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Introduction

Given a theory T in a first-order language L, consider for each set of variables the set of well-

formed formulae written with at most those variables. That set can be ordered by provable

consequence in the theory T . By that we mean that the formula α is less than or equal to the

formula β if the consequence α ⊢T β holds. The logical operations of conjunction, disjunction,

implication, negation, true and false give this set the structure of a Boolean algebra. And the

assignment x⃗ ↦→WWF(x⃗) of the Boolean algebra of formulae to a list (i.e. a context) of distinct

variables can be extended to a functor WWF:Ctxop → BA from the opposite category of contexts

and terms to the category of Boolean algebras and homomorphisms.

This can be considered the motivating example at the basis of the notion of hyperdoctrine which

was introduced by Lawvere in 1969 in a series of seminal papers [Law69a, Law69b, Law70]. It is a

categorical tool that allows the analysis of both syntax and semantics of logical theories through

the same mathematical structure. One of the main intuitions of Lawvere was to recognize that

quantifiers in logic are instances of adjunctions between the posets of formulae.

As we have seen, the logical operations and operators provide an extremely abundant structure.

In order to understand such a complex array, it is often useful to restrict one’s view to a particular

side of it. A doctrine is possibly the basic fabric of Lawvere’s hyperdoctrine: just a functor

P :Cop → Pos, from a category C with finite products into the category Pos of partially ordered

sets and monotone functions. Doctrines naturally organize into a 2-category, and they are the

main subject of the thesis.

The aim of this work is to offer an interpretation of some classical results in first-order logic and in

universal algebra via doctrines. The first is performed in the context of existential implicational

doctrines, while the second in the context of elementary doctrines. We then show how the classical

results are actually instances of more general results that live in the context of doctrines.

The first goal is the analysis of Henkin’s Theorem for first-order logic [Hen49], formulated as

follows:

Every consistent theory has a model.

The key points in the proof of the original theorem are adding a suitable amount of constants

to the starting language, and then adding some axioms of the extended language to the starting

theory. In Chapter 2 we start our investigation by extending to doctrines the construction of
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adding a constant to a language. And we also extend the construction of forcing a new axiom

for primary doctrines, which are doctrines where all orders are inf-semilattices and reindexing

preserves them—essentially, what it amounts to the ability to interpret conjunctions of formulae.

Actually we do both constructions in one step, using a Kleisli object for a convenient comonad

on the original doctrine seen as an indexed poset. The existence of Kleisli objects for comonads

in indexed posets is proven in Proposition 1.2.5. Given a primary doctrine P :Cop → Pos, a fixed

object X, and an element φ ∈ P (X), we construct a homomorphism of doctrines P → P(X,φ).

In keeping a reasonable parallel with the logical intuition, think of the primary doctrine P as

the syntactic consequences of a theory—not just formulae of a language, but that is already a

good intuition—; think of an object X as a list of fresh variables, and think of φ as a formula in

the fresh variables. Staying with the parallel, the doctrine P(X,φ) acts like the extension of the

theory with new constant symbols and with the new axiom φ evaluated in those constants. The

homomorphism of doctrines acts like a translation of the original theory in the new one.

The construction has a universal property: any other morphism of primary doctrines P → R such

that the interpretation of φ evaluated in some constant in R is true factors through P → P(X,φ),

essentially in a unique way. This is, in broad terms, the statement of Theorem 2.4.2. Moreover,

the result is extended to 2-arrows in Theorem 2.4.4. We also show in Theorem 2.4.3 that the

construction P → P(X,φ) preserves many additional structures and properties that the original

doctrine may already enjoy.

The construction includes the two constructions we discussed at the beginning: adding no axiom

has a structural parallel in adding ⊤ to the axioms, while adding no constant corresponds to

performing the construction picking the terminal object for X. We can clearly decide to add

just a constant of type X, without adding any axiom to the theory, and obtain a homomorphism

P → PX . Similarly we can decide to add just an axiom φ to a theory, without adding any

constant symbol, and obtain the homomorphism P → Pφ.

We then proceed in Chapter 3 with the interpretation of Henkin’s proof by adding a suitable

amount of new constant symbols. To do this, we first prove in Proposition 1.3.1 how to compute

colimits of directed diagrams in the category of doctrines Dct. To have an insight into this

process, once we know how to add one constant symbol, we can iterate the construction to add a

finite number of constant symbols. Then, taking the colimit over a convenient directed diagram

D: J → Dct in which every image D(j) for j ∈ J is a doctrine with a finite number of constants

added, we can add an infinite amount of constants. This construction gives a homomorphism

P → P from the original doctrine into the colimit P . The next step is to add new axioms to the

new doctrine P . To do this, we work with implicational existential doctrines—i.e. doctrines in

which we can interpret implication of formulae and the existential quantifier. In this setting, for

any formula φ(x), we make true a formula of the kind ∃xφ(x)→ φ(c) for some suitable constant

c. Since there is an infinite number of axioms that we have to add, we use a similar technique

to the one seen above: we define a directed diagram ∆: I → Dct in which every image ∆(i)

for i ∈ I is a doctrine with a finite number of axioms added, so the colimit adds all the needed
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axioms. This construction gives another homomorphism P → P−→ into the colimit P−→, and in

particular a homomorphism P → P−→. The doctrine P−→ is rich: for each formula φ(x) there exists

a constant c such that φ(c) and ∃xφ(x) have the same truth-value.

When the starting doctrine P is also bounded—i.e. a doctrine in which we can interpret also the

false—, we find the properties for P in order to have that the construction P → P−→ preserves

coherence, since we obviously do not want the doctrine P−→ to be such that the true constant and

the false collapse in the same formula. Section 3.5 and Section 3.7 collect all these results: initially

Proposition 3.5.6 establishes the consistency of P−→ in the Boolean case, then Proposition 3.7.1

shows consistency in the implicational setting. Proposition 3.7.1 follows from Proposition 3.5.6

itself and on the existence of a suitable notion of Boolean completion for bounded implicational

doctrines, provided in Section 1.4.

Finally, we prove in Proposition 3.8.1 that a bounded consistent implicational existential rich

doctrine has a homomorphism to the doctrine of subsets, the “standard” model. Applying this

proposition to the rich doctrine P−→, we obtain Theorem 3.8.5:

Let P be a bounded existential implicational doctrine, with non-trivial fibers and with

a small base category. Then there exists a bounded existential implicational model of

P in the doctrine of subsets P∗: Set
op
∗ → Pos.

The last chapter proposes a further analysis of the procedure for adding structure and ax-

ioms to a theory, this time in the context of elementary doctrines—i.e. a doctrine in which

we can interpret equality of terms. It is well known in universal algebra that adding struc-

ture and equational axioms generates forgetful functors between varieties, and such functors

all have left adjoints. From a categorical point of view, every variety is equivalent to a cat-

egory of homomorphisms of elementary doctrines ED(HFΣT ,P∗) between a doctrine of formu-

lae and the subsets doctrine. Moreover, adding structure and equational axioms translates

to a doctrine homomorphism (E, e): HFΣT → HFΣ
′

T′ . Precomposition with this homomorphism

induces a functor − ◦ (E, e):ED(HFΣ
′

T′ ,P∗) → ED(HFΣT ,P∗), and it represents the forgetful

functor between the correspondent varieties, hence it has a left adjoint. If we start from

any elementary homomorphism (F, f):P → R we can again define the precomposition func-

tor −◦ (F, f):ED(R,Sub)→ ED(P,Sub), where Sub is the subobject doctrine of a Grothendieck

topos. The whole chapter is dedicated to the proof that also in this case the functor − ◦ (F, f)
has a left adjoint, showing how the existence of free functors in universal algebra follows from a

more general result that lives in the theory of elementary doctrines.



Chapter 1

Preliminaries and initial results

In this chapter, we lay the groundwork for the thesis by introducing the language of doctrines

and establishing their key properties. We then prove several general results that will serve as

essential tools in later chapters. Specifically, we compute the Eilenberg–Moore and Kleisli objects

for comonads in the 2-category of indexed posets, which will be instrumental in Chapter 2. We

also demonstrate the existence of directed colimits in the category of doctrines, which will enable

us to construct our main argument in Chapter 3. Finally, we define the Boolean completion of an

implicational doctrine with a bottom element and review some key findings about filters, which

will be crucial in the latter part of Chapter 3.

Most of the notions and results concerning category theory used in this thesis are standard, and

we refer to any textbook, for instance [Bor94, Joh02, Mac71].

1.1 Doctrines

In this section, we define the 2-category of doctrines and show some relevant examples. Then

we will gradually add more structure in order to be able to interpret symbols of first-order

logic—such as connectives and quantifiers—in the context of doctrines.

Definition 1.1.1. Let C be a category with finite products and let Pos be the category of

partially-ordered sets and monotone functions. A doctrine is a functor P :Cop → Pos. The

category C is called base category of P , each poset P (X) for an object X ∈ C is called fiber, the

function P (f) for an arrow f in C is called reindexing.

By viewing doctrines as a broad generalization of doctrines of well-formed formulae, we can

interpret the objects of category C as lists of variables, the arrows as terms, the fibers as sets of

formulae, and reindexing as substitutions, providing an intuitive understanding of the strucure.

Example 1.1.2. We propose the following examples.
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(a) The functor P: Setop → Pos, sending each set in the poset of its subsets, ordered by

inclusion, and each function f :A → B to the inverse image f−1:P(B) → P(A) is a

doctrine.

(b) For a given category C with finite limits, the functor SubC:Cop → Pos sending each object

to the poset of its subobjects in C and each arrow f :A → B to the pullback function

f∗: SubC(B)→ SubC(A), is a doctrine.

(c) For a given theory T on a one-sorted first-order language L, define the category CtxL of

contexts: an object is a finite list of distinct variables and an arrow between two lists

x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , ym) is

(t1(x⃗), . . . , tm(x⃗)): (x1, . . . , xn)→ (y1, . . . , ym)

an m-tuple of terms in the context x⃗. The empty list () is the terminal object in CtxL, the

product of two lists x⃗ and y⃗ in CtxL is given by any list whose length is the sum of the length

of x⃗ and y⃗—if the variables in the two lists are all distinct, their product can be written

as the juxtaposition ⟨x⃗; y⃗⟩ = (x1 . . . , xn, y1, . . . , ym). The functor LTLT :Ctx
op
L → Pos sends

each list of variables to the poset reflection of well-formed formulae written with at most

those variables ordered by provable consequence in T ; moreover, LTLT :Ctx
op
L → Pos sends

an arrow t⃗(x⃗): x⃗ → y⃗ into the substitution [t⃗(x⃗)/y⃗], that maps the equivalence class of a

formula α(y⃗) to the equivalence class of the formula α(t⃗(x⃗)/y⃗). We refer to any standard

textbook about first-order logic for definitions of concepts including language, variables,

theory, terms, substitution, formulae, see for instance [TZ12].

(d) For a given category D with finite products and weak pullbacks, the functor of weak subob-

jects ΨD:Dop → Pos sending each object A to the poset reflection of the comma category

D/A is a doctrine: for each arrow f :A→ B, ΨD(f) sends the equivalence class of an arrow

α: domα→ B to the equivalence class of the projection π1 of a chosen weak pullback of α

along f—see Example 2.9 in [MR13] for more details.

W domα

A B

π1

π2

α

f

Definition 1.1.3. A doctrine homomorphism—1-cell or 1-arrow—between P :Cop → Pos and

R:Dop → Pos is a pair (F, f) where F :C → D is a functor that preserves finite products and

f:P
·−→ R ◦ F op is a natural transformation. Sometimes a morphism between P and R will

be called a model of P in R. A 2-cell between (F, f) and (G, g) from P to R is a natural

transformation θ:F
·−→ G such that fA(α) ≤ R(θA)(gA(α)) for any object A in C and α ∈ P (A).

Doctrine, doctrine morphisms with 2-cells defined here form a 2-category, that will be denoted

Dct.



Preliminaries and initial results 3

Cop Dop Cop Dop

Pos

Pos

F op

P R

F op

P R

Gop

f

f
g

θop

By definition of doctrine, the fibers are simply posets. However, we can define specific doctrines

by imposing additional structure on these posets or by requiring the existence of adjoints to

certain reindexing. To work in a setting that interprets the conjunction of formulae and the true

constant, primary doctrines are necessary.

Definition 1.1.4. A primary doctrine P :Cop → Pos is a doctrine such that for each object A

in C, the poset P (A) has finite meets, and the related operations ∧:P × P ·−→ P and ⊤:1 ·−→ P

yield natural transformations.

Example 1.1.5. Examples seen in 1.1.2 are primary doctrines:

(a) For any set A, intersection of two subsets is their meet, A is the top element.

(b) For any object A in C, the pullback of a subobject along another defines their meet.

dom(α ∧ β) domα

domβ A

π1

π2

α

β

α∧β

The arrow idA is the top element.

(c) For any list x⃗, the conjunction of two formulae is their binary meet, the true constant ⊤ is

the top element.

(d) For any object A in D, a choice of a weak pullback of a representative of a weak subobject

along another defines their meet,

dom(α ∧ β) domα

domβ A

π1

π2

α

β

α∧β

the class of idA is the top element.

In order to interpret equality, we define elementary doctrines. The following definition is taken

from unpublished notes by G. Rosolini.



Preliminaries and initial results 4

Definition 1.1.6. A primary doctrine P :Cop → Pos is elementary if for any pair of objects

B,C of C, the map P (idC ×∆B):P (C ×B ×B)→ P (C ×B) has a left adjoint

ÆB
C :P (C ×B)→ P (C ×B ×B),

which is natural in C; moreover, the adjunction ÆB
C ⊣ P (idC ×∆B) satisfies the Frobenius

reciprocity, i.e. for any α ∈ P (C ×B) and β ∈ P (C ×B ×B) the inequality

ÆB
C(α ∧ P (idC ×∆B)(β)) ≤ ÆB

C(α) ∧ β

given by properties of the adjunction is an equality.

Remark 1.1.7. In the Definition above, naturality in C is usually known as Beck-Chevalley

condition with respect to any pullback diagram of the form:

C ×B C ×B ×B

C ′ ×B C ′ ×B ×B

f×idB f×idB×B

idC ×∆B

idC′ ×∆B

⌟

An equivalent way to define elementary doctrines can be found in Proposition 2.5 of [EPR20]:

Definition 1.1.8. A primary doctrine P :Cop → Pos is elementary if for any object A in C

there exists an element δA ∈ P (A×A) such that:

1. ⊤A ≤ P (∆A)(δA);

2. P (A) = DesδA : = {α ∈ P (A) | P (pr1)(α) ∧ δA ≤ P (pr2)(α)};

3. δA ⊠ δB ≤ δA×B , where δA ⊠ δB = P (⟨pr1,pr3⟩)(δA) ∧ P (⟨pr2,pr4⟩)(δB).

In 2., pr1 and pr2 are the projections from A×A in A; in 3., the projections are from A×B×A×B.

The element δA will be called fibered equality on A.

Proposition 1.1.9. Definition 1.1.6 and Definition 1.1.8 are equivalent.

Proof. Suppose P :Cop → Pos be an elementary doctrine with respect to Definition 1.1.6. Define

for each object A in the base category, δA = ÆA
t (⊤A) ∈ P (A × A), where ÆA

t ⊣ P (∆A). The

first condition of Definition 1.1.8 holds using the unit of the adjunction. Concerning the second

one, take any α ∈ P (A) and use Frobenius reciprocity to get

P (pr1)(α) ∧ÆA
t (⊤A) = ÆA

t (P (∆A)P (pr1)(α) ∧ ⊤A) = ÆA
t (α)

but ÆA
t (α) ≤ P (pr2)(α) if and only if α ≤ P (∆A)P (pr2)(α) = α, hence also 2. holds. To
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conclude, compute

P (⟨pr1,pr3⟩)ÆA
t (⊤A) ∧ P (⟨pr2,pr4⟩)Æ

B
t (⊤B) ≤A×B×A×B ÆA×B

t (⊤A×B) if and only if

P (⟨pr3,pr4⟩)ÆA
t (⊤A)∧P (⟨pr1,pr2⟩)Æ

B
t (⊤B) ≤B×B×A×A P (⟨pr3,pr1,pr4,pr2⟩)ÆA×B

t (⊤A×B)

applying the isomorphism P (⟨pr3,pr1,pr4,pr2⟩), but using naturality of ÆA with respect to

the arrow !B×B :B × B → t, we know that P (⟨pr3,pr4⟩)ÆA
t = ÆA

B×BP (pr3), so by Frobenius

reciprocity we need

ÆA
B×B(⊤B×B×A ∧ P (idB×B ×∆A)P (⟨pr1,pr2⟩)ÆB

t (⊤B)) ≤B×B×A×A

P (⟨pr3,pr1,pr4,pr2⟩)ÆA×B
t (⊤A×B)

if and only if

P (⟨pr1,pr2⟩)ÆB
t (⊤B) ≤B×B×A P (⟨pr3,pr1,pr3,pr2⟩)ÆA×B

t (⊤A×B)

if and only if

P (⟨pr2,pr3⟩)ÆB
t (⊤B) ≤A×B×B P (⟨pr1,pr2,pr1,pr3⟩)ÆA×B

t (⊤A×B)

applying the isomorphism P (⟨pr2,pr3,pr1⟩). Now as before, use naturality of ÆB with respect to

the arrow !A:A→ t, so P (⟨pr2,pr3⟩)ÆB
t = ÆB

AP (pr2), hence by the adjunction ÆB
AP (idA×∆B)

we want

⊤A×B ≤A×B P (idA×∆B)P (⟨pr1,pr2,pr1,pr3⟩)ÆA×B
t (⊤A×B) = P (∆A×B)Æ

A×B
t (⊤A×B)

hence 3. holds, as claimed. Conversely, define for any pair of objects B,C,

ÆB
C(α) = P (⟨pr1,pr2⟩)(α) ∧ P (⟨pr2,pr3⟩)(δB).

This defines a left adjoint of P (idC ×∆B), and the proof of this is in Proposition 2.5 of [EPR20].

Now take any f :C ′ → C, we check that P (f × idB×B)Æ
B
C = ÆB

C′P (f × idB):

P (f × idB×B)Æ
B
C(α) = P (⟨pr1,pr2⟩)P (f × idB)(α) ∧ P (⟨pr2,pr3⟩)(δB) = ÆB

C′P (f × idB).

At last, we show Frobenius reciprocity. First of all compute:

ÆB
C(α ∧ P (idC ×∆B)(β)) = P (⟨pr1,pr2⟩)(α ∧ P (idC ×∆B)(β)) ∧ P (⟨pr2,pr3⟩)(δB) =

P (⟨pr1,pr2⟩)(α) ∧ P (⟨pr1,pr2,pr2⟩)(β) ∧ P (⟨pr2,pr3⟩)(δB)
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then,

ÆB
C(α) ∧ β ≤ ÆB

C(α ∧ P (idC ×∆B)(β)) if and only if

P (⟨pr1,pr2⟩)(α) ∧ P (⟨pr2,pr3⟩)(δB) ∧ β ≤

P (⟨pr1,pr2⟩)(α) ∧ P (⟨pr1,pr2,pr2⟩)(β) ∧ P (⟨pr2,pr3⟩)(δB) if and only if

P (⟨pr1,pr2⟩)(α) ∧ P (⟨pr2,pr3⟩)(δB) ∧ β ≤ P (⟨pr1,pr2,pr2⟩)(β)

so it is enough to show P (⟨pr2,pr3⟩)(δB) ∧ β ≤ P (⟨pr1,pr2,pr2⟩)(β). To see this, observe that

in P (C ×B ×B × C ×B ×B) we have that both inequalities

P (⟨pr1,pr2,pr3⟩)β ∧ δC×B×B ≤ P (⟨pr4,pr5,pr6⟩)β (using 2.)

P (⟨pr1,pr2,pr4,pr5⟩)δC×B ∧ P (⟨pr3,pr6⟩)δB ≤ δC×B×B (using 3.)

hold, so that

P (⟨pr1,pr2,pr3⟩)β ∧ P (⟨pr1,pr2,pr4,pr5⟩)δC×B ∧ P (⟨pr3,pr6⟩)δB ≤ P (⟨pr4,pr5,pr6⟩)β.

Apply P (⟨pr1,pr2,pr3,pr1,pr2,pr2⟩) so that in P (C ×B ×B) we have:

β ∧ P (⟨pr1,pr2,pr1,pr2⟩)δC×B ∧ P (⟨pr3,pr2⟩)δB ≤ P (⟨pr1,pr2,pr2⟩)β.

However, P (⟨pr1,pr2,pr1,pr2⟩)δC×B = P (⟨pr1,pr2⟩)P (∆C×B)δC×B = ⊤C×B×B . Moreover, ob-

serve that in P (B × B), we have δB ≤ P (⟨pr2,pr1⟩)δB . Indeed, in P (B × B × B × B) we have

using 3. and 2. that

P (⟨pr1,pr2⟩)δB ∧ P (⟨pr1,pr3⟩)δB ∧ P (⟨pr2,pr4⟩)δB ≤

P (⟨pr1,pr2⟩)δB ∧ δB×B ≤ P (⟨pr3,pr4⟩)δB .

Taking the reindexing along P (⟨pr1,pr1,pr2,pr1⟩), we obtain in P (B ×B) (using 1.) that δB ≤
P (⟨pr2,pr1⟩)δB . Now take the reindexing of this last inequality along P (⟨pr2,pr3⟩), so that in

P (C ×B ×B) we have P (⟨pr2,pr3⟩)δB ≤ P (⟨pr3,pr2⟩)δB . We conclude by observing:

P (⟨pr2,pr3⟩)(δB) ∧ β ≤ P (⟨pr3,pr2⟩)(δB) ∧ β ≤ P (⟨pr1,pr2,pr2⟩)(β),

so Frobenius reciprocity holds, and the two stated definitions are equivalent.

Example 1.1.10. Examples seen in 1.1.2 are elementary doctrines:

(a) For any set A, the subset ∆A ⊆ A×A is the fibered equality on A.

(b) For any object A in C, the map ∆A:A↣ A×A is the fibered equality on A—see in [MR12]
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the Example 2.4.a.

(c) For any list x⃗, the formula
(︁
x1 = x′1 ∧ · · · ∧ xn = x′n

)︁
in LTLT (x⃗; x⃗

′) is the fibered equality

on x⃗.

(d) For any object A in D, the equivalence class of the map ∆A:A ↣ A × A is the fibered

equality on A.

We now generalize the existential and universal quantifier, which are defined as adjoint to some

reindexing.

Definition 1.1.11. A primary doctrine P :Cop → Pos is existential if for any pair of objects

B,C of C, the map P (pr1):P (C)→ P (C ×B) has a left adjoint

∃BC :P (C ×B)→ P (C),

which is natural in C; moreover, the adjunction ∃BC ⊣ P (pr1) satisfies the Frobenius reciprocity,

i.e. for any α ∈ P (C ×B) and β ∈ P (C) the inequality ∃BC(α∧P (pr1)(β)) ≤ ∃BC(α)∧ β given by

properties of the adjunction is an equality.

Remark 1.1.12. In an elementary existential doctrine, every arrow f :A→ B in C the reindexing

P (f):P (B)→ P (A) has a left adjoint ∃f :P (A)→ P (B), computed as follows:

∃f (α): = ∃AB
(︁
P (pr2)(α) ∧ P (⟨pr2,pr1⟩)P (f × idB)(δB)

)︁
,

for any α in P (A) and where pr1,pr2 are the projections from A × B. This fact is stated in

Remark 2.13 of [MR13]. Since we could not find a reference for the proof, we provide it here for

the sake of completeness. For any α ∈ P (A) and any β ∈ P (B), we need to show that ∃f (α) ≤ β
in P (B) if and only if α ≤ P (f)β in P (A). We obtain:

∃f (α) ≤B β if and only if

P (pr2)(α) ∧ P (⟨pr2,pr1⟩)P (f × idB)(δB) ≤B×A P (pr1)β if and only if

P (pr1)(α) ∧ P (f × idB)(δB) ≤A×B P (pr2)β

using at first the adjunction ∃AB ⊣ P (pr1) and then applying the isomorphism P (⟨pr2,pr1⟩)
between P (B×A) and P (A×B). Now, applying P (∆A)P (idA×f) to the last inequality, we get

α ∧ P (∆A)P (idA×f)P (f × idB)(δB) ≤A P (f)β

but since (f × idB)(idA×f)(∆A) = ∆Bf and P (f)P (∆B)δB = P (f)(⊤B) = ⊤A we get that

α ≤ P (f)β in P (A), as claimed. Conversely, apply P (f × idB) on both sides of the inequality

P (pr1)(β) ∧ δB ≤ P (pr2)(β) in P (B ×B) to get P (pr1)P (f)(β) ∧ P (f × idB)δB ≤ P (pr2)(β) in
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P (A×B). If we assume α ≤A P (f)β, we then get P (pr1)(α) ∧ P (f × idB)(δB) ≤A×B P (pr2)β,

which is equivalent to ∃fα ≤B β. This concludes the proof.

Definition 1.1.13. A doctrine P :Cop → Pos is universal if for any pair of objects B,C of C,

the map P (pr1):P (C)→ P (C ×B) has a right adjoint ∀BC :P (C ×B)→ P (C), which is natural

in C.

Remark 1.1.14. In both Definition 1.1.11 and Definition 1.1.13, naturality in C is usually

known as Beck-Chevalley condition with respect to any pullback diagram of the form:

C ×B C

C ′ ×B C ′

f×idB f

pr1

⌟

pr1

Definition 1.1.15. A doctrine P :Cop → Pos:

• is implicational if for any object A, the poset P (A) is cartesian closed, and the related

operations ∧:P × P ·−→ P , ⊤:1 ·−→ P , →:P op × P ·−→ P yield natural transformations–in

particular it is a primary doctrine;

• has bottom element if for any object A, the poset P (A) has a bottom element, and the

related operation, ⊥:1 ·−→ P yields a natural transformation;

• is bounded if for any object A, the poset P (A) has a top and a bottom element, and the

related operation, ⊤:1 ·−→ P and ⊥:1 ·−→ P yield natural transformations;

• has finite joins if for any objectA, the poset P (A) has finite joins, and the related operations

∨:P × P ·−→ P , ⊥:1 ·−→ P yield natural transformations;

• is Horn if it is implicational and universal;

• is Heyting if for any object A, the poset P (A) is an Heyting algebra, and the related

operations ∧:P × P ·−→ P , ⊤:1 ·−→ P , →:P op × P ·−→ P , ∨:P × P ·−→ P , ⊥:1 ·−→ P yield

natural transformations;

• is Boolean if it is Heyting and the operation ¬(−): = (−)→ ⊥:P op ·−→ P is an isomorphism.

Example 1.1.16. The doctrine LTLT :Ctx
op
L → Pos is Boolean elementary existential univer-

sal: in addition to the structure mentioned above, the implication of two formulae gives the

implicational structure, the disjunction of two formulae is their join, the false is the bottom

element, existential and universal quantifier define the left and the right adjoint to the inclusions

of formulae LTLT (x⃗) ⊆ LTLT (x⃗; y⃗) for any pair x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , ym):

LTLT (x⃗; y⃗) LTLT (x⃗)

∀y1...∀ym

∃y1...∃ym

⊣
⊣
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Definition 1.1.17. Any homomorphism (F, f):P → R from P :Cop → Pos to R:Dop → Pos

is called respectively primary, elementary, existential, universal, implicational, bounded, Horn,

Heyting, Boolean if both P and R are, and f preserves the said structure. For example an

elementary homomorphism is such that for any object A in C, and any α, α′ ∈ P (A):

fA(α ∧A α′) = fA(α) ∧FA f(α′); fA(⊤A) = ⊤FA; fA×A(δA) = δFA;

while an universal homomorphism is such that for any pair of objects B,C in C, and any element

α ∈ P (C ×B):

fC∀BC(α) = ∀FBFC fC×B(α).

Example 1.1.18. For a given category C with finite limits, the inclusion of SubC(A) into the

poset reflection of C/A yields a natural transformation SubC → ΨC; pairing it with the identity

on the base category C, this defines a 1-arrow in ED.

Notation 1.1.19. We will write some 2-full 2-subcategories of Dct as follows:

• PD for the category of primary doctrines and primary homomorphisms;

• ED for the category of elementary doctrines and elementary homomorphisms;

• Bool for the category of Boolean doctrines and Boolean homomorphisms.

1.2 Eilenberg–Moore and Kleisli constructions in the 2-

category of indexed posets

This section is devoted to show the existence of Eilenberg–Moore and Kleisli objects for comonads

in the 2-category of indexed posets. We will use them in Chapter 2 to prove a universal property

of a construction we will introduce later. Before we delve into the details, we will provide a brief

overview of the relevant definitions and concepts. In the 2-category IdxPos of indexed posets

the cells are defined as follows:

• a 0-cell is a functor P :Cop → Pos;

• a 1-cell between P :Cop → Pos and R:Dop → Pos is a pair (F, f) where F :C → D is a

functor and f:P
·−→ R ◦ F op is a natural transformation;

• a 2-cell between (F, f), (G, g):P → R is a natural transformation θ:F
·−→ G such that

fA(α) ≤ R(θA)(gA(α)) for any object A in C and α ∈ P (A).

Remark 1.2.1. The 2-category Dct is a 2-full 2-subcategory of IdxPos.

In the following section, definitions of comonads, Eilenberg–Moore and Kleisli objects in a 2-

category are taken from [PW02] (see also [Str72]).
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A comonad in the 2-category of indexed posets is a list (P :Cop → Pos, (K, k), γ, ε) where P is

a indexed poset, (K, k) is a 1-arrow, γ and ε are 2-arrows, and (K, γ, ε) is a comonad in C. In

particular, the following diagrams commute:

K K2 K

K2 K3 K2 K K2

γ

γ K(γ)
γ γ

γK

K(ε) εK

Moreover, since γ and ε are 2-arrows, the following inequalities hold:

kA(α) ≤ P (γA)kKAkA(α); kA(α) ≤ P (εA)(α).

1.2.1 Eilenberg–Moore construction

We now define the 2-category Cmd(IdxPos).

• a 0-cell is a comonad (P :Cop → Pos, (K, k), γ, ε);

• a 1-cell from the comonad (P :Cop → Pos, (K, k), γ, ε) to (P ′:C′op → Pos, (K ′, k′), γ′, ε′)

is a lax morphism of comonads, i.e. a pair ((F, f), j) where the first entry (F, f):P → P ′

is a 1-arrow in IdxPos and the second one j: (F, f)(K, k) → (K ′, k′)(F, f) is a 2-arrow, i.e.

j:FK
·−→ K ′F such that fKAkA(α) ≤ P ′(jA)k

′
FAfA(α), satisfying the coherence diagrams

below;

FK K ′F FK K ′F

FK2 K ′FK K ′2F F

j

F (γ)

γ′
F

j

F (ε)
ε′F

jK K′(j)

• a 2-cell between ((F, f), j) and ((G, g), h) is a 2-arrow η: (F, f) → (G, g) in IdxPos, i.e.

η:F
·−→ G such that fA(α) ≤ P ′(ηA)gA(α), satisfying the coherence diagram below.

FK K ′F

GK K ′G

j

ηK K′(η)

h

Definition 1.2.2. A 2-category χ has Eilenberg–Moore object for comonads if the 2-functor

Inc:χ→ Cmd(χ), which associates to every object the identity comonad, has a right 2-adjoint

(−)-Coalg: Cmd(χ)→ χ.

We will dedicate the whole section to prove the following:

Proposition 1.2.3. The 2-category IdxPos has Eilenberg–Moore object.

Although this result can be also found in [DR21], for the sake of completeness we decided to

display this proof, since we adapted it to show that IdxPos has also Kleisli objects.
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Proof. In order to prove the statement, we shall explicitly construct the right 2-adjoint

(−)-Coalg: Cmd(IdxPos)→ IdxPos.

We obviously begin with

0-cells: Fix a comonad (P :Cop → Pos, (K, k), γ, ε), and consider the functor PK :CK
op → Pos.

Let CK be the category of coalgebras for the comonad (C,K, γ, ε) in Cat: its objects are pairs

(A, c) where A is an object of C and c:A→ KA is a C-arrow such that

A KA A KA

KA K2A A

c

c K(c)

c

idA
εA

γA

while an arrow between (A, c) and (B, d) is a C-arrow f :A→ B such that

A B

KA KB

f

c d

K(f)

Let PK(A, c) be {α ∈ P (A) | α ≤ P (c)kA(α)} and PK(f) be P (f). This restriction is well

defined: take β ∈ P (B) such that β ≤ P (d)kB(β), so that P (f)(β) ≤ P (f)P (d)kB(β) =

P (c)PK(f)kB(β) = P (c)kAP (f)(β), i.e. P (f)(β) ∈ PK(A, c). Moreover, PK is a functor be-

cause P is.

1-cells: Consider ((F, f), j): (P, (K, k), γ, ε) → (P ′:C′op → Pos, (K ′, k′), γ′, ε′) in Cmd(IdxPos).

The corresponding 1-cell in IdxPos will be (F ′, f′) from PK to P ′K′
.

CK
op

C′K′op

Pos

F ′op

PK
P ′K′

f′

·

Define F ′(A, c): = (FA, jAF (c)). Using naturality and coherence of j and properties of c, we

prove that this is indeed a K ′-algebra:

K ′(jAF (c))jAF (c) = K ′(jA)K
′F (c)jAF (c) = K ′(jA)jKAFK(c)F (c)

= K ′(jA)jKAF (γA)F (c) = γ′FAjAF (c);

ε′FAjAF (c) = F (εA)F (c) = F (idA) = idFA .

Then, take a morphism between K-coalgebras f : (A, c) → (B, d), F ′(f): = F (f) is a morphism

of K ′-coalgebras:

jBF (d)F (f) = jBFK(f)F (c) = K ′F (f)jAF (c)
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because of naturality of j and properties of f . Consider that f′:PK
·−→ P ′K′

F ′op, i.e. for any

(A, c)

f′(A,c): {α ∈ P (A) | α ≤ P (c)kA(α)} → {α
′ ∈ P ′F (A) | α′ ≤ P ′(jAF (c))k

′
FA(α

′)}.

So define f′(A,c)(α): = fA(α): it is well defined since

fA(α) ≤ fAP (c)kA(α) = P ′F (c)fKAkA(α) ≤ P ′F (c)P ′(jA)k
′
FAfA(α)

from naturality of f and inequality property of j. Naturality of f′ follows trivially from the

naturality of f.

2-cells: Take a 2-cell η: ((F, f), j)→ ((G, g), h), and define η′(A,c): (FA, jAF (c))→ (GA, hAG(c)),

η′(A,c): = ηA. Clearly η
′ is a morphism of coalgebras:

hAG(c)ηA = hAηKAF (c) = K ′(ηA)jAF (c)

because of naturality and coherence of η. Naturality of η′ follows trivially from the naturality of

η. Finally, η′ is indeed a 2-arrow since the definition of η implies the following:

f′(A,c)(α) = fA(α) ≤ P ′(ηA)gA(α) = P ′K′

(η′(A,c))(g
′
(A,c)(α)).

Universal property: In order to prove that (−)-Coalg: Cmd(IdxPos) → IdxPos is indeed a

right adjoint, we have to find for each comonad (P, (K, k), γ, ε) a universal arrow

(PK , (id, id), id, id) −→ (P, (K, k), γ, ε)

i.e. a 1-arrow ((UK , u), ν) such that, for any indexed poset R:Dop → Pos and any arrow

((F, f), j): Inc(R) → (P, (K, k), γ, ε), there exists a unique morphism ((F, f), j) between the in-

dexed posets R and PK such that ((UK , u), ν) ◦ (((F, f), j), id) = ((F, f), j).

(PK , (id, id), id, id) (P, (K, k), γ, ε)

(R, (id, id), id, id)

((UK ,u),ν)

((F,f),j)

Define (UK , u):PK → P , where UK :CK → C is the forgetful functor and the natural transforma-

tion u:PK
·−→ PUK

op
is the inclusion on each component u(A,c):P

K(A, c) ↪→ PA. Finally, define

the 2-arrow ν: (UK , u) → (K, k)(UK , u) to be ν(A,c): =
(︁
c:UK(A, c) = A → KUK(A, c) = KA

)︁
.

This is indeed a 2-arrow, since PK(A, c) ∋ α ≤ P (c)(kUK(A,c)(α)) = P (c)(kA(α)) by definition of

PK(A, c).

Now consider ((F, f), j); by definition of 1-cells in Cmd(IdxPos), we know that (F, f) is a 1-arrow
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from R to P , and j:F
·−→ KF is such that fX(x) ≤ P (jX)kFX fX(x), and the coherence diagrams

become:

F KF F KF

KF K2F F

j

j γF

j

id
εF

K(j)

which exactly means that for any D-object X, the pair (FX, jX) is a K-coalgebra. Moreover,

for any D-arrow f :X → Y , naturality of j is the diagram that proves that F (f) is a morphism

between coalgebras; to sum up, we can define a functor (F (−), j(−)):D → CK that sends a

morphism f :X → Y to F (f): (FX, jX)→ (FY, jY ).

To conclude the definition of ((F, f), j), we have to find a natural transformation

f′:R
·−→ PK(F (−), j(−))

op.

Set f′X : = fX : this is well defined since, taking x ∈ R(X), and recalling that PK(FX, jX) =

{α ∈ P (FX) | α ≤ P (jX)(kFX(α))}, we have that fX(x) ∈ PK(FX, jX) if and only if fX(x) ≤
P (jX)kFX fX(x), which follows from the definition of j. Naturality follows trivially from naturality

of f.

We now prove that ((UK , u), ν) ◦ (((F (−), j(−)), f
′), id) = ((F, f), j)

Dop CK
op

Cop

Pos

(F,j)op

R

UKop

PK

P

f′

·
u

·

The composition of the functors is indeed F :(︃
f :X → Y

)︃
↦−→

(︃
F (f): (FX, jX)→ (FY, jY )

)︃
↦−→

(︃
F (f):FX → FY

)︃
,

while the composition of the natural transformations is f because u is the inclusion on every

component.

The composition (ν ◦ id)X is ν(F,j)X = ν(FX,jX) = jX .

Finally, suppose that also (G, g) is such that ((UK , u), ν) ◦ ((G, g), id) = ((F, f), j). Then in

particular UKG = F , so that GX = (FX, ∗); moreover jX = νGX = ν(FX,∗) = ∗, so that the

coalgebra structure on FX must be jX , i.e. G = (F, j). To conclude, since g post-composed with

the inclusion must be equal to f, we deduce that g = f = f′, so that ((F, j), f′) is indeed unique

and ((UK , u), ν) is a universal arrow.

The isomorphism between the Hom-categories: The adjunction we proved above induces

a bijection on objects of the Hom-categories below for any indexed poset R and any comonad

(P, (K, k), γ, ε) ∈ Cmd(IdxPos). We need to extend it on 2-arrows and prove it is an isomorphism

of categories.
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IdxPos Cmd(IdxPos)

Cmd(IdxPos)[Inc(R), (P, (K, k), γ, ε)] IdxPos[R,PK ]

(︁
(F, f), j

)︁ (︁
⟨F (−), j(−)⟩, f

)︁
(︁
(G, g), h

)︁ (︁
⟨G(−), h(−)⟩, g

)︁

Inc

(−)-Coalg

η

∼=

η

⊣

Take η:
(︁
(F, f), j

)︁
→

(︁
(G, g), h

)︁
, i.e.

1. η:F
·−→ G is a natural transformation;

2. fA(α) ≤ P (ηA)gA(α) for any object A in D and α ∈ RA;

3.

F KF

G KG

j

η

h

Kη is commutative.

We prove that η in also a 2-arrow between the correspondent indexed posets. Each component is a

well defined CK-arrow: ηX : (FX, jX)→ (GX, hX) following from 3. It is a natural transformation

between the functors ⟨F, j⟩, ⟨G, h⟩:D → CK following from 1. Finally, fX(α) ≤ PK(ηX)gX(α)

follows from 2, since PK(ηX) = P (ηX). These three condition we proved are actually equivalent

to 1,2 and 3, so the association is full. Faithfulness follows by definition, and it is essentially

surjective because of the properties of adjunction. It is clear that the quasi-inverse is actually

an inverse.

1.2.2 Kleisli construction

We now define the 2-category Cmd∗(IdxPos): = Cmd(IdxPosop)op.

• a 0-cell is a comonad (P :Cop → Pos, (K, k), γ, ε);

• a 1-cell from the comonad (P :Cop → Pos, (K, k), γ, ε) to (P ′:C′op → Pos, (K ′, k′), γ′, ε′)

is an oplax morphism of comonads, i.e. a pair ((F, f), j) where the first entry (F, f):P → P ′

is a 1-arrow in IdxPos and the second one j: (K ′, k′)(F, f) → (F, f)(K, k) is a 2-arrow, i.e.

j:K ′F
·−→ FK such that k′FAfA(α) ≤ P ′(jA)fKAkA(α), satisfying the coherence diagrams

below;

K ′F FK K ′F FK

K ′2F K ′FK FK2 F

j

γ′
F

F (γ)
j

ε′F
F (ε)

K′(j) jK

• a 2-cell between ((F, f), j) and ((G, g), h) is a 2-arrow η: (F, f) → (G, g) in IdxPos, i.e.

η:F
·−→ G such that fA(α) ≤ P ′(ηA)gA(α), satisfying the coherence diagram below.
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K ′F FK

K ′G GK

j

K′(η) ηK

h

Definition 1.2.4. A 2-category χ has Kleisli object for comonads if the 2-functor associating to

every object the identity comonad Inc:χ→ Cmd∗(χ), has a left 2-adjoint

(−)-coKl: Cmd∗(χ)→ χ.

We will devote the whole section to prove the following:

Proposition 1.2.5. The 2-category IdxPos has Kleisli object.

Proof. In order to prove the statement, we shall explicitly construct the left 2-adjoint

(−)-coKl: Cmd∗(IdxPos)→ IdxPos.

We obviously begin with

0-cells: Fix a comonad (P :Cop → Pos, (K, k), γ, ε), and consider the functor PK :CK
op → Pos.

Let CK be the category of free coalgebras for the comonad (C,K, γ, ε) in Cat: it is the full

subcategory of CK whose objects are pairs (KA, γA) where A is an object of C. Let PK(KA, γA)

be PK(KA, γA) = {α ∈ P (KA) | α ≤ P (γA)kKA(α)} and PK(f) be PK(f) = P (f). This

restriction is well defined because PK is.

Remark 1.2.6. The category CK is isomorphic to the category CK whose objects are the same

as C, and a CK-arrow A ⇝ B is a C-arrow KA → B; composition between g:A ⇝ B and

h:B ⇝ C is computed as

KA
γA−−→ K2A

K(g)−−−→ KB
h−→ C;

the identity of A is given by εA.

The functor CK → CK sends f : (KA, γA) → (KB, γB) to εBf :A ⇝ B: it trivially respects

identity; concerning composition, we have to prove that given f : (KA, γA) → (KB, γB) and

f ′: (KB, γB)→ (KC, γC) we have

εCf
′K(εBf)γA = εCf

′f,

but K(f)γA = γBf by definition of f , and K(εB)γB is the identity, so the equality holds. The

inverse CK → CK sends g:A⇝ B to K(g)γA. This is well defined since

K(K(g)γA)γA = K2(g)γKAγA = γBK(g)γA.
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Identity is trivially preserved; concerning composition, we need to show that

K(h)γBK(g)γA = K(hK(g)γA)γA,

however K(h)K2(g)K(γA)γA = K(h)K2(g)γKAγA = K(h)γBK(g)γA, as claimed. Now take

f : (KA, γA)→ (KB, γB), map it to εBf and then into K(εBf)γA = K(εB)γBf = f ; conversely

take g:A⇝ B, map it to K(g)γA and then into εBK(g)γA = gεKAγA = g. So the two functors

are one the inverse of the other.

We now resume the proof of Proposition 1.2.5.

1-cells: Consider ((F, f), j): (P, (K, k), γ, ε)→ (P ′:C′op → Pos, (K ′, k′), γ′, ε′) in Cmd∗(IdxPos).

The corresponding 1-cell in IdxPos will be (F ′, f′) from PK to P ′
K′ .

CK
op C′

K′
op

Pos

F ′op

PK P ′
K′

f′

·

Define F ′(KA, γA): = (K ′FA, γ′FA), which is by definition a free K ′-coalgebra.

Then, take a morphism between free K-coalgebras f : (KA, γA) → (KB, γB), and let F ′(f) be

K ′(F (εBf)jA)γ
′
FA.

K ′FA
jA−→ FKA

F (f)−−−→ FKB
F (εB)−−−−→ FB

F ′(f): =

(︃
K ′FA

γ′
FA−−−→ K ′2FA

K′(F (εBf)jA)−−−−−−−−−→ K ′FB

)︃
This is a morphism of K ′-coalgebras if and only if the following diagram commutes:

K ′FA K ′FB

K ′2FA K ′2FB

F ′(f)

γ′
FA γ′

FB

K′F ′(f)

γ′FBK
′(F (εBf)jA)γ

′
FA = K ′2(F (εBf)jA)γ

′
K′FAγ

′
FA = K ′2(F (εBf)jA)K

′(γ′FA)γ
′
FA,

which holds using naturality of γ′ and its comultiplication property.

Consider that f′:PK
·−→ P ′

K′F ′op, i.e. for any (KA, γA)

f′(KA,γA):PK(KA, γA)→ P ′
K′(K ′FA, γ′FA),

where PK(KA, γA)⊆ PKA and P ′
K′(K ′FA, γ′FA)⊆ P ′K ′FA. So define f′(KA,γA) to be the re-

striction of the following composition:

PKA
fKA−−→ P ′FKA

P ′(jA)−−−−→ P ′K ′FA
k′
K′FA−−−−→ P ′K ′2FA

P ′(γ′
FA)−−−−−→ P ′K ′FA.
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To prove that the restriction is well defined, take α ∈ PK(KA, γA), i.e. α ∈ PKA such that

α ≤ P (γA)kKA(α), we want to check that

f′(KA,γA)(α) ≤ P
′(γ′FA)k

′
K′FA(f

′
(KA,γA)(α)).

However we compute:

P ′(γ′FA)k
′
K′FAP

′(jA)fKA(α) ≤ P ′(γ′FA)P
′(γ′K′FA)k

′
K′2FAk

′
K′FAP

′(jA)fKA(α)

= P ′(γ′FA)P
′K ′(γ′FA)k

′
K′2FAk

′
K′FAP

′(jA)fKA(α)

= P ′(γ′FA)k
′
K′FAP

′(γ′FA)P
′K ′(jA)k

′
FKAfKA(α)

= P ′(γ′FA)k
′
K′FAP

′(γ′FA)k
′
K′FAP

′(jA)fKA(α)

= P ′(γ′FA)k
′
K′FA(f

′
(KA,γA)(α)),

since γ′: (K ′, k′)→ (K ′, k′)2 is a 2-arrow, by comultiplication property of γ′ and by naturality of

k′.

Naturality of f′ means we have to prove that for any f : (KA, γA) → (KB, γB), the following

diagram commutes:

PK(KB, γB) P ′
K′(K ′FB, γ′FB)

PK(KA, γA) P ′
K′(K ′FA, γ′FA)

f′(KB,γB)

P (f) P ′(K′(F (εBf)jA)γ′
FA)

f′(KA,γA)

Observe that we can decompose the diagram above as follows:

PKB P ′FKB P ′K ′FKB P ′K ′2FB P ′K ′FB

PKA P ′FKA P ′K ′FKA P ′K ′2FA P ′K ′FA

fKB

P (f)

k′FKB

P ′F (f)

P ′K′(jB)

P ′K′F (f)

P ′(γ′
FB)

P ′(K′(F (εBf)jA)γ′
FA)

fKA k′FKA P ′K′(jA) P ′(γ′
FA)

The first two square commute because they are naturality squares of f and k respectively. To prove

commutativity of the third square, it is enough to prove that the following square commutes:

K ′FA K ′2FA K ′FKA

K ′FB K ′2FB K ′FKB

γ′
FA

K′(F (εBf)jA)γ′
FA

K′(jA)

K′F (f)

γ′
FB K′(jB)

K ′(jB)γ
′
FBK

′(F (εBf)jA)γ
′
FA = K ′(jB)K

′2(F (εBf)jA)γ
′
K′FAγ

′
FA

= K ′(jBK
′F (εBf))K

′2(jA)γ
′
K′FAγ

′
FA = K ′(FK(εBf)jKA)K

′2(jA)K
′(γ′FA)γ

′
FA

= K ′FK(εBf)K
′(jKAK

′(jA)γ
′
FA)γ

′
FA = K ′FK(εBf)K

′(F (γA)jA)γ
′
FA

= K ′F (K(εBf)γA)K
′(jA)γ

′
FA.
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from naturality of γ′, naturality of j, γ′ comultiplication property, j coherence.

To conclude, observe that K(εBf)γA = K(εB)γBf = f because of the definition of morphism

between coalgebras and a property of ε, so that the diagram above commutes, and f′ is indeed a

natural transformation.

2-cells: Take a 2-cell η: ((F, f), j)→ ((G, g), h), and look for η′:F ′ ·−→ G′ such that

f′(KA,γA)(α) ≤ P
′
K′(η′(KA,γA))(g

′
(KA,γA)(α)).

Define η′(KA,γA): (K
′FA, γ′FA)→ (K ′GA, γ′GA), η

′
(KA,γA): = K ′(ηA).

Naturality diagram of γ′ applied to ηA proves that η′ is a morphism of coalgebras.

To prove naturality of η′ we have to check that for any f : (KA, γA) → (KB, γB) the following

diagram commutes:

(K ′FA, γ′FA) (K ′GA, γ′GA)

(K ′FB, γ′FB) (K ′GB, γ′GB)

K′(ηA)

K′(F (εBf)jA)γ′
FA K′(G(εBf)hA)γ′

GA

K′(ηB)

K ′(G(εBf)hA)γ
′
GAK

′(ηA) = K ′G(εBf)K
′(hA)K

′2(ηA)γ
′
FA

= K ′(G(εBf)ηKAjA)γ
′
FA = K ′(ηBF (εBf))K

′(jA)γ
′
FA,

from naturality of γ′, coherence diagram of η and its naturality.

Finally, η′ is indeed a 2-arrow:

f′(KA,γA)(α) = P ′(γ′FA)k
′
K′FAP

′(jA)fKA(α)

≤ P ′(γ′FA)k
′
K′FAP

′(jA)P
′(ηKA)(gKA(α)) = P ′(γ′FA)k

′
K′FAP

′K ′(ηA)P
′(hA)gKA(α)

= P ′(γ′FA)P
′K ′2(ηA)k

′
K′GAP

′(hA)gKA(α) = P ′(K ′2(ηA)γ
′
FA)k

′
K′GAP

′(hA)gKA(α)

= P ′(γ′GAK
′(ηA))k

′
K′GAP

′(hA)gKA(α) = P ′(K ′(ηA))(P
′(γ′GA)k

′
K′GAP

′(hA)gKA(α))

= P ′
K′(η′(KA,γA))(g

′
(KA,γA)(α))

since η is a 2-arrow, its coherence, naturality of k and naturality of γ′.

Universal property: In order to prove that (−)-coKl: Cmd∗(IdxPos) → IdxPos is indeed a

left adjoint, we have to find for each comonad (P, (K, k), γ, ε) a universal arrow

(P, (K, k), γ, ε) −→ (PK , (id, id), id, id)

i.e. a 1-arrow ((FK , k
′), j′) such that, for any indexed poset R:Dop → Pos and any arrow

((F, f), j): (P, (K, k), γ, ε) → Inc(R), there exists a unique morphism ((F, k), j) between the in-

dexed posets PK and R such that (((F, k), j), id) ◦ ((FK , k′), j′) = ((F, f), j).
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(P, (K, k), γ, ε) (PK , (id, id), id, id)

(R, (id, id), id, id)
((F,f),j)

((FK ,k
′),j′)

Define (FK , k
′):P → PK , where FK :C→ CK is the cofree functor(︃

f :A→ B

)︃
↦−→

(︃
K(f): (KA, γA)→ (KB, γB)

)︃

and the natural transformation k′:P
·−→ PKFK

op is computed as k: this is well defined since,

recalling that γ is a 2-arrow, we know that kA(α) ≤ P (γA)kKAkA(α), i.e. kA(α) ∈ PKFKA.

Naturality of k′ follows from naturality of k.

Finally, define the 2-arrow j′: (FK , k)→ (FK , k)(K, k) to be j′A: = γA. This natural and a 2-arrow

because γ is.

Now consider ((F, f), j); by definition of 1-cells in Cmd∗(IdxPos), we know that (F, f) is a 1-arrow

from P to R, and j:F
·−→ FK is such that fA(α) ≤ R(jA)fKAkA(α), and the coherence diagrams

become:

F FK F FK

FK FK2 F

j

j F (γ)

j

id F (ε)

jK

Define the functor F ′:CK → D to be the one that maps f : (KA, γA) → (KB, γB) to the

composition F (εBf)jA:FA → FB. We check that this is indeed a functor, proving that

F ′(gf) = F ′(g)F ′(f) for any pair of composable arrows f :KA → KB, g:KB → KC between

free coalgebras.

F ′(g)F ′(f) = F (εCg)jBF (εBf)jA = F (εCg)FK(εBf)jKAjA

= F (εCgK(εB))FK(f)F (γA)jA = F (εCgK(εB)γBf)jA

= F (εCgf)jA = F ′(gf)

from naturality of j, its coherence, definition of morphism between coalgebras and property of

the counit.

To conclude the definition of ((F, f), j), we have to find a natural transformation f′:PK
·−→ RF ′op.

Define f′(KA,γA):PK(KA, γA) → RFA to be the restriction of R(jA)fKA. To show f′ is natural

we need for any f :KA→ KB between free coalgebras that the following diagram commutes:

PK(KB, γB) RF ′(KB, γB)

PK(KA, γA) RF ′(KA, γA)

f′(KB,γB)

P (f) RF ′(f)

f′(KA,γA)

To see this, observe that it is enough to prove the commutativity of the second square of
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PKB RFKB RFB

PKA RFKA RFA

fKB

P (f)

R(jB)

RF (f) R(F (εBf)jA)

fKA R(jA)

since commutativity of the first square follows from naturality of f, but again it is enough to

prove:

FA FKA

FB FKB

jA

F (εBf)jA F (f)

jB

jBF (εBf)jA = FK(εBf)jKAjA = FK(εBf)F (γA)jA

= F (K(εB)γBf)jA = F (f)jA

from naturality of j, its coherence, definition of morphism between coalgebras and counit prop-

erty; so f′ is indeed a natural transformation.

We now prove that ((F ′, f′), id) ◦ ((FK , k), γ) = ((F, f), j).

Cop CK
op Dop

Pos

FK
op

P

F ′op

PK

R

k

·
f′

·

The composition of the functors is indeed F :

(︃
f :A→ B

)︃
↦−→

(︃
K(f):FKA→ FKB

)︃
=

(︃
K(f): (KA, γA)→ (KB, γB)

)︃
↦−→

(︃
F (εBK(f))jA:FA→ FB

)︃
,

but F (εBK(f))jA = F (fεA)jA = F (f) from naturality of ε and coherence of j.

Concerning the composition of the natural transformations, we need to check the equality

R(jA)fKAkA(α) = fA(α). The direction (≥) follows from the definition of j. To prove the

converse, recall that coherence of j implies that F (εA)jA is the identity, so

fA = R(jA)RF (εA)fA = R(jA)fKAP (εA)

from naturality of f. Moreover, since ε is a 2-arrow, we know that kA(α) ≤ P (εA)(α), so that

R(jA)fKAkA(α) ≤ R(jA)fKAP (εA)(α) = fA(α), i.e. (≤) holds.
The composition (id ◦γ)A is F ′(γA) = F (εKAγA)jA = jA.

Finally, suppose that also (G, g) is such that ((G, g), id) ◦ ((FK , k), γ) = ((F, f), j). Then in

particular GFK = F , so that G = F ′ on objects; moreover, id ◦γ = j means that G(γA) = jA.

Observe also that, given a C-arrow g, GK(g) = GFK(g) = F (g). We claim that for any morphism
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f :KA → KB between free coalgebras, G(f) = F ′(f), i.e. G(f) = F (εBf)jA. First of all,

coherence of j proves that

G(f) = F (εB)jBG(f)F (εA)jA.

However,

jBG(f)F (εA) = G(γB)G(f)GK(εA) = G(γB)G(fK(εA))

= G(K(f)γAK(εA)) = F (f)jAF (εA)

using the properties of G described above, definition of morphism between coalgebras; so we

obtain G(f) = F (εB)F (f)jAF (εA)jA = F (εBf)jA = F ′(f), i.e. the functor G is indeed the

functor F ′.

To conclude, we have to prove that g = f′, i.e. g(KA,γA) = R(jA)fKA. We know that gk = f, i.e.

g(KA,γA)kA = fA, where g(KA,γA):PK(KA, γA)→ RFA.

Note that

f′(KA,γA) = R(jA)fKA = R(jA)g(K2A,γKA)kKA

= RG(γA)g(K2A,γKA)kKA = g(KA,γA)P (γA)kKA,

because of the property of the composition of k and g described above and naturality of g. We

only need to prove that the composition P (γA)kKA acts like the identity on PK(KA, γA). So

take α ∈ PKA such that α ≤ P (γA)kKA(α); we claim that α = P (γA)kKA(α). Clearly (≤) holds
by definition, so we prove the converse. Recall that ε is a 2-arrow, so kKA(α) ≤ P (εKA)(α), and
apply P (γA):

P (γA)kKA(α) ≤ P (γA)P (εKA)(α) = α

so we proved that g = f′ and ((FK , k), γ) is a universal arrow.

The isomorphism between the Hom-categories: The adjunction we proved above induces

a bijection on objects of the Hom-categories below for any indexed poset R and any comonad

(P, (K, k), γ, ε) ∈ Cmd∗(IdxPos). We need to extend it on 2-arrows and prove it is an isomorph-

ism of categories.

IdxPos Cmd∗(IdxPos)

Cmd∗(IdxPos)[(P, (K, k), γ, ε), Inc(R)] IdxPos[PK , R](︁
(F, f), j

)︁
(F ′, R(j)fK)

(︁
(G, g), h

)︁
(G′, R(h)gK)

η

∼=

η

(−)-coKl

Inc

⊣
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where F ′(︁f : (KA, γA)→ (KB, γB)
)︁
=

(︁
F (εBf)jA:FA→ FB

)︁
, and similarly for G′.

Take η:
(︁
(F, f), j

)︁
→

(︁
(G, g), h

)︁
, i.e.

1. η:F
·−→ G is a natural transformation;

2. fA(α) ≤ P (ηA)gA(α) for any object A in C and α ∈ PA;

3.

F KF

G KG

j

η

h

ηK is commutative.

We prove that η in also a 2-arrow between the correspondent indexed posets, defining η(KA,γA) =

ηA:FA → GA. It is a natural transformation between the functors F ′ and G′ if for any

f : (KA, γA)→ (KB, γB), we have ηBF (εBf)jA = G(εBf)hAηA. However:

ηBF (εBf)jA = G(εBf)ηKAjA = G(εBf)hAηA

using 1. and 3. Then we need R(jA)fKA(α) ≤ R(η(KA,γA))R(hA)gKA(α), but we know that

R(ηA)R(hA)gKA(α) = R(jA)R(ηKA)gKA(α), so the inequality follows from 2.

To show this functor is full, take a natural transformation η:F ′ → G′ such that R(jA)fKA(α) ≤
R(η(KA,γA))R(hA)gKA(α) for any α ∈ P (KA) satisfying α ≤ P (γA)kKA(α), and we prove that 1.,

2. and 3. hold. Take any f :A→ B, so thatK(f): (KA, γA)→ (KB, γB) is a CK arrow; apply nat-

urality to K(f) so η(KB,γB)F
′(Kf) = G′(Kf)η(KA,γA). However, F ′(Kf) = F (εB)FK(f)jA =

F (εB)jBF (f) = F (f), using naturality and coherence of j; similarly G′(Kf) = G(f), so η is a nat-

ural transformation from F to G. To show 2., take any β ∈ PB, we want fB(β) ≤ R(ηB)gB(β),
but by some computation we did above, we know that fB = R(jB)fKBkB—and similarly gB =

R(hB)gKBkB—, so fB(β) = R(jB)fKBkB(β) ≤ R(ηB)R(hB)gKBkB(β) = R(ηB)gB(β), using the

fact that kB(β) ∈ PK(B) and definition of η. Finally, observe that by definition of γ, we have

that γA: (KA, γA) → (K2A, γK2A) is a CK-arrow, so apply naturality of η with respect to γA

to obtain G′(γA)η(KA,γA) = η(K2A,γK2A)F
′(γA), i.e. G(εKAγA)hAηA = ηKAF (εKAγA)jA, hence

hAηA = ηKAjA, so that also 3. holds. Again, faithfulness follows by definition, and it is essentially

surjective because of the properties of adjunction. It is clear that the quasi-inverse is actually

an inverse.

1.3 Existence of directed colimits in Dct

This section is devoted to the construction of direct colimits in the category Dct. We will

demonstrate that this construction preserves many properties, which will be crucial for our later

work in Sections 3.1 and 3.3. Specifically, we will use these results to verify that two constructions

we introduce respect all the needed structure of the starting doctrine.

While some of the results in this section are well known, such as how directed colimits are
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computed in categories like Cat or Pos, we present them here in detail in order to compute how

additional structure is preserved.

Proposition 1.3.1. The category Dct has colimits over directed preorders.

Proof. We begin by considering a directed preorder I, so that for each i, j ∈ I there exists a

k ∈ I such that k ≥ i, j. Then suppose to have a diagram over this preorder, i.e. a functor

D: I → Dct. In particular, for all i ∈ I we have Pi := D(i):Cop
i → Pos, and for all i ≤ k

a morphism (Fik, fik):Pi → Pk where Fik:Ci → Ck is a functor preserving finite products and

fik:Pi
·−→ PkF

op
ik is a natural transformation. Moreover, we ask for (Fii, fii) to be the identity on

Pi, and for (Fjk, fjk) ◦ (Fij , fij) = (Fik, fik) whenever i ≤ j ≤ k.
Our goal is to define a suitable doctrine P•:C

op
• → Pos, and then show that it is the colimit over

I.

The base category C•: The base category C• is the colimit over I in Cat of the diagram given

by Ci’s and Fij ’s: objects are classes of objects from any Ci, identified as follows.

obC• =

⨆︂
i∈I

Ci⧸∼,

where two objects A(i), B(j) in Ci and Cj respectively are such that A(i) ∼ B(j) if and only if

there exists k ≥ i, j such that FikA(i) = FjkB(j) in Ck. Then for any pair of objects [A(i)], [B(j)]

we have as morphisms:

HomC•

(︁
[A(i)], [B(j)]

)︁
=

⨆︂
k≥i,j

HomCk

(︁
FikA(i), FjkB(j)

)︁
⧸∼

where (fk:FikA(i) → FjkB(j)) ∼ (fk′ :Fik′A(i) → Fjk′B(j)) if and only if there exists h ≥ k, k′

such that Fkhfk = Fk′hfk′ in Ch. This is well defined: suppose i ≤ l and j ≤ m, so that

[A(i)] = [FilA(i)] and [B(j)] = [FjmB(j)], we want to show that the inclusion

⨆︂
n≥l,m

HomCn

(︁
FlnFilA(i), FmnFjmB(j)

)︁
↪→

⨆︂
k≥i,j

HomCk

(︁
FikA(i), FjkB(j)

)︁
becomes a bijection on the corresponding quotients:

⨆︁
n≥l,mHomCn

(︁
FinA(i), FjnB(j)

)︁ ⨆︁
k≥i,j HomCk

(︁
FikA(i), FjkB(j)

)︁
⨆︁
n≥l,mHomCn

(︁
FinA(i), FjnB(j)

)︁
⧸∼

⨆︁
k≥i,j HomCk

(︁
FikA(i), FjkB(j)

)︁
⧸∼

Take fn1
, fn2

, with ns ≥ l,m, and fns
:Fins

A(i) → Fjns
B(j) for s = 1, 2. It follows from the

definition that fn1
∼ fn2

as arrows seen in the union on the left if and only if fn1
∼ fn2

seen in

the union on the right, so that the dotted arrow is both well defined and injective. This arrow is

also surjective: consider fk:FikA(i) → FjkB(j) for some k ≥ i, l and take n ≥ k, l,m; then clearly
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[fk] = [Fknfk], with Fknfk belonging to the union on the left. To conclude, since the preorder

is directed one can show the isomorphism between such quotients of unions also in the general

case i ≰ l or j ≰ m.

Composition in C• between two composable arrows

[A(i)]
[fk]−−→ [B(j)]

[fk′ ]−−−→ [C(l)],

where fk:FikA(i) → FjkB(j) and fk′ :Fjk′B(j) → Flk′C(l), is [fk′ ] ◦ [fk] = [Fk′hfk′ ◦ Fkhfk] for a
given h ≥ k, k′. This is clearly well defined on the choice of h, and on the representative of fk

and fk′ .

Finite products in C•: The category C• has binary products, defined in the obvious way:

take objects [A(i)], [B(j)] and call [A(i)]×−→[B(j)] := [FikA(i) × FjkB(j)], having as projections the

classes of projections from FikA(i)×FjkB(j) in Ck for some k ≥ i, l—note that [FikA(i)] = [A(i)]

and similarly for the other object, so the codomains of projections make sense in the diagram

below. Such class of objects is well defined because the F⋆∗’s preserve products. To see that it

is indeed a product consider the diagram:

[V(h)]

[FikA(i) × FjkB(j)]

[A(i)] [B(j)]

[FikA(i)] [FjkB(j)]

[pr1]

=
[αs]

=

[βt]

[pr2]

where αs:FhsV(h) → FisA(i), βt:FhtV(h) → FjtB(j), for some s ≥ h, i and t ≥ h, j. Now let

m ≥ i, j, k, h, s, t and consider the diagram in Cm:

FhmV(h)

FimA(i) × FjmB(j)

FimA(i) FjmB(j)

⟨Fsm(αs),Ftm(βt)⟩Fsm(αs) Ftm(βt)

q1 q2

Clearly [⟨Fsm(αs), Ftm(βt)⟩] makes the diagram in C• commute. Now, to prove uniqueness, take

ψn = ⟨ψn1, ψn2⟩:FhnV(h) → FinA(i) × FjnB(j) for some n ≥ h, k, such that [ψn1] = [αs] and

[ψn2] = [βt]. Then, there exists r ≥ n, s, t such that Fnr(ψn1) = Fsr(αs) and Fnr(ψn2) = Ftr(βt);

in particular

[ψn] = [⟨Fnr(ψn1), Fnr(ψn2)⟩].
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Finally, take u ≥ r,m:

Fmu(⟨Fsm(αs), Ftm(βt)⟩) = ⟨Fsu(αs), Ftu(βt)⟩

= ⟨FruFsr(αs), FruFtr(βt)⟩

= Fru⟨Fnr(ψn1), Fnr(ψn2)⟩,

i.e. [⟨Fsm(αs), Ftm(βt)⟩] = [ψn].

In order to conclude the argument about existence of finite products, observe that if ti is a

terminal object in Ci, then [ti] is a terminal object in C•: take an object [B(j)], k ≥ i, j and

consider the unique map !FjkB(j)
:FjkB(j) → tk in Ck. Then [!FjkB(j)

] is a map from [B(j)]

to [ti] = [Fikti] = [tk]. We show uniqueness by considering a map [uh]: [B(j)] → [ti] for some

uh:FjhB(j) → Fihti: then uh = !FjhB(j)
in Ch. Taking l ≥ k, h we get [!FjkB(j)

] = [Fkl(!FjkB(j)
)] =

[!FjlB(j)
] = [Fhl(!FjhB(j)

)] = [!FjhB(j)
] = [uh].

P• on objects: Now that we built a suitable base category with finite products, we define the

doctrine P•. For an object [A(i)], we take:

P•([A(i)]) =

⨆︂
k≥i

Pk(FikA(i))⧸∼

where ak1 ∼ ak2 , with aks ∈ Pks(FiksA(i)) for s = 1, 2, if and only if there exists j ≥ k1, k2 such

that (︁
fk1j

)︁
Fik1

A(i)
(ak1) =

(︁
fk2j

)︁
Fik2

A(i)
(ak2) in Pj(FijA(i)).

This is well defined on the choice of the representative of [A(i)]: in a similar way to what we did

above defining arrows in C•, we prove that the dotted arrow induced by the inclusion is bijective,

in the case l ≥ i.

⨆︁
k≥l Pk(FikA(i))

⨆︁
n≥i Pn(FinA(i))

⨆︁
k≥l Pk(FikA(i))⧸∼

⨆︁
n≥i Pn(FinA(i))⧸∼

Take ah1 , ah2 for h1, h2 ≥ l, then ah1 ∼ ah2 on the left if and only if they are equivalent on

the right, hence well-definition and injectivity of the function follows. Surjectivity also follows

easily: take [bm] for some m ≥ i, and let u ≥ m, l. Then bm ∼
(︁
fmu

)︁
FimA(i)

(bm) ∈ Pu(FiuA(i))

as wanted. If we fix A(i), we observe that P•([A(i)]) is a directed colimit in Pos on the diagram

defined over elements of I greater or equal to i. An element j ≥ i is sent to Pj(FijA(i)), and

for any j ≤ k we have the monotone function
(︁
fjk

)︁
FijA(i)

:Pj(FijA(i))→ Pk(FikA(i)). Hence we

defined a poset for each object of C•.

P• on arrows: Take a C•-arrow [f ]: [A(i)]→ [B(j)] for some f :FikA(i) → FjkB(j) ∈ arrCk, k ≥
i, j.
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Cop
• Pos

[B(j)] P•([B(j)]) P•([FjkB(j)])

[A(i)] P•([A(i)]) P•([FikA(i)])

P•([f ])

=

=

[f ]

For any given l ≥ k we have Fkl(f):FilA(i) → FjlB(j) ∈ arrCl and

Pl(Fkl(f)):Pl(FjlB(j))→ Pl(FilA(i)).

Since P•([FjkB(j)]) =
⨆︁
l≥k Pl(FjlB(j))⧸∼, we prove that the map

⨆︂
l≥k

Pl(FjlB(j)) −→
⨆︂
m≥k

Pm(FimA(i))⧸∼

sending any βl in [Pl(Fkl(f))βl] is well defined on the quotient, hence defining a map from

P•([B(j)]) to P•([A(i)]). Take l′ ≥ l—then, the statement for any h ≥ k follows—, so that

βl ∼
(︁
fll′

)︁
FjlB(j)

βl ∈ Pl′(Fjl′B(j)) and

(︁
fll′

)︁
FjlB(j)

βl ↦→ [Pl′(Fkl′(f))
(︁
fll′

)︁
FjlB(j)

βl].

We now use the naturality of fll′ and get:

[Pl′(Fkl′(f))
(︁
fll′

)︁
FjlB(j)

βl] = [
(︁
fll′

)︁
FilA(i)

Pl(Fkl(f))βl] = [Pl(Fkl(f))βl]

as claimed.

The following step is to prove that the definition of P•([f ]) does not depend on the representative

of [f ]. Take k′ ≥ k, then [f ] = [Fkk′(f)], with Fkk′(f):Fik′A(i) → Fjk′B(j). Hence we have for

any βl′ ∈ Pl′(Fjl′B(j)), l
′ ≥ k′

[βl′ ] ↦→ [Pl′(Fk′l′Fkk′(f))βl′ ]

but Fk′l′Fkk′ = Fkl′ , the two maps act in the same way from P•([B(j)]) to P•([A(i)]).

It follows from the fact that P•([f ]) is defined on any suitable k′ ≥ k and that both [−]—in any

P•([Ch])—and Pk′(Fkk′(f)) preserve the order, that P•([f ]) preserves the order; moreover, also

functoriality comes easily. Hence P•:C
op
• → Pos is indeed a doctrine.

A universal cocone into P•: Now, for any i ∈ I, define the 1-cell (Fi, fi):Pi → P• in Dct as

follows:
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Cop
i C•

op

Pos

Fi
op

Pi P•

fi
·

The functor Fi is the quotient map, sending f :A(i) → B(i) to [f ]: [A(i)] → [B(i)]; observe that

by construction such functors preserve finite products. Similarly fi:Pi
·−→ P•F

op
i is the quotient

map on every object of Ci:

(︁
fi
)︁
A(i)

:Pi(A(i))→ P•([A(i)]) is defined by the assignment αi ↦→ [αi].

Such functions are clearly order preserving. It follows trivially from the definition of P• on arrows

that fi is a natural transformation. Now, to check that it is indeed a cocone, take i ≤ k: we want
(Fk, fk) ◦ (Fik, fik) = (Fi, fi).

Cop
i Ck

op Cop
•

Pos

Fik
op

Pi

Fk
op

Pk

P•

fik

·
fk

·

Concerning the functors between the base categories, observe that the composition

A(i) FikA(i) [FikA(i)] [A(i)]

B(i) FikB(i) [FikB(i)] [B(i)]

f [Fik(f)]

=

=

Fik(f) [f ]=

is indeed Fi. Then, for any αi ∈ Pi(A(i)), we have:

(︁
fk ◦ fik

)︁
A(i)

αi =
(︁
fk
)︁
FikA(i)

(︁
fik

)︁
A(i)

αi = [
(︁
fik

)︁
A(i)

αi] = [αi] =
(︁
fi
)︁
A(i)

αi,

so that fk ◦ fik = fi.

Suppose we have another cocone, i.e. any doctrine R:Dop → Pos that comes with a family of

1-cells {(Gi, gi):Pi → R}i∈I such that for any i ≤ k one has (Gk, gk) ◦ (Fik, fik) = (Gi, gi) we

look for a unique 1-cell (G, g):P• → R such that (G, g) ◦ (Fi, fi) = (Gi, gi) for all i ∈ I.
In order to define G:C• → D, take any [f ]: [A(i)] → [B(j)] with f :FikA(i) → FjkB(j) for some

k ≥ i, j and send it to Gk(f):GiA(i) → GjB(j). This is well defined because of the commutativity

properties of the cocone. Similarly we define g:P•
·−→ RGop: for a given object [A(i)], we take

g[A(i)]:P•([A(i)])→ RGiA(i), such that [αk] ↦→
(︁
gk
)︁
FikA(i)

αk

for any αk ∈ Pk(FikA(i)), k ≥ i. This is well defined on both [αk] and [A(i)] again from the

properties of the cocone. Naturality of g is also easy to see: given an arrow [f ]: [A(i)] → [B(j)]
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we compute both RG([f ])g[B(j)] and g[A(i)]P•([f ]) on a given [βl] ∈ P•([B(j)]):

RG([f ])g[B(j)][βl] = RGk(f)
(︁
gl
)︁
FjlB(j)

βl = RGl(Fkl(f))
(︁
gl
)︁
FjlB(j)

βl

=
(︁
gl
)︁
FilA(i)

Pl(Fkl(f))βl = g[A(i)][Pl(Fkl(f))βl] = g[A(i)]P•([f ])[βl].

Uniqueness is given by the fact that all triangles like the one below must commute.

Pi R

P•

(Fi,fi) (G,g)

(Gi,gi)

1.3.1 Additional structure

We now show that many properties are preserved by a directed colimit.

Proposition 1.3.2. Let I be a directed preorder, D: I → Dct be a diagram, D(i ≤ j) =

[(Fij , fij):Pi → Pj ] for any i, j ∈ I, and let (P•, {(Fi, fi)}i∈I) be the colimit of D. Suppose that

for every i, j ∈ I, the doctrine Pi and the morphism (Fij , fij) are primary. Then the doctrine

P• is a primary doctrine, and for every i ∈ I the morphism (Fi, fi) is primary. Moreover, if for

any cocone (R, {(Gi, gi)}i∈I), R and (Gi, gi) are primary, then the unique arrow (G, g):P• → R

defined by the universal property of the colimit is primary. The same statement holds if we write

respectively bounded, with binary joins, implicational, elementary, existential, universal, Horn,

Heyting, Boolean instead of primary.

Proof. Algebraic properties: It is a well known fact that directed colimit of algebraic struc-

tures exists, hence if for all i ∈ I, Pi is endowed with equational structure such as ∧,⊤ or ∨,⊥,
then these operation are defined also in P•, preserved by fi for all i ∈ I. Such properties are

also preserved by reindexing: this can be shown using naturality of fij and the fact that they are

preserved by reindexing in each Pi . Moreover, since g is defined through gi’s, which preserve

operations, also g preserves them.

Implication: We define for each pair of elements [αk], [βk′ ] ∈ P•[A(i)], with αk ∈ FikA(i) and

βk′ ∈ Fik′A(i) for some k, k′ ≥ i

[αk]→ [βk′ ] := [
(︁
fkh

)︁
FikA(i)

αk →
(︁
fk′h

)︁
Fik′A(i)

βk′ ]

for some h ≥ k, k′. This is well defined because every function in {fij}i,j∈I preserves implications.

Moreover, this is indeed a right adjoint to the binary meet operation:

[γk] ≤ [αk]→ [βk′ ] in P•[A(i)] (1.1)
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if and only if there exists s ≥ k, k, k′ such that in Ps(FisA(i))

(︁
fks

)︁
FikA(i)

γk ≤
(︁
fks

)︁
FikA(i)

αk →
(︁
fk′s

)︁
Fik′A(i)

βk′ ,

but this inequality holds if and only if

(︁
fks

)︁
FikA(i)

γk ∧
(︁
fks

)︁
FikA(i)

αk ≤
(︁
fk′s

)︁
Fik′A(i)

βk′

so (1.1) holds if and only if

[γk] ∧ [αk] ≤ [βk′ ].

Now, since [αk] → [βk′ ] is computed in a common poset, as in the case of algebraic properties,

implication is preserved by reindexings, {fi}i∈I and g.

Elementarity: For a given pair of objects [C(i)], [B(j)], take the reindexing over id[C(i)] ×−→∆[B(j)]

computed as

P•([idFikC(i)
×∆FjkB(j)

]):P•([C(i)]×−→[B(j)]×−→[B(j)])→ P•([C(i)]×−→[B(j)])

for any k ≥ i, j. We define Æ•
[B(j)]

[C(i)]
as the function sending [αh] to

[︁
Æk

FjkB(j)

FikC(i)

(︁
fhk

)︁
FihC(i)×FjhB(j)

αh
]︁

for some k ≥ i, j, h, where we write Æk for the left adjoint to Pk(id×∆) (see Definition 1.1.6).

This is well defined since every map in {fij}i,j∈I preserves the structure. Again, one can prove

that it is indeed the left adjoint of the reindexing above, naturality in [C(i)] and Frobenius

reciprocity—it follows from Frobenius reciprocity for any Æk. Moreover, {fi}i∈I and g preserve

the structure.

Existentiality and Universality: In a similar way to what we did to define the element-

ary structure, we build the existential and the universal quantifier. Take [C(i)], [B(j)], consider

[pr1]: [C(i)]×−→[B(j)]→ [C(i)], where we call pr1:FikC(i) × FjkB(j) → FikC(i) the projection in Ck

for any k ≥ i, j. Then consider

P•([q1]):P•([C(i)])→ P•([C(i)]×−→[B(j)])

and define

∃•
[B(j)]

[C(i)]
[βl] := [∃l

FjlB(j)

FilC(i)
βl] and ∀•

[B(j)]

[C(i)]
[βl] := [∀l

FjlB(j)

FilC(i)
βl]

for βl ∈ Pl(FilC(i) × FjlB(j)).

This is well defined since every map in {fij}i,j∈I preserves the structure, with similar arguments

to the above. Moreover, one can prove that ∃•
[B(j)]

[C(i)]
and ∀•

[B(j)]

[C(i)]
define respectively the left adjoint

and the right adjoint to P•([q1]), that they are both natural in [C(i)] and Frobenius reciprocity
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for the existential quantifier holds. Furthermore, {fi}i∈I and g preserve the structures.

1.4 Boolean completion

In this section, we focus on constructing the Boolean completion of an implicational doctrine

P with bottom element. In other words, we seek for a universal way to associate P with a

Boolean doctrine. To construct the Boolean completion of P , we begin by associating to each

fiber of P , which is a bounded implicative inf-semilattice, the set of its closed elements. We then

show that this construction respects reindexing and other additional structure that P might

have. All general results about bounded implicative inf-semilattices can be found in [Fri62]

and [Nem65]. Ultimately, our goal is to use the Boolean completion to improve upon a result,

specifically Proposition 3.5.6, by deriving a new proposition, Proposition 3.7.1, that has weaker

assumptions.

Given an implicational bounded doctrine P :C
op → Pos, we define its boolean completion as

follows: for each object X ∈ obC,

P¬¬(X) := {α ∈ P (X) | ¬¬α ≤ α} ⊆ P (X),

where ¬α := α→ ⊥. The order is induced by the order of P (X).

The reindexing is defined as the restriction of the reindexing in P (X) and it is well defined since

P preserves the negation—in fact, it preserves both implication and bottom element. We have a

doctrine homomorphism (idC,¬¬):P → P¬¬, where (¬¬)X :P (X) → P¬¬(X), sends α ↦→ ¬¬α
for all X ∈ obC and for all α ∈ P (X).

Before we go on, we recall some auxiliary properties. The proofs are trivial, and can be found in

[Nem65].

Lemma 1.4.1. Let P be a bounded implicative inf-semilattices. Then for any α, β ∈ P:

(i) ¬⊤ = ⊥, ¬⊥ = ⊤;

(ii) α ≤ ¬¬α;

(iii) if α ≤ β, then ¬β ≤ ¬α;

(iv) ¬¬¬α = ¬α;

(v) ¬(α ∧ β) = α→ ¬β;

(vi) ¬(α→ β) = ¬¬α ∧ ¬β;

(vii) ¬¬(α ∧ β) = ¬¬α ∧ ¬¬β.

From [Fri62] we get that each fiber P¬¬(X) is a Boolean algebra with top element, meets and

implication computed as in P (X), and the join of a pair α, β ∈ P¬¬(X) is defined as ¬(¬α∧¬β);
moreover from [Nem65] the map preserves the structure of bounded implicative inf-semilattices.
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Theorem 1.4.2. Let Dct∧,⊤,→,⊥ be the 2-full 2-subcategory of Dct whose objects are im-

plicational doctrines with bottom element, and 1-morphism are the one that preserve the said

structure, and Bool 2-full 2-subcategory of Boolean doctrines and Boolean morphism. Then,

for any P ∈ Dct∧,⊤,→,⊥, precomposition with (idC,¬¬) in Dct∧,⊤,→,⊥ induces an essential

equivalence of categories

− ◦ (idC,¬¬):Bool(P¬¬, R)→ Dct∧,⊤,→,⊥(P,R)

for every R in Bool.

Proof. Precomposition sends θ: (K, k) → (K ′, k′) to θ: (K, k¬¬) → (K ′, k′¬¬), so the functor is

trivially faithfull. Also fullness is easy: suppose to have a θ:K
·−→ K ′ such that for any object X

and any β ∈ P (X) it holds that kX(¬¬β) ≤ R(θX)(k′(¬¬β)), but then for any α ∈ P¬¬(X), we

have α = ¬¬α, so kX(α) ≤ R(θX)(k′(α)), i.e. θ is a 2-arrow between (K, k) and (K ′, k′), which is

sent to θ. To conclude, take a 1-arrow (H, h):P → R in Dct∧,⊤,→,⊥. We look for a 1-arrow from

P¬¬ → R, such that it is equal to (H, h) when precomposed with (idC,¬¬). The functor between
the base categories is necessarily H:C→ D; define k:P¬¬ → RHop to be on each component the

restriction of h to P¬¬. It preserves all the operations since in P¬¬ they are computed as in P ,

and are preserved by h. Now take the composition

P (X)
¬¬−−→ P¬¬(X)

kX−−→ R(HX)

which must be equal to hX . However, for any α ∈ P (X), kX(¬¬α) = hX(¬¬α) = ¬¬hX(α) =

hX(α), since h preserves operations and R(X) is a Boolean algebra. Uniqueness of the functor

between base categories is trivial. Moreover, suppose k′ such that (H, k′)(idC,¬¬) = (H, h), then

k′X(β) = k′X(¬¬β) = hX(β), hence k′ must be the restriction of h.

Proposition 1.4.3. Let P be a bounded implicational doctrine and (idC,¬¬):P → P¬¬ be its

Boolean completion. If P is elementary, then P¬¬ and (idC,¬¬) are elementary.

Proof. Take δX ∈ P (X × X) and define δ̄X = ¬¬δX ∈ P¬¬(X × X). First of all we prove

⊤X ≤ P¬¬(∆X)(δ̄X), but P¬¬(∆X)(δ̄X) = P (∆X)(¬¬δX) = ¬¬P (∆X)(δX) = ¬¬⊤X = ⊤X .

Then we show that for any element α ∈ P¬¬(X) we have P¬¬(pr1)(α) ∧ δ̄X ≤ P¬¬(pr2)(α), i.e.

P (pr1)(α) ∧ ¬¬δX ≤ P (pr2)(α) but α = ¬¬α, so:

P (pr1)(α) ∧ ¬¬δX = ¬¬P (pr1)(α) ∧ ¬¬δX

= ¬¬(P (pr1)(α) ∧ δX) ≤ ¬¬P (pr2)(α) = P (pr2)(α).

To conclude, we show that δ̄X ⊠ δ̄Y ≤ δ̄X×Y , i.e.

P¬¬(⟨pr1,pr3⟩)(¬¬δX) ∧ P¬¬(⟨pr2,pr4⟩)(¬¬δY ) ≤ ¬¬δX×Y ;
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however

¬¬P (⟨pr1,pr3⟩)(δX) ∧ ¬¬P (⟨pr2,pr4⟩)(δY ) = ¬¬(δX ⊠ δY ) ≤ ¬¬δX×Y ,

so P¬¬ is indeed an elementary doctrine. Moreover, by definition the fibered equality is preserved

by the 1-arrow (idC,¬¬).

Corollary 1.4.4. The equivalence of Theorem 1.4.2 restricts to an equivalence between the

subcategories of correspondent elementary doctrines.

Proof. It is enough to add some details to the prof of the fact that precomposition is essentially

surjective. Given (H, h):P → R, where h preserves also the fibered equality, we show that its

restriction k to P¬¬ preserves the fibered equality:

kX×X(δ̄X) = hX×X(¬¬δX) = ¬¬hX×X(δX) = hX×X(δX) = δHX .

Proposition 1.4.5. Let P be a bounded implicational doctrine and (idC,¬¬):P → P¬¬ be its

Boolean completion. If P is existential, then P¬¬ and (idC,¬¬) are existential.

Proof. Recall the adjunction in P :

P (C ×B) P (C)
∃B
C

P (pr1)

⊥

Define EBC :P¬¬(C × B) → P¬¬(C), EBCα := ¬¬∃BCα; we show that it is the left adjoint of

the restriction of P (pr1): take α ∈ P¬¬(C × B) and β ∈ P¬¬(C). Suppose EBCα ≤ β, so

∃BCα ≤ ¬¬∃BCα ≤ β, but then α ≤ P (pr1)β. For the converse, if α ≤ P (pr1)β, then ∃BCα ≤ β,

so ¬¬∃BCα ≤ ¬¬β = β, as claimed. Concerning naturality, take a C-arrow f :C → A and

γ ∈ P¬¬(A×B):

EBCP (f × idB)γ = ¬¬∃BCP (f × idB)γ = ¬¬P (f)∃BAγ = P (f)¬¬∃BAγ = P (f) EBAγ.

Lastly, we show Frobenius reciprocity: given α ∈ P¬¬(C ×B) and β ∈ P¬¬(C) we have

EBCα ∧ β = ¬¬∃BCα ∧ β = ¬¬∃BCα ∧ ¬¬β = ¬¬(∃BCα ∧ β)

= ¬¬(∃BC(α ∧ P (pr1)β) = EBC(α ∧ P (pr1)β).

So P¬¬ is indeed an existential doctrine.

Moreover, (id,¬¬) preserves the existential quantifier, i.e for any α ∈ P (C × B), we have

¬¬∃BCα = EBC¬¬α. Since α ≤ ¬¬α, clearly ¬¬∃BCα ≤ ¬¬∃BC¬¬α = EBC¬¬α. Conversely, start

from α ≤ P (pr1)∃BCα, so that ⊤ ≤ α→ P (pr1)∃BCα; then apply Lemmas 1.4.1.(iii) and 1.4.1.(vi)

to get ¬¬α ∧ ¬P (pr1)∃BCα = ¬(α → P (pr1)∃BCα) ≤ ¬⊤ = ⊥ = P (pr1)⊥; using the definition
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of existential, Frobenius reciprocity and the fact that P (pr1) preserves ¬, we equivalently get in

P (C) the following:

∃BC¬¬α ∧ ¬∃BCα = ∃BC(¬¬α ∧ ¬P (pr1)∃BCα) ≤ ⊥.

From here we get ¬∃BCα ≤ ¬∃BC¬¬α: then, applying Lemma 1.4.1.(iii), we get EBC¬¬α =

¬¬∃BC¬¬α ≤ ¬¬∃BCα as claimed.

Corollary 1.4.6. The equivalence of Theorem 1.4.2 restricts to an equivalence between the

subcategories of correspondent existential doctrines.

Proof. It is enough to add some details to the prof of the fact that precomposition is essentially

surjective. Given (H, h):P → R, where h preserves also the existential quantifier, we show that

its restriction k to P¬¬ preserves it: for any α ∈ P¬¬(C ×B)

∃HBHCkC×B(α) = ¬¬∃HBHCkC×B(α) = ¬¬∃HBHChC×B(α)

= ¬¬hC∃BC(α) = hC(¬¬∃BC(α)) = kC( EBC(α)).

1.5 Filters, ultrafilters, quotients

Filters play a significant role in lattice theory, particularly in the study of Boolean algebra. In

this section, we present some essential findings concerning filters and ultrafilters in bounded

implicative inf-semilattices. While these proofs are already established in the context of Boolean

algebras—see for example [Mon89] or [BS81]—, we demonstrate their adaptability in this weaker

framework.

Then, for a given primary doctrine P , we will define the quotient of the doctrine over a filter in

the fiber of the terminal object, and prove that the quotient map preserves many properties of

P itself.

The quotient of a doctrine over some suitable ultrafilter will be a key point in the proof of the

existence of a model in Section 3.8.

Definition 1.5.1. Let A be an inf-semilattice. A subset ∇ ⊆ A is a filter if the following

properties hold:

• ⊤ ∈ ∇;

• if a ∈ ∇ and a ≤ b, then b ∈ ∇;

• if a, b ∈ ∇, then a ∧ b ∈ ∇.

A filter ∇ is proper if ∇ ≠ A

Remark 1.5.2. In a bounded inf-semilattice, a filter ∇ is proper if and only if ⊥ /∈ ∇.
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Definition 1.5.3. Let A be a bounded implicative inf-semilattice and ∇ ⊆ A a filter.

• ∇ is an ultrafilter if for all a ∈ A, either a ∈ ∇ or ¬a ∈ ∇, where ¬a := a→ ⊥.

• ∇ is a maximal filter if it is maximal with respect to the inclusion, meaning that ∇ ≠ A

and, whenever ∇ ⫋ ∇′ where ∇′ is a filter, then ∇′ = A.

Lemma 1.5.4. Let A be an inf-semilattice and E ⊆ A. Consider the set

F = {y ∈ A | there exist x1, . . . , xn ∈ E such that x1 ∧ · · · ∧ xn ≤ y} ∪ {⊤},

Then ⟨E⟩ = F , where ⟨E⟩ is the filter generated by E.

Proof. First of all, observe that F is a filter:

• ⊤ ∈ F ;

• let y ∈ F and z ∈ A, y ≤ z. If y = ⊤, then z = ⊤ ∈ F . Otherwise, take x1, . . . , xn ∈ E
such that x1 ∧ · · · ∧ xn ≤ y ≤ z, then also z ∈ F ;

• take y, z ∈ F . If y = ⊤ then y∧ z = z ∈ F ; similarly if z = ⊤. Otherwise x1 ∧ · · · ∧xn ≤ y,
w1∧· · ·∧wm ≤ z with x1, . . . , xn, w1, . . . , wm ∈ E; then x1∧· · ·∧xn∧w1∧· · ·∧wm ≤ y∧z,
so that y ∧ z ∈ F .

Then E ⊆ F : take x ∈ E, since x ≤ x, we have x ∈ F . In particular ⟨E⟩ ⊆ F . To conclude,

take y ∈ F . If y = ⊤, then y ∈ ⟨E⟩; otherwise, take x1 ∧ · · · ∧ xn ≤ y for some x1, . . . , xn ∈ E.

Any filter G ⊇ E is such that x1 ∧ · · · ∧ xn ∈ G and since x1 ∧ · · · ∧ xn ≤ y, also y ∈ G. Hence

y ∈ ⟨E⟩, as claimed.

Lemma 1.5.5. Let A be a bounded implicative inf-semilattice and ∇ ⊆ A a filter. Then ∇ is a

maximal filter if and only if ∇ is an ultrafilter.

Proof. Suppose ∇ is an ultrafilter. Since ⊤ ∈ ∇, then ∇ /∈¬⊤ = ⊤ → ⊥ = ⊤ ∧ (⊤ → ⊥) = ⊥,
so ∇ ≠ A. So take another filter ∇ ⫋ ∇′, in particular there exists y ∈ ∇′ such that y /∈ ∇. By
assumption y → ⊥ ∈ ∇ and also y → ⊥ ∈ ∇′. Then, since y ∧ (y → ⊥) ≤ ⊥, ⊥ ∈ ∇′, so that

∇′ = A. For the converse, suppose ∇ is a maximal filter. In particular, given x ∈ A, it cannot
be the case that both x, x → ⊥ ∈ ∇—otherwise we would have also ⊥ ∈ ∇, which would give

∇ = A. Suppose that x /∈ ∇, we claim that ¬x = x→ ⊥ ∈ ∇. Consider E = ∇ ∪ {x} and take

⟨E⟩. Clearly ⟨E⟩ ⫌ ∇, since x ∈ E but x /∈ ∇. Hence by assumption ⟨E⟩ = A. In particular

¬x ∈ A = ⟨E⟩. If ¬x = ⊤, then we have ¬x ∈ ∇. Otherwise there exist x1, . . . , xn ∈ ∇ ∪ {x}
such that x1 ∧ · · · ∧ xn ≤ ¬x. Now, if every xi’s belong to the filter ∇, we get ¬x ∈ ∇. Instead,
if some xi’s are actually x, we can rewrite the inequality as x ∧ y ≤ ¬x for some y ∈ ∇. But

x ∧ y ≤ x → ⊥ if and only if x ∧ y ≤ ⊥ if and only if y ≤ x → ⊥, hence again ¬x ∈ ∇, as
claimed.
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Lemma 1.5.6. Given a proper filter ∇ of a bounded implicative inf-semilattice A, there exists

an ultrafilter U ⊇ ∇.

Proof. We use Zorn’s Lemma. Take F the set of all proper filters that contain ∇, ordered by

inclusion. Clearly ∇ ∈ F . The upper bound of a chain ∇ ⊆ ∇1 ⊆ · · · ⊆ ∇n . . . is given by the

union ∪i∈N∇i. So take U a maximal element in F . This is a maximal filter: let W be a proper

filter containing U , in particular it contains ∇, so W = U .

Moreover, given a bounded implicative inf-semilattice A and an ultrafilter ∇ ⊆ A, define the

function α:A→ 2, where 2 = {⊥ < ⊤} is the two-element boolean algebra, as follows:

α(x) =

⎧⎨⎩⊤ ifx ∈ ∇

⊥ ifx /∈ ∇.

This function preserves the structure of a bounded implicative inf-semilattice.

• ⊤ ∈ ∇, ⊤ ↦→ ⊤;

• ⊥ /∈ ∇, ⊥ ↦→ ⊥;

• take a, b ∈ A, then:

– if a, b ∈ ∇, then a ∧ b ∈ ∇, so α(a ∧ b) = ⊤ = α(a) ∧ α(b);

– if a /∈ ∇, then a∧b /∈ ∇—indeed: a∧b ≤ a—, so α(a∧b) = ⊥ = ⊥∧α(b) = α(a)∧α(b);

– if b /∈ ∇ same proof as above;

so α preserves the meet;

• take a, b ∈ A, then:

– if b ∈ ∇, since b ≤ a→ b, then a→ b ∈ ∇, so compute α(a→ b) = ⊤ = α(a)→ ⊤ =

α(a)→ α(b);

– if b /∈ ∇ and a ∈ ∇, then a→ b /∈ ∇—indeed: a ∧ (a→ b) ≤ b—, so α(a→ b) = ⊥ =

⊤ → ⊥ = α(a)→ α(b);

– if b /∈ ∇ and a /∈ ∇, then ¬b,¬a ∈ ∇. Observe that ¬a ∧ ¬b ≤ a → b since

a ∧ ¬a ∧ ¬b = ⊥ ≤ b, so a→ b ∈ ∇. Hence α(a→ b) = ⊤ = ⊥ → ⊥ = α(a)→ α(b);

so α preserves the implication.

In particular we use this fact to prove the following characterization.

Lemma 1.5.7. Let A be a bounded implicative inf-semilattice and ∇ ⊆ A a filter. Then ∇ is

an ultrafilter if and only if ∇ = α−1(⊤) for some morphism α:A → 2 of bounded implicational

inf-semilattice.

Proof. If ∇ is an ultrafilter, we define α as above, and it is indeed a morphism. For the converse,

take a morphism α:A→ 2, we prove that α−1(⊤) is an ultrafilter. It is clearly a filter: α(⊤) = ⊤;
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if α(a) = ⊤ and a ≤ b, then α(b) = ⊤; if α(a) = ⊤ and α(b) = ⊤, then α(a ∧ b) = ⊤. Now

take any a ∈ A: it cannot be the case that both a,¬a ∈ α−1(⊤); suppose then α(a) ̸= ⊤, hence
α(a) = ⊥, so that α(a→ ⊥) = ⊥ → ⊥ = ⊤.

1.5.1 The quotient of a doctrine over a filter

Let P :Cop → Pos be a primary doctrine and ∇ ⊆ P (t) be a filter in the fiber of the terminal

object t. Define, in each X ∈ obC the following preorder: α ⊑∇ β if and only if there exists a

θ ∈ ∇ such that P (!X)θ ∧ α ≤ β in P (X). This is clearly reflexive; it is also transitive: take

P (!X)θ1 ∧ α ≤ β and P (!X)θ2 ∧ β ≤ γ for some θ1, θ2 ∈ ∇, then P (!X)(θ1 ∧ θ2) ∧ α ≤ β.
Now define P/∇:Cop → Pos as follows: for each object X, P/∇(X) is the poset reflection of

the preorder defined above. In particular we have [α] = [β] if and only if there exists θ ∈ ∇
such that P (!X)θ ∧ α = P (!X)θ ∧ β: indeed, suppose θ1, θ2 ∈ ∇ such that P (!X)θ1 ∧ α ≤ β

and P (!X)θ2 ∧ β ≤ α, then P (!X)(θ1 ∧ θ2) ∧ α = P (!X)(θ1 ∧ θ2) ∧ β, with θ1 ∧ θ2 ∈ ∇. Then,

take a C-arrow f :X → Y and define P/∇(f)[α] = [P (f)α] for a given [α] ∈ P/∇(X). If this is

monotone with respect to the preorder ⊑∇, it is well defined on equivalence classes: take α ⊑∇ β

for α, β ∈ P (Y ), hence there exists θ ∈ ∇ such that P (!Y )θ ∧ α ≤ β in P (Y ); applying P (f)

we get P (!X)θ ∧ P (f)α ≤ P (f)β, hence P (f)α ⊑∇ P (f)β. So P/∇ is indeed a doctrine, since

composition and identities are clearly preserved.

Note that the quotient map of each P (X) is a monotone function: if α ≤ β, also α ⊑∇ β by

taking θ = ⊤ ∈ ∇. Call for each object Y , qY the quotient map: qY (α) = [α] ∈ P/∇(Y ) for a

given α ∈ P (Y ); then (idC, q) is a morphism of doctrines. Indeed, to prove that q is a natural

transformation, take f :X → Y and observe that:

qXP (f)α = [P (f)α] = P/∇(f)[α] = P/∇(f)qY (α).

Moreover, P/∇ is primary, with top and meet of P/∇(X) computed as in P (X): given two

elements [α], [β] ∈ P (X), clearly [α ∧ β] ≤ [α], [β]; then take [γ] ≤ [α], [β], i.e. P (!X)θ1 ∧ γ ≤ α

and P (!X)θ2 ∧ γ ≤ β, for some θ1, θ2 ∈ ∇. Then P (!X)(θ1 ∧ θ2) ∧ γ ≤ α ∧ β and θ1 ∧ θ2 ∈ ∇,
hence [γ] ≤ [α∧β]. So in P/∇(X) we have [α]∧ [β] = [α∧β], as claimed. Naturality of the meet

in P/∇ follows from naturality of q and of the meet in P .

Then, observe that [⊤X ] is the top element in P/∇(X): take any [α] ∈ P/∇(X) and note that

P (!X)⊤t∧α = α ≤ ⊤X . Again, the top element is trivially preserved by reindexing. In particular

the quotient (idC, q) is a morphism of primary doctrines.

Proposition 1.5.8. Let P :Cop → Pos be a primary doctrine and ∇ ⊆ P (t) be a filter. The

1-arrow (idC, q):P → P/∇ is such that ⊤ ≤ qt(θ) in P/∇(t) for all θ ∈ ∇, and it is universal with

respect to this property, i.e. for any primary 1-arrow (G, g):P → R, where R:Dop → Pos is a

primary doctrine, such that ⊤ ≤ gt(θ) in R(tD) for all θ ∈ ∇, there exists a unique up to a unique

natural isomorphism primary 1-arrow (G′, g′):P/∇ → R such that (G′, g′) ◦ (idC, q) = (G, g).
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Proof. At first, observe that any θ ∈ ∇ is sent to the top element of P/∇(t): indeed, consider θ ∈
∇ itself to observe that θ∧⊤ ≤ θ, to that [⊤t] ≤ [θ]. We now show the universal property. First

of all, since G′ idC = G, we observe that G′ = G:C→ D. Then we show that fo any fixed C-object

X, the function gX :P (X) → RGX factors through the quotient qX , defining g′X([α]) = gX(α).

To prove that this is well-defined, take α ⊑∇ β in P (X), i.e. P (!X)(θ) ∧ α ≤ β. Then apply gX

to get gXP (!X)(θ)∧ gXα ≤ gXβ in R(GX). However gXP (!X)(θ) = R(!GX)gt(θ) = ⊤GX , hence

gX(α) ≤ gX(β). As a result we obtain a well-defined monotone function g′X :P/∇(X)→ R(GX)

such that g′XqX = gX—and it is also unique. Since gX preserves finite meets, and finite meets

in P/∇ are computed as in P , it follows that g′X preserves finte meets. Moreover, we can use

naturality of g to show that g′:P/∇ → RGop defines a natural transformation. In particular

(G′g′) is a primary 1-arrow such that (G′, g′) ◦ (idC, q) = (G, g), and it is unique with respect to

this property, as claimed.

In the following Lemma we show that if P has some additional structure, then P/∇ has them as

well, and the structure is preserved by the quotient morphism.

Lemma 1.5.9. Let P be a primary doctrine, ∇ ⊆ P (t) be a filter and P/∇ be the quotient.

(i) If P is bounded, then the doctrine P/∇ and the 1-arrow (idC, q) are bounded.

(ii) If P is implicational, then the doctrine P/∇ and the 1-arrow (idC, q) are implicational.

(iii) If P is elementary, then the doctrine P/∇ and the 1-arrow (idC, q) are elementary.

(iv) If P is existential, then the doctrine P/∇ and the 1-arrow (idC, q) are existential.

(v) If P is universal, then the doctrine P/∇ and the 1-arrow (idC, q) are universal.

Proof. (i) We show that qX(⊥X) = [⊥X ] ≤ [α] in P/∇(X) for all [α] ∈ P/∇(X), but this

holds since P (!X)⊤t ∧ ⊥X = ⊥X ≤ α in P (X). Naturality of the bottom element follows

from naturality of q and of the bottom in P . The quotient (idC, q) trivially preserves the

bottom element.

(ii) We show that qX(β → γ) = [β → γ] = [β] → [γ] in P/∇(X) for all [β], [γ] ∈ P/∇(X).

Suppose [α] ∧ [β] ≤ [γ], if and only if there exists θ ∈ ∇ such that P (!X)θ ∧ α ∧ β ≤ γ in

P (X), if and only if there exists θ ∈ ∇ such that P (!X)θ ∧ α ≤ β → γ in P (X), if and

only if [α] ≤ [β → γ], i.e. [β → γ] = [β] → [γ] in P/∇(X). Naturality again follows from

naturality of q and of the bottom in P . The quotient (idC, q) preserves implication.

(iii) Consider the elementary doctrine P , with left adjoint ÆB
A ⊣ P (idA×∆B) for any arrow of

the kind idA×∆B :A×B → A×B ×B in C.

We show that qA×B(Æ
B
Aα) = [ÆB

Aα] = ÆB
A [α] in P/∇(A× B × B) for all [α] ∈ P/∇(A×

B). To show that ÆB
A is well defined on the quotients, suppose α ⊑∇ β, for some pair

α, β ∈ P (A × B), i.e. there exists θ ∈ ∇ such that P (!A×B)θ ∧ α ≤ β in P (A × B); then

ÆB
A(P (!A×B)θ∧α) = ÆB

A(P (idA×∆B)P (!A×B×B)θ∧α) = ÆB
Aα∧P (!A×B×B)θ ≤ ÆB

Aβ in
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P (A × B × B) by using Frobenius reciprocity, i.e. [ÆB
Aα] ≤ [ÆB

Aβ], so ÆB
A [α] = [ÆB

Aα] is

well defined.

This is the left adjoint to the reindexing along idA×∆B : indeed, take [α] ∈ P/∇(A × B)

and [γ] ∈ P/∇(A×B ×B), then ÆB
A [α] ≤ [γ] if and only if there exists en element θ ∈ ∇

such that P (!A×B×B)θ∧ÆB
Aα ≤ γ in P (A×B×B), but by Frobenius reciprocity we have

P (!A×B×B)θ ∧ÆB
Aα = ÆB

A(α ∧ P (idA×∆B)P (!A×B×B)θ) = ÆB
A(α ∧ P (!A×B)θ), hence if

and only if there exists θ ∈ ∇ such that α∧P (!A×B)θ ≤ P (idA×∆B)γ in P (A×B), if and

only if [α] ≤ P/∇(idA×∆B)[γ], as claimed.

Naturality of ÆB
(−) and Frobenious reciprocity follow from the same properties of ÆB

(−) in

P .

So the doctrine P/∇ is elementary, and the quotient is a morphism of primary elementary

doctrines.

(iv) Consider the existential doctrine P , with left adjoint ∃BA ⊣ P (pr1) for any projection

pr1:A×B → A in C.

We show that qA(∃BAα) = [∃BAα] = ∃
B
A [α] in P/∇(A) for all [α] ∈ P/∇(A × B). To show

that ∃BA is well defined on the quotients, suppose α ⊑∇ β, for some α, β ∈ P (A × B), i.e.

there exists θ ∈ ∇ such that P (!A×B)θ ∧ α ≤ β in P (A × B); then ∃BA(P (!A×B)θ ∧ α) =
∃BA(P (pr1)P (!A)θ ∧ α) = ∃BAα ∧ P (!A)θ ≤ ∃BAβ in P (A) by using Frobenius reciprocity,

i.e. [∃BAα] ≤ [∃BAβ], so ∃
B
A [α] = [∃BAα] is well defined. This is still the left adjoint to the

reindexing along the first projection: take [α] ∈ P/∇(A × B) and [γ] ∈ P/∇(A), then
∃BA [α] ≤ [γ] if and only if there exists θ ∈ ∇ such that P (!A)θ ∧ ∃BAα ≤ γ in P (A), but

P (!A)θ∧∃BAα = ∃BA(α∧P (pr1)P (!A)θ) = ∃BA(α∧P (!A×B)θ) by Frobenius reciprocity, hence

if and only if there exists θ ∈ ∇ such that α ∧ P (!A×B)θ ≤ P (pr1)γ in P (A × B), if and

only if [α] ≤ P/∇(pr1)[γ], as claimed.

Naturality of ∃B(−) and Frobenious reciprocity follow from the same properties of ∃B(−) in P .

So the doctrine P/∇ is existential, and the quotient is a morphism of existential primary

doctrines.

(v) Consider the universal doctrine P , with right adjoint P (pr1) ⊣ ∀BA for any projection

pr1:A×B → A in C.

We show that qA(∀BAα) = [∀BAα] = ∀
B
A [α] in P/∇(A) for all [α] ∈ P/∇(A × B). To show

that ∀BA is well defined on the quotients, suppose α ⊑∇ β, for some α, β ∈ P (A × B),

i.e. there exists θ ∈ ∇ such that P (!A×B)θ ∧ α ≤ β in P (A × B); then P (!A)θ ∧ ∀BAα ≤
∀BAP (pr1)P (!A)θ ∧ ∀BAα = ∀BA(P (!A×B)θ ∧ α) ≤ ∀BAβ in P (A) by using the unity of the

adjunction and the fact that right adjoint preserve limits—hence meets too—, i.e. [∀BAα] ≤
[∀BAβ], so ∀

B
A [α] = [∀BAα] is well defined. This is still the right adjoint to the reindexing

along the first projection: take [α] ∈ P/∇(A × B) and [γ] ∈ P/∇(A), then [γ] ≤ ∀BA [α] if
and only if there exists θ ∈ ∇ such that P (!A)θ∧γ ≤ ∀BAα in P (A), if and only if there exists

θ ∈ ∇ such that P (!A×B)θ ∧ P (pr1)γ ≤ α in P (A × B), if and only if P/∇(pr1)[γ] ≤ [α],
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as claimed.

Naturality of ∀B(−) follows from the same property of ∀B(−) in P .

So the doctrine P/∇ is universal, and the quotient is a morphism of universal primary

doctrines.



Chapter 2

Adding a constant and an axiom

to a doctrine

In this chapter, we explore how to translate into the language of doctrines, seen as a generalization

of the doctrine of well-formed formulae, the process of adding a constant of some fixed sort and

adding a sentence to a theory. Although these may seem like separate processes, we show that

they can be computed simultaneously.

Given a formula φ of some sort X, we add a constant of sort X to our language and require that

it satisfies φ. If we simply wish to add a constant, we choose φ to be the true constant so that

the new constant automatically satisfies φ. Conversely, if we add a constant of the empty sort,

we are not adding anything new, but rather making φ true. Notably, in this case, φ is a sentence

and does not depend on any variable.

For the whole chapter, P :Cop → Pos is a fixed

primary doctrine, unless otherwise specified.

2.1 A comonad on the indexed poset P

Fix an object X in the base category C, and an element φ ∈ P (X).

Cop Cop

Pos

(X×−)op

P P

f

·

Consider the product functor X × −:C → C sending (A
f−→ B) to (X × A idX ×f−−−−→ X × B), and

define each component of the natural transformation f:P
·−→ P ◦ (X ×−)op as follows:

fA:P (A)→ P (X ×A), α ↦→ P (pr1)(φ) ∧ P (pr2)(α)
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where pr1 and pr2 are the projection from X ×A to X and A respectively.

Note that f is monotone, and is indeed a natural transformation: to prove the first part, take α ≤
α′ in P (A), so P (pr2)(α) ≤ P (pr2)(α′), and then P (pr1)(φ)∧P (pr2)(α) ≤ P (pr1)(φ)∧P (pr2)(α′),

i.e. fA(α) ≤ fA(α
′); to prove the second one, take β ∈ P (B):

B P (B) P (X ×B)

A P (A) P (X ×A)

fB

P (f) P (id ×f)f

fA

P (id×f)fB(β) = P (id×f) (P (pr1)(φ) ∧ P (pr2)(β)) = P (id×f)P (pr1)(φ) ∧ P (id×f)P (pr2)(β)

= P (pr1)(φ) ∧ P (pr2)P (f)(β) = fAP (f)(β),

where the projections are from X ×A and X ×B.

Then, (X ×−, f) is a 1-cell between P and itself in the category IdxPos.

We now prove that the 1-arrow (X × −, f) is part of a 2-comonad on P ; to do this, we have

to find two 2-arrows ε: (X × −, f) ·−→ idP and γ: (X × −, f) ·−→ (X × −, f)2 satisfying the proper

diagrams. We adapt the comonad on the functor X ×− (also known as the reader comonad) to

indexed posets.

Define εA:X × A → A to be the second projection εA := pr2, which is clearly natural, and is

indeed a 2-arrow since fA(α) = P (pr1)(φ) ∧ P (pr2)(α) ≤ P (pr2)(α) = P (εA)(idA(α)) for any

α ∈ P (A). Then, define γA := ∆X × idA:X × A → X ×X × A, which is again natural; it is a

2-arrow if and only if fA(α) ≤ P (∆× id)(fX×AfA(α)), however

P (∆× id)(fX×AfA(α)) = P (⟨pr1,pr1,pr2⟩)
(︁
P (pr1)φ ∧ P (⟨pr2,pr3⟩)(P (pr1)φ ∧ P (pr2)α)

)︁
= P (⟨pr1,pr1,pr2⟩)

(︁
P (pr1)φ ∧ P (pr2)φ ∧ P (pr3)α

)︁
= P (pr1)φ ∧ P (pr2)α = fA(α).

Finally, we check that the following diagrams commute:

X ×− X ×− (X ×−)2

X ×− (X ×−)2 X ×− (X ×−)2 (X ×−)3

γ γ

γ

idX ×γ

εX×− idX ×ε
γX×−

• εX×A ◦ γA = ⟨pr2,pr3⟩ ◦ (∆X × idA) = idX×A;

• (idX ×pr2) ◦ γA = idX×A;

• (idX ×∆X × idA) ◦ (∆X × idA) = ⟨pr1,pr1,pr1,pr2⟩ = (∆X × idX×A) ◦ (∆X × idA).

Proposition 2.1.1. With the notation defined above, (P, (X × −, f), γ, ε) is a comonad in

IdxPos.
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Remark 2.1.2. We are interested in finding a distributive law between two different comonads,

both of the form seen in Proposition 2.1.1 on the same primary doctrine P seen as an indexed

poset: for two objects X,Y and two elements φ ∈ P (X), ψ ∈ P (Y ), the first comonad relies on

the 1-cell (X ×−, f), where f = P (pr1)(φ) ∧ P (pr2)(−), while the second one relies on the 1-cell

(Y ×−, g), where g = P (pr1)(ψ) ∧ P (pr2)(−).
Dualizing distributive laws for monads in [Bec69], recall that in general, for two given comon-

ads (P, (K, f), γ, ϵ) and (P, (C, g), λ, δ) in IdxPos on the same indexed poset P :Cop → Pos, a

distributive law between two comonads is a 2-cell ℓ: (K, f) ◦ (C, g) → (C, g) ◦ (K, f) such that

((K, f), ℓ) is a lax morphism of comonads and ((C, g), ℓ) is an oplax morphism of comonads.

In details, in IdxPos, we ask for ℓ:KC
·−→ CK to be a natural transformation, such that

fCAgA(α) ≤ P (ℓA)gKAfA(α) for any object A in C and α ∈ P (A) and such that the following

diagram commute:

KC CK KC CK

KC2 CKC C2K K2C KCK CK2

KC K KC C

CK CK

ℓ

K(λ) λK

ℓ

C(γ)

K(δ)

ℓ

γC

ℓC C(ℓ) K(ℓ)

δK

ϵC

ℓ C(ϵ)

ℓK

In our case, define for each object A in C,

ℓA := ⟨pr2,pr1,pr3⟩:X × Y ×A→ Y ×X ×A

This is trivially a natural transformation. Moreover, recall that the comultiplication is given by

∆× id, and the counit by the projection on the second component. With these definitions, the

diagrams clearly commute:

X × Y ×A Y ×X ×A

X × Y × Y ×A Y ×X × Y ×A Y × Y ×X ×A

⟨pr2,pr1,pr3⟩

⟨pr1,pr2,pr2,pr3⟩

⟨pr2,pr1,pr3,pr4⟩

⟨pr1,pr1,pr2,pr3⟩

⟨pr1,pr3,pr2,pr4⟩

X × Y ×A Y ×X ×A

X ×X × Y ×A X × Y ×X ×A Y ×X ×X ×A

⟨pr2,pr1,pr3⟩

⟨pr1,pr1,pr2,pr3⟩

⟨pr1,pr3,pr2,pr4⟩

⟨pr1,pr2,pr2,pr3⟩

⟨pr2,pr1,pr3,pr4⟩
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X × Y ×A X ×A X × Y ×A Y ×A

Y ×X ×A Y ×X ×A

⟨pr2,pr1,pr3⟩

⟨pr1,pr3⟩

⟨pr2,pr3⟩

⟨pr2,pr3⟩

⟨pr2,pr1,pr3⟩ ⟨pr1,pr3⟩

Now we need to prove that ℓ is indeed a 2-cell, i.e.

P (A) P (X ×A) P (Y ×X ×A)

P (Y ×A) P (X × Y ×A)

gA

fA gKA

P (ℓA)

fCA

≤

Compute:

fCAgA(α) = fCA
(︁
P (pr1)ψ ∧ P (pr2)α

)︁
= P (pr1)φ ∧ P (pr2)ψ ∧ P (pr3)α

= P (ℓA)
(︁
P (pr1)ψ ∧ P (pr2)φ ∧ P (pr3)α

)︁
= P (ℓA)gKA

(︁
P (pr1)φ ∧ P (pr2)α

)︁
= P (ℓA)gKAfA(α).

In this particular case ℓ is actually an isomorphism.

By looking at the commutative triangles, we observe that ℓ is unique:

pr1ℓA = pr1⟨pr1,pr3⟩ℓA = pr1⟨pr2,pr3⟩ = pr2;

pr2ℓA = pr1⟨pr2,pr3⟩ℓA = pr1⟨pr1,pr3⟩ = pr1;

pr3ℓA = pr2⟨pr2,pr3⟩ℓA = pr2⟨pr2,pr3⟩ = pr3.

We conclude that the distributive law ℓ induces a composite comonad, having the 1-cell computed

as (X ×−, f) ◦ (Y ×−, g) = (X × Y ×−, f ◦ g), where

(f ◦ g)A = fY×AgA:P (A)→ P (X × Y ×A), α ↦→ P (pr1)φ ∧ P (pr2)ψ ∧ P (pr3)α.

Moreover, the composite comonad induced by the distributive law is again of the form seen in

Proposition 2.1.1, defined with respect to the object X × Y and the element P (pr1)φ∧P (pr2)ψ
in P (X × Y ).

2.2 The Eilenberg–Moore and the Kleisli construction for

the comonad (X ×−, f)

We now study the Eilenberg–Moore and the Kleisli construction of the comonad described before,

applying the results shown in Section 1.2 to this particular case. Recall that the Eilenberg–Moore

category CX×− has as objects pairs (A, c), where c:A → X × A is an arrow in C such that the

following diagram commutes:



Adding a constant and an axiom to a doctrine 44

A X ×A

A X ×A X ×X ×A

c

c γA=∆×id

εA=pr2 id ×c

so that the second component of c = ⟨c1, c2⟩ must be the identity c2 = idA, while the first one can

be any map c1:A→ X. Moreover, an arrow f : (A, c)→ (B, d) in CX×− is an arrow f :A→ B in

C such that the diagram commutes:

A B

X ×A X ×B

f

⟨c1,idA⟩ ⟨d1,idB⟩
id ×f

i.e. we ask for the C-arrow f to satisfy d1f = c1. From now on, we will write CX instead of

CX×−. By looking at the description of objects and arrows of the category CX , it is easy to

observe CX is isomorphic to the slice category C/X: they are both categories of coalgebras of

the reader comonad X ×−.
As seen in Proposition 1.2.3, the induced indexed poset P (X,φ):CX

op → Pos is defined as follows:

For

(B, d)

(A, c)

f the reindexing is

{β ∈ P (B) | β ≤ P (d)(fB(β))}

{α ∈ P (A) | α ≤ P (c)(fA(α))}

P (f)

with the order of the subsets given by P (B) and P (A) respectively. Since by definition fA(α) =

P (pr1)(φ) ∧ P (pr2)(α), we can write

P (X,φ)(A, c) = {α ∈ P (A) | α ≤ P (⟨c1, id⟩)(P (pr1)(φ) ∧ P (pr2)(α))}

= {α ∈ P (A) | α ≤ P (c1)(φ)} = P (A)↓P (c1)(φ).

Note that there is an adjunction in the 2-category of indexed posets between P and P (X,φ), that

is a pair of 1-arrows (UX , u):P (X,φ) → P , (FX , f):P → P (X,φ) and two 2-arrows η: id
·−→ FXUX

and ε:UXFK
·−→ id such that (CX ,C, UX , FX , η, ε) is an adjunction in Cat.

• The functor UX is the forgetful functor from the Eilenberg–Moore category CX in C;

• the natural transformation u:P (X,φ) ·−→ PUX
op

is the inclusion on every component

u(A,c):P
(X,φ)(A, c) = {α ∈ P (A) | α ≤ P (c)(fA(α))} ↪→ P (A);

• the functor FX is the co-free functor that sends A
f−→ B to (X×A, γA)

id ×f−−−→ (X×B, γB);

• the natural transformation f′:P
·−→ P (X,φ)FX

op
is defined as f on each component—we will

write f instead of f′—: indeed, f′A has image in P (X,φ)(X × A, γA) = P (X × A)↓P (pr1)(φ)
;

hence we define f′A = fA:P (A) → P (X,φ)(X × A, γA) = {δ ∈ P (X × A) | δ ≤ P (pr1)(φ)},
where α ↦→ P (pr1)(φ) ∧ P (pr2)(α);
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• define the natural transformation η: id
·−→ FXUX to be η(A,c) := c. This is indeed a map

from (A, c) to (X × A, γA = ⟨pr1, idX×A⟩), since pr1c = c1; moreover, it is a natural

transformation, since the definition of maps in CX is exactly the naturality diagram for

η. In conclusion, to check that η is a 2-arrow, we prove that for any α ∈ P (X,φ)(A, c),

the inequality α ≤ P (X,φ)(η(A,c))((f ◦ u)(A,c)(α)) holds: take α ∈ P (A), α ≤ P (c1)(φ), then
P (c)((f ◦ u)(A,c)(α)) = P (c)(fAu(A,c)(α)) = P (c)(P (pr1)(φ)∧P (pr2)(α)) = P (c1)(φ)∧α ≥
α;

• the natural transformation ε is defined as before as the second projection on every com-

ponent εA = pr2:X × A → A, so it is clearly natural and is again a 2-arrow, since the

inequality (u ◦ f)A(α) ≤ P (εA)(idA(α)), i.e. P (pr1)(φ) ∧ P (pr2)(α) ≤ P (pr2)(α), trivially

holds;

• in conclusion, we check the triangular identities for η and ε, so that UX ⊣ FX is indeed an

adjunction: first of all εUX(A,c)U
X(η(A,c)) = εAc = pr2c = idA for any co-algebra (A, c) in

CK , and moreover FX(εA)ηFX(A) = (id×pr2)(∆X × idA) = id(X×A,γA) for any object A

of C.

Now, consider the Kleisli category CX×−, i.e. the full subcategory of CX whose objects are the

co-free algebras. From now on, we will write CX instead on CX×−. Observe that an arrow

f = ⟨f1, f2⟩: (X × A) → (X × B) has to satisfy pr1f = pr1, so f1 must be the first projection

pr1 and the map f is uniquely determined by its second component f2:X × A → B. For this

reason, we use the equivalent description of CX , that has as objects the same as C, and as

map g:A ⇝ B is a C-arrow g:X × A → B—see Remark 1.2.6 for more details; moreover, the

composition between two arrows g:A⇝ B and h:B ⇝ C is the arrow h⟨pr1, g⟩:A⇝ C. A new

indexed poset P(X,φ) is trivially induced on the Kleisli category by simply taking the restriction

of P (X,φ) on CX
op, so that P(X,φ):CX

op → Pos is defined as follows:

For

(X ×B, γB)

(X ×A, γA)

⟨pr1,g⟩ the reindexing is

P (X ×B)↓P (pr1)(φ)

P (X ×A)↓P (pr1)(φ)

P (⟨pr1,g⟩)

Translating this in the equivalent description of the Kleisli category defined above instead, we

can write P(X,φ)(A) := P (X ×A)↓P (pr1)(φ)
and, given g:A⇝ B, define P(X,φ)(g) := P (⟨pr1, g⟩).

We can now define in the obvious way the 1-arrow (UX , u):P(X,φ) → P , the restriction of (UX , u),

and (FX , f):P → P(X,φ) the restriction on the image of (FX , f); moreover, this is clearly part of

a 2-adjunction between P(X,φ) and P , with the same unit and co-unit as before.

2.3 The doctrine P(X,φ) and its inherited properties

We now want to study if some properties of P can be translated to P(X,φ), and when so, if they

are preserved by the 1-arrow (FX , f). We will use again the description of CX with the same
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objects as C and arrows A ⇝ B that are actually C-arrows X × A → B; so the functor FX

sends f :A → B to its precomposition with the second projection fpr2:A ⇝ B. First of all, we

check that CX has finite products, preserved by FX , so that both P and P(X,φ) are doctrines and

(FX , f) is a 1-arrow in Dct. Then we study a few other properties of CX that can be inherited

from C; then we will take a look to various properties of P .

Cop CX
op

Pos

FX
op

P P(X,φ)

f

·

We begin by collecting some elementary results regarding the category CX , as we could not find

precise references.

Proposition 2.3.1. Let C be a category with finite products, and CX be the Kleisli category of

the comonad (C, X×−,∆X × id,pr2). Then the category CX has finite products and the co-free

functor FX preserves them.

Proof. For a given pair of object A,B in C, consider the following diagram in CX :

V

A×B

A B

α β

pr2 pr3

where α:X × V → A, β:X × V → B are arrows in C, and the projections are from X ×A×B.

Since C has binary products, there exists a unique ψ:X × V → A×B such that

X × V

A×B

A B

α
ψ

β

pr1 pr2

commutes, so that it is easy to check that ψ:V ⇝ A × B is the unique arrow that makes the

product diagram in CX commute.

The category CX also has a terminal object, it being t, the terminal object of C.

To conclude, observe that FX trivially preserves finite products, since FX is part of the adjunction

UX ⊣ FX and right adjoints preserve all limits.

Now that we proved that P(X,φ) is indeed a doctrine, we check some structure concerning the

base category, that is inherited by CX .
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2.3.1 Closedness

Proposition 2.3.2. Let C be a category with finite products, and CX be the Kleisli category

of the comonad (C, X ×−,∆X × id,pr2). If the category C is closed, then CX is closed and the

co-free functor FX preserves the exponential.

Proof. Suppose that for any object Y there is a natural bijection

Hom
C

(−× Y,=) ∼= Hom
C

(−, (=)Y ).

We sum up the naturality in the two components with the following diagrams:

A× Y B × Y Z B × Y Z S

A B ZY B ZY SY

f×id ˜︁h k g

f h ˆ︁k gY

Consider the functor − × Y :CX → CX , that maps f :A ⇝ B, i.e. f :X × A → B, to the arrow

f × id:A× Y ⇝ B × Y , i.e. f × id:X ×A× Y → B × Y . Such functor is a left adjoint, since for

each object A, there exists an object AY—which we will prove to be the exponential in C—and

a CX -arrow εA:A
Y × Y ⇝ A, i.e. εA:X × AY × Y → A such that, for any object B and arrow

f :B × Y ⇝ A, there exists a unique ˆ︁f :B ⇝ AY—which we will prove to be the same hatted

arrow in C—such that

B × Y AY × Y A
ˆ︁f×id

f

εA

Define εA := ˜︂pr2:X ×AY × Y → A, the C-map corresponding to pr2:X ×AY → AY , so that εA

is indeed a CX -map AY × Y ⇝ A. We only have to check that the composition of CX -arrows

above equals to f , i.e. in C

˜︂pr2 ◦ ⟨pr1, ˆ︁f × id⟩ = ˜︂pr2 ◦ (⟨pr1, ˆ︁f⟩ × id) =
˜︂

pr2 ◦ ⟨pr1, ˆ︁f⟩ = ˜︁ˆ︁f = f

At last, to prove the uniqueness of ˆ︁f , suppose f ′ such that ˜︂pr2◦⟨q1, f ′×id⟩ = f , but the left-hand

side is equal to ˜︁f ′, so ˆ︁˜︁f ′ = ˆ︁f , i.e. f ′ = ˆ︁f .
To conclude, take a C-arrow g:A× Y → B, and its corresponding map ˆ︁g:A → BY , we want to

prove that ˆ︂FX(g) = FX(ˆ︁g).
FX(g):X ×A× Y ⟨pr2,pr3⟩−−−−−−→ A× Y g−→ B

FX(ˆ︁g):X ×A pr2−−→ A
ˆ︁g−→ BY

By naturality we have:
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X ×A× Y A× Y B

X ×A B BY

pr2×id g

pr2 ˆ︁g
i.e. ˜︃ˆ︁gpr2 = g(pr2 × id) = g⟨pr2,pr3⟩, so that ˆ︁gpr2 = ˆ︂g⟨pr2,pr3⟩

2.3.2 Finite coproducts

Proposition 2.3.3. Let C be a category with finite products, and CX be the Kleisli category of

the comonad (C, X × −,∆X × id,pr2). Moreover, suppose that C has binary coproducts. The

endofunctor X ×−:C→ C preserves binary coproducts if and only if CX has binary coproducts

preserved by the co-free functor FX .

Proof. Consider the coproduct diagram in C, its image in CX through FX and a pair of arrows

α:X ×A→ V and β:X ×B → V :

A B A B

A+B A+B

V

ιA
ιB

ιApr2

α

ιBq2

β

Define the map A+B ⇝ V to be the composition
(︁
α
β

)︁
ψ:X×(A+B)

ψ−→
∼

(X×A)+(X×B)
(αβ)−−→ V ,

where ψ is the inverse of the canonical arrow below:

X ×A X ×B

(X ×A) + (X ×B)

X × (A+B)

X (A+B)

ιX×A

ιX×B

⟨(pr1pr1
),(ιApr2

ιBpr2
)⟩=(⟨pr1,ιApr2⟩

⟨pr1,ιBpr2⟩)ψ

pr1

pr2

In particular, (︃
ιX×A

ιX×B

)︃
= id(X×A)+(X×B) = ψ

(︃
⟨pr1, ιApr2⟩
⟨pr1, ιBpr2⟩

)︃
=

(︃
ψ⟨pr1, ιApr2⟩
ψ⟨pr1, ιBpr2⟩

)︃
.

So the composition X × A
⟨pr1,ιApr2⟩−−−−−−−→ X × (A + B)

(αβ)ψ−−−→ V is equal to
(︁
α
β

)︁
ψ⟨pr1, ιApr2⟩ =(︁

α
β

)︁
ιX×A = α; similarly, for β. Hence,

(︁
α
β

)︁
ψ makes the diagram commute, and it is clearly

unique, so CX has coproducts, preserved by FX by constrution.

Conversely, suppose that CX has coproducts, preserved by FX , our claim is that in C, X × −
distribute over +. So in CX take A,B and their coproduct
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A (A+B) B.
ιApr2

ιBpr2

Recall that UX :CX → C, that maps g:C ⇝ D to ⟨pr1, g⟩:X × C → X ×D is a left adjoint, so

it preserves all colimits, and in particular X × (A+B) = (X ×A) + (X ×B), as claimed.

Remark 2.3.4. Is it important to observe that the hypothesis about FX preserving coproducts is

necessary for the equivalence just described. Indeed, suppose C to be a bounded lattice (R,∧,∨),
and fix x ∈ R; so CX = R := (|R|,⊏) where a ⊏ a′ if and only if x ∧ a ≤ a′. The poset R has

coproducts: indeed, a∨b := (x ∧ a) ∨ (x ∧ b). Clearly a ⊏ a∨b and b ⊏ a∨b; moreover, take

a, b ⊏ y, i.e. x ∧ a ≤ y and x ∧ b ≤ y, then a∨b ⊏ y if and only if

x ∧ ((x ∧ a) ∨ (x ∧ b)) ≤ y,

which holds, so that R has indeed coproducts. However, if x ∧ − does not distribute over ∨,
coproducts are not preserved—x ∧ (a ∨ b) ̸= (x ∧ a) ∨ (x ∧ b).

Proposition 2.3.5. Let C be a category with finite products, and CX be the Kleisli category

of the comonad (C, X × −,∆X × id,pr2). Moreover, suppose that C has initial object I. The

endofunctorX×−:C→ C preserves the initial object if and only if CX has initial object preserved

by the co-free functor FX .

Proof. Consider any object A, we show that FXI = I is initial in CX : we look for a unique

arrow I ⇝ A, i.e. a unique arrow X × I → A, but X × I = I by assumption. Conversely,

suppose that CX has initial object, preserved by FX . Use again that UX :CX → C, that acts(︁
g:C ⇝ D

)︁
↦→

(︁
⟨pr1, g⟩:X × C → X ×D

)︁
, is a left adjoint, so it preserves all colimits, and in

particular X × I = I, as claimed.

We now study the structural properties of the fibers of P that are inherited by P(X,φ) and

preserved by the morphism (FX , f).

2.3.3 Finite meets

Proposition 2.3.6. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). Then P(X,φ) is a

primary doctrine, and (FX , f) is a primary homomorphism.

Proof. Recall that, by assumption, for any object A of C, the poset P (A) has finite meets. We

want to check that P(X,φ)(A) = P (X × A)↓P (pr1)(φ)
has finite meets too: for any two elements

α, β ∈ P(X,φ)(A), define α ⊓ β := α ∧ β. The operation just described is clearly the meet, since

the order of P(X,φ)(A) is given by its overset P (X×A), and ⊓ is natural because ∧ is. Moreover,

the poset P(X,φ)(A) has the top element, which is 1A := P (pr1)(φ), and 1 is again natural.



Adding a constant and an axiom to a doctrine 50

Take fA:P (A) → P(X,φ)(A) = P (X × A)↓P (pr1)(φ)
. For any α, β ∈ P (A), one has fA(α ∧ β) =

P (pr1)(φ) ∧ P (pr2)(α ∧ β) = P (pr1)(φ) ∧ P (pr2)(α) ∧ P (pr2)(β) = fA(α) ⊓ fA(β). Moreover,

fA(⊤A) = P (pr1)(φ) ∧ P (pr2)(⊤A) = P (pr1)(φ) ∧ ⊤X×A = P (pr1)(φ) = 1A.

2.3.4 Elementarity

Proposition 2.3.7. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object of

the comonad (P, (X×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is an elementary

doctrine, then P(X,φ) is an elementary doctrine, and (FX , f) is an elementary homomorphism.

Proof. We already proved that, since P is a primary doctrine, P(X,φ) is a primary doctrine too.

So now take objects B,C and consider the reindexing

P (idX×C ×∆B):P (X × C ×B ×B)↓P (pr1)(φ)
→ P (X × C ×B)↓P (pr1)(φ)

.

Define its left adjoint ÆX,φ
B
C to be the restriction of ÆB

X×C . Such restriction is well defined:

take β ≤ P (pr1)(φ) in P (X × C × B), one has ÆB
X×C(β) ≤ P (pr1)(φ) if and only if β ≤

P (idX×C ×∆B)P (pr1)(φ) = P (pr1)(φ), which is true by assumption. Naturality in C and

Frobenius reciprocity for ÆX,φ
B
C come easy from the same properties of ÆB

X×C .

Consider the following diagram:

P (C ×B) P (X × C ×B)↓P (r1)(φ)

P (C ×B ×B) P (X × C ×B ×B)↓P (t1)(φ)

fC×B

ÆB
C ÆX,φ

B
C=ÆB

X×C

fC×B×B

P (idC ×∆B) P (idX×C ×∆B)⊢ ⊢

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of ÆB :

P (C ×B) P (C ×B ×B)

P (X × C ×B) P (X × C ×B ×B)

P (⟨pr2,pr3⟩)

ÆB
C

P (⟨pr2,pr3,pr4⟩)
ÆB

X×C

So now take β ∈ P (C ×B):

fC×B×BÆ
B
C(β) = P (pr1)(φ) ∧ P (⟨pr2,pr3,pr4⟩)(ÆB

C(β))

= P (t1)(φ) ∧ÆB
X×CP (⟨pr2,pr3⟩)(β)

= ÆB
X×C(P (⟨pr2,pr3⟩)(β) ∧ P (idX×C ×∆B)P (pr1)(φ))

= ÆB
X×C(P (⟨pr2,pr3⟩)(β) ∧ P (pr1)(φ)) = ÆB

C fX×C(β),

which proves our claim.
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2.3.5 Existential quantifier

Proposition 2.3.8. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object of

the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is an existential

doctrine, then P(X,φ) is an existential doctrine, and (FX , f) is an existential homomorphism.

Proof. We already proved that, since P is primary, P(X,φ) is primary as well. So now take objects

B,C and consider P (⟨pr1,pr2⟩):P (X×C)↓P (pr1)(φ)
→ P (X×C×B)↓P (pr1)(φ)

, and define its left

adjoint ∃X,φBC to be the restriction of ∃BX×C . Such restriction is well defined: take β ≤ P (pr1)(φ)
in P (X × C × B), one has ∃BX×C(β) ≤ P (pr1)(φ) if and only if β ≤ P (⟨pr1,pr2⟩)P (pr1)(φ) =
P (pr1)(φ), which is true by assumption. Naturality in C and Frobenius reciprocity for ∃X,φBC
come easy from the same properties of ∃BX×C .

Consider the following diagram:

P (C ×B) P (X × C ×B)↓P (pr1)(φ)

P (C) P (X × C)↓P (pr1)(φ)

fC×B

∃B
C ∃X,φ

B
C=∃B

X×C

fC

P (pr1) P (⟨pr1,pr2⟩)⊢ ⊢

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of ∃B :

P (C ×B) P (C)

P (X × C ×B) P (X × C)

P (pr2×idB)

∃B
C

P (pr2)

∃B
X×C

So now take β ∈ P (C ×B):

fC∃BC(β) = P (pr1)(φ) ∧ P (pr2)(∃BC(β))

= P (pr1)(φ) ∧ ∃BX×CP (pr2 × id)(β)

= ∃BX×C(P (⟨pr2,pr3⟩)(β) ∧ P (⟨pr1,pr2⟩)P (pr1)(φ)) = ∃BX×C fX×C(β),

which proves our claim.

2.3.6 Universal quantifier

Proposition 2.3.9. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is a universal

doctrine, then P(X,φ) is a universal doctrine, and (FX , f) is a universal homomorphism.

Additionally, if the universal quantifier of P satisfies the Frobenius reciprocity, then also the

universal quantifier of P(X,φ) does.
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Proof. Take a pair of objects B,C and consider

P (⟨pr1,pr2⟩):P (X × C)↓P (pr1)(φ)
→ P (X × C ×B)↓P (pr1)(φ)

.

Define its right adjoint ∀X,φBC(−) := ∀
B
X×C(−) ∧ P (pr1)(φ). To check that this yields indeed an

adjunction, take γ ≤ P (pr1)(φ) in P (X × C) and β ≤ P (pr1)(φ) in P (X × C ×B), we want to

prove that P (⟨pr1,pr2⟩)(γ) ≤ β if and only if γ ≤ ∀X,φBC(β) = ∀
B
X×C(β)∧P (pr1)(φ). First of all,

suppose P (⟨pr1,pr2⟩)(γ) ≤ β, then it follows from the adjunction P (⟨pr1,pr2⟩) ⊣ ∀BX×C(β) that

γ ≤ ∀BX×C(β); combining this with the assumption on γ, the inequality γ ≤ ∀X,φBC(β) holds.

Conversely, suppose γ ≤ ∀BX×C(β) ∧ P (pr1)(φ) ≤ ∀BX×C(β), then the claim holds again because

of the adjunction.

We now want to prove the naturality of ∀X,φB . Take an arrow f2:C
′ ⇝ C, i.e. f2:X ×C ′ → C,

and write f := ⟨pr1, f2⟩:X × C ′ → X × C. Recall the naturality diagram for ∀B :

P (X × C ×B) P (X × C)

P (X × C ′ ×B) P (X × C ′)

P (f×idB)

∀B
X×C

P (f)

∀B
X×C′

and use it to prove the naturality for ∀X,φB :

P (X × C ×B)↓P (pr1)(φ)
P (X × C)↓P (pr1)(φ)

P (X × C ′ ×B)↓P (pr1)(φ)
P (X × C ′)↓P (pr1)(φ)

P (f×idB)

∀X,φ
B
C

P (f)

∀X,φ
B
C′

So take β ∈ P (X × C ×B):

P (f)∀X,φBC(β) = P (f)(∀BX×C(β) ∧ P (pr1)(φ)) = P (f)∀BX×C(β) ∧ P (pr1)(φ)

= ∀BX×C′P (f × id)(β) ∧ P (pr1)(φ) = ∀X,φ
B
C′P (f × id)(β).

It is worth mentioning that, if we ask in addition that the doctrine P satisfies Frobenius recipro-

city for the adjunction P (⟨pr1,pr2⟩) ⊣ ∀BX×C(β), then also the doctrine P(X,φ) satisfies Frobenius

for the adjunction P (⟨pr1,pr2⟩) ⊣ ∀X,φ
B
C : for any γ ≤ P (pr1)(φ) and β ≤ P (pr1)(φ),

P (⟨pr1,pr2⟩)(γ ∧ ∀X,φ
B
C(β)) = P (⟨pr1,pr2⟩)(γ ∧ ∀BX×C(β) ∧ P (pr1)(φ))

= P (⟨pr1,pr2⟩)(γ) ∧ β,

using γ ∧ P (pr1)φ = γ and Frobenius reciprocity.

Consider the following diagram:
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P (C ×B) P (X × C ×B)↓P (pr1)(φ)

P (C) P (X × C)↓P (s1)(φ)

fC×B

∀B
C ∀X,φ

B
C

fC

P (pr1) P (⟨pr1,pr2⟩)⊣ ⊣

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of ∀B :

P (C ×B) P (C)

P (X × C ×B) P (X × C)

P (pr2×idB)

∀B
C

P (pr2)

∀B
X×C

So now take β ∈ P (C ×B):

∀X,φBC fC×B(β) = ∀X,φBC(P (pr1)(φ) ∧ P (⟨pr2,pr3⟩)(β))

= ∀BX×C(P (pr1)(φ) ∧ P (⟨pr2,pr3⟩)(β)) ∧ P (pr1)(φ).

On the other hand

fC∀BC(β) = P (pr1)(φ) ∧ P (pr2)(∀BC(β)).

To prove ∀X,φBC fC×B(β) ≤ fC∀BC(β), note that if holds if and only if—since it is trivially smaller

than P (pr1)(φ)—

∀X,φBC fC×B(β) ≤ P (pr2)∀BC(β)

but by naturality P (pr2)∀BC = ∀BX×CP (pr2 × id) and moreover P (pr1)(φ) ∧ P (⟨pr2,pr3⟩)(β) =

P (pr1)(φ)∧P (pr2 × id)(β) ≤ P (pr2×id)(β), so applying ∀BX×C to both sides of the last inequality

the claim follows.

Conversely, fC∀BC(β) ≤ ∀X,φ
B
C fC×B(β), if and only if P (⟨pr1,pr2⟩)fC∀BC(β) ≤ fC×B(β) but

P (⟨pr1,pr2⟩) = P(X,φ)FX(pr1), so equivalently fC×BP (pr1)∀BC(β) ≤ fC×B(β). This proves the

claim, by applying fC×B to P (pr1)∀BC(β) ≤ β—which is the counit of the adjunction.

2.3.7 Implication

Proposition 2.3.10. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X × −, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is an

implicational doctrine, then P(X,φ) is an implicational doctrine, and (FX , f) is an implicational

homomorphism.

Proof. Since we already know that P(X,φ) is primary, we check that P(X,φ)(A) = P (X×A)↓P (pr1)(φ)

is cartesian closed too: for any β, γ ∈ P(X,φ)(A), define β ⇒ γ := (β → γ) ∧ P (pr1)(φ).
This is indeed a natural transformation: take f2:A ⇝ B, i.e. f2:X × A → B, and write for

convenience f := ⟨pr1, f2⟩:X ×A→ X ×B.
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P (X ×B)↓P (pr1)(φ)
op × P (X ×B)↓P (pr1)(φ)

P (X ×B)↓P (pr1)(φ)

P (X ×A)↓P (pr1)(φ)
op × P (X ×A)↓P (pr1)(φ)

P (X ×A)↓P (pr1)(φ)

P (f)×P (f)

⇒

P (f)

⇒

So, take a pair α, α′ ∈ P (X × B)↓P (pr1)(φ)
: on the one hand it is sent to P (f)(α ⇒ α′) =

P (f)((α → α′) ∧ P (pr1)(φ)) = (P (f)(α) → P (f)(α′)) ∧ P (pr1)(φ); on the other hand to

P (f)(α) ⇒ P (f)(α′) = (P (f)(α) → P (f)(α′)) ∧ P (pr1)(φ), so that ⇒ is indeed a natural

transformation.

Now, to check that P(X,φ)(A) endowed with this operation is cartesian closed, take three elements

α, β, γ ∈ P (X × A)↓P (pr1)(φ)
, and we prove that α ∧ β ≤ γ if and only if α ≤ β ⇒ γ. So,

suppose α ∧ β ≤ γ, then from α ≤ β → γ combined with the assumption on α we obtain

α ≤ (β → γ) ∧ P (pr1)(γ). Conversely, from α ≤ (β → γ) ∧ P (pr1)(γ) ≤ β → γ, it follows that

α ∧ β ≤ γ.
Take fA:P (A) → P(X,φ)(A) = P (X × A)↓P (pr1)(φ)

. For any α, β ∈ P (A), one has on the one

side fA(α → β) = P (pr1)(φ) ∧ P (pr2)(α → β), and on the other hand fA(α) ⇒ fA(β) =

(P (pr1)(φ) ∧ P (pr2)(α)) ⇒ (P (pr1)(φ) ∧ P (pr2)(β)). So now we prove that in any cartesian

closed poset,

((x ∧ a)→ (x ∧ b)) ∧ x = x ∧ (a→ b)

First of all, x∧ (a→ b) ≤ ((x∧ a)→ (x∧ b))∧ x if and only if x∧ (a→ b) ≤ (x∧ a)→ (x∧ b) if
and only if x ∧ (a→ b) ∧ x ∧ a ≤ x ∧ b.
Conversely, ((x∧ a)→ (x∧ b))∧ x ≤ x∧ (a→ b) if and only if ((x∧ a)→ (x∧ b))∧ x ≤ a→ b if

and only if ((x ∧ a)→ (x ∧ b)) ∧ x ∧ a ≤ b, but ((x ∧ a)→ (x ∧ b)) ∧ x ∧ a ≤ x ∧ b ≤ b.

Corollary 2.3.11. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X × −, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is a Horn

doctrine, then P(X,φ) is a Horn doctrine, and (FX , f) is a Horn homomorphism.

Proof. Both universal and implicational structure is preserved by the construction.

2.3.8 Finite joins

Proposition 2.3.12. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is bounded,

then P(X,φ) is bounded, and (FX , f) preserves the bottom element.

Proof. The poset P(X,φ)(A) has bottom element, which is 0A := ⊥X×A, and 0 is natural.

Take fA:P (A)→ P(X,φ)(A) = P (X×A)↓P (pr1)(φ)
. Compute fA(⊥A) = P (pr1)(φ)∧P (pr2)(⊥A) =

⊥X×A = 0A, so the bottom element is preserved.

Proposition 2.3.13. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object of

the comonad (P, (X×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P has binary joins,
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then P(X,φ) has binary joins. If each fiber of P is a distributive lattice, then (FX , f) preserves

binary joins.

Proof. To check that P(X,φ)(A) = P (X × A)↓P (pr1)(φ)
has binary joins, take any two elements

α, β ∈ P(X,φ)(A), and let α ⊔ β be α ∨ β. The operation is well defined and is clearly the join,

since the order of P(X,φ)(A) is given by its overset P (X ×A), and ⊔ is natural because ∨ is.

Now, for any two elements α, β ∈ P (A), one has fA(α ∨ β) = P (pr1)(φ) ∧ P (pr2)(α ∨ β) =

P (pr1)(φ) ∧ (P (pr2)(α) ∨ P (pr2)(β))
On the other hand, fA(α) ⊔ fA(β) = (P (pr1)(φ) ∧ P (pr2)(α)) ∨ (P (pr1)(φ) ∧ P (pr2)(β)); in

general this is not equal to fA(α∨β), computed above. However, the equality holds if we ask for

P (pr1)(φ) ∧ (−) to preserve joins, e.g. whenever the lattice is distributive.

Corollary 2.3.14. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object of

the comonad (P, (X × −, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is a Heyting

doctrine, then P(X,φ) is a Heyting doctrine, and (FX , f) is a Heyting homomorphism.

Proof. Finite meets, finite joins and implication are preserved by the construction.

2.3.9 Booleanness

Proposition 2.3.15. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is a Boolean

doctrine, then P(X,φ) is a Boolean doctrine, and (FX , f) is a Boolean homomorphism.

Proof. We want to check that P(X,φ)(A) = P (X × A)↓P (pr1)(φ)
is a boolean algebra: for any

element α ∈ P(X,φ)(A), define ⌉α := α⇒ ⊥ = (α→ ⊥)∧P (pr1)(φ) = ¬α∧P (pr1)(φ). Since we

already know that P(X,φ)(A) is a Heyting algebra, we only have to prove that ⌉⌉α = α:

⌉⌉α =⌉(¬α ∧ P (pr1)(φ)) = ¬(¬α ∧ P (pr1)(φ)) ∧ P (pr1)(φ)

= (¬¬α ∨ ¬P (pr1)(φ)) ∧ P (pr1)(φ) = (α ∨ P (pr1)(¬φ)) ∧ P (pr1)(φ)

= (α ∧ P (pr1)(φ)) ∨ P (pr1)(¬φ ∧ φ) = α ∨ ⊥ = α.

To conclude, (FX , f) is Boolean since the Heyting structure is preserved by f.

2.3.10 Variations on negation

There are other ways to introduce negation in the context of inf-semilattices. Here we describe

two examples and check that properties are again preserved.

Definition 2.3.16. A primary doctrine P :Cop → Pos is ∗-autonomous if for every object A,

the poset P (A) is ∗-autonomous, that is: P (A) is cartesian, endowed with operation ¬ such that
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¬¬a = a for every a ∈ P (A) and such that a ∧ b ≤ ¬c if and only if a ≤ ¬(b ∧ c). Moreover the

operation ¬:P op → P yields a natural transformation.

A primary doctrine homomorphism between two ∗-autonomous doctrines is ∗-autonomous if it

preserves the negation.

Proposition 2.3.17. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X × −, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is a ∗-
autonomous doctrine, then P(X,φ) is a ∗-autonomous doctrine, and (FX , f) is a ∗-autonomous

homomorphism.

Proof. For any α ∈ P(X,φ)(A) = P (X×A)↓P (pr1)(φ)
, define ⌉α := ¬α∧P (pr1)(φ). The operation

extended on each fiber ⌉:P(X,φ)
op → P(X,φ) is trivially a natural transformation. We call x =

P (pr1)(φ) for simplicity, and we prove ⌉⌉α = α.

α ≤⌉⌉α if and only if α ≤⌉(¬α ∧ x) if and only if α ≤ ¬(¬α ∧ x) ∧ x

if and only if α ≤ ¬(¬α ∧ x) if and only if α ∧ x ≤ ¬¬α = α.

Conversely,

⌉⌉α ≤ α if and only if ¬(¬α ∧ x) ∧ x ≤ ¬¬α if and only if ¬(¬α ∧ x) ≤ ¬(x ∧ ¬α).

Now, to prove the equivalence, take α, β, γ ≤ x, then

α ∧ β ≤⌉γ if and only if α ∧ β ≤ ¬γ ∧ x if and only if α ∧ β ≤ ¬γ

if and only if α ≤ ¬(β ∧ γ) if and only if α ≤ ¬(β ∧ γ) ∧ x =⌉(β ∧ γ).

To conclude, we prove that fA:P (A) → P(X,φ)(A) preserves the negation. On the one hand

fA(¬α) = P (pr1)(φ) ∧ P (pr2)(¬α) = P (pr1)(φ) ∧ ¬P (pr2)(α) and, on the other hand ⌉fA(α) =
¬fA(α) ∧ P (pr1)(φ) = ¬(P (pr1)(φ) ∧ P (pr2)(α)) ∧ P (pr1)(φ). To see this, it is enough to check

that in a ∗-autonomous inf-semilattice we have x ∧ ¬a = ¬(x ∧ a) ∧ x, for any a, x. First of all,

x ∧ ¬a ≤ ¬(x ∧ a) ∧ x if and only if x ∧ ¬a ≤ ¬(x ∧ a) if and only if x ∧ ¬a ∧ x ≤ ¬a;

conversely,

¬(x ∧ a) ∧ x ≤ x ∧ ¬a if and only if ¬(x ∧ a) ∧ x ≤ ¬a if and only if ¬(x ∧ a) ≤ ¬(x ∧ a).

Definition 2.3.18. A primary doctrine P :Cop → Pos has pseudo-complements if for every

object A, the poset P (A) has pseudo-complements, that is: the poset P (A) is cartesian, endowed

with an operation ¬ and a bottom element ⊥, where ¬a = max{b | a ∧ b = ⊥}; moreover the

operations ⊥:1→ P , ¬:P op → P yield natural transformations .
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A primary doctrine homomorphism between two doctrines with pseudo-complements preserves

pseudo-complements if it is bounded and preserves the negation.

Proposition 2.3.19. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P has pseudo-

complements, then P(X,φ) has pseudo-complements, and (FX , f) preserves pseudo-complements.

Proof. For any α ∈ P(X,φ)(A) = P (X × A)↓P (pr1)(φ)
, define ⌉α := ¬α ∧ P (pr1)(φ); clearly

⌉:P(X,φ)
op → P(X,φ) is a natural transformation. First of all we observe that α∧⌉α = ⊥, since

α∧¬α∧P (pr1)(φ) = ⊥; then, suppose β ≤ P (pr1)(φ) such that α∧β = ⊥, but from α∧β = ⊥,
β ≤ ¬α follows in P (X ×A), so β ≤ ¬α ∧ P (pr1)(φ) =⌉α, hence ⌉α = max{β | α ∧ β = ⊥}.
To conclude, we prove that fA:P (A) → P(X,φ)(A) preserves the negation. Take fA(¬α) and

⌉fA(α) computed as above—in the ∗-autonomous case—, so again we check that x ∧ ¬a =

¬(x ∧ a) ∧ x for any a, x in a pseudo-complemented poset. First of all,

x ∧ ¬a ≤ ¬(x ∧ a) ∧ x iff x ∧ ¬a ≤ ¬(x ∧ a), so it is sufficient (x ∧ ¬a) ∧ (x ∧ a) = ⊥.

Conversely,

¬(x ∧ a) ∧ x ≤ x ∧ ¬a iff ¬(x ∧ a) ∧ x ≤ ¬a, so it is sufficient (¬(x ∧ a) ∧ x) ∧ a = ⊥.

2.3.11 Weak Power Objects

Recall from definition 4.9 in [Pas15] that a doctrine P has weak power objects if for every

object A in the base category C, there exists an object P(A) and an element ∈A∈ P (A× P(A))

such that for any object B and ϕ ∈ P (A × B) there exists an arrow {ϕ}:B → P(A) such that

ϕ = P (idA×{ϕ})(∈A).

Proposition 2.3.20. Let P :Cop → Pos be a primary doctrine and P(X,φ) be the Kleisli object

of the comonad (P, (X ×−, f), γ, ε) defined by the pair X ∈ C and φ ∈ P (X). If P is has weak

power objects, then P(X,φ) has weak power objects.

Proof. Since CX has the same objects as C, for any object A consider P(A) and the element

fA×P(A)(∈A) ∈ P(X,φ)(A× P(A)), i.e. P (pr1)φ ∧ P (⟨pr2,pr3⟩)(∈A) ∈ P (X ×A× P(A))↓P (pr1)φ
.

We want to prove that (P(A), fA×P(A)(∈A)) is a weak power object of A in the doctrine P(X,φ).

To see this, we take any object C and ψ ∈ P(X,φ)(A× C) = P (X ×A× C)↓P (pr1)φ
and look for

an arrow [ψ]:C ⇝ P(A)—i.e. a C-arrow X × C → P(A)—such that

ψ = P(X,φ)(idA×CX
[ψ])fA×P(A)(∈A).

Here, the product idA×CX
[ψ] is computed in CX , hence it is actually the C-arrow

⟨pr2, [ψ]⟨pr1,pr3⟩⟩:X ×A× C → A× P(A).
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Using the fact that P has weak power object, we can take the object X × C and the element

P (⟨pr2,pr1,pr3⟩)ψ ∈ P (A×X × C) and we know that there exists

[ψ] := {P (⟨pr2,pr1,pr3⟩)ψ}:X × C → P(A)

such that

P (⟨pr2,pr1,pr3⟩)ψ = P (idA×{P (⟨pr2,pr1,pr3⟩)ψ}) (∈A) = P (⟨pr1, [ψ]⟨pr2,pr3⟩⟩) (∈A).

Now compute

P(X,φ)(idA×CX
[ψ])fA×P(A)(∈A) = P (⟨pr1,pr2, [ψ]⟨pr1,pr3⟩⟩)

(︁
P (pr1)φ ∧ P (⟨pr2,pr3⟩)(∈A)

)︁
= P (pr1)φ ∧ P (⟨pr2, [ψ]⟨pr1,pr3⟩⟩) (∈A)

which is equal to ψ if and only if P (⟨pr2,pr1,pr3⟩)ψ = P (pr2)φ ∧ P (⟨pr1, [ψ]⟨pr2,pr3⟩⟩) (∈A),
but this is true following from the definition of [ψ] and the fact that ψ ≤ P (pr1)φ.

2.4 Universal properties of P(X,φ)

Consider the following diagram for a primary doctrine P . In particular, P(X,φ) is primary too.

Cop CX
op

Pos

FX
op

P P(X,φ)

f

·

We can interpret this 1-arrow as follows: we are adding a constant of sort X to the theory P ,

and making this constant verify φ. Indeed, take fX(φ) ∈ P(X,φ)(X), which is the interpretation

of φ in P(X,φ), and consider the constant pr1: t⇝ X in CX .

Notation 2.4.1. When there is no confusion, the terminal object of a given category will be

simply called t. Otherwise, a subscript will specify the category in which we are computing the

terminal object.

This map is the C-arrow pr1:X × t → X, which is a direction of the canonical isomorphism

X × t ∼= X, whose inverse is given by ⟨idX , !X⟩:X → X × t. This induces an isomorphism also

between the corresponding fibers P (X × t) ∼= P (X), so that P(X,φ)(t) = P (X × t)↓P (pr1)φ
∼=

P (X)↓φ. From now on we will write idX : t ⇝ X instead of pr1: t ⇝ X, and P (X)↓φ instead of

P (X × t)↓P (pr1)φ
. With this notation, we compute the reindexing of fX(φ) along the constant

idX : t⇝ X, and we show that it is the top element in P(X,φ)(t) = P (X)↓φ. Indeed:

P(X,φ)(idX)fX(φ) = P (∆X)fX(φ) = P (∆X)(P (pr1)φ ∧ P (pr2)φ) = φ ∧ φ = φ,
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and φ is the top element of P(X,φ)(t) = P (X)↓φ.

Theorem 2.4.2. Let P :Cop → Pos be a primary doctrine. Given an object X in the base

category C and an element φ ∈ P (X), the 1-arrow (FX , f):P → P(X,φ) and the CX -arrow

idX : tCX
⇝ X are such that ⊤ ≤ P(X,φ)(idX)fX(φ) in P(X,φ)(tCX

), and they are universal with

respect to this property, i.e. for any primary 1-arrow (G, g):P → R, where R:Dop → Pos is

a primary doctrine, and any D-arrow c: tD → G(X) such that ⊤ ≤ R(c)gX(φ) in R(tD) there

exists a unique up to a unique natural isomorphism primary 1-arrow (G′, g′):P(X,φ) → R such

that (G′, g′) ◦ (FX , f) = (G, g) and G′(idX) = c.

Proof. Consider the diagram

(P, (X ×−, f), γ, ε) (P(X,φ), (id, id), id, id)

(R, (id, id), id, id)
((G,g),j)

((FX ,f),γ)

((G′,g′),id)

(2.1)

describing the universal property for the Kleisli construction for the comonad we are studying

on P , see Proposition 1.2.5.

So, in order to construct (G′, g′):P(X,φ) → R, we must define j in such a way that ((G, g), j) is an

arrow in Cmd∗(IdxPos) as in (2.1), i.e. a natural transformation j:G
·−→ G(X × −), such that

gA ≤ R(jA)gX×AfA and satisfying the coherence diagrams. Knowing that G preserves products,

we need to define for every object A an arrow jA:GA → GX × GA take jA := ⟨c·!GA, idGA⟩,
where !GA:GA→ tD is the unique arrow from GA to the teminal object.

This is a natural transformation:

A GA GX ×GA

B GB GX ×GB

f

jA

G(f) G(id ×f)=id ×G(f)

jB

Indeed, for any f :A→ B, we have:

(id×G(f))⟨c·!GA, idGA⟩ = ⟨c·!GA, G(f)⟩ = ⟨c·!GB , idGB⟩G(f).

Moreover, for any α ∈ P (A), we have

R(jA)gX×AfA(α) = R(jA)gX×A(P (pr1)(φ) ∧ P (pr2)(α))

= R(jA)
(︁
RG(pr1)gX(φ) ∧RG(pr2)gA(α)

)︁
= R(c·!GA)gX(φ) ∧ gA(α),

using naturality of g and the fact that G preserves products.

So now observe that gA(α) ≤ R(c·!GA)gX(φ)∧ gA(α) if and only if gA(α) ≤ R(c·!GA)gX(φ), but

by assumption R(c)gX(φ) = ⊤ in R(tD), so R(!GA)R(c)gX(φ) = R(c·!GA)gX(φ) = ⊤ in R(GA),

hence the inequality holds.
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To conclude, we prove that the coherence diagrams commute:

G GX ×G− G GX ×G−

GX ×G− GX ×GX ×G− G

j

j G(γ)

j

id
G(ε)

jX×−

The first diagram commutes since

G(∆X × idA)jA = (∆GX × idGA)⟨c·!GA, idGA⟩ = ⟨c·!GA, c·!GA, idGA⟩

= ⟨c·!G(X×A), idG(X×A)⟩⟨c·!GA, idGA⟩,

while the second one commutes since

G(εA)jA = G(pr2)jA = pr′2jA = idGA .

So now we know from the universal property that there exists a unique (G′, g′):P(X,φ) → R such

that ((G, g), j) = ((G′, g′), id)((FK , f), γ). In particular there is an arrow (G′, g′):P(X,φ) → R such

that (G′, g′) ◦ (FK , f) = (G, g). Moreover, if we translate the universal property in Proposition

1.2.5 to the notation used here, we observe that G′(g:A⇝ B) = G(g)jA, where g:X ×A→ B is

an arrow in C. In particular, taking A = tCX
and g = idX :X → X, we obtain G′(idX) = jtC = c.

Here we use the fact that G preserves the terminal object, and that the product of an object

with the terminal object is the object itself.

We use the definition of G′ on arrows to prove that G′ preserves products; consider the following

three diagrams: on the left there is the C-diagram that mirrors a product diagram in CX—in

the middle—, while on the right there is the image of such product through G′.

X ×A×B A×B GA×GB

A B A B GA GB

pr2

pr3
pr2

pr3
G(pr2)jA×B

G(pr3)jA×B

However, since G preserves products, G(pr2) and G(pr3) are respectively the second and third

projections from GX ×GA×GB, and these precomposed with jA×B are precisely the first and

second projections from GA×GB, as claimed.

To show that g′ preserves infima and top element, recall from Proposition 1.2.5 that g′A is the

restriction of R(jA)gX×A. Then notice that for any α, β ∈ P(X,φ)(A) we have

g′A(α ∧ β) = R(jA)gX×A(α ∧ β) = R(jA)
(︁
gX×A(α) ∧ gX×A(β)

)︁
= g′A(α) ∧ g′A(β),

since by assumption g respect the structures, while for the top element:

g′A(P (pr1)φ) = R(jA)gX×AP (pr1)φ = R(⟨c·!GA, idGA⟩)R(pr1)gXφ

= R(!GA)R(c)gXφ = ⊤GA.
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So (G′, g′) is indeed a primary 1-arrow.

Finally, suppose that (G, g):P(X,φ) → R is another primary 1-arrow such that (G, g) ◦ (FX , f) =
(G, g) and G(idX) = c.

Then we can compute the composition ((G, g), j) = ((G, g), id)((FK , f), γ), where we define jA: =

(id ◦γ)A = G(εX×AγA) = G(idX×A)—see Remark 1.2.6 and Proposition 1.2.5. We claim that

j = j, so that by uniqueness given by the universal property, the equality (G′, g′) = (G, g) follows.

In our notation, we have to think of idX×A as the map A⇝ X×A, and it is uniquely defined by

its two components: the first one is pr1:A⇝ X, the second one is pr2:A⇝ A. Observe that pr2

is the identity of A in CX , while pr1:A⇝ X is the composition of the unique arrow A⇝ tC and

the constant idX : tCX
⇝ X. Since G preserves products, jA = G(idX×A):GA→ GX ×GA must

be the identity of GA on the second component; in particular the second components of jA and

jA are the same. Concerning the first component we have G(pr1) = G(idX)G(!X×A) = c·!GA,
i.e. also the first component of jA coincides with the first component of jA, hence the two maps

coincide as claimed.

Theorem 2.4.3. Let P , P(X,φ), R, (G, g):P → R be the doctrines and a morphism with the

same assumption of Theorem 2.4.2. Then

(i) if P,R and (G, g) are elementary, then g′ preserves the elementary structure;

(ii) if P,R and (G, g) are existential, then g′ preserves the existential quantifier;

(iii) if P,R and (G, g) are universal, then g′ preserves the universal quantifier;

(iv) if P,R and (G, g) are implicational, then g′ preserves the implication;

(v) if P,R are bounded, with top and bottom elements preserved by g, then g′ preserves them;

(vi) if P,R have binary joins, preserved by g, then g′ preserves binary joins;

(vii) if P,R and (G, g) are respectively Horn, Heyting or Boolean, then g′ preserves the corres-

ponding structure.

Proof. (i) We need to check that ÆGB
GCg

′
C×B = g′C×B×BÆX,φ

B
C .

ÆGB
GCg

′
C×B = ÆGB

GCR(jC×B)gX×C×B = R(jC×B×B)Æ
GB
GX×GCgX×C×B

= R(jC×B×B)gX×C×B×BÆ
B
X×C = g′C×B×BÆX,φ

B
C .

(ii) We prove that ∃GBGCg′C×B = g′C∃X,φ
B
C :

∃GBGCg′C×B = ∃GBGCR(jC×B)gX×C×B = R(jC)∃GBGX×GCgX×C×B

= R(jC)gX×C∃BX×C = g′C∃X,φ
B
C .
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(iii) The proof is similar to the one above, with a little alteration:

∀GBGCg′C×B = ∀GBGCR(jC×B)gX×C×B

= R(jC)∀GBGX×GCgX×C×B = R(jC)gX×C∀BX×C

and also

g′C∀X,φ
B
C = R(jC)gX×C

(︁
∀BX×C(−) ∧ P (pr1)φ

)︁
= R(jC)gX×C∀BX×C(−) ∧R(jC)gX×CP (pr1)φ = R(jC)gX×C∀BX×C .

Note that R(jC)gX×CP (pr1)φ = ⊤GC since g′ preserves the top element—see Theorem

2.4.2.

(iv) Take α, β ∈ P(X,φ)(A):

g′A(α⇒ β) = R(jA)gX×A((α→ β) ∧ P (pr1)φ)

=
(︁
R(jA)gX×A(α)→ R(jA)gX×A(β)

)︁
∧R(jA)gX×AP (pr1)φ = g′A(α)→ g′A(β).

(v) Compute g′A(0A) = R(jA)gX×A(⊥A) = ⊥GA.

(vi) Take α, β ∈ P(X,φ)(A), then

g′A(α ∨ β) = R(jA)gX×A(α ∨ β) = g′A(α) ∨ g′A(β).

Observe that in order to prove this point it was not necessary to ask for the condition that

P (pr1)φ ∧ (−) preserves finite joins in P (X × A), which was necessary for f to preserve

finite joins in Proposition 2.3.13: it is enough to ask g to preserve them.

(vii) It follows trivially combining the previous properties.

A stronger result for Theorem 2.4.2 holds. Let again P :Cop → Pos be a primary doctrine;

fix on object X in the base category, and an element φ ∈ P (X). For any other primary doc-

trine R:Dop → Pos, define the category PD(X,φ)(P,R) whose objects are pairs of the kind(︁
(G, g), c: tD → GX

)︁
, where (G, g) ∈ PD(P,R), such that ⊤ ≤ R(c)gX(φ) in R(tD), and whose

arrows are 2-arrows preserving the constant, meaning θ:
(︁
(G, g), c

)︁
→

(︁
(H, h), d

)︁
is a 2-arrow

θ: (G, g) → (H, h) in PD such that cθX = d. There is an obvious functor induced by precom-

position with (FX , f), from PD(P(X,φ), R) to PD(X,φ)(P,R): it maps any ξ: (K, k) → (K ′, k′)

into ξFX
:
(︁
(K, k) ◦ (FX , f),K(idX)

)︁
→

(︁
(K ′, k′) ◦ (FX , f),K ′(idX)

)︁
. This is well defined on ob-

jects since R(K(idX))(kFXX fXφ) = ktP(X,φ)(idX)fXφ = ⊤, and well defined on arrows since

K(idX)ξX = K ′(idX) by naturality.

Theorem 2.4.4. Let P be a primary doctrine. Given an object X in the base category and

an element φ ∈ P (X), the functor PD(P(X,φ), R)→ PD(X,φ)(P,R) induced by precomposition
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with (FX , f) is an equivalence of categories for any primary doctrine R.

Proof. The functor is essentially surjective following from Theorem 2.4.2 and faithfulness is

trivial since FX is the identity on objects. To show that the functor is full, take any 2-arrow

θ:
(︁
(K, k) ◦ (FX , f),K(idX)

)︁
→

(︁
(K ′, k′) ◦ (FX , f),K ′(idX)

)︁
and prove that θ: (K, k) → (K ′, k′)

is in PD(P(X,φ), R). First of all we check that it is a natural transformation K → K ′: take

any f :A ⇝ B in CX and break it as the composition of idX×A:A ⇝ X × A and f⟨pr2,pr3⟩ =
FX(f):X × A ⇝ B; moreover observe that idX×A has as first projection the composition of

the unique arrow A ⇝ t and the constant idX : t ⇝ X, and as second projection the identity

pr2:A⇝ A—see the end of the proof of Theorem 2.4.2. So the naturality diagram becomes:

A KA K ′A

X ×A KX ×KA K ′X ×K ′A

B KB K ′B

θA

⟨K(idX)!KA,idKA⟩

KFX(f)

θB

⟨K′(idX)!K′A,idK′A⟩

K′FX(f)

idX×A

FX(f)

f θX×θAK(f)
K′(f)

The lower square commutes since θ:KFX
·−→ K ′FX by assumption, while the upper square

commutes since K(idX)θX = K ′(idX). To conclude, we need for any C-object A and any

α ∈ P(X,φ)(A) = P (X × A)↓P (pr1)φ
the inequality kA(α) ≤ R(θA)k

′
A(α) to hold. In particular

α ∈ P (X ×A), so we can consider

fX×Aα = P (pr1)(φ) ∧ P (⟨pr2,pr3⟩)(α) ∈ P(X,φ)(X ×A) ⊆ P (X ×X ×A);

apply then naturality of k to idX×A:A⇝ X ×A to observe that

R(⟨K(idX)!KA, idKA⟩)kX×AfX×Aα = kAP(X,φ)(idX×A)fX×Aα

= kAP (⟨pr1,pr1,pr2⟩)
(︁
P (pr1)(φ) ∧ P (⟨pr2,pr3⟩)(α)

)︁
= kA(P (pr1)(φ) ∧ α) = kA(α)

since α ≤ P (pr1)(φ). Moreover, since in particular θ: (K, k)◦(FX , f)→ (K ′, k′)◦(FX , f), we know
that kX×AfX×A(α) ≤ R(θX×A)k

′
X×AfX×A(α). So we have:

kA(α) = R(⟨K(idX)!KA, idKA⟩)kX×AfX×Aα

≤ R(⟨K(idX)!KA, idKA⟩)R(θX×A)k
′
X×AfX×A(α)

= R(θA)R(⟨K ′(idX)!K′A, idK′A⟩)k′X×AfX×A(α) = R(θA)k
′
A(α).

The process studied above in Theorem 2.4.2 describes how to add a constant of sort X that

verifies a formula φ in a universal way. Taking the particular case when X = t is the terminal

object, we are not adding any constant—the functor t × −:C → C is essentially the identity—,
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and we are just requiring φ ∈ P (t) to be true in the new doctrine—i.e. we are adding the axiom

φ to the theory P—, in a universal way. In this case we write Pφ:Cop → Pos; for any given

C-arrow f :A→ B, we have Pφ(f):Pφ(B)→ Pφ(A), computed as

P (f):P (B)↓P (!B)φ → P (A)↓P (!A)φ.

The 1-arrow P → Pφ becomes (idC, f), where fA:P (A) → Pφ(A) maps an element α ∈ P (A)

to P (!A)φ ∧ α ∈ Pφ(A). All the additional properties of P described in Section 2.3 are clearly

recovered by Pφ.

Corollary 2.4.5. Let P :Cop → Pos be a primary doctrine. Given an element φ ∈ P (t), the
1-arrow (idC, f):P → Pφ is such that ⊤ ≤ ft(φ) in Pφ(t), and it is universal with respect to this

property, i.e. for any primary 1-arrow (G, g):P → R, where R:Dop → Pos is a primary doctrine,

such that ⊤ ≤ gt(φ) in R(tD) there exists a unique up to a unique natural isomorphism primary

1-arrow (G′, g′):Pφ → R such that (G′, g′) ◦ (idC, f) = (G, g).

Remark 2.4.6. In the corollary above, the universal property is the same seen in Proposition

1.5.8, taking the filter ∇ =↑ φ = {α ∈ P (t) | α ≥ φ}. It follows that there exists an isomorphism

between the primary doctrines P/ ↑ φ and Pφ.

The category corresponding to PD(X,φ)(P,R) in Theorem 2.4.4 for some primary doctrine

R:Dop → Pos in this case is called PDφ(P,R): objects are morphisms (G, g) ∈ PD(P,R)

such that ⊤ ≤ gt(φ) in R(tD) and arrows are 2-arrows of PD. In particular PDφ(P,R) is

a full subcategory of PD(P,R). Precomposition with (idC, f) is a functor from PD(Pφ, R) to

PD(P,R), and has image in PDφ(P,R): given (K, k):Pφ → R, the composition (K, k)(idC, f) is

such that (kf)t(φ) = ktft(φ) = kt(φ) = ⊤ in R(tD), since φ is the top element in Pφ(t).

Corollary 2.4.7. Let P be a primary doctrine. Given an element φ ∈ P (t), precomposition

with (idC, f)

− ◦ (idC, f):PD(Pφ, R)→ PDφ(P,R)

is an equivalence of categories for any primary doctrine R.

Similarly, we can take the particular case when φ = ⊤X ∈ P (X) is the top element, so we are

not making any formula true—the natural transformation fA:P (A) → P (X × A) represent the

inclusion of formulae of sort A in the formulae of the same sort but in a language with a new

constant—, and we are just adding a constant idX : t ⇝ X, in a universal way. In this case

we write PX :Cop
X → Pos; for any given CX -arrow f :A ⇝ B, we have PX(f):PX(B) → PX(A)

computed as

P (⟨pr1, f⟩):P (X ×B)→ P (X ×A).

The 1-arrow P → PX becomes (FX , f), where fA:P (A) → PX(A) maps an element α ∈ P (A)
to P (pr2)(α) ∈ PX(A). All the additional properties of P described in Section 2.3 are clearly
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recovered by PX . Observe that for this construction, the assumption that the starting doctrine

P is primary is not needed.

Corollary 2.4.8. Let P :Cop → Pos be a doctrine. Given an object X in the base category,

the 1-arrow (FX , f):P → PX and the CX -arrow idX : tCX
⇝ X are universal, i.e. for any 1-

arrow (G, g):P → R, where R:Dop → Pos is a doctrine, and any D-arrow c: tD → G(X)

there exists a unique up to a unique natural isomorphism 1-arrow (G′, g′):PX → R such that

(G′, g′) ◦ (FX , f) = (G, g) and G′(idX) = c.

The category corresponding to PD(X,φ)(P,R) in Theorem 2.4.4 can be defined for any doctrine

R:Dop → Pos, and in this case is called DctX(P,R): objects are pairs
(︁
(G, g), c: t→ GX

)︁
where

(G, g) ∈ Dct(P,R) and arrows are 2-arrows ofDct preserving the constant. Precomposition with

(FX , f) induces a functor from Dct(PX , R) to DctX(P,R): it maps any ξ: (K, k)→ (K ′, k′) into

ξFX
:
(︁
(K, k)◦(FX , f),K(idX)

)︁
→

(︁
(K ′, k′)◦(FX , f),K ′(idX)

)︁
. This is well defined on arrows since

K(idX)ξX = K ′(idX) by naturality.

Corollary 2.4.9. Let P be a doctrine. Given an object X in the base category, the functor

⟨− ◦ (FX , f),−(idX)⟩:Dct(PX , R) → DctX(P,R) induced by precomposition with (FX , f) is an

equivalence of categories for any doctrine R.

Remark 2.4.10. We showed how to obtain from the universal 1-arrow (FX , f(X,φ)):P → P(X,φ)

for fixed objectX and element φ ∈ P (X), both universal 1-arrows (FX , fX):P → PX in Corollary

2.4.8 for a fixed object X and (idC, fφ):P → Pφ in Corollary 2.4.5 for a fixed element φ in

P (t) as particular cases. Note that we wrote some subscripts to avoid confusion between the

constructions. We now show that we can recover the first 1-arrow from the other two. To do

so, take a primary doctrine P :Cop → Pos, fix an object X and an element φ ∈ P (X). Apply

the construction that adds a constant to obtain (FX , fX):P → PX . Now consider the primary

doctrine PX :Cop
X → Pos and the element φ in the fiber over the terminal object PX(t) = P (X).

Apply the construction that adds an axiom to obtain (idCX
, fφ):PX → (PX)φ.

Cop Cop
X Cop

X

Pos

PX

P

F op
X

idop
CX

(PX)φ
fX fφ

Compute for each object A, the poset (PX)φ(A) = PX(A)↓PX(!X×A)φ, where !X×A:A⇝ t is the

unique CX -arrow from A to t. The reindexing along this arrow is PX(!X×A):PX(t) → PX(A),

that maps φ to P (pr1)φ, so (PX)φ(A) = P (X × A)↓P (pr1)φ
which is exactly how the fibers

of P(X,φ) are computed. Then compute reindexing in (PX)φ: given f :A ⇝ B, we know that

(PX)φ(f) is defined as the restriction of PX(f), that is P (⟨pr1, f⟩), which is how reindexing are
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computed in P(X,φ). So the functor (PX)φ is P(X,φ). Moreover, observe that the composition of

the 1-arrows is (idCX
, fφ)(FX , fX) = (FX , f(X,φ)).

In the following, we apply separately the two constructions to a doctrine of well-formed formulae

in some language L and theory T . At first we apply the construction that adds a constant to a

doctrine, and show that there is an isomorphism between this doctrine and the doctrine of well-

formed formulae in the language with a new constant symbol. Then we apply the construction

that adds an axiom to a doctrine, and show that there is an isomorphism between this doctrine

and the doctrine of well-formed formulae where the theory has a new axiom.

Example 2.4.11. Let L be a first-order language and T be a theory. Consider the doctrine

LTLT :Ctx
op
L → Pos and the fixed object (x) in the base category CtxL. On the one hand, consider

the 1-arrow (F(x), f): LT
L
T → (LTLT )(x), where (LT

L
T )(x): (CtxL)

op
(x) → Pos. Arrows in (CtxL)(x) are

of the form t⃗( (x); z⃗ ): z⃗ ⇝ y⃗, and the fibers (LTLT )(x)(z⃗) are LT
L
T ( (x); z⃗ ) for any list of variables z⃗.

On the other hand consider the doctrine LT
L∪{c}
T :CtxopL∪{c} → Pos, where c is a constant symbol

not appearing in L. There is a trivial 1-arrow (E, e): LTLT → LT
L∪{c}
T : the functor E is defined

by the inclusion of terms in the extended language, the natural transformation e is defined by

the inclusion of formulae. The universal property of (F(x), f) defines a unique (E′, e′): (LTLT )(x) →
LT

L∪{c}
T such that (E′, e′)(F(x), f) = (E, e) and such that E′(︁ id(x): ()⇝ (x)

)︁
=

(︁
c: ()→ (x)

)︁
.

CtxopL CtxopL∪{c}

(CtxL)
op
(x)

Pos

F op
(x)

LTLT

Eop

LT
L∪{c}
T

(LTLT )(x)

E′op

f e′

e

The functor E′ maps an arrow t⃗( (x); z⃗ ): z⃗ ⇝ y⃗ to the term t⃗( [c/x]; z⃗ ): z⃗ → y⃗ in CtxL∪{c}. For a

given pair t⃗( (x); z⃗ ), s⃗( (x); z⃗ ) such that t⃗( [c/x]; z⃗ ) = s⃗( [c/x]; z⃗ ), substitute again [x/c] and get

t⃗ = s⃗, so E′ is faithful. Then, for a given a term u(z⃗) in the language L ∪ {c}, we can consider

c as a variable and substitute each occurrence of c with x, to obtain a term u′( (x); z⃗ ) obviously

written in the language L: in particular E′(u′) = u′( [c/x]; z⃗ ) = u(z⃗), so E′ is full. Moreover,

since E′ is the identity on objects, E′ is an isomorphism.

Concerning formulae, a component of the natural transformation e′(z⃗) sends a formula α( (x); z⃗ )

in (LTLT )(x)(z⃗) = LTLT (x, z⃗) to the formula α( [c/x]; z⃗ ) ∈ LT
L∪{c}
T (z⃗). A similar argument to the

one that showed fullness of the functor E′ proves that e′ is a natural isomorphism.

To conclude, we can say that the doctrine (LTLT )(x) is again a doctrine of well-formed formulae.

Example 2.4.12. Let L be a first-order language and T be a theory. Consider the doctrine

LTLT :Ctx
op
L → Pos and the fixed L-sentence φ ∈ LTLT (). On the one hand, consider the 1-arrow
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(idCtxL , f): LT
L
T → (LTLT )φ, where (LTLT )φ:Ctx

op
L → Pos. Its fibers (LTLT )φ(z⃗) are by definition

LTLT (z⃗)↓φ for any list of variables z⃗. On the other hand consider the doctrine LTLT ∪{φ}:Ctx
op
L →

Pos. There is an obvious 1-arrow (idCtxL , e): LT
L
T → LTLT ∪{φ}: the natural transformation e is

defined by the quotient of formulae with respect to the extended theory, meaning that for each

component x⃗ it maps any T -provable sequent α(x⃗) ⊢T β(x⃗) into the T ∪ {φ}-provable sequent

α(x⃗) ⊢T ∪{φ} β(x⃗). To use the universal property of (idCtxL , f), we need to check that e() maps

φ ∈ LTLT () to the top element of LTLT ∪{φ}(). However this is true since clearly ⊤ ⊢T ∪{φ} φ.

Consequently there exists a unique (E′, e′): (LTLT )φ → LTLT ∪{φ} such that (E′, e′)(idCtxL , f) =

(idCtxL , e).

CtxopL CtxopL

CtxopL

Pos

idop
CtxL

LTLT

idop
CtxL

LTLT ∪{φ}(LTLT )φ

idop
CtxL

f e′

e

The functor E′ is the identity.

Concerning formulae, a component of the natural transformation e′x⃗ sends a formula α(x⃗) in

(LTLT )φ(x⃗) = LTLT (x⃗)↓φ to the formula α(x⃗) ∈ LTLT ∪{φ}(x⃗). Define the inverse function: it maps

β(x⃗) to β(x⃗)∧φ. This is well defined and monotone, since if we take α(x⃗) ⊢T ∪{φ} β(x⃗), it easily

follows that α(x⃗) ∧ φ ⊢T β(x⃗) ∧ φ. On the one hand, take α(x⃗) such that α(x⃗) ⊢T φ, apply e′x⃗

to get α(x⃗), and then send it to α(x⃗) ∧ φ, and observe that α(x⃗) ∧ φ ⊣⊢T α(x⃗) using the initial

assumption on α(x⃗). Conversely, take β(x⃗) ∈ LTLT ∪{φ}(x⃗), send it to β(x⃗) ∧ φ, and then apply

e′x⃗ to get β(x⃗)∧φ ∈ LTLT ∪{φ}(x⃗). Observe that β(x⃗)∧φ ⊣⊢T ∪{φ} β(x⃗). So e′ is indeed a natural

isomorphism.

To conclude, we can say that the doctrine (LTLT )φ is again a doctrine of well-formed formulae.



Chapter 3

Rich doctrines and Henkin’s

Theorem

In this chapter, we explore a generalization of Henkin’s Theorem [Hen49], a crucial result in

first-order logic that is used to prove the Completeness Theorem. This theorem asserts that

any consistent theory has a model. To extend this result, we take inspiration from the various

steps involved in the classical approach, but from the perspective of doctrines. We will gradually

introduce the necessary properties that a doctrine (“theory”) P must possess to establish the

existence of a morphism into the subsets doctrine (“model”). A key element of Henkin’s proof is

to extend the language adding constant symbols, and extend the theory to a rich theory, meaning

that every provable sentence of the form ∃xφ(x) has a corresponding constant c that makes φ(c)

valid. He then proves that the set of constant in the extended language is a model of the rich

theory, hence in particular it is a model of the original theory.

We will generalize these results by defining a new doctrine P−→ (“extended rich theory”) starting

from the given doctrine P . The properties of P−→ will be explored in Sections from 3.1 to 3.7.

Section 3.8 will be dedicated to the definition of suitable models for rich doctrines in both the

elementary and non-elementary cases. Finally, we will conclude our discussion with a possible

statement of the “Henkin Theorem” in the language of doctrines, Theorem 3.8.5.

To begin, let us consider a doctrine P :Cop → Pos. We will not assume that the doctrine has any

specific structure at this time, but we will add the necessary properties as we proceed through

the chapter.

3.1 The construction of the directed colimit P

The directed preorder J :



Rich doctrines and Henkin’s Theorem 69

For the whole chapter, P :Cop → Pos is a fixed

doctrine, unless otherwise specified.

For a fixed cardinal Λ ̸= 0, define J the set of finite lists with different entries with values in

{(X,λ)}X∈obC,λ∈Λ. We ask the empty list to belong to J . Define a preorder in J as follows:

(︁
(X1, x1), . . . , (Xn, xn)

)︁
≤

(︁
(Y1, y1), . . . , (Ym, ym)

)︁
if and only if {︁

(X1, x1), . . . , (Xn, xn)
}︁
⊆

{︁
(Y1, y1), . . . , (Ym, ym)

}︁
.

Whenever we have X̄ ≤ Ȳ in J , there exists a unique function τ : {1, . . . , n} → {1, . . . ,m} induced
by the inclusion such that (Xi, xi) = (Yτ(i), yτ(i)) for all i = 1, . . . , n.

Observe that J is actually a directed preorder: given X̄, Ȳ ∈ J , define the list Z̄ to be the

juxtaposition of X̄ with all the entries of Ȳ that do not appear in X̄; then X̄ ≤ Z̄ ≥ Ȳ .

On a sidenote, we point out that we will not to study the case J = ∅, since this would imply the

category C to have no object.

The diagram D: J → Dct: Define the following diagram on J :

J Dct

∅ P :Cop → Pos

X̄ =
(︁
(X1, x1), . . . , (Xn, xn)

)︁
PΠn

a=1Xa
:Cop

Πn
a=1Xa

→ Pos

Ȳ =
(︁
(Y1, y1), . . . , (Ym, ym)

)︁
PΠm

b=1Yb
:Cop

Πm
b=1Yb

→ Pos

D

≤
≤

(FX̄Ȳ ,fX̄Ȳ )

(FX̄ ,fX̄)

where:

• CΠn
a=1Xa

has the same objects of C and an arrow from A to B is actually a C-arrow∏︁n
a=1Xa ×A→ B;

• PΠn
a=1Xa

(A) = P (
∏︁n
a=1Xa × A), with trivial definition on arrows—it is the usual Kleisli

contruction starting from P for the pair (
∏︁n
a=1Xa,⊤);

• FX̄
(︁
f :A→ B

)︁
=

(︁
f ◦ prA:A⇝ B

)︁
seen as the composition

∏︁n
a=1Xa ×A→ A→ B;

• (fX̄)A:P (A)→ PΠn
a=1Xa

(A) = P (
∏︁n
a=1Xa×A) is the reindexing along the projection over

A;

• FX̄Ȳ
(︁
f :A ⇝ B

)︁
=

(︁
f ◦ (⟨prτ(1), . . . ,prτ(n)⟩ × idA):A ⇝ B

)︁
seen as the following com-

position
∏︁m
b=1 Yb × A →

∏︁n
a=1Xa × A → B. Here ⟨prτ(1), . . . ,prτ(n)⟩ is the projection on

the corresponding components from
∏︁m
b=1 Yb to

∏︁n
a=1Xa, since Xi appears as the τ(i)-th

component of Ȳ ;
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• (fX̄Ȳ )A:P (
∏︁n
a=1Xa × A) → P (

∏︁m
b=1 Yb × A) is defined as the reindexing along the map

⟨prτ(1), . . . ,prτ(n)⟩ × idA.

For any ∅ ≤ X̄ ≤ Ȳ compute that the composition (FX̄Ȳ , fX̄Ȳ )(FX̄ , fX̄) = (FȲ , fȲ ). Indeed,

between the base categories we have:

FX̄ :

(︃
f :A→ B

)︃
↦→

(︃
fprA:

n∏︂
a=1

Xa ×A→ B

)︃

and then

FX̄Ȳ : fprA ↦→
(︃
fprA ◦ (⟨prτ(1), . . . ,prτ(n)⟩× idA):

m∏︂
b=1

Yb×A→ B

)︃
=

(︃
fprA:

m∏︂
b=1

Yb×A→ B

)︃
,

so FX̄Ȳ FX̄ = FȲ . Moreover (fX̄Ȳ )A(fX̄)A = P (⟨prτ(1), . . . ,prτ(n)⟩ × idA)P (prA) = P (prA) =

(fȲ )A. Observe that both equalities follow from the fact that prA ◦ (⟨prτ(1), . . . ,prτ(n)⟩ × idA) =

prA.

Similarly, for any X̄ ≤ Ȳ ≤ Z̄ with induced functions respectively τ : {1, . . . , n} → {1, . . . ,m} and
τ ′: {1, . . . ,m} → {1, . . . , s}, we compute the composition (FȲ Z̄ , fȲ Z̄)(FX̄Ȳ , fX̄Ȳ ) = (FX̄Z̄ , fX̄Z̄)

using the fact that

(⟨prτ(1), . . . ,prτ(n)⟩ × idA) ◦ (⟨prτ ′(1), . . . ,prτ ′(m)⟩ × idA) = (⟨prτ ′τ(1), . . . ,prτ ′τ(n)⟩ × idA).

So D: J → Dct is indeed a diagram.

The colimit of D: Take the colimit of D in Dct, P :Cop → Pos, computed as in Section 1.3.

Objects in the base category are the same as C, since FX̄Ȳ ’s act like the identity on objects. An

arrow
[︁
f, X̄

]︁
in HomC(A,B)—we write

[︁
f, X̄

]︁
:A ‧‧➡ B—is the equivalence class of an arrow

f :
∏︁n
a=1Xa × A → B for some fixed X̄ =

(︁
(X1, x1), . . . , (Xn, xn)

)︁
∈ J . Recall that one has[︁

f, X̄
]︁
=

[︁
f ′, Ȳ

]︁
, for some f ′:

∏︁m
b=1 Yb × A → B with Ȳ =

(︁
(Y1, y1), . . . , (Ym, ym)

)︁
∈ J if and

only if there exists Z̄ ∈ J such that X̄ ≤ Z̄ ≥ Ȳ making the following diagram commute:

∏︁n
a=1Xa ×A

∏︁s
c=1 Zc ×A B

∏︁m
b=1 Yb ×A

⟨prτ(1),...,prτ(n)⟩×idA
f

⟨prτ′(1),...,prτ′(m)⟩×idA
f ′

Here τ and τ ′ are induced by X̄ ≤ Z̄ and Ȳ ≤ Z̄ in J respectively.

For any object A, we have P (A) ∋
[︁
φ, X̄

]︁
for some φ ∈ P (

∏︁n
a=1Xa×A). Here

[︁
φ, X̄

]︁
=

[︁
φ′, Ȳ

]︁
,

where φ′ ∈ P (
∏︁m
b=1 Yb×A) if and only if there exists Z̄ ∈ J such that X̄ ≤ Z̄ ≥ Ȳ with induced

function τ and τ ′ such that P (⟨prτ(1), . . . ,prτ(n)⟩ × idA)φ = P (⟨prτ ′(1), . . . ,prτ ′(m)⟩ × idA)φ
′
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in P (
∏︁s
c=1 Zc × A). Reindexing is defined in a common list of J : if

[︁
f, X̄

]︁
:A ‧‧➡ B and[︁

ψ, Ȳ
]︁
∈ P (B), take X̄ ≤ Z̄ ≥ Ȳ ; then

P
(︁ [︁
f, X̄

]︁ )︁ [︁
ψ, Ȳ

]︁
= P

(︁ [︂
f ◦ (⟨prτ(1), . . . ,prτ(n)⟩ × idA), Z̄

]︂ )︁ [︂
P (⟨prτ ′(1), . . . ,prτ ′(m)⟩ × idB)ψ, Z̄

]︂
=

[︂
P (⟨pr1, . . . ,prs, f ◦ (⟨prτ(1), . . . ,prτ(n)⟩ × idA)⟩)P (⟨prτ ′(1), . . . ,prτ ′(m)⟩ × idB)ψ, Z̄

]︂
=

[︂
P (⟨prτ ′(1), . . . ,prτ ′(m), f ◦ (⟨prτ(1), . . . ,prτ(n)⟩ × idA)⟩)ψ, Z̄

]︂
.

∏︁
Zc ×A

∏︁
Xa ×A B

∏︁
Zc ×B

∏︁
Yb ×B

⟨prτ(1),...,prτ(n)⟩×idA f

⟨prτ′(1),...,prτ′(m)⟩×idB

⟨pr1,...,prs,f◦(⟨prτ(1),...,prτ(n)⟩×idA)⟩

Remark 3.1.1. Call (F , f):P → P the map in the colimit starting from D(∅): the functor F

maps a C-arrow f :A→ B into [f, ∅]:A ‧‧➡ B, a component of the natural transformation f
A
sends

α ∈ P (A) into [α, ∅] ∈ P (A). Moreover, by the universal property of the Kleisli constructions, any

morphism D(X̄)→ P is uniquely determined by the homomorphism (F , f):P → P and a choice

of a constant t→
∏︁n
a=1Xa. By definition of colimit, any doctrine homomorphism (G, g):P → R

is uniquely determined by its precompositions with (F , f) and a choice of a constant for any pair

(X,λ) for every object X in C and any λ ∈ Λ.

Remark 3.1.2. Note that the same construction can be made if we change the cardinals over

the objects: take for any object X a cardinal ΛX , and call J the set of finite lists with values

in {(X,λ)}X∈obC,λ∈ΛX
. In this case we just ask for the existence of at least one cardinal ΛX

different from 0.

3.2 Listing formulae and labelling new constants

For the whole chapter, P :Cop → Pos is a fixed

implicational existential doctrine, with a small

base category, unless otherwise specified.

Call Λ = card
(︁⨆︁

X∈obC P (X)
)︁
and build the colimit doctrine P with respect to this cardinal.

Since by Theorem 2.4.3 every doctrine and morphism that appear in the diagram D are implic-

ational and existential, also P is implicational and existential, as seen in Proposition 1.3.2. First

of all consider all objects of C—hence also all objects of C—as obC = {B}B∈obC. For any fixed

B, we can surely list all elements of P (B) as
{︂[︂
φBj , X̄

(B,j)
]︂}︂

j∈Λ
where we fix a representative

φBj ∈ P (
n(B,j)∏︂
a=1

X(B,j)
a ×B)
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for a given list X̄
(B,j)

=
(︁
(X

(B,j)
1 , x

(B,j)
1 ), . . . , (X

(B,j)

n(B,j) , x
(B,j)

n(B,j))
)︁
in J . Now consider all formulae

of the kind

∃Bt
[︂
φBj , X̄

(B,j)
]︂
, for all j ∈ Λ.

Then we have in P (t)

∃Bt
[︂
φBj , X̄

(B,j)
]︂
=

[︂
∃B
ΠX

(B,j)
a

φBj , X̄
(B,j)

]︂
,

where we recall the adjunction:

P (
∏︁
X

(B,j)
a ×B) P (

∏︁
X

(B,j)
a )

∃B

ΠX
(B,j)
a

P (pr1)

⊥

Here we write pr1 meaning the first projection from the product (
∏︁
X

(B,j)
a )×B.

For any fixed B ∈ obC and for any j ∈ Λ define dBj as follows:

• if j = 0, then dB0 is the smallest ordinal such that

dB0 > x(B,0)a for any a = 1, . . . , n(B,0);

• if j is a successor or a limit ordinal, then dBj is the smallest ordinal such that dBj > dBh for

all h < j and such that

dBj > x(B,k)a for any a = 1, . . . , n(B,k) and k ≤ j.

Note that in particular for any j ∈ Λ:

(B, dBj ) /∈ {(X(B,j)
a , x(B,j)a )}n

(B,j)

a=1 .

Now, since

φBj ∈ P (
n(B,j)∏︂
a=1

X(B,j)
a ×B)

we can take its equivalence class fixing X̄
(B,j) ∈ J , hence we end up in P (B), or fixing the

list X̄
(B,j)
⋆ =

(︁
(X

(B,j)
1 , x

(B,j)
1 ), . . . , (X

(B,j)

n(B,j) , x
(B,j)

n(B,j)), (B, d
B
j )

)︁
—i.e. adding (B, dBj ) to the list

X̄
(B,j)

—, hence we end up in P (t). We compute in P (t):

∃Bt
[︂
φBj , X̄

(B,j)
]︂
−→

[︂
φBj , X̄

(B,j)
⋆

]︂
.

Define in P (
∏︁
X

(B,j)
a ×B)

ψBj := P (pr1)∃BΠX(B,j)
a

φBj −→ φBj
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so that taking its class fixing X̄
(B,j)
⋆ we get[︂

ψBj , X̄
(B,j)
⋆

]︂
∈ P (t), with

[︂
ψBj , X̄

(B,j)
⋆

]︂
= ∃Bt

[︂
φBj , X̄

(B,j)
]︂
−→

[︂
φBj , X̄

(B,j)
⋆

]︂
. (3.1)

3.3 The construction of the directed colimit P−→
Starting from P defined in the last section, we do another construction.

The directed preorder I and the diagram ∆: I → Dct: Define the poset I of finite sets

of pairs of the kind (B, j), where B ∈ obC and j ∈ Λ, ordered by inclusion. We want also the

empty set to belong to I.

I Dct

∅ P :Cop → Pos

U = {(B1, j1), . . . , (Bn, jn)} PU :Cop → Pos

V = {(B1, j1), . . . , (Bn+m, jn+m)} PV :Cop → Pos

∆

⊆
⊆

(id,fU )

(id,fUV)

where:

• PU (A) = P (A)↓P (!)
⋀︁n

i=1

[︂
ψ

Bi
ji
,X̄(Bi,ji)

⋆

]︂, with trivial definition on arrows—it is the usual

Kleisli contruction starting from P for the pair (t,
⋀︁n
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
);

• (fU )A:P (A)→ P (A)↓P (!)
⋀︁n

i=1

[︂
ψ

Bi
ji
,X̄(Bi,ji)

⋆

]︂ is the assignment

[︁
α, Ȳ

]︁
↦→

[︁
α, Ȳ

]︁
∧ P (!)

n⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
;

• (fUV)A:P (A)↓P (!)
⋀︁n

i=1

[︂
ψ

Bi
ji
,X̄(Bi,ji)

⋆

]︂ → P (A)↓P (!)
⋀︁n+m

i=1

[︂
ψ

Bi
ji
,X̄(Bi,ji)

⋆

]︂ is again the assignment[︁
α, Ȳ

]︁
↦→

[︁
α, Ȳ

]︁
∧ P (!)

⋀︁n+m
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
.

Use associativity and commutativity of conjunction to observe that this is a diagram.

The colimit of ∆: Take the colimit of ∆ in Dct, P−→:Cop → Pos. The base category is C, since

all functors in 1-arrows of the diagram are identities.

We recall from Proposition 1.3.1 that the doctrine is defined as

P−→(C) =

⨆︂
U∈I

PU (C)⧸∼,

where [
[︁
α, Ȳ

]︁
,U ] ∈ P−→(C) for some

[︁
α, Ȳ

]︁
∈ P (C) such that

[︁
α, Ȳ

]︁
≤ P (!)

⋀︁n
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
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with a fixed U = {(B1, j1), . . . , (Bn, jn)} ∈ I. Here [
[︁
α, Ȳ

]︁
,U ] = [

[︁
β, Z̄

]︁
,V], for

[︁
β, Z̄

]︁
∈ P (C),[︁

β, Z̄
]︁
≤ P (!)

⋀︁m
r=1

[︂
ψDr

lr
, X̄

(Dr,lr)
⋆

]︂
with a fixed V = {(D1, l1), . . . , (Dm, lm)} ∈ I, if there exists

a W = {(A1, q1), . . . , (Az, qz)} ⊇ U ,V such that in P (C) we have

[︁
α, Ȳ

]︁
∧ P (!)

z⋀︂
k=1

[︂
ψAk
qk
, X̄

(Ak,qk)
⋆

]︂
=

[︁
β, Z̄

]︁
∧ P (!)

z⋀︂
k=1

[︂
ψAk
qk
, X̄

(Ak,qk)
⋆

]︂
.

This assignment appropriately extends to arrows in C.

Remark 3.3.1. We revise in a single diagram the two constructions we did above:

Cop Cop Cop

Pos

F op

P

idop

P

P−→

f

·

f
−→
·

The doctrine P :Cop → Pos has a small base category, and it is implicational and existential.

Call the composition (id, f
−→
) ◦ (F , f) = (F, f), so that both F and f are the quotient map:

F :C→ C, (f :A→ B) ↦→ ([f, ∅] :A ‧‧➡ B)

fA:P (A)→ P−→(A), α ↦→ [[α, ∅] , ∅]

This morphism preserves implicational and elementary structure.

3.4 P−→ is rich

We extend the concept of richness for a theory to the language of doctrines.

Definition 3.4.1. Let R:D
op → Pos be an existential doctrine. Then R is rich if for all A ∈ obD

and for all σ ∈ R(A) there exists a D-arrow d: t→ A such that ∃At σ ≤ R(d)σ.

Remark 3.4.2. For every object A in the base category of a rich doctrine, there exists an arrow

from the terminal object to A.

Example 3.4.3. The subsets doctrine P: Setop → Pos is not rich, since there exists no arrow

t→ ∅. However, we can remove the empty set from the base category and consider the doctrine

P∗: Set
op
∗ → Pos, which is rich.

Theorem 3.4.4. Let P be an implicational existential doctrine with a small base category.

Then the doctrine P−→ is rich.

Proof. Now, given [
[︁
φ, Ȳ

]︁
,U ] ∈ P−→(B), we will find an arrow

[︁
c, Z̄

]︁
: t ‧‧➡ B such that

∃−→
B
t [
[︁
φ, Ȳ

]︁
,U ] ≤ P−→(

[︁
c, Z̄

]︁
)[
[︁
φ, Ȳ

]︁
,U ].
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Note that [
[︁
φ, Ȳ

]︁
,U ] = [

[︁
φ, Ȳ

]︁
, ∅]: indeed taking U ⊇ U , ∅ we have in P (B)

[︁
φ, Ȳ

]︁
∧ P (!)

n⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
=

[︁
φ, Ȳ

]︁
.

Moreover, since
[︁
φ, Ȳ

]︁
∈ P (B) in particular

[︁
φ, Ȳ

]︁
=

[︂
φBj , X̄

(B,j)
]︂
for some j ∈ Λ, with

φBj ∈ P (
n(B,j)∏︂
a=1

X(B,j)
a ×B).

First of all compute ∃−→
B
t [
[︁
φ, Ȳ

]︁
,U ] = ∃−→

B
t [
[︂
φBj , X̄

(B,j)
]︂
, ∅] = [∃Bt

[︂
φBj , X̄

(B,j)
]︂
, ∅]. Then define[︁

c, (B, dBj )
]︁
: t ‧‧➡ B as the equivalence class of the identity

c = idB :B → B,

and compute

P−→(
[︁
c, (B, dBj )

]︁
)[
[︁
φ, Ȳ

]︁
,U ] = P−→(

[︁
c, (B, dBj )

]︁
)[
[︂
φBj , X̄

(B,j)
]︂
, ∅] = [

[︂
φBj , X̄

(B,j)
⋆

]︂
, ∅]

Then, in P−→(t) we have

∃−→
B
t [
[︁
φ, Ȳ

]︁
,U ] ≤ P−→(

[︁
c, (B, dBj )

]︁
)[
[︁
φ, Ȳ

]︁
,U ]

if and only if

[[⊤, ∅] , ∅] ≤ ∃−→
B
t [
[︁
φ, Ȳ

]︁
,U ] −→ P−→(

[︁
c, (B, dBj )

]︁
)[
[︁
φ, Ȳ

]︁
,U ],

i.e.

[[⊤, ∅] , ∅] ≤ [∃Bt
[︂
φBj , X̄

(B,j)
]︂
, ∅] −→ [

[︂
φBj , X̄

(B,j)
⋆

]︂
, ∅];

but then compute the implication in P (t) as seen in (3.1) to get

[[⊤, ∅] , ∅] ≤ [
[︂
ψBj , X̄

(B,j)
⋆

]︂
, ∅]

which holds since [
[︂
ψBj , X̄

(B,j)
⋆

]︂
, ∅] is the top element of P−→(t) by definition: take {(B, j)} ⊇ ∅

and observe that in P (t):

[⊤, ∅] ∧
[︂
ψBj , X̄

(B,j)
⋆

]︂
=

[︂
ψBj , X̄

(B,j)
⋆

]︂
∧
[︂
ψBj , X̄

(B,j)
⋆

]︂
.

This concludes the proof that P−→ is rich.



Rich doctrines and Henkin’s Theorem 76

3.5 Consistency of P−→
Definition 3.5.1. A doctrine R:Dop → Pos is consistent if there exists a pair a, b ∈ R(t) such
that a ≰ b. Moreover, R is two-valued if it is consistent and there exists a pair a, b ∈ R(t) such
that a ≰ b and for all c ∈ R(t) one has a ≤ c or b ≤ c.

For the whole chapter, P :Cop → Pos is a fixed

bounded implicational existential consistent

doctrine, with a small base category, unless

otherwise specified.

Our goal is to show that the new doctrine P−→ is consistent: we must be careful not to collapse

fibers of P−→ to the trivial poset.

Lemma 3.5.2. If R:Dop → Pos is a doctrine with both ⊤ and ⊥. Then the following are

equivalent:

(i) R(t) ̸= {⋆};

(ii) ⊤t ≰ ⊥t;

(iii) R is consistent;

(iv) R is two-valued.

Proof. ((i) =⇒ (ii)) If ⊤t ≤ ⊥t, then for all a ∈ R(t) we have ⊥t ≤ a ≤ ⊤t ≤ ⊥t, hence for all

a we have a = ⊥t, hence R(t) is a singleton.

((ii) =⇒ (i)) Trivial.

((iv) =⇒ (iii)) By definition.

((iii) =⇒ (ii)) If ⊤t ≤ ⊥t, then for all a, b ∈ R(t) we have a ≤ ⊤t ≤ ⊥t ≤ b, hence R cannot be

consistent.

((ii) =⇒ (iv)) Take a = ⊤t and b = ⊥t and observe that for all c ∈ R(t) we have b = ⊥t ≤ c.

Remark 3.5.3. Let R be an existential doctrine with bottom element. If R is consistent and

rich, then each of its fiber is non-trivial—i.e. it is not a singleton. Indeed, suppose R(D) =

{⊥D = ⊤D} for some object D in the base category. Then there exists a d: t → D such that

∃Dt ⊤D = R(d)⊤D = ∃Dt ⊥D = R(d)⊥D, in particular ⊤t = ⊥t, which is absurd since R is

consistent.

We want to find the conditions making P−→ a consistent doctrine as well. Using the lemma above,

we want [[⊤, ∅] , ∅] ≰ [[⊥, ∅] , ∅] in P−→(t).

However, [[⊤, ∅] , ∅] ≤ [[⊥, ∅] , ∅] if and only if there exists U = {(B1, j1), . . . , (Bn, jn)} ∈ I such

that
q⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
≤ [⊥, ∅] in P (t). (3.2)
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We want to prove this to be a contradiction by induction on q. If q = 0, we get [⊤, ∅] ≤ [⊥, ∅],
i.e. there exists Ȳ =

(︁
(Y1, y1), . . . , (Ym, ym)

)︁
∈ J such that in P (

∏︁m
b=1 Yb)

P (!ΠYb
)(⊤) ≤ P (!ΠYb

)(⊥)

i.e. ⊤ ≤ ⊥ in P (
∏︁m
b=1 Yb). It follows from this that a stronger requirement on P is needed:

not only P (t) must not be a singleton, but also each P (A) must not be a singleton, for every

A ∈ obC. Otherwise, P (t) is trivial, hence also P−→(t) is trivial. So, from now on we suppose that

P has bottom element and has each P (A) non-trivial.

For the whole chapter, P :Cop → Pos is a fixed

bounded implicational existential doctrine,

with non-trivial fibers, and with a small base

category, unless otherwise specified.

With this additional assumption, we get a contradiction in the case q = 0. Suppose now (3.2)

to be a contradiction for q; we will take the rest of the section to understanding when also q+ 1

gives a contradiction. Suppose

q+1⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
≤ [⊥, ∅] in P (t),

i.e.

q⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
∧
[︂
ψ
Bq+1

jq+1
, X̄

(Bq+1,jq+1)
⋆

]︂
≤ [⊥, ∅] in P (t).

For the sake of simplicity we write ψ instead of ψ
Bq+1

jq+1
. Moreover, up to a permutation of the

indices i = 1, . . . , q + 1, we can suppose that d
Bq+1

jq+1
≥ dBi

ji
for i = 1, . . . , q.

Compute
⋀︁q
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
as the class of some θ paired with a list T̄ of J with entries in

F :=

q⋃︂
i=1

{︂(︂
X(Bi,ji)
a , x(Bi,ji)

a

)︂}︂n(Bi,ji)

a=1
∪

q⋃︂
i=1

{︂(︂
Bi, d

Bi
ji

)︂}︂
.

Then call

G :=
{︂(︂
X(Bq+1,jq+1)
a , x(Bq+1,jq+1)

a

)︂}︂n(Bq+1,jq+1)

a=1
;

and rename the pairs:

F ∩ G = {(Zb, zb)}bb=1 ,

F ∖ (F ∩ G) = {(Wc, wc)}cc=1 ,

G ∖ (F ∩ G) = {(Ve, ve)}ee=1 .

Observe that (Bq+1, d
Bq+1

jq+1
) /∈ G ∪F : it does not belong to G by definition of d

Bq+1

jq+1
, it is different
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from all the pairs (Bi, d
Bi
ji
) for i = 1, . . . , q since we are taking the conjunction of q + 1 formulae

by assumption, and it is different from all the pairs (X
(Bi,ji)
a , x

(Bi,ji)
a ) for i = 1, . . . , q and

a = 1, . . . , n(Bi,ji) since d
Bq+1

jq+1
≥ dBi

ji
> x

(Bi,ji)
a for i = 1, . . . , q and a = 1, . . . , n(Bi,ji).

From now on, we write (B, d) instead of (Bq+1, d
Bq+1

jq+1
) in order to lighten the notation. We

compute
[︁
θ, T̄

]︁
∧
[︂
ψ, X̄

(B,jq+1)
⋆

]︂
as the equivalence class of an element in

F⏟ ⏞⏞ ⏟
P (

∏︁
Wc ×

∏︁
Zb ×

∏︁
Ve ×B)⏞ ⏟⏟ ⏞

G

paired with the list

S̄ =
(︁
. . . , (Wc, wc), . . . , (Zb, zb), . . . , (Ve, ve), . . . , (B, d)

)︁
.

We can assume θ ∈ P (ΠWc ×ΠZb) and

[ψ′, (. . . , (Zb, zb), . . . , (Ve, ve), . . . , (B, d))] =
[︂
ψ, X̄

(B,jq+1)
⋆

]︂
where ψ′ ∈ P (ΠZb ×ΠVe ×B) is a reindexing along a suitable permutation of ψ. We can do so

recalling that

G =
{︂(︂
X(Bq+1,jq+1)
a , x(Bq+1,jq+1)

a

)︂}︂n(Bq+1,jq+1)

a=1
= {(Zb, zb)}bb=1 ∪ {(Ve, ve)}

e
e=1 .

Then [︁
θ, T̄

]︁
∧
[︂
ψ, X̄

(B,jq+1)
⋆

]︂
=

[︁
P (⟨pr1,pr2⟩)θ ∧ P (⟨pr2,pr3,pr4⟩)ψ′, S̄

]︁
∈ P (t).

Then
[︁
θ, T̄

]︁
∧
[︂
ψ, X̄

(B,jq+1)
⋆

]︂
≤ [⊥, ∅] if and only if there exists a set {(Yh, yh)}hh=1, disjoint from

F ∪ G ∪ {(B, d)} such that in P (ΠWc ×ΠZb ×ΠVe ×B ×ΠYh) one has

P (⟨pr1,pr2⟩)θ ∧ P (⟨pr2,pr3,pr4⟩)ψ′ ≤ ⊥

if and only if in in P (ΠWc ×ΠZb ×ΠVe ×ΠYh ×B) one has

P (⟨pr1,pr2⟩)θ ∧ P (⟨pr2,pr3,pr5⟩)ψ′ ≤ ⊥ = P (⟨pr1,pr2,pr3,pr4⟩)⊥

if and only if, using ∃BΠW×ΠZ×ΠV×ΠY ⊣ P (⟨pr1,pr2,pr3,pr4⟩), in P (ΠWc × ΠZb × ΠVe × ΠYh)

one has

∃BΠW×ΠZ×ΠV×ΠY (P (⟨pr1,pr2⟩)θ ∧ P (⟨pr2,pr3,pr5⟩)ψ′) ≤ ⊥;

then use Frobenius reciprocity, and note that P (⟨pr1,pr2⟩) = P (⟨pr1,pr2,pr3,pr4⟩)P (⟨pr1,pr2⟩)
as the composition of the projections from ΠWc×ΠZb×ΠVe×ΠYh×B to ΠWc×ΠZb×ΠVe×ΠYh
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to ΠWc ×ΠZb in order to get

∃BΠW×ΠZ×ΠV×ΠY P (⟨pr2,pr3,pr5⟩)ψ′ ∧ P (⟨pr1,pr2⟩)θ ≤ ⊥.

Claim 3.5.4. ⊤ ≤ ∃BΠW×ΠZ×ΠV×ΠY P (⟨pr2,pr3,pr5⟩)ψ′.

If this is the case, then we get P (⟨pr1,pr2⟩)θ ≤ ⊥, hence we have

[P (⟨pr1,pr2⟩)θ, (. . . , (Wc, wc), . . . , (Zb, zb), . . . , (Ve, ve), . . . , (Yh, yh), . . . )] =

=
[︁
θ, T̄

]︁
=

q⋀︂
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
≤ [⊥, ∅]

which is (3.2), a contradiction for our inductive hypothesis.

Now recall the definition of

ψ = ψ
Bq+1

jq+1
= P (pr1)∃B

ΠX
(Bq+1,jq+1)
a

φ
Bq+1

jq+1
−→ φ

Bq+1

jq+1
.

Using the same permutation that defines ψ′ and naturality of the existential quantifier, the claim

above becomes equivalent to

⊤ ≤ ∃BΠW×ΠX×ΠY P (⟨pr2,pr4⟩)ψ.

We have

∃BΠW×ΠX×ΠY P (⟨pr2,pr4⟩)ψ = ∃BΠW×ΠX×ΠY P (⟨pr2,pr3,pr4⟩)P (⟨pr1,pr3⟩)ψ

= P (⟨pr2,pr3⟩)∃BΠX×ΠY P (⟨pr1,pr3⟩)ψ,

so it is sufficient to prove⊤ ≤ ∃BΠX×ΠY P (⟨pr1,pr3⟩)ψ. Substituting ψ with its definition, omitting

superscripts and subscripts of φ
Bq+1

jq+1
and X

(Bq+1,jq+1)
a we want to prove

Claim 3.5.5. ⊤ ≤ ∃BΠX×ΠY

(︂
P (pr1)∃BΠXφ −→ P (⟨pr1,pr3⟩)φ

)︂
in P (ΠX ×ΠY ).

For the whole chapter, P :Cop → Pos is a fixed

Boolean existential doctrine, with non-trivial

fibers, and with a small base category, unless

otherwise specified.

The doctrine P is Boolean, so we can suppose that

⊤ =
(︁
∃BΠX×ΠY P (⟨pr1,pr3⟩)φ

)︁
∨
(︁
¬∃BΠX×ΠY P (⟨pr1,pr3⟩)φ

)︁
.

Then, use naturality of ∃B(−) to write P (⟨pr1,pr2⟩)∃
B
ΠX×ΠY P (⟨pr1,pr3⟩)φ instead of P (pr1)∃BΠXφ.
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Hence now it is sufficient to prove

∃BΠX×ΠY P (⟨pr1,pr3⟩)φ

≤ ∃BΠX×ΠY

(︁
P (⟨pr1,pr2⟩)∃BΠX×ΠY P (⟨pr1,pr3⟩)φ→ P (⟨pr1,pr3⟩)φ

)︁
(3.3)

and

¬∃BΠX×ΠY P (⟨pr1,pr3⟩)φ

≤ ∃BΠX×ΠY

(︁
P (⟨pr1,pr2⟩)∃BΠX×ΠY P (⟨pr1,pr3⟩)φ→ P (⟨pr1,pr3⟩)φ

)︁
, (3.4)

so that the Claim 3.5.5 follows by taking the join of (3.3) and (3.4).

To prove (3.3) it is sufficient to see that

P (⟨pr1,pr3⟩)φ ≤ P (⟨pr1,pr2⟩)∃BΠX×ΠY P (⟨pr1,pr3⟩)φ→ P (⟨pr1,pr3⟩)φ (3.5)

if and only if

P (⟨pr1,pr3⟩)φ ∧ P (⟨pr1,pr2⟩)∃BΠX×ΠY P (⟨pr1,pr3⟩)φ ≤ P (⟨pr1,pr3⟩)φ,

which is trivially verified; then get (3.3) by applying ∃BΠX×ΠY on both sides of (3.5).

Now write φ′ instead of P (⟨pr1,pr3⟩)φ, and we prove (3.4) by showing first

¬∃BΠX×ΠY φ
′ ≤ ∃BΠX×ΠY P (⟨pr1,pr2⟩)¬∃BΠX×ΠY φ

′ (3.6)

and then

∃BΠX×ΠY P (⟨pr1,pr2⟩)¬∃BΠX×ΠY φ
′ ≤ ∃BΠX×ΠY

(︁
P (⟨pr1,pr2⟩)∃BΠX×ΠY φ

′ → φ′)︁. (3.7)

The proof of (3.7) is quite immediate: observe that in general in a Boolean algebra we have

¬α ≤ α→ β—if and only if ⊥ = ¬α ∧ α ≤ β—, hence take α = P (⟨pr1,pr2⟩)∃BΠX×ΠY φ
′, β = φ′

and apply ∃BΠX×ΠY to get (3.7).

To conclude, we show that given γ ∈ P (ΠX ×ΠY ) we have γ ≤ ∃BΠX×ΠY P (⟨pr1,pr2⟩)γ, so that

we get (3.6) by taking γ = ¬∃BΠX×ΠY φ
′. To do so, we need to look at the set {(Yh, yh)}hh=1

defined above. We can suppose that one the Yh’s is actually the object B—in which case the

associated ordinal yh is different from d. If this is not the case, we add the element (B, k) to

{(Yh, yh)}hh=1 for some ordinal k ∈ Λ that does not appear in any second entry of (B, λ) belonging

to F ∪ G ∪ {(B, d)}—note that such new pair does not belong to {(Yh, yh)}hh=1: if it did, we did

not have to add it to such set. So, up to a permutation of indices and up to a change of h with

h+ 1, we can suppose that in the set {(Yh, yh)}hh=1 we have Yh = B.
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So now we look at the adjunction:

P (
∏︁b+e
a=1Xa ×

∏︁h
h=1 Yh) P (

∏︁b+e
a=1Xa ×

∏︁h
h=1 Yh ×B)

P (
∏︁b+e
a=1Xa ×

∏︁h−1
h=1 Yh ×B) P (

∏︁b+e
a=1Xa ×

∏︁h−1
h=1 Yh ×B ×B)

P (⟨pr1,pr2⟩)

∃B
ΠX×ΠY

=

∃B
ΠX×ΠY

P (⟨pr1,pr2,pr3⟩)

=

P (⟨pr1,pr2,pr3,pr3⟩)

⊣

⊣

so if we look at our claim in the lower part of the diagram we want that given γ ∈ P (ΠX×ΠY ),

then γ ≤ ∃BΠX×ΠY P (⟨pr1,pr2,pr3⟩)γ. Now, consider the unit of the adjunction at the level

P (⟨pr1,pr2,pr3⟩)γ, hence

P (⟨pr1,pr2,pr3⟩)γ ≤ P (⟨pr1,pr2,pr3⟩)∃BΠX×ΠY P (⟨pr1,pr2,pr3⟩)γ;

now, apply P (⟨pr1,pr2,pr3,pr3⟩), so we get exactly γ ≤ ∃BΠX×ΠY P (⟨pr1,pr2,pr3⟩)γ as claimed.

In particular we proved the following:

Proposition 3.5.6. Let P :Cop → Pos be a Boolean existential doctrine such that each fiber is

non-trivial, and the base category C is small, then the doctrine P−→ is consistent.

Actually, we will later slightly weaken the assumption that P is Boolean, and prove the consist-

ency of P−→ anyway.

3.6 Weak universal property of P−→
For the whole chapter, P :Cop → Pos is a fixed

implicational existential doctrine with a small

base category, unless otherwise specified.

Theorem 3.6.1. Let P :Cop → Pos be an implicational existential doctrine with a small base

category. The 1-arrow (F, f):P → P−→ is implicational existential and it is such that P−→ is rich,

and it is weakly universal with respect to this property, i.e. for any implicational existential

morphism (H, h):P → R where R:D
op → Pos is an implicational rich doctrine, there exists an

implicational existential 1-arrow (G, g): P−→→ R such that (G, g)(F, f) = (H, h).

Moreover, if P , R and (H, h) are respectively bounded, universal, elementary, then such (G, g)

is respectively bounded, universal, elementary.

P R

P−→

(H,h)

(F,f) (G,g)
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Proof. Recall the colimit diagrams:

PΠXa

P P

PΠYb

(FX̄ ,fX̄)

(FȲ ,fȲ ) (F ′
Ȳ
,f′

Ȳ
)

(FX̄Ȳ ,fX̄Ȳ )

(F,f)

(F ′
X̄
,f′

X̄
)

PU

P P−→

PV

(id,fU )

(id,fV) (id,qV)

(id,fUV)

(id, f
−→

)

(id,qU )

First of all, fix a well-ordering of obC, and consider the lexicographic order on obC×Λ. We need

to define a constant in D for all new constant of C.

Recall that for any given object B we have P (B) =
{︂[︂
φBj , X̄

(B,j)
]︂}︂

j∈Λ
where

φBj ∈ P (
n(B,j)∏︂
a=1

X(B,j)
a ×B).

We start from (B0, 0): consider φ
B0
0 ∈ P (

∏︁n(B0,0)

a=1 X
(B0,0)
a ×B0) which is used to define the last

entry of the list X̄
(B0,0)
⋆ in Section 3.2. Take hΠXa×B0φ

B0
0 ∈ R(

∏︁
HX

(B0,0)
a ×HB0), hence there

exists a constant in D—which is actually a list of constants

c(B0,0) = ⟨c
(X

(B0,0)
1 ,x

(B0,0)
1 )

, . . . , c
(X

(B0,0)

n(B0,0)
,x

(B0,0)

n(B0,0)
)
, c

(B0,d
B0
0 )
⟩: t→

n(B0,0)∏︂
a=1

HX(B0,0)
a ×HB0

such that

∃ΠHXa×HB0
t hΠXa×B0φ

B0
0 ≤ R(c(B0,0))hΠXa×B0φ

B0
0

by using the richness property of R. This defines an assignment (Y, λ) ↦→ [c(Y,λ): t → HY ] for

some pair (Y, λ): our goal is to extend this to every pair of such kind. Consider now (B, j) >

(B0, 0)—i.e. B > B0 in obC, or B = B0 and j > 0—, and take φBj ∈ P (
∏︁n(B,j)

a=1 X
(B,j)
a × B).

Take all the pairs (X
(B,j)
b , x

(B,j)
b ) that have already appeared as subscripts in the components

of some c(A,i) for some (A, i) < (B, j). Their indexes form a subset K(B,j) ⊆ {1, . . . , n(B,j)}.
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Evaluate the element hΠXa×Bφ
B
j ∈ R(

∏︁n(B,j)

a=1 HX
(B,j)
a ×HB) in the corresponding constants:

R(⟨pr1, . . . , c(X(B,j)
b ,x

(B,j)
b )

, . . . ,prn(B,j) ,prn(B,j)+1⟩)hΠXa×Bφ
B
j

R(HX
(B,j)
1 × · · · × ˆ︂

HX
(B,j)
b × . . . HX(B,j)

n(B,j) ×HB)

∋ (3.8)

where each
ˆ︂

HX
(B,j)
b for b ∈ K(B,j) is the terminal object t. Let

ˆ︂∏︂
HX(B,j)

a =
∏︂

a/∈K(B,j)

HX(B,j)
a ,

and observe that there exists a canonical isomorphism

ω(B,j):
ˆ︂∏︂
HX(B,j)

a ×HB −→ HX
(B,j)
1 × · · · × ˆ︂

HX
(B,j)
b × . . . HX(B,j)

n(B,j) ×HB.

So now there exists a list of constants

c(B,j) = ⟨. . . , c
(X

(B,j)
a ,x

(B,j)
a )

, . . . , c(B,dBj )⟩: t→
ˆ︂∏︂
HX(B,j)

a ×HB

such that

∃ˆ︁ΠHXa×HB
t R(ω(B,j))R(⟨pr1, . . . , c(X(B,j)

b ,x
(B,j)
b )

, . . . ,prn(B,j)+1⟩)hΠXa×Bφ
B
j

≤ R(c(B,j))R(ω(B,j))R(⟨pr1, . . . , c(X(B,j)
b ,x

(B,j)
b )

, . . . ,prn(B,j)+1⟩)hΠXa×Bφ
B
j

(3.9)

by using again the richness property ofR. Note that the reindexing over projections and constants

is the same as above (3.8).

In this way, we are able to define c(Y,λ) : t → HY for all Y ∈ obC and λ ∈ Λ. Indeed, dBi ≥ i

for all i ∈ Λ—see Section 3.2; then consider (Y, λ), so that we can surely find c(Y,dYλ ). But then,

if dYλ = λ, we defined c(Y,λ); otherwise d
Y
λ > λ, hence by choosing c(Y,dYλ ) we must have already

fixed c(Y,λ). Once completed the assignments given by all pairs (B, j) ∈ obC×Λ, extend then the

assignment (Y, λ) ↦→ c(Y,λ) to all the remaining pairs by choosing any constant c(Y,λ): t → HY .

To do so, recall that since R is rich, for any object D in D there exists a map t→ D.

Now, in order to find a 1-arrow P−→→ R, we need to fix for all U ∈ I, a 1-arrow (SU , sU ):P
U → R

such that (SU , sU ) = (SV , sV) ◦ (id, fUV). In particular all functors must coincide SU = SV for all

U ,V ∈ I, we will call it G : C→ D; hence sU = sV fUV whenever U ⊆ V in I.

However, since PU—where U = {(B1, j1), . . . , (Bn, jn)}—is a Kleisli construction starting from

P with respect to the pair (t,
⋀︁n
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
) , we can equivalently define (G, pU ):P → R

such that
⋀︁n
i=1

[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
↦→ ⊤ ∈ R(t) through (pU )t; this allows us to get sU such that

pU = sU fU . Equivalently, each
[︂
ψBi
ji
, X̄

(Bi,ji)
⋆

]︂
must be sent to the top element.
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Moreover, for ∅ ∈ I we need to have also s:P
·−→ RG. Since s = sU fU for all U ∈ I, we need—and

it is also sufficient—to define s such that it maps each
[︂
ψBj , X̄

(B,j)
⋆

]︂
to the top element of R(t).

Now use the fact that P is a colimit as well, so that in order to get (G, s):P → R we need

for all X̄ =
(︁
(X1, x1), . . . , (Xn, xn)

)︁
∈ J a 1-arrow (HX̄ , hX̄):PΠXa → R such that (HX̄ , hX̄) =

(HȲ , hȲ )◦ (FX̄Ȳ , fX̄Ȳ ) for any X̄ ≤ Ȳ in J . Since PΠXa
is the Kleisli construction, starting from

P with respect to the pair (
∏︁n
a=1Xa,⊤), we want a 1-arrow P → R and a choice of a constant

t→
∏︁n
a=1Xa. Of course, take the arrow (H, h):P → R and the constant ⟨c(X1,x1), . . . , c(Xn,xn)⟩.

We dedicate the rest of the section to the check that the induced s maps each
[︂
ψBj , X̄

(B,j)
⋆

]︂
to

the top element. Consider the C-arrow

[︂
id, X̄

(B,j)
⋆

]︂
: t ‧‧➡

n(B,j)∏︂
a=1

X(B,j)
a ×B,

equivalence class of the identity arrow in C

id:

n(B,j)∏︂
a=1

X(B,j)
a ×B →

n(B,j)∏︂
a=1

X(B,j)
a ×B.

The reindexing in P along this map is the evaluation in the corresponding new constants.

Compute now st

[︂
ψBj , X̄

(B,j)
⋆

]︂
, using the naturality of s and the commutativity of the triangle

(H, h) = (G, s) ◦ (F , f):

st

[︂
ψBj , X̄

(B,j)
⋆

]︂
= stP

(︂[︂
id, X̄

(B,j)
⋆

]︂)︂ [︁
ψBj , ∅

]︁
= RG

(︂[︂
id, X̄

(B,j)
⋆

]︂)︂
sΠXa×B

[︁
ψBj , ∅

]︁
= R(⟨c

(X
(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
, c(B,dBj )⟩)hΠXa×Bψ

B
j .

For simplicity, write c = ⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
, c(B,dBj )⟩ for the list of D-constants

above, and recall that

ψBj = P (⟨pr1, . . . ,prn(B,j)⟩)∃B
ΠX

(B,j)
a

φBj −→ φBj .

So ⊤ ≤ st

[︂
ψBj , X̄

(B,j)
⋆

]︂
if and only if

R(c)hΠXa×BP (⟨pr1, . . . ,prn(B,j)⟩)∃BΠXa
φBj ≤ R(c)hΠXa×Bφ

B
j ;

using naturality of h and the fact that H preserves products, and then the fact that h preserves
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the existential quantifier, we get

R(c)hΠXa×BP (⟨pr1, . . . ,prn(B,j)⟩)∃BΠXa
φBj

= R(c)R(⟨pr1, . . . ,prn(B,j)⟩)hΠXa∃BΠXa
φBj

= R(c)R(⟨pr1, . . . ,prn(B,j)⟩)∃HBΠHXa
hΠXa×Bφ

B
j ,

so we need to prove

R(⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
⟩)∃HBΠHXa

hΠXa×Bφ
B
j ≤ R(c)hΠXa×Bφ

B
j .

Observe that the right-hand side of this inequality we have exactly same element of the right-hand

side of (3.9).

t

ˆ︁∏︁HX
(B,j)
a ×HB

HX
(B,j)
1 × · · · × ˆ︂

HX
(B,j)
b × . . . HX(B,j)

n(B,j) ×HB

HX
(B,j)
1 × · · · ×HX(B,j)

b × . . . HX(B,j)

n(B,j) ×HB

c(B,j)=⟨...,c
(X

(B,j)
a ,x

(B,j)
a )

,...,c
(B,dB

j
)
⟩

ω(B,j)

∼

⟨pr1,...,c(X(B,j)
b

,x
(B,j)
b

)
,...,pr

n(B,j)+1
⟩

c

So it is enough to prove

R(⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
⟩)∃HBΠHXa

hΠXa×Bφ
B
j

≤ ∃ˆ︁ΠHXa×HB
t R(ω(B,j))R(⟨pr1, . . . , c(X(B,j)

b ,x
(B,j)
b )

, . . . ,prn(B,j)⟩ × idHB)hΠXa×Bφ
B
j .

Write τ for the list ⟨pr1, . . . , c(X(B,j)
b ,x

(B,j)
b )

, . . . ,prn(B,j)⟩, so that

⟨pr1, . . . , c(X(B,j)
b ,x

(B,j)
b )

, . . . ,prn(B,j)+1⟩ = τ × idHB ,

write σ for every component except for the last one for the map c(B,j), so that c(B,j) = ⟨σ, c(B,dBj )⟩,
and write ω′ for the canonical isomorphism

ˆ︂∏︂
HX(B,j)

a −→ HX
(B,j)
1 × · · · × ˆ︂

HX
(B,j)
b × . . . HX(B,j)

n(B,j) ,

so that ω(B,j) = ω′ × idHB . In particular c = (τ × idHB)(ω
′ × idHB)c

(B,j), so we can compute

the list ⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
⟩:
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⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
⟩ = ⟨pr1, . . . ,prn(B,j)⟩c

= ⟨pr1, . . . ,prn(B,j)⟩(τ × idHB)(ω
′ × idHB)c

(B,j)

= ⟨pr1, . . . ,prn(B,j)⟩(τω′ × idHB)c
(B,j) = τω′σ.

So now we have:

R(⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
⟩)∃HBΠHXa

= R(σ)R(τω′)∃HBΠHXa

= R(σ)∃HBˆ︁ΠHXa
R(τω′ × idB);

hence, we are left to prove that R(σ)∃HBˆ︁ΠHXa
≤ ∃ˆ︁ΠHXa×HB

t .

Now, since ∃ˆ︁ΠHXa×HB
t = ∃ˆ︁ΠHXa

t ∃HBˆ︁ΠHXa
, we should prove R(σ) ≤ ∃ˆ︁ΠHXa

t , but this holds since

σ: t→ ˆ︁ΠHXa and we can apply R(σ) to the unit idR(ˆ︁ΠHXa)
≤ R(!ˆ︁ΠHXa

)∃ˆ︁ΠHXa
t .

Since we defined (G, g) through directed colimits and Kleisli constructions, implicational and

existential structure are preserved by (G, g); moreover, if R has as additional structure any

between bottom element, universal quantifier, elementary structure, preserved by (H, h), then

also (G, g) does.

3.6.1 2-arrows and weak universal property

We extend the result to 2-arrows.

Proposition 3.6.2. Let P :Cop → Pos be an implicational existential doctrine with a small

base category. Consider the 1-arrow (F, f):P → P−→, and let (H, h):P → R be an implicational

existential morphism where R:D
op → Pos is an implicational rich doctrine and let (G, g): P−→→ R

be an implicational existential 1-arrow such that (G, g)(F, f) = (H, h). Then precomposition with

(F, f) induces an equivalence between the coslice categories

− ◦ (F, f): (G, g) ↓ Dct∧,⊤,→,∃(P−→, R) −→ (H, h) ↓ Dct∧,⊤,→,∃(P,R).

Proof. Take any two objects γ: (G, g)→ (M,m), µ: (G, g)→ (N, n) ∈ (G, g) ↓ Dct∧,⊤,→,∃(P−→, R),
for some (M,m), (N, n): P−→ → R; then take an arrow δ: γ → µ. Since the functor F acts as the

identity on objects, precomposition with F applied to the natural transformations γ, µ and δ is

the identity:
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(G, g) ↓ Dct∧,⊤,→,∃(P−→, R) (H, h) ↓ Dct∧,⊤,→,∃(P,R)
−◦(F,f)

(G, g) (H, h)

(M,m) (N, n) (M,m)(F, f) (N, n)(F, f)

γ µ

δ

γ µ

δ

In particular, faithfulness of the precomposition functor follows trivially. We show that the

functor is essentially surjective.

Take a 2-arrow γ: (H, h)→ (K, k) where (K, k):P → R is an implicational existential morphism.

We want to find a morphism (M,m): P−→ → R and a 2-arrow (G, g) → (M,m), where (M,m)

makes the triangle with (K, k) commute.

P R

P−→

(K,k)

(H,h)

(F,f)

(G,g)

(M,m)

γ

Recall that (G, g) is uniquely determined by (H, h) and a choice of c(X,x): t → HX for each

(X,x) ∈ J . Moreover, having a 2-arrow γ means that we have a natural transformation

γ:H
·−→ K such that hX ≤ R(γX)kX for all X ∈ obC. To define (M,m), we look for a con-

stant d(X,x): t→ KX for any (X,x) ∈ J such that the corresponding induced map P → R maps

each
[︂
ψBj , X̄

(B,j)
⋆

]︂
∈ P (t) in the top element of R(t). Define d(X,x) := γX · c(X,x), and then we

check that in R(t)

⊤ ≤ R(⟨d
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , d
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
, d(B,dBj )⟩)kΠXa×Bψ

B
j .

By using naturality of γ and the fact that both H and K preserve products, we get the following

commutative triangle

t
∏︁
KXa ×KB

∏︁
HXa ×HB

⟨...,d
(X

(B,j)
i

,x
(B,j)
i

)
,...,d

(B,dB
j

)
⟩

⟨...,c
(X

(B,j)
i

,x
(B,j)
i

)
,...,c

(B,dB
j

)
⟩ γΠXa×B



Rich doctrines and Henkin’s Theorem 88

Then, using the definition of c(X,x)’s and the fact that γ is a 2-arrow we have:

⊤ ≤ R(⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
, c(B,dBj )⟩)hΠXa×Bψ

B
j

≤ R(⟨c
(X

(B,j)
1 ,x

(B,j)
1 )

, . . . , c
(X

(B,j)

n(B,j)
,x

(B,j)

n(B,j)
)
, c(B,dBj )⟩)R(γΠXa×B)kΠXa×Bψ

B
j

as claimed, so we defined a morphism (M,m) such that (M,m)(F, f) = (K, k).

To conclude essential surjectivity, we show that γ is actually a 2-arrow also between (G, g)

and (M,m). Take any C-arrow
[︁
f, X̄

]︁
:A ‧‧➡ B, where f :

∏︁n
a=1Xa × A → B is a C-arrow and

X̄ =
(︁
(X1, x1), . . . , (Xn, xn)

)︁
is a list in J . Naturality means that the following square commutes:

GA MA

GB MB

G[f,X̄]
γA

M[f,X̄]
γB

Observe that the D-arrow γA:HA → KA is indeed an arrow from GA to MA, because the

functors G and M act like H and K on objects respectively. Use now the definition of G
[︁
f, X̄

]︁
and M

[︁
f, X̄

]︁
, so that we need to prove the commutativity of the outer rectangle:

HA KA

∏︁
HXa ×HA

∏︁
KXa ×KA

HB KB

γA

⟨c·!,idHA⟩

H(f)

γB

⟨d·!,idKA⟩

K(f)

γΠXa×A

where c = ⟨c(X1,x1), . . . , c(Xn,xn)⟩ and symilarly d = ⟨d(X1,x1), . . . , d(Xn,xn)⟩. The rectangle can be

easliy divided in two commutative squares: the lower one is clearly commutative by naturality

of γ, while the upper one is commutative too since γΠXa×A = ΠγXa
× γA and ⟨d·!, idKA⟩ =

(ΠγXa × idKA)⟨c·!, idKA⟩. So we get γ:G
·−→M , as claimed.

To conclude, we show that it is indeed a 2-arrow: take any [
[︁
α, X̄

]︁
,U ] ∈ P−→(A) for some element

α ∈ P (
∏︁n
a=1Xa ×A) and X̄ =

(︁
(X1, x1), . . . , (Xn, xn)

)︁
∈ J , we prove that in R(GA)

gA[
[︁
α, X̄

]︁
,U ] ≤ R(γA)mA[

[︁
α, X̄

]︁
,U ].

Using the same notation we used above for c and d, we compute:

gA[
[︁
α, X̄

]︁
U ] = gA[

[︁
α, X̄

]︁
∅] = R(⟨c·!, idHA⟩)hΠXa×Aα ≤ R(⟨c·!, idHA⟩)R(γΠXa×A)kΠXa×Aα

= R(γA)R(⟨d·!, idKA⟩)kΠXa×Aα = R(γA)mA[
[︁
α, X̄

]︁
,U ]

as claimed.
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At last, we check that the functor − ◦ (F, f) is a full functor between the coslice categories.

Suppose to have γ: (G, g) → (M,m), µ: (G, g) → (N, n) ∈ (G, g) ↓ Dct∧,⊤,→,∃(P−→, R), for some

(M,m), (N, n): P−→ → R. Moreover, let δ: (M,m)(F, f) → (N, n)(F, f) be a 2-arrow making the

triangle on the right commute.

(G, g) (H, h)

(M,m) (N, n) (M,m)(F, f) (N, n)(F, f)

γ µ

δ

γ µ

δ

We prove that δ is also a 2-arrow between (M,m) and (N, n). Similarly to what we did be-

fore, define for any (X,x) ∈ J the D-arrows d(X,x): = M [idX , (X,x)] : t → MX and e(X,x): =

N [idX , (X,x)] : t→ NX. Apply naturality of γ:G→M and µ:G→ N to the arrow [idX , (X,x)]

to obtain respectively γXc(X,x) = d(X,x) and µXc(X,x) = e(X,x). However, since δX · γX = µX ,

we get

δXd(X,x) = e(X,x). (3.10)

Now fix a C-arrow
[︁
f, X̄

]︁
:A ‧‧➡ B, where f :

∏︁n
a=1Xa × A → B is a C-arrow and X̄ =(︁

(X1, x1), . . . , (Xn, xn)
)︁
is a list in J ; moreover write d = ⟨d(X1,x1), . . . , d(Xn,xn)⟩ and symilarly

e = ⟨e(X1,x1), . . . , e(Xn,xn)⟩. Naturality of δ:M → N means that the following square commutes:

MA NA

∏︁
MXa ×MA

∏︁
NXa ×NA

MB NB

δA

⟨d·!,idMA⟩

MF (f)

δB

⟨e·!,idNA⟩

NF (f)

δΠXa×A

Commutativity of the lower square follows from naturality of δ:MF → NF , while the upper

square commutes if and only if δXi
d(Xi,xi) = e(Xi,xi), but this follows from (3.10). This concludes

the proof.

3.7 Consistency of P−→, weaker assumptions

Recall that, given a doctrine P :Cop → Pos which is Boolean, existential, with non-trivial fibers,

and with a small base category, the construction P−→ is consistent and rich. As hinted at the end

of Section 3.5, weaken the assumption as follows.

Proposition 3.7.1. Let P :Cop → Pos be a bounded existential implicational doctrine such

that each fiber is non-trivial, and the base category C is small, then the doctrine P−→ is consistent.

Proof. We start from P , and we build the boolean completion P¬¬:C
op → Pos—see Section 1.4.
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We have the following commutative diagram:

P P¬¬

P−→ P¬¬−−→

The map P → P−→ is (FP , fP ) defined in Remark 3.3.1, the map P → P¬¬ is (id,¬¬) given by the

completion, the map P¬¬ → P¬¬−−→ is (FP¬¬ , fP¬¬) again defined in Remark 3.3.1 corresponding

to the construction applied to the doctrine P¬¬. Then, use the weak universal property of

P → P−→—see Theorem 3.6.1: the doctrine P¬¬−−→ is implicational, rich, and the composition of

the upper morphism with the one on the right preserves the bounded implicational existential

structure because both arrows do; so there exists a map P−→ → P¬¬−−→ closing the diagram and

endowed with the structure just mentioned. Note that all P¬¬(X) are non-trivial, since top and

bottom element are computed in P (X), in which these are distinct element by assumption. In

particular, since P¬¬ is also Boolean, it follows from Proposition 3.5.6 that P¬¬−−→ is consistent.

But then, since there exists a map P−→ → P¬¬−−→ preserving, among others, ⊤ and ⊥, if P¬¬−−→ is

consistent, P−→ must be consistent too.

3.8 A model of a rich doctrine

Let P :Cop → Pos be a bounded consistent existential implicational rich doctrine. Let ∇ ⊆ P (t)
be an ultrafilter and P/∇:Cop → Pos the quotient doctrine. Such ultrafilter exists since⊤ ≠ ⊥ in

P (t), and we can take an extension of the proper filter {⊤}. The doctrine P/∇ is again bounded

existential implicational, and all of these structures are preserved by the quotient morphism

(idC, q):P → P/∇. See Section 1.5.1 for more details.

3.8.1 Definition of a model

We now build a model of P/∇ in the doctrine P∗: Set
op
∗ → Pos, meaning a doctrine homo-

morphism (Γ, g):P/∇ → P∗. Also, this model preserves the bounded existential implicational

structure. Define Γ := HomC(t,−):C → Set∗. It is well defined since P is rich, and this clearly

preserves the products. Then, define for a given X ∈ obC, gX :P/∇(X)→P∗(HomC(t, X)):

gX [φ] = {c: t→ X | [⊤] ≤ P/∇(c)[φ]} =

= {c: t→ X | [⊤] ≤ [P (c)φ]} =

= {c: t→ X | P (c)φ ∈ ∇}.

Proposition 3.8.1. Let P be a bounded consistent implicational existential rich doctrine, let

∇ ⊆ P (t) be an ultrafilter, and let P/∇ be the quotient doctrine. Then the pair (Γ, g), where
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Γ = HomC(t,−) and gX [φ] = {c: t→ X | P (c)φ ∈ ∇} for any object X and any [φ] ∈ P/∇(X)

is a bounded existential implicational morphism.

Proof. gX is monotone: Suppose [φ] ≤ [ψ] in P/∇(X), i.e. there exists θ ∈ ∇ such that

P (!X)θ ≤ φ → ψ; we show that gX [φ] ⊆ gX [ψ]. Let c: t → X be an arrow in C such that

P (c)φ ∈ ∇. Apply P (c) to the inequality above and get θ ≤ P (c)(φ→ ψ); so P (c)(φ→ ψ) ∈ ∇.
Then, P (c)φ ∧ P (c)(φ→ ψ) ≤ P (c)ψ ∈ ∇, i.e. c ∈ gX [ψ].

gX is a natural transformation: Take f :X → Y an arrow in C. We want to show that the

following diagram commutes:

Y P/∇(Y ) P(HomC(t, Y ))

X P/∇(X) P(HomC(t, X))

gY

P/∇(f) (f◦−)−1f

gX

Consider c: t → X; c ∈ gXP/∇(f)[φ] if and only if P (c)P (f)φ ∈ ∇. On the other hand,

c ∈ (f ◦ −)−1gY [φ] if and only if fc ∈ gY [φ] if and only if P (fc)φ ∈ ∇.
In particular, (HomC(t,−), g) is a morphism of doctrines. We now prove that all the other

properties are preserved.

gX preserves top and bottom elements: Compute

gX [⊤X ] = {c: t→ X | P (c)⊤X ∈ ∇} = HomC(t, X),

since P (c)⊤X = ⊤t ∈ ∇ for any c.

gX [⊥X ] = {c: t→ X | P (c)⊥X ∈ ∇} = ∅,

since P (c)⊥X = ⊥t /∈ ∇ for any c. Moreover,

gX preserves meets: Compute

gX([φ] ∧ [ψ]) = gX([φ ∧ ψ]) = {c: t→ X | P (c)φ ∧ P (c)ψ ∈ ∇}

= {c: t→ X | P (c)φ ∈ ∇ and P (c)ψ ∈ ∇} = gX [φ] ∩ gX [ψ].

gX preserves implication: Compute

gX([φ]→ [ψ]) = gX([φ→ ψ]) = {c: t→ X | P (c)φ→ P (c)ψ ∈ ∇};

gX [φ]⇒ gX [ψ] = {c: t→ X | P (c)ψ ∈ ∇} ∪ {c: t→ X | P (c)φ /∈ ∇}.

First of all, suppose c: t → X be such that P (c)φ → P (c)ψ ∈ ∇; then consider P (c)φ. If

P (c)φ ∈ ∇, we get P (c)φ ∧ (P (c)φ → P (c)ψ) ≤ P (c)ψ ∈ ∇; otherwise, P (c)φ /∈ ∇. In

both cases c ∈ gX [φ] ⇒ gX [ψ]. For the converse, take at first c such that P (c)ψ ∈ ∇. Since
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P (c)ψ ≤ P (c)φ→ P (c)ψ, we get P (c)φ→ P (c)ψ ∈ ∇. Then, take c such that P (c)φ /∈ ∇; since
∇ is an ultrafilter, P (c)φ→ ⊥ ∈ ∇. But then, P (c)φ→ ⊥ ≤ P (c)φ→ P (c)ψ since P (c)φ→ (−)
is monotone; so P (c)φ→ P (c)ψ ∈ ∇.
gX preserves existential quantifier: Recall that, given a function between two sets h:A→ B,

the left adjoint to the preimage h−1:P(B) → P(A) acts on any subset of A as the image

∃h = h:P(A)→P(B).

So now we show ∃pr1◦−gX×Y [φ] = gX∃YX [φ] for any pair X,Y of objects in C. First of all, observe

that the inclusion (⊆) holds if and only if gX×Y [φ] ⊆ (pr1 ◦ −)−1gX [∃YXφ] but

(pr1 ◦ −)−1gX [∃YXφ] = P(pr1 ◦ −)gX [∃YXφ] = gX×Y P/∇(pr1)[∃YXφ]

and [φ] ≤ P/∇(pr1)[∃YXφ]. Concerning the converse, observe that

∃pr1◦−gX×Y [φ] = {c: t→ X | there exists d: t→ Y such that ⟨c, d⟩ ∈ gX×Y [φ]}

= {c: t→ X | there exists d: t→ Y such that P (⟨c, d⟩)φ ∈ ∇}.

Then take c: t → X such that P (c)∃YXφ = ∃Yt P (⟨c!, idY ⟩)φ ∈ ∇. Since P is rich, we can take

d: t→ Y such that

∃Yt P (⟨c!, idY ⟩)φ = P (d)P (⟨c!, idY ⟩)φ = P (⟨c, d⟩)φ,

so that c ∈ ∃pr1◦−gX×Y [φ].

Example 3.8.2. A counterexample to universality. We prove that in general, if we add the

universal quantifier to our structure, it is not necessarily preserved by the model. We will consider

a slight change of the domain in the realizability doctrine, defined in [HJP80]: R: Setop∗ → Pos

takes value from the opposite category of non-empty sets. For each non-empty set I, define

the following preorder in P(N)I = {p: I → P(N)}: we say that p ≤ q if there exists a partial

recursive function φ:N ‧‧➡ N such that for all i ∈ I the restriction φ|p(i): p(i) → q(i) is a total

function; reflexivity is witnessed by the identity idN, while transitivity by the composition of

the two partial functions. Then, define R(I) to be the poset reflection of this preorder. The

reindexing along a function α: J → I is given by precomposition − ◦ α:R(I)→ R(J); note that

if p ≤ q in P(N)I is witnessed by φ:N ‧‧➡ N, also pα ≤ qα in P(N)J is again witnessed by φ.

R is primary: First of all observe that in each R(I), the constant function TI : I → P(N)

sending each i ↦→ N is the top element: take any other p: I → P(N) and consider idN, so that

the inclusion idN|p(i): p(i) → N is a total function for every i ∈ I, giving p ≤ TI . Moreover,

for any α: J → I, precomposition TIα = TJ is again the constant function to the element N,

so the top element is preserved by reindexing. Then, for any p, q: I → P(N), define for each

i ∈ I, (p ∧ q)(i) := {⟨a, b⟩ ∈ N | a ∈ p(i), b ∈ q(i)}; here ⟨−,−⟩:N × N
∼←→ N: ⟨π1, π2⟩ are

Cantor’s pairing and unpairing functions. The inequalities p∧ q ≤ p and p∧ q ≤ q are witnessed
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by the—total—functions π1:N → N and π2:N → N respectively. Suppose now r ≤ p and

r ≤ q, with given recursive functions φ and ψ; then define ⟨φ,ψ⟩:N ‧‧➡ N whose domain is the

intersection of the domains of φ and ψ, sending n ∈ domφ∩domψ to ⟨φ(n), ψ(n)⟩, so that ⟨φ,ψ⟩
is partial recursive and witnesses r ≤ p ∧ q. As before, take α: J → I: for any j ∈ J we have

(p ∧ q)(α(j)) = {⟨a, b⟩ ∈ N | a ∈ pα(j), b ∈ qα(j)} = (pα ∧ qα)(j), so the meet is preserved by

reindexings, hence R is a primary doctrine.

R has bottom elements: In each R(I), the constant function BI : I → P(N) sending each

i ↦→ ∅ is the bottom element: take any other p: I →P(N) and consider idN, so that the inclusion

idN|∅: ∅ → p(i) is a total function for every i ∈ I, giving BI ≤ p. Moreover, for any α: J → I,

precomposition BIα = BJ is again the constant function to the element ∅, so the bottom element

is preserved by reindexing.

R is implicational: For any p, q: I → P(N), define for each i ∈ I, (p → q)(i) as the set

{e ∈ N | e encodes a partial recursive function θ:N ‧‧➡ N such that θ maps p(i) in q(i)}. To

prove that this is indeed the implication in R(I), take r ∈ R(I) and suppose r ∧ p ≤ q, if

and only if there exists φ:N ‧‧➡ N such that for every i ∈ I, φ|(r∧p)(i): (r ∧ p)(i) → q(i) is a

total function. For a given n ∈ N, we can consider the partial function φ(⟨n,−⟩):N ‧‧➡ N,

m ↦→ φ(⟨n,m⟩) when it exists; define ψ:N→ N the—total—function that maps n to the natural

number that encodes φ(⟨n,−⟩). For each i ∈ I, the restriction ψ|r(i) is defined over all r(i), and

its image is in (p → q)(i), proving r ≤ p → q: indeed, take n ∈ r(i), then ψ(n) ∈ (p → q)(i) if

and only if φ(⟨n,−⟩) maps p(i) to q(i), but if we take any m ∈ p(i), then ⟨n,m⟩ ∈ (r ∧ p)(i), so
that φ(⟨n,m⟩) ∈ q(i). Now, to prove the converse, suppose r ≤ p→ q, if and only if there exists

ψ:N ‧‧➡ N such that for every i ∈ I, ψ|r(i): r(i)→ (p→ q)(i) is a total function. For any k ∈ N,

recall that k = ⟨n,m⟩ where n = π1(k) and m = π2(k); if ψ(n) exist, call θn:N ‧‧➡ N the partial

function encoded by the natural number ψ(n). Define φ:N ‧‧➡ N such that ⟨n,m⟩ ↦→ θn(m)

whenever both ψ(n) and θn(m) are defined. For each i ∈ I, the restriction φ|(r∧p)(i) is defined

over all (r∧ p)(i), and its image is in q(i), proving r∧ p ≤ q: indeed, take k = ⟨n,m⟩ ∈ (r∧ p)(i),
hence n ∈ r(i) and m ∈ p(i); then ψ(n) is defined and belongs to (p → q)(i), hence encodes a

partial recursive function θn that maps p(i) to q(i). Sincem ∈ p(i), we have φ(k) = θn(m) ∈ q(i),
as claimed.

Take then α: J → I: for any j ∈ J we have on the one hand (R(α)(p→ q))(j) = (p→ q)(α(j)) =

{e ∈ N | e encodes a partial recursive function θ:N ‧‧➡ N such that θ maps p(α(j)) in q(α(j))},
and on the other hand

(R(α)(p)→ R(α)(q))(j)

= {d ∈ N | d encodes a partial recursive function τ :N ‧‧➡ N

such that τ maps R(α)(p)(j) in R(α)(q)(j)},

so the implication is preserved by reindexings, hence R is an implicational doctrine.
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R is existential: For each pair of non-empty sets I, J , consider pr1: I × J → I and define

∃JI :R(I × J) → R(I) that maps a function q: I × J → P(N) to ∃JI q: I → P(N), (∃JI q)(i) =⋃︁
j∈J q(i, j). This is the left adjoint to R(pr1): ∃JI q ≤ p if and only if there exists φ:N ‧‧➡ N

such that for all i ∈ I, φ|(∃J
I q)(i)

:
⋃︁
j∈J q(i, j)→ p(i) is a total function, if and only if there exists

φ:N ‧‧➡ N such that for all i ∈ I and j ∈ J , φ|q(i,j): q(i, j)→ p(i) is a total function, if and only

if q ≤ R(pr1)p.
To show naturality in I, take a function α:K → I: for any q ∈ R(I × J) and k ∈ K,

R(α)(∃JI q)(k) = (∃JI q)(α(k)) =
⋃︂
j∈J

q(α(k), j)

and also

(∃JKR(α× idJ)q)(k) =
⋃︂
j∈J

(R(α× idJ)q)(k, j) =
⋃︂
j∈J

q(α(k), j)

so that R(α)(∃JI q) = ∃JKR(α× idJ)q, hence naturality holds.

To show Frobenius reciprocity, for any q ∈ R(I × J), p ∈ R(I), and i ∈ I

∃JI (q ∧R(pr1)p)(i) =
⋃︂
j∈J

((q ∧R(pr1)p)(i, j)) =
⋃︂
j∈J
{⟨a, b⟩ ∈ N | a ∈ q(i, j), b ∈ p(i)}

and also

(∃JI q ∧ p)(i) = {⟨a, b⟩ ∈ N | a ∈
⋃︂
j∈J

q(i, j), b ∈ p(i)}

so that ∃JI (q ∧R(pr1)p) = ∃JI q ∧ p, hence Frobenius reciprocity holds.

R is consistent: Take R({⋆}) = P(N); T{⋆} ≰ B{⋆} since for any partial recursive function

φ:N ‧‧➡ N is it not the case that φ|N:N→ ∅ can be defined.

R is rich: Take any q ∈ R(J) for a non-empty set J , we then look for a function c: {⋆} → J ,

hence an element c = c(⋆) ∈ J , such that ∃J{⋆}q ≤ R(c)q, i.e. such that there exists a partial

recursive function φ:N ‧‧➡ N such that φ|
⋃︁

j∈J q(j)
:
⋃︁
j∈J q(j) → q(c) is a total function. Here

is the point where the usual realizability doctrine defined over Set does not satisfy the needed

assumption, and we need to remove the empty set from the base category. If
⋃︁
j∈J q(j) = ∅,

choose any c ∈ J and φ = idN, so that idN|∅: ∅ → q(c) is a total function, as claimed. On the

other hand, if
⋃︁
j∈J q(j) ̸= ∅, there exist n ∈ N and c ∈ J such that n ∈ q(c); choose φ:N → N

to be the constant function to n, so that the restriction φ|
⋃︁

j∈J q(j)
:
⋃︁
j∈J q(j) → q(c) is a total

function, again as wanted.

R is universal: For each pair of non-empty sets I, J , consider pr1: I × J → I and define

∀JI :R(I × J) → R(I) that maps a function q: I × J → P(N) to ∀JI q: I → P(N), (∀JI q)(i) =⋂︁
j∈J q(i, j). This is the right adjoint to R(pr1): p ≤ ∀JI q if and only if there exists φ:N ‧‧➡ N

such that for all i ∈ I, φ|p(i): p(i) →
⋂︁
j∈J q(i, j) is a total function, if and only if there exists

φ:N ‧‧➡ N such that for all i ∈ I and j ∈ J , φ|p(i): p(i)→ q(i, j) is a total function, if and only
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if q ≤ R(pr1)p. To show naturality in I, take a function α:K → I: for any q ∈ R(I × J) and

k ∈ K,

R(α)(∀JI q)(k) = (∀JI q)(α(k)) =
⋂︂
j∈J

q(α(k), j)

and also

(∀JKR(α× idJ)q)(k) =
⋂︂
j∈J

(R(α× idJ)q)(k, j) =
⋂︂
j∈J

q(α(k), j)

so that R(α)(∀JI q) = ∀JKR(α× idJ)q, hence naturality holds.

Universal quantifier not preserved—expanding the cofinite sets: Our next goal is to

find an ultrafilter ∇ ⊆ R({⋆}) = P(N) such that the morphism we built above (Γ, g):R/∇ →P∗

does not preserve the universal quantifier: in particular we will find a non-empty set J and

a q ∈ R(J) such that ∀!JgJ [q] ̸⊆ g{⋆}∀J{⋆}[q]. Recall that, given a function between two sets

h:A → B, the right adjoint to the preimage h−1:P(B) → P(A) sends a subset S of A to

the set ∀hS := {b ∈ B | h−1(b) ⊆ S}. In our case, we have ∀!JgJ [q] ̸= ∅ if and only if

J ⊆ gJ [q] = {j ∈ J | q(j) ∈ ∇}. Then, observe that g{⋆}[∀J{⋆}q] ̸= ∅ if and only if ∀J{⋆}q ∈ ∇.

R(J) R/∇(J) P(J)

R({⋆}) R/∇({⋆}) P({⋆})

∀J
{⋆}

qJ gJ

q{⋆}

∀J
{⋆}

g{⋆}

∀!J

Suppose ∇ ⊆ P(N) is an ultrafilter that contains all cofinite sets of N; then take J := N and

q:N → P(N) such that q(n) := N \ {n}. We show that for all j ∈ J , q(j) ∈ ∇, but ∀J{⋆}q /∈ ∇,
so that ∀!JgJ [q] ̸⊆ g{⋆}∀J{⋆}[q]. Since q(j) is clearly cofinite for every j, each q(j) ∈ ∇; then

compute ∀J{⋆}q =
⋂︁
j∈J q(j) =

⋂︁
n∈N N \ {n} = ∅ /∈ ∇. To conclude our proof, we need to

show the existence of an ultrafilter over P(N) that contains every cofinite set. It is enough to

prove that the filter generated by cofinite sets is a proper filter—i.e. does not contain the bottom

element. Take the filter F = ⟨C ⟩ where C is the set of all cofinite set of N and suppose that it

contains the bottom element. Recall from above that the bottom is ∅ and the meet of two subsets

A,B of N is computed as A∧B = {⟨a, b⟩ ∈ N | a ∈ A, b ∈ B}. Note that if A and B are cofinite,

A∧B is not in general cofinite, hence C is not a filter, as it is instead by taking the intersection

as meet. However, suppose that A ∧ B ≤ ∅ for a given pair A,B ⊆ N, i.e. there exists a partial

recursive function φ:N ‧‧➡ N such that φ|A∧B :A∧B → ∅ is total, hence A∧B = ∅. In particular,

it follows that at least one between A and B must be the empty set: if both A ̸= ∅ and B ̸= ∅,
we can take a ∈ A and b ∈ B, so that ⟨a, b⟩ ∈ A∧B ̸= ∅. Having noticed this, if it were the case

that ∅ ∈ F , there would exist A1, . . . , An ∈ C such that ((A1 ∧ A2) ∧ · · · ∧ An−1) ∧ An ≤ ⊥, so
that one between ((A1 ∧ A2) ∧ · · · ∧ An−1) and An would be the empty set; since An ∈ C , we

must have ((A1 ∧A2)∧ · · · ∧An−1) = ∅; by induction we get to a contradiction, so ∅ /∈ F , hence
F is a proper filter.

Remark 3.8.3. Suppose that the starting doctrine in Proposition 3.8.1 P :Cop → Pos is also
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boolean, meaning that we have the additional condition that ¬¬ is the identity on each P (X).

Then, in particular, also P/∇ is a boolean algebra, since the quotient preserves both implication

and bottom element. Under this assumption, we obtain that the model (Γ, g) is boolean. In

particular, since the morphism is existential and boolean, it is also universal.

3.8.2 Definition of a model, elementary case

A little more work must be done in general if the starting doctrine is also elementary—in addition

to the bounded implicational existential rich structure—and we want the model to preserve

elementary structure. So this time we define a morphism (Ω, h):P/∇ → P∗ preserving the

bounded elementary existential implicational structure. Define for each object X the following

equivalence relation ∼X∇ on HomC(t, X): given c, d: t → X, se say that c ∼X∇ d if and only if

P (⟨c, d⟩)ÆX
t (⊤X) ∈ ∇.

• Reflexivity: P (⟨c, c⟩)ÆX
t (⊤X) = P (c)P (∆X)ÆX

t (⊤X) ≥ P (c)⊤X = ⊤t ∈ ∇, so c ∼X∇ c;

• symmetry: suppose P (⟨c, d⟩)ÆX
t (⊤X) ∈ ∇, then

P (⟨d, c⟩)ÆX
t (⊤X) = P (⟨d, c⟩)P (⟨pr2,pr1⟩)ÆX

t (⊤X) = P (⟨c, d⟩)ÆX
t (⊤X) ∈ ∇,

this follows from the fact that ÆX
t = P (⟨pr2,pr1⟩)ÆX

t ;

• transitivity: suppose c ∼X∇ d and d ∼X∇ a, then apply P (⟨c, d, a⟩) to transitivity for

equality P (⟨pr1,pr2⟩)ÆX
t (⊤X) ∧ P (⟨pr2,pr3⟩)ÆX

t (⊤X) ≤ P (⟨pr1,pr3⟩)ÆX
t (⊤X) to get

P (⟨c, a⟩)ÆX
t (⊤X) ∈ ∇, hence c ∼X∇ a.

Given f :X → Y , post-composition f ◦ −: HomC(t, X) → HomC(t, Y ) is well defined on the

quotients: take c ∼X∇ d for some c, d: t→ X, i.e. P (⟨c, d⟩)ÆX
t (⊤X) ∈ ∇, we show that fc ∼Y∇ fd.

From ⊤Y ≤ P (∆Y )Æ
Y
t (⊤Y ) apply P (f) to get

⊤X ≤ P (f)P (∆Y )Æ
Y
t (⊤Y ) = P (∆X)P (f × f)ÆY

t (⊤Y )

so that ÆX
t (⊤X) ≤ P (f × f)ÆY

t (⊤Y ) and P (⟨c, d⟩)ÆX
t (⊤X) ≤ P (⟨c, d⟩)P (f × f)ÆY

t (⊤Y ) =

P (⟨fc, fd⟩)ÆY
t (⊤Y ) ∈ ∇, as claimed. Hence, we can define the functor

Ω := HomC(t,−)/∼(−)
∇ :C→ Set∗.

This preserves the products: take a, c: t→ X and b, d: t→ Y , we have ⟨a, b⟩ ∼X×Y
∇ ⟨c, d⟩ if and

only if P (⟨a, b, c, d⟩)ÆX×Y
t (⊤X×Y ) ∈ ∇. Applying P (⟨a, b, c, d⟩) to the property ÆX×Y

t (⊤X×Y ) =

P (⟨pr1,pr3⟩)ÆX
t (⊤X) ∧ P (⟨pr2,pr4⟩)ÆY

t (⊤Y ), we get

P (⟨a, b, c, d⟩)ÆX×Y
t (⊤X×Y ) = P (⟨a, c⟩)ÆX

t (⊤X) ∧ P (⟨b, d⟩)ÆY
t (⊤Y ),
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so that P (⟨a, b, c, d⟩)ÆX×Y
t (⊤X×Y ) ∈ ∇ if and only if both

P (⟨a, c⟩)ÆX
t (⊤X) ∈ ∇ and P (⟨b, d⟩)ÆY

t (⊤Y ) ∈ ∇,

if and only if a ∼X∇ c and b ∼Y∇ d; so we proved that

HomC(t, X × Y )/∼X×Y
∇ = HomC(t, X)/∼X∇ ×HomC(t, Y )/∼Y∇.

Then, define for a given X ∈ obC, hX :P/∇(X)→P∗(HomC(t, X)/∼X∇):

hX [φ] = {[c: t→ X] | P (c)φ ∈ ∇}.

This is well defined, since whenever c ∼X∇ d and [c] ∈ hX [φ] we can apply P (⟨c, d⟩) to the property

ÆX
t (⊤X) ∧ P (pr1)φ ≤ P (pr2)φ to get P (c)φ→ P (d)φ ∈ ∇, and hence P (d)φ ∈ ∇.

Proposition 3.8.4. Let P be a bounded consistent implicational elementary existential rich

doctrine, let ∇ ⊆ P (t) be an ultrafilter, and let P/∇ be the quotient doctrine. Then the pair

(Ω, h), where Ω := HomC(t,−)/∼(−)
∇ and hX [φ] = {[c: t → X] | P (c)φ ∈ ∇} for any object X

and any [φ] ∈ P/∇(X) is a bounded elementary existential implicational morphism.

Proof. All proofs from Proposition 3.8.1 can be rearranged in this scenario to prove that (Ω, h)

is a morphism of doctrines, preserving bounded implicational existential structure. The last

thing left to prove is that (Ω, h) preserves elementary structure: for a given [φ] ∈ P/∇(X × Y ),

the inclusion =YX hX×Y [φ] ⊆ hX×Y×YÆ
Y
X [φ] follows from adjointness; for the converse, take

([a], [c], [d]) ∈ hX×Y×YÆ
Y
X , i.e. P (⟨a, c, d⟩)ÆY

Xφ ∈ ∇. By naturality of ÆY
−, we know that

ÆY
t (⊤Y ) = P (⟨a·!Y×Y ,pr1,pr2⟩)ÆY

X(⊤X×Y ), hence

P (⟨c, d⟩)ÆY
t (⊤Y ) = P (⟨c, d⟩)P (⟨a·!Y×Y ,pr1,pr2⟩)ÆY

X(⊤X×Y )

= P (⟨a, c, d⟩)ÆY
X(⊤X×Y ) ≥ P (⟨a, c, d⟩)ÆY

Xφ ∈ ∇,

so that c ∼Y∇ d, i.e. [c] = [d], hence ([a], [c], [d]) ∈=YX hX×Y [φ].

We now have all the ingredients to generalize Henkin’s Theorem.

Theorem 3.8.5. Let P be a bounded existential implicational doctrine, with non-trivial fibers

and with a small base category. Then there exists a bounded existential implicational model of

P in the doctrine of subsets P∗: Set
op
∗ → Pos.

Proof. Do the construction in Remark 3.3.1 to get a morphism (F, f):P → P−→ that preserves

bounded implicational existential structure; moreover by Proposition 3.7.1 the doctrine P−→ is

consistent. So P−→ is an existential, implicational doctrine with bottom element, consistent and
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rich, then we can chose an ultrafilter ∇ ⊆ P−→(t) and take the quotient over it, and then the model

(Γ, g) of such quotient. The composition

P
(F,f)−−−→ P−→

(id,q)−−−→ P−→/∇
(Γ,g)−−−→P∗

is a model of P , preserving all said structure.

Theorem 3.8.6. Let P be a bounded elementary existential implicational doctrine, such that

each of its fiber non-trivial and with a small base category. Then there exists a bounded ele-

mentary existential implicational model of P in the doctrine of subsets P∗: Set
op
∗ → Pos.

Proof. Do as above but take (Ω, h) instead of (Γ, g).



Chapter 4

Left adjoint to precomposition in

elementary doctrines

In Chapter 2 we extensively explored the process of adding a constant and an axiom to a doctrine

P in a universal way, using the Kleisli object for some suitable comonads on P . Moreover we

observed that applying these two constructions to the doctrine of well-formed formulae for some

language and theory we obtain new doctrines that are isomorphic to the doctrine of well-formed

formulae for the extended language—or respectively the extended theory. Of course, in algebra

adding structure or axioms is a widely used technique: classical results say that for a given

category of algebraic structure—e.g. monoids—, adding some structure or axioms—e.g. groups,

commutative monoids—defines a forgetful functor from the new category to the original one,

with a left adjoint. The category ED of elementary doctrines provides a natural framework for

studying algebraic theories, with each theory T for a particular algebraic language Σ described

by some doctrine of formulae HFΣT ; the models of such theories are morphisms in ED from the

doctrine of formulae to the doctrine of subsets P∗: Set
op
∗ → Pos, and the process of adding

structure and axiom to a theory can be described by another morphism in ED between two

doctrines of formulae HFΣT → HFΣ
′

T′ . In particular the forgetful functor can be translated in ED

as the precomposition with this last morphism. In this chapter we extend this classical result in

ED by considering the subobject doctrine from a Grothendieck topos instead of the doctrine of

subsets, and precomposition with any morphism (F, f):P → R instead of the forgetful functor.

4.1 The definition of the functor

Fix in the category ED of elementary doctrines a morphism (F, f) between two doctrines:
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Cop Dop

Pos

F op

P R

f

·

where F :C → D is a product preserving functor, f:P
·−→ RF op is a natural transformation that

preserves meets, top element and the elementary structure. Moreover, suppose that C is small.

Consider a Grothendieck topos E, and the associated subobjects doctrine Sub:Eop → Pos, which

is elementary—indeed, it is enough to ask for a finitely complete base category, see Example

1.1.10. Trivially we can precompose any morphism (K, k):R→ Sub in ED with (F, f) to obtain

a morphism (K, k)(F, f):P → Sub; this gives a functor

− ◦ (F, f):ED(R,Sub)→ ED(P,Sub).

We look for a left adjoint for this precomposition.

Cop Eop

Dop

Pos

F op

P

Hop

Sub
R

f

h

The whole chapter is devoted to the proof of the following:

Theorem 4.1.1. Let (F, f):P → R be a morphism in ED, and suppose the base category of

P to be small. Moreover let E be a Grothendieck topos and Sub:Eop → Pos be the subobject

doctrine. Then, the functor induced by precomposition

− ◦ (F, f):ED(R,Sub)→ ED(P,Sub)

has a left adjoint.

We start from a morphism (H, h):P → Sub, our first goal is to find a functor D → E. An easy

choice is to take the left Kan extension of H along F , whose existence is granted by the fact that

E is a Grothendieck topos—since it is cocomplete, see Chapter X in [Mac71]. Recall that the

left Kan extension comes with a natural transformation µ:H
·−→ (LanF H)F such that for any

other functor K:D→ E and any other natural transformation θ:H
·−→ KF there exists a uniqueˆ︁θ: LanF H ·−→ K making the obvious diagrams commute:

C E C E C E

D D D
F

H

F

H

F

LanF H

K
LanF H

H

K

µ θ ˆ︁θθ
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Before we continue, we need LanF H to be product preserving. Recall from [Mac71] that for any

object D ∈ D, we have (LanF H)(D) = colim
(︁
(F ↓ D)

pr−→ C
H−→ E

)︁
.

Proposition 4.1.2. Let C,D,E be categories with finite products such that C is small and E is

cocomplete and cartesian closed, and let F :C → D and H:C → E be finite product preserving

functors. Then LanF H:D→ E preserves finite products.

Proof. Take two objects D,D′ ∈ D and consider the two projections pr1:D × D′ → D and

pr2:D ×D′ → D′. Since LanF H is a functor we have an arrow in E:

ψ := ⟨Lan
F

H(pr1),Lan
F

H(pr2)⟩: Lan
F

H(D ×D′)→ Lan
F

H(D)× Lan
F

H(D′).

The arrow LanF H(pr1) is the unique one such that

(Lan
F

H(pr1))ι( ˜︁C,˜︁c:F ˜︁C→D×D′) = ι( ˜︁C,pr1˜︁c: ˜︁C→D):H
˜︁C → Lan

F
HD

and similarly (LanF H(pr2))ι( ˜︁C,˜︁c:F ˜︁C→D×D′) = ι( ˜︁C,pr2˜︁c: ˜︁C→D′). We want to prove that ψ has an

inverse. Since E is cartesian closed, the product functor with a fixed object is a left adjoint,

hence it preserves colimits, so we have:

Lan
F

HD × Lan
F

HD′ ∼=
(︃

colim
(C,c:FC→D)

HC

)︃
×
(︃

colim
(C′,c′:FC′→D′)

HC ′
)︃
∼=

∼= colim
(C,c:FC→D)

colim
(C′,c′:FC′→D′)

(HC ×HC ′)

The arrow from the double colimit to the product above is the unique ω = ⟨ω1, ω2⟩ such that

ω1ι(C,c),(C′,c′) = ι(C,c)pr1 and ω2ι(C,c),(C′,c′) = ι(C′,c′)pr2. So now we look for the inverse φ of

ω−1ψ, defining an arrow

φ: colim
(C,c)

colim
(C′,c′)

(HC ×HC ′)→ colim
( ˜︁C,˜︁c) H ˜︁C.

Build the following cocone: for any (C, c), (C ′, c′) we take the arrow

ι(C×C′,c×c′):HC ×HC ′ → colim
( ˜︁C,˜︁c) H ˜︁C.

Observe that here we use that both F and H preserve binary products. Now take another

pair (C̄, c̄), (C̄
′
, c̄′) and two arrows f :C → C̄ and f ′:C ′ → C̄

′
such that the following triangles

commute:

FC FC̄ FC ′ FC̄
′

D D′

Ff

c̄
c

Ff ′

c̄′

c′

we need ι(C×C′,c×c′) = (Hf × Hf ′)ι(C̄×C̄′,c̄×c̄′), but this holds by definition of inclusions in
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colim( ˜︁C,˜︁c)H ˜︁C.
HC ×HC ′ HC̄ ×HC̄ ′

colim colim(HC ×HC ′)

colimH ˜︁C

ι(C,c),(C′,c′)

Hf×Hf ′

ι(C̄,c̄),(C̄′,c̄′)

φ
ι(C×C′,c×c′)

ι(C̄×C̄′,c̄×c̄′)

Instead of proving that ψ is an isomorphism we prove that ω−1ψ is; so look at the following

arrows:

LanF H(D ×D′) LanF HD × LanF HD
′

colim(C,c) colim(C′,c′)(HC ×HC ′)

ψ

φ

∼

ω

On the one side we want to show (ω−1ψ)φ = idcolim colim(HC×HC′), and then that φ(ω−1ψ) =

idLanF H(D×D′). The first equality holds if and only if ψφ = ω if and only if pr1ψφ = pr1ω

and pr2ψφ = pr2ω if and only if pr1ψφι(C,c),(C′,c′) = pr1ωι(C,c),(C′,c′) and pr2ψφι(C,c),(C′,c′) =

pr2ωι(C,c),(C′,c′) for every ι(C,c),(C′,c′). However,

pr1ψφι(C,c),(C′,c′) = (Lan
F

Hpr1)ι(C×C′,c×c′) = ι(C×C′,pr1(c×c′))

= ι(C×C′,cpr1)
= ι(C,c)pr1 = pr1ωι(C,c),(C′,c′);

similarly pr2ψφι(C,c),(C′,c′) = pr2ωι(C,c),(C′,c′).

C × C ′ FC × FC ′ HC ×HC ′ HC

C FC D colim(C,c)HC

pr1 pr1
cpr1

c

pr1

ι(C×C′,cpr1)

ι(C,c)

Concerning the second equality, it holds if and only if for every ι( ˜︁C,˜︁c) we have φω−1ψι( ˜︁C,˜︁c) =

ι( ˜︁C,˜︁c); however
φω−1ψι( ˜︁C,˜︁c) = φω−1⟨ι( ˜︁C,pr1˜︁c), ι( ˜︁C,pr2˜︁c)⟩ = φω−1ωι( ˜︁C,pr1˜︁c),( ˜︁C,pr2˜︁c)∆H ˜︁C

= ι( ˜︁C× ˜︁C,pr1˜︁c×pr2˜︁c)∆H ˜︁C = ι( ˜︁C,˜︁c),
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as claimed.

˜︁C F ˜︁C H ˜︁C H ˜︁C ×H ˜︁C
˜︁C × ˜︁C F ˜︁C × F ˜︁C D ×D′ colim(C,c)HC

∆ ∆
˜︁c

pr1˜︁c×pr2˜︁c

∆

ι( ˜︁C,˜︁c) ι( ˜︁C× ˜︁C,pr1˜︁c×pr2˜︁c)

To see the equality ⟨ι( ˜︁C,pr1˜︁c), ι( ˜︁C,pr2˜︁c)⟩ = ωι( ˜︁C,pr1˜︁c),( ˜︁C,pr2˜︁c)∆H ˜︁C above observe that ι( ˜︁C,pr1˜︁c) =

ι( ˜︁C,pr1˜︁c)pr1∆H ˜︁C = ω1ι( ˜︁C,pr1˜︁c),( ˜︁C,pr2˜︁c)∆H ˜︁C , and similarly also the second projections coincide. To

conclude the proof we need to show that the terminal object is preserved by LanF H. Recall that

LanF HtD = colim(C,!FC :FC→tD)HC; moreover for any object C ∈ C we have that ι(tC,id)!HC =

ι(C,!FC):

C FC HC tE

tC tD tD colim(C,c)HC

!C !FC
!FC

id

!HC

ι(C,!FC )
ι(tC,id)

In particular !LanF HtDι(tC,id) = idtE ; then ι(tC,id)!LanF HtD = idLanF HtD if and only if for any

(C, !FC) we have ι(tC,id)!LanF HtDι(C,!FC) = ι(C,!FC) but

ι(tC,id)!LanF HtDι(C,!FC) = ι(tC,id)!HC = ι(C,!FC),

as claimed; this concludes the proof.

If E is a Grothendieck topos, the hypothesis of the proposition above are satisfied, so LanF H

preserves finite products.

Define now a natural transformation l:R
·−→ Sub(LanF H)op. For any object D ∈ D, and any

γ ∈ R(D), write

lD(γ) =
⋀︂

(K,k),θ

ˆ︁θ∗D(kD(γ))
where (K, k):R → Sub is an arrow in ED and θ: (H, h)→ (K, k)(F, f) is a 2-arrow, i.e. hA(α) ≤
θ∗A(kFA(fA(α))) for all A ∈ C and α ∈ P (A). Observe that kD(γ) is a subobject of KD, ˆ︁θ is

defined by the universal property of the left Kan extension, and ˆ︁θ∗D(kD(γ)) is the pullback of

kD(γ) along ˆ︁θD: (LanF H)(D) → KD, hence it is a subobject of (LanF H)(D). Since E is a

complete category, the infimum of {ˆ︁θ∗D(kD(γ))}(K,k),θ exists, and we call it lD(γ).

Lemma 4.1.3. The following properties hold:

1. l:R
·−→ Sub(LanF H)op is a natural transformation;

2. l:R
·−→ Sub(LanF H)op preserves finite meets;

3. lD×D(δD) ∈ Sub
(︁
(LanF H)(D) × (LanF H)(D)

)︁
is an equivalence relation for any object

D ∈ D.
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Proof. 1. Take an arrow g:D′ → D in D, we prove that
(︁
(LanF H)(g)

)︁∗
lD(γ) = lD′R(g)(γ)

for any γ ∈ RD:

(︁
(LanF H)(g)

)︁∗
lD(γ) =

(︁
(LanF H)(g)

)︁∗ (︂⋀︁
(K,k),θ

ˆ︁θ∗D(kD(γ)))︂
=

⋀︂
(K,k),θ

(︁
(LanF H)(g)

)︁∗ˆ︁θ∗D(kD(γ)) = ⋀︁
(K,k),θ

ˆ︁θ∗D′

(︁
K(g)

)︁∗
(kD(γ))

=
⋀︂

(K,k),θ

ˆ︁θ∗D′(kD′R(g)(γ)) = lD′(R(g)γ).

Note that the second equality follows from the fact that pullback functors between sub-

objects categories preserve arbitrary limits—since in a regular categories they have a left

adjoint—; the other equalities follow from naturality of ˆ︁θ and k.

2. The top element ⊤D ∈ RD for any object D ∈ D is preserved by lD since kD(⊤D) is

idKD:KD → KD the top element in Sub(KD) by assumption, and its pullback along anyˆ︁θD is the identity of (LanF H)(D). Similarly, lD preserves binary meets since any kD and

any pullback functor do.

3. Compute

lD×D(δD) =
⋀︂

(K,k),θ

ˆ︁θ∗D×D(kD×D(δD)) =
⋀︂

(K,k),θ

(ˆ︁θD × ˆ︁θD)∗(∆KD).

Note that each (ˆ︁θD × ˆ︁θD)∗(∆KD) is an equivalence relation on (LanF H)(D), since it is

the kernel pair of the map ˆ︁θD. By Lemma 4.1.4, we know that the infimum of equivalence

relations is itself an equivalence relation. Hence, we can conclude that lD×D(δD) is indeed

an equivalence relation.

Lemma 4.1.4. Let E be a complete category, X be an object of E, and let

{ri = ⟨ri1, ri2⟩:Ri↣ X ×X}i∈I ⊆ Sub(X ×X)

be a family of equivalence relations on X. Then the infimum r =
⋀︁
i∈I

ri is again an equivalence

relation on X.

Proof.

X Ri Ri ×X Ri

Ri X ×X Ri X ×X Ri X ×X

δi
∆X

ri

σi

⟨ri2,r
i
1⟩

ri

τi

ri

⟨pi1,p
i
3⟩

For every i ∈ I, call δi:X → Ri the arrow such that riδi = ∆X—reflexivity—, σi:Ri → Ri

the arrow such that riσi = ⟨ri2, ri1⟩—symmetry—and τi:Ri ×X Ri → Ri the arrow such that
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riτi = ⟨pi1, pi3⟩—transitivity—, where Ri ×X Ri, p
i
1 and pi3 are defined as follows:

Ri ×X Ri

Ri Ri

X X X

αi βi

ri2 ri1ri1 ri2

pi1 pi3
⌟

First of all, observe that r is a generalized pullback: it is the datum of an arrow r:R→ X ×X
and a family of arrows {mi:R→ Ri}i∈I such that rimi = r for all i ∈ I, with the property that

for any arrow s = ⟨s1, s2⟩:S → X × X and family ni:S → Ri such that rini = s, then there

exists a unique n:S → R such that rn = s.

• r is a monomorphism. Take f, g:A → R such that rf = rg; so for any i ∈ I we have

rimif = rimif , but each r
i is a mono somif = mig. Now {mif}i∈I = {mig}i∈I is a family

of arrow such that rimif = rf = rg, so there exist a unique n such that rn = rf = rg,

hence f = g.

• r is the infimum of {ri}i∈I in Sub(X × X). Using the existence of mi we have r ≤ ri.

Then, suppose s above to be a mono, so that s ≤ ri for all i ∈ I and it follows that s ≤ r.

• r is reflexive. From the pair (∆X :X → X × X, {δi}i∈I) such that riδi = ∆X , define

δ:X → R such that rδ = ∆X .

• r is symmetric. From the pair (⟨r2, r1⟩:R→ X×X, {σimi}i∈I) such that riσimi = ⟨r2, r1⟩,
define σ:R→ R such that rσ = ⟨r2, r1⟩.

• r is transitive. Call α, β the projection maps in the pullback of r1 along r2, p1 = r1α

and p3 = r2β. Define ti:R ×X R → Ri ×X Ri the unique maps such that αiti = miα and

βiti = miβ. From the pair (⟨p1, p3⟩:R×XR→ X×X, {τiti}i∈I) such that riτiti = ⟨p1, p3⟩,
define τ :R×X R→ R such that rτ = ⟨p1, p3⟩.

Recall from Section 4 of [MR12] that given any elementary doctrine P :Cop → Pos one can build

the category RP of equivalence relations of P where objects are pairs (A, ρ), with ρ ∈ P (A×A)
an equivalence relation on A, and arrows f : (A, ρ) → (B, σ) are arrows f :A → B such that

ρ ≤A×A P (f × f)(σ). Composition and identities are computed in C. Then, (P )q:Rop
P → Pos

will be given by (P )q(A, ρ) = Desρ = {α ∈ P (A) | P (pr1)(α) ∧ ρ ≤ P (pr2)(α)}, and (P )q(f) =

P (f). Since lD×D(δD) is an equivalence relation on (LanF H)(D), we can define a functor

L = ⟨LanF H(−), l−×−(δ−)⟩:D→ RSub, where RSub is the category of equivalence relations of

Sub:Eop → Pos. Given an arrow g:D′ → D in D, we define

L (g) = (Lan
F

H)(g):
(︁
(Lan
F

H)(D′), lD′×D′(δD′)
)︁
→

(︁
(Lan
F

H)(D), lD×D(δD)
)︁
.
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L is well defined on arrows: In order to prove this is well defined we need

lD′×D′(δD′) ≤
(︁
(Lan
F

H)(g)× (Lan
F

H)(g)
)︁∗
(lD×D(δD))

in Sub((LanF H)(D × D)), so we need a map dom lD′×D′(δ′D) → dom lD×D(δD) making the

external diagram commute.

dom lD′×D′(δD′)

dom((LanF H)(g × g))∗(lD×D(δD)) dom lD×D(δD)

(LanF H)(D′ ×D′) (LanF H)(D ×D)

((LanF H)(g×g))∗(lD×D(δD))

(LanF H)(g×g)
lD×D(δD)

lD′×D′ (δD′ )

≤

⌟

So now consider for each (K, k):R→ Sub and θ: (H, h)→ (K, k)(F, f).

KD′

dom ˆ︁θ∗D′×D′(∆KD′) dom ˆ︁θ∗D×D(∆KD) KD

(LanF H)(D′ ×D′) (LanF H)(D ×D) KD ×KD

ˆ︁θ∗D×D(∆KD)

ˆ︁θD×D

ˆ︁θD×D|dom ˆ︁θ∗
D×D

(∆KD)

∆KD

⌟

(LanF H)(g×g)

ˆ︁θ∗
D′×D′ (∆KD′ )

K(g×g)ˆ︁θD′×D′

ˆ︁θD×D|dom ˆ︁θ∗
D×D

(∆KD)
Kg

By definition of l as infimum we can find the wanted arrow dom lD′×D′(δD′)→ dom lD×D(δD).

L preserves products: Moreover, L preserves products. To see this, compute L (D × D′)

and L (D) ×L (D′): the first projections LanF H(D ×D′) = LanF H(D) × LanF H(D′) coin-

cide, since LanF H preserves products; so we need to show that also the equivalence relations

lD×D′×D×D′(δD×D′) and lD(δD)⊠lD′(δD′) are the same subobject of (LanF H)(D×D′×D×D′).

First of all, we have that:

lD×D′×D×D′(δD×D′) =
⋀︂

(K,k),θ

ˆ︁θ∗D×D′×D×D′(∆KD×KD′);

on the other hand we have:

lD(δD)⊠ lD′(δD′) = ⟨pr1,pr3⟩∗
⎛⎝ ⋀︂

(K,k),θ

ˆ︁θ∗D×D(∆KD)

⎞⎠ ∧ ⟨pr2,pr4⟩∗
⎛⎝ ⋀︂

(K,k),θ

ˆ︁θ∗D′×D′(∆KD′)

⎞⎠
=

⋀︂
(K,k),θ

(︂
⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) ∧ ⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′)

)︂
;
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we prove with some diagram computation that for each (K, k), θ the arguments in the meets are

the same.

dom ˆ︁θ∗D×D′×D×D′(∆KD×KD′) KD ×KD′

(LanF H)(D ×D′ ×D ×D′) KD ×KD′ ×KD ×KD′

ˆ︁θ∗
D×D′×D×D′ (∆KD×KD′ )

ˆ︁θD×D′×D×D′
|dom ˆ︁θ∗

D×D′×D×D′ (∆KD×KD′ )

∆KD×KD′

ˆ︁θD×D′×D×D′

⌟

dom⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) KD

(LanF H)(D ×D′ ×D ×D′) (LanF H)(D ×D) KD ×KD

KD ×KD′ ×KD ×KD′

⟨pr1,pr3⟩
∗ˆ︁θ∗D×D(∆KD)

(ˆ︁θD×D⟨pr1,pr3⟩)|dom⟨pr1,pr3⟩∗ ˆ︁θ∗
D×D

(∆KD)

∆KD

⟨pr1,pr3⟩ ˆ︁θD×D

⌟

ˆ︁θD×D′×D×D′ ⟨pr1,pr3⟩

dom⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′) KD′

(LanF H)(D ×D′ ×D ×D′) (LanF H)(D′ ×D′) KD′ ×KD′

KD ×KD′ ×KD ×KD′

⟨pr2,pr4⟩
∗ˆ︁θ∗

D′×D′ (∆KD′ )

(ˆ︁θD′×D′ ⟨pr2,pr4⟩)|dom⟨pr2,pr4⟩∗ ˆ︁θ∗
D′×D′ (∆KD′ )

∆KD′

⟨pr2,pr4⟩ ˆ︁θD′×D′

⌟

ˆ︁θD×D′×D×D′ ⟨pr2,pr4⟩

dom(⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) ∧ ⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′)) dom⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′)

dom⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) (LanF H)(D ×D′ ×D ×D′)

⟨pr2,pr4⟩
∗ˆ︁θ∗

D′×D′ (∆KD′ )

⟨pr1,pr3⟩
∗ˆ︁θ∗D×D(∆KD)

ω2

ω1

⟨pr1,pr3⟩
∗ˆ︁θ∗D×D(∆KD)∧⟨pr2,pr4⟩

∗ˆ︁θ∗
D′×D′ (∆KD′ )

⌟

Now, for each (K, k), θ:

ˆ︁θ∗D×D′×D×D′(∆KD×KD′) ≤ ⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) ∧ ⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′)

if and only if bothˆ︁θ∗D×D′×D×D′(∆KD×KD′) ≤ ⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) andˆ︁θ∗D×D′×D×D′(∆KD×KD′) ≤ ⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′);

to show the first inequality, take the pair ˆ︁θ∗D×D′×D×D′(∆KD×KD′) and the first projection of

ˆ︁θD×D′×D×D′
|dom ˆ︁θ∗

D×D′×D×D′ (∆KD×KD′ )
,
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then use the universal property of the second pullback above. Similarly, prove the second one by

taking the pair ˆ︁θ∗D×D′×D×D′(∆KD×KD′) and the second projection of

ˆ︁θD×D′×D×D′
|dom ˆ︁θ∗

D×D′×D×D′ (∆KD×KD′ )
,

then use the universal property of the third pullback above. For the converse, take the pair

⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD) ∧ ⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′(∆KD′) and the arrow that has as a first component

(ˆ︁θD×D⟨pr1,pr3⟩)|dom⟨pr1,pr3⟩∗ˆ︁θ∗D×D(∆KD)ω2

and as second component

(ˆ︁θD′×D′⟨pr2,pr4⟩)|dom⟨pr2,pr4⟩∗ˆ︁θ∗D′×D′ (∆KD′ )
ω1,

then use the universal property of the first pullback.

(L , l) is well defined: We are now in the situation:

Dop Rop
Sub

Pos

L op

R (Sub)q

l
·

We prove that l:R
·−→ (Sub)qL op is well defined by showing that for each γ ∈ RD, we have

lD(γ) ∈ DeslD×D(δD), i.e. pr
∗
1lD(γ) ∧ lD×D(δD) ≤ pr∗2lD(γ) in Sub(LanF H)(D ×D). Indeed

pr∗1

⎛⎝ ⋀︂
(K,k),θ

ˆ︁θ∗D(kD(γ))
⎞⎠ ∧ ⋀︂

(K,k),θ

(ˆ︁θD × ˆ︁θD)∗(∆KD)

=
⋀︂

(K,k),θ

(︂
pr∗1

ˆ︁θ∗D(kD(γ)) ∧ (ˆ︁θD × ˆ︁θD)∗(∆KD)
)︂

=
⋀︂

(K,k),θ

(ˆ︁θD × ˆ︁θD)∗ (pr∗1(kD(γ)) ∧∆KD)

≤
⋀︂

(K,k),θ

(ˆ︁θD × ˆ︁θD)∗ (pr∗2(kD(γ))) = pr∗2lD(γ).

So we proved that we have a 1-arrow between the doctrines (L , l):R→ (Sub)q.

(L , l) is in ED: By construction l is a natural transformation and preserves finite meets. Note

that in general in the doctrine (P )q:Rop
P → Pos of descent objects from the quotient completion

of a doctrine P :Cop → Pos, the equality in (P )q
(︁
(A, ρ)× (A, ρ)

)︁
= Desρ⊠ρ is ρ itself. Indeed:

• ρ ∈ Desρ⊠ρ, using transitivity and symmetry of ρ;

• ⊤(A,ρ) ≤ (P )q(∆(A,ρ))(ρ), since ⊤A ≤ P (∆A)(δA) ≤ P (∆A)(ρ) using reflexivity of ρ;

• (P )q(A, ρ) = Desρ, since descent objects with respect to P and (P )q are the same;
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• (P )q(⟨pr1,pr3⟩)(ρ)∧ (P )q(⟨pr2,pr4⟩)(σ) = ρ⊠ σ by definition of product (X, ρ)× (Y, σ) in

RP .

So applying this to the case (Sub)q, we obtain that

lD×D:R(D ×D)→ (Sub)q
(︁
((Lan

F
H)(D), lD×D(δD))× ((Lan

F
H)(D), lD×D(δD))

)︁
or, computing the codomain,

lD×D:R(D ×D)→ DeslD×D(δD)⊠lD×D(δD)

so l preserves the fibered equality and (L , l) is in ED.

From (Sub)q to Sub: Recall that our goal is to define for each (H, h):P → Sub in ED a suitable

1-arrow from R to Sub. So we look for an arrow (Q, q): (Sub)q → Sub in order to define the

wanted map by the composition (Q, q)(L , l).

Rop
Sub Eop

Pos

Qop

(Sub)q Sub

q

·

To to this, we want to use the universal property of (Sub)q: from Theorem 4.5 of [MR12] there

is an essential equivalence of categories

− ◦ (J, j):QED((Sub)q, Z)→ ED(Sub, Z)

for every Z in QED, where QED is the 2-full 2-subcategory of ED whose objects are element-

ary doctrines P :Cop → Pos in which every P -equivalence relation has a P -quotient that is a

descent morphism; the 1-morphism are those arrows (G, g):P → Z in ED such that G preserves

quotients—meaning, if q:A → C is a quotient of a P -equivalence relation ρ on A, then Gq is a

quotient of the Z-equivalence relation gA×A(ρ) on GA. So we prove that Sub is in QED, and

define (Q, q) as the essentially unique 1-morphism such that (Q, q)(J, j) = idSub. We show that

every equivalence relation ⟨s1, s2⟩:S ↣ X × X in E has a quotient that is a descent morph-

ism. Since Grothendieck topos are cocomplete, the quotient exists, and it is the coequalizer

q:X → X/S of s1 and s2. We then need q to be such that q∗: Sub(X/S)→ Sub(X) is full. Take

y:Y ↣ X/S and y′:Y ′↣ X/S such that q∗(y) ≤ q∗(y′).

dom q∗y dom q∗y′ Y Y ′

X X/Sq

y y′

q∗y
q∗y′

qy qy′

ℓ
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We claim that y ≤ y′. Since E is regular, we know that qy is a regular epimorphism—as a

pullback of the regular epimorphism q. In particular, qy is the coequaliser of its kernel pair, call

it [T, t1, t2]. Similarly qy′ is the coequaliser of its kernel pair [T ′, t′1, t
′
2].

T dom q∗y Y

T ′ dom q∗y′ Y ′

C

ℓ

qy

ℓ′

qy′

t2

t1

t′1

t′2
q∗y′ q∗y

t

By definition of kernel pair of qy′ , we can define t:T → T ′ making the two squares on the

left commute if and only if qy′ℓt1 = qy′ℓt2, if and only if y′qy′ℓt1 = y′qy′ℓt2—since y′ is a

monomorphism—, i.e. qq∗(y′)ℓt1 = qq∗(y′)ℓt2, i.e. qq
∗(y)t1 = qq∗(y)t2, i.e. yqyt1 = yqyt2, if and

only if qyt1 = qyt2, but this is true since qy is the coequaliser of t1, t2. So now we define a map

ℓ′:Y → Y ′ making the square on the right commute: it is equivalent to ask that qy′ℓt1 = qy′ℓt2,

if and only if qy′t
′
1t = qy′t

′
2t, which is true. At last, we check that y′ℓ′ = y, if and only

if y′ℓ′qy = yqy—since qy is an epimorphism—, if and only if y′qy′ℓ = qq∗(y), if and only if

qq∗(y′)ℓ = qq∗(y). This concludes the proof.

Claim 4.1.5. The assignment defined above, sending (H, h) to (Q, q)(L , l) extends to a left

adjoint to − ◦ (F, f)

We look for the universal arrow

η(H,h): (H, h)→ (Q, q)(L , l)(F, f).

In particular, we need a natural transformation η(H,h):H
·−→ QLF , i.e. for any object A ∈ C

(︁
η(H,h)

)︁
A
:HA

µA−−→ (Lan
F

H)(FA)
ρFA−−−→ Q

(︁
(Lan
F

H)(FA), lFA×FA(δFA)
)︁

To define ρ: LanF H
·−→ QL , note that for any (X, s = ⟨s1, s2⟩:S ↣ X × X) ∈ RSub, there is

an arrow idX : (X,∆X)→ (X, s) in RSub—since s is an equivalence relation. Apply Q to obtain

Q(idX):X → Q(X, s) in E. So we can define ρD = Q(id(LanF H)(D)); this is clearly a natural

transformation, since the naturality square

D′ (LanF H)(D′) Q((LanF H)(D′), lD′×D′(δD′))

D (LanF H)(D) Q((LanF H)(D), lD×D(δD))

g (LanF H)(g)

Q(id(LanF H)(D))

Q(id(LanF H)(D′))

Q(LanF H)(g)
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is the image through Q of

((LanF H)(D′),∆(LanF H)(D′)) ((LanF H)(D′), lD′×D′(δD′))

((LanF H)(D),∆(LanF H)(D)) ((LanF H)(D), lD×D(δD))

(LanF H)(g)

id(LanF H)(D)

id(LanF H)(D′)

(LanF H)(g)

So η(H,h) is defined, and it is a natural transformation, since it is the composition of natural

transformations.

η(H,h) is a 2-arrow: We need to show that

hA(α) ≤
(︁
η(H,h)

)︁∗
A
(qLFAlFAfA(α)) = µ∗

Aρ
∗
FA(qLFAlFAfA(α)).

Observe that from naturality of q, we have for any (X, s) ∈ RSub the following commutative

diagram:

(X,∆X) (Sub)q(X,∆X) SubQ(X,∆X)

(X, s) (Sub)q(X, s) SubQ(X, s)

idX

q(X,∆X )

q(X,s)

id∗
X Q(idX)∗

Note that id∗X is just the inclusion Dess ⊆ SubX, and q(X,∆X) = qJX is such that qJXjX =

idSubX , hence q(X,∆X) = idSubX , so to conclude we have that Q(idX)∗q(X,s) is the inclusion

Dess ⊆ SubX. Apply this when

(X, s) = ((Lan
F

H)(FA), lFA×FA(δFA)) = L (FA)

to get that ρ∗FAqLFA acts as the identity, so our claim becomes

hA(α) ≤ µ∗
A(lFAfA(α)).

But now

µ∗
A(lFAfA(α)) = µ∗

A

(︁ ⋀︂
(K,k),θ

ˆ︁θ∗FA(kFAfA(α)))︁ = ⋀︂
(K,k),θ

µ∗
A
ˆ︁θ∗FA(kFAfA(α)) = ⋀︂

(K,k),θ

θ∗A(kFAfA(α)),

but every θ is a 2-arrow, so hA(α) ≤ θ∗A(kFAfA(α)), hence η(H,h) is indeed a 2-arrow.

η(H,h) has the universal property: We now prove that for every arrow (K, k):R→ Sub in ED

and every 2-arrow θ: (H, h)→ (K, k)(F, f) there exists a unique 2-arrow θ: (Q, q)(L , l)→ (K, k),
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making the following diagram commute:

(H, h) (Q, q)(L , l)(F, f)

(K, k)(F, f)

η(H,h)

θ θ◦(F,f)

For any object D ∈ D, observe that the image of ˆ︁θD: LanF HD → KD in RSub through J factors

as follows:

(LanF HD,∆LanF HD) (LanF HD, lD×D(δD)) (KD,∆KD)
idLanF HD ˆ︁θD

ˆ︁θD
The first map trivially exists; the second one exists if and only if there exists a dotted arrow in

the diagram below:

dom lD×D(δD)

dom ˆ︁θ∗D×D(∆KD) LanF HD × LanF HD

KD KD ×KD
∆KD

ˆ︁θD×ˆ︁θD
ˆ︁θ∗D×D(∆KD)

lD×D(δD)

⌟

but it exists by definition of lD×D(δD) as the infimum of all subobject of the form ˆ︁θ∗D×D(∆KD).

Apply Q to the factorization of ˆ︁θD above to obtain in E:

LanF HD Q(LanF HD, lD×D(δD)) KD
ρD Q(ˆ︁θD)

ˆ︁θD
Define θD = Q(ˆ︁θD):QLD → KD. For any given g:D′ → D in E, we have that the image

through Q of the square on the right in the diagram below gives naturality of θ:

(LanF HD
′,∆LanF HD′) (LanF HD

′, lD′×D′(δD′ )) (KD′,∆KD′)

(LanF HD,∆LanF HD) (LanF HD, lD×D(δD)) (KD,∆KD)
idLanF HD ˆ︁θD

ˆ︁θD

LanF H(g)

idLanF HD′

LanF H(g)

ˆ︁θD′

K(g)

ˆ︁θD′
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Now, to prove that θ is a 2-arrow we show that for any object D ∈ D and any γ ∈ RD

qLDlD(γ) ≤ θ
∗
D(kD(γ)).

Since lD(γ) ≤ ˆ︁θ∗D(kD(γ)), it is enough to prove that qLD
ˆ︁θ∗D(kD(γ)) ≤ Q(ˆ︁θD)∗(kD(γ)). If ρ∗D is

full, the last inequality is equivalent to ρ∗DqLD
ˆ︁θ∗D(kD(γ)) ≤ ρ∗DQ(ˆ︁θD)∗(kD(γ)), i.e. ˆ︁θ∗D(kD(γ)) ≤

Q(idLanF HD)
∗Q(ˆ︁θD)∗(kD(γ)) = ˆ︁θ∗DkD(γ). So we check the following:

Claim 4.1.6. The arrow ρD is a regular epimorphism.

Proof. For any (X, s = ⟨s1, s2⟩:S ↣ X ×X) ∈ RSub, consider idX : (X,∆X) → (X, s) in RSub

and Q(idX):X → Q(X, s) in E. We prove that Q(idX) is a regular epimorphism.

Note that given any (X, r) ∈ RSub, an RSub-equivalence relation on (X, r) is an element s in

(Sub)q((X, r) × (X, r)) = Desr⊠r ⊆ Sub(X × X) that is an equivalence relation on X such

that r ≤ s. It follows that idX : (X, r) → (X, s) is an arrow in RSub. Moreover, it is an

RSub-quotient of s: it is an arrow such that s ≤ (id× id)∗(s) = s, and for every morphism

g: (X, r) → (Y, u)—i.e. g:X → Y such that r ≤ (g × g)∗(u)—such that s ≤ (g × g)∗(u), we

find a unique morphism h: (X, r) → (Y, u) such that g = h id, indeed h = g, and it is an arrow

in RSub since s ≤ (g × g)∗(u). If we take r = ∆X , we have that idX : (X,∆X) → (X, s) is an

RSub-quotient of s, hence Q(idX):X → Q(X, s) is a Sub-quotient of a Sub-equivalence relation,

hence it is a regular epimorphism.

Now we check commutativity of the triangle for the universal property:

θFA
(︁
η(H,h)

)︁
A
= θFAρFAµA = ˆ︁θFAµA = θA.

To conclude, we show that θ is unique. Suppose we have a 2-arrow λ: (Q, q)(L , l) → (K, k)

making the triangle commute. In particular, for any object A ∈ C we have λFAρFAµA = θA and

for any D ∈ D, γ ∈ RD we have qLDlD(γ) ≤ λ∗D(kD(γ)). Consider the natural transformation

λ ◦ ρ: LanF H
·−→ K. It is such that (λ ◦ ρ) ◦ µ = θ, so by the universal property of µ we have

λ ◦ ρ = ˆ︁θ, but then we have ˆ︁θD = λDρD = θDρD, so that λD = θD.

This concludes the proof of Claim 4.1.5, hence of Theorem 4.1.1.

4.2 Examples

Before we dive into some examples, we prove a general result for some first-order theories. This

generalizes Example 2.5.a of [MR12].

We refer to [Car17] for the definitions about first-order calculus. Note that here, in contrast to

what we defined in Example 1.1.2 about the doctrine of well-formed formulae, which had Boolean

elementary existential structure, we just consider the fragment of Horn logic. Moreover, a theory

in this context is not a set of closed formulae, but is instead a set of Horn sequents over Σ. We
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write in this case HFΣT :Ctx
op
Σ → Pos for the elementary doctrine of Horn formulae: the base

category is the same defined in Example 1.1.2, each list of variable is sent to the poset reflection

of Horn formulae—defined inductively as the smallest set containing relations, equalities, true

constant and conjunctions of formulae—ordered by provable consequence in T; reindexing are

again defined as substitutions.

Proposition 4.2.1. Let Σ be a first-order language and T a first-order theory in the language

Σ such that its axioms are Horn sequent. Then there exists an equivalence of categories:

ED(HFΣT ,Sub)
∼=

Σ

Mod
T

where HFΣT :Ctx
op
Σ → Pos is the elementary doctrine of Horn formulae in the language Σ of the

theory T, Sub:Cop → Pos is the elementary doctrine of subobject for a given category C with

finite limits, and ModΣT is the category whose objects are models of the theory T in the category

C, and whose arrows are Σ-homomorphism.

Proof. Since there is no confusion, we write HF instead of HFΣT and Mod instead of ModΣT . For

any given θ: (H, h)→ (H ′, h′) in ED(HF,Sub), define θ(x):H(x)→ H ′(x). Observe that H(x) is

indeed a model of the theory T: each n-ary function symbol f in the language defines an arrow

f(x1, . . . , xn): (x1, . . . , xn)→ (x) in Ctx, hence its image through H—that preserves products—

defines a map fH :
(︁
H(x)

)︁n → H(x), which is the interpretation of f inH(x); each n-ary predicate

symbol R defines RH = h(x1,...,xn)(R(x1, . . . , xn)): dom(RH)↣
(︁
H(x)

)︁n
. From now on, we write

x⃗ instead of the list (x1, . . . , xn). Satisfiability of axioms follows by the fact that hx⃗(α(x⃗)) is the

interpretation of α in H(x) for each α(x⃗) ∈ HF(x⃗), and h is monotone, so if we have an axiom

α(x⃗) ⊢ β(x⃗) in T we have αH ≤ βH , i.e. H(x) satisfies α ⊢ β. To check that hx⃗(α(x⃗)) = αH we

work recursively on the complexity of α:

• α = ⊤: αH = id(︁
H(x)

)︁n = hx⃗(⊤) trivially holds;

• α = R(x⃗): αH = RH = hx⃗(R) by the definition given above;

• α = α1 ∧ α2: α
H = αH1 ∧ αH2 = hx⃗(α1) ∧ hx⃗(α2) = hx⃗(α1 ∧ α2) since hx⃗ preserves meets;

• α =
(︁
t1(x⃗) = t2(x⃗)

)︁
: αH = Eq(tH1 , t

H
2 ), the equalizer of the interpretations tH1 , t

H
2 of the

terms t1, t2 in H(x).

It is left to prove then that if α =
(︁
t1(x⃗) = t2(x⃗)

)︁
, we have αH = hx⃗

(︁
t1(x⃗) = t2(x⃗)

)︁
. Naturality

of h with respect to the arrow (t1(x⃗), t2(x⃗)): x⃗ → (y1, y2) in Ctx, applied to the formula
(︁
y1 =

y2
)︁
∈ HF(y1, y2) gives:

HF(y1, y2) Sub((H(x))2)

HF(x⃗) Sub((H(x))n)

t⃗(x⃗)/y⃗

hx⃗

h(y1,y2)

⟨tH1 ,t
H
2 ⟩∗
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in order to get:

hx⃗
(︁
t1(x⃗) = t2(x⃗)

)︁
= ⟨tH1 , tH2 ⟩∗(∆H(x)) = Eq(tH1 , t

H
2 ),

as claimed. This proves that the association ED(HF,Sub) → Mod is well defined on objects.

Concerning arrows, first of all observe that since H,H ′ preserve products and θ is a natural

transformation, θx⃗ = θ(x) × · · · × θ(x)—n times. So the naturality diagram of θ with respect to

an arrow defined by an n-ary function symbol f(x⃗): x⃗ → (x) gives the fact that θ(x) preserves

the interpretation of the function symbol f :

θ(x)f
H = fH

′
θx⃗ = fH

′
(θ(x) × · · · × θ(x));

moreover, for any n-ary predicate symbol R, since θ is a 2-arrow, we have

RH = hx⃗(R) ≤ θ∗x⃗
(︁
h′x⃗(R)

)︁
= θ∗x⃗R

H′
,

so that θ(x) is indeed a homomorphism in Mod. Now that the functor is well defined, we prove

that it is full, faithful and essentially surjective. Faithfulness is trivial since, as seen above, each

component of θ is uniquely determined by its component on the context with one variable.

Take now g:H(x)→ H ′(x) an homomorphism in Mod, define θgx⃗ = g× · · · × g—|x⃗| times, where

|x⃗| is the length of the list. This defines a natural transformation θ:H → H ′: naturality with

respect to projections follows by definition, moreover for any function symbol the naturality

square commutes since g preserves interpretations, and then recursively since any other arrow is

composition of projections and terms—defined by composition of function symbols—, naturality

holds for any arrow in Ctx.

(x⃗) H(x)|x⃗| H ′(x)|x⃗|

(x) H(x) H ′(x)

tH

g

g×···×g

tH
′t(x⃗)

We show that θg is an arrow in ED(HF,Sub), i.e. that for any α(x⃗) ∈ HF(x⃗) we have hx⃗
(︁
α(x⃗)

)︁
≤

θgx⃗
∗(︁
h′x⃗

(︁
α(x⃗)

)︁)︁
. Recursively on the complexity of α we observe that if α = ⊤ or α = β ∧ γ, the

inequality holds since h, h′ and θgx⃗
∗
preserve the top element and meets; if α is an equality of

terms α(x⃗) =
(︁
t1(x⃗) = t2(x⃗)

)︁
, we show Eq(tH1 , t

H
2 ) ≤ θgx⃗

∗
(Eq(tH

′

1 , tH
′

2 )), but this holds looking at

the diagram below:
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dom(αH)

•
(︁
H(x)

)︁n
H(x)

dom(αH
′
)

(︁
H ′(x)

)︁n
H ′(x)

αH′
tH

′
2

tH
′

1

θg
x⃗

tH2
g

tH1θg
x⃗
∗(αH′

)

⌟

αH

the arrow dom(αH)→ dom(αH
′
) exists and makes the outer left square commute if and only if

tH
′

1 θgx⃗α
H = tH

′

2 θgx⃗α
H , but this is true since tH

′

i θgx⃗ = gtHi for i = 1, 2. So the dashed arrow above

exists by the universal property of the pullback, hence αH ≤ θgx⃗
∗
(αH

′
), as claimed. Finally, if

α = R for some predicate symbol R, we have to check RH ≤ θgx⃗
∗
(RH

′
), but this holds by definition

of Σ-homomorphism. So θg: (H, h) → (H ′, h′) is well defined, and its image is g, so the functor

is full. To conclude, take M a model of T, and write fM :Mn → M for the interpretation in M

of any n-ary function symbol f in the language and RM : dom(RM )↣Mn for the interpretation

of any n-ary predicate symbol R. We define a functor HM :Ctx → C that maps x⃗ ↦→ M |x⃗|,

projections in projections, f(x⃗) ↦→ fM , and this trivially extends to lists of terms, defining a

product preserving functor. Now define hM : HF
·−→ SubHop:

hMx⃗ (α(x⃗)) = αM ,

the interpretation of α in M . It is well defined because M is a model. By definition of inter-

pretation, hM preserves top element, meet and fibered equality. To prove that it is a natural

transformation, take a list of terms t⃗(x⃗) = (t1(x⃗), . . . , t|y⃗|(x⃗)): x⃗ → y⃗ and we prove that the

following diagram is commutative:

HF(y⃗) Sub(M |y⃗|)

HF(x⃗) Sub(M |x⃗|)

t⃗(x⃗)/y⃗

hM
x⃗

hM
y⃗

⟨tM1 ,...,tM|y⃗|⟩
∗

but this is true by definition of interpretation. Clearly (HM , hM ) ↦→ M so the functor is essen-

tially surjective and defines the equivalence of categories.

Example 4.2.2. Some algebraic examples. We prove, using the equivalence of Proposition

4.2.1 in some specific theories, that many adjunction results in algebra can be obtained as a

particular case of the adjunction shown in Theorem 4.1.1. Suppose we have an algebraic language

Σ, and extend the language with some new function symbols to obtain a new algebraic language

Σ′. Then suppose to extend the theory T—which is a theory also in the language Σ′—with some

new axioms of the form ⊤ ⊢
(︁
t(x⃗) = s(x⃗)

)︁
, where t and s are terms in the language Σ′. Note
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that we could have Σ = Σ′, so we can just extend the theory, or T = T′, so we just extend the

language. This extension can be translated in a morphism (E, e): HFΣT → HFΣ
′

T′ in ED

CtxopΣ CtxopΣ′

Pos

Eop

HFΣT HFΣ
′

T′

e
·

The functor E is the inclusion of terms written in the language Σ in the terms of the language

Σ′; each component ex⃗ of the natural transformation e is the composition of the inclusion of

HFΣT (x⃗) in the poset HFΣ
′

T (x⃗) of Horn formulae in the extended language with respect to the

same theory, with the quotient from HFΣ
′

T (x⃗) into HFΣ
′

T′ (x⃗), that sends the equivalence class of a

formula—with respect to reciprocal provability in the theory T—to the equivalence class of the

same formula, with respect to reciprocal provability in the theory T′. In any such extension, we

have the following commutative diagram:

ModΣ
′

T′ ModΣT

ED(HFΣ
′

T′ ,P∗) ED(HFΣT ,P∗)

∼=

−◦(E,e)

∼=

where P∗: Set
op
∗ → Pos is the elementary doctrine of subsets, and the arrow between the cat-

egories of models is the functor that forgets both the added structure from Σ′ that is not in Σ

and the axioms in T′ that are not in T. So the left adjoint to the precomposition with (E, e) de-

scribed in the first section generalizes all such adjunctions in algebra. Some examples include the

adjunction between: sets and pointed sets, groups and abelian groups, monoids and semigroups,

non-unitary rings and unitary rings, and so on.

Example 4.2.3. Extension and restriction of scalars. In a similar way, let R,S be two

commutative unitary rings, and let a:R → S be a ring homomorphism. One can obtain the

category RMod of modules over the ring R as the category of models in the language Σ =

{0,+,−} ∪ {r·}r∈R—where 0 is a constant, + is a binary function symbol, and − and each

r· are unary function symbols—of the algebraic theory T with axioms making {0,+,−} group

operations, and r· the scalar multiplication with r ∈ R. As seen above, we can define the

equivalence ED(HFΣT ,P∗) ∼= RMod; similarly define the equivalence ED(HFΣ
′

T′ ,P∗) ∼= SMod.

Here Σ′ and T′ are not extension of Σ and T. However we can define a functor E:CtxΣ → CtxL′

that maps 0: () → (x),+: (x1, x2) → (x),−: (x) → (x) in themselves, and each r·: (x) → (x) in

a(r)·: (x)→ (x); moreover define ex⃗: HF
Σ
T (x⃗)→ HFΣ

′

T′ (x⃗), such that α(x⃗) ↦→ α[a(r)/r](x⃗), meaning

that each formula is sent essentially in itself, but each occurrence of r in the terms that appear in

α is substituted by a(r), for every r ∈ R. This function preserves trivially top element, meets and

fibered equality, and defines a natural transformation. The precomposition − ◦ (E, e) recovers

the adjunction between RMod and SMod given by extension and restriction of scalars.
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Example 4.2.4. A multisorted example. Consider the two-sorted language Σ and the theory

T that describes sets with an action of a monoid over it. The proof of Proposition 4.2.1 was done in

the single sorted case, but holds also in the multisorted setting. Then ED(HFΣT ,P∗) ∼= MonSet;

then extend the language and the theory to describe sets with an action of a group over it,

so ED(HFΣ
′

T′ ,P∗) ∼= GrpSet. We can again recover the left adjoint to the forgetful functor:

for a given (M,X), where M is a monoid acting on a set X, let F(M) be the free group

generated by M . Define the equivalence relation ∼ on the product F(M) × X generated by

(mn, x) ∼ (m,n · x) for any m ∈ F(M) and n ∈M ; the action of F(M) on F(M)×X/ ∼ maps

(m, [(m′, x)]) into [(mm′, x)] for any m,m′ ∈ F(M) and x ∈ X. The universal arrow is given

by (ηM , ιX): (M,X) −→ (F(M),F(M) ×X/ ∼) where ηM :M → F(M) is the inclusion of the

monoid in the free group generated by it, and ιX :X → F(M) ×X/ ∼ maps x ∈ X to [(e, x)],

where e is the identity of M .

Example 4.2.5. Some quasi-algebraic examples. Suppose we have an algebraic language

Σ and a quasi-algebraic theory T, meaning that axioms can be quasi-identities—i.e. formulae of

the form
(︁
t1(x⃗) = s1(x⃗)

)︁
∧ · · · ∧

(︁
tk(x⃗) = sk(x⃗)

)︁
⊢
(︁
t(x⃗) = s(x⃗)

)︁
. In this case we can recover,

for example, the left adjoint to the forgetful functor between torsion-free RMod and RMod,

between cancellative semigropus and groups, between pseudocomplemented distributive lattices

and boolean algebras.

Example 4.2.6. Some non-algebraic example. Let Σ be a first-order language with a binary

relation R and T a theory such that the only axiom in T are reflexivity, transitivity, symmetry

or antisymmetry.

We can easily recover some adjunction by adding axioms—of the kind defined above—to the

theory, in the same way we did for the algebraic case: for example we can find the left adjoint

to the forgetful functor from the category of sets with an equivalence relation to the category of

sets with a reflexive and symmetric relation, or from the category of sets with a preorder to the

category of sets with an order, and so on.

A little more work must be done to recover the adjunction between the category of posets and

inf-semilattices. Recall that any inf-semilattice is a poset defining that an element is smaller than

another one if their meet is the first element, so there is a forgetful functor from inf-semilattices

to posets. This forgetful functor arises again from a precomposition between the doctrines of

Horn formulae: take the language Σ with a binary predicate symbol, and a theory T with

axioms of reflexivity, transitivity and antisymmetry; then take the algebraic language Σ′ with

a constant symbol ⊤ and a binary function symbol ⊓, and the algebraic theory T′ that defines

inf-semilattices. The functor E:CtxΣ → CtxΣ′ maps projections in projections and is extended

to lists of projections; ex⃗: HF
Σ
T (x⃗) → HFΣ

′

T′ (x⃗) is defined recursively: the top element, equalities

of variables and conjunctions are sent to themselves, while the formula R(xi, xj) is sent to the

formula
(︁
⊓ (xi, xj) = xi

)︁
.

Example 4.2.7. An examples in Sub. Consider Sub:Eop → Pos, where E is a Grothendieck
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topos. Consider the empty language and the empty theory, then

ED(HF,Sub) ∼= E

Extend the language with one constant symbol, so we have an equivalence of category

ED(HF{c},Sub) ∼= E•

where {c} is the language with one constant symbol, and E• is the category of pointed object,

meaning that its objects are pairs (A, a: t → A) where A is an abject of E, and arrows are

morphism of E preserving the point.

So now we have the following commutative diagram:

E• E

ED(HF{c},Sub) ED(HF,Sub)
∼=

U

−◦(E,e)

∼=

where the upper arrow is the forgetful functor the leaves out the point, and (E, e): HF→ HF{c} is

the usual arrow that arises from the extension of the empty language to the language with one

constant symbol. The left adjoint to U generalizes in a Grothendieck topos the classical adjoint

that adds a new element to a set.

Example 4.2.8. Adding an axiom. Consider an elementary doctrine P , take an element

φ ∈ P (t), and do the construction (id, P (!)φ ∧ −):P → Pφ as in Corollary 2.4.5. Then take

(H, h):P → Sub and suppose that ht(φ) = ⊤. We observe that applying the left adjoint functor

to (H, h) we obtain exactly the unique (H, h′):Pφ → Sub defined by the universal property of

(id, P (!)φ∧−):P → Pφ. Indeed, since the left Kan extension of H along the identity is H itself,

it is enough to check that lA(α) = h′(α) for all α ∈ Pφ(A), so that L (A) = (HA, lA×A(δA)) =

(HA,∆HA), and QL (A) = HA. Consider the 1-arrow (H, h′):Pφ → Sub and the identity 2-

arrow (H, h) → (H, h′)(id, P (!)φ ∧ −) along all the 1-arrows (K, k):Pφ → Sub and the 2-arrows

θ: (H, h)→ (K, k)(id, P (!)φ ∧ −). By definition of lA we obtain

lA(α) =
⋀︂

(K,k),θ

ˆ︁θ∗A(kA(α)) ≤ h′A(α).

Conversely, compute

h′A(α) = h′A(P (!A)φ ∧ α) = hA(α) ≤ ˆ︁θ∗A(kA(P (!A)φ ∧ α)) = ˆ︁θ∗A(kA(α))
hence h′A(α) ≤ lA(α).



Bibliography

[Bec69] Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Cat-

egorical Homology Theory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin

Heidelberg.

[Bor94] Francis Borceux. Handbook of categorical algebra: volume 1, Basic category theory,

volume 1. Cambridge University Press, 1994.

[BS81] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer,

1981.

[Car17] Olivia Caramello. Theories, Sites, Toposes: Relating and Studying Mathematical The-

ories Through Topos-Theoretic ’Bridges’. Oxford, England: Oxford University Press

UK, 2017.

[DR21] Francesco Dagnino and Giuseppe Rosolini. Doctrines, modalities and comonads. arXiv,

2021.

[EPR20] Jacopo Emmenegger, Fabio Pasquali, and Giuseppe Rosolini. Elementary doctrines as

coalgebras. Journal of Pure and Applied Algebra, 224, 2020.

[Fri62] Orrin Frink. Pseudo-complements in semi-lattices. Duke Mathematical Journal,

29(4):505 – 514, 1962.

[Hen49] Leon Henkin. The completeness of the first-order functional calculus. The Journal of

Symbolic Logic, 14(3):159–166, 1949.

[HJP80] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Mathematical

Proceedings of the Cambridge Philosophical Society, 88(2):205–232, 1980.

[Joh02] Peter T Johnstone. Sketches of an elephant: a Topos theory compendium. Oxford logic

guides. Oxford Univ. Press, New York, NY, 2002.

[Law69a] F. William Lawvere. Adjointness in foundations. Dialectica, 23(3/4):281–296, 1969.



BIBLIOGRAPHY 121

[Law69b] F William Lawvere. Diagonal arguments and cartesian closed categories. Category

theory, homology theory and their applications II, 92:134–145, 1969.

[Law70] F William Lawvere. Equality in hyperdoctrines and comprehension schema as an

adjoint functor. Applications of Categorical Algebra, 17:1–14, 1970.

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New

York, 1971. Graduate Texts in Mathematics, Vol. 5.

[Mon89] J.D. Monk. Handbook of Boolean Algebras. North-Holland, 1989.

[MR12] Maria Maietti and Giuseppe Rosolini. Elementary quotient completion. Theory and

Applications of Categories, 27, 2012.

[MR13] Maria Emilia Maietti and Giuseppe Rosolini. Quotient completion for the foundation

of constructive mathematics. Logica Universalis, 7(3):371–402, 2013.

[Nem65] William C. Nemitz. Implicative semi-lattices. Transactions of the American Mathem-

atical Society, 117:128–142, 1965.

[Pas15] Fabio Pasquali. A co-free construction for elementary doctrines. Applied Categorical

Structures, 23(1):29–41, 2015.

[PW02] John Power and Hiroshi Watanabe. Combining a monad and a comonad. Theoretical

Computer Science, 280:137–162, 2002.

[Str72] Ross Street. The formal theory of monads. Journal of Pure and Applied Algebra,

2(2):149–168, 1972.

[TZ12] Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in Logic.

Cambridge University Press, 2012.


	Acknowledgements
	Introduction
	Preliminaries and initial results
	Doctrines
	Eilenberg–Moore and Kleisli constructions in the 2-category of indexed posets
	Eilenberg–Moore construction
	Kleisli construction

	Existence of directed colimits in Dct
	Additional structure

	Boolean completion
	Filters, ultrafilters, quotients
	The quotient of a doctrine over a filter


	Adding a constant and an axiom to a doctrine
	A comonad on the indexed poset P
	The Eilenberg–Moore and the Kleisli construction for the comonad (X×-,f)
	The doctrine P(X,) and its inherited properties
	Closedness
	Finite coproducts
	Finite meets
	Elementarity
	Existential quantifier
	Universal quantifier
	Implication
	Finite joins
	Booleanness
	Variations on negation
	Weak Power Objects

	Universal properties of P(X,)

	Rich doctrines and Henkin's Theorem
	The construction of the directed colimit P
	Listing formulae and labelling new constants
	The construction of the directed colimit 
	 is rich
	Consistency of 
	Weak universal property of 
	2-arrows and weak universal property

	Consistency of , weaker assumptions
	A model of a rich doctrine
	Definition of a model
	Definition of a model, elementary case


	Left adjoint to precomposition in elementary doctrines
	The definition of the functor
	Examples


