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Abstract 
We introduce a new model for the dynamics of fat-tailed (realized) covariance-matrix-valued time-series 
using the F-Riesz distribution. The model allows for heterogeneous tail behavior across the coordinates of 
the covariance matrix via two vector-valued degrees of freedom parameters, thus generalizing the familiar 
Wishart and matrix-F distributions. We show that the filter implied by the new model is invertible and that 
a two-step targeted maximum likelihood estimator is consistent. Applying the new F-Riesz model to U.S. 
stocks, both tail heterogeneity and tail fatness turn out to be empirically relevant: they produce significant 
in-sample and out-of-sample likelihood increases, ex-post portfolio standard deviations that are in the global 
minimum variance model confidence set, and economic differences that are either in favor of the new 
model or competitive with a range of benchmark models.
Keywords: covariance matrix distributions, tail heterogeneity, (Inverse) Riesz distribution, fat-tails, realized 
covariance matrices
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Covariance matrix modeling and estimation play an important role in many areas of eco
nomics and statistics, such as financial risk assessment and decision making under uncer
tainty (Markowitz 1991; Engle, Ledoit, and Wolf 2019). Today’s data-rich environment 
has led to a shift in ambition from estimating static covariance matrices to estimating co
variance matrices on a frequent basis over many short spans of data, also known as realized 
covariance matrix estimation. Examples include Andersen et al. (2003); Barndorff-Nielsen 
and Shephard (2004); Chiriac and Voev (2011); Lunde, Shephard, and Sheppard (2016); 
Callot, Kock, and Medeiros (2017); Bollerslev, Patton, and Quaedvlieg (2018); Bollerslev 
et al. (2020); and the references cited therein.
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An important challenge is to design parsimonious yet flexible time-series models for such 
series of realized covariance matrices that can be used for forecasting and decision pur
poses. A complication is that the time-series observations are matrix-valued (rather than 
vector-valued), have positive (semi)-definite outcomes only, and may be subject to fat- 
tailed behavior and outliers. Most of the models currently available cannot cope with all of 
these challenges simultaneously or are highly restrictive. Recent work on tensor-valued 
time-series such as Wang, Liu, and Chen (2019) and Chen, Yang, and Zhang (2022) can 
deal with matrix-valued time-series, but not with restrictions on positive definiteness of the 
observations or with the fat-tailed nature of these data in many applications. Other 
approaches that can deal with positive definite random matrices are typically highly 
restrictive. For instance, the often-used Wishart or inverse Wishart distributions for 
matrix-valued time-series only feature two parameters: a matrix-valued mean, and a single 
scalar-valued degrees of freedom parameter to describe the tail behavior across all coordi
nates (Golosnoy, Gribisch, and Liesenfeld 2012; Jin and Maheu 2013, 2016). Similarly re
strictive, the matrix-F distribution only features two tail parameters for any k × k realized 
covariance matrix (Konno 1991; Opschoor et al. 2018). While such distributions might be 
suitable for low-dimensional cases, in moderate to high dimensions the implied constraints 
on tail behavior in the cross-section are typically empirically too restrictive.

The typical approach found in the literature to flexibilize multivariate distributions by 
splitting them into the marginal distributions and a copula (see for instance Patton 2009; 
Oh and Patton 2017, 2018; Opschoor et al. 2021) cannot easily be applied here. Most cop
ula methods relate to vector-valued observations and cannot deal with the positive definite
ness of covariance-matrix-valued observations. Second, many copula structures available 
in the literature are also tightly parameterized, such as the Gaussian, (skewed) Student’s t, 
and Archimedean copulas, with very little heterogeneity in the tail-dependence structure.

In this article, we, therefore, introduce the dynamic F-Riesz distribution to model 
sequences of realized covariance matrices. We do so by building on the beta type II Riesz 
distribution of D�ıaz-Garc�ıa (2016).1 We introduce dynamics for the key scale parameter of 
the F-Riesz distribution and derive the invertibility of the filter and the consistency proper
ties of the maximum likelihood estimator (MLE) for the static parameters of the model. A 
key property of the F-Riesz distribution is that it allows for tail heterogeneity in each of its 
coordinates. It does so by replacing the two scalar degrees of freedom parameters of the 
matrix-F distribution of Konno (1991) by two vectors of degrees of freedom parameters. If 
each of these vectors is scalar (i.e., has the same elements), then the F-Riesz model reduces 
to the matrix-F model (see Konno 1991; Opschoor et al. 2018).

The F-Riesz distribution is constructed by mixing a Riesz distribution (Hassairi and 
Lajmi 2001; D�ıaz-Garc�ıa 2013) with an Inverse Riesz distribution (Tounsi and Zine 2012; 
Louati and Masmoudi 2015), both of which are generalizations of the Wishart and Inverse 
Wishart distributions. The Riesz distribution has thus far mainly been used in the physics 
literature (Andersson and Klein 2010). In economic statistics, Gribisch and Hartkopf 
(2023) also recently apply the Riesz distribution to financial data. They introduce a state- 
space version of the dynamic Riesz distribution and estimate the model using Bayesian 
techniques. We differ from their approach in two important ways. First, we use an 
observation-driven rather than a parameter-driven approach to model the dynamics of re
alized covariance matrices. As a result, we can obtain the likelihood function in closed 
form and can stick to standard maximum likelihood rather than simulation-based or 
Bayesian techniques for the estimation of model parameters. Second, we use the more flexi
ble and fat-tailed F-Riesz-distribution rather than the Riesz. This allows for additional 

1We correct the expression for the pdf in the original paper of D�ıaz-Garc�ıa (2016); see Supplementary 
Appendix A. The correction relates to the part of the pdf involving the scaling matrix and is therefore crucial in 
our context, where we consider time-varying scaling matrices.
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distributional flexibility, which appears relevant in our application within our class of 
observation-driven models when comparing the behavior of the F-Riesz model with the 
(Inverse) Riesz.2

We apply the dynamic F-Riesz distribution to a sample of daily realized covariance ma
trices of dimensions 5 and 15 using U.S. stock data over the period 2001–2019. The results 
show that both tail heterogeneity and fat tailedness as captured by the F-Riesz distribution 
are empirically relevant compared to tail heterogeneity only (Riesz) or fat-tailedness only 
(matrix-F). The data strongly reject both the dynamic Riesz and the dynamic matrix-F spec
ifications for the dynamics of realized covariance matrices compared to the F-Riesz alterna
tive, despite both the Riesz and matrix-F already performing significantly better in terms of 
likelihood fit than the dynamic Wishart and inverse Wishart models. In addition, weekly 
and biweekly point forecasts of the predicted covariance matrices from the F-Riesz distri
bution are at par or better than those of the alternative model specifications, while its den
sity forecasts measured by the log-scoring rule are clearly better. The one-step-ahead 
predicted covariance matrices from the F-Riesz distribution also perform well in a global 
minimum variance portfolio strategy: they yield statistically lower ex-post portfolio stan
dard deviations and higher economic gains after taking into account transaction costs com
pared to competing models and several standard benchmarks such as the HAR-DRD 
model of Oh and Patton (2016). We conclude that the dynamic F-Riesz distribution can 
prove useful for the statistical analysis of covariance-matrix-valued time-series.

The rest of this article is set up as follows. In Section 1, we introduce the model. Section 
2 considers filter invertibility and the consistency properties of the two-step targeted MLE 
and also studies the new model’s performance in a simulated setting. Section 3 presents the 
empirical results. Section 4 concludes. The Supplementary Appendices gather further tech
nical and empirical results. As a notational convention in this article, we write scalars in 
normal type face, vectors in bold, and matrices in capitalized bold font.

1 The Conditional Autoregressive F-Riesz Model
1.1 Dynamic Model Specification
Let X t 2 Rk × k for t ¼ 1; . . . ;T denote a time-series of realized covariance matrices, and 
define the filtration F t − 1 ¼ fX1; . . . ;Xt − 1g containing all lagged observations of X t. We 
describe the dynamics of Xt by a conditional, matrix-valued distribution with an autore
gressive, time-varying mean, 

Xt ¼ LV t EtL>V t
; V tþ1 ¼ ð1 − A − BÞΩþAXtþBV t; (1) 

where LV t is the lower-triangular Cholesky decomposition of V t, such that 
V t ¼ E½XtjF t − 1� ¼ LV t

L>Vt
, and where Et is a matrix-valued innovation with conditional ex

pectation equal to the identity matrix, E½EtjF t − 1� ¼ Ik. We can view Equation (1) as the 
matrix version of the scalar MEM model of Engle and Gallo (2006). We explicate the con
ditional pdf of X t in Equation (4) further below. The parameter matrix Ω in Equation (1) is 
symmetric and positive definite. For simplicity, we take A and B as scalar parameters like 
in the original DCC model of Engle (2002), but generalizations of this can easily be accom
modated. Note that for positive definite Ω and V1 and for A>0; B>0, and AþB<1; V t is 
automatically positive definite for all t. We initialize V1 by the unconditional mean of X t. 
Also note that more complex dynamic structures can easily be allowed for in Equation (1). 

2As one of the referees pointed out correctly, a state-space model with a Riesz measurement equation as in 
Gribisch and Hartkopf (2023) can also result in conditional fat-tailedness of the realized covariance matrix 
measurements via the mixing with the state innovation. The state innovations in Gribisch and Hartkopf (2023)
do not give rise to the closed-form Riesz distribution, making the two models less comparable.
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For instance, in the empirical application in Section 3 we incorporate HAR-type dynamics 
as in Corsi (2009) to better capture the possible long-memory behavior of realized covari
ance matrices.

If we assume the conditional distribution of X tjF t − 1 to be Wishart, the dynamics in 
Equation (1) resemble the Conditional Autoregressive Wishart (CAW) model (see 
Golosnoy, Gribisch, and Liesenfeld 2012). For the Wishart case, the model also collapses 
to one of the two core equations of the Multivariate HEAVY model of Noureldin, 
Shephard, and Sheppard (2012). As argued in the introduction, however, assuming an 
(Inverse) Wishart or even a matrix-F distribution for Et can be too restrictive in terms of 
the tail behavior it implies. This is why we introduce the F-Riesz distribution in Section 1.2 
to allow for tail heterogeneity.

Note that model (1) is observation-driven. Therefore, it allows for easy parameter esti
mation via standard maximum likelihood methods employing a prediction error decompo
sition using the expression for the F-Riesz pdf in Equation (4). To reduce the 
dimensionality of the optimization, we can use a targeting approach to pre-estimate Ω. 
This can be done in the following way. Assuming stationarity and the existence of an un
conditional first moment of X t, one can take unconditional expectations on both sides of 
the equations in Equation (1) to obtain V ¼ E½V t� ¼ E½Xt� ¼Ω. This result can be used to 
estimate Ω by the sample average of the realized covariance matrices, Ω̂¼ T − 1PT

t¼1 X t. 
Plugging this expression into the log-likelihood function, the resulting function then only 
depends on the remaining parameters A and B, plus any parameters describing the condi
tional distribution of Et.

1.2 The F-Riesz Distribution
The family tree of the F-Riesz distribution considered in this article is provided in Figure 1. 
The Wishart and to a lesser extent the matrix-F distributions are assumed to be sufficiently 
well known. The Riesz distribution, however, may be less familiar. Therefore, we first 
briefly recapitulate the basics of the Riesz distribution before presenting the F-Riesz distri
bution. A more extensive introduction to the different distributions and some more techni
cal results can be found in the Supplementary Appendices A and B.

The Riesz distribution is characterized by two parameters: a positive definite scaling ma
trix Σ¼ LL> with lower triangular Cholesky decomposition L, and a vector of degrees of 
freedom parameters ν¼ ðν1; . . . ;νkÞ

>, with νi> i− 1 for i¼ 1; . . . ;k. Arguably the easiest 
way to introduce the Riesz distribution is via its so-called Bartlett decomposition, which is 

Figure 1. Family of matrix distributions. 
Notes: This figure shows a family tree of the F-Riesz distributions. Connected lines mean that distributions are 
related by generalization.
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a familiar simulation device for the standard Wishart distribution; see Anderson (1962). 
Consider a random matrix G 2 Rk × k, defined as 

G ¼

ffiffiffiffiffiffi
χ2

ν1

q
0 � � � 0

Nð0; 1Þ . .
.

0 ..
.

..

.
Nð0; 1Þ . .

.
0

Nð0; 1Þ � � � N ð0; 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2

νk − kþ1

q

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

; (2) 

where all elements of G are independent random variables. Then Y ¼ LGG>L> has a so- 
called Riesz distribution of type I, which we write as Y �RIðΣ;νÞ.3

Given the use of the Cholesky decomposition, it is clear that the ordering of the variables 
matters. This is a well-known and accepted feature in the Riesz literature, as the order of 
the variables can also be recovered from the data under the assumption of correct specifica
tion by maximizing the likelihood also over the order of the variables in the system, rather 
than over Σ and ν only. In small dimensions, this can be done by full enumeration. For 
moderate dimensions, we provide a heuristic algorithm in Section 1.3 that works well in 
our simulated and empirical setting. Empirically, we find that the step of allowing for tail 
heterogeneity by generalizing the Wishart to the Riesz or the matrix-F to the F-Riesz distri
bution increases the likelihood much more than subsequent likelihood increases due to de
termining the precise ordering of the coordinates. The latter, in our setting, are typically of 
second-order importance.

If ν¼ ðν; . . . ;νÞ for some ν>k −1, the Riesz distribution collapses to the well-known 
Wishart distribution with ν degrees of freedom. In that case, the degrees of freedom param
eters νi on the diagonal of the Bartlett decomposition G in (2) all have the same value ν. In 
contrast to the Wishart, the Riesz distribution thus allows for heterogeneous tail behavior 
in the cross section. Tail fatness, however, is left unaffected and is still exponential (thin) in 
all directions.

To introduce fatter tails for the Riesz distribution, we draw the analogy between the 
Wishart and matrix-F distribution (Konno 1991). If Y has a Wishart distribution, 
Y �WðIk;νÞ, and X given Y also has a Wishart distribution, XjY �WðY − 1;μÞ, then the un
conditional distribution of X is a matrix-F: X �FðIk;μ;νÞ. Replacing the Wishart distribu
tion by its generalization, the Riesz, we might expect that a similar result can be obtained 
which allows for both fat and heterogeneous tails. This is confirmed in Theorem 2.3, which 
we prove in Supplementary Appendix A.

To formulate the theorem, we first need to define the concepts of the generalized (lower 
and upper) gamma function and the (lower) power weighted determinant.

Definition 2.1  (Generalized multivariate gamma functions). The lower generalized 
multivariate gamma function for a vector-valued argument ν¼ ðν1; . . . ;νkÞ

>
2 Rk × 1 

is defined as ΓðνÞ ¼ πkðk− 1Þ=4 Qk
i¼1 Γðνiþ

1− i
2 Þ, with 2νi> i − 1 for i¼ 1; . . . ;k. 

Similarly, the upper generalized multivariate gamma function is defined as 
ΓUðνÞ ¼ πkðk− 1Þ=4 Qk

i¼1 Γðνiþ
i −k

2 Þ¼ Γðνþ~γÞ, for 2νi>k − i for i¼ 1; . . . ;k, 

and ~γ ¼ 1
2 kþ1Þ− ðk;k − 1; . . . ;1Þ> ¼ ð− 1

2 ðk− 1Þ; . . . ; 12 ðk −1ÞÞ>
�

. 
3The type I relates to the fact that we have taken a lower triangular Cholesky decomposition in the Bartlett de

composition. Type II versions of the distribution based on an upper triangular Cholesky decomposition also ex
ist, and we refer to Supplementary Appendix B for details. As the performance of both types of F-Riesz 
distributions was similar in our context, we only discuss the type I F-Riesz distributions in the main text.
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The upper and lower generalized multivariate gamma functions enter the integrating 
constant of the Riesz and F-Riesz distributions. If ν¼ ðν; . . . ;νÞ>, then ΓðνÞ ¼ ΓkðνÞ, where 
ΓkðνÞ is the standard multivariate gamma function.

Next, we introduce the Lower Power Weighted Determinant (LPWD). The power 
weighted determinant takes a similar role in the expressions for the density of the F-Riesz 
distribution as standard determinants do for the Wishart and the matrix-F distribution.

Definition 2.2  (LPWD). Consider the vector ν 2 Rk × 1 and a positive definite matrix Y. 
Let L be the (unique) lower triangular Cholesky decomposition of Y, that is, 
Y ¼ LL>. Then the LPWD jYjν is given by jYjν ¼

Qk
i¼1 L2νi

i;i .   

In the physics literature, the power weighted determinants are commonly introduced via 
so-called weight functions; see for instance Gross and Richards (1987). In this article, we 
instead use the notation of power weighted determinants as it is closer to the econometric 
literature and stresses the simplification of the Riesz to the Wishart and of the F-Riesz to 
the matrix-F distribution if ν¼ νιk. Note that the power weighted determinant is not as 
simple as a regular determinant. Properties like jA �Bj ¼ jAj � jBj for matrices A;B 2 Rk × k ei
ther do not hold or hold in modified form for power weighted determinants. 
Supplementary Appendix Lemma B.1 provides manipulation rules for power weighted 
determinants.

We now obtain the following formulation of the pdf of the F-Riesz distribution.

Theorem 2.3  (F-Riesz distribution).

i) If XjY �RIðY;μÞ has a conditional Riesz type-I distribution, and Y � iRIIðΣ;νÞ
has an Inverse Riesz type-II distribution, then X is FRIðΣ;μ;νÞ distributed 
with density function 

pFRIðX; Σ; μ; νÞ ¼
ΓU

μþ ν
2

� �
� jΣj0:5ν

ΓU
ν
2

� �
Γ μ

2

� � jXj0:5ðμ − k − 1ÞjΣþXj− 0:5ðμþ νÞ:

ii) Let Σ¼ LL> for a lower triangular matrix L. If X �FRIðΣ;μ;νÞ, then 
L− 1XðL>Þ− 1

� FRIðIk;μ;νÞ. 

Theorem 2.3 corrects a result from D�ıaz-Garc�ıa (2016) on the pdf of the generalized 
Beta II distribution. The result in that article is only valid for Σ¼ Ik, and incorrect other
wise. The correction is therefore crucial for our application, where we allow for time- 
varying scale matrices Σt.

Interestingly, except for the use of the non-standard generalized gamma functions and 
power weighted determinants, the density expression of the F-Riesz one-on-one mirrors 
and generalizes that of the matrix-F distribution. The following corollary establishes this 
link and shows that the matrix-F distribution of Konno (1991) as used by Opschoor et al. 
(2018) is a special case of the F-Riesz distribution.

Corollary 2.4.  Under the conditions of Theorem 2.3 part (i) or (ii), if we assume 
μ¼ μ � ιk and ν¼ ν � ιk, then X has a matrix-F distribution Fðμ;νÞ, and 
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pFRIðX; Σ; μ � ιk; ν � ιkÞ ¼ pF ðX; Σ; μ; νÞ ¼
Γk

μþ ν
2

� �
� jΣj0:5ν

Γk
ν
2

� �
Γk

μ
2

� � �
jXj0:5ðμ − k − 1Þ

jΣþXj0:5ðμþ νÞ ; (3) 

where Γkð�Þ is the multivariate gamma function.   

The corollary makes clear that it is possible to test whether the F-Riesz collapses to the ma
trix-F distribution by testing whether all elements in μ are the same, as well as all elements 
in ν.

Similar to the scalar or matrix-F distributions, the expectation of the F-Riesz does not al
ways exist. The following theorem derives expressions for the expectation and the condi
tions for its existence. An expression for the first moment of the F-Riesz distribution is 
important for our dynamic model in Equation (1), as Et is normalized to have the unit ma
trix as its conditional expectation.

Theorem 2.5  (Expectation of the F-Riesz distribution). Let Y �FRIðI;μ;νÞ, then 
E½Y� ¼Mðμ; νÞ, where Mðμ;νÞ is a diagonal matrix with ith diagonal element 
Mi;iðμ;νÞ equal to 

Mi;iðμ; νÞ ¼

μ1

ν1 − k − 1
; for i ¼ 1;

1
νi − kþ i − 2

�

μiþ
Xi − 1

i¼1

ai

�

; for i ¼ 2; . . . ;k;

8
>>><

>>>:

provided μi>0 and νi>kþ2 − i for i¼ 1; . . . ;k.   

Combining this result with Theorem 2.3, we immediately obtain that the disturbance term 
Et in our dynamic F-Riesz model in Equation (1) should have scale matrix Mi;iðμ;νÞ− 1 in 
order to have conditional expectation Ik. As a result, the conditional pdf of X t ¼ LV t EtL>Vt 

is given by 

pFRIðXt ; LV t Mðμ; νÞ
− 1L>Vt

; μ ; νÞ; (4) 

with pFRIð�Þ as defined in Equation (1), and where V t follows the recursion in Equation (1) 
with lower triangular Cholesky decomposition LV t . The static parameters to be estimated 
by maximum likelihood now comprise Ω; A; B; μ, and ν, where Ω can be targeted as 
explained in Section 1.1. For a given set of static parameters, V t can be obtained from 
Equation (1) for every t. From these, we can compute the Cholesky decompositions LV t for 
every t, which can finally be inserted into the expression for the pdf in Equation (4) to ob
tain the value of the likelihood.

1.3 Ordering of Variables
The order of the coordinates in Xt matters for the specification of Riesz and F-Riesz distri
butions. As mentioned before, this is well accepted in the Riesz literature due to the use of 
the Cholesky decomposition in the construction of the Riesz distribution. The order of the 
coordinates can be regarded as another variable that can be optimized over. For sufficiently 
small dimensions, enumeration of all possible orders is possible. However, such an ap
proach quickly becomes unwieldy: for k¼10, we already would have to estimate and com
pare more than 3.6M models. To approximate the optimal ordering, we therefore propose 
the following heuristic algorithm.The algorithm above ensures that the maximized 
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likelihood never decreases when searching over different orderings. Moreover, the algorithm 
is relatively efficient for moderate dimensions since it limits the number of times we re- 
estimate θ. The latter is costly due to the required non-linear optimization. The algorithm re- 
estimates θ about p1p2k2 times, which is substantially smaller than the full k! enumerated 
possibilities, thus providing a substantial computational gain. Though no guarantee is given 
that we arrive at the true optimum using this heuristic algorithm, the simulation evidence in 
the next section shows that even without using Step 4 non-negligible likelihood increases can 
be obtained. Also, the algorithm typically lands close to the correct ordering of the variables 
in terms of rank correlations.

2 Theory and Simulation Evidence
In Section 2.1, we establish the invertibility of the conditional autoregressive F-Riesz 
(CAFr) filter as defined in Equations (1) and (4) for the dynamic parameters V t. In addi
tion, we prove the consistency of the MLE of the static parameters Ω; A; B; μ, and ν. In 
Section 2.2, we then study the performance of the MLE and of the heuristic algorithm in
troduced in Section 1 in a simulated setting.

2.1 Filter Invertibility and MLE Consistency
To establish the consistency of the MLE for the unknown static parameter θ of the CAFr 
model,4 we follow the usual two-step targeting approach that is typically found in 

Algorithm 2.6 (Approximating the optimal ordering of variables in the system).  
Let o ¼ ðo1; . . . ;okÞ be a permutation of the first k integers, indicating the order of the variables in 
the system that make up the covariance matrix observations X t . Let θ denote the static parame
ters that characterize the model and that need to be estimated by maximum likelihood.

Step 0: Set j¼ 0.
Step 1: Select a random order oðjÞ ¼ ðoðjÞ1 ; . . . ;oðjÞk Þ.
Step 2: Given the ordering oðjÞ, estimate θ and obtain θ̂

ðjÞ
.

Step 3: Loop over asset i,i ¼ 1; . . . ;k:
Step 3a: Find i? such that i ¼ oðjÞi? , that is, find the position of asset i in the current ordering 
oðjÞ.
Step 3 b: Put asset i in each of the possible positions 1; . . . ;k, while keeping the order of 
the other variables as in oðjÞ, that is, consider the permutations
ðoðjÞi? ;o

ðjÞ
1 ; . . . ;oðjÞi? − 1;o

ðjÞ
i?þ1; . . . ;oðjÞk Þ,ðo

ðjÞ
1 ;o

ðjÞ
i? ;o

ðjÞ
2 ; . . . ;oðjÞi? − 1;o

ðjÞ
i?þ1; . . . ;oðjÞk Þ, up to ðoðjÞ1 ; . . . ;

oðjÞi? − 1;o
ðjÞ
i?þ1; . . . ;oðjÞk ;o

ðjÞ
i? Þ. For each re-ordering, re-estimate θ as θ̂

ðj;iÞ
and retain the order

ing plus estimated θ̂
ðj;iÞ

that yields the highest log-likelihood value and store it as oðjþ1Þ

and θ̂
ðjþ1Þ

.
Step 3c: Increase j to jþ1.
Step 3d: Continue the loop by proceeding to the next asset iþ1.

Step 4 (optional): Repeat steps 1–3 p1 times (or until convergence), possibly repeating the en
tire process for p2 different random initial orderings. Retain the final order and estimate that 
yields the highest log-likelihood. Call this final order oðoptÞ with corresponding parameter esti
mate θ̂

ðoptÞ
.

4For the i.i.d. case, we provide a separate set of conditions and results in Supplementary Appendix C. We also 
confine ourselves to proving consistency. Though we expect asymptotic normality of the MLE to hold as well, 
the expressions for first and second-order derivatives of the F-Riesz pdf are complex in θ and V t such that 
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empirical work and described in Section 1.1. We first estimate Ω using a simple sample 
mean of X t. Next, fixing this estimate of Ω, we estimate the remaining parameters by non- 
linear maximum likelihood optimization.

We make the following assumptions for consistent estimation of Ω.

Assumption 3.1.  The sequence fXtgt¼1;...;T is generated by (4) and (1) for some 
ðΩ0;A0;B0;μ0;ν0Þ for every t ¼ 1; . . .;T.  

Assumption 3.2.  Ω0 is positive definite, μ0;j>Kþ18 j, ν0;i> iþ18 i, A0>0, B0 ≥ 0, 
and jA0þB0j<1.   

Assumption 3.1 is a standard assumption on correct specification. Assumption 3.2 then 
allows us to establish the stationarity and ergodicity of the model as a data generating pro
cess. The strong consistency of the sample average Ω̂¼ T − 1PT

t¼1 Xt to Ω0 then follows by 
an application of the ergodic theorem.

Proposition 3.3.  Let Assumptions 3.1–3.2 hold. Then Ω̂¼ T −1PT
t¼1 X t!

a:s:Ω0 

as T ! 1.   

The consistent estimate of Ω can be used as a plug-in for a targeted estimation approach 
for the remaining static parameters of the model.

We now turn to the invertibility of the filtering Equation (1). To do so, we first introduce 
some new notation. Let V̂ tðθÞ denote the filtered sequence from (1), initialized at some 
point V̂ 1, and evaluated at some parameter vector θ 2Θ. Following the literature (e.g., 
Straumann and Mikosch 2006; Wintenberger 2013), invertibility ensures that the filter 
“forgets” the possibly incorrect initialization; that is, the filtered sequence fV̂ tðθÞgt2N con
verges path-wise and exponentially fast to a unique stationary and ergodic limit sequence 
fV tðθÞgt2N. This means that for every θ in the parameter space Θ there is a c>1 such that 

ctjjV̂ tðθÞ−V tðθÞjj!
a:s:

0 as t ! 1, regardless of the initialization V̂ 1. We also write V̂ t ¼

V̂ tðθ0Þ and V t ¼ V tðθ0Þ, such that the filter asymptotically recovers the true V t series from 
the data generating process if the filter is evaluated at the true static parameter θ0.

In the current setting, filter invertibility can be obtained by ensuring that the following 
conditions hold: (i) stationarity of the data fXtgt2Z; (ii) a logarithmic bounded moment for 
X t 8 t; (iii) a contraction condition for the filtering equation. The stationarity of the data in 
(i), and the logarithmic moment in (ii) follow directly from Assumptions 3.1 and 3.2. The 
contraction condition for the filtering equation, however, requires additional restrictions 
on the parameter space Θ. Assumption 3.4 ensures that the filtered V̂ tðθÞ matrices are posi
tive definite and that the stochastic filtering equation is contracting in the appropriate 
sense. It also ensures identification of the ordering of the variables in the system by requir
ing the degrees of freedom parameters to be different across coordinates i and j.

Assumption 3.4.  The parameter space Θ is compact and satisfies A ≥ 0, B ≥ 0, 
supB jBj<1, and minj infμj

ðμj − K −1Þ>0, mini infνiðνi − i −1Þ>0, μi 6¼ μj for i 6¼ j, 
and ðμiþνiÞ 6¼ ðμþ jþνjÞ for i 6¼ j.   

establishing the asymptotic normality in a tractable way is hard without high-level assumptions. We leave this 
part for further research. In the empirical section, we use the standard sandwich estimator for the stan
dard errors.
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Proposition 3.5 now establishes the invertibility of the initialized filter V̂ tðθÞ for its 
stationary and ergodic limit V tðθÞ and opens the door to the consistency of the MLE.

Proposition 3.5.  Let Assumptions 3.1-3.4 hold. Then the filter fV̂ tðθÞgt2N is invertible.   

We are now ready to formulate our consistency result of the MLE ðÂT; B̂T; μ̂T; ν̂TÞ. This 
MLE takes the form of a targeted two-step estimator as it depends on the first-step estima
tor for Ω0. As is common for filtering models, the log-likelihood depends directly on the 
properties of the filter V̂ tðθÞ, which is itself a function of the estimated Ω̂T, the parameters 
A and B, and the initialization V̂1 as noted above. To make this clearer in the notation, we 
write explicitly V̂ tðΩ̂T;A;BÞ rather than V̂ tðθÞ. In addition, we write ôT as the ordering of 
coordinates that maximizes the log-likelihood. Putting all elements together, we define the 
MLE as the maximizer of the plug-in log-likelihood log ~pFRIðX t; V̂ tðΩ̂T;A;BÞ;μ;νÞ for a 
specific ordering o, 

ðÂT; B̂T; μ̂T; ν̂T ; ôTÞ ¼ arg max
ðA;B;μ;ν;oÞ

XT

t¼2

log ~pFRIðX t; V̂ tðΩ̂T;A;BÞ; μ; νÞ: (5) 

Theorem 3.6.  Let Assumptions 3.1–3.4 hold. Then for T ! 1 the targeted MLE 
ðÂT; B̂T; μ̂T; ν̂T ; ôTÞ defined in (5) satisfies 

ðÂT ; B̂T; μ̂T ; ν̂T; ôTÞ !
a:s:

ðA0;B0; μ0; ν0;o0Þ:

Theorem 3.6 provides the consistency of the MLE. Though the simulation results in  
Table 1 suggest that the ML estimator for the static parameters can be well approximated 
by a normal distribution in finite samples, we instead choose to focus on the predictive per
formance of the model using Diebold–Mariano (DM) tests (Diebold and Mariano 1995) 
rather than on the behavior of the static parameters. The latter is typically deemed of less 

Table 1. Parameter estimations of CAFr model

Coef. True Mean Std Mean (S.E.)

A 0.1600 0.1596 0.0048 0.0044
B 0.8300 0.8296 0.0049 0.0049
μ1 16.64 16.69 1.125 1.128
μ2 27.15 27.07 1.567 1.544
μ3 41.61 41.52 2.284 2.229
μ4 58.18 58.03 3.073 3.030
μ5 84.67 84.12 4.402 4.381
ν1 20.05 20.45 1.584 1.510
ν2 18.72 18.94 0.957 0.880
ν3 19.36 19.57 0.780 0.722
ν4 20.59 20.85 0.782 0.734
ν5 14.61 14.77 0.512 0.442

Notes: This table shows Monte Carlo averages and standard deviations of parameter estimates of simulated 
covariance matrices from the five-dimensional CAFr model of (1). Guided by empirical results, we set 
μ¼ ð16:64;27:15;41:61;58:18;86:67Þ and ν¼ ð20:05;18:72;19:36;20:59;14:61Þ. We estimate Ω by targeting 
in a first step, while A, B, and the DoF parameters are estimated in a second step by maximum likelihood. The 
table reports the true values, the mean and standard deviation of the estimated coefficients, as well as the mean 
of the computed standard error using the inverse of the Hessian. Results are based on 1000 Monte Carlo 
replications.
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interest in dynamic parameter models such as the CAFr, where the focus is mostly on the 
filtered paths of V̂ t and the model’s predictive performance. Note that the consistency of 
the filtered paths V̂ t follows directly from the consistency of the MLE and the filter inverti
bility established earlier.

We use the DM test based on two loss functions. First, we use the log-scoring rule 
dt ¼ ‘

1
t − ‘2

t , where ‘1
t and ‘2

t are the log-likelihood contributions of two different model 
specifications. The test requires dt to be a finite variance martingale difference series under 
the null of equal model performance. The existence of a second moment of the log- 
likelihood for the F-Riesz distribution is easily obtained using similar arguments as for the 
consistency proof, where a bounded first moment of the log-likelihood was established. 
Second, we use a more economic perspective to compare the different models by construct
ing global minimum variance portfolios and comparing their ex-post portfolio variance 
performance using the DM test. See Section 3.4 for further details.

2.2 Simulation Experiment
This section presents the results of a Monte Carlo study for the statistical properties of the 
MLE of the conditional autoregressive F-Riesz (CAFr) model. We simulate from a k¼ 5 di
mensional version of the CAFr model with empirically relevant values for the static param
eters. We do so 1000 times and for each simulated series estimate the static parameters of 
the model by MLE, as well as their standard errors.

Table 1 presents the results. We see that all parameters are estimated near their true val
ues. This holds both for the dynamic parameters A and B, as well as for the degrees of free
dom parameters μ and ν, underlining the consistency result from Section 2. We also note 
that the Monte Carlo standard deviation of the MLE across simulations (in the std column) 
is close to the average of the estimated standard errors using the inverse Hessian (in the 
mean(s.e.) column).

The second simulation experiment investigates the statistical gain of the F-Riesz distribu
tion over the matrix F distribution. Guided by the empirical application, we focus on a 
five-dimensional F-Riesz I distribution with degrees of freedom vectors μ¼
ð18:7;35:8;58:2;89:4;143:9Þ> and ν¼ ð22:8;24:3;28:6;22:3;18:2Þ>. We define μ ¼ 69:2 
and ν ¼ 23:3 as the average values of the vectors μ and ν, respectively, and μrange ¼ μ − μιk 
and νrange ¼ ν − νιk. The simulation experiment now consists of the following steps. First, 
we simulate 1000 matrices X t from a FRIðΣ;~μ;~νÞ with ~μ¼ μιkþλμrange and ~ν¼
νιkþλνrange for λ¼ ð0;0:02; . . . ;0:08;0:10Þ. Note that if λ¼0, the FRI distribution collap
ses to a matrix-F distribution with μ and ν degrees of freedom. Second, we estimate Σ (us
ing the targeting approach) and the degrees of freedom parameters assuming a matrix F or 
FRI distribution. For each λ, we test the null-hypotheses μ¼ μιk and ν¼ νιk. This boils 
down to the Likelihood-Ratio test with 2 × k − 2 degrees of freedom. We repeat this exer
cise 1000 times.

Table 2 shows the results. In Panel A, we see that if we simulate from a matrix-F distri
bution (ie λ¼ 0), the likelihood ratio test has been rejected in 8.4% of all cases. Further, 
when we deviate slightly from the matrix-F setting, we immediately reject the null hypothe
sis of a scalar μ and ν in all cases. Panel B lists that the correct matrix-F parameters are in
deed estimated back on average. Also the average parameter estimates of the F-Riesz I 
correspond to the simulated values of 69.2 and 23.25.

In Supplementary Appendix E, we present further simulation results showing that (i) the 
targeting approach and full estimation approach for Ω perform similarly well; (ii) all distri
butions (from Wishart to F-Riesz) exhibit a similar quality of the MLE in finite samples if 
that distribution is correctly specified; (iii) the heuristic approach for ordering the variables 
results in further likelihood increases; (iv) even running the heuristic once already closes 
much of the gap with the optimal ordering in small dimensional settings; (v) the rank 
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correlations between the true ordering and the ordering found by the heuristic algorithm is 
99% on average, and 90% of the top 5 ranks are correctly identified in the k¼ 15 dimen
sional case. We thus feel confident to proceed with our empirical application.

3 Empirical Application
3.1 Data and Setup
In this section, we apply the F-Riesz distribution to an empirical data set of 45 U.S. equities 
from the S&P 500 index over the period January 2, 2001, until December 6, 2019, a total 
of 4,696 trading days. We extract transaction prices from the Trade and Quote database 
and clean the high-frequency data in line with Brownlees and Gallo (2006) and Barndorff- 
Nielsen et al. (2009). After this cleaning procedure, we construct realized covariance matri
ces X t using 5-minute returns. We refer to Supplementary Appendix F for more informa
tion about the data (Tickers) and the cleaning procedure.

We consider six different matrix distributions with a time-varying mean V t for the realized 
covariance matrices: the Wishart, the Riesz, the inverse Wishart, the Inverse Riesz, the Matrix- 
F, and the F-Riesz distribution. We also allow our dynamic F-Riesz model from Equations (1) 
and (4) to include HAR-type dynamics by considering an extension of Equation (1) to 

V tþ1 ¼ ð1 − A1 − A2 − A3 − BÞΩþA1X tþA2Xw
t þA3Xm

t þBV t; (6) 

with Xw
t ¼ ð1=5Þ

P4
i¼0 X t − i and Xm

t ¼ ð1=22Þ
P21

i¼0 X t − i, respectively. We use the two-step 
targeting approach from Section 1.1 to estimate Ω, and the algorithm from 2.3 with p1 ¼ p2 ¼

Table 2. The matrix F versus the F-Riesz distributions

Panel A: Matrix F vs F-Riesz I

Λ 0 0.02 0.04 0.06 0.08 0.10
Rejection rate 0.084 0.126 0.311 0.594 0.839 0.980

Panel B: DoF parameters when λ¼0

matrix-F μ ν

True 69.20 23.25
Mean 69.25 23.33
Std 5.72 0.63

F-Riesz μ1 μ2 μ3 μ4 μ5

True 69.20 69.20 69.20 69.20 69.20
Mean 69.60 69.47 69.54 69.44 69.42
Std 7.26 6.52 6.29 6.05 5.83

ν1 ν2 ν3 ν4 ν5

True 23.25 23.25 23.25 23.25 23.25
Mean 23.36 23.32 23.34 23.40 23.42
Std 0.99 0.91 0.99 1.17 1.52

Notes: This table shows Monte Carlo results on the difference between the F-Riesz and the matrix-F 
distribution. Panel A lists results on simulating 1000 matrices from a FRIðΣ;~μ;~νÞ distribution with 
~μ¼ μιkþλμrange and ~ν¼ νιkþλνrange for λ¼ ð0;0:02; . . . ;0:08;0:10Þ with μ ¼ 69:2; ν ¼ 23:3; μrange ¼ μ − μιk and 
νrange ¼ ν − νιk and μ¼ ð18:7;35:8;58:2;89:4;143:9Þ> and ν¼ ð22:8;24:3;28:6;22:3;18:2Þ>. We estimate the 
parameters assuming a matrix-F or FRI distribution. For each value of λ we perform a Likelihood-Ratio test on 
the null-hypothesis μ¼ μιk and ν¼ νιk. Panel A lists the percentage rejections of this hypothesis for different 
values of λ. Further, Panel B reports results on the estimated degrees-of-freedom parameters of the matrix-F and/ 
or F-Riesz I distribution for the case λ¼0. The panel reports the true values, the mean, and the standard 
deviation of the estimated coefficients. All results are based on 1000 Monte Carlo replications.
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1 to determine the ordering of the variables in the CAFr model. We use the same ordering for 
the other models.

3.2 Full Sample Results
Table 3 and Figure 2 report the results for the full sample. For each dimension (k¼ 5;15), 
we randomly choose stocks (without replacement) from our pool of 45 assets. We only pre
sent parameter estimates for models with dynamics as in Equation (1) and compare their fit 
graphically afterward to models with the HAR specification from Equation (6).

The results provide four main takeaways. First, the maximized log-likelihood values 
show that the model with the F-Riesz distribution performs better than all the other specifi
cations, including the Riesz distribution.5 This is most clearly seen in Figure 2, which 
shows the AIC improvements of all models compared to the Wishart specification for both 
the original (1) and the extended HAR specification (6). The gain of the F-Riesz specifica
tion increases substantially with the dimension of the system as can be seen from the scales 
of the vertical axes of the different panels. For example, the difference between the F-Riesz 

Table 3. Parameter estimates, likelihoods, and information criteria

Distribution A B μmin μmax νmin νmax L AIC No. para

Panel A: XOM/PG/WMT/PFE/MCD

Wishart 0.281 0.691 16.09 −5178 10,362 3
(0.004) (0.004) (0.075)

Riesz 0.260 0.713 8.53 19.57 −3942 7898 7
(0.004) (0.004) (0.170) (0.157)

i-Wishart 0.195 0.791 18.63 1162 −2319 3
(0.003) (0.004) (0.067)

i-Riesz 0.190 0.796 13.09 20.45 1493 −2971 7
(0.003) (0.004) (0.223) (0.155)

F 0.215 0.770 56.90 26.31 2229 −4450 4
(0.003) (0.004) (1.350) (0.277)

F-Riesz 0.166 0.823 15.49 82.74 13.63 22.85 7220 −14,416 12
(0.003) (0.003) (0.460) (1.681) (0.174) (0.485)

Panel B: JPM/GE/HON/BA/IBM/XOM/CAT/HD/PG/KO/AA/WMT/AXP/MCD/PFE

Wishart 0.176 0.810 27.83 96,115 −192,224 3
(0.001) (0.001) (0.041)

Riesz 0.155 0.830 6.27 36.34 113,988 −227,942 17
(0.001) (0.001) (0.123) (0.149)

i-Wishart 0.100 0.895 32.10 143,001 −285,995 3
(0.001) (0.001) 0.03

iRiesz 0.095 0.899 10.57 35.34 151,316 −302,599 17
(0.001) (0.001) (0.170) (0.140)

F 0.116 0.879 78.25 46.26 159,642 −319,276 4
(0.001) (0.001) (0.473) 0.14

F-Riesz 0.087 0.908 12.19 105.2 14.09 46.60 185,170 −370,275 32
(0.001) (0.001) (0.260) (0.702) (0.271) (0.539)

Notes: This table reports maximum likelihood parameter estimates of the conditional autoregressive models 
(4)–(1), assuming a Wishart, Riesz, Inverse Wishart, Inverse Riesz, matrix-F, or F-Riesz distribution in (4). Data 
consist of realized covariance matrices with the optimal ordering based on the algorithm from 2.3 with p¼ 1 on 
the CAFr model. Panels A and B list results for a randomly chosen subset of 5 and 15 different assets, 
respectively. Standard errors are provided in parentheses and based on the (sandwich) robust covariance matrix 
estimator. We report the likelihood L, the AIC, and the number of estimated parameters. The sample goes from 
January 2, 2001, until December 12, 2019 (T¼4696 trading days).

5Note that our results and those of Gribisch and Hartkopf (2023) cannot be compared directly, as they use a 
parameter-driven model specification, whereas ours is an observation-driven approach.
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and the matrix-F distribution equals 5000 and 25,000 log-likelihood points for dimensions 
5 and 15, respectively. This increase suggests substantial heterogeneity and fatness of the 
tails. The AIC values underline that the large likelihood differences outweigh the increased 
number of parameters.

Second, tail heterogeneity and tail fatness both play an important role at all levels of the 
analysis. When relaxing the Wishart to the Riesz specification, the AIC improves substan
tially for all dimensions considered, irrespective of the ordering of the assets; see Figure 2. 
This underlines the importance of tail heterogeneity. The same holds when relaxing the in
verse Wishart to the Inverse Riesz. Tail fatness is also clearly important: the AIC improve
ment for the matrix-F is large compared to the Wishart. With only two parameters, the 
matrix-F succeeds in having a similar or higher AIC as the Inverse Riesz, which needs k −2 
additional parameters compared to the matrix-F. This is the more interesting result given 
that the matrix-F already heavily outperforms the Wishart, inverse Wishart, Riesz, and to a 
lesser extent also the Inverse Riesz distributions. Including tail heterogeneity in the matrix- 
F by using the F-Riesz distribution provides a further substantial gain in likelihood and 
AIC. Tail heterogeneity thus appears important for both the thin and fat-tailed distribu
tional specifications.

Third, the importance of allowing for tail heterogeneity is confirmed by looking at the 
estimates of the degrees of freedom parameters. To save space, the table only reports 
the minima and maxima of the elements of μ and ν. Still, the picture is clear. For example, 
the estimate of μ in Panel A for the matrix-F is around 55, while the elements of μ of the 
F-Riesz distribution vary from around 16–83. The pattern persists for the other panels in 
the table, as well as for the ν parameters. The Riesz and F-Riesz distributions also solve an 
empirical puzzle for the (Inverse) Wishart and matrix-F distributions. As we can see in  
Table 3, rising the dimension of the system from 5 to 15 increases the estimated degrees of 

Figure 2. AIC improvements. 
Notes: The figure shows the difference between the AIC of the Wishart and that of the other distributions for the 
models in Table 3 (black bars) and their HAR extension of (6) (white bars). The left panel of the graph depicts results 
of a random initial ordering of the constructed realized covariance matrices. The right panel is based on the optimized 
ordering using the algorithm from Section 1.3.
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freedom for the (Inverse) Wishart and matrix-F. We can understand this by looking at the 
spreads of μ and ν for the F-Riesz distribution. These reveal that the tail fatness (low μ and 
ν values) persists across dimensions, as μmin and νmin remain relatively constant across pan
els A and B. By contrast, μmax and νmax increase if we consider more stocks, indicating that 
some of the realized volatilities exhibit thinner tail behavior. As the (Inverse) Wishart/ma
trix-F can only accommodate this by using some sort of average degrees of freedom across 
all assets due to their one or two parameter set-up, the degrees of freedom for these two 
distributions increases empirically when increasing the number of assets. By contrast, the 
F-Riesz (and also the (Inverse) Riesz) distributions do not show this behavior.

Fourth, we see that the heterogeneity biases discussed above spill over into biases in the 
estimated persistence of X t. The B of the F-Riesz distribution is higher across all dimensions 
than that of the other models, while its A parameter is lower. This results in a much 
smoother pattern of V t for the F-Riesz distribution. Again, this stems from the accumula
tion of two effects: fat tails of X t, and tail heterogeneity. Fatter tails for X t in the model im
ply the dynamics of V t react less violently to incidental outliers in Xt, similar to the effect 
of using a Student’s t distribution in a GARCH model. This explains why the F-Riesz 
results in more persistence than the Riesz or Inverse Riesz. The second effect is that of tail 
heterogeneity. Because the (Inverse) Wishart and matrix-F only have one or two degrees of 
freedom parameters, they fail to describe the heavy-tailed behavior in some of the realized 
volatilities. Empirically, this typically leads to a lower estimated persistence due to the 
more frequent unexpected occurrence of incidental large observations. As a result, the F- 
Riesz and Riesz have a higher persistence B compared to the matrix-F and Wishart, 
respectively.

3.3 Out-of-sample Setup and Metrics
We also apply our new model in an out-of-sample exercise. First, we calculate daily, 
weekly, and biweekly point forecasts for V t. Second, we forecast the (joint) density of the 
realized covariance matrices. Third, we conduct an economic application by considering 
Global Minimum Variance Portfolios (GMVP) as in for example Engle, Ledoit, and Wolf 
(2019). All these exercises directly depend on one-step and multi-step-ahead forecasts 
of V t.

We use a moving-window approach in the forecasting exercise with an in-sample period 
of 1000 observations. This corresponds roughly to four calendar years. To avoid that the 
results are driven by a particular selection of stocks, we choose three disjoint sets of stocks 
for each of the settings k¼ 5;15.

The out-of-sample period contains P¼3, 696 observations including the Great Financial 
Crisis and the European Sovereign Debt crisis. The period, therefore, provides an impor
tant test for the robustness of the model. We re-estimate the models after every 250 obser
vations, which roughly corresponds to updating the parameters annually. As we show later 
on, though optimizing the ordering of the variables empirically leads to some gains in likeli
hood, there are no substantial gains in point prediction quality compared to a single ran
dom ordering. We therefore consider only one random initial ordering for the main results.

Based on Table 3, we consider a subset of five distributions: the classical Wishart distri
bution as a benchmark, the Riesz, the Inverse Riesz, the matrix-F, and the F-Riesz distribu
tion. Moreover, we include the EWMA filter with λ¼ 0:96, the DCC-GARCH model 
(Engle 2002), and the HAR-DRD model of Oh and Patton (2016) as further bench
mark models.

Given a predicted V tþ1 and the true realized covariance matrix Xtþ1, we evaluate the 
point forecasts by the Frobenius norm and the QLIK loss function: 
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FRtþ 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace
�
ðXtþ1 − V tþ 1Þ

>
ðXtþ 1 − V tþ 1Þ

�r

; (7) 

QLIKtþ1 ¼ log jV tþ1j þ traceðV − 1
tþ 1X tþ1Þ: (8) 

We use the model confidence set (MCS) of Hansen, Lunde, and Nason (2011) at a signifi
cance level of 5% to select the best models. The MCS automatically accounts for the depen
dence between model outcomes, given that all models are based on the same data.

Turning toward the density forecasts, we use the log scoring rule (see Mitchell and Hall 
2005; Amisano and Giacomini 2007) to differentiate between the density forecasts of the 
different models. Define the difference in log score between the two density forecasts M1 

and M2 corresponding to the realized covariance matrix X tþ1 as 

dls;tþ 1 ¼ Sls;tþ 1ðXtþ1;M1Þ− Sls;tþ 1ðXtþ 1;M2Þ; (9) 

for t ¼ Rþ1; . . .T, with R¼1000 the length of the rolling estimation window and 
Sls;tþ1ðXtþ1;MjÞ (j¼1, 2) the log score of the density forecast corresponding to model Mj 

at time tþ1, 

Sls;tþ1ðX tþ1;MjÞ ¼ log ptþ1ðXtþ 1jV tþ1;F t;MjÞ; (10) 

where ptþ1ð�Þ is one of the densities discussed. For multi-step ahead density forecasts, we 
consider the joint density 

QH
h¼1 ptþhðXtþhjV tþh;F tþh− 1;MjÞ such that the log score boils 

down to Sls;tþ1:tþHðXtþ1 : X tþH;MjÞ ¼
PH

h¼1 logptþhðXtþhjV tþh;F tþh − 1;MjÞ. The null 
hypothesis of equal predictive ability is given by H0 : E½dls� ¼ 0 for all T—R out-of-sample 
forecasts. Similar to the evaluation of the point forecasts, we again use the MCS with a 5% 
significance level to test equal predictive ability.

The GMVP application is motivated by the mean-variance optimization setting of Markowitz 
(1952). Assuming that the investor aims at minimizing the 1-step-ahead portfolio variance at 
time t subject to a fully invested portfolio, we have the quadratic optimization problem 

min w>tþ 1jtV tþ 1wtþ 1jt;

s:t: w>tþ 1jtι¼1;
) wtþ 1jt ¼

V − 1
tþ 1jtι

ι>V − 1
tþ 1jtι

:

8
<

:
(11) 

We assess the predictive ability of the different models by comparing the results to the ex- 
post portfolio volatility σp;tþ1 ¼ ðw0tþ1jtX tþ1wtþ1jtÞ

1=2 using the MCS.
Alongside the GMVP’s volatility, we also calculate several other relevant quantities, such 

as portfolio turnover (TOt), concentration (COt), and the total short position (SPt) for 
each competing model at time t. A model that produces more stable covariance matrix 
forecasts implies in general less turnover and hence less transaction costs. This effect would 
lead to a gain in trading strategies. We follow Bollerslev, Patton, and Quaedvlieg (2018)
and assume that there is a fixed transaction cost c. The total turnover at time t is defined as 

TOt ¼
Xk

i¼1

wi;tþ 1jt − wi;tjt − 1
1þ ri;t

1þw>tjt − 1rt

�
�
�
�
�

�
�
�
�
�
; (12) 

where wi;tjt − 1 is the i-th element of the weight vector wtjt − 1 and ri;t the return of asset i at 
time t. It measures the value of the change in portfolio holdings when rebalancing the 

16                                                                                                                Journal of Financial Econometrics 
D

ow
nloaded from

 https://academ
ic.oup.com

/jfec/advance-article/doi/10.1093/jjfinec/nbae023/7815431 by guest on 09 O
ctober 2024



portfolio to its new optimal position from time t to tþ1. For given proportional transac
tion costs c, the portfolio return net of transaction costs then equals 

rp;t ¼ w>tjt − 1rt − c TOt; (13) 

with c equal to 0, 1, or 2 percent, respectively.
Portfolio concentration and total portfolio short position both measure the amount of 

extreme portfolio allocations. Again, more stable forecasts of V tþ1 should result in less ex
treme portfolio weights. The portfolio concentration (COt) and short position (SPt) are de
fined as 

COt ¼
Xk

i¼1

w2
i;tjt − 1

0

@

1

A

1=2

; SPt ¼
Xk

i¼1

wi;tjt − 1 � I½wi;tjt − 1 < 0�; (14) 

with I½�� an indicator function that takes the value 1 if the i-the element of the weight vector 
is negative.

Finally, we follow Bollerslev, Patton, and Quaedvlieg (2018) and also evaluate the eco
nomic significance of different forecasting models by considering the utility-based frame
work of Fleming, Kirby, and Ostdiek (2001, 2003). This framework is based on the 
assumption that an investor has a quadratic utility with a risk aversion parameter γ. Then 
the realized utility of the portfolio return based on the forecasted covariances from model 
j reads 

Uðrj
p;t; γÞ ¼ ð1þ rj

p;tÞ−
γ

2ð1þ γÞ
ð1þ rj

p;tÞ
2
: (15) 

Given two different models j and l, Δγ denotes the return an investor with risk aversion pa
rameter γ is willing to forfeit for model l to make her indifferent between models j to l. It 
can be obtained by solving 

XP

t¼1

Uðrj
p;t; γÞ ¼

XP

t¼1

Uðrl
p;t − Δγ; γÞ: (16) 

We test the null hypothesis Δγ ¼ 0 using the Reality Check of White (2000), based on the 
stationary bootstrap of Politis and Romano (1994) for 999 bootstrap samples with an av
erage block length of 22days.

Before presenting the main out-of-sample results, we first briefly investigate the effect of 
the ordering of the variables on point forecast performance. We do so for two sets of di
mension 5. Table 4 shows the results for three settings: an arbitrary ordering, the optimal 
ordering over all 120 possibilities, and a time-varying ordering scheme based on Algorithm 
2.6 implemented every 250 observations in line with the re-estimation of the model’s static 
parameters. The short summary of the table is that all approaches behave similarly in terms 
of the Frobenius norm: none of the models falls outside the MCS based on the simulated 
p-values. The same can be said in terms of the QLIK if we consider the left-panel of the ta
ble. Only in case of the assets AA, AXP, BA, CAT, and GE, the original and time-varying 
ordering scheme do not belong to the confidence set. We conclude that the optimal order
ing does not automatically lead to better point predictions. In addition, varying the order
ing over time also does not seem to lead to significant improvements in point forecasts. In 
the remainder of the analysis, we, therefore, stick to one specific order for the model 
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comparisons (as indicated in the tables), keeping in mind that the results might be im
proved somewhat further in favor of the F-Riesz and Riesz models by re-ordering 
the variables.

3.4 Out-of-sample Results
We now turn to the discussion of our point and density forecasts, followed by the results of 
the GMV forecasts. Given that we have three data sets of dimensions 5 and 15, we have 
many results. For reasons of space, we only present results for one selection of 5 and 15 
assets. The remaining results can be found in Supplementary Appendix G and do not 
change the main conclusions.

We first consider the point forecasts. For point forecasts, it is not clear a priori why a 
good model for tail behavior would improve the point forecasts. Tables 5 and 6 show the 
mean of the Frobenius norm and QLIK values with the associated MCS p-values for daily, 
weekly, and biweekly covariance forecasts for the first set of 5 and 15 assets. 
Supplementary Appendix Tables G.1–G.4 show the results for the other two sets of 5 and 
15 assets. All tables show a similar pattern. For 1-step-ahead forecasts, the HAR-DRD 
model is superior. For the Frobenius norm, it is often accompanied in the MCS for k¼ 5 
by the conditional autoregressive models with one of the matrix distributions and HAR dy
namics, illustrating that the point forecasts for the different models are comparable 1-day- 
ahead. This is not surprising as the parameters of the HAR-DRD are estimated by minimiz
ing the Frobenius norm. The HAR-DRD model loses its superiority for point forecasts, 
however, for weekly and biweekly point forecasts. Here, the F-Riesz distribution always 
belongs to the MCS, either with the classical dynamic specification in Equation (1) or with 
the HAR specification from Equation (4). This does not hold for other matrix distribu
tions, such as the Riesz distribution. Finally, we see that the forecasts of the EWMA and 
DCC-GARCH forecast are relatively worse than the other models as they are rarely within 
the MCS.

Next, we consider the models’ density forecast performances. In contrast to milder dif
ferences in the point forecasts, the results for the density forecasts exhibit much stronger 
differences between the different models. Table 7 (as well as Supplementary Appendix 
Table G.5) reports results on the daily, weekly, and biweekly density forecasts. The tables 
list the average log-score values together with the MCS p-values. The message from the ta
ble is clear: the F-Riesz distribution is superior in density forecasts against all other matrix 

Table 4. Ordering and out-of-sample point forecasts

MCD/PFE/PG/WMT/XOM AA/AXP/BA/CAT/GE

Original Optimal TV ord Original Optimal TV ord

Frob 5.656 5.648 5.658 2.280 2.278 2.283
mcs p-value (0.36) (1.00) (0.31) (0.37) (1.00) (0.12)
QLIK 7.477 7.480 7.478 4.364 4.361 4.366
mcs p-value (1.00) (0.06) (0.44) (0.00) (1.00) (0.00)

Notes: This table shows the mean of the Frobenius norm and QLIK values based on daily predictions of the 
ð5 × 5Þ covariance matrix of two sets of five stocks according to the Conditional Autoregressive model assuming 
a F-Riesz (FR) distribution using three different approaches. The first approach takes simply the original 
ordering created by the construction of the realized covariance matrix. The second ordering corresponds with 
the lowest Frobenius Norm. Finally, the third approach uses a time-varying ordering scheme (TV ord), by 
applying Heuristic 2.6 iteratively after 250 observations. Parameters are estimated with a moving window of 
1,000 observations and re-estimated after 250 observations. The lowest value of the Frobenius norm and QLIK 
across the models are marked in bold. In addition, we report the MCS p-values based on a 5% significance level. 
The p-values of the models within the model confidence set are marked in bold. The out-of-sample period goes 
from January 2005 until December 2019 and contains 3696 observations.
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distributions, irrespective of the forecast horizon. The gains are large, even with respect to 
the matrix-F distribution. Second, the HAR specification is most of the time better than the 
regular conditional autoregressive specification from Equation (1), except for the third 
data set of dimension 15 (see Supplementary Appendix Table G.5). We conclude that 
though the differences between the point forecasts of the different models are modest, the 
differences in density fits are clearly in favor of the F-Riesz model with HAR dynamics 
for V t.6

Finally, we evaluate the different models in terms of their GMV portfolio performance. 
To save space, we only present Tables 8 and 9 in the main text, reporting the results for 
1-day and 10-days (2 weeks) ahead forecasts for the first set of 5 and 15 assets. The 5-day- 
ahead forecasts for these assets, as well as the 1-, 5-, and 10-day-ahead forecasts for the 
other sets of assets, can be found in Supplementary Appendix Tables G.6–G.12. We only 
show results for the HAR specifications as these were most often in the MCSs in Table 7. 
Each table first reports the annualized mean and ex-post (realized) standard deviation of 
the portfolio returns, with MCS p-values on the lowest ex-post realized portfolio volatility. 
Next, we report portfolio statistics such as the average turnover, concentration, and total 
short position. The second part of each table sheds light on the economic significance of us
ing the CAFr HAR model against all other models using the utility-based framework. Bold 
positive values of Δγ indicate that an investor is willing to sacrifice an annual return of Δγ 
basis points to switch from a particular model to the CAFr HAR model.

Table 8 shows three important results. First, the CAFr HAR model has significantly 
lower ex-post realized portfolio volatility in the five-dimensional case. For the case of 15 
assets, the CAFr model belongs to the MCS and behaves at par with the matrix-F and 
Inverse Riesz. This is the most important signal in the table, as the GMV criterion function 
only steers toward minimizing the portfolio variance, not taking into account its return, 
short positions, concentration, or any other performance measure of the portfolio returns. 
Second, apart from the EWMA filter, the F-Riesz distribution also has the lowest turnover 
amongst all models. Third, taking into account transaction costs, there are economic gains 
in switching from any other matrix distribution and the HAR-DRD model to the CAFr 
HAR model (FR). These gains are more pronounced for the 15-dimensional case, ranging 
from 14 to 136 basis points per year. Only the DCC model appears to perform better, 
mainly due to the higher mean return during the sample period. This performance of the 
DCC model, however, is not robust: for other sets of stocks, the performance of the DCC 
is easily found to be much worse among the different models, such as in Supplementary 
Appendix Tables G.7–G.9. We note again that the GMV criterion only takes the variance 
of the portfolio returns into account, and not its for instance its (notoriously hard to esti
mate) expected return. Altering the objective to correct for this might result in other portfo
lios and possibly different rankings.

Most of the results are robust for the 10-day-ahead (bi-weekly) forecasting horizon in  
Table 9 (as well as the additional tables and settings in Supplementary Appendix G). In 
particular, the F-Riesz distribution either has the lowest (realized) ex-post portfolio volatil
ity (k¼ 5) or is in the MCS for models with the lowest variance (k¼ 15). Particularly at 
this longer horizon, the lower variance typically comes at the cost of a lower average re
turn, resulting in a less favorable performance on the return-based performance criteria. 
Again, the GMV criterion does not take this dimension explicitly into account. Still, it is 
comforting to see that the economic gains at the bi-weekly horizon are either insignificant 

6Note that the other benchmarks like DCC, HAR-DRD, and EWMA are not included in this comparison, be
cause they either (i) do not produce a density forecast for lack of a density assumption, or (ii) take the return vec
tor rather than the realized covariance matrix as the random variable of interest, thus inhibiting a density 
comparison with the matrix-valued F-Riesz distribution.
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(non-bold) or positive in favor of the F-Riesz model. We also note that the F-Riesz again 
has the lowest turnover amongst all models, safe the EWMA filter.

To sum up our out-of-sample results, the F-Riesz distribution does very well out-of- 
sample in terms of density forecasts, indicating that the F-Riesz distribution captures the 
distributional shape of realized variances and covariances better than any of the other mod
els considered here at different forecasting horizons. In terms of point forecasts, the F-Riesz 
model is also in the MCS for different forecasting horizons and different numbers of assets. 
Finally, in terms of GMV performance, the new model is again always in the MCS for 
yielding the lowest ex-post portfolio variance. It also results in stable allocations, as the 
model has the lowest turnover across all models considered, safe the EWMA filter. The 
lower ex-post variance may come at the cost of a lower ex-post average return. Still, the 
economic gains are for many of the models either in favor of the F-Riesz model or insignifi
cantly different.

4 Conclusions
In this article, we introduced the new conditional autoregressive F-Riesz model for captur
ing the dynamics of matrix-valued random variables. The F-Riesz distribution was 
obtained by mixing the Riesz distribution (Hassairi and Lajmi 2001) with an Inverse Riesz 
distribution (Tounsi and Zine 2012), thus allowing for much more heterogeneity in tail be
havior compared to the well-known matrix distributions like the thin-tailed Wishart, the 
inverse Wishart, or the fat-tailed matrix-F distribution. While the latter distributions de
pend on one or two degrees of freedom parameters, the new distribution allows vector- 
valued degrees of freedom parameters. These can easily be estimated by a two-step targeted 
maximum likelihood approach. In higher dimensions, the elements of the vector-valued 
degrees-of-freedom parameters might even be clustered to impose further parsimony using 
the likelihood fit as a guiding mechanism; compare the clustering approach of Oh and 
Patton (2023) in a copula context.

An empirical application to realized covariance matrices of dimensions 5 and 15 and dif
ferent samples of U.S. stocks over 19 years of daily data showed a remarkably high increase in 
the likelihood of the F-Riesz distribution compared to the (Inverse) Wishart, (Inverse) Riesz, 
and matrix-F distributions. The margin of outperformance in terms of density forecasts was 
significant, both in-sample and out-of-sample. Also, the degrees of freedom parameters varied 
significantly over the different coordinates. The model was also always in the MCS for the 
lowest ex-post portfolio variance for a GMV analysis, as well as for most of the simple point 
forecast comparisons. Overall these results show that there is strong heterogeneity of tail be
havior of realized covariance matrices, as well as fat-tailedness, and that the F-Riesz distribu
tion can be a helpful vehicle to obtain better empirical models.7
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