
Melding Abstractions with Mobile Agents

Antonio Corradi, Marco Cremonini , Cesare Stefanelli

Dipartimento di Elettronica, Informatica e Sistemistica
Universit~t di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Ph.: +39-51-6443001 - Fax: +39-51-6443073
{acorradi, mcremonini, cstefanelli } @deis.unibo.it

Abstract. The Mobile Agent (MA) model seems to provide one of the
most suitable technology for distributed systems to integrate the Internet
in a synergic way. One of the problems that should be faced when
considering mobile agents for distributed applications is the lack of a
thorough model capable of describing the Internet world composed of
interconnected networks, each of them with their peculiar policies (for
administrative, management and security purposes). We propose a
Mobile Agent system based on a model designed to consider and favour
aggregations of abstract and protected (network) domains: the use of this
model makes easy the development of Internet applications. The paper
describes the MAMA system (Melding Abstractions with Mobile Agents)
and its implementation in the Java language. An application for
distributed monitoring provides an example of the results achieved
within the MAMA system.

1 Introduction

Distributed programming is obtaining increasing importance due to the widespread
diffusion of internetworking. The large dimension of Internet and the huge amount
of information already available has focused the attention on code mobility as an
alternate solution to simple message passing solutions [3].

Instead of traditional client/server programming, emerging models are the
Remote Evaluation (REV) [18], the Code On Demand (COD) [3] and the Mobile
Agents (MA) [15]. The first two models can be considered as complementary. In the
REV model, any client can send the code to a remote server that can use this code
both in the execution of the current operation and to add up new behaviours to its
features at run-time. The COD model can make possible for the client to enlarge its
capacity of execution by dynamically downloading code from the server. The typical

Work carried out under the financial support of the "Ministero dell'Universith e della Ricerca
Scientifica e Tecnologica (MURST)" in the framework of the Project "Design Methodologies
and Tools of High Performance Systems for Distributed Applications".

279

COD application configures the server as a code repository and makes the client load
the code by need. This is the model tbllowed by Java Applets.

The distinguished point of the MA model is to allow the mobility of entities, even
in execution. The agent is the execution entity - composed of code, data, execution
state - that has started on an initial node. Agents are capable of moving
autonomously to a node different from the current one and to resume execution there.
The MA model can be considered as an extension of the REV one with enlarged
functionality.

The MA model could be applied to many areas, such as electronic commerce,
network management, information retrieval, CSCW, etc. It can describe distributed
applications, but lacks a comprehensive framework which permits to model some
common Internet situations, composed of a very large number of interconnected
LANs with their peculiar policies for network management, resource administration,
and security. We argue that this scenario should be considered in the definition of a
general programming model for MA. In addition, MA applications, dealing with
insecure interconnected networks and mobile executable code, are forced to take into
account the security issue since the first phases of the design.

This paper presents a system called MAMA (Melding Abstractions with Mobile
Agents) for the development of Mobile Agent applications. MAMA follows a model
that considers the Internet heterogeneity and provides several abstractions to suit the
common localities in the Internet. In particular, we introduce the place as the
abstraction of an execution node, and the domain as the locality considered an
abstraction for one LAN belonging to a single organisation. Different domains can
be connected by gateways that represent the interconnection points for different
LANs. We consider this framework suitable to assist the definition of all the policies
necessary to develop MA applications over the Internet

MAMA led the design of the MA system architecture, where any abstraction of
locality finds its concrete counterpart. Java is the language chosen to implement the
system architecture. Java addresses the requirements of typical Internet applications:
portability, interoperability, rapid prototyping and easy integration with the Web
scenario. Our programming language choice seems not to address the efficiency
issue; however, the growing interests Java receives ensure that efficiency is also dealt
with by all implementors and it is going to be more and more improved.

MAMA assisted in the rapid development of several applications. The paper
reports a distributed on-line monitoring tool that is employed in the MAMA system
to ascertain the global application and system state: applications can exploit
monitoring information to enlarge their knowledge of the dynamic state of the
system, for instance, tor load balancing.

2 T h e M A M A M o d e l

2.1 Overview

MAMA permits to face the requirements of a typical Internet distributed application
by following a few guidelines:

280

�9 the execution model is based on agent mobility;

�9 several locality abstractions in a hierarchy model Internet LANs and their
interconnections;

�9 security is considered as an integral part of the design and is integrated at any
system level.

MAMA represents everything as either an agent or a resource. The agents can move
to a different node, wholly re-establishing there, by migrating their code and copying
their execution state [3]. The resources represent the logical and the physical entities
available in any node where agents execute: examples of physical resources are
printers and local devices, of logical ones are blackboards and tuple spaces.

Agents interact with resources by means of interfaces which assume a
fundamental role for security and extensibility of the MA systems. In addition, the
MAMA framework has a layered structure composed of places and domains
mapping the local environment and the interconnection among nodes of a LAN.
These levels of abstraction permit the development of many different security
policies in the MAMA model.

2.2 Interface

The concept of inter/ace is a unitbrm abstraction for handling both physical and
logical resources. Agents can not directly access to resources; they make use of
resource interfaces.

The interface is very useful from a security viewpoint, since it can control the
actions of agents on resources: interlaces provide a safe access to resources, and filter
the permitted operations. Agents may be granted/denied access to the local resources
depending on the security policy adopted. As an example, consider an interface
toward a local database: it is available through the permitted operations to all
currently residing agents. Let us note that the same resource can provide different
interfaces to different agents, depending on the security policy. As an extreme policy,
the resource can become private to one specific agent. In this case, the agent itself
becomes the resource manager, and anyone in need of one operation from the
resource should issues its request to the manager agent.

2.3 Place and domain

A very important feature of the MAMA model is its structure composed of different
levels of locality abstraction that describe the real structure of an internetworked
environment (see Figure 1).

The first abstraction is the place, where agents execute and are enabled to tightly
interact by directly cooperating with each other. At a higher level of abstraction,
there is the domain, a logical entity that groups a set of places that shares common
policies and privileges: inside one domain, places have the visibility of one another
and can exploit locality to provide common management policies and to adopt
uniform security policies.

281

The idea of structuring the system in locality of different levels of abstraction,
with domains containing set of places, is of paramount importance in granting
security. In fact, different locality may have peculiar security policy: each place may
have a proper strategy, to satisfy, for instance, the security needs of the place owner,
while the domain models a common strategy of a group of places, to enforce the
security policy of one department of an organisation. A set of domains matches the
internal structure of an organisation. The two levels of abstractions create a double
enforced protection: any action is checked first against the domain security strategy
and, if it is authorised, is passed for control to the final place of execution. We
believe this layering of security policies be fundamental for the modelling of real
agent applications.

Figure 1. The MA model

The MA model takes into account security both for the agents and for the current
locality. Agents should be granted integrity and privacy of their internal information,
while both domains and places must be protected against malicious code operations.

With regard to agent coordination, we have already stated that agents inside a
place can interact by sharing common resources. Whenever an agent needs to share a
resource with another agent residing in a remote place, it is forced to migrate to the
remote place. Mobile agents can directly migrate from place to place inside one
domain. Whenever an agent needs to move outside the domain, it needs to rely on a

282

specific entity, the gateway, in charge of the inter-domain routing functionality. The
gateway is part of the default place of a domain. One agent that migrates to a new
domain is constrained to move to its default place.

Outside the scope of the place, agents can interact only by means of message
exchange. The MAMA model assumes that messages can be eventually delivered to
agents even when they migrate.

3 The MAMA Architecture
The Mobile Agent model described in the previous section is naturally mapped in the
architecture of the MAMA system. The agent execution environment is the
realisation of the place concept and the allocation of each agent execution
environment is constrained into a single node. There cannot be an agent execution
environment spanning over different nodes (whereas there can be several agent
execution environments in the same node) because its goal is to provide an interface
to the physical machine. At a higher level of locality abstraction, the domain concept
is mapped in the network domain that can contain several execution environments
sharing common management and security policies. Each network domain is
embodied in a default place containing the gateway for inter-domain communication.
The default place is also in charge of dealing with and handling the agents entering
or exiting the domain and of enforcing its policies.

3.1 The agent execution environment

The agent execution environment is the realisation of the concept of place: this
locality is where agents may interact with each other and with node resources. Each
agent execution environment provides an abstraction of the physical machine, and it
is then constrained into a single node. Agent execution environments can not span
over different nodes (whereas there can be several agent execution environments in
the same node). An agent execution environment contains the resources that can be
accessed by agents. Following the model, each resource is represented by the
interface that controls the actions that agents can perform on resources.

A possible extension of this level of abstraction could be the realisation of a new
type of agents, called static agents, providing the functionality of Resource Manager
in order to control and mediate the interaction between mobile agents and local
resources. The interaction style between mobile agents and local resources evolve in
the sense of introducing a higher degree of abstraction in the system.

The agent execution environment offers agents services by means of the modules
shown in Figure 2:

�9 the Agent Manager offers the basic functionality for agent mobility and for
communications outside the place. Mechanisms for agent mobility are offered by
the MAMA run-time support. This module provides message-passing style of
communication for agents residing into different places and even different
domains. It also manages the local naming of agents and the possibility of
defining several aliases for the same agent;

283

�9 the Local Resource Manager is the interface lbr place services and ~br the node
resources that agents may access. This module makes possible the agent access
to local resources via their object interface. This makes possible a tight form of
interaction between agents in the same place by means of shared objects. For
instance, agents can share a blackboard object and a tuple space. This module
controls the authorisation of agents accessing to local objects and ensures the
respect of the place security policy;

�9 the Distributed Information Service is responsible for looking up information
about agents and places in remote nodes. The visibility is limited to one domain
which is logically viewed as a unique context composed of places mapped on
different physical nodes. In particular, it provides a Domain Name Service and a
Directory Service functionality. This module is an application service currently
implemented as a set of dedicated agents. However, its functionality could be
also implemented in terms of agents interfacing with traditional Directory
Services (X.500, NIS, etc.) and Internet DNSs.

Figure 2. The agent execution environment

It is important to examine the security issues raised by the interaction of an agent
with its current agent execution environment. Both parties of the interaction need to
be protected against reciprocal malicious behaviour. On the one hand, it is necessary
to protect the execution environment from agents that could cause damage or steal
information. On the other hand, it is necessary to protect the agent against possible
unauthorised actions by hostile execution environments.

The design of our architecture addresses the security requirements for both the
place of execution and the agents. Privacy, integrity and authentication are required

284

for protecting the place of execution. Authentication is necessary in order to
authorise agents to interact with local resources of a place. Privacy and integrity aim
to protect both the information carried by agents and the ones stored on the host.

In addition, we allow for the definition of layered security policies. Agents
entering the domain are authenticated and authorised to interact with places. At the
place level, agents are granted a set of permissions to invoke operations on local
resources. Domains and places are the structures that permit an efficient definition of
policies derived from Access Control models. A general policy for the system can be
defined first at the domain level, by controlling the interaction of agents with places
on the basis of user identity or role. Then, policies for the specific resources can be
defined at the place level by different managers, by refining the domain policies.
Coherence between domain and place policies must be granted by the MA system
which is in charge of detect all conflicts between the policies at the two levels [16]
[111.

3.2 The network domain

The domain concept presented in Section 2 identifies a logical locality mapped at the
implementation level in the network domain. The network domain groups a set of
agent execution environments and enforces the domain security policy. For instance,
the network domain can represent a LAN network or subnetwork of a department,
and will be regulated by the organisation policy stating and defining the user
authorisation and capabilities, the resources available to users, etc. Inside the
network domain, each place can have (and usually has) a specific security policy that
rules the actions inside. Domain and place policies usually differ, representing the
distinct needs of organisations and users. The agents can access to the resources of a
place depending on the restriction imposed by both the domain and place security
policies derived from user identity or role.

Agents typically execute inside one domain, where they can communicate
asynchronously via message passing: each agent owns its mailbox where it can
receive messages when moving from place to place. The agent support guarantees
message delivery even in the presence of agent mobility. It is not possible for two
agents to open stream connection, instead they can decide to move to the same place
of execution, where they can share some common objects.

Message passing and agent migration are performed directly between places
belonging to the same domain, because places inside one domain have the visibility
of all the others. Messages and mobile agents crossing the domain boundaries
involve the default place (containing the gateway), that is responsible for:

�9 routing all messages to/from the domain, acting in a way similar to traditional
IP gateways; it is worth to stress that the gateway handles only messages
exchanged between agents belonging to different domains, that produces a
usually limited traffic of messages;

�9 handling the incoming/outcoming agents; the gateway receives agents arriving
from other domains and it is in charge of performing all the security checks
required by the domain policy on the newly arrived agents. Agents exiting the

285

domain are sent to the gateway for further routing to the new destination
domain;

�9 dispatching the agents arriving in the domain to the correct destination place; in
practice, it contains a name server for the other places of the domain. This
functionality is required only locally to the gateway and only for agents entering
the domain and thus it does not represent a bottleneck;

�9 physically separating the domain from all others; in this case, it acts as a proxy,
capable of transferring agents and messages between the domain and the rest of
the world.

4 The MAMA Implementation
The MAMA architecture has been implemented by using the Java language [2]. Java
provides an intrinsic portability and inter-operability in heterogeneous environments.
The object-oriented nature of the Java language is suitable for the design of MAMA:
the encapsulation principle suits the abstraction needs of both resources and agents;
the classification principle makes possible to inherit behaviour from already specified
components instead of starting the design from scratch.

We use the Java Virtual Machine without modifications and, like other MA
systems, we introduce a new operation (go) allowing an agent to move itself during
the execution. The go operation requires as a parameter the method that has to be
activated after the migration.

The support for migration has taken advantage of Java object serialisation. When
an agent migrates, it moves also all its private Java objects (they are copied to the
new location and then destroyed in the old one). All other objects one agent has
references for are left in the current place where they can be later found if the agent
comes back; in particular, Java non-serializable objects maintain their allocation.

The MAMA system, composed of places, domain and gateways is implemented
in Java (JDK 1.1.5) [81 with a very limited number of class (175). All the current
MAMA features are based on the current JDK version and some of them are going to
be changed to adhere to the new model of the JDK1.2.

5 The Distributed Monitoring Application

Mobile Agents can improve performance in many distributed applications, because
they can take advantage of the network bandwidth availability, and they carry on
execution in case of disconnected situations [19]. Mobile Agents can be useful also
for achieving fast prototyping of applications, if they have been developed in a rapid
prototyping environment, available also to applications.

Mobile Agents are commonly indicated as a good solution in the field of
electronic commerce, for information-retrieval applications or in network
management and in the support for cooperative works.

This section describes our agent implementation of an on-line distributed
monitoring system [17] to collect information about the agent application at run-
time. The monitoring system is capable of inspecting the configuration of the whole

286

system to provide information for system upgrades, for load balancing policies, and,
in general, any dynamic strategy.

The monitoring system architecture is completely distributed. There is no
centralisation point and there is no single point of execution: the monitoring system
is not only distributed but also even mobile, being composed of only mobile agents.

Monitoring agents are assigned to specific domains and have the duty of
gathering the information collected by moving from node to node inside one domain.
We restrict the scope of monitoring agents to one domain in order to provide a light
implementation of the agent, avoiding the problems of mobility between domains
with different security needs. In addition, it is possible to assign a variable number of
monitoring agents to each domain, depending on fault tolerance, time latency of the
information to be gathered, etc. The higher the number of agents per domain, the
higher the consistency of monitoring information with the current system state.

The monitoring agent looks for information about the configuration of each place
(in terms of services available) and the load distribution in the system, in terms of
both mobile agents and object-resources present in each place.

We have compared the results obtained by the agent solution with a more
traditional one where a single monitoring entity (the master) resides in one node and
gathers the monitoring information of the whole domain by message passing with
the slaves, one in each controlled node.

Figure 3 shows the results obtained in monitoring a domain composed of a
network of 12 SUN workstations (Sparc 4, Sparc 5 and Ultra-l) Ethernet-connected.
The figure shows the total time (in msec) to obtain the complete situation over the
whole domain. This experiment considers average monitoring intbrmation: the
master/slave solution requires a number of messages equal to the number of
observation (per each slave); the agent solution dispatches a variable number of
monitoring agents that compute the average in place. The time measurement shown
in Figure 3 is an average measurement over a high number of executions.

Figure 3. The agent-based monitoring solution compared with a
traditional master-slave monitoring approach.

287

The obtained results show that the agent solution can perform the same of a
traditional one and can achieve better performance with a limited number of
monitoring agents in the given domain. The presented results refer to the first
prototype of the agent support, whose successive versions tend to achieve better
performance. Apart from the performance, a mobile agent monitoring application
offers a more flexible solution than traditional distributed ones. In particular, when
dealing with mobile computing, network bandwidth limitations and unreliable
communication scenarios.

6 Related Work

While many proposals of MA systems have been presented recently, we compare
only a few of them, chosen because of similarities in goals and application areas. The
distinguished features of MAMA, if compared with the other systems, is to present a
comprehensive framework, the hierarchy of places and domains, suitable to apply
patterns of security policies integrated at the design level.

In the class of Java-based mobile agents projects, we compare our system with
Aglets [10], Odyssey [12] and neglect efforts such as Sumatra [l] because they have
chosen to change the Java Virtual Machine, loosing its portability.

Aglets uses an event-based programming model, where examples of events are
the agent migration, its dispatch and its arrival. It provides only a weak mobility
model, because any moving agent must start its execution from the beginning in the
new node. Aglets currently has only a primitive form of agent authentication, but a
new security architecture for this system has been proposed in [9]. With respect to
Aglets, we support a stronger form of mobility.

Odyssey has a simplified structure if compared with our system but also
implements a go operation. Odyssey go operation differs from MAMA go because
it permits only to specify the destination and the routing of an agent by means of the
T i c k e t constructor. For this reason Odyssey agents are restarted at each
destination. Otherwise, if a particular method must be invoked at a specific
destination, a subclass of the main Agent class must be used, the Worker class that
supports only one task per destination.

Ara [14] adopts a different approach compared with us and the other systems,
providing a core Java-based module that supports multiple agent languages like Tcl
and C++. Agents move between locality called "places". We extend the concept of
locality present in Ara.

In the class of mobile agents systems based on script languages, Agent Tcl [6]
provides a support for agents written in Tcl (in the near future also in Java and
Scheme) which communicate mainly by using an RPC mechanism. Our system,
instead, supports message-passing between agents and a direct access to shared
objects in the same place.

Other works address the issue of standardisation. A group of MA systems
developers (Crystaliz, General Magic and IBM among the others) has submitted to
OMG a proposal to achieve interoperability for different architectures and

288

implementations [5]. This proposal standardises some aspects of MA technology and
its integration with CORBA [13]. A similar effort is the FIPA one [4] where the
focus is on the standardisation of communication and management of agents.
Another standardisation effort is the Open Distributed Processing (ODP) [7], that is
a joint activity of the ISO and ITU and provides a framework to develop
architectures with an integrated support for distribution, internetworking, and
portability. In addition, it focuses on the use of formal description techniques for
specification of the architecture. Our proposal follows the guidelines presented in the
different standardisation efforts: we adopt a layered structure with different
abstractions, and we agree also on the importance of the integration of MA systems
with other technologies. Our paper presents also the realisation of an MA
architecture in a Java environment.

7 Conclusions

The paper presents an MA model with locality abstractions (place, domains and
gateway), introduced with the goal of making easier the design of global and non
traditional applications for the Internet scenario. MAMA provides a layered
framework in which agents can move depending on their needs and their accesses to
different services. Our system considers fundamental the enforcing of security, for
both the agent and the place of execution, to preserve all entities, introducing a
structure that permits to apply patterns of policies at different levels and with
different scopes.

The Java implementation, apart from the a priori granted interoperability and
portability, has been carried out in accord with the possibility of rapid prototyping.
This approach makes possible to vary the behaviour of several system components
and to experiment different policies.

The first experiences, coming from the implemented applications, exhibit
acceptable performance, if taking into account Java efficiency limitations. In any
case, we believe that Java will grant higher level of efficiency in a little time.

References

1. A. Acharya, M. Ranganathan, J. Saltz: Sumatra: A Language for Resource-
Aware Mobile Programs. In Mobile Objects, J.Vitek, C.Tschudin (Eds.),
Springer-Verlag, Vol. 1222 Lecture Notes in Computer Science, 1997.

2. K. Arnold, J. Gosling: The Java Programming Language. Addison-Wesley, 1996.
3. A. Carzaniga, G.P. Picco, and G. Vigna: Designing Distributed Applications

with Mobile Code Paradigms. 19 th International Conference on Software
Engineering (ICSE'97), 1997.

4. L. Chiariglione: FIPA 97 specification, Foundation for Intelligent Physical
Agents. October 1997.

5. Crystaliz Inc., General Magic Inc., GMD Fokus, IBM Corp.: Mobile Agent
Facility Specification. Joint Submission. Supported by: The Open Group, OMG
TC Document, June 1997.

289

6. R. Gray, G. Cybenko, D. Kotz, D. Rus: Agent Tcl. In W.R. Cockayne and M.
Zyda: Mobile Agents: Explanations and Examples. Manning/Prentice Hall, 1997.

7. ITU Recommendation X.901-904 - ISO/IEC 10746 1-4. Open Distributed
Processing - Reference Model, July 1995.

8. Java Development Kit, Version 1.1.5. Sun Microsystems, 1997.
http://java.sun.com/products/index.html

9. G. Karjoth, D. Lange and M. Oshima: A Security Model for Aglets. IEEE
Internet Computing, Vol. 1, N.4, July/August 1997.

10. D. Lange , M. Oshima: Programming Mobile Agents in Java - With the Java
Aglet API. IBM Research, 1997.

l l.E. Lupu, M. Sloman: A Policy Based Role Object Model. Proceedings of
EDOC'97, IEEE Computer Society, October, 1997.

12. Odyssey, version beta 2, General Magic, 1998,
http://www.genmagic.com/agents/odyssey.html

13. Object Management Group: The Common Object Request Broker: Architecture
and Specification. Rev 2.0 (OMG Document 96-03-04), 1995.

14.H.Peine: Ara - Agents for Remote Action. In W. R. Cockayne and M. Zyda:
Mobile Agents: Explanations and Examples, Manning/Prentice Hall, 1997.

15. K. Rothermel, R. Popescu-Zeletin (Eds.). Proceedings of the First International
Workshop on Mobile Agents, Berlin (D), Lecture Notes in Computer Science,
Vol. 1219. Springer-Verlag (D), April 1997.

16.R.Sandhu, P.Samarati: Authentication, Access Control, and Intrusion Detection.
The Computer Science and Engineering Handbook, 1996.

17.B. Schroeder: On-Line Monitoring: A Tutorial. IEEE Computer, Vol. 28, N. 6,
June 1995.

18. J.W.Stamos, D.K.Gifford: Remote Evaluation. ACM Transaction on
Programming Languages and Systems, Vol. 12 No. 4, October 1990.

19. J. Waldo, G. Wyant, A. Wollrath, S. Kendall: A Note on Distributed Computing.
In Mobile Objects, J.Vitek, C.Tschudin (Eds.), Springer-Verlag, Vol. 1222
Lecture Notes in Computer Science, 1997.

