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Abstract

Modern (industrial) domains are based on large digital ecosystems where huge amounts of data and information need to be collected,
shared, and analyzed by multiple actors working within and across organizational boundaries. This data-driven ecosystem poses
strong requirements on data management and data analysis, as well as on data protection and system trustworthiness. However,
although Big Data has reached its functional maturity and represents a key enabler for enterprises to compete in the global market,
the assurance and trustworthiness of Big Data computations (e.g., security, privacy) are still in their infancy. While functionally
appealing, Big Data does not provide a transparent environment with clear non-functional properties, impairing the users’ ability to
evaluate its behavior and clashing with modern data-privacy regulations. In this paper, we present an enhanced assurance process
for Big Data, which aims to increase transparency and trustworthiness of Big Data computations. The assurance process evaluates
Big Data computations at all layers from the specific Big Data pipelines to the Big Data ecosystem underneath.
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1. Introduction

We live and operate in a data-driven ecosystem where huge
amounts of data are collected, shared, and analyzed by multi-
ple actors working within and across organizational boundaries.
The benefits brought by this data-driven ecosystem in terms of
value, performance, and quality, come at the price of increas-
ing security and privacy risks. Data in fact can be sensitive and
need to be protected and secured once stored and while pro-
cessed, following strict regulations such as the General Data
Privacy Regulation (GDPR) in Europe.

A number of different solutions protect the Big Data in-
frastructures and their data/processes by internal and external
threats and attacks, resulting in the proliferation of ad-hoc solu-
tions that prove a specific property or compliance to a specific
regulation [1, 2, 3]. Each solution targets a very small part of
the whole problem [4, 5, 6, 7, 8], missing the full picture. For
example, Terzi et al. [4] presented a survey on a global perspec-
tive of Big Data security and privacy, while Yakoubov et al. [5]
specifically focused on cryptographic approaches. Zhang et
al. [6] proposed a scalable differential privacy approach for Big
Data multidimensional anonymization based on MapReduce.
In addition, the research community has started approaching
the problem of protecting machine learning algorithms and cor-
responding modes [9, 10] at the core of Big Data systems, while
neglecting the protection of the whole systems.

The need of trust and transparency of Big Data computa-
tions is clearly raising, representing a major barrier against the
adoption of Big Data technologies especially in a multi-tenant
environment. Service providers (data transformers/analyzers)
are reluctant to take full responsibility over security and privacy
breaches of their services. Customers (data owners/suppliers)
do not have access to all security intelligence and log informa-

tion, which impairs their ability to estimate risks. There is no
evidence that their computations and information are correctly
managed and protected, as well as on the status of service secu-
rity and correct behavior of security and privacy controls.

This paper is in line with our previous work [11], where
we first try to address the above gaps but in the framework of
DevOps processes applied to Big Data pipelines. In this paper,
we depart from the development process adopted, and from the
best of our knowledge we present the first attempt to address
the general problem of Big Data pipeline assurance. Assur-
ance is the way to gain justifiable confidence that i) one or more
security properties are consistently demonstrated by the target
of an assurance evaluation and ii) the target operationally be-
haves as expected, despite failures and attacks [12]. Applying
assurance to Big Data is a complex process that evaluates the
trustworthiness of all layers of the Big Data ecosystem: i) the
Big Data pipeline and all its tasks, ii) the Big Data engine and
all services over which the pipeline is executed. The goal of our
assurance solution is to increase the trustworthiness of Big Data
applications, mitigating the typical user distrust in Big Data en-
vironments.1 This distrust is typically based on the fact that ser-
vice providers and customers lose, at least partly, control over
the status of their data and applications, and Big Data tech-
nologies and analytics provide blazing fast inference on such
data. Few approaches have already focused on Big Data assur-
ance, tackling specific aspects like data integrity or authentica-
tion [13, 14, 15]. Gao et al. [16] focused on Big Data qual-
ity assurance, and just partially considered security and privacy
quality metrics. Presenting a comparison of Big Data validation
tools, the paper underlines a set of needs including lack of well-

1Ernst and Young – https://www.ey.com/en es/assurance/how-bi

g-data-and-analytics-are-transforming-the-audit
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defined quality validation and assurance standards, as well as
lack of available research results on quality models/metrics and
certification programs. Some initial assurance solutions have
also targeted the need of verifying non-functional properties of
machine learning models to the aim of implementing trustwor-
thy decision systems [17].

The contribution of this paper is threefold. First, we propose
a novel assurance process and architecture that evaluates the
trustworthiness of a Big Data environment at all layers. Second,
we define an assurance methodology where: i) clients anno-
tate a pipeline template with assurance requirements modeling
their trust expectations in terms of non-functional properties,
ii) a pipeline instance is generated from the template mapping
all tasks, services, and requirements on real components, iii)
an assurance confidence level is calculated modeling the trust-
worthiness level of the Big Data pipeline. Third, we evaluated
our approach in the context of the H2020 EVOTION Policy-
Making Big Data Platform [18], where policy makers design or
select analytics templates to be instantiated and executed by the
platform in a fully assisted and privacy-preserving way.

We note that our approach complements the 5V definition
of Big Data [19] where veracity (i.e., messiness or trustworthi-
ness of the data) is extended with Big Data assurance, increas-
ing the Big Data transparency and the soundness of Big Data
computations [20].

The paper is organized as follows: Section 2 defines the
assurance process and the software architecture automating its
evaluation; Section 3 defines the abstraction over the data pipeline
and the Big Data environment needed to represent the process;
Section 4 introduces a practical scenario where security assur-
ance techniques are applied to a live Big Data pipeline, describ-
ing its tasks and its ecosystem; Section 5 describes our assur-
ance methodology; Section 6 shows our experimental pipeline
setup, describing the checks we introduced, the performance
we obtained and a comparison in several execution scenarios.
Finally, Section 7 presents the related works, while Section 8
summarizes our work and the obtained results.

2. Assurance Process and Architecture

We define our notion of assurance and the corresponding
Big Data assurance architecture.

2.1. Assurance Process

Non-functional assurance is the degree of confidence to which
a system supports non-functional (e.g., security and privacy) re-
quirements. The assurance process is possibly supported by a
number of recommendations and security benchmarks, which
drive its activities. For instance, let us consider an assurance
process evaluating a requirement on data confidentiality both
in transit and at rest. It insists on two security controls as the
targets of evaluation implementing i) a mechanism for chan-
nel and storage encryption and ii) an access control mechanism
mediating data ingestion. The assurance process measures how
much the security controls contribute to data confidentiality and
the degree of confidence held by such verification. To this aim,
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Figure 1: A view of the non-functional assurance process.

the configuration of the encryption algorithm (e.g., encryption
algorithm and key length), on one side, and the configuration
of the access control system (e.g., type of access control and
soundness of defined policies), on the other side, are verified.

Figure 1 shows a view of our assurance process, which is
driven by a set of requirements R and refers to a specific target
τ. It is based on two sub-processes, namely, assessment and
evaluation, described in the following.

Definition 2.1 (Assessment process). Given a non-functional
requirement r ∈ R and a target τ, an assessment process ev =
P(r, τ) is a process P that collects evidence ev to prove r on τ.

An assessment process is usually based on testing, monitor-
ing, or formal methods [21, 22, 23], and produces an evidence
in the form of test cases results, monitored events, and formal
proofs, respectively. For instance, let us consider the encryption
control for requirement confidentiality of data in transit. An as-
sessment process can recurrently test whether the selected en-
cryption algorithm follows specific standards/regulations. Ser-
vice configurations can be then verified (e.g., by parsing the
configuration files) to evaluate requirements on the key length.
We note that multiple assessment processes Pi can be executed
to prove a single requirement r ∈ R and, in turn, multiple evi-
dence evi (possibly of different types) can be collected.

An evaluation process builds on the collected evidence and
is executed as follows.

Definition 2.2 (Evaluation process). Given a set of evidence
EV = [ev1, . . . , evn] retrieved by a set of assessment processes
[P1(r, τ), . . . , Pk(r, τ)] executed on target τ and requirement r,
an evaluation process can be defined as a function E(EV, r)
returning a positive result if evidence ev ∈ EV supports r, a
negative result, otherwise.

The Evaluation Process returns a Boolean value claiming
whether evidence is (not) enough to support a given require-
ment. The strength of the evidence supporting the claim can
differ depending on different evaluation parameters such as the
type of probe, and the number and quality of evidence collec-
tors, to name but a few. While the approach used to compute
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Figure 2: Assurance architecture.

whether a set of evidence ev supports or not a requirement r is
out of the scope of this paper (a possible approach can be found
in [24]), we consider the strength as a multiplier of the evalu-
ation process results. For instance, if the evaluation is positive
(i.e., = 1) but the strength is weak (e.g., = 0.3) the outcome of
the evaluation process is weak itself (e.g., = 0.3).

Multiple evaluation processes Ei can be executed on spe-
cific subsets EV of evidence. Evaluation processes are the build-
ing blocks of our assurance process, which returns a single out-
come as defined below.

Definition 2.3 (Assurance process). An assurance process Aτ,r

for a specific target τ is a process that takes as input a tu-
ple ⟨EV, r⟩, where EV is the set of evidence and r ∈ R a re-
quirement, and returns as output an assurance confidence level
l ∈ [0, 1].

We note that Assurance Confidence Level l represents the
level to which the collected evidence satisfies requirement r
according to evaluation processes Ei(EVi ⊆ EV, r) (see Defi-
nition 2.2). Being the outcome of the evaluation processes Ei

∈ [0, 1], the Assurance Confidence Level l is computed as fol-
lows.

Definition 2.4 (Assurance Confidence Level). Given a set of
evaluation results Ei, the assurance confidence level l is com-
puted as follows: l = |Ei>0|

|Ei |
· avg(Ei > 0) where |Ei>0|

|Ei |
is the

frequency of positive evaluations and avg(Ei > 0) is the aver-
age value of the positive evaluations.

For instance, let us assume that i) a test-based assessment
of the encryption service provides evidence satisfying the ex-
pectation on the algorithm and key length used for data en-
cryption and ii) a monitoring-based assessment provides pos-
itive evidence on data ingestion (logs show that only authorized
users can access ingested data). Collected evidence is evalu-
ated following Definition 2.2 and two positive checks E1 = 1
and E2 = 1 retrieved. Confidence level is then computed ac-
cording to Definition 2.4 as l = 1 · 1 = 1 and returned by the
assurance process Aτ,r in Definition 2.3.

The assurance process in Figure 1 is assumed to be trusted.
In particular, we consider a chain of trust involving delega-
tion [21], where the assessment is carried out by an assurance
framework delegated by the service provider to execute the as-
surance evaluation.

2.2. Assurance Architecture

Figure 2 describes the architecture of our assurance frame-
work implementing the assurance process in Figure 1. Assur-
ance Manager is the owner of the assurance process. It is re-
sponsible to i) setup the evaluation processes on the given target
τ according to a specific setR of requirements and ii) collect the
evaluation process results used to compute the assurance con-
fidence level. Evaluation Manager manages all activities for
the requirement evaluation. It is responsible to i) setup the as-
sessment process and ii) collect the evidence used to evaluate
whether a requirement r ∈ R is supported. The assessment pro-
cess is implemented instrumenting different Assessment Probes
that executes the assessment process on τ and retrieves the cor-
responding evidence ev.

Probes Repository stores and maintains the probes, for in-
stance, updating them in case new threats or guidelines are re-
leased. The probes are executed by Assessment Agents that are
deployed and connected to the target of the assessment. We note
that the probes in the probe repository can be configured by the
assessment agents to inspect a specific target via specific tar-
get’s hooks (e.g., APIs or the path of configuration files). They
perform testing and monitoring activities, parse configuration
files, execute code, and perform network traffic inspections (see
Section 6).

When the assurance process verifies a setR of requirements,
the following flow of actions is triggered. Assurance Manager
instruments one or more Evaluation Managers with details on
the evaluation to be executed, one for each requirement r ∈ R.
The Evaluation Managers communicate with the agents (de-
ployed a priori) asking for the execution of probes addressing
a specific assessment process. The agents download the re-
quested probes from the repository and execute them against
the target returning the collected evidence back to the corre-
sponding Evaluation Manager. The Evaluation Managers eval-
uate the collected evidence and return the evaluation results to
the Assurance Manager. Assurance Manager finally computes
the confidence level.

3. Big Data Analytics Pipeline

We model a Big Data analytics pipeline as i) a set of tasks
t ∈ T implementing the processing pipeline p and ii) a set of
services s ∈ S implementing the ecosystem e and supporting
the deployment and execution of the processing pipeline. We
note that tasks t, services s, pipeline p, and ecosystem e are the
targets τ of our assurance process. The pipeline and ecosys-
tem are modeled at two levels of abstraction: i) abstract level,
modeling the generic purposes of a task t and the abstract func-
tionalities offered by a service s (template abstraction) and ii)
concrete level, defining specific task implementations t̂ in the
pipeline and concrete services ŝ used in the ecosystem (instance
abstraction).

3.1. Processing Pipeline

A processing pipeline transforms data according to a spe-
cific goal. We assume our pipelines to be a sequential compo-
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sition of tasks t.2 Its abstract view can be defined as follows.

Definition 3.1 (p). An Abstract Processing Pipeline p is de-
fined using a BNF-like notation as

p ::= ⟨TI ⊕ P ⊕ A ⊕ TV⟩

P ::= ϵ | TP | P ⊕ TP

A ::= ϵ | TA | A ⊕ TA

TI ::= stream | f ileS ystem | DBMS | . . .

TP ::= cleaning | normalization | selection | . . .

TA ::= modeling | prediction

TV ::= TI | TI ⊕ visualization |

Operator ⊕ is the sequence operator connecting tasks’ input
and output in a pipeline fashion. A generic task t is classified
according to its processing type: i) ingestion tasks TI ⊂ T (e.g.,
stream, fileSystem, DBMS) , ii) preparation tasks TP ⊂ T (e.g.,
cleaning, normalization and selection), iii) analytics tasks TA ⊂

T (e.g., modeling, prediction), iv) visualization tasks TV ⊂ T
(e.g., visualization). We note that TI and TV are mandatory for
p. We also note that ingestion tasks in TI can be also used prior
or replace the visualization in TV .

An abstract processing pipeline p is instantiated in a con-
crete processing pipeline p̂ as follows.

Definition 3.2 ( p̂). Given an abstract processing pipeline p, a
concrete processing pipeline p̂ is produced by instantiating each
generic task t ∈ p in an executable task t̂ ∈ p̂ in the form of a
function call.

We denote this instantiation process as p
p
→ p̂.

Example 3.1. Let us consider an ingestion task ti ∈ TI , a prepa-
ration task tp ∈ TP and a visualization task tv ∈ TV . An exe-
cutable ingestion task t̂i can ingest data from a queue system or
files. An executable preparation task t̂p can select data based
on data columns/labels or apply a more sophisticated feature
selection approach based on PCA or ICA. An executable visu-
alization task t̂v can save data to disk or send them to a visual-
ization service.

3.2. Big Data ecosystem
A Big Data ecosystem is composed of services s ∈ S sup-

porting the execution of the processing pipeline. Its abstract
view is defined as follows.

Definition 3.3 (e). An abstract Big Data ecosystem e is a 5-
tuple ⟨S I , S C , S S , S V , S E⟩, where S S ⊂ S is a set of storage
services, S C ⊂ S is a set of computational services, S I ⊂ S is
a set of ingestion services supporting data collection, S V ⊂ S
is a set of visualization services supporting the visualization of
the pipeline outcomes, and S E ⊂ S is a set of environmental
services offering additional non-functional capabilities.

2We note that more complex pipelines, including parallel or alternative
tasks, can be generalized as a set of sequential pipelines.

We note that the ingestion services s ∈ S I (e.g., streaming,
load from batch) are connected to tasks in TI , while compu-
tational services s ∈ S C (e.g., batch, stream, microbatch) are
connected to tasks in TP and TA to support preparation and ana-
lytics processing, and to tasks in TI and TV to support ingestion
and visualization processing. Storage services s ∈ S S (e.g.,
file storage, NoSQL storage, SQL storage) are primarily con-
nected to tasks in TI and TV and, if needed, to tasks in TP and
TA to store/load temporary data during the preparation or anal-
ysis phases. Visualization services s ∈ S V (e.g., dashboards)
are connected to tasks in TV . Environmental services s ∈ S E

(e.g., access control, logging, annotation, authorization) are
connected to the entire pipeline.

Definition 3.4 (ê). Given an abstract Big Data ecosystem e,
a concrete Big Data ecosystem ê is produced by instantiating
each generic service s ∈ e in a deployed service ŝ.

We denote this instantiation process as e
e
→ ê.

Example 3.2. Let us consider Example 3.1 and a generic ser-
vice si ∈ e of type S I , sc ∈ e of type S C , and sv ∈ e of type S V . si

is instantiated into a service ŝi deploying HDFS and then used
by the concrete ingestion task t̂i in p̂ to establish a connection
and ingest data. sc is instantiated into a service ŝc based on
S park computation engine used by the concrete preparation
task t̂p in p̂ to elaborate ingested data. sv is instantiated into
a service ŝv deploying ApacheZeppelin(params) used by the
concrete visualization task t̂v in p̂ to set up a Zeppelin visual-
ization notebook where data can be visualized.

3.3. Building a Big Data Analytics Pipeline
A Big Data Analytics Pipeline instantiates the abstract pro-

cessing pipeline and Big Data ecosystem as follows.

Definition 3.5. Given a pair ⟨p, e⟩, where p is the Abstract Pro-
cessing Pipeline (Definition 3.1) and e is the corresponding Ab-
stract Big Data Ecosystem e (Definition 3.3), a Big Data Ana-
lytics Pipeline is defined as a pair ⟨ p̂, ê⟩, where p̂ is the concrete
Processing Pipeline (Definition 3.2) and ê is the corresponding
concrete Big Data Ecosystem (Definition 3.4), such that p

p
→ p̂

and e
e
→ ê.

In the following, we refer to ⟨p, e⟩ as Big Data Analytics
Pipeline templateΠ and to ⟨ p̂, ê⟩ as Big Data Analytics Pipeline
instance I. Template Π defines technology-independent pro-
cessing pipelines and environment services; instance I is the
concrete technology-dependent instantiation of Π. We assume

a correct instantiation function
I
→=

p
→ ∪

e
→, for instance, by

using the approach in [25]. In other words, for each template
Π, we assume one or more consistent instances I, defining a
one-to-many relation between templates and instances.

4. Reference Scenario

Our reference scenario is the H2020 EVOTION Policy Mak-
ing Big Data Platform [18, 26], a collaborative solution offering
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analytics services or computing/data nodes based on different
computation/storage frameworks. The platform, based on the
Apache framework and Big Data Analytics-as-a-Service [25],
offers an easy-to-use framework for policy makers to develop
evidence-based policies following analytics results. Policy mak-
ers design or select specific analytics templates to be instanti-
ated and executed by the platform in a fully assisted and privacy-
preserving way. In our scenario, i) a policy maker c wants to ex-
ecute a Big Data analytics pipeline continuously ensuring spe-
cific non-functional requirements R on the EVOTION Platform
expressed in the template Π; ii) the EVOTION Platform as the
service provider sp offers a Big Data analytics engine imple-
menting a correct instance I for template Π.

In this context, assurance is key to increase the trust in
the platform, especially in critical domains (e.g., health) where
public policies use sensitive data. Policy maker c requests veri-
fiable assurance from service provider sp that its non-functional
requirements R on templateΠ are guaranteed on the running in-
stance I. Such guarantees must be continuously checked by the
assurance process to cope with emerging and evolving vulner-
abilities and weaknesses. Non-functional requirements R have
the same level of abstraction used for the template, being in-
dependent by the specific pipeline implementation and deploy-
ment ecosystem, and taken from a controlled vocabulary.

Example 4.1 (Running Example). Let us consider a template
Π = ⟨p, e⟩ in Definition 3.5 with p = ⟨fileSystem ⊕ normaliza-
tion ⊕ modeling(clustering) ⊕ fileSystem⟩, and e =
⟨LoadFilesystem, [BatchProcessing, Orchestration],
StoreFilesystem, ϵ, AccessControl(AC)⟩. We note that the vi-
sualization service is not needed in this example since it is fo-

cused on building a model. A concrete instantiation
I
→ of the

above template Π into a Big Data Analytics Pipeline Instance
I can be defined as ⟨p̂, ê⟩ where p̂ = ⟨loadFromHDFS() ⊕ nor-
malization(all) ⊕ k-meansModeling(k) ⊕ saveToHDFS(model)⟩
and ê = ⟨Hadoop, [Spark, Airflow], Hadoop, [Knox, Ranger]⟩.

Table 1 summarizes the Example 4.1. The pipeline instance
p̂ defines an ingestion task (TI) to ingest batches of data from
HDFS (t̂1 = loadFromHDFS()) using the Hadoop service ŝ1,
performs a preparation task (TP) normalizing all the data fields
(t̂2 = normalization(all)) to fit into a modeling task (TC) for
k-means model creation (t̂3 = k-meansModeling(k)) based on
Spark service ŝ2. The model is then saved on HDFS (t̂4 = save-
ToHDFS(model)) using the Hadoop service ŝ1 for later usage.
The entire pipeline is orchestrated with Airflow service ŝ3. To
execute such pipeline an access control is requested using Knox
(authentication) and Ranger (authorization), ŝ4 and ŝ5 respec-
tively.

5. Assurance of Big Data Analytics Pipeline

Our assurance methodology is based on three sequential
steps: i) template annotation that annotates the Big Data Ana-
lytics Pipeline Template (template in the following) with generic
requirements, ii) instance annotation that annotates the Big Data

Table 1: Running example: tasks, template Π and instance I.
Tasks in p and p̂

t t̂
TI t1 = fileSystem t̂1 = loadFromHDFS()
TP t2 = normalization t̂2 = normalization(all)
TA t3 = modeling(clustering) t̂3 = k-meansModeling(k)
TV t4 = fileSystem t̂4 = saveToHDFS(model)

Services in e and ê
s ŝ

S I s1 = LoadFilesystem ŝ1 = Hadoop
S C s2 = BatchProcessing ŝ2 = Spark
S C s3 = Orchestration ŝ3 = Airflow
S S s4 = StoreFilesystem ŝ1 = Hadoop
S V s5 = ϵ

S E s6 = AC: Authentication ŝ4 = Knox
S E s6 = AC: Authorization ŝ5 = Ranger

Π = ⟨p, e⟩
p = ⟨t1 ⊕ t2 ⊕ t3 ⊕ t4⟩

e = ⟨s1, [s2, s3], s4, s5, s6⟩

I = ⟨p̂, ê⟩
p̂ = ⟨t̂1 ⊕ t̂2 ⊕ t̂3 ⊕ t̂4⟩

ê = ⟨ŝ1, [ŝ2, ŝ3], ŝ1, [ŝ4, ŝ5]⟩

Analytics Pipeline Instance (instance in the following) with spe-
cific requirements, and iii) assurance evaluation that evaluates
the overall assurance.

5.1. Template annotation

The template annotation is a process that annotates template
Π = ⟨p, e⟩ with a set of non-functional requirements r ∈ R
taken from two vocabularies Rp,Re ⊂ R, such that Rp∪Re = R.
We define two labeling functions i) λ : T → Rp that associates
each tasks t ∈ T in pipeline p with a set of non-functional re-
quirements r ∈ Rp, ii) a labeling function γ : S → Re that
associates each services s ∈ S in the pipeline ecosystem e with
a set of non-functional requirements r ∈ Re. We formally define
an annotated Big Data analytics pipeline template as follows.

Definition 5.1 (Πλ,γ). An annotated Big Data analytics pipeline
template is defined as Πλ,γ where λ and γ are two labeling
functions such that: i) λ assigns labels λ(ti) corresponding to
pipeline requirements in Rp to be satisfied by task ti; ii) γ as-
signs a label γ(si) corresponding to service requirements in Re

to be satisfied by service si.

We note that labeling function λ (γ, resp.) can assign la-
bel λ(p) (γ(e), resp.) corresponding to pipeline (ecosystem,
resp.) requirements in Rp(Re, resp.) to be satisfied by pipeline
p (ecosystem e). We also note λ(p) refers to requirements on
the pipeline structure (e.g., the sequence of tasks), while γ(e)
refers to the environment where the services are deployed (e.g.,
the operating system or the service container).

Example 5.1 (Annotated template). Following Example 4.1,
a client specifies requirement Confidentiality in transit in Rp at
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template level. A complete annotation for requirement Confi-
dentiality is discussed in Section 6. Template Π can be anno-
tated as follows:

• All tasks (∗) in p ∈ Π are annotated with λ(∗) = Con-
fidentiality in transit, and the entire pipeline p ∈ Π is
annotated with λ(p) = Pipeline integrity

• All services (∗) in e ∈ Π are annotated with γ(∗) = Con-
fidentiality in transit.

We note that tasks, services, the pipeline and the service
ecosystem can be annotated with zero or more requirements
according to Definition 5.1. For instance, γ(e) was empty in
Example 5.1.

5.2. Instance annotation
The instance annotation is a process that annotates instance

I = ⟨ p̂, ê⟩ with a set of concrete requirements r̂ ∈ R̂ taken from
two vocabularies Rp̂,Rê ⊂ R̂, where R̂ = Rp̂ ∪ Rê is a spe-
cialization of R = Rp ∪ Re. We define two labeling functions
i) θ : T̂ → R p̂ that associates each invocation of t̂ ∈ T̂ in the
pipeline p̂ with a set of non-functional requirements r̂ ∈ R p̂, ii)
labeling function ψ : Ŝ → Rê that associates each invocation
of ŝ ∈ Ŝ in the ecosystem model ê with a set of non-functional
requirements r̂ ∈ Rê. Similarly to template annotation, we for-
mally define an annotated Big Data analytics pipeline instance
as follows.

Definition 5.2 (Iθ,ψ). An annotated Big Data analytics pipeline
instance is defined as Iθ,ψ where θ and ψ are two labeling func-
tions such that: i) θ assigns a label θ(t̂i) corresponding to pipeline
requirements in R p̂ to be satisfied by task t̂i; ii) ψ assigns a la-
bel ψ(ŝi) corresponding to the service requirements in Rê to be
satisfied by service ŝi.

We note that labeling function θ (ψ, resp.) can assign la-
bel λ( p̂) (γ(ê), resp.) corresponding to pipeline (ecosystem,
resp.) requirements in R p̂(Rê, resp.) to be satisfied by pipeline
p̂ (ecosystem ê).

An annotated instance Iθ,ψ is obtained by an annotated tem-

plate Πλ,γ according to transformation function
R
→ as follows.

Definition 5.3 (
R
→).

R
→ is a transformation function that receives

as input the annotated template Πλ,γ and the pipeline instance
I, and generates as output an annotated pipeline instance Iθ,ψ,

where: i) Π
I
→ I and ii) the generic pipeline requirements an-

notated with λ ∈ Π are specialized into instance-specific re-
quirements annotated with θ ∈ I and the generic ecosystem re-
quirements annotated with γ ∈ Π are specialized into instance-
specific requirements annotated with ψ ∈ I.

We note
R
→ can be either a manual or an automatic transfor-

mation. Any generic requirements r ∈ R can be specialized in
one or more instance-specific requirement r̂ ∈ R̂, thus leading
to one or more annotated pipeline instances Iθ,ψ. For concise-

ness, we consider the instance annotation function
R
→ as given
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Figure 3: The Assurance methodology for Big Data Analytics Pipeline.

and carried out by the service provider on their instances a pri-
ori, according to the available templates. In case of multiple
possible instantiations, the service provider selects the best one
according to its deployment strategy.

Example 5.2 (Annotated Instance). Let us consider the an-
notated template Πλ,γ in Example 5.1. One possible annotated
analytics pipeline instance Iθ,ψ can be as follows.

• The pipeline instance p̂ ∈ I is annotated with θ(∗) =
Avoid connection to external services, θ(∗) = Avoid use
of vulnerable libraries, and θ( p̂) = Pipeline Integrity

• The ecosystem instance ê ∈ I is annotated with ψ(ŝ1) =
Encrypted HDFS and Inter-node communication secu-
rity, ψ(ŝ2) = Inter-node communication security, ψ(ŝ3) =
Orchestrator Confidentiality and ψ(ŝ4) = Communica-
tion channel security.

We note that tasks t̂1 = loadFromHDFS() and t̂4 = save-
ToHDFS(model) are not affected by the request of confidential-
ity in transit expressed at template level in Example 5.1. This
requirement is in fact considered by the ecosystem level only
in the specific instance in Example 5.2 and addressed by ŝ1 =

Hadoop. In other words, annotation λ(t1) = Confidentiality in

transit is transformed by the instance annotation function
R
→

to θ(t̂1) = ∅ and θ(t̂4) = ∅. We also note that confidentiality
in transit is instantiated as θ(∗) = Avoid connection to exter-
nal services and θ(∗) = Avoid use of vulnerable libraries for all
tasks (∗) in the pipeline. We finally note that θ( p̂) = Pipeline
Integrity refers to the verification of the pipeline structure and is
associated with the corresponding requirement at service level
ψ(ŝ3) = Orchestrator Confidentiality, while ψ(ŝ4) = Commu-
nication channel security refers to the authentication channel
used by ŝ4 (i.e., Knox).

5.3. Assurance evaluation
The assurance evaluation executes one or more assurance

processes A in Definition 2.1 (using the architecture in Figure 2)

on Iθ,ψ such that Πλ,γ
R
→ Iθ,ψ. It can be formally defined as

follows.

Definition 5.4 (Assurance Evaluation). Let us consider tem-

plate Πλ,γ and corresponding instance Iθ,ψ, such that Πλ,γ
R
→
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Iθ,ψ. For each pair ⟨τ,r⟩ ∈ Πλ,γ, where τ is a task t, a service
s, a pipeline p, or an ecosystem e annotated with requirement
r ∈ R, the assurance evaluation first retrieves the correspond-
ing set of pairs ⟨τ̂i,r̂i⟩ ∈ Iθ,ψ, where τ̂i is an executable task
t̂, a deployed service ŝ, a concrete pipeline p, or a concrete
ecosystem e annotated with concrete requirement r̂ ∈ R. It then
computes the overall assurance confidence level as min(Aτ̂i,r̂i ).

We note that the assurance evaluation calculates the assur-
ance confidence level lτ,r of each ⟨τ,r⟩ expressed by the client on
template Πλ,γ. To this aim, it aggregates the results of multiple
assurance processes A executed on the corresponding ⟨τ̂i,r̂i⟩ ∈

Iθ,ψ, and computes lτ,r as the minimum assurance level. More
advanced approaches will be investigated in our future work.
Figure 3 shows a complete view of our methodology applied to
the scenario in Section 4.

Following the assurance process A in Section 2.1, the as-
sessment is carried out via a specific set of assessment probes
Pi suitable for the target τ and the specific requirements r̂ an-
notated on the corresponding targets by θ or ψ. Probes are
parametric and use the hooks offered by τ to carry out the in-
spections. To accomplish the heterogeneity of assurance ver-
ification, we define different assessment probes (see Table 2):
i) pipeline probes focusing on the verification of pipeline tasks
and orchestration, ii) service probes focusing on the verification
of the Big Data services executing the pipelines, iii) ecosystem
probes focused on the lower layers involving infrastructure be-
hind the Big Data ecosystem.

Table 2: Types of assessment probes.
Probe Name Description

Task probes
Code Inspection search instructions/pattern
Dependency Check find vulnerable dependencies
Code Vulnerability Check search vulnerable code
Lineage verify sequence of actions using logs

Pipeline probes
Parameters Check check tasks’ actual parameters
Orchestration Check check the workflow structure

Service probes
Vulnerability Check search for vulnerability
Configuration Check parse and verify configuration

Ecosystem probes
Infrastructure targets lower layers such as OS (see [21])

General purposes probes
Testing perform specific test cases on a target
Monitoring monitor a target ore a time frame

Example 5.3 (Probes). Let us consider a given task t̂2 =

normalization(all) annotated by θ(t̂2) with a requirement r̂θ1 =
Avoid vulnerable libraries and a given ecosystem service ŝ4 =

Knox annotated by ψ(ŝ4) with a requirement r̂ψ1 = Authentication-
enabled. A Code Vulnerability Check Probe Pi can be used to
check whether task t̂2 relies on vulnerable libraries reducing
the confidentiality (r̂θ1). A Configuration Check Probe P j can
be used to check whether authentication is requested by service
ŝ4 to trigger an analytics via a well-configured Apache Knox
service (r̂ψ1 ). A Testing Probe Pk can be used to check whether

authentication is working, while trying to execute the pipeline
(r̂ψ1 ).

The probes are structured according to our probe paradigm
detailed in [27] where the probe receives parameters for con-
necting to the target (e.g., API hooks) and instruction on how
to match the information retrieved by the target (e.g., test cases
and expected outputs). It performs i) connection, ii) informa-
tion retrieval and iii) matching against expectations. The in-
formation retrieved and the matching outcomes constitute the
probe evidence.

Evidence EV retrieved by the probes is evaluated (see Def-
inition 2.2) and used to compute the assurance level lτ,r̂ (see
Definition 2.3) of the target τ with respect to the given require-
ment r̂.

Example 5.4 (Assurance Confidence Levels). Following
Example 5.3, evidence EVt̂2,r̂θ1

= [CVE − 2018 − 1334, 4.7]
(obtained by P1) points to a weakly-vulnerable (severity 4.7)
version of spark library used in normalization code; evidence
EVŝ4,r̂

ψ
1
= [[enabled = true], [(⟨valid − user⟩, ⟨valid − pwd⟩,

allow), (⟨valid − user⟩, ⟨wrong − pwd⟩, deny) · · · ]] points to a
check ([enabled = true]) on the Apache Knox configuration en-
abling authentication for pipeline execution (obtained by P j)
and a set of test cases ([(⟨valid − user, valid − pwd⟩, allow),
(⟨valid−user,wrong− pwd⟩, deny) · · · ]) for authentication ver-
ification for pipeline triggering (obtained by Pk).

Two evaluation processes analyse the collected evidence to
check the support of the requirements. In this example,
E1(EVt̂2,r̂θ1

, r̂θ1) = 0.5, due to the presence of a vulnerable library

but having a low severity score and E2(EVŝ4,r̂
ψ
1
, r̂ψ1 ) = 1, due

to the positive checks on the Knox authentication. The corre-
sponding assurance confidence levels following Definition 2.4
are lt̂2,r̂θ1

= 0.5 and lŝ4,r̂
ψ
1
= 1.

The outcome of the assurance process is a set of assurance
confidence levels lτ,r̂ on the annotated pipeline instance Iθ,ψ.
Following Definition 5.4, the assurance confidence levels are
aggregated in a final assurance evaluation. Considering the as-
surance levels in Example 5.4, the overall assurance evaluation
is equal to 0.5, the minimum between the retrieved assurance
confidence levels.

We note that our assurance process immediately react against
events impacting on the assurance evaluations, retrieving new
evidence and computing the new assurance level. Events in-
clude new discovered vulnerabilities, new versions of ecosys-
tem services, updates on the task or pipeline code, or new more
effective probe deployed on the probe registry. In case the assur-
ance level is no more satisfactory, the instance can be replaced
with a new one if the requested changes are major. The instance
can be adapted in terms of annotations if the requested changes
are minor (e.g., new service versions, new probes or new vul-
nerabilities). While we consider adaptation for our future work,
we provide a preliminary discussion in the experiments in Sec-
tion 6.
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6. Experimental Evaluation

We experimentally evaluate our solution first describing the
execution of our assurance process on an extended version of
our running example in Section 4. We then present a perfor-
mance evaluation in terms of the computational effort requested
by our assurance methodology.

6.1. Experimental setup

Our experimental setup is a portion of the H2020 EVO-
TION platform hosted on our premises including more than
100 tasks, 20 analytics templates, and 30 analytics instances.
Pipelines and tasks are implemented in Spark 2.3 and Spark
2.2 using python or Java, and when needed using Spark ml-
lib. Our H2020 EVOTION platform is grounded on the follow-
ing ecosystem: Linux 5.16.19 (NixOS), Apache Hadoop 3.3.1,
Apache Spark 3.2.1, Apache Airflow 2.2.4. The platform is de-
ployed on a ‘bare-metal’ infrastructure using an AMD 5900x
and 32GB of RAM. The service configurations and the pipeline
implementations are available at bit.ly/3uy1Op4. Our As-
surance architecture in Section 2.2 is deployed on top of the
H2020 EVOTION Big Data engine, to exploit the paralleliza-
tion capabilities and synchronize the execution of assurance
evaluation activities with the instance triggering.

6.2. Assurance Evaluation Walkthrough

We present a detailed walkthrough of our methodology based
on an extended version of our running example in Section 4,
where the client asks for both confidentiality in transit and at
rest. Table 3 shows the template Πλ,γ and instance Iθ,ψ annota-
tions.

The walkthrough is organized as follows. First, we show the
entire assurance process including details on the used probes.
Second, we present the process to obtain the final assurance
level.

6.2.1. Assurance Evaluation: Pipeline
Let us start considering the three annotations rθ1, rθ2 and rθ3

that are common to all the tasks t̂i ∈ p̂. The assessment pro-
cesses are implemented with the same set of probes P1, P2, and
P3 for rθ1, P4 for rθ2, and P5 and P6 for rθ3 (see Table 4). Table 5
shows the pseudocode of the different probes according to their
types defined in Table 2.

P1(rθ1, ∗) is a Lineage probe focused on verifying that the
spark job implementing the tasks t̂i is writing data on the HDFS
offered by the service ŝ1 ∈ ê only exploring the spark DAG. It
is focused on verifying the compliance to a given spark writing
pattern (i.e., expected dag) and explores the spark DAG using
the spark log.

P2(rθ1, ∗) is a Code Inspection probe focused on verifying
connection to external data storage observable within the source
code. It is focused on finding specific path patterns (i.e., ex-
pected paths) within a task source code.

P3(rθ1, ∗) is a Parameters Check probe focused on verify-
ing if parameters for writing at rest (if any) are referring to
the HDFS offered by the service ŝ1 ∈ ê or not. It is based

Table 3: Requirements annotations for the running example in Section 4 con-
sidering confidentiality in transit and at rest.
R Description

Template requirements
rλ1 Confidentiality at rest and in transit for all the t in p
rλ2 Authorization for the f ileS ystem task t in p
rγ1 Confidentiality at rest and in transit for all the s in e

Pipeline Instance requirements derived from rλ1
rθ1 No temporarily unprotected data storage for all the t̂ ∈ p̂
rθ2 Avoid connection to external services for all the t̂ ∈ p̂
rθ3 Avoid use of vulnerable code/libraries for all the t̂ ∈ p̂
rθ4 Pipeline integrity checking the correct ordering of tasks t̂ ∈ p̂

Pipeline Instance requirements derived from rλ2
rθ5 Check Authorization for ingestion task t̂1 ∈ p̂
rθ6 Check ownerships at rest for visualization tasks t̂4 ∈ p̂

Ecosystem Instance requirements derived from rγ1
rψ1 Encrypted HDFS for the ŝ1 ∈ ê
rψ2 Inter-node communication security for the ŝ1 and ŝ2 ∈ ê
rψ3 Orchestrator Confidentiality for the ŝ3 ∈ ê
rψ4 Communication channel security for the ŝ4 ∈ ê
rψ5 Authentication-enabled for the ŝ4 ∈ ê
rψ6 Authorization policies-enabled for the ŝ5 ∈ ê
rψ7 Vulnerability check for all the services ŝ ∈ ê

Table 4: Assurance evaluation process for pipeline and tasks for the scenario
in Table 1. It includes assurance probes, evidence, evaluations and assurance
levels.

Pipeline tasks t̂∈ T̂
t̂ R P(r, τ) E(EV, r) Aτ,r

t̂1

rθ1 P1(rθ1, t̂1) [1.0] 1.0
rθ2 P2(rθ2, t̂1), P3(rθ2, t̂1), P4(rθ2, t̂1) [1.0, 1.0, 1.0] 1.0
rθ3 P5(rθ3, t̂1), P6(rθ3, t̂1) [0.75, 1.0] 0.88
rθ5 P8(rθ5, t̂1) [1.0] 1.0

t̂2

rθ1 P1(rθ1, t̂2) [1.0] 1.0
rθ2 P2(rθ2, t̂2), P3(rθ2, t̂2), P4(rθ2, t̂2) [1.0, 1.0, 1.0] 1.0
rθ3 P5(rθ3, t̂2), P6(rθ3, t̂1) [0.75, 1.0] 0.88

t̂3

rθ1 P1(rθ1, t̂3) [1.0] 1.0
rθ2 P2(rθ2, t̂3), P3(rθ2, t̂3), P4(rθ2, t̂3) [1.0, 1.0, 1.0] 1.0
rθ3 P5(rθ3, t̂3), P6(rθ3, t̂1) [0.75, 1.0] 0.88

t̂4

rθ1 P1(rθ1, t̂4) [1.0] 1.0
rθ2 P2(rθ2, t̂4), P3(rθ2, t̂4), P4(rθ2, t̂4) [1.0, 1.0, 0.0] 0.66
rθ3 P5(rθ3, t̂4), P6(rθ3, t̂1) [0.75, 1.0] 0.88
rθ6 P9(rθ6, t̂4) [1.0] 1.0

p̂ rθ4 P7(rθ4, p̂) [1.0] 1.0

on controlling the actual parameters of a given task and match
them against expected parameters/patterns (in this case writing
URLs)

P4(rθ2, ∗) is a Code Inspection probe focused on verifying
external network connections used for setting up data traffic. It
is based on checks for connections to external sources (if any).

P5(rθ3, ∗) is a Code Vulnerability Check probe focused on
finding vulnerable code used in the spark task t̂i. It is based on
pylint as tool for python vulnerability check.

P6(rθ3, ∗) is a Dependency Check probe (see Table 5) fo-
cused in finding vulnerable libraries used in the spark task t̂i. It
is based on analysis of the ”requirements.txt” file.
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Considering rθ4, it requests to verify absence of hidden tasks
or a wrong sequence of task in the pipeline compared to the
one declared. It is implemented with a Orchestration Check
P7(rθ4, p̂) targeting the python airflow description of pipeline
DAG and verifying the ordering and presence of additional tasks
compared to what is expected.

Considering rθ5 it is annotated on the ingestion task t̂1 only.
The assessment process was implemented with the probe P8(rθ5,
t̂1) realized via Testing Probe verifying that the users executing
the pipeline against ownership of the source of data ingested in
order to check that the pipeline has the right to carry out the
ingestion.

Considering rθ6 it is annotated on the visualization task t̂4
only. The assessment process is implemented with the probe
P9(rθ6, t̂4) realized via Testing Probe focused on the ownership
at rest in order to verify that the pipeline write the data pre-
serving the original ownership of the pipeline executor avoiding
confidentiality infringement.3

Table 4 shows results of our assurance process applied to
the scenario in Table 1. Probes P1 to P3 and P6 to P9 did not
identify any significant issue in the pipeline, regardless the tar-
get resulting in an optimal result of 1.0. On the other hand,
P5 on every target and for every requirements and P4(rθ2, t̂4)
identified issues. More specifically P5 identified several warn-
ings and coding convention violations, including too lengthy
lines and methods naming conventions, resulting in a result of
0.75. P4(rθ2, t̂4) identified a networking connection within t̂4 that
should not be there resulting in 0 as EV . The final Assurance
Confidence Levels, represented in the last column of Table 4,
are calculated according to our the assurance confidence levels
aggregation in Definition 2.4.

6.2.2. Assurance Evaluation: Ecosystem
Table 7 shows the pseudocode of the different service ecosys-

tem probes dividing them into the different probe types as de-
fined in Table 2. Let us start considering ŝ1 (i.e., hadoop HDFS)
used for ingestion and visualization. It is associated with re-
quirements rψ1 and rψ2 . In both cases, to implement the rela-
tive assessment processes, Configuration Check probes P10(rψ1 ,
ŝ1) and P11(rψ2 , ŝ1) are used. Probe P10 is focused on verify-
ing whether the HDFS is configured to be encrypted, while
probe P11 is focused on verifying that secure channels are ac-
tive between the different storing nodes of the HDFS. Consid-
ering ŝ2 (i.e., Spark) and ŝ3 (i.e., Airflow), which are services
used to execute the pipeline, they are both associated with re-
quirements rψ2 and rψ3 , respectively. The relative assessment
processes are implemented using specific Configuration Check
probes P12(rψ2 , ŝ2) and P13(rψ3 , ŝ3) aimed to verify specific secu-
rity features of Spark for internode communication and Airflow
security, respectively.

ŝ4 (i.e., Knox), which is used to provide authentication mech-
anisms, it is associated with requirements rψ4 and rψ5 . The corre-
sponding assessment processes are implemented using Testing

3Current Big Data engines may lead to issues of data ownerships in a multi-
tenant context.

probe P14(rψ4 , ŝ4) to test the security of the channel used to carry
out authentication (Kerberos) and a Configuration Check probe
P15(rψ5 , ŝ4) aimed to verify the authentication configuration.

ŝ5 (i.e., Ranger), which is used to authorize users to carry
out analytics, is associated with requirements rψ6 . The relative
assessment processes are implemented using Monitoring probe
P16(rψ6 , ŝ5) aimed to verify policies triggered by Ranger.

According to requirement rψ7 , for every service ŝ ∈ ê, a vul-
nerability check needs to be executed. The assessment process
is implemented as a Vulnerability Check probe P17(rψ7 , ∗) aimed
to find vulnerabilities that can be relevant for requirement rψ7 on
all services ŝ ∈ ê.

Table 6 shows results of our assurance process applied to
the scenario in Table 1. Each probe in the table produced a sin-
gle value. More than half of them obtained a low confidence
level (0.1) due to the sub-optimal configurations adopted by the
relative services ŝ. P10(rψ1 , ŝ1) warned about a misconfigura-
tion over the in-transit data encryption, while P11(rψ2 , ŝ1) sig-
naled that the registry security configuration was not enabled.
P12(rψ2 , ŝ2) detected that network encryption was not enabled
for Spark, while P13(rψ4 , ŝ3) highlighted the encryption fernet
key being unset. P17(rψ7 , ŝ5) found several registered CVEs of
various severity, the worst of which had a score of 4.3, result-
ing in a confidence level of 0.57. The remaining probes did not
identify significant issues and returned an optimal value.

6.2.3. Overall Assurance Evaluation
The final assurance evaluation was carried out according to

Definition 5.4 leading to the following assurance confidence
levels l∗,rλ1 = 0.66, l∗,rλ2 = 1 and l∗,rγ1 = 0.1 aggregated on the
relevant targets ∗. We note that the assurance confidence level
for rλ1 Confidentiality at rest and in transit is impacted nega-
tively by the assurance evaluation on rθ2 related to Avoid connec-
tion to external services carried out by P4 probe on t̂4 = save-
ToHDFS(model). We also note that the ecosystem of services
clearly shows the lowest assurance level due to severe configu-
ration issues for ŝ1, ŝ2, and ŝ3 retrieved by the relative probes.

6.3. Performance Evaluation

We evaluate the computational effort requested by our as-
surance process for the walkthrough in Section 6.2 considering
the different probe types adopted and different changing sce-
narios as follows. We note that our assurance solution reuses
evidence from related assessment processes in the framework
of computing the final assurance level.

(a) Contextual Changes (CC): It includes changes due to the
external factors like new version of the probe used in the
repository or new discovered vulnerabilities. This scenario
requires re-execution of the new probes as well as of the
vulnerability-related probes.

(b) Pipeline Changes (PC): It includes changes due to different
parameters and changes at orchestration level. This sce-
nario requires the re-execution of the task or orchestration
probes showing changes only.
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Table 5: Pipeline probe scripts: Pseudocode

Code Inspection
Probe 2 and 4: P1(rθ1, ∗) P4(rθ2, ∗)

def p2(expected paths, task id):
evidence.source code = get source(task id)
evidence.detected paths = get hdfs paths(

evidence.source code)
for path in evidence.detected paths:

if path not in expected paths:
evidence.warnings.append(

f”Unexpected path {path}”)
return evidence

def p4(task id, expected services):
evidence.activity = get network activity(task id)
evidence.services = parse services(evidence.activity)
for service in evidence.services

if service not in expected services:
evidence.warnings.push(

f”Unexpected service {service}”)
return evidence

Dependency Check
Probe 6: P6(rθ3, ∗)

def p6(task id)
evidence.requirements = get requirements(task id)
output = call safety(evidence.requirements)
evidence.warnings = json.loads(

output.decode().strip())
return evidence

Parameters Check
Probe 3: P3(rθ1, ∗)

def p3(expected params, task id)
params = get params(task id)
evidence.params = params
for param, exp param
in zip(params, expected params):

if not param.matches(exp params):
evidence.warnings.push(

f”Param {param} not matching”)
return evidence

Orchestration Check
Probe 7: P7(rθ4, p̂)

def p7(expected dag)
dag = get current dag()
evidence.dag = dag
for task in dag:

exp task = expected dag.find(task)
if exp task is None:

evidence.warnings.push(
f”Unexpected task {task}”)

if task.deps != exp task.deps:
evidence.warnings.push(

f”Unexpected {task} deps.”)
return evidence

Lineage
Probes 1: P1(rθ1, ∗)

def p1(expected dag, app id):
evidence.logs = get spark logs(app id)
for job in evidence.logs.jobs:

if job not in expected dag:
evidence.warnings.push(f”Unexpected job {job}”)

return evidence

Testing
Probe 8 and 9 : P8(rθ5, t̂1), P9(rθ6, t̂4)

def p8(user, file path):
try:

file = access as user(user, file path)
file.head()
evidence.output = ”File can be ingested”

except PermissionError:
evidence.output = ”Permission Error”

except MissingFile:
evidence.output = ”File not found”

return evidence

def p9(expected permissions, user, file path):
try:

file = access as user(user, file path)
permissions = file.get permissions()
evidence.permissions = permissions
if permissions == expected permissions:

evidence.output = ”Permissions match”
else:

evidence.output = ”Invalid permissions”
except PermissionError:

evidence.output = ”Permission Error”
except MissingFile:

evidence.output = ”File not found”
return evidence

Code Vulnerability Check
Probe 5: P5(rθ3, ∗)

def p5(task id)
evidence.source code = get source(task id)
evidence.warnings = call pylint(source code)
return evidence

Table 6: Assurance evaluation process for Ecosystem and services for the sce-
nario in Table 1. It includes assurance probes, evidence, evaluations and assur-
ance levels.

Ecosystem services ŝ∈ Ŝ
ŝ R P(r, τ) E(EV, r) Aτ,r

ŝ1
rψ1 P10(rψ1 , ŝ1) [0.1] 0.1
rψ2 P11(rψ2 , ŝ1) [0.1] 0.1

ŝ2 rψ2 P12(rψ2 , ŝ2) [0.1] 0.1

ŝ3 rψ4 P13(rψ4 , ŝ3) [0.1] 0.1

ŝ4
rψ4 P14(rψ4 , ŝ4) [1.0] 1.0
rψ5 P15(rψ5 , ŝ4) [1.0] 1.0

ŝ5 rψ6 P16(rψ6 , ŝ5) [1.0] 1.0
ŝ5 rψ7 P17(rψ7 , ŝ5) [0.57] 0.57

(c) Ecosystem Changes (EC): It includes different versions/-
configurations of services at ecosystem level. This scenario
requires the re-execution of the ecosystem level probes only.

(d) Instance Changes (IC): It includes changes requesting com-
plete assurance re-evaluation.

More specifically, in our walkthrough, we consider i) CC as-

suming new vulnerabilities discovered for all the services used
at ecosystem level, ii) PC assuming new version of k-means
modeling task only, iii) EC assuming new version of HDFS
service, iv) IC assuming a new task for ingestion based on Hive
instead of HDFS. We also consider a scenario where the assur-
ance is re-evaluated without any changes.

Figure 4 shows a stacked histograms of the time requested
to execute the entire assurance process in the different scenarios
considering the different adopted probe types.

The pipeline taken as example is training a k-means model
based on the dataset ‘digits’ from the scikit-learn4 library. The
model implementation is provided by the Spark ML library5.
Finally the trained model is serialized and saved in an Hadoop
storage. The time necessary to execute the pipeline is 54 sec-
onds.

The pipeline probes are executed in the CC, PC and IC sce-
narios requiring 0.13 seconds, while the service probe are exe-
cuted in the EC and IC scenarios in 3.65 seconds. The general
purpose probes have a total execution time of 5.79 seconds in
scenarios EC and IC, while in CC their evaluation is completed

4https://scikit-learn.org
5https://spark.apache.org/mllib
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Table 7: Service ecosystem probe scripts: Pseudocode

Configuration check
Probe 10 and 11: P10(rψ1 , ŝ1) P11(rψ2 , ŝ1)
def p10(config endpoint)
config = get hadoop configuration(config endpoint)
evidence.config = config
warnings = []
if config[”dfs.encrypt.data.transfer”] == ”false”:

warnings.append(”In−transit data encryption is disabled”)
if config[”yarn.intermediate−data−encryption.enable”] == ”false”:

warnings.append(”Intermediate data encryption is disabled”)
...
evidence.warnings = warnings
return evidence

def p11(config endpoint)
config = get hadoop configuration(config endpoint)
evidence.config = config
warnings = []
if config[”dfs.permissions.enabled”] == ”false”:

warnings.append(”FS access control is disabled”)
if config[”dfs.permissions.superusergroup”] == ”supergroup”:

warnings.append(”Task has unrestricted permissions”)
if config[”hadoop.registry.secure”] == ”false”:

warnings.append(”Registry security is not enabled”)
if config[”hadoop.security.authorization”] == ”false”:

warnings.append(”Authentication is disabled”)
...
evidence.warnings = warnings
return evidence

Probe 12 and 13: P12(rψ2 , ŝ2) P13(rψ3 , ŝ3)

def p12(app id, api endpoint):
config = get spark config(app id, api endpoint)
evidence.config = config
warnings = []
if config[”spark.network.crypto.enabled”] != true:

warnings.append(”Network encryption disabled”)
if config[”spark.io.encryption.enabled”] != true:

warnings.append(”IO encryption disabled”)
...
evidence.warnings = warnings
return evidence

def p13(api endpoint):
config = get airflow config(api endpoint)
evidence.config
warnings = []
if config.core.get(”fernet key”) is None:

warnings.append(”Fernet key is not set”)
if config.kubernetes.verify ssl is False:

warnings.append(”SSL cert. check disabled”)
...
evidence.warnings = warnings
return evidence

Probe 15: P15(rψ5 , ŝ4)

def p15(exp user perms, api endpoint)
for user, exp perms in exp user perms.items():

perms = get perms(user, api endpoint)
evidence.permissions[user] = perms
if !exp perms.matches(perms):

evidence.warnings.append(
f”unexpected perms. {perms} for {user}”)

return evidence

Vulnerability Check Monitoring Testing
Probe 17: P17(rψ7 , ∗)

def p17(service):
evidence.warnings = openvas analysis(service)
return evidence

Probe 16: P16(rψ6 , ŝ5)

def p16(expected policies, api endpoint):
logs = get ranger logs()
evidence.logs = logs
warnings = []
for event in logs:

if !event.matches(expected policies):
warnings.append(
f”Unexpected event {event}”)

evidence.warnings = warnings
return evidence

Probe 14: P14(rψ4 , ŝ4)

def p14(auth config, api endpoint):
result = authenticate(auth config, api endpoint)
if result.failed():

evidence.output = ”Authentication failed”
elif result.unauthorized():

evidence.output = ”Not authorized”
...
return evidence
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Figure 4: Performance on the walkthrough in different scenarios: contex-
tual changes (CC), pipeline changes (PC), ecosystem changes (EC), instance
changes (IC) and no changes (NC). Computational time requested by the dif-
ferent probes aggregated by probe types.

is 0.25 seconds as only part of them has to be re-calculated.
Similarly the task probes total evaluation time is 5.29 seconds
in scenarios PC and IC, dropping to 4.30 seconds in CC.

We note that, in this experiment, i) we are considering a se-
quential execution of the required probes, but parallelization is
possible in most cases, saving a significant amount of time; ii)
the time requested for the IC assessment is obviously greater
than the others, since it is executing all the probes evaluations;
iii) the pipeline probe evaluations are particularly efficient as
they only require information already stored in the configura-
tion of the pipeline instance; iv) the total probes evaluation exe-
cution time is negligible compared to time required by the pipe
in a Big Data context. Concerning the CC and IC scenarios, we
note that the vulnerability analysis probe P17(rψ7 , ∗) is not in-
cluded in Figure 4 due to its long execution time, approximately
3 minutes, resulting in a strongly unbalanced graph and unread-
able bars. We also note that assurance levels coming from other
assessment processes can be reused in case the targets and the
requirements are the same. This is typically the case of ecosys-
tem services used by different pipelines. Figure 4 shows this
effect clearly for NC scenario where all of the assessment pro-
cesses are reused from the previous runs and the total requested
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time is almost the one needed for the pipeline only.

7. Related Work

The recent years have seen a rapid growth in the usage of
Big Data for a large number of fields. This trend is followed
by the awareness of the necessity of protecting the data and its
by-products with transparent and comprehensive techniques of
security assurance. The most straightforward approach taken
into consideration to address these necessities was based on the
integration of security policies in the Big Data processes in or-
der to mitigate or prevent risks originated by the mishandling
of data [28]. Some of the initial security assurance techniques
focused on Big Data targeted primarily on securing the stored
data [29, 30, 31, 32] and only later expanded to a wider defini-
tion that includes its handling in the form of data pipelines [33],
securing them according to the CIA (Confidentiality, Integrity,
Availability) triad [34, 35, 36]. This includes security measures
like access control policies on the resources and network isola-
tion of the services. However these security hardening solutions
are not enough to cope with dynamicity of Big Data as a service
scenario. The complex structure and variety of the stored data
reflect an even more diverse usage of the information contained.
Lack of a complete understanding of the security aspects of all
the stored data may expose the users to significant risks [36].
Users personal data may be protected by a policy that prevents
a malicious actor to acquire all their records, but it may still
be possible to de-anonymize them from leaky statistical data if
the k-anonymity property, defined in [37], is not properly en-
forced [38, 39]. The growth of high-sensitive data (i.e. finan-
cial, healthcare) and the introduction of privacy focused regula-
tions like the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA) pushed towards
the inclusion of Privacy in the primary aspects of the security
assurance [40, 34, 32]. Emphasizing how breaches may occur at
any step in the pipeline [41]. Researchers highlighted the neces-
sity of automated processes to ensure compliance with privacy
regulations [33] and high performance [40]. Due to the size and
complexity of the systems, monitoring has been the primary
approach applicable to defend Big Data applications accord-
ing to Elsayed et al. [42]. More advanced techniques include
continuous monitoring of the behavior of the data handlers, in
order to identify malicious or unexpected actions [9, 10]. Addi-
tional security mitigations solutions adopted anomaly detection
techniques to detect model poisoning [43] or advanced access
control and storage monitoring [44], although their focus is es-
pecially localized and small. Security assurance, on the other
hand, enables its users to address privacy and security concerns
by actively testing the whole Big Data pipeline environment,
its configuration and its behavior, verifying a target set of non-
functional properties, demonstrating if the applied countermea-
sures are effective [12]. The literature is lacking in this par-
ticular aspect of assurance, while more focus is given to the
evaluation of quality of the systems, the models and the data, as
in [45, 46, 47].

8. Conclusions

We proposed an assurance process for Big Data that aims
to increase Big Data trustworthiness and transparency. Our Big
Data process carries a higher level of trust, which makes it suit-
able for critical Big Data scenarios, as for instance the ones im-
plementing a process for security governance. Concluding we
showed a preliminary application of our approach in the frame-
work of a security compliance verification for Apache Hadoop.

To conclude, the increasing trend towards Big Data pro-
cess outsourcing and the lack of Big Data trustworthiness rep-
resents a major barrier against high-quality Big Data compu-
tations. Users, in fact, (fully) anonymize data and results to
reduce their liability in case of data breach. The assurance ver-
ification in Section 2 permits to unleash the full power of Big
Data, fostering its adoption in critical scenarios where sensi-
tive data are used and promoting the “Big Data-as-a-Service”
paradigm where trustworthiness is of paramount importance. It
is important to remark that Big Data verification is mandatory
also when anonymized data are used, for instance, to ensure that
the level of anonymity reached with anonymized data is not vio-
lated during processing or while presenting the final results due
to correlation with different data sources [48].
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