveolar type II-like epithelial A549 cells and HEK293T cells
were obtained from the ATCC (Manassas, VA). Cells were grown at
37�C and 5% CO2 in RPMI-1640 (A549 cells) or DMEM (HEK293T
cells) (Euroclone) supplemented with 10% fetal calf serum (FCS),
2 mM glutamine, and antibiotics. Generation of A549 cells stably ex-
pressing the human ACE2 receptor (A549-hACE2 cells) has been
described previously.20 The vectors expressing Omicron SARS-CoV-
2-spike (S1+S2)-long (B.1.1.529) and SARS-CoV-2-spike (S1+S2)-
long (B.1.1.529 sublineage BA.2) were obtained from GenScript and
Sino Biological, respectively. Transfections were performed using Lip-
ofectamine 2000 (Invitrogen, Thermo Fisher Scientific) according to
the manufacturer’s instructions. The donor-target cell fusion assay
has been described previously.12 Transmission and fluorescence im-
ages were taken using a Carl Zeiss AxioObserver invertedmicroscope,
and the extent of fusion was quantified as described previously.12 Im-
ages shown in allfigures are representative of at least five random fields
(scale bars are indicated). Statistical analysis was performed using one-
way ANOVA (GraphPad Prism 6.0 software, GraphPad). All experi-
ments were done in duplicate and repeated at least twice.

In vivo pharmacological evaluation of nebulized scFv76 in a

model of SARS-CoV-2 Delta pulmonary infection

The animal study was carried out at the San Raffaele Scientific Insti-
tute (Milan, Italy) and performed in accordance with European

www.moleculartherapy.org

Molecular Therapy Vol. 31 No 2 February 2023 369

184



Directive 2010/63/EU for protection of animals used for scientific
purposes, applied in Italy by Legislative Decree 4 March 2014, n.
26. All experimental animal procedures were approved by the Institu-
tional Animal Committee of San Raffaele Scientific Institute. Female
transgenic K18-hACE2 mice, aged 8–10 weeks, were infected via the
intranasal route with 1 � 105 TCID50/mouse of SARS-Cov-2 variant
Delta B.1.617.2 virus (hCoV-19/Italy/LOM-Milan-UNIMI9615/2021
[GISAID: EPI_ISL_3073880]), obtained from the Laboratory of
Microbiology and Virology of San Raffaele Scientific Institute. One
hour and 8 h after infection and twice per day for 2 additional
days, infected mice (5/group) were treated by nose-only nebulization
with 2.5 mL of scFv76 (3.0 mg/mL in PBS) or PBS using an Aerogen
Pro (Aerogen) mesh nebulizer and a nose-only inhalation chamber
suitable for delivering the nebulized antibodies contemporarily for
up to 8 mice, as described previously.12 Mice were monitored for
appearance, behavior, and weight. On day 4 after infection, they
were euthanized by inhalation of 5% isoflurane, followed by gentle
cervical dislocation, and lungs and nasal turbinates were explanted
and then fixed by 4% paraformaldehyde for histopathological ana-
lyses or snap-frozen (in liquid nitrogen) and stored at -80�C until
further analyses.

Tissue homogenization and viral titer determination

For viral titer determination in the lungs, tissue homogenates were
prepared by homogenizing perfused lungs using a gentleMACS
Octo dissociator (Miltenyi) in M tubes containing 1 mL of
DMEM. Samples were homogenized three times with program
m_Lung_01_02 (34 s, 164 rpm). The homogenates were centrifuged
at 3,500 rpm for 5 min at 4�C. The supernatant was collected and
stored at �80�C until use for viral isolation and viral load detection.
Viral titer was calculated by TCID50. Briefly, Vero E6 cells were
seeded at a density of 1.5 � 104 cells per well in flat-bottom
96-well tissue culture plates. The following day, 2-fold dilutions
of the homogenized tissue were applied to confluent cells and
incubated for 1 h at 37�C. Then cells were washed with phos-
phate-buffered saline (PBS) and incubated for 72 h at 37�C in
DMEM and 2% FBS. Cells were fixed with 4% paraformaldehyde
for 20 min and stained with 0.05% (w/v) crystal violet in 20% meth-
anol. The plate analysis was carried out by qualitative visual assess-
ment of CPEs. TCID50 was determined using the Reed and Muench
method.

qRT-PCR for viral copy quantification and gene expression

analysis

For viral copy quantification and gene expression analysis, tissue
homogenates were prepared by homogenizing perfused lungs or
nasal turbinates (NTs) using a gentleMACS dissociator (Miltenyi)
with program RNA_02 in M tubes in 1 mL or 500 mL Trizol (Invi-
trogen) for lungs or NTs, respectively. The homogenates were
centrifuged at 2,000 � g for 1 min at 4�C, and then the supernatant
was collected. RNA extraction was performed by combining phenol/
guanidine-based lysis with silica membrane-based purification.
Briefly, 100 mL of chloroform was added to 500 mL of homogenized
sample; after centrifugation, the aqueous phase was added to 1 vol-

ume of 70% ethanol and loaded on a ReliaPrep RNA Tissue Mini-
prep column (Promega, catalog number Z6111). Total RNA was
isolated according to the manufacturer’s instructions. For viral
copy quantification, quantitative polymerase chain reaction
(qPCR) was performed using TaqMan Fast Virus 1 Step PCR Mas-
ter Mix (Applied Biosystems); a standard curve was drawn with
2019_nCOV_N Positive control (Integrated DNA Technologies),
and the following primers and probe were used: 2019-nCoV_N1
forward primer (50-GAC CCC AAA ATC AGC GAA AT-30),
2019-nCoV_N1 reverse primer (50-TCT GGT TAC TGC CAG
TTG AAT CTG-30), and 2019-nCoV_N1 probe (50-FAM-ACC
CCG CAT TAC GTT TGG TGG ACC-BHQ1-30) (Centers for Dis-
ease Control and Prevention [CDC] Atlanta, GA). All experiments
were performed in duplicate.

For gene expression analysis of inflammation and endothelium-
related genes, total RNA was retrotranscribed using SuperScript IV
VILO Mastermix (Invitrogen, Thermo Fisher Scientific) according
to the manufacturer’s instructions. Quantitative real-time PCR was
performed using TaqMan Fast Advanced Master Mix and specific
TaqMan gene expression assays (listed in Table S1), both from
Applied Biosystems (Thermo Fisher Scientific). The 7900HT
Sequence Detection System instrument and software (Applied Bio-
systems) were used to quantify the mRNA levels of the target genes
according to a six-point serial standard curve generated for each
gene. The results were ultimately expressed, after normalization to
the housekeeping gene Rlp32, as relative expression (fold change)
compared with uninfected animals.

Histopathological analysis

PBS-perfused lungs were fixed in Zn-formalin for 24 h and then
stored in 70% ethanol until trimming for paraffin wax embedding
and the following histological examination. Consecutive sections
(20 mm) were prepared and stained by the classic hematoxylin
and eosin (H&E) method, and then microscopic observation
was performed using a Nikon Eclipse 80i microscope equipped
with a DXM1200F microscope camera. Pathological features in
lung sections were scored as follows: inflammation-related param-
eters, including congestion of the alveolar septa, lymphomonocyte
interstitial (alveolus) infiltrate, alveolar hemorrhage, interstitial
edema, and platelet microthrombi, were evaluated separately by
two independent pathologists, and the extent of these findings
was scored arbitrarily using a two-tiered system: 0 (negative), 1
(moderate), and 2 (severe). All scores for each animal were ulti-
mately summed up, and a global score was calculated for each
group and expressed as the average ± SE. The percentage of
pulmonary area affected by lesions in each section was also
measured, and results for each group were reported as average
percentage ± SE.

Electron microscopy sample preparation

A sample of SARS-CoV-2 Wuhan-Hu-1 6P-stabilized glycoprotein
(native antigen) was incubated with scFv76 at a final concentration
of 0.65 mg/mL and 0.22 mg/mL, respectively, for 1 h at RT. A 4-mL
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droplet of the sample was applied onto an R1.2/1.3 300-mesh copper
holey carbon grid (Quantifoil) previously glow discharged for 30 s at
30 mA using a GloQube system (Quorum Technologies). The sample
was incubated on the grid for 60 s at 4�C and 100% relative humidity,
blotted, and plunge-frozen in liquid ethane using a Vitrobot Mk IV
(Thermo Fisher Scientific).

EM data collection and image processing

Cryo-EM data were acquired on a Talos Arctica (Thermo Fisher Sci-
entific) transmission electron microscope operated at 200 kV. The
data were acquired using EPU-2.8 automated data collection software
(Thermo Fisher Scientific). Movies were collected at a nominal
magnification of 120,000x, corresponding to a pixel size of 0.889 Å/
pixel at the specimen level, with applied defocus values between
�0.8 and �2.2 mm. A total of 4,211 movies were acquired using the
Falcon 3 direct electron detector (Thermo Fisher Scientific) operating
in electron counting mode, with a total accumulated dose of 40 e�/A2
distributed over 40 movie frames.

Movies were preprocessed with WARP 1.0.9.21 A 5 � 5 � 40 model
was used for motion correction using a 35-7 Å resolution range
weighted with a �500 Å2 B factor. Contrast transfer function
(CTF) was estimated using the 40-3.5 Å resolution range and a
5 � 5 patch model. Particle picking was performed using the deep
convolutional neural network BoxNet2Mask_20180918, resulting in
490,614 particles that were extracted in 400-pixel boxes and imported
into CRYOSPARC-3.3.115 for further processing.

2D classification was used to select 366,967 particles that were 3D
aligned using the SARS-CoV-2 spike glycoprotein model (EMDB:
21452) low pass filtered at 30 Å as a reference. Particles were sub-
jected to 3D classification to select the final set of 87,623 particles
that yielded an overall 3.5-Å resolution reconstruction based on
the gold-standard criterion of 0.143 Fourier shell correlation
(FSC) value. The initial reconstruction displayed two spike RBDs
in the up conformation and one down, with all three showing
one bound scFv76 fragment. Particles were subtracted with a
mask comprising the entire spike molecule without the RBD in
the down conformation and its corresponding scFv76 fragment
and then locally refined to 4.0-Å resolution according to an FSC
of 0.143.

Model building, refinement and validation, and structural

analysis

The scFv76 structure was modeled with the Antibody Structure Pre-
diction module using Schrödinger Maestro Bioluminate Suite
4.5.137, release 2021-4.22 The modeling was performed with anti-
gen-binding fragment (Fv) as antibody format. We used “EVQLLQ
SAGGLVQPGGSLRLSCAASGFTVSANYMSWVRQAPGKGLEWV
SVIYPGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAV
YYCARDLSVAGAFDIWGQGTLVTVSSGG” as the target sequence
for the heavy chain (HC) and “IVLTQSPGTLSLSPGERATLSCRA
SQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGT
DFTLTISRLEPEDFAVYYCQQYGSSPYTFGQGTKLEIKRAAAGD

YK” for the light chain (LC). The tool identifies the best matching
framework templates for the queried sequences and builds the
CDR loops based on the cluster analysis performed on the default
antibody loop database, sieved using the selected framework tem-
plate. To select a suitable structural reference framework, we filtered
the possible candidates according to the scFv76 HC and LC germ-
lines, IGHV3-66 and IGKV3-20, respectively.12 We analyzed 130
CoV-AbDab structures of antibodies (Abs) bound to RBDs23 and
found that 39 of 42 entries with IGHV3-53/IGHV3-66 HCs, usually
coupled with IGKV1-9 (16 Abs) or IGKV3-20 (10 Abs) LCs, share a
common binding mode to the RBD. The three outliers are character-
ized by longer CDR-H3 (17–25 residues compared with 8–15 resi-
dues), and they are bound to IGLV2-14/IGLV2-23 LCs. Based on
these findings, and considering the good resolution (2.03 Å) and
the average of HC and LC similarity scores (0.99 of 1.00), we selected
PDB: 7N3I as the reference framework, whose HC and LC are a
combination of IGHV3-53 and IGKV3-20. To model the scFv76
CDR loops as well as their interaction with the antigen, the CDRs
were grafted into a homology modeled structure built based on the
reference framework template that also included the N-terminal
domain of the betacoronavirus-like trimeric spike glycoprotein S1
(PDB: 7N3I). The generated scFv76:RBD model was subsequently
superimposed on the three RBDs of a SARS-CoV-2 HexaPro S
cryo-EM structure, with two RBDs in the up and one in the down
conformation (PDB: 7N0H). Finally, the three cryo-EM RBDs in
complex with the modeled scFv76 were refined with Schrödinger
Protein Preparation Wizard24 to remove clashes and optimize side
chains.

The generated model was split into two parts: the first comprised
the whole spike protein without the RBDs; the second consisted
of the RBD in the down conformation in complex with scFv76.
Both models were independently refined with COOT25 and
PHENIX26 using the full reconstruction and the local refined map
at 3.5 Å and 4.0 Å resolution, respectively. Subsequently, the local
refined RBD:scFv76 complex was rigid body fitted in the full spi-
ke:scFv76 reconstruction. All data collection, image processing,
and final model statistics are summarized in Table S2. The images
were prepared using ChimeraX27 and Pymol (http://www.pymol.
org/pymol).

Statistical analysis

Statistical analyses were performed using Prism software (v.6.0
or v.8.0, GraphPad). Data are presented as average ±SE or SD.
Statistical significance was analyzed with unpaired two-tailed Stu-
dent’s t test, Mann-Whitney U test, or one-way analysis of variance
(ANOVA). p values below 0.05 were considered statistically
significant.

DATA AND CODE AVAILABILITY
The antibodies described in the paper can be provided upon material
transfer agreement (MTA) subscription. The full spike:scFv76 and the
RBD:scFv76 cryo-EM volumes and the structure coordinates have
been deposited in the ElectronMicroscopy Data Bank and the Protein
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Data Bank under accession codes EMDB: 14628 and EMDB: 14629
and PDB: 7ZCE and PDB: 7ZCF, respectively. Cryo-EM videos
were deposited in the Electron Microscopy Public Image Archive un-
der accession code EMPIAR: 10990.
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Table S1. TaqMan gene assays (from Thermo Fisher Scientific) used for real time qPCR analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assay ID Gene Symbol

Mm 00657574_s1 ANGPT2  

Mm00441242_m1 CCL2 

Mm01268754_m1 CCL20

Mm00486938_m1 CDH5

Mm03294838_g1 COX2 

Mm01290062_m1 CSF2

Mm04207460_m1 CXCL1

Mm00445235_m1 CXCL10

Mm00438258_m1 CXCR2

Mm00516023_m1 ICAM1 

Mm00515153_m1 IFIT1

Mm03030145_gH IFNA

Mm00439552_s1 IFNB

Mm01168134_m1 IFNG 

Mm00439620_m1 IL1A

Mm00434228_m1 IL1B

Mm00445259_m1 IL4

Mm00446190_m1 IL6

Mm01288386_m1 IL10

Mm00517640_m1 IL21

Mm01705338_s1 lSG15

Mm00487796_m1 MX1

Mm00840904_m1 NLRP3 

Mm02528467_g1 RLP32

Mm00441278_m1 SELE

Mm00443258_m1 TNF

Mm01320970_m1 VCAM1
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Table S2. Cryo-EM data collection, image processing and model refinement statistics. 

 

Data collection and image processing 

Structure Spike:scFv76 full complex 
RBD:scFv76 complex 

(Focused refinement) 

Microscope   Thermo Fisher Scientific TALOS Arctica 

Voltage (kV)   200 

Camera   Falcon 3EC 

Magnification    × 120,000 

Total electron dose (e-/Å2)   40.0 

Defocus range (μm)   -0.8 and -2.2 μm 

Pixel size (Å)   0.889 

Micrographs (no.)   4,211  

Symmetry imposed   C1      C1 

Initial particle images (no.)   490,614      87,623 

Final particle images (no.)   87,623      87,623 

Resolution (Å)  

(FSC threshold) 

  3.5 

  (0.143) 

     4.0 

     (0.143) 

Sharpening B-factor (Å2)   -136.6      -157.9 

EMDB code EMD-14628      EMD-14629 

Model refinement 

Protein residues 

N-acetyl-D-glucosamine molecules 

3706 

51 

     426 

     1 

r.m.s. deviations 

Bond lengths (Å) 

Bond angles (°) 

 

0.004 

0.663 

      

     0.002 

     0.643 

Ramachandran plot 

Favored (%) 

Allowed (%) 

Disallowed (%) 

  

91.42 

8.58 

0.00 

      

    85.24 

    14.76 

    0.00 

Validation 

Molprobity score 

Clashscore 

Poor rotamers (%) 

  

1.96 

8.35 

0.03 

      

    2.18 

    10.15 

    0.56 

Map-model correlation 0.84     0.72 

PDB code 7ZCE     7ZCF 
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Figure S1. Local resolution cryo-EM map. A) spike:scFv76 full complex top and sides views. B) 

Locally refined RBD:scFv76 in the closed conformation, front and back views. Maps are colored 

according to the estimated local resolution. 

 

Figure S2.  Cryo-EM FSC curves of spike:scFv76. The FSC curves for the spike:scFv76 full 

complex and the locally refined RBD:scFv76 in the closed conformation are shown in green and 

pink, respectively. The 0.143 threshold and the resolution cut-off for each curve are indicated.  
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Figure S3. SARS-CoV-2 variants mutations at the RBD:scFv76 interface.  Cartoon 

representation of scFv76 (transparent surface and worm) bound to the closed RBD (worm model); 

highlighted are key mutated residues (shown as stick models) in SARS-CoV-2 Omicron BA.1 and 

BA.2 variants.  
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Nicotinic Acid Derivatives As Novel Noncompetitive α‑Amylase and
α‑Glucosidase Inhibitors for Type 2 Diabetes Treatment
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ABSTRACT: A library of novel nicotinic acid derivatives, focusing on the modification of position 6 of the pyridine ring with
(thio)ether functionalities, was mostly produced through an innovative green synthetic approach (Cyrene-based) and evaluated for
their α-amylase and α-glucosidase inhibitory activity. Compounds 8 and 44 demonstrated micromolar inhibition against α-amylase
(IC50 of 20.5 and 58.1 μM, respectively), with 44 exhibiting a remarkable ∼72% enzyme inactivation level, surpassing the efficacy of
the control compound, acarbose. Conversely, 35 and 39 exhibited comparable inhibition values to acarbose against α-glucosidase
(IC50 of 32.9 and 26.4 μM, respectively) and a significant enhancement in enzyme inhibition at saturation (∼80−90%). Mechanistic
studies revealed that the most promising compounds operated through a noncompetitive inhibition mechanism for both α-amylase
and α-glucosidase, offering advantages for function regulation over competitive inhibitors. These inhibitors may open a new
perspective for the development of improved hypoglycemic agents for type 2 diabetes treatment.
KEYWORDS: synthesis, nicotinic acid, enzyme inhibitors, medicinal chemistry, organic chemistry

Diabetes is a chronic metabolic disorder characterized by
high blood sugar levels (hyperglycemia) over a

prolonged period. This occurs due to either insufficient insulin
production, insulin resistance, or both. Insulin is a pancreatic
hormone that regulates blood sugar levels by facilitating the
uptake of glucose from the bloodstream into cells to be used
for energy or stored for future use. Currently, diabetes is one of
the most important focal points in medical research,
considering its significant social impact. Indeed, diabetes has
been identified as one of the primary risk factors contributing
to mortality worldwide.1 Inadequate or ineffective treatment
protocols can lead to various complications, such as stroke,
cardiac arrest, limb amputation, vision loss, nervous system
damage and an elevated risk of fetal death in poorly managed
gestational forms of diabetes.2

There are several types of diabetes, but the most common
ones are types 1 and 2. They share the similar symptom of
elevated blood sugar levels but have different etiology. Type 1
is an autoimmune condition where the immune system
mistakenly attacks and destroys the insulin-producing beta
cells in the pancreas.3 In type 2, the body’s cells become
resistant to the action of insulin, and the pancreas may
gradually lose its ability to produce enough insulin to
compensate. As a result, unlike type 1, type 2 diabetes is

considerably more manageable and preventable through
lifestyle interventions, which could delay absorption of glucose
after meals.4 In recent years, researchers actively investigated
hypoglycemic agents with several mechanisms of action, with
the aim of identifying molecules able to balance blood sugar
uptake and insulin secretion during the postprandial stage. In
this context, two pivotal targets for antidiabetic therapy have
long been considered: α-amylase and α-glucosidase, which are
key enzymes involved in saccharide hydrolysis.5−7 Thus, the
quest for an ideal hypoglycemic agent may revolve around
inhibition of these enzymatic targets to improve glucose
regulation in type 2 diabetes, leading to a significant
amelioration in lifestyle and increased patient’s life expectancy.
Nicotinic acid, also known as niacin or vitamin B3, is a pyridine
derivative showing a plethora of biological activities and
therapeutic effects, including lipid-lowering activity, anti-
inflammatory effects, vasodilatory effects and treatment of
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pellagra.8−10 Very recently nicotinic acid derivatives function-
alized at position 5 with a thiourea moiety have been proposed
as novel interesting α-amylase and α-glucosidase inhibitors.11

Following our ongoing research about nicotinic acid
derivatives,12 we synthesized a library of 19 novel compounds
and tested them for in vitro inhibition of α-amylase and α-
glucosidase activity. Our chemical exploration was attempted
both to position 5, keeping the hydrogen bond donor (−NH2)
as observed in the parental thiourea derivatives or removing it,
and position 6 that was modified introducing (thio)ether

moieties in order to explore available chemical space (Figure
1). In the case of aromatic ethers, phenols and thiophenols

substituted with a plethora of electron withdrawing or electron
donating groups were taken into consideration. Small
substituents directly connected to the pyridine system, such
as -OMe- or -OEt, were considered as aliphatic ether examples.
The synthesis of the target compounds bearing 6-phenoxy or

6-phenylthio fragments was conveniently carried out following
the pathways reported in Scheme 1. The presence of a free
carboxylic group functionality troubled the introduction of the
phenol or thiophenol nucleophile at position 6, thus the
starting material 6-chloro-nicotinic acid (A) was first converted
into the corresponding methyl ester 1 using MeOH in the
presence of (trimethylsilyl)diazomethane (TMSCHN2). For
the series of 5-amino nicotinic acids, the starting material 6-
chloro-5-nitro nicotinic ester (B) was used directly as the
methyl ester. A SNAr reaction allowed the synthesis of 2−5 and
10−21 pyridyl-phenyl ethers or thioethers through an
innovative green synthetic approach recently published by
our research group.12 Briefly, starting compounds A or B were
reacted with the appropriate phenol or thiophenol in the
presence of NEt3 as the base using the green solvent Cyrene
under heating at 150 °C for 15−30 min in a sealed tube,
affording the products 2−5 and 10−21 in good to optimal
yields (60−95%). The advantage of this Cyrene-mediated
methodology is to avoid the use of toxic and dangerous
solvents (such as DMF or DMSO) and reduce reaction times.
Moreover, the use of tedious chromatographic purification
techniques was circumvented, as the pure products precipi-

Figure 1. Design of the inhibitors. Chemical exploration of positions 5 and 6 of the nicotinic acid scaffold, proposed in this work, are shown in
green and magenta, respectively (right side). Previously published thiourea moiety functionalization is shown in green (left side).

Scheme 1. Synthesis of Final Compounds 6−9 and 34−45a

aReagents and conditions: (a) TMSCHN2, toluene:MeOH 2:1 (v/v), rt, overnight, 98% yield; (b) appropriate phenol or thiophenol, NEt3, Cyrene,
150 °C, sealed tube, 15−30 min, 60−95% yield; c) 1 M NaOH, MeOH, rt, 3−7 h, then 1 M NaHSO4, 29−96% yield; d) Fe, NH4Cl, EtOH:water
1:1 (v/v), 85 °C, 4 h, 23−88% yield.

Scheme 2. Synthesis of Final Compounds 46, 47, and 49a

aReagents and conditions: (a) MeONa or EtONa sol., refl, 24 h, then
1 M NaHSO4, 17−49% yield; (b) Fe, NH4Cl, EtOH:water 1:1 (v/v),
85 °C, 4 h, 35% yield.
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tated from the reaction mixture after treatment with ice water.
The reaction reached completion in 30 min whenever A was
used as starting material, while 15 min of reaction time was
needed for B. The different reaction time is explained by the
presence of the 5-nitro group, which accelerated the SNAr
reaction. Compounds 10−21 were then subjected to a
conventional reduction of the nitro group in the presence of
iron under acid conditions, to afford methyl 5-amino nicotinate
derivatives (22−33) in moderate to good yields (23−88%). In
this case as well, there was no need to perform any column
chromatography purification step for obtaining the clean
product (except for compound 33). After the reaction had
been completed, the solvents were removed under reduced
pressure; treatment of the crude mixture with a saturated

solution of K2CO3 (until slightly alkaline pH) resulted in the
precipitation of the pure products. It is noteworthy that in
some instances, the addition of drops of MeOH facilitated the
precipitation process and led to increased yields. Finally,
alkaline hydrolysis provided the target 6-substituted nicotinic
(6−9) or 5-amino-nicotinic acid compounds (34−45) in
moderate to good yields (29−96%). Noteworthy, the final
nicotinic acid compounds precipitated from the crude mixture
after acidification with a 1 M NaHSO4 solution (pH 5.5).
The synthesis of the target compounds bearing 6-methoxy

or 6-ethoxy fragments was carried out following similar
pathways (Scheme 2). The SNAr reaction in this case could
not be developed using the methodology seen for phenols or
thiophenols because the strongly basic conditions expected

Table 1. In Vitro Inhibitory Activity (IC50, μM) and Inactivation % of Compounds 6−9, 34−45, 46, 47, and 49 against α-
Amylase and α-Glucosidasea

aNotes: n.i. = no inhibition.
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from the presence of sodium alkoxides are incompatible with
Cyrene, which is not stable and tends to polymerize.13

However, it was possible to directly use the carboxylic acid
as the starting material, thereby avoiding the subsequent
hydrolysis step. Starting material A was reacted with alcoholic
solutions of NaOMe or NaOEt at refluxing temperatures to
provide 46 and 47 in low yields (17−35%). Starting material B
was reacted with an alcoholic solution of NaOMe at refluxing
temperatures to directly provide carboxylic acid derivative 48
in 49% yield. Finally, a reduction of the nitro group under the
same reaction conditions observed before afforded 49 (35%
yield). The structural confirmation and the purity of all the
synthesized compounds was achieved by 1H NMR, 13C NMR,
and HRMS. All compounds are >95% pure by HPLC analysis
and representative HPLC traces are included in the Supporting
Information.
The inhibitory activity of the target compounds 6−9, 34−

45, 46, 47 and 49 against α-amylase and α-glucosidase was
measured by using an assay optimized from the one proposed
by Nawaz et al.11 The enzymes’ source and the assay
conditions are known to strongly affect the inhibition.6

Acarbose was chosen as a standard control, and it showed a
partial inhibition of both enzymes (∼50%) and IC50 values in
the 10−20 μM range (Table 1). Regarding α-amylase
inhibition, the enzymatic activity was assayed in 20 mM
potassium phosphate using soluble starch, and the reaction
mixture was incubated at 95 °C for 10 min before recording
the absorbance intensity (see the Supporting Information for
details). It was noted that the synthesized compounds
demonstrated varying degrees of α-amylase inhibitory activity
with IC50 distributed over a wide range of values. Specifically,
compounds 8 and 44 exhibited interesting α-amylase
inhibition, with IC50 values of 20.5 ± 2.6 and 58.1 ± 4.1

μM, respectively (Table 1 and Figure 2A, B). Interestingly, 44
resulted in a high degree of inactivation of ∼71.5% (i.e., ∼25%
of residual enzymatic activity at saturation), a value
significantly improved in comparison to that of acarbose
(46.5% of residual enzymatic activity at saturation). These
findings suggested that in the series of nicotinic acid
derivatives, the presence of an acetyl group at the para
position of the phenyl ring (8) was more conducive to α-
amylase inhibition compared to other substituents. On the
other hand, in the series of 5-amino nicotinic acid derivatives, a
meta-substituted phenyl ring with an −OMe substituent (44),
whenever connected to the pyridine core with a sulfur bridge,
led to the best inhibition activity. An analogue assay against α-
glucosidase showed various degrees of inhibition ranging
mostly in the half millimolar range (Table 1), with the
exception of ethers 35 and 39, which showed IC50 values of
32.9 ± 2.8 and 26.4 ± 2.0 μM, respectively (Table 1 and
Figure 2C, D). Enzyme inactivation at saturation for
compounds 35 and 39 was higher than for acarbose (20.7%
and 12.3% of residual enzymatic activity at saturation for 35
and 39, instead of 49.2% for acarbose), showing a consistent
improvement. These data demonstrated the significance of the
NH2 group presence at position 5 of the nicotinic acid scaffold
for activity against α-glucosidase. Functionalization of the ortho
position of the phenyl ring with electron-donating groups such
as ethyl (35) and its isosteric replacement −OMe (39) led to
compounds with remarkable activity. Furthermore, compounds
8, 35 and 39 exhibited increased potency compared to the
thiourea derivative disclosed by Nawaz et al. (range 37−113
μM),11 indicating that introducing an ether or thioether
functionality at position 6 was more effective in developing
potent inhibitors. As further reference, miglitol and voglibose
have been also evaluated: while both compounds did not

Figure 2. Enzyme inhibition assays performed on (A, B) α-amylase or (C, D) α-glucosidase by compounds 8, 35, 39, and 44. The enzymatic
activity in the presence of different compound concentrations (in the 0−3500 μM range) was determined by colorimetric assays using an
automated liquid-handler system. The plots display the mean values ± SD, n = 4.
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modify the activity of α-amylase, in agreement with literature, a
partial inhibition of α-glucosidase was determined.14

Then, the inhibitory mechanism of α-amylase by 8 and 44,
and of α-glucosidase by 35 and 39 was studied at different
substrate and inhibitor concentrations using the same assays
employed for IC50 estimation (the starch in the amylase
activity assay could not be used at a saturating concentration
because of the solubility limit). In detail, all compounds tested
showed a decrease in apparent Vmax values with minimal effect

on apparent Km ones (Figure 3 and Table S1 in the Supporting
Information). This result is consistent with tested compounds
being noncompetitive inhibitors. Kinetic eqs (1) and (2) (see
Materials and Methods Section in the Supporting Information)
were used to calculate the inhibitory constant Ki, as reported in
Table 2. A good correlation between Ki and IC50 values for
each compound was observed (see Tables 1 and 2) and these
values were slightly lower for α-glucosidase in comparison with
α-amylase. For sake of comparison, the inhibition of α-amylase

Figure 3. Inhibition of α-amylase (A,B) and α-glucosidase (C,D) by (A) 8, (B) 44, (C) 35, and (D) 39. The enzymatic activity was measured in
the presence of increasing concentrations of inhibitor (0 μM, red line; 3 μM, blue line; 10 μM, green line; 33 μM, orange line; 100 μM, pink line)
and different concentrations of (A, B) starch (0−10 mg/mL) or (C, D) p-nitrophenyl-α-D-glucopyranoside (0−5 mM, right panels). A Michaelis−
Menten model of noncompetitive inhibition was globally fit: the Lineweaver−Burk equation was used to describe in a double reciprocal form the
noncompetitive inhibition mechanism (central panels), and the Ki value was estimated by the tertiary plot of slope against compound concentration
(linearly fitted, left panels). The plots display the mean values ± SD, n = 2.
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and α-glucosidase was studied for acarbose under our
experimental conditions: in both cases, a noncompetitive
inhibition was apparent, with Ki values in the 60−90 μM range
(Table 2 and Table S1).
Molecular docking was carried out to elucidate the binding

mode of the active compounds in the putative allosteric sites of
α-amylase and α-glucosidase. Probable allosteric sites were
identified by using the Maestro suite (Figure S1 in the
Supporting Information). Docking of 8 and 44 in a common
allosteric site of α-amylase is depicted in Figure 4A and B. 8
establishes significant interactions within the pocket: a
bifurcated hydrogen bond is observed between the amino
group of Lys53 and the nitrogen of the pyridine ring and the
ether oxygen; additionally, the carbonyl group of the
acetophenone moiety of 8 interacts via a hydrogen bond
with His491. 44, on the other hand, is oriented in such a way
that the carbonyl oxygen attached to the pyridine system
establishes two H-bonds with the amino groups of the side

chains of Lys53 and Arg392, respectively. Moreover, the NH2
of the pyridine ring acts as a H-bond donor toward the oxygen
of the amide bond of Lys457. Figure 4C and D describe the
docking poses of 35 and 39 within the common allosteric site
of α-glucosidase. The amino group of the pyridine ring of
compound 35 forms an H-bond with the carbonyl oxygen of
the peptide backbone of Phe543. In contrast, for compound
39, a hydrogen bond is observed between the carbonyl oxygen
and a hydrogen of the amino group within the side chain of
Lys523. These in silico results provide a first picture of a likely
interaction of the noncompetitive inhibitors with unprece-
dented allosteric sites for both target enzymes and, whenever
confirmed by mutagenesis experiment, will provide the bases
for a rational development of the inhibitors. In the past,
acarbose was reported as uncompetitive inhibitor of barley
amylase, able to bind a secondary binding site to give an
abortive ESI complex.17

The predicted drug-like properties of compounds 8, 35, 39,
and 44 were examined using SwissADME (Absorption,
Distribution, Metabolism, Excretion) online tool and they
displayed favorable pharmacokinetic properties as shown in
Table 3. Concerning their physicochemical properties, all of
the synthesized compounds showed good solubility in water
according to ESOL solubility this favoring drug formulation. A
<5 lipophilicity (logP) was predicted for all molecules,
indicating good permeability to the target tissue. However,
the tested compounds showed no blood−brain barrier
penetration and are predicted to follow the Lipinski rule of
5. Compounds 8, 35, 39, and 44 are predicted to have a high
GI absorbance and a comparable bioavailability score of 0.56.

Table 2. Inhibition constants of α-amylase by compounds 8,
44 and acarbose, and of α-glucosidase by compounds 35
and 39

Enzyme Compound Ki (μM)

α-Amylase 8 41.2 ± 3.1
44 81.9 ± 4.1
acarbose 62.4 ± 2.4

α-Glucosidase 35 17.1 ± 1.4
39 15.9 ± 1.3
acarbose 90.7 ± 1.8

Figure 4. Binding modes of 8 (panel A) and 44 (panel B) into the putative allosteric site of α-amylase (PDB-code 1OSE) and binding modes of 35
(panel C) and 39 (panel D) into the putative allosteric site of α-glucosidase (PDB-code 3A4A). The residues involved in the interactions with the
inhibitors are highlighted as sticks. H-bond interactions are displayed as red dashed lines.
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In conclusion, this work led to the discovery of novel
nicotinic acid derivatives with the aim of investigating how
modification of positions 5 and 6 could impact inhibitory
activity against α-amylase and α-glucosidase. The target
compounds were synthesized by employing a novel sustainable
approach based on the use of the green solvent Cyrene.
Remarkably, 8 and 44 exhibited micromolar inhibition values
against α-amylase, with 44 demonstrating an ∼72% enzyme
inactivation level, a superior outcome compared to the control,
acarbose. Concerning α-glucosidase, on the other hand, both
35 and 39 showed inhibition values comparable to acarbose
but displayed a significant enhancement in their ability to
strongly deactivate the enzyme at saturation, by approximately
∼80−90% compared to the control. Notably, the inhibition
mechanism of the most promising compounds turned out to
be noncompetitive. This finding represents an important
innovation since, tipically, inhibitors of α-amylase and α-
glucosidase, used to alleviate postprandial glycemia, act via a
reversible competitive mechanism.6,7 In particular, this is also
true for recently reported nicotinic-based inhibitors, showing
the remarkable property to competitively inhibit both α-
amylase and α-glucosidase.11 The noncompetitive inhibition
on both enzymes provided by our nicotinic acid 6-pyridine
(thio)ether derivatives offers great advantages over a
competitive inhibition due to the ability of the compounds
to bind the enzymes at a site other than the active site, thereby
not competing directly with the substrate. As a consequence, a
noncompetitive inhibitor reduces the activity of the enzyme by
binding equally well to the enzyme whether or not it has
already bound to substrate, and its inhibition effect cannot be
overcome by increasing substrate concentration. These
preliminary results indicate that nicotinic acid scaffold could
effectively be employed as an interesting pharmacophore in the
design and optimization of new hypoglycemic drugs acting
synergistically as noncompetitive inhibitors on both α-amylase
and α-glucosidase, thus expanding the repertoires of potential
strategies for type 2 diabetes treatment.
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Abstract 

Immunoglobulin light chain amyloidosis (AL) shares with multiple myeloma (MM) the 
overproduction of one clonal light chain (LC), but whereas in MM patients LC molecules remain 
soluble in circulation, AL LCs misfold into toxic soluble species and amyloid fibrils that 
accumulate in internal organs, leading to completely different clinical manifestations. The large 
sequence variability of LCs has hampered our understanding of the mechanism leading to LC 
aggregation. Nevertheless, some biochemical properties associated with AL-LC are emerging.  
The stability of the dimeric LCs seems to play a role, but conformational dynamics and 
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susceptibility to proteolysis have been identified as biophysical parameters that, under native 
conditions, can better distinguish AL-LCs from LCs found in MM. In this study, our goal was to 
delineate a conformational fingerprint that could discriminate AL from MM LCs. By subjecting four 
AL and two MM LCs to in vitro analysis under native conditions using small-angle X-ray scattering 
(SAXS), we observed that the AL LCs exhibited a slightly larger radius of gyration and greater 
deviation from the experimentally determined structure, indicating enhanced conformational 
dynamics. Integrating SAXS with molecular dynamics (MD) simulations to generate a 
conformational ensemble revealed that LCs can adopt multiple states, with VL and CL domains 
either bent or straight. AL-LCs favored a distinct state in which both domains were in a straight 
conformation, maximizing solvent accessibility at their relative interfaces. This unique 
conformation was experimentally validated by hydrogen-deuterium exchange mass spectrometry 
(HDX-MS). Such findings reconcile a wealth of experimental observations and provide a precise 
structural target for drug design investigations. 

Significance Statement 

The high sequence variability of antibody light chains complicates the understanding of the 
molecular determinants of their aggregation in AL patients. Extensive biophysical and structural 
analyses by our group and others have demonstrated that reduced kinetic and thermodynamic 
stability associated with higher conformational dynamics play a role in their amyloidogenic 
behavior, but specific structural elements contributing to these behaviors remain elusive. In 
addition, these features are not universal among all known LCs, fostering different interpretations 
of their aggregation mechanisms. By combining molecular dynamics simulations, small-angle X-
ray scattering measurements, and hydrogen-deuterium mass exchange spectrometry, we found 
that enhanced conformational dynamics localized at CL-VL interface residues, coupled with 
structural expansion, are distinguishing features of amyloidogenic LCs. 
 
Main Text 
 
Introduction 
 
Immunoglobulin light-chain (AL) amyloidosis is a systemic disease associated with the 
overproduction and subsequent amyloid aggregation of patient-specific light chains (LCs) (1-4). 
Such aggregation may take place in one or several organs, the heart and kidneys being the most 
affected ones (1). AL originates from an abnormal proliferation of a plasma cell clone that results 
in LCs overexpression and over-secretion in the bloodstream (1). LCs belonging both to lambda 
(λ) and kappa (κ) isotypes are associated with AL; however, λ-LCs are greatly overrepresented in 
the repertoire of AL patients. Specifically, AL-causing LCs (AL-LCs) most often belong to a 
specific subset of lambda germlines such as IGLV6 (λ6), IGLV1 (λ1), and IGLV3 (λ3) (5-8). 
 
λ-LCs are dimeric in solution with each subunit characterized by two immunoglobulin domains, a 
constant domain (CL) with a highly conserved sequence and a variable domain (VL) whose 
extreme sequence variability is the result of genomic recombination and somatic mutations (9-
12). VL domains are generally indicated as the key responsible for LC amyloidogenic behavior. 
The observation that the fibrillar core in most of the structures of ex-vivo AL amyloid fibrils consist 
of VL residues further strengthens this hypothesis (13-17). However, in a recent Cryo-EM 
structure, a stretch of residues belonging to the CL domain is also part of the fibrillar core, and 
mass spectrometry (MS) analysis of several ex vivo fibrils from different patients indicates that 
amyloids are composed of several LC proteoforms including full-length LCs (18-21).  
 
Interestingly the overproduction of a light chain is a necessary but not sufficient condition for the 
onset of AL. Indeed, the uncontrolled production of a clonal LC is often associated with Multiple 
Myeloma (MM), a blood cancer, but only a subset of MM patients develops AL, thus indicating 
that specific sequence/biophysical properties determine LC amyloidogenicity and AL onset 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2024. ; https://doi.org/10.1101/2024.07.12.603200doi: bioRxiv preprint 

203



 

 

3 

 

(12,22-24). To date, the extreme sequence variability of AL-LCs has prevented the identification 
of sequence patterns predictive of LC amyloidogenicity, however, it has been reproducibly 
reported that several biophysical properties correlate with LC aggregation propensity. AL-LCs 
display a lower thermodynamic and kinetic fold stability compared to non-amyloidogenic LCs 
found overexpressed in MM patients (named hereafter M-LCs) (12,20-24).  
 
Interestingly, previous work on LCs has indicated how differences in conformational dynamics 
can play a role in the aggregation properties of AL-LCs (22-26). Oberti et al. have compared 
multiple λ-LCs obtained from either AL patients or MM patients identifying the susceptibility to 
proteolysis as the best biophysical parameter distinguishing the two sets (12). Weber et al. have 
shown, using a mice-derived κ-LC, how a modification in the linker region can lead to a greater 
conformational dynamic, an increased susceptibility to proteolysis, as well as an increased in vitro 
aggregation propensity (25). Additionally, AL-LC flexibility and conformational freedom have also 
been correlated to the proteotoxicity observed in patients affected by cardiac AL and 
experimentally verified in human cardiac cells and a C. elegans model (27,28). It is noteworthy 
that the amyloid LCs analyzed in this study were originally purified from patients with cardiac 
amyloidosis.   
 
Here building on this previous work as well on our previous experience on β2-microglobulin, 
another natively folded amyloidogenic protein (29-33) we investigated the native solution state 
dynamics of multiple λ-LCs by combining MD simulations, SAXS, and HDX-MS. Interestingly, we 
found a unique conformational fingerprint of amyloidogenic LCs corresponding to a low-populated 
state characterized by extended linkers, with an accessible VL-CL interface and possible 
structural rearrangements in the CL-CL interface.   
 
 
Results 
 
SAXS suggests differences in the conformational dynamics of amyloidogenic and non-
amyloidogenic LC. SAXS was acquired either in bulk or in-line with SEC for a set of LCs 
previously described (cf. Table 1 and Methods). H3, H7, H18 (AL-LC), M7, and M10 (M-LC) 
were studied by Oberti, et al. (12) and identified in multiple AL or MM patients, while ex vivo fibrils 
of AL55 from heart, kidney, and fat tissue of an AL patient have been previously studied by Cryo-
EM and MS (16,17,19,20). These LCs cover multiple germlines, with H18 and M7 belonging to 
the same germline (cf. Table 1). The sequence identity is the largest for H18 and M7 (91.6%) 
while is the lowest for AL55 and M7 (75.2%). A table showing the statistics for all pairwise 
sequence alignments is reported in Table S1 in the Supporting Information. For H3, H7, and M7 a 
crystal structure was previously determined (12) while for H18, AL55, and M10 we obtained a 
model using either homology modeling (H18 and AL55) or AlphaFold2 (M10). Qualitatively, the 
SAXS curves in Figure 1 did not reveal any macroscopic deviation of the solution behavior with 
respect to the crystal or model conformation. For each LC, we compared the experimental and 
theoretical curves calculated from the LC structures (cf. Table 1) analyzing the residuals and the 
associated �2. The analysis indicated a discrepancy between the model conformation and the 
data in the case of the AL-LCs, which was instead not observed in the case of the M-LCs. For AL-
LC, residuals deviate from normality in the low q region, suggesting some variability in the global 
size of the system. Additionally, a weak trend distinguishing AL-LC from M-LCs could be 
identified in the radius of gyration (Rg) (cf. Table 1). H3, H7, H18, and AL55 display an Rg, as 
derived from the Guinier analysis of the SAXS curves, of 0.5 to 0.8 Å larger than M7 and M10. 
Overall, SAXS measurements point to less compact and more structurally heterogeneous AL-LCs 
compared to more compact and structurally homogeneous M-LCs. 
 
MD simulations reveal a conformational fingerprint for amyloidogenic light chains. To 
investigate the conformational dynamics of the six LCs we performed Metadynamics 
Metainference (M&M) MD simulations employing the SAXS curves (q<0.3 Å) as restraints (cf. 
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Methods) (34-37). Metainference is a Bayesian framework that allows the integration of 
experimental knowledge on-the-fly in MD simulations improving the latter while accounting for the 
uncertainty in the data and their interpretation. Metadynamics is an enhanced sampling technique 
able to speed up the sampling of the conformational space of complex systems. The combination 
of SAXS and MD simulations has been shown to be effective for multi-domain proteins as well as 
for intrinsically disordered proteins (38-40). 
 
For each LC we performed two independent M&M simulations coupled by SAXS restraint, 
accumulating around 120-180 µs of MD per protein (cf. Methods and Table S2 in the Supporting 
Information). The resulting conformational ensembles resulted in a generally improved agreement 
with the SAXS data employed as restraints (cf. Table S2 and Figure S1 in the Supporting 
Information). To investigate differences in the LC local flexibility we first analyzed the root mean 
square fluctuations (RMSF) for the CL and VL separately, averaging over the chains and the 
replicates, Figure 2A. The RMSF indicates comparable flexibility in most of the regions, with 
differences localized in the termini and in some loops. The VL of amyloidogenic LCs are generally 
more flexible than the M ones, but this may be associated with the lengths of their 
complementarity-determining regions (CDRs). Indeed, M10 has the longest and most flexible 
CDR1 and the shortest and least flexible CDR3. Unexpectedly, there are some differences also in 
the CL domains. Here, in Figure 2A, the AL-LCs are always more flexible in at least one region 
even if these differences are relatively small. Overall, the RMSF does not provide a clear 
indication to differentiate AL and M-LCs. To provide a global description of the dynamics of the 
six LC systems, we then introduced two collective variables, namely the elbow angle, describing 
the relative orientation of VL and CL dimers, and the distance between the VL and CL dimers 
center of mass, illustrated in Figure 2B.  
 
In Figure 3 we report the free energy surfaces (FES) obtained from the processing of the two 
replicates of each LC as a function of the elbow angle and the CL-VL distance calculated from 
their center of mass. The visual inspection of the FES indicates converged simulation: in all 
cases, the replicates explore a comparable free-energy landscape with comparable features. All 
six LC FES share common features: a relatively continuous low free energy region along the 
diagonal, spanning configurations where the CL and VL are bent and close to each other (state 
LB), and configurations where the CL and VL domains are straight and at relative distance 
between 3.4 and 4.1 nm (state LS). A subset of LCs, namely H18, M7, and AL55, display 
conformations where the domains are straight in line (elbow angle greater than 2.5 rad) and in 
close vicinity, with a relative distance between the center of mass of less than 3.4 nm (state G). 
Of note, H18 and M7 belong to the same germline, letting us speculate that this state G may be 
germline-specific. Most importantly, only the AL-LCs display configurations with CL and VL 
straight in line but well separated at relative distances greater than 4.1 nm, this state H seems to 
be a fingerprint specific for AL-LCs. A set of configurations exemplifying the four states is 
reported in Figure 2. The estimates of the populations for the four states LB, LS, G, and H are 
reported in Table 2. The quantitative analysis indicates that, within the statistical significance of 
the simulations, states LB and LS represent in all cases most of the conformational space. In the 
case of H18, AL55, and M7, the compact state G is also significantly populated (10-34%). The 
state H, associated with amyloidogenic LCs, is populated between 5 and 10% in H3, H7, H18, 
and AL55 and less than 1% in M7 and M10. 
 
To identify additional differences between the conformations observed in state H and the rest of 
the conformational space, we focused our attention on the VL-VL and CL-CL dimerization 
interfaces. In Figure 4, we show the free energy as a function of the distance between the CL 
domains versus the distance between the VL domains for each of the four states for one of the 
two simulations performed on H3; the same analysis for all other simulations is shown in Figures 
S2 to S7 in the Supporting Information. From the comparison of the FESes, it is clear that only in 
the conformations corresponding to the state H do the CL-CL dimers display an alternative 
configuration. In the case of H3, the CL-CL domains in the H state are characterized by a shift 
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towards configurations characterized by a larger distance, the same is observed in the case of 
H18 and AL55, while in the case of H7 the H state is characterized by a smaller distance between 
the CL domains. 
 
Our conformational ensembles allowed us to hypothesize a conformational fingerprint for AL 
proteins, namely the presence of a weakly but significantly populated state (H) characterized by a 
more extended quaternary structure, with VL and CL dimers well separated, and with perturbed 
CL-CL interfaces. 
 
HDX independently validates the amyloidogenic LC conformational fingerprint. To gain 
further molecular insight into how the dynamics of the tertiary and quaternary structures can be 
differentiated in AL- and M-LCs, HDX-MS was performed on our set of proteins. HDX-MS probes 
the protein dynamics by monitoring the hydrogen-to-deuterium uptake over time and the obtained 
data well complement structural, biophysical, and computational data. Four LCs from our set (H3, 
H7, AL55, and M10) yielded good peptide sequence coverages of 98.6, 92.5, 98.6, and 99.1%, 
respectively (Figures S8A-S11A, and Table S3 in the Supporting Information) while H18 and M7 
were not included in this analysis due to their poor sequence coverage and were not further 
investigated.  
 
HDX-MS analysis revealed subtle structural dynamics of the individual proteins. The most 
significant difference between the AL and M-LCs is observed for residues 34-50, which are part of 
both the VL-VL dimerization interface and, more importantly in the context of this work, the CL-VL 
interface. These residues show significantly higher deuterium uptake in all H-proteins, with H3 
being the highest, implying that AL-LCs dimeric interfaces (VL-VL and CL-VL) are more dynamic 
and hence significantly destabilized than in M10 (Figure 5, Figure S12 in the Supporting 
Information). The highly dynamic VL-VL interface of H3 also correlates well with its open VL-VL 
interface in a crystal structure (PDB 8P89) which houses two nanobodies interacting with each VL 
in a dimeric structure (28). On the other hand, residues 54-70, which are not part of either 
interface, show higher deuterium uptake and hence more dynamics in the M10 protein, which 
may be a result of redistributed dynamics due to the rigidity of its VL-VL interface, as observed 
previously (41,42) (Figure 5). In contrast, the VL-CL hinge regions (residues 100-120) show 
homogenous high flexibility in all the proteins due to their higher accessible surface area (Figure 
5). As expected, the CL domains also show a similar pattern of deuterium uptake and hence 
flexibility in AL- and M-LCs, with a minor difference contributed by the rigid VL-CL interface 
containing residues 161-180 (Figure S10 in the Supporting Information). This region shows 
significantly less deuterium uptake (rigid) in both AL and M proteins when compared to other 
peptides in the CL domain (Figures S8B-S11B in the Supporting Information). However, 
comparing the average uptake for this region (161-180) between AL and M proteins shows that 
H3 and AL55 have higher uptake than M10. In contrast, H7 is an exception with the lowest 
deuterium uptake in this region (Figure S12 in the Supporting Information). These data are 
particularly interesting in the light of our simulations. The dimeric conformations identified in the H 
state, Figure 3, are characterized by higher accessibility for the CL-VL interface, which is in 
perfect agreement with the increased accessibility for the region 34-50 on the VL and 161-180 in 
the CL observed in the HDX-MS analysis. Notably, the H state of H7 is the only one in which the 
CL-CL interface is remarkably compact (see Figure S3 in the Supporting Information), consistent 
with the lower H/D exchange for regions 161-180 observed in H7. Overall, the HDX-MS data 
provide an independent validation of the H-state predicted from our conformational ensembles. 
 
 
Discussion  
 
Understanding the molecular determinants of AL amyloidosis has been hampered by its high 
sequence variability in contrast to its highly conserved three-dimensional structure (8). In this 
work, building on our previous studies highlighting susceptibility to proteolysis as a property that 
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can discriminate between AL-LC and M-LC, as well as the role of conformational dynamics in 
protein aggregation, we characterized LC conformational dynamics under the assumption that 
AL-LC proteins, despite their sequence diversity, may share a property that emerges at the level 
of their dynamics. We combined SAXS measurements with MD simulations under the integrative 
framework of Metainference to generate conformational ensembles representing the native state 
conformational dynamics of 4 AL-LC and 2 M-LC. While SAXS alone already indicated possible 
differences, its combination with MD allowed us to observe a possible low-populated state, which 
we refer to as state H, characterized by well-separated VL and CL dimers and a perturbed CL-CL 
interface, which is significantly populated in AL-LCs while only marginally populated in M-LCs. 
HDX measurements allowed us to independently validate this state by observing increased 
accessibility in CL-VL interface regions. Notably, our conformational ensembles are similar to 
those observed for a linker mutation in the case of a kappa LC (25). Furthermore, the presence of 
high-energy, so-called excited states associated with amyloidogenic proteins has been previously 
identified in the case of SH3 (43), and β2m (29). 
 
Having established a conformational fingerprint for AL-LC proteins, it would be tempting to 
identify possible mutations that could be associated with the presence of the H state. Comparing 
the sequences and structures of M7 and H18, both of which belong to the IGLV3-19*01 germline, 
we can identify a single mutation, A40G, that could easily be associated with the appearance of 
the H state in H18. This mutation is located in the 37-43 loop, which H/D exchange showed to be 
more accessible in our three AL-LCs than in our M-LC (see Figure 5 and Figure S12), and it 
breaks a hydrophobic interaction with the methyl group of T165, as observed in the crystal 
structure of M7 (PDB 5MVG and Figure S13), potentially making T165 more accessible in H18 
than in M7 (see Figure 5, and Figure S12). Comparing the H18 and M7 sequences with the 
germline reference sequence, we see that position 40 in IGLV3-19*01 is a glycine (see Figure 
S13). This would suggest the intriguing interpretation that the G40A mutation in M7 may increase 
the interdomain stability compared to the germline sequence, making it less susceptible to 
aggregation. However, it should also be noted that while this framework position is a glycine in 
H3, H7, and AL55, it is also a glycine in M10. Previous research has often focused on identifying, 
on a case-by-case basis, the key mutations that may be considered responsible for the 
emergence of the aggregation propensity, under the assumption that such aggregation propensity 
should not be present in germline sequences, but this assumption may be misleading given the 
observation that few germlines are strongly overrepresented in AL, suggesting that these starting 
germline sequences may be inherently more aggregation-prone than the germline genes that are 
absent or rarely found in AL patients. More generally, by comparing our AL-LC sequences with 
their germline references (Figures S14 to S19 in the Supporting Information), we observe that all 
mutations fall exclusively in the variable domain, allowing us to exclude for these systems a direct 
role for residues in the linker region, as observed in ref (25,44), or in the constant domain, as 
observed in ref (45). Many mutations fall in the CDR regions, as expected, but others are found in 
the framework regions, both near the dimerization interface and in other regions of the protein. 
Regarding mutations in the CDRs, it has been suggested that AL-LC proteins may exhibit 
frustrated CDR2 and CDR3 loops, with few key residues populating the left-hand alpha helix or 
other high-energy conformations (46), resulting in the destabilization of the VL. In Figures S14 to 
S19 in the Supporting Information, we have analyzed the Ramachandran plot obtained from our 
conformational ensembles, focusing only on those residues that most populate the left-hand 
alpha helix region, which are marked with a red circle symbol and whose Ramachandran is 
reported. Our data indicate the presence of residues populating left-hand alpha regions in the 
Ramachandran plot, but these are also found in the case of M-LCs, so our simulations do not 
allow to confirm or exclude this mechanism in our set of protein systems. 
 
In conclusion, our study provides a novel, complementary, perspective on the determinants of the 
misfolding propensity of AL-LCs that we schematize in Figure 6. The identification of a high-
energy state, with perturbed CL dimerization interfaces, extended linkers, and accessible regions 
in both the VL-CL and VL-VL interfaces may be the common feature interplaying with specific 
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properties shown by previous work including the direct or indirect destabilization of both the VL-
VL and CL-CL dimerization interfaces (22,23,45-48). Our conformational fingerprint is also 
consistent with the observation that protein stability does not fully correlate with the tendency to 
aggregate, whereas susceptibility to proteolysis and conformational dynamics may better to 
capture the differences between AL-LC and M-LC. In this context, our data allow us to rationally 
suggest that targeting the constant domain region at the CL-VL interface, which is more labile in 
the H state, maybe a novel strategy to search for molecules against LC aggregation in AL 
amyloidosis. 
 
 
Materials and Methods 
 
LC production and purification. Recombinant AL- (H3, H7, H18, and AL5) and M- (M7, M10) 
proteins were produced and purified from the host E. coli strain BL21(DE3). Firstly, the competent 
BL21(DE3) cells were transformed with plasmid pET21(b+), which contains genes encoding H3, 
H7, H18, AL55, M7, and M10 proteins. The transformed cells were selected for each plasmid by 
growing them on LB agar plates containing the antibiotic ampicillin at a final concentration of 100 
µg/ml.  For over-expression of protein, one colony was picked from each plate and grown 
overnight in 20 ml of LB broth containing ampicillin at a final concentration of 100 µg/ml. The 
overnight-grown cells were then used to inoculate a secondary culture in one liter of LB broth. 
The cells were grown until the turbidity (OD600nm) reached between 0.6-0.8 and protein expression 
was subsequently induced by adding 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 4 h. 
The bacterial cells containing overexpressed LCs were then harvested using a Backman Coulter 
centrifuge at 6000 rpm for 20 min at 4 °C. All the proteins were overexpressed as inclusion 
bodies. For protein purification, the inclusion bodies were isolated by cell lysis induced by 
sonication. The purification of inclusion bodies was performed by washing them with buffer 
containing 10 mM Tris (pH 8) and 1% triton X 100. The purified inclusion bodies were unfolded 
with buffer containing 6.0 M guanidinium hydrochloride (GdnHCl) for 4h at 4 °C. The unfolded 
LCs were then refolded in a buffer containing reduced and oxidized glutathione to assist in 
disulfide bond formation. The refolded proteins were subjected to anion exchange and size-
exclusion chromatography steps for final purification. The level of protein purity was checked on 
12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The final 
protein concentration was measured using molecular weight and extinction coefficient of 
individual proteins. The purified proteins were stored at -20 °C for further use.  

Additional Methods for SAXS, MD simulations, and HDX experiments are available in the 
Supporting Information. SAXS data are available on the SASBDB (cf. Dataset S1 in the 
supporting information). Simulations data are available on Zenodo (cf. Dataset S2 in the 
supporting information).  
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Figures and Tables 
 

 
Figure 1. SAXS measurements for AL- and M light chains. Kratky plots comparing experimental 
(orange), and theoretical (black) curves and associated residuals (bottom panels) indicate that H 
LC solution behavior deviates from reference structures more than M LC. (A) H3 measured in 
bulk (Hamburg), 3.4 mg/ml. (B) H7 measured in bulk (Hamburg), 3.4 mg/ml. (C) H18 measured 
by online SEC-SAXS (ESRF), starting at 2.8 mg/ml. (D) AL55 measured in bulk (ESRF), 2.6 
mg/ml. (E) M7 measured in bulk (Hamburg), 3.6 mg/ml. (F) M10 measured by online SEC-SAXS 
starting at 6.7 mg/ml (ESRF).
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 Figure 2. (A) Residue-wise root mean square fluctuations (RMSF) obtained by averaging the two 
Metainference replicates and the two equivalent domains for the six systems studied. The top 
panel shows data for the variable domains, while the bottom panel shows data for the constant 
domain. Residues are reported using Chothia numbering (49). (B) Schematic representation of 
two global collective variables used to compare the conformational dynamics of the different 
systems, namely the distance between the center of mass of the VL and CL dimers and the angle 
describing the bending of the two domain dimers. 
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Figure 3. Free Energy Surfaces (FESes) for the six light chain systems under study by 
Metadynamics Metainference MD simulations. For each system, the simulations are performed in 
duplicate. The x-axis represents the elbow angle indicating the relative bending of the constant 
and variable domains (in radians), while the y-axis represents the distance in nm between the 
center of mass of the CL and VL dimers. The free energy is shown with color and isolines every 
2kBT corresponding to 5.16 kJ/mol. On each FES are represented four regions (green, red, blue, 
and black rectangles) highlighting their main features. For each region, a representative structure 
is reported. 
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Figure 4. Free energy surfaces for the four substates identified in Figure 3 in the case of the first 
H3 Metainference simulation. The x-axis shows the distance between the centers of mass of the 
constant domains, while the y-axis shows the distance between the centers of mass of the 
variable domains. The free energy is shown with color and isolines every 2kBT corresponding to 
5.16 kJ/mol. 
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Figure 5. HDX-MS analysis. The top panel represents the simplified presentation of the primary 
structure of an LC including variable domain (VL) and constant domain (CL). The location of β-
strands according to Chothia and Lesk (49). The middle panel represents the relative HDX 
butterfly plots of H3, H7, AL55, and M10 proteins. The peptides showing significantly higher 
deuterium uptake are labeled on their respective peaks. The peptide from residues 34-50 in AL-
LCs and 54-70 in M-LC are labeled in orange. The lower panel represents the structural mapping 
of the selected peptides showing the highest deuterium uptakes using PyMOL. The VL-VL and 
VL-CL interfaces covering residues 34-50 and residues 161-180 are pointed with dark orange 
and light orange arrows, respectively. 
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Figure 6. Schematic representation summarizing our findings in the context of previous work on 
the biophysical properties of amyloidogenic light chains. We propose that the H state is the 
conformational fingerprint distinguishing AL LCs from other LCs, which together with other 
features contributes to the amyloidogenicity of AL LCs. 
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Table 1. LC systems studied in this work. For each LC in the table are reported the germline, the 
phenotype, the structure or the method used to obtain one, the agreement between the structure 
and the SAXS curves, and the radius of gyration derived from the SAXS data. 
 
LC Germline Phenotype Structure SAXS �2 

q<0.5 (q<0.3) 
Rg (SAXS) 
[nm] 

H3 IGLV1-44*01 AL 5MTL 1.6 (1.9) 2.57 ± 0.02 
H7 IGLV1-51*01 AL 5MUH 2.8 (4.0) 2.56 ± 0.02 
H18 IGLV3-19*01 AL Homology  1.6 (1.9) 2.56 ± 0.01 
AL55 IGLV6-57*02 AL Homology 5.1 (7.8) 2.58 ± 0.04 
M7 IGLV3-19*01 MM 5MVG 1.2 (1.2) 2.50 ± 0.02 
M10 IGLV2-14*03 MM AF2 1.2 (1.2) 2.51 ± 0.01  
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Table 2. Populations of the four states shown in Figure 3 resulting from the two independent 
Metadynamics Metainference simulations performed for each of the 6 LCs. The population of the 
H state, which we supposed to be a fingerprint specific for AL-LCs, is in bold. 

% H3 H7 H18 AL55 M7 M10 
LB 62.0±0.4 72.3±2.5 22.9±2.8 48.3±0.1 46.8±0.1 48.4±0.3 
LS 33.0±0.2 15.2±2.7 38.4±2.1 32.5±2.0 35.0±0.1 49.1±1.5 
G 0.2±0.1 0.8±0.4 33.8±3.8 10.5±1.4 17.6±0.1 1.8±0.6 
H 4.8±0.5 11.7±0.5 5.0±1.0 8.7±0.5 0.6±0.2 0.8±0.6 
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Methods 
 
Small-Angle X-ray scattering (SAXS) 
For SAXS analysis, H3 was diluted to 3.4 mg/mL, H7 was diluted to 3.4 mg/mL, H18 was diluted to 2.8 
mg/mL, AL55 was diluted to 2.6 mg/mL, M7 was diluted to 3.6 mg/mL, in 20 mM TrisHCl, 150 mM NaCl, 
pH 8. H3, H7 and M7 batch data were collected at the P12 BioSAXS beamline of the EMBL Hamburg 
Synchrotron (1), while AL55 batch data and H18 and M10 online SEC data were collected at the BM29 
BioSAXS beamline of the ESRF, Grenoble (2). For SEC-SAXS, H18 and M10 were injected into a 
superdex 200 increase 10/300 GL column previously equilibrated in 20 mM TrisHCl, 150 mM NaCl, pH 
8, at a concentration of 2.8 mg/mL and 6.7 mg/mL, respectively. SAXS data were processed using 
programs PRIMUS and GNOM within the ATSAS package (3). Data are deposited in the SASBDB (4) 
and available with accession codes. 
 
Molecular dynamics simulations 
The available crystallographic structures of H3, H7 and M7 (PDB: 5mtl, 5muh and 5mvg, respectively 
(5)) were used as starting conformations, using Modeller to add missing residues (6). H18 and AL55 
were modelled by homology modelling using SwissModel (7), while M10 was modelled using AF2 (8). 
Simulations were performed using GROMACS 2019 (9) and the PLUMED2 software (10), using 
AMBER-DES force field and TIP4P-D water (11,12). During in-vacuum minimization RMSD-restraints 
were imposed to enhance the symmetry between the two constant and the two variable domains. The 
systems were solvated in a periodic dodecahedron box, initially 1.2 nm larger than the protein in each 
direction, neutralized with Na and Cl ions to reach a salt concentration of 10 mM, then minimized and 
equilibrated at the temperature of 310 K and pressure of 1 atm using the Berendsen thermostat and 
barostat. Two independent 900 ns long plain MD simulations were run to generate reliable and 
independent starting conformations for the Metadynamics Metainference simulations (13). 30 
conformations were extracted from each simulation and duplicated by inverting the two chains, to obtain 
60 starting conformations symmetrically distributed with respect to chain inversion.  
 
Metadyamics Metainference production simulations were run in duplicate using 60 replicas, each 
replica evolved for ~1 μs (cf. Table S2). Simulations were performed in the NPT ensemble maintaining 
the temperature at 310 K with the Bussi thermostat (14) and the pressure of 1 atm with the Parrinello-
Rahman barostat (15); the electrostatic was treated by using the particle mesh Ewald scheme with a 
short-range cut-off of 0.9 nm and van der Waals interaction cut-off was set to 0.9 nm. To reduce the 
computational cost, the hydrogen mass repartitioning scheme was used (16): the mass of heavy atoms 
was repartitioned into the bonded hydrogen atoms using the heavyh flag in the pdb2gmx tool, the LINCS 
algorithm was used to constraint all bonds, allowing to use a time step of 5 fs. In these simulations 
Parallel Bias Metadynamics (17) was used to enhance the sampling, combined with well-tempered 
metadynamics and the multiple-walker scheme, where Gaussians with an initial height of 1.0 kJ/mol 
were deposited every 0.5 ps, using a bias factor of 10. Five CVs were biased, including combinations 
of phi/psi dihedral angles of the linker regions (i.e. residues connecting variable and constant domains) 
in the two chains, combinations of chi dihedral angles of the linker regions in the two chains, combination 
of inter-domain contacts between the variable and the constant domains. The width of the Gaussians 
was 0.07, 0.12 and 120 for the combination of phi/psi, of chi dihedral angles and combination of 
contacts, respectively. Metainference was used to include SAXS restraints, using the hySAXS hybrid 
approach described in (18-20). A set of 13 representative SAXS intensities at different scattering angles, 
ranging between 0.015 Å−1 and 0.25 Å−1 and equally spaced, was used as restraints. These intensities 
were extracted from experimental data, after performing regularization with the Distance Distribution 
tool of Primus, based on Gnom (3). Metainference was applied every 5 steps, using a single Gaussian 
noise per data point and sampling a scaling factor between experimental and calculated SAXS 
intensities with a flat prior between 0.5 and 1.5. The aggregate sampling from the 60 replicas was 
reweighted using the final metadynamics bias to obtain a conformational ensemble where each 
conformation has an associated statistical weight (21). Convergence and error estimates were 
assessed by the inspection of the two replicated metadynamics metainference run. All relevant data 
are available on Zenodo. 
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Hydrogen-deuterium mass exchange spectrometry (HDX-MS) 
SYNAPT G2-HDMS system (Waters Corporation, USA) equipped with a LEAP robotic liquid handler 
was used to perform HDX-MS measurements in a fully automated mode as described previously (22-
25). The data collection was carried out by a 20-fold dilution of H3, H7, AL55, and M10 proteins (100 
µM) with the labeling buffer containing 1X phosphate buffer saline (PBS) (pD 7.4) to trigger HDX for 0, 
0.5, 1,10, 30, 120, and 240 min at 25 °C in triplicates. Each reaction was quenched by mixing the 
labeled protein with quench buffer (50 mM sodium phosphate, 250 mM TCEP, 3.0 M GdnHCl (pH 2)) 
in a 1:1 ratio at 0 °C. Online digestion was then performed using an immobilized pepsin digestion 
column (Waters Enzymate BEH Pepsin, 2.1 x 30 mm). The digested peptides were trapped using a 
C18 trapping column (Acquity BEH VanGuard 1.7 µm, 2.1 x 5.0 mm) and separated by a linear 
acetonitrile gradient of 5 to 40%. Protein Lynx Global Server (PLGS), and DynamX (Waters Corporation, 
USA) were used to identify the individual peptides, and subsequently, data processing using 
parameters: maximum peptide length of 25, the minimum intensity of 1000; minimum ion per amino 
acid of 0.1; maximum MH+ error of 5 ppm and a file threshold of three. A reference molecule [(Glu1)-
fibrinopeptide B human (CAS No 103213-49-6, Merck, USA)] was used to lock mass with an expected 
molecular weight of 785.8426 Da. The relative deuterium uptakes of individual peptides were extracted 
from DynamX to generate heatmaps as a residue number function and peptides showing higher 
deuterium uptake are used for structural mapping on the modeled structures (26). 
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Figure S1: Kratky plots and associated residuals (bottom panels) comparing experimental (orange), 
and theoretical (black) curves obtained by averaging over the metainference ensemble. (A) to (F) report 
the data for H3, H7, H18, AL55, M7 and M10, respectively. 
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Figure S2: Free energy surfaces for the four substates identified in Figure 3 in the case of the second 
H3 metainference simulation. The x-axis shows the distance between the centers of mass of the 
constant domains, while the y-axis shows the distance between the centers of mass of the variable 
domains. The free energy is shown with color and isolines every 2kBT corresponding to 5.16 kJ/mol.
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Figure S3: Free energy surfaces for the four substates identified in Figure 3 in the case of the first (top) 
and second (bottom) H7 metainference simulation. The x-axis shows the distance between the centers 
of mass of the constant domains, while the y-axis shows the distance between the centers of mass of 
the variable domains. The free energy is shown with color and isolines every 2kBT corresponding to 
5.16 kJ/mol.
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Figure S4: Free energy surfaces for the four substates identified in Figure 3 in the case of the first (top) 
and second (bottom) H18 metainference simulation. The x-axis shows the distance between the centers 
of mass of the constant domains, while the y-axis shows the distance between the centers of mass of 
the variable domains. The free energy is shown with color and isolines every 2kBT corresponding to 
5.16 kJ/mol.
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Figure S5: Free energy surfaces for the four substates identified in Figure 3 in the case of the first (top) 
and second (bottom) AL55 metainference simulation. The x-axis shows the distance between the 
centers of mass of the constant domains, while the y-axis shows the distance between the centers of 
mass of the variable domains. The free energy is shown with color and isolines every 2kBT 
corresponding to 5.16 kJ/mol.
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Figure S6: Free energy surfaces for the four substates identified in Figure 3 in the case of the first (top) 
and second (bottom) M7 metainference simulation. The x-axis shows the distance between the centers 
of mass of the constant domains, while the y-axis shows the distance between the centers of mass of 
the variable domains. The free energy is shown with color and isolines every 2kBT corresponding to 
5.16 kJ/mol.
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Figure S7: Free energy surfaces for the four substates identified in Figure 3 in the case of the first (top) 
and second (bottom) M10 metainference simulation. The x-axis shows the distance between the centers 
of mass of the constant domains, while the y-axis shows the distance between the centers of mass of 
the variable domains. The free energy is shown with color and isolines every 2kBT corresponding to 
5.16 kJ/mol.
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Figure S8: (A) Peptide coverage map of protein H3. The total number of peptides is 61 with a coverage 
of 98.6% and a redundancy of 4.16. (B) As shown on the left, heat map as a function of HDX-time at 
different time points. The relative deuterium uptake is color-coded from blue-to-white-to-red for 0 to 30% 
as indicated by the scale bar below. 
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Figure S9: (A) Peptide coverage map of protein H7. The total number of peptides is 50 with a coverage 
of 92.5% and a redundancy of 4.01. (B) Heat map as a function of HDX-time at different time points as 
shown on the left. The relative deuterium uptake is color-coded from blue-to-white-to-red for 0 to 30% 
as shown by the scale bar below. 
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Figure S10: (A) Peptide coverage map of protein AL55. The total number of peptides is 57 with a 
coverage of 98.6% and a redundancy of 4.06. (B) Heat map as a function of HDX-time at different time 
points as shown on the left. The relative deuterium uptake is color-coded from blue-to-white-to-red for 
0 to 30% as shown by the scale bar below. 

232



 
Figure S11: (A) Peptide coverage map of protein M10. The total number of peptides is 62 with a 
coverage of 99.1% and a redundancy of 4.69. (B) As shown on the left, heat map as a function of HDX-
time at different time points. The relative deuterium uptake is color-coded from blue-to-white-to-red for 
0 to 30% as indicated by the scale bar below. 
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Figure S12: HDX kinetics of relative deuterium uptake of the peptide from residues 34-50 and 
peptides in a range of residues 161-180. The color corresponding to each protein is shown in the 
figure panels. 
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Figure S13. Zoom in on the crystal structure of M7 to show the hydrophobic contact between 
A40 in the VL and T165 in the CL. Below is reported the multiple sequence alignment for M7, 
H18 and their germline sequence (IGLV3-19*01 for the VL and IGLC2*02 for the CL). 
 

A40

T165

M7 SSELTQDPAVSVALGQTVKITCQGDSLRMYYASWYQQKPAQAPVLVIYAEKNRPSGIPDR
H18       SSQLTQDPAVSVALGQIVTITCQGDSLRTYYASWYQQKPGQAPVLVIYNQDHRPSGIPDR
germline: SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDR
          **:************* * ********* **********.******** :.:********
                            20                  40                  60

M7        FSASSSGSTASLTITGAQAEDEADYYCNSRDNSGDHLVFGGGTKLTVLGQPKAAPSVTLF
H18       FSGSSSGNTASLTIAGAQANDEADYYCNSRDSSGNLVLFGGGTKLTVLGQPKAAPSVTLF
germline: FSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGNLVLFGGGTKLTVLGQPKAAPSVTLF
          **.****.******:****:***********.**: ::**********************
                            80                 100                 120

M7        PPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYL
H18       PPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYL
germline: PPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYL
          ************************************************************
                           140                 160     180

M7        SLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
H18       SLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
germline: SLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
          **********************************
                           200
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Figure S14: Pairwise sequence alignment between H3 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Figure S15: Pairwise sequence alignment between H7 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Figure S16: Pairwise sequence alignment between H18 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Figure S17: Pairwise sequence alignment between AL55 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Figure S18: Pairwise sequence alignment between M7 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Figure S19: Pairwise sequence alignment between M10 and its corresponding germline as identified 
by igBLAST using the IGMT databases. The three CDRs and the linker region are highlighted in light 
blue and orange, respectively. The red circles indicate residues for which the left alpha is the most 
populated region in the Ramachandran plot. FES (in kJ/mol) representing the Ramachandran plot for 
the indicated residues are reported in the bottom panels. 
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Table S1. Pairwise sequence identity (above diagonal) and similarity (below diagonal) for the 6 
systems under study. On the diagonal is reported the germline identified by igBLAST using the IGMT 
database.  

H3 H7 H18 AL55 M7 M10 
H3 IGLV1-

44*01 
179/216 
(82.9%) 

168/216 
(77.8%) 

171/218 
(78.4%) 

163/216 
(75.5%) 

172/217 
(79.3%) 

H7 194/216 
(89.8%) 

IGLV1-
51*01 

169/214 
(79.0%) 

168/218 
(77.1%) 

165/214 
(77.1%) 

169/217 
(77.9%) 

H18 183/216 
(84.7%) 

182/214 
(85.0%) 

IGLV3-
19*01 

166/218 
(76.1%) 

196/214 
(91.6%) 

171/217 
(78.8%) 

AL55 190/218 
(87.2%) 

188/218 
(86.2%) 

184/218 
(84.4%) 

IGLV6-
57*02 

164/218 
(75.2%) 

175/218 
(80.3%) 

M7 181/216 
(83.8%) 

179/214 
(83.6%) 

204/214 
(95.3%) 

182/218 
(83.5%) 

IGLV3-
19*01 

169/217 
(77.9%) 

M10 196/217 
(90.3%) 

185/217 
(85.3%) 

186/217 
(85.7%) 

188/218 
(86.2%) 

183/217 
(84.3%) 

IGLV2-
14*03 
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Table S2. Metainference simulations performed in this work for the 6 systems. For each simulation is 
reported the simulation time per replica and the final agreement of the resulting conformational 
ensemble with the experimental SAXS curve. The range q<0.3 is the one used as restraint in the 
simulation. 

LC code Simulation Length per 
replica [ns]  

SAXS 𝒳2 
q<0.5 (q<0.3) 

H3 M&M 1 1,530  1.2 (1.1) 
H3 M&M 2 1,520  1.2 (1.1) 
H7 M&M 1 1,627  1.1 (1.2) 
H7 M&M 2 1,545  1.1 (1.2) 
H18 M&M 1 1,643  1.4 (1.6) 
H18 M&M 2 1,529  1.4 (1.7) 
AL55 M&M 1 1,545  2.7 (3.0) 
AL55 M&M 2 1,591  2.5 (2.7) 
M7 M&M 1 1,623 1.2 (1.2) 
M7 M&M 2 1,530 1.1 (1.2) 
M10 M&M 1 987 1.1 (1.1) 
M10 M&M 2 995 1.1 (1.1) 
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Table S3. HDX-MS data summary. 

Datasets H3 H7 AL55 M10 
HDX reaction details 1X Phosphate buffer saline in D2O (pD 7.0), 25°C 

HDX time course (min) 0, 0.5, 1, 10, 30, 120, and 240  

Back exchange 
(mean/IQR) 

ND 

No. of peptides 61 50 57 62 

Sequence coverage (%) 98.6 92.5 98.6 99.1 

Average peptide length/ 
Redundancy 

13.6/4.16 15.8/4.01 14.3/4.06 15.1/4.69 

Replicates (technical) 3 3 3 3 

Repeatability (average 
SD) 

0.04 Da 0.04 Da 0.04 Da 0.05 Da 
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Legends for Movies 

Movie S1 (separate file). This movie depicts the 3D structure of H3, color-coded by HDX 
exchnage and rotating 360 degrees. 

Movie S2 (separate file). This movie depicts the 3D structure of H7, color-coded by HDX 
exchnage and rotating 360 degrees. 

Movie S3 (separate file). This movie depicts the 3D structure of AL55, color-coded by HDX 
exchnage and rotating 360 degrees. 

Movie S4 (separate file). This movie depicts the 3D structure of M10, color-coded by HDX 
exchnage and rotating 360 degrees. 

 

Legends for Datasets 

Dataset S1 (separate file).  

SAXS data are available on the SASBDB with accession codes 

Dataset S2 (separate file).  

DOI: 10.5281/zenodo.12731283, https://dx.doi.org/10.5281/zenodo.12731283 

Molecular dynamics simulation trajectories and associated statistical weights. 
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5 — CONCLUSIONS

The combination of computational techniques and experimental data is essential to ad-

vance the understanding and characterisation of structure, dynamics, function, as well as

their relationship in the context of biomolecular systems. While computational methods,

such as molecular dynamics simulations, have improved greatly, they are still hampered

by approximations and limited in their sampling capabilities. Experimental techniques

serve as essential validation tools to ensure that computational predictions are consistent

with biological observations. In addition, experimental data can be used as restraints to

reduce sampling challenges and guide the modelling process towards specific or func-

tionally relevant states.

The integration of experimental data from different methods addresses the limitations

of each approach. High-resolution techniques such as X-ray crystallography provide de-

tailed static structures but lack dynamic insight, while NMR and SAS provide informa-

tion on molecular dynamics and flexibility. By combining these methods with computa-

tional techniques, integrative modelling provides a more complete view, capturing both

structural details and dynamic behaviour that are often elusive in isolated experimental

approaches.

Moreover, in an iterative feedback loop, computational models are improved or validated

by experimental data, and in turn, the molecular details and mechanisms observed in sil-

ico provide novel directions and inspiration for new experiments that would otherwise

be inaccessible. The power of integrative modelling lies in its ability to overcome the lim-

itations of both fields. Ultimately, this comprehensive approach provides deeper insights

into biological mechanisms and opens up new opportunities also for practical applica-

tions in areas such as drug discovery and protein engineering.
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[5] Aguilera, A.; Gómez-González, B. Nature Reviews Genetics 2008, 9, 204–217.

[6] Alberts, B.; Johnson, A.; Lewis, J.; Walter, P.; Raff, M.; Roberts, K. Molecular Biology

of the Cell 4th Edition: International Student Edition; Routledge, 2002.

[7] Steitz, T. A. Nature reviews Molecular cell biology 2008, 9, 242–253.

[8] Kornberg, R. D. Proceedings of the National Academy of Sciences 2007, 104, 12955–

12961.

[9] Sonenberg, N.; Hinnebusch, A. G. Cell 2009, 136, 731–745.

[10] Kozak, M. Gene 1999, 234, 187–208.

[11] Schimmel, P. R.; Söll, D. Annual review of biochemistry 1979, 48, 601–648.

[12] Crick, F. Journal of Molecular Biology 1966, 19, 548–555.

[13] Lagerkvist, U. Proceedings of the National Academy of Sciences 1978, 75, 1759–1762.

[14] Nissen, P.; Hansen, J.; Ban, N.; Moore, P. B.; Steitz, T. A. Science 2000, 289, 920–930.

[15] Bartel, D. P. cell 2004, 116, 281–297.

[16] Hannon, G. J. nature 2002, 418, 244–251.

249



[17] Sioud, M. In Design and Delivery of SiRNA Therapeutics; Ditzel, H. J., Tut-

tolomondo, M., Kauppinen, S., Eds.; Springer US: New York, NY, 2021; pp 1–15.

[18] Breaker, R. R. Cold Spring Harbor perspectives in biology 2012, 4, a003566.

[19] Storz, G.; Altuvia, S.; Wassarman, K. M. Annu. Rev. Biochem. 2005, 74, 199–217.

[20] Doudna, J. A.; Cech, T. R. Nature 2002, 418, 222–228.

[21] Narlikar, G. J.; Herschlag, D. Annual review of biochemistry 1997, 66, 19–59.

[22] Wolf, Y. I.; Kazlauskas, D.; Iranzo, J.; Lucı́a-Sanz, A.; Kuhn, J. H.; Krupovic, M.;

Dolja, V. V.; Koonin, E. V. MBio 2018, 9, 10–1128.

[23] Anfinsen, C. B. Science 1973, 181, 223–230.

[24] Nelson, D. L.; Lehninger, A. L.; Cox, M. M. Lehninger principles of biochemistry;

Macmillan, 2008.

[25] Kadler, K. E.; Baldock, C.; Bella, J.; Boot-Handford, R. P. Journal of cell science 2007,

120, 1955–1958.

[26] Pollard, T. D.; Cooper, J. A. science 2009, 326, 1208–1212.

[27] Desai, A.; Mitchison, T. J. Annual review of cell and developmental biology 1997, 13,

83–117.

[28] Blanco-Rodriguez, G.; Di Nunzio, F. Viruses 2021, 13, 1178.

[29] Storz, J. F. Hemoglobin: insights into protein structure, function, and evolution; Oxford

University Press, 2018.

[30] Harrison, P. M.; Arosio, P. Biochimica et biophysica acta (BBA)-bioenergetics 1996, 1275,

161–203.

[31] Delves, P. J.; Roitt, I. M. New England journal of medicine 2000, 343, 37–49.

[32] Carroll, M. C. Nature immunology 2004, 5, 981–986.

[33] Opal, S. M.; DePalo, V. A. Chest 2000, 117, 1162–1172.

[34] Latchman, D. S. The international journal of biochemistry & cell biology 1997, 29, 1305–

1312.

250



[35] Gagnidze, K.; Pfaff, D. W. Neuroscience in the 21st Century: From Basic to Clinical;

Springer, 2022; pp 2677–2716.

[36] Clapier, C. R.; Cairns, B. R. Annual review of biochemistry 2009, 78, 273–304.

[37] Hentze, M. W.; Castello, A.; Schwarzl, T.; Preiss, T. Nature reviews Molecular cell

biology 2018, 19, 327–341.

[38] Crick, F. Nature 1970, 227, 561–563.

[39] Dahm, R. Developmental biology 2005, 278, 274–288.

[40] Dahm, R. Human genetics 2008, 122, 565–581.

[41] Levene, P.; Jacobs, W. Berichte der deutschen chemischen Gesellschaft 1909, 42, 2474–

2478.

[42] Griffith, F. Epidemiology & Infection 1928, 27, 113–159.

[43] Avery, O. T.; MacLeod, C. M.; McCarty, M. Die Entdeckung der Doppelhelix 1944, 97.

[44] Hershey, A. D.; Chase, M. Journal of General Physiology 1952, 36, 39–56.

[45] Franklin, R. E.; Gosling, R. G. Nature 1953, 171, 740–741.

[46] WILKINS, M. H. F.; STOKES, A. R.; WILSON, H. R. Nature 1953, 171, 738–740.

[47] Bateson, W.; Mendel, G. Mendel’s principles of heredity; Courier Corporation, 2013.

[48] Jacob, F.; Monod, J. Journal of molecular biology 1961, 3, 318–356.

[49] Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R.; Wyckoff, H.; Phillips, D. C.

Nature 1958, 181, 662–666.

[50] Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C.

Nature 1960, 185, 416–422.

[51] Karplus, M.; McCammon, J. A. Nat Struct Biol 2002, 9, 646–652.

[52] Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. J Mol Biol 2001, 305,

567–580.

251



[53] Luscombe, N. M.; Greenbaum, D.; Gerstein, M. Methods of information in medicine

2001, 40, 346–358.

[54] Jumper, J. et al. Nature 2021, 596, 583–589.

[55] Schwede, T. et al. Structure 2009, 17, 151–159.

[56] Dobson, C. M. Nature 2003, 426, 884–890.

[57] Pauling, L.; Corey, R. B.; Branson, H. R. Proc Natl Acad Sci U S A 1951, 37, 205–211.

[58] Richardson, J. S.; Richardson, D. C. Science 1988, 240, 1648–1652.

[59] Engelman, D. M.; Steitz, T. A.; Goldman, A. Annu Rev Biophys Biophys Chem 1986,

15, 321–353.

[60] Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577–2637.

[61] Chothia, C. Annu Rev Biochem 1984, 53, 537–572.

[62] Moore, P. B. Annu Rev Biochem 1999, 68, 287–300.

[63] Brion, P.; Westhof, E. Annu Rev Biophys Biomol Struct 1997, 26, 113–137.

[64] Tinoco, I., Jr; Bustamante, C. J Mol Biol 1999, 293, 271–281.

[65] Leckband, D.; Israelachvili, J. Quarterly reviews of biophysics 2001, 34, 105–267.

[66] Dill, K. A. Biochemistry 1990, 29, 7133–7155.

[67] Richardson, J. S. Adv Protein Chem 1981, 34, 167–339.

[68] Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson, M. H. M. Chem Rev

2006, 106, 3210–3235.

[69] Kim, S. H.; Ganji, M.; Kim, E.; van der Torre, J.; Abbondanzieri, E.; Dekker, C. Elife

2018, 7.

[70] Goodsell, D. S.; Olson, A. J. Annu Rev Biophys Biomol Struct 2000, 29, 105–153.
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Wüthrich, K. Nature reviews Drug discovery 2013, 12, 25–34.

[266] Schrödinger, L. Maestro 2023-3, 2023; New York, NY.

[267] Jo, S.; Kim, T.; Iyer, V. G.; Im, W. Journal of Computational Chemistry 2008, 29, 1859–

1865.

[268] Lee, J. et al. Journal of Chemical Theory and Computation 2016, 12, 405–413.

[269] Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.
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