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Abstract

We introduce a new model for the dynamics of fat-tailed (realized) covariance-matrix-valued time-series
using the FRiesz distribution. The model allows for heterogeneous tail behavior across the coordinates of
the covariance matrix via two vector-valued degrees of freedom parameters, thus generalizing the familiar
Wishart and matrix-F distributions. We show that the filter implied by the new model is invertible and that
a two-step targeted maximum likelihood estimator is consistent. Applying the new F-Riesz model to U.S.
stocks, both tail heterogeneity and tail fatness turn out to be empirically relevant: they produce significant
in-sample and out-of-sample likelihood increases, ex-post portfolio standard deviations that are in the global
minimum variance model confidence set, and economic differences that are either in favor of the new
model or competitive with a range of benchmark models.
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Covariance matrix modeling and estimation play an important role in many areas of eco-
nomics and statistics, such as financial risk assessment and decision making under uncer-
tainty (Markowitz 1991; Engle, Ledoit, and Wolf 2019). Today’s data-rich environment
has led to a shift in ambition from estimating static covariance matrices to estimating co-
variance matrices on a frequent basis over many short spans of data, also known as realized
covariance matrix estimation. Examples include Andersen et al. (2003); Barndorff-Nielsen
and Shephard (2004); Chiriac and Voev (2011); Lunde, Shephard, and Sheppard (2016);
Callot, Kock, and Medeiros (2017); Bollerslev, Patton, and Quaedvlieg (2018); Bollerslev
et al. (2020); and the references cited therein.
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An important challenge is to design parsimonious yet flexible time-series models for such
series of realized covariance matrices that can be used for forecasting and decision pur-
poses. A complication is that the time-series observations are matrix-valued (rather than
vector-valued), have positive (semi)-definite outcomes only, and may be subject to fat-
tailed behavior and outliers. Most of the models currently available cannot cope with all of
these challenges simultaneously or are highly restrictive. Recent work on tensor-valued
time-series such as Wang, Liu, and Chen (2019) and Chen, Yang, and Zhang (2022) can
deal with matrix-valued time-series, but not with restrictions on positive definiteness of the
observations or with the fat-tailed nature of these data in many applications. Other
approaches that can deal with positive definite random matrices are typically highly
restrictive. For instance, the often-used Wishart or inverse Wishart distributions for
matrix-valued time-series only feature two parameters: a matrix-valued mean, and a single
scalar-valued degrees of freedom parameter to describe the tail behavior across all coordi-
nates (Golosnoy, Gribisch, and Liesenfeld 2012; Jin and Maheu 2013, 2016). Similarly re-
strictive, the matrix-F distribution only features two tail parameters for any k x k realized
covariance matrix (Konno 1991; Opschoor et al. 2018). While such distributions might be
suitable for low-dimensional cases, in moderate to high dimensions the implied constraints
on tail behavior in the cross-section are typically empirically too restrictive.

The typical approach found in the literature to flexibilize multivariate distributions by
splitting them into the marginal distributions and a copula (see for instance Patton 2009;
Oh and Patton 2017, 2018; Opschoor et al. 2021) cannot easily be applied here. Most cop-
ula methods relate to vector-valued observations and cannot deal with the positive definite-
ness of covariance-matrix-valued observations. Second, many copula structures available
in the literature are also tightly parameterized, such as the Gaussian, (skewed) Student’s ¢,
and Archimedean copulas, with very little heterogeneity in the tail-dependence structure.

In this article, we, therefore, introduce the dynamic F-Riesz distribution to model
sequences of realized covariance matrices. We do so by building on the beta type II Riesz
distribution of Diaz-Garcia (2016)." We introduce dynamics for the key scale parameter of
the F-Riesz distribution and derive the invertibility of the filter and the consistency proper-
ties of the maximum likelihood estimator (MLE) for the static parameters of the model. A
key property of the F-Riesz distribution is that it allows for tail heterogeneity in each of its
coordinates. It does so by replacing the two scalar degrees of freedom parameters of the
matrix-F distribution of Konno (1991) by two vectors of degrees of freedom parameters. If
each of these vectors is scalar (i.e., has the same elements), then the F-Riesz model reduces
to the matrix-F model (see Konno 1991; Opschoor et al. 2018).

The F-Riesz distribution is constructed by mixing a Riesz distribution (Hassairi and
Lajmi 2001; Diaz-Garcia 2013) with an Inverse Riesz distribution (Tounsi and Zine 2012;
Louati and Masmoudi 2015), both of which are generalizations of the Wishart and Inverse
Wishart distributions. The Riesz distribution has thus far mainly been used in the physics
literature (Andersson and Klein 2010). In economic statistics, Gribisch and Hartkopf
(2023) also recently apply the Riesz distribution to financial data. They introduce a state-
space version of the dynamic Riesz distribution and estimate the model using Bayesian
techniques. We differ from their approach in two important ways. First, we use an
observation-driven rather than a parameter-driven approach to model the dynamics of re-
alized covariance matrices. As a result, we can obtain the likelihood function in closed
form and can stick to standard maximum likelihood rather than simulation-based or
Bayesian techniques for the estimation of model parameters. Second, we use the more flexi-
ble and fat-tailed F-Riesz-distribution rather than the Riesz. This allows for additional

We correct the expression for the pdf in the original paper of Diaz-Garcia (2016); see Supplementary
Appendix A. The correction relates to the part of the pdf involving the scaling matrix and is therefore crucial in
our context, where we consider time-varying scaling matrices.
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distributional flexibility, which appears relevant in our application within our class of
observation-driven models when comparing the behavior of the F-Riesz model with the
(Inverse) Riesz.

We apply the dynamic F-Riesz distribution to a sample of daily realized covariance ma-
trices of dimensions 5 and 15 using U.S. stock data over the period 2001-2019. The results
show that both tail heterogeneity and fat tailedness as captured by the F-Riesz distribution
are empirically relevant compared to tail heterogeneity only (Riesz) or fat-tailedness only
(matrix-F). The data strongly reject both the dynamic Riesz and the dynamic matrix-F spec-
ifications for the dynamics of realized covariance matrices compared to the F-Riesz alterna-
tive, despite both the Riesz and matrix-F already performing significantly better in terms of
likelihood fit than the dynamic Wishart and inverse Wishart models. In addition, weekly
and biweekly point forecasts of the predicted covariance matrices from the F-Riesz distri-
bution are at par or better than those of the alternative model specifications, while its den-
sity forecasts measured by the log-scoring rule are clearly better. The one-step-ahead
predicted covariance matrices from the F-Riesz distribution also perform well in a global
minimum variance portfolio strategy: they yield statistically lower ex-post portfolio stan-
dard deviations and higher economic gains after taking into account transaction costs com-
pared to competing models and several standard benchmarks such as the HAR-DRD
model of Oh and Patton (2016). We conclude that the dynamic F-Riesz distribution can
prove useful for the statistical analysis of covariance-matrix-valued time-series.

The rest of this article is set up as follows. In Section 1, we introduce the model. Section
2 considers filter invertibility and the consistency properties of the two-step targeted MLE
and also studies the new model’s performance in a simulated setting. Section 3 presents the
empirical results. Section 4 concludes. The Supplementary Appendices gather further tech-
nical and empirical results. As a notational convention in this article, we write scalars in
normal type face, vectors in bold, and matrices in capitalized bold font.

1 The Conditional Autoregressive F-Riesz Model
1.1 Dynamic Model Specification

Let X; € R¥** for t=1,...,T denote a time-series of realized covariance matrices, and
define the filtration F,_1 = {Xj,...,X,-1} containing all lagged observations of X,. We
describe the dynamics of X; by a conditional, matrix-valued distribution with an autore-
gressive, time-varying mean,

X, =Ly,ELy, Vii1=(1-A-B)Q+AX,+BV,, 1)

where Ly, is the lower-triangular Cholesky decomposition of V,;, such that
V, =E[X;|F;-1] = LVtL‘T,t, and where E; is a matrix-valued innovation with conditional ex-
pectation equal to the identity matrix, E[E;|F;_1] =I;. We can view Equation (1) as the
matrix version of the scalar MEM model of Engle and Gallo (2006). We explicate the con-
ditional pdf of X; in Equation (4) further below. The parameter matrix Q in Equation (1) is
symmetric and positive definite. For simplicity, we take A and B as scalar parameters like
in the original DCC model of Engle (2002), but generalizations of this can easily be accom-
modated. Note that for positive definite Q& and V; and for A>0,B>0,and A+B<1, V,is
automatically positive definite for all z. We initialize V; by the unconditional mean of X;.
Also note that more complex dynamic structures can easily be allowed for in Equation (1).

2As one of the referees pointed out correctly, a state-space model with a Riesz measurement equation as in
Gribisch and Hartkopf (2023) can also result in conditional fat-tailedness of the realized covariance matrix
measurements via the mixing with the state innovation. The state innovations in Gribisch and Hartkopf (2023)
do not give rise to the closed-form Riesz distribution, making the two models less comparable.
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For instance, in the empirical application in Section 3 we incorporate HAR-type dynamics
as in Corsi (2009) to better capture the possible long-memory behavior of realized covari-
ance matrices.

If we assume the conditional distribution of X,|F,_; to be Wishart, the dynamics in
Equation (1) resemble the Conditional Autoregressive Wishart (CAW) model (see
Golosnoy, Gribisch, and Liesenfeld 2012). For the Wishart case, the model also collapses
to one of the two core equations of the Multivariate HEAVY model of Noureldin,
Shephard, and Sheppard (2012). As argued in the introduction, however, assuming an
(Inverse) Wishart or even a matrix-F distribution for E,; can be too restrictive in terms of
the tail behavior it implies. This is why we introduce the F-Riesz distribution in Section 1.2
to allow for tail heterogeneity.

Note that model (1) is observation-driven. Therefore, it allows for easy parameter esti-
mation via standard maximum likelihood methods employing a prediction error decompo-
sition using the expression for the F-Riesz pdf in Equation (4). To reduce the
dimensionality of the optimization, we can use a targeting approach to pre-estimate Q.
This can be done in the following way. Assuming stationarity and the existence of an un-
conditional first moment of X;, one can take unconditional expectations on both sides of
the equations in Equation (1) to obtain V =E[V,] = E[Xt} Q. This result can be used to
estimate Q by the sample average of the realized covariance matrices, Q =T~ 1Zz 1 X,
Plugging this expression into the log-likelihood function, the resulting functlon then only
depends on the remaining parameters A and B, plus any parameters describing the condi-
tional distribution of E;.

1.2 The F-Riesz Distribution

The family tree of the F-Riesz distribution considered in this article is provided in Figure 1.
The Wishart and to a lesser extent the matrix-F distributions are assumed to be sufficiently
well known. The Riesz distribution, however, may be less familiar. Therefore, we first
briefly recapitulate the basics of the Riesz distribution before presenting the F-Riesz distri-
bution. A more extensive introduction to the different distributions and some more techni-
cal results can be found in the Supplementary Appendices A and B.

The Riesz distribution is characterized by two parameters: a positive definite scaling ma-
trix £ =LL" with lower triangular Cholesky decomposition L, and a vector of degrees of
freedom parameters v = (v1,...,v;) ", with 1;>i—1 for i=1,...,k. Arguably the easiest
way to introduce the Riesz distribution is via its so-called Bartlett decomposition, which is

F-Riesz
! 1 l
Riesz matrix-F inverse-Riesz
N N
Wishart inverse-
Wishart

Figure 1. Family of matrix distributions.

Notes: This figure shows a family tree of the F-Riesz distributions. Connected lines mean that distributions are
related by generalization.
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a familiar simulation device for the standard Wishart distribution; see Anderson (1962).
Consider a random matrix G € R¥*X_ defined as

\/;%] 0 0

c_ | VoD . 0 : | o)

N(O,1) - 0
NO1) - N(01) 2

where all elements of G are independent random variables. Then Y = LGG'L" has a so-
called Riesz distribution of type I, which we write as Y ~ R!(Z,v).?

Given the use of the Cholesky decomposition, it is clear that the ordering of the variables
matters. This is a well-known and accepted feature in the Riesz literature, as the order of
the variables can also be recovered from the data under the assumption of correct specifica-
tion by maximizing the likelihood also over the order of the variables in the system, rather
than over £ and v only. In small dimensions, this can be done by full enumeration. For
moderate dimensions, we provide a heuristic algorithm in Section 1.3 that works well in
our simulated and empirical setting. Empirically, we find that the step of allowing for tail
heterogeneity by generalizing the Wishart to the Riesz or the matrix-F to the F-Riesz distri-
bution increases the likelihood much more than subsequent likelihood increases due to de-
termining the precise ordering of the coordinates. The latter, in our setting, are typically of
second-order importance.

If v=(v,...,v) for some v>k—1, the Riesz distribution collapses to the well-known
Wishart distribution with v degrees of freedom. In that case, the degrees of freedom param-
eters v; on the diagonal of the Bartlett decomposition G in (2) all have the same value v. In
contrast to the Wishart, the Riesz distribution thus allows for heterogeneous tail behavior
in the cross section. Tail fatness, however, is left unaffected and is still exponential (thin) in
all directions.

To introduce fatter tails for the Riesz distribution, we draw the analogy between the
Wishart and matrix-F distribution (Konno 1991). If Y has a Wishart distribution,
Y ~ W(Iy,v), and X given Y also has a Wishart distribution, X|Y ~ W(Y !, 4), then the un-
conditional distribution of X is a matrix-F: X ~ F (I, u,v). Replacing the Wishart distribu-
tion by its generalization, the Riesz, we might expect that a similar result can be obtained
which allows for both fat and heterogeneous tails. This is confirmed in Theorem 2.3, which
we prove in Supplementary Appendix A.

To formulate the theorem, we first need to define the concepts of the generalized (lower
and upper) gamma function and the (lower) power weighted determinant.

Definition 2.1 (Generalized multivariate gamma functions). The lower generalized
multivariate gamma function for a vector-valued argument v = (vy,...,1;) " € R¥*!
is defined as T(v) = z8k=1/4 TT% T(y; + 154), with 20, >i =1 fori=1,... k.
Similarly, the upper generalized multivariate gamma function is defined as
Ty(w) =26V I8 Ty + 55) =T +7), for 20, > k—ifori=1,...,k,
and =4 (k+1)=(k k=1,....1)" = (= $(k=1),... 3 (k=1))".

3The type I relates to the fact that we have taken a lower triangular Cholesky decomposition in the Bartlett de-
composition. Type II versions of the distribution based on an upper triangular Cholesky decomposition also ex-
ist, and we refer to Supplementary Appendix B for details. As the performance of both types of F-Riesz
distributions was similar in our context, we only discuss the type I F-Riesz distributions in the main text.
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The upper and lower generalized multivariate gamma functions enter the integrating
constant of the Riesz and F-Riesz distributions. If v = (,...,v)", then T (v) = T4(v), where
I'x(v) is the standard multivariate gamma function.

Next, we introduce the Lower Power Weighted Determinant (LPWD). The power
weighted determinant takes a similar role in the expressions for the density of the F-Riesz
distribution as standard determinants do for the Wishart and the matrix-F distribution.

Definition 2.2 (LPWD). Consider the vector v € R**! and a positive definite matrix Y.

Let L be the (unique) lower triangular Cholesky decomposition of Y, that is,
Y = LL". Then the LPWD |Y], is given by |Y|, = [T*, L.

In the physics literature, the power weighted determinants are commonly introduced via
so-called weight functions; see for instance Gross and Richards (1987). In this article, we
instead use the notation of power weighted determinants as it is closer to the econometric
literature and stresses the simplification of the Riesz to the Wishart and of the F-Riesz to
the matrix-F distribution if ¥ = u1;. Note that the power weighted determinant is not as
simple as a regular determinant. Properties like |A - B| = |A| - |B| for matrices A, B € R¥* ei-
ther do not hold or hold in modified form for power weighted determinants.
Supplementary Appendix Lemma B.1 provides manipulation rules for power weighted
determinants.

We now obtain the following formulation of the pdf of the F-Riesz distribution.

Theorem 2.3 (F-Riesz distribution).

i) If X|Y ~RL(Y,u) has a conditional Riesz type-I distribution, and Y ~ iR (Z,v)
has an Inverse Riesz type-II distribution, then X is FR(E,u,v) distributed
with density function

e (X r) = ”y)"E"”WX\ Z4+X]
FRIA & V) = —= = [ X0 5(u-k-1) ~0.5(u+v)"
Ty(5)T () g

ii) Let X=LL" for a lower triangular matrix L. If X~ FR!(Z,u,v), then
L7'X(LT) ™ ~ FRI (T, p,v).

Theorem 2.3 corrects a result from Diaz-Garcia (2016) on the pdf of the generalized
Beta II distribution. The result in that article is only valid for £ =1, and incorrect other-
wise. The correction is therefore crucial for our application, where we allow for time-
varying scale matrices X;.

Interestingly, except for the use of the non-standard generalized gamma functions and
power weighted determinants, the density expression of the F-Riesz one-on-one mirrors
and generalizes that of the matrix-F distribution. The following corollary establishes this
link and shows that the matrix-F distribution of Konno (1991) as used by Opschoor et al.
(2018) is a special case of the F-Riesz distribution.

Corollary 2.4. Under the conditions of Theorem 2.3 part (i) or (i), if we assume
p=p 1 andv =v -1, then X has a matrix-F distribution F (u,v), and
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r(e52) B st
LONE  Eex

Prr G u-y,v-1) = pr(X;Z,u,v) = (3)

where Ty (+) is the multivariate gamma function.

The corollary makes clear that it is possible to test whether the F-Riesz collapses to the ma-
trix-F distribution by testing whether all elements in p are the same, as well as all elements
inv.

Similar to the scalar or matrix-F distributions, the expectation of the F-Riesz does not al-
ways exist. The following theorem derives expressions for the expectation and the condi-
tions for its existence. An expression for the first moment of the F-Riesz distribution is
important for our dynamic model in Equation (1), as E; is normalized to have the unit ma-
trix as its conditional expectation.

Theorem 2.5 (Expectation of the F-Riesz distribution). Let Y ~ FR! (I u,v), then
E[Y] =M(u,v), where M(u,v) is a diagonal matrix with ith diagonal element
M, i(p,v) equal to

”—1
k-1’
Mii(n,v) = 1

S hiio2 <ﬂ,+2a) fori=2,...k,

provided y;>0andv;>k+2—-ifori=1,... k.

for i=1,

Combining this result with Theorem 2.3, we immediately obtain that the disturbance term
E; in our dynamic F-Riesz model in Equation (1) should have scale matrix M;;(u,v) “lin
order to have conditional expectation I;. As a result, the conditional pdf of X, = LVIEZL‘T,r
is given by

Prri(Xe; Ly M(u,v) " 'Ly, 1, v), (4)

with p zri(+) as defined in Equation (1), and where V, follows the recursion in Equation (1)
with lower triangular Cholesky decomposition Ly,. The static parameters to be estimated
by maximum likelihood now comprise Q, A, B, u, and v, where Q can be targeted as
explained in Section 1.1. For a given set of static parameters, V; can be obtained from
Equation (1) for every ¢. From these, we can compute the Cholesky decompositions Ly, for
every t, which can finally be inserted into the expression for the pdf in Equation (4) to ob-
tain the value of the likelihood.

1.3 Ordering of Variables

The order of the coordinates in X; matters for the specification of Riesz and F-Riesz distri-
butions. As mentioned before, this is well accepted in the Riesz literature due to the use of
the Cholesky decomposition in the construction of the Riesz distribution. The order of the
coordinates can be regarded as another variable that can be optimized over. For sufficiently
small dimensions, enumeration of all possible orders is possible. However, such an ap-
proach quickly becomes unwieldy: for k=10, we already would have to estimate and com-
pare more than 3.6M models. To approximate the optimal ordering, we therefore propose
the following heuristic algorithm.The algorithm above ensures that the maximized
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Algorithm 2.6 (Approximating the optimal ordering of variables in the system).
Leto=(oy,...,0) be a permutation of the first k integers, indicating the order of the variables in
the system that make up the covariance matrix observations X;. Let @ denote the static parame-
ters that characterize the model and that need to be estimated by maximum likelihood.

Step 0: Setj=0.
Step 1: Select a random order ol) = (oﬁ”, o og)).
Step 2: Given the ordering o), estimate @ and obtain 90).
Step 3: Loop overasseti,i=1,...,k:
Step 3a: Find i* such that i = of,j), that is, find the position of asset i in the current ordering
o).
Step 3b: Put asset i in each of the possible positions 1,...,k, while keeping the order of
the other variables as in o), that is, consider the permutations

(0,001,001 (0, 0 ool o o)), up 1o (o)
ol 1,00 1....,00,0). For each re-ordering, re-estimate 6 as 0" and retain the order-

ing plus estimated 9(/)/‘) that yields the highest log-likelihood value and store it as oU+")

andd’ "

Step 3c: Increase jtoj+ 1.

Step 3d: Continue the loop by proceeding to the next asset i+ 1.
Step 4 (optional): Repeat steps 1-3 p; times (or until convergence), possibly repeating the en-
tire process for p, different random initial orderings. Retain the final order and estimate that
yields the highest log-likelihood. Call this final order ol°"? with corresponding parameter esti-
mate 0.

likelihood never decreases when searching over different orderings. Moreover, the algorithm
is relatively efficient for moderate dimensions since it limits the number of times we re-
estimate €. The latter is costly due to the required non-linear optimization. The algorithm re-
estimates @ about pip,k? times, which is substantially smaller than the full k! enumerated
possibilities, thus providing a substantial computational gain. Though no guarantee is given
that we arrive at the true optimum using this heuristic algorithm, the simulation evidence in
the next section shows that even without using Step 4 non-negligible likelihood increases can
be obtained. Also, the algorithm typically lands close to the correct ordering of the variables
in terms of rank correlations.

2 Theory and Simulation Evidence

In Section 2.1, we establish the invertibility of the conditional autoregressive F-Riesz
(CAFr) filter as defined in Equations (1) and (4) for the dynamic parameters V. In addi-
tion, we prove the consistency of the MLE of the static parameters Q. A, B, u, and v. In
Section 2.2, we then study the performance of the MLE and of the heuristic algorithm in-
troduced in Section 1 in a simulated setting.

2.1 Filter Invertibility and MLE Consistency

To establish the consistency of the MLE for the unknown static parameter 6 of the CAFr
model,* we follow the usual two-step targeting approach that is typically found in

“For the i.i.d. case, we provide a separate set of conditions and results in Supplementary Appendix C. We also
confine ourselves to proving consistency. Though we expect asymptotic normality of the MLE to hold as well,
the expressions for first and second-order derivatives of the F-Riesz pdf are complex in 6 and V; such that
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empirical work and described in Section 1.1. We first estimate Q using a simple sample
mean of X;. Next, fixing this estimate of Q, we estimate the remaining parameters by non-
linear maximum likelihood optimization.

We make the following assumptions for consistent estimation of Q.

(Q0,A0,Bo,pg,v0) foreveryt=1,...,T.

Assumption 3.2. Q is positive definite, py; > K+1VYj, vo;>i+1Vi, Ag>0, Bg >0,
and |A0+Bo| <1.

Assumption 3.1 is a standard assumption on correct specification. Assumption 3.2 then
allows us to establish the stationarity and ergodicity of the model as a data generating pro-
cess. The strong consistency of the sample average @ = T~! Zthl X, to Q then follows by
an application of the ergodic theorem.

Proposition 3.3. Let Assumptions 3.1-3.2 hold. Then @ = T~! Zthl X, 2 Q
as T — oo.

The consistent estimate of Q can be used as a plug-in for a targeted estimation approach
for the remaining static parameters of the model.

We now turn to the invertibility of the filtering Equation (1). To do so, we first introduce
some new notation. Let V(@) denote the filtered sequence from (1), initialized at some

point V1, and evaluated at some parameter vector 8 € ©. Following the literature (e.g.,
Straumann and Mikosch 2006; Wintenberger 2013), invertibility ensures that the filter

“forgets” the possibly incorrect initialization; that is, the filtered sequence {V/,(8)},cy con-
verges path-wise and exponentially fast to a unique stationary and ergodic limit sequence
{V(0)},cn- This means that for every 6 in the parameter space @ there is a ¢>1 such that
||[V(0) = Vi(0)]|%50 as t — oo, regardless of the initialization V. We also write V, =
V.(6o) and V, = V,(8y), such that the filter asymptotically recovers the true V, series from
the data generating process if the filter is evaluated at the true static parameter 6.

In the current setting, filter invertibility can be obtained by ensuring that the following
conditions hold: (i) stationarity of the data {X,},.,; (ii) a logarithmic bounded moment for
X, Vt; (iii) a contraction condition for the filtering equation. The stationarity of the data in
(i), and the logarithmic moment in (ii) follow directly from Assumptions 3.1 and 3.2. The
contraction condition for the filtering equation, however, requires additional restrictions
on the parameter space ©. Assumption 3.4 ensures that the filtered V,(6) matrices are posi-
tive definite and that the stochastic filtering equation is contracting in the appropriate
sense. It also ensures identification of the ordering of the variables in the system by requir-
ing the degrees of freedom parameters to be different across coordinates i and j.

Assumption 3.4. The parameter space © is compact and satisfies A>0, B>0,
supg [B| <1, and min;inf, (u;— K-1)> 0, min;inf,, (v;=i-1)>0, p; # p; for i # ],
and (p;+vi) # (u+j+v;) fori#j.

establishing the asymptotic normality in a tractable way is hard without high-level assumptions. We leave this
part for further research. In the empirical section, we use the standard sandwich estimator for the stan-
dard errors.

202 1990}00 60 U0 189NB Aq LEHG18./€2098qu/oaulll/E60 L 01/10p/9[oIE-80UBAPE/I8)]/LI0D dNO"ILUSPED.//:SANY WOI) POPEOJUMOQ



10 Journal of Financial Econometrics

Proposition 3.5 now establishes the invertibility of the initialized filter V(@) for its
stationary and ergodic limit V() and opens the door to the consistency of the MLE.

Proposition 3.5. Let Assumptions 3.1-3.4 hold. Then the filter {Vt(H)}teN is invertible.

We are now ready to formulate our consistency result of the MLE (Ar, Br,jiy, o). This
MLE takes the form of a targeted two-step estimator as it depends on the first-step estima-
tor for . As is common for filtering models, the log-likelihood depends directly on the
properties of the filter V,(6), which is itself a function of the estimated Qr, the parameters
A and B, and the initialization V; as noted above. To make this clearer in the notation, we
write explicitly V,(Qr, A, B) rather than V,(0). In addition, we write 67 as the ordering of
coordinates that maximizes the log-likelihood. Putting all elements together, we define the
MLE as the maximizer of the plug-in log-likelihood logp rr: (X;;V(Qr,A,B),u,v) for a
specific ordering o,

Buw.o

T
(Ar.Br.ug,i7,07) = arg max >Z logp i (Xi; Vi(Qr, A, B),p.v). (%)
t=2

Theorem 3.6. Let Assumptions 3.1-3.4 hold. Then for T — oo the targeted MLE
(Ar,Br,pir,07,07) defined in (5) satisfies

(AT7BT7ﬂT’i/T76T) ‘E) (A07BO7ﬂ07y0700)‘

Theorem 3.6 provides the consistency of the MLE. Though the simulation results in
Table 1 suggest that the ML estimator for the static parameters can be well approximated
by a normal distribution in finite samples, we instead choose to focus on the predictive per-

formance of the model using Diebold—Mariano (DM) tests (Diebold and Mariano 1995)
rather than on the behavior of the static parameters. The latter is typically deemed of less

Table 1. Parameter estimations of CAFr model

Coef. True Mean Std Mean (S.E.)
A 0.1600 0.1596 0.0048 0.0044
B 0.8300 0.8296 0.0049 0.0049
1 16.64 16.69 1.125 1.128
o 27.15 27.07 1.567 1.544
Hs 41.61 41.52 2.284 2.229
Ha 58.18 58.03 3.073 3.030
Us 84.67 84.12 4.402 4.381
2 20.05 20.45 1.584 1.510
vy 18.72 18.94 0.957 0.880
V3 19.36 19.57 0.780 0.722
I 20.59 20.85 0.782 0.734
Us 14.61 14.77 0.512 0.442

Notes: This table shows Monte Carlo averages and standard deviations of parameter estimates of simulated
covariance matrices from the five-dimensional CAFr model of (1). Guided by empirical results, we set
1=(16.64,27.15,41.61,58.18,86.67) and v = (20.05,18.72,19.36,20.59, 14.61). We estimate Q by targeting
in a first step, while A, B, and the DoF parameters are estimated in a second step by maximum likelihood. The
table reports the true values, the mean and standard deviation of the estimated coefficients, as well as the mean
of the computed standard error using the inverse of the Hessian. Results are based on 1000 Monte Carlo
replications.
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interest in dynamic parameter models such as the CAFr, where the focus is mostly on the
filtered paths of V, and the model’s predictive performance. Note that the consistency of
the filtered paths V, follows directly from the consistency of the MLE and the filter inverti-
bility established earlier.

We use the DM test based on two loss functions. First, we use the log-scoring rule
d; =0} =0, where ¢! and ¢? are the log-likelihood contributions of two different model
specifications. The test requires d, to be a finite variance martingale difference series under
the null of equal model performance. The existence of a second moment of the log-
likelihood for the F-Riesz distribution is easily obtained using similar arguments as for the
consistency proof, where a bounded first moment of the log-likelihood was established.
Second, we use a more economic perspective to compare the different models by construct-
ing global minimum variance portfolios and comparing their ex-post portfolio variance
performance using the DM test. See Section 3.4 for further details.

2.2 Simulation Experiment

This section presents the results of a Monte Carlo study for the statistical properties of the
MLE of the conditional autoregressive F-Riesz (CAFr) model. We simulate from a k = 5 di-
mensional version of the CAFr model with empirically relevant values for the static param-
eters. We do so 1000 times and for each simulated series estimate the static parameters of
the model by MLE, as well as their standard errors.

Table 1 presents the results. We see that all parameters are estimated near their true val-
ues. This holds both for the dynamic parameters A and B, as well as for the degrees of free-
dom parameters g and v, underlining the consistency result from Section 2. We also note
that the Monte Carlo standard deviation of the MLE across simulations (in the std column)
is close to the average of the estimated standard errors using the inverse Hessian (in the
mean(s.e.) column).

The second simulation experiment investigates the statistical gain of the F-Riesz distribu-
tion over the matrix F distribution. Guided by the empirical application, we focus on a
five-dimensional F-Riesz 1 distribution with degrees of freedom vectors p=
(18.7,35.8,58.2,89.4,143.9)" and v = (22.8,24.3,28.6,22.3,18.2)". We define 7 = 69.2
and 7 =23.3 as the average values of the vectors p and v, respectively, and p,,,,,, = p — ity
and Vyauge =V —D1p,. The simulation experiment now consists of the following steps. First,
we simulate 1000 matrices X; from a FRI(Z,i,») with ji =y +Myange and v =
Uiy, + Wrange for = (0,0.02,...,0.08,0.10). Note that if 1=0, the FR! distribution collap-
ses to a matrix-F distribution with 7 and 7 degrees of freedom. Second, we estimate X (us-
ing the targeting approach) and the degrees of freedom parameters assuming a matrix F or
FR! distribution. For each 4, we test the null-hypotheses g = fit;, and v = 71, This boils
down to the Likelihood-Ratio test with 2 x k —2 degrees of freedom. We repeat this exer-
cise 1000 times.

Table 2 shows the results. In Panel A, we see that if we simulate from a matrix-F distri-
bution (ie A=0), the likelihood ratio test has been rejected in 8.4% of all cases. Further,
when we deviate slightly from the matrix-F setting, we immediately reject the null hypothe-
sis of a scalar y and v in all cases. Panel B lists that the correct matrix-F parameters are in-
deed estimated back on average. Also the average parameter estimates of the F-Riesz I
correspond to the simulated values of 69.2 and 23.25.

In Supplementary Appendix E, we present further simulation results showing that (i) the
targeting approach and full estimation approach for Q perform similarly well; (ii) all distri-
butions (from Wishart to F-Riesz) exhibit a similar quality of the MLE in finite samples if
that distribution is correctly specified; (iii) the heuristic approach for ordering the variables
results in further likelihood increases; (iv) even running the heuristic once already closes
much of the gap with the optimal ordering in small dimensional settings; (v) the rank

202 1990}00 60 U0 189NB Aq LEHG18./€2098qu/oaulll/E60 L 01/10p/9[oIE-80UBAPE/I8)]/LI0D dNO"ILUSPED.//:SANY WOI) POPEOJUMOQ


https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbae023#supplementary-data

12 Journal of Financial Econometrics

Table 2. The matrix F versus the F-Riesz distributions

Panel A: Matrix F vs F-Riesz I

A 0 0.02 0.04 0.06 0.08 0.10
Rejection rate 0.084 0.126 0.311 0.594 0.839 0.980

Panel B: DoF parameters when =0

matrix-F i U
True 69.20 23.25
Mean 69.25 23.33
Std 5.72 0.63

F-Riesz .31 .53 K3 Ha Hs
True 69.20 69.20 69.20 69.20 69.20
Mean 69.60 69.47 69.54 69.44 69.42
Std 7.26 6.52 6.29 6.05 5.83

V1 V2 V3 V4 Vs

True 23.25 23.25 23.25 23.25 23.25
Mean 23.36 23.32 23.34 23.40 23.42
Std 0.99 0.91 0.99 1.17 1.52

Notes: This table shows Monte Carlo results on the difference between the F-Riesz and the matrix-F
distribution. Panel A lists results on simulating 1000 matrices from a FR!(Z,j,#) distribution with

B =+ Mg, a0d & = D1y + Wiange for 2=(0,0.02,...,0.08,0.10) with g = 69.2, 0 = 23.3T7 Prange = M — i and
Vyange =V — D1, and p = (18.7,35.8,58.2,89.4, 143.9)" and v = (22.8,24.3,28.6,22.3,18.2) ". We estimate the
parameters assuming a matrix-F or FR' distribution. For each value of 1 we perform a Likelihood-Ratio test on
the null-hypothesis g = iz, and v = D, Panel A lists the percentage rejections of this hypothesis for different
values of 1. Further, Panel B reports results on the estimated degrees-of-freedom parameters of the matrix-F and/
or F-Riesz I distribution for the case A=0. The panel reports the true values, the mean, and the standard
deviation of the estimated coefficients. All results are based on 1000 Monte Carlo replications.

correlations between the true ordering and the ordering found by the heuristic algorithm is
99% on average, and 90% of the top 5 ranks are correctly identified in the £ =15 dimen-
sional case. We thus feel confident to proceed with our empirical application.

3 Empirical Application

3.1 Data and Setup

In this section, we apply the F-Riesz distribution to an empirical data set of 45 U.S. equities
from the S&P 500 index over the period January 2, 2001, until December 6, 2019, a total
of 4,696 trading days. We extract transaction prices from the Trade and Quote database
and clean the high-frequency data in line with Brownlees and Gallo (2006) and Barndorff-
Nielsen et al. (2009). After this cleaning procedure, we construct realized covariance matri-
ces X; using 5-minute returns. We refer to Supplementary Appendix F for more informa-
tion about the data (Tickers) and the cleaning procedure.

We consider six different matrix distributions with a time-varying mean V, for the realized
covariance matrices: the Wishart, the Riesz, the inverse Wishart, the Inverse Riesz, the Matrix-
F, and the F-Riesz distribution. We also allow our dynamic F-Riesz model from Equations (1)
and (4) to include HAR-type dynamics by considering an extension of Equation (1) to

Vt+] - (1 —A] —A2 —A3 —B)Q+A]Xt+A2X?/+A3X:n +BV7§7 (6)

with X} = (1/5) Z?:oXt—i and X" =(1/22) Z?ZIOX,:_,-, respectively. We use the two-step
targeting approach from Section 1.1 to estimate Q, and the algorithm from 2.3 with p; = p, =
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Table 3. Parameter estimates, likelihoods, and information criteria

Distribution A B Hinin Himax Umin Vimax L AIC No. para

Panel A: XOM/PG/WMT/PFE/MCD

Wishart 0.281  0.691 16.09 -5178 10,362 3
(0.004) (0.004) (0.075)

Riesz 0.260 0.713 8.53  19.57  -3942 7898 7
(0.004) (0.004) (0.170)  (0.157)

i-Wishart ~ 0.195  0.791 18.63 1162 -2319 3
(0.003) (0.004) (0.067)

i-Riesz 0.190  0.796 13.09  20.45 1493 -2971 7
(0.003) (0.004) (0.223)  (0.155)

F 0215 0.770 56.90 26.31 2229  —4450 4
(0.003) (0.004) (1.350) (0.277)

F-Riesz 0.166 0.823 1549  82.74 13.63  22.85 7220 -14,416 12

(0.003) (0.003) (0.460) (1.681) (0.174) (0.485)
Panel B: JPM/GE/HON/BA/IBM/XOM/CAT/HD/PG/KO/AA/WMT/AXP/MCD/PFE

Wishart 0.176  0.810 27.83 96,115 -192,224 3
(0.001) (0.001) (0.041)

Riesz 0.155  0.830 627 3634 113,988 -227,942 17
(0.001) (0.001) (0.123) (0.149)

i-Wishart ~ 0.100  0.895 32.10 143,001 -285,995 3
(0.001) (0.001) 0.03

iRiesz 0.095  0.899 10.57 3534 151,316 -302,599 17
(0.001) (0.001) (0.170)  (0.140)

F 0.116 0.879 78.25 46.26 159,642 -319,276 4
(0.001) (0.001) (0.473) 0.14

F-Riesz 0.087 0.908 12.19 1052  14.09 46.60 185,170 -370275 32

(0.001) (0.001) (0.260)  (0.702) (0.271) (0.539)

Notes: This table reports maximum likelihood parameter estimates of the conditional autoregressive models
(4)-(1), assuming a Wishart, Riesz, Inverse Wishart, Inverse Riesz, matrix-F, or F-Riesz distribution in (4). Data
consist of realized covariance matrices with the optimal ordering based on the algorithm from 2.3 with p =1 on
the CAFr model. Panels A and B list results for a randomly chosen subset of 5 and 15 different assets,
respectively. Standard errors are provided in parentheses and based on the (sandwich) robust covariance matrix
estimator. We report the likelihood £, the AIC, and the number of estimated parameters. The sample goes from
January 2, 2001, until December 12,2019 (T=4696 trading days).

1 to determine the ordering of the variables in the CAFr model. We use the same ordering for
the other models.

3.2 Full Sample Results

Table 3 and Figure 2 report the results for the full sample. For each dimension (k = 5,15),
we randomly choose stocks (without replacement) from our pool of 45 assets. We only pre-
sent parameter estimates for models with dynamics as in Equation (1) and compare their fit
graphically afterward to models with the HAR specification from Equation (6).

The results provide four main takeaways. First, the maximized log-likelihood values
show that the model with the F-Riesz distribution performs better than all the other specifi-
cations, including the Riesz distribution.” This is most clearly seen in Figure 2, which
shows the AIC improvements of all models compared to the Wishart specification for both
the original (1) and the extended HAR specification (6). The gain of the F-Riesz specifica-
tion increases substantially with the dimension of the system as can be seen from the scales
of the vertical axes of the different panels. For example, the difference between the F-Riesz

Note that our results and those of Gribisch and Hartkopf (2023) cannot be compared directly, as they use a
parameter-driven model specification, whereas ours is an observation-driven approach.
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Figure 2. AIC improvements.

Notes: The figure shows the difference between the AIC of the Wishart and that of the other distributions for the
models in Table 3 (black bars) and their HAR extension of (6) (white bars). The left panel of the graph depicts results
of a random initial ordering of the constructed realized covariance matrices. The right panel is based on the optimized
ordering using the algorithm from Section 1.3.

and the matrix-F distribution equals 5000 and 25,000 log-likelihood points for dimensions
5 and 135, respectively. This increase suggests substantial heterogeneity and fatness of the
tails. The AIC values underline that the large likelihood differences outweigh the increased
number of parameters.

Second, tail heterogeneity and tail fatness both play an important role at all levels of the
analysis. When relaxing the Wishart to the Riesz specification, the AIC improves substan-
tially for all dimensions considered, irrespective of the ordering of the assets; see Figure 2.
This underlines the importance of tail heterogeneity. The same holds when relaxing the in-
verse Wishart to the Inverse Riesz. Tail fatness is also clearly important: the AIC improve-
ment for the matrix-F is large compared to the Wishart. With only two parameters, the
matrix-F succeeds in having a similar or higher AIC as the Inverse Riesz, which needs k — 2
additional parameters compared to the matrix-F. This is the more interesting result given
that the matrix-F already heavily outperforms the Wishart, inverse Wishart, Riesz, and to a
lesser extent also the Inverse Riesz distributions. Including tail heterogeneity in the matrix-
F by using the F-Riesz distribution provides a further substantial gain in likelihood and
AIC. Tail heterogeneity thus appears important for both the thin and fat-tailed distribu-
tional specifications.

Third, the importance of allowing for tail heterogeneity is confirmed by looking at the
estimates of the degrees of freedom parameters. To save space, the table only reports
the minima and maxima of the elements of g and v. Still, the picture is clear. For example,
the estimate of x in Panel A for the matrix-F is around 55, while the elements of u of the
F-Riesz distribution vary from around 16-83. The pattern persists for the other panels in
the table, as well as for the v parameters. The Riesz and F-Riesz distributions also solve an
empirical puzzle for the (Inverse) Wishart and matrix-F distributions. As we can see in
Table 3, rising the dimension of the system from 5 to 15 increases the estimated degrees of
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freedom for the (Inverse) Wishart and matrix-F. We can understand this by looking at the
spreads of g and v for the F-Riesz distribution. These reveal that the tail fatness (low g and
v values) persists across dimensions, as p,;, and vm;, remain relatively constant across pan-
els A and B. By contrast, g, and vmayx increase if we consider more stocks, indicating that
some of the realized volatilities exhibit thinner tail behavior. As the (Inverse) Wishart/ma-
trix-F can only accommodate this by using some sort of average degrees of freedom across
all assets due to their one or two parameter set-up, the degrees of freedom for these two
distributions increases empirically when increasing the number of assets. By contrast, the
F-Riesz (and also the (Inverse) Riesz) distributions do not show this behavior.

Fourth, we see that the heterogeneity biases discussed above spill over into biases in the
estimated persistence of X;. The B of the F-Riesz distribution is higher across all dimensions
than that of the other models, while its A parameter is lower. This results in a much
smoother pattern of V, for the F-Riesz distribution. Again, this stems from the accumula-
tion of two effects: fat tails of X;, and tail heterogeneity. Fatter tails for X, in the model im-
ply the dynamics of V, react less violently to incidental outliers in X, similar to the effect
of using a Student’s ¢ distribution in a GARCH model. This explains why the F-Riesz
results in more persistence than the Riesz or Inverse Riesz. The second effect is that of tail
heterogeneity. Because the (Inverse) Wishart and matrix-F only have one or two degrees of
freedom parameters, they fail to describe the heavy-tailed behavior in some of the realized
volatilities. Empirically, this typically leads to a lower estimated persistence due to the
more frequent unexpected occurrence of incidental large observations. As a result, the F-
Riesz and Riesz have a higher persistence B compared to the matrix-F and Wishart,
respectively.

3.3 Out-of-sample Setup and Metrics

We also apply our new model in an out-of-sample exercise. First, we calculate daily,
weekly, and biweekly point forecasts for V,. Second, we forecast the (joint) density of the
realized covariance matrices. Third, we conduct an economic application by considering
Global Minimum Variance Portfolios (GMVP) as in for example Engle, Ledoit, and Wolf
(2019). All these exercises directly depend on one-step and multi-step-ahead forecasts
of V,.

We use a moving-window approach in the forecasting exercise with an in-sample period
of 1000 observations. This corresponds roughly to four calendar years. To avoid that the
results are driven by a particular selection of stocks, we choose three disjoint sets of stocks
for each of the settings k = 5,15.

The out-of-sample period contains P =3, 696 observations including the Great Financial
Crisis and the European Sovereign Debt crisis. The period, therefore, provides an impor-
tant test for the robustness of the model. We re-estimate the models after every 250 obser-
vations, which roughly corresponds to updating the parameters annually. As we show later
on, though optimizing the ordering of the variables empirically leads to some gains in likeli-
hood, there are no substantial gains in point prediction quality compared to a single ran-
dom ordering. We therefore consider only one random initial ordering for the main results.

Based on Table 3, we consider a subset of five distributions: the classical Wishart distri-
bution as a benchmark, the Riesz, the Inverse Riesz, the matrix-F, and the F-Riesz distribu-
tion. Moreover, we include the EWMA filter with 1= 0.96, the DCC-GARCH model
(Engle 2002), and the HAR-DRD model of Oh and Patton (2016) as further bench-
mark models.

Given a predicted V1 and the true realized covariance matrix X; 1, we evaluate the
point forecasts by the Frobenius norm and the QLIK loss function:
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FR; 11 = \/trace((XHl _Vt+1)T(Xt+1 - Vt+1)>7 (7)
OLIK; 1 = log|V;4 1| +trace(V[+11XH1). (8)

We use the model confidence set (MCS) of Hansen, Lunde, and Nason (2011) at a signifi-
cance level of 5% to select the best models. The MCS automatically accounts for the depen-
dence between model outcomes, given that all models are based on the same data.

Turning toward the density forecasts, we use the log scoring rule (see Mitchell and Hall
2005; Amisano and Giacomini 2007) to differentiate between the density forecasts of the
different models. Define the difference in log score between the two density forecasts M,
and M, corresponding to the realized covariance matrix X; 1 as

dls,t+1 = Sls,t+1(Xt+1a Ml) - Sls,t+1(Xt+17 MZ): (9)

for t=R+1,...T, with R=1000 the length of the rolling estimation window and
Sist+1(Xe41,M;) (j=1, 2) the log score of the density forecast corresponding to model M;
attime £+ 1,

Sist+1Xeg1, M) = logpry1(Xe+1|Vig1, Fr, M), (10)

where p;11(-) is one of the densities discussed. For multi-step ahead density forecasts, we
consider the joint density Hf 1Pt X n|Vii s Frin—1,M;) such that the log score boils

down to Sy i1t HXep 1 X o1, M) = Zh 1 logpy Xy pIViin, Frin-1,M;). The null
hypothesis of equal predictive ability is given by Hy : E[d}] = O for all T—R out-of-sample
forecasts. Similar to the evaluation of the point forecasts, we again use the MCS with a 5%
significance level to test equal predictive ability.

The GMVP application is motivated by the mean-variance optimization setting of Markowitz
(1952). Assuming that the investor aims at minimizing the 1-step-ahead portfolio variance at
time ¢ subject to a fully invested portfolio, we have the quadratic optimization problem

T
mmwt+1|tvt+1wt+1\i’ Vt+1|t
= Wi = —5o1 (11)
=1,

s.t. 1 VHW

T
wt+1\t

We assess the predictive ability of the different models by comparing the results to the ex-
post portfolio volatility 6,11 = (w t+1\th+1“’t+1\z) 12 using the MCS.

Alongside the GMVP’s volatility, we also calculate several other relevant quantities, such
as portfolio turnover (TOy), concentration (CO;), and the total short position (SP;) for
each competing model at time #. A model that produces more stable covariance matrix
forecasts implies in general less turnover and hence less transaction costs. This effect would
lead to a gain in trading strategies. We follow Bollerslev, Patton, and Quaedvlieg (2018)
and assume that there is a fixed transaction cost c. The total turnover at time ¢ is defined as

k
TO, = E Wi 1)t — Wiglt -1

=1

l—‘r?‘,t

b
1 +wt‘t 1Tt

(12)

where w;,_; is the i-th element of the weight vector wy,_1 and #;; the return of asset i at
time ¢. It measures the value of the change in portfolio holdings when rebalancing the
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portfolio to its new optimal position from time ¢ to ¢+ 1. For given proportional transac-
tion costs ¢, the portfolio return net of transaction costs then equals

Tyt =wlt_1rz—cTOt, (13)

with ¢ equal to 0, 1, or 2 percent, respectively.

Portfolio concentration and total portfolio short position both measure the amount of
extreme portfolio allocations. Again, more stable forecasts of V;, 1 should result in less ex-
treme portfolio weights. The portfolio concentration (CO,) and short position (SP;) are de-
fined as

1/2
/ k

k
CO, = Zwiz,t\t—l ) SP, = Wige-1-° I[Wi,t\t—l < O], (14)
=1 i=1

with I[-] an indicator function that takes the value 1 if the i-the element of the weight vector
is negative.

Finally, we follow Bollerslev, Patton, and Quaedvlieg (2018) and also evaluate the eco-
nomic significance of different forecasting models by considering the utility-based frame-
work of Fleming, Kirby, and Ostdiek (2001, 2003). This framework is based on the
assumption that an investor has a quadratic utility with a risk aversion parameter y. Then
the realized utility of the portfolio return based on the forecasted covariances from model
j reads

Uher) = (14700 = 57 s (4700 (1)

Given two different models j and /, A, denotes the return an investor with risk aversion pa-
rameter y is willing to forfeit for model / to make her indifferent between models j to /. It
can be obtained by solving

S TUWr) =Y U, - A7) (16)

t=1 t=1

We test the null hypothesis A, = 0 using the Reality Check of White (2000), based on the
stationary bootstrap of Politis and Romano (1994) for 999 bootstrap samples with an av-
erage block length of 22 days.

Before presenting the main out-of-sample results, we first briefly investigate the effect of
the ordering of the variables on point forecast performance. We do so for two sets of di-
mension 5. Table 4 shows the results for three settings: an arbitrary ordering, the optimal
ordering over all 120 possibilities, and a time-varying ordering scheme based on Algorithm
2.6 implemented every 250 observations in line with the re-estimation of the model’s static
parameters. The short summary of the table is that all approaches behave similarly in terms
of the Frobenius norm: none of the models falls outside the MCS based on the simulated
p-values. The same can be said in terms of the QLIK if we consider the left-panel of the ta-
ble. Only in case of the assets AA, AXP, BA, CAT, and GE, the original and time-varying
ordering scheme do not belong to the confidence set. We conclude that the optimal order-
ing does not automatically lead to better point predictions. In addition, varying the order-
ing over time also does not seem to lead to significant improvements in point forecasts. In
the remainder of the analysis, we, therefore, stick to one specific order for the model
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Table 4. Ordering and out-of-sample point forecasts

MCD/PFE/PG/WMT/XOM AA/AXP/BA/CAT/GE
Original Optimal TV ord Original Optimal TV ord
Frob 5.656 5.648 5.658 2.280 2.278 2.283
mcs p-value (0.36) (1.00) (0.31) (0.37) (1.00) (0.12)
QLIK 7.477 7.480 7.478 4.364 4.361 4.366
mes p-value (1.00) (0.06) (0.44) (0.00) (1.00) (0.00)

Notes: This table shows the mean of the Frobenius norm and QLIK values based on daily predictions of the

(5% 5) covariance matrix of two sets of five stocks according to the Conditional Autoregressive model assuming
a F-Riesz (FR) distribution using three different approaches. The first approach takes simply the original
ordering created by the construction of the realized covariance matrix. The second ordering corresponds with
the lowest Frobenius Norm. Finally, the third approach uses a time-varying ordering scheme (TV ord), by
applying Heuristic 2.6 iteratively after 250 observations. Parameters are estimated with a moving window of
1,000 observations and re-estimated after 250 observations. The lowest value of the Frobenius norm and QLIK
across the models are marked in bold. In addition, we report the MCS p-values based on a 5% significance level.
The p-values of the models within the model confidence set are marked in bold. The out-of-sample period goes
from January 2005 until December 2019 and contains 3696 observations.

comparisons (as indicated in the tables), keeping in mind that the results might be im-
proved somewhat further in favor of the F-Riesz and Riesz models by re-ordering
the variables.

3.4 Out-of-sample Results

We now turn to the discussion of our point and density forecasts, followed by the results of
the GMV forecasts. Given that we have three data sets of dimensions 5 and 15, we have
many results. For reasons of space, we only present results for one selection of 5 and 15
assets. The remaining results can be found in Supplementary Appendix G and do not
change the main conclusions.

We first consider the point forecasts. For point forecasts, it is not clear a priori why a
good model for tail behavior would improve the point forecasts. Tables 5 and 6 show the
mean of the Frobenius norm and QLIK values with the associated MCS p-values for daily,
weekly, and biweekly covariance forecasts for the first set of 5 and 15 assets.
Supplementary Appendix Tables G.1-G.4 show the results for the other two sets of 5 and
15 assets. All tables show a similar pattern. For 1-step-ahead forecasts, the HAR-DRD
model is superior. For the Frobenius norm, it is often accompanied in the MCS for k=5
by the conditional autoregressive models with one of the matrix distributions and HAR dy-
namics, illustrating that the point forecasts for the different models are comparable 1-day-
ahead. This is not surprising as the parameters of the HAR-DRD are estimated by minimiz-
ing the Frobenius norm. The HAR-DRD model loses its superiority for point forecasts,
however, for weekly and biweekly point forecasts. Here, the F-Riesz distribution always
belongs to the MCS, either with the classical dynamic specification in Equation (1) or with
the HAR specification from Equation (4). This does not hold for other matrix distribu-
tions, such as the Riesz distribution. Finally, we see that the forecasts of the EWMA and
DCC-GARCH forecast are relatively worse than the other models as they are rarely within
the MCS.

Next, we consider the models’ density forecast performances. In contrast to milder dif-
ferences in the point forecasts, the results for the density forecasts exhibit much stronger
differences between the different models. Table 7 (as well as Supplementary Appendix
Table G.5) reports results on the daily, weekly, and biweekly density forecasts. The tables
list the average log-score values together with the MCS p-values. The message from the ta-
ble is clear: the F-Riesz distribution is superior in density forecasts against all other matrix
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distributions, irrespective of the forecast horizon. The gains are large, even with respect to
the matrix-F distribution. Second, the HAR specification is most of the time better than the
regular conditional autoregressive specification from Equation (1), except for the third
data set of dimension 15 (see Supplementary Appendix Table G.5). We conclude that
though the differences between the point forecasts of the different models are modest, the
differences in density fits are clearly in favor of the F-Riesz model with HAR dynamics
for v,.6

Finally, we evaluate the different models in terms of their GMV portfolio performance.
To save space, we only present Tables 8 and 9 in the main text, reporting the results for
1-day and 10-days (2 weeks) ahead forecasts for the first set of 5 and 15 assets. The 5-day-
ahead forecasts for these assets, as well as the 1-, 5-, and 10-day-ahead forecasts for the
other sets of assets, can be found in Supplementary Appendix Tables G.6-G.12. We only
show results for the HAR specifications as these were most often in the MCSs in Table 7.
Each table first reports the annualized mean and ex-post (realized) standard deviation of
the portfolio returns, with MCS p-values on the lowest ex-post realized portfolio volatility.
Next, we report portfolio statistics such as the average turnover, concentration, and total
short position. The second part of each table sheds light on the economic significance of us-
ing the CAFr HAR model against all other models using the utility-based framework. Bold
positive values of A, indicate that an investor is willing to sacrifice an annual return of A,
basis points to switch from a particular model to the CAFr HAR model.

Table 8 shows three important results. First, the CAFr HAR model has significantly
lower ex-post realized portfolio volatility in the five-dimensional case. For the case of 15
assets, the CAFr model belongs to the MCS and behaves at par with the matrix-F and
Inverse Riesz. This is the most important signal in the table, as the GMV criterion function
only steers toward minimizing the portfolio variance, not taking into account its return,
short positions, concentration, or any other performance measure of the portfolio returns.
Second, apart from the EWMA filter, the F-Riesz distribution also has the lowest turnover
amongst all models. Third, taking into account transaction costs, there are economic gains
in switching from any other matrix distribution and the HAR-DRD model to the CAFr
HAR model (FR). These gains are more pronounced for the 15-dimensional case, ranging
from 14 to 136 basis points per year. Only the DCC model appears to perform better,
mainly due to the higher mean return during the sample period. This performance of the
DCC model, however, is not robust: for other sets of stocks, the performance of the DCC
is easily found to be much worse among the different models, such as in Supplementary
Appendix Tables G.7-G.9. We note again that the GMV criterion only takes the variance
of the portfolio returns into account, and not its for instance its (notoriously hard to esti-
mate) expected return. Altering the objective to correct for this might result in other portfo-
lios and possibly different rankings.

Most of the results are robust for the 10-day-ahead (bi-weekly) forecasting horizon in
Table 9 (as well as the additional tables and settings in Supplementary Appendix G). In
particular, the F-Riesz distribution either has the lowest (realized) ex-post portfolio volatil-
ity (k =35) or is in the MCS for models with the lowest variance (k = 15). Particularly at
this longer horizon, the lower variance typically comes at the cost of a lower average re-
turn, resulting in a less favorable performance on the return-based performance criteria.
Again, the GMV criterion does not take this dimension explicitly into account. Still, it is
comforting to see that the economic gains at the bi-weekly horizon are either insignificant

®Note that the other benchmarks like DCC, HAR-DRD, and EWMA are not included in this comparison, be-
cause they either (i) do not produce a density forecast for lack of a density assumption, or (ii) take the return vec-
tor rather than the realized covariance matrix as the random variable of interest, thus inhibiting a density
comparison with the matrix-valued F-Riesz distribution.
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(non-bold) or positive in favor of the F-Riesz model. We also note that the F-Riesz again
has the lowest turnover amongst all models, safe the EWMA filter.

To sum up our out-of-sample results, the F-Riesz distribution does very well out-of-
sample in terms of density forecasts, indicating that the F-Riesz distribution captures the
distributional shape of realized variances and covariances better than any of the other mod-
els considered here at different forecasting horizons. In terms of point forecasts, the F-Riesz
model is also in the MCS for different forecasting horizons and different numbers of assets.
Finally, in terms of GMV performance, the new model is again always in the MCS for
yielding the lowest ex-post portfolio variance. It also results in stable allocations, as the
model has the lowest turnover across all models considered, safe the EWMA filter. The
lower ex-post variance may come at the cost of a lower ex-post average return. Still, the
economic gains are for many of the models either in favor of the F-Riesz model or insignifi-
cantly different.

4 Conclusions

In this article, we introduced the new conditional autoregressive F-Riesz model for captur-
ing the dynamics of matrix-valued random variables. The F-Riesz distribution was
obtained by mixing the Riesz distribution (Hassairi and Lajmi 2001) with an Inverse Riesz
distribution (Tounsi and Zine 2012), thus allowing for much more heterogeneity in tail be-
havior compared to the well-known matrix distributions like the thin-tailed Wishart, the
inverse Wishart, or the fat-tailed matrix-F distribution. While the latter distributions de-
pend on one or two degrees of freedom parameters, the new distribution allows vector-
valued degrees of freedom parameters. These can easily be estimated by a two-step targeted
maximum likelihood approach. In higher dimensions, the elements of the vector-valued
degrees-of-freedom parameters might even be clustered to impose further parsimony using
the likelihood fit as a guiding mechanism; compare the clustering approach of Oh and
Patton (2023) in a copula context.

An empirical application to realized covariance matrices of dimensions 5 and 15 and dif-
ferent samples of U.S. stocks over 19 years of daily data showed a remarkably high increase in
the likelihood of the F-Riesz distribution compared to the (Inverse) Wishart, (Inverse) Riesz,
and matrix-F distributions. The margin of outperformance in terms of density forecasts was
significant, both in-sample and out-of-sample. Also, the degrees of freedom parameters varied
significantly over the different coordinates. The model was also always in the MCS for the
lowest ex-post portfolio variance for a GMV analysis, as well as for most of the simple point
forecast comparisons. Overall these results show that there is strong heterogeneity of tail be-
havior of realized covariance matrices, as well as fat-tailedness, and that the F-Riesz distribu-
tion can be a helpful vehicle to obtain better empirical models.”
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