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Introduction

Given a theory T in a first-order language £, consider for each set of variables the set of well-
formed formulae written with at most those variables. That set can be ordered by provable
consequence in the theory 7. By that we mean that the formula « is less than or equal to the
formula ( if the consequence « 7 S holds. The logical operations of conjunction, disjunction,
implication, negation, true and false give this set the structure of a Boolean algebra. And the
assignment ¥ — WWF(Z) of the Boolean algebra of formulae to a list (i.e. a context) of distinct
variables can be extended to a functor WWEF: Ctx°®? — BA from the opposite category of contexts
and terms to the category of Boolean algebras and homomorphisms.

This can be considered the motivating example at the basis of the notion of hyperdoctrine which
was introduced by Lawvere in 1969 in a series of seminal papers [Law69a, Law69b, Law70]. It is a
categorical tool that allows the analysis of both syntax and semantics of logical theories through
the same mathematical structure. One of the main intuitions of Lawvere was to recognize that
quantifiers in logic are instances of adjunctions between the posets of formulae.

As we have seen, the logical operations and operators provide an extremely abundant structure.
In order to understand such a complex array, it is often useful to restrict one’s view to a particular
side of it. A doctrine is possibly the basic fabric of Lawvere’s hyperdoctrine: just a functor
P:C°? — Pos, from a category C with finite products into the category Pos of partially ordered
sets and monotone functions. Doctrines naturally organize into a 2-category, and they are the
main subject of the thesis.

The aim of this work is to offer an interpretation of some classical results in first-order logic and in
universal algebra via doctrines. The first is performed in the context of existential implicational
doctrines, while the second in the context of elementary doctrines. We then show how the classical
results are actually instances of more general results that live in the context of doctrines.

The first goal is the analysis of Henkin’s Theorem for first-order logic [Hen49], formulated as

follows:
FEvery consistent theory has a model.

The key points in the proof of the original theorem are adding a suitable amount of constants
to the starting language, and then adding some axioms of the extended language to the starting

theory. In Chapter 2 we start our investigation by extending to doctrines the construction of
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adding a constant to a language. And we also extend the construction of forcing a new axiom
for primary doctrines, which are doctrines where all orders are inf-semilattices and reindexing
preserves them—essentially, what it amounts to the ability to interpret conjunctions of formulae.
Actually we do both constructions in one step, using a Kleisli object for a convenient comonad
on the original doctrine seen as an indexed poset. The existence of Kleisli objects for comonads
in indexed posets is proven in Proposition 1.2.5. Given a primary doctrine P: C°? — Pos, a fixed
object X, and an element ¢ € P(X), we construct a homomorphism of doctrines P — P(x ).
In keeping a reasonable parallel with the logical intuition, think of the primary doctrine P as
the syntactic consequences of a theory—mnot just formulae of a language, but that is already a
good intuition—; think of an object X as a list of fresh variables, and think of ¢ as a formula in
the fresh variables. Staying with the parallel, the doctrine P x . acts like the extension of the
theory with new constant symbols and with the new axiom ¢ evaluated in those constants. The
homomorphism of doctrines acts like a translation of the original theory in the new one.

The construction has a universal property: any other morphism of primary doctrines P — R such
that the interpretation of ¢ evaluated in some constant in R is true factors through P — P(x ),
essentially in a unique way. This is, in broad terms, the statement of Theorem 2.4.2. Moreover,
the result is extended to 2-arrows in Theorem 2.4.4. We also show in Theorem 2.4.3 that the
construction P — P(x ) preserves many additional structures and properties that the original
doctrine may already enjoy.

The construction includes the two constructions we discussed at the beginning: adding no axiom
has a structural parallel in adding T to the axioms, while adding no constant corresponds to
performing the construction picking the terminal object for X. We can clearly decide to add
just a constant of type X, without adding any axiom to the theory, and obtain a homomorphism
P — Px. Similarly we can decide to add just an axiom ¢ to a theory, without adding any
constant symbol, and obtain the homomorphism P — PF,.

We then proceed in Chapter 3 with the interpretation of Henkin’s proof by adding a suitable
amount of new constant symbols. To do this, we first prove in Proposition 1.3.1 how to compute
colimits of directed diagrams in the category of doctrines Dct. To have an insight into this
process, once we know how to add one constant symbol, we can iterate the construction to add a
finite number of constant symbols. Then, taking the colimit over a convenient directed diagram
D:J — Dct in which every image D(j) for j € J is a doctrine with a finite number of constants
added, we can add an infinite amount of constants. This construction gives a homomorphism
P — P from the original doctrine into the colimit P. The next step is to add new axioms to the
new doctrine P. To do this, we work with implicational existential doctrines—i.e. doctrines in
which we can interpret implication of formulae and the existential quantifier. In this setting, for
any formula ¢(z), we make true a formula of the kind Jzp(x) — ¢(c) for some suitable constant
c. Since there is an infinite number of axioms that we have to add, we use a similar technique
to the one seen above: we define a directed diagram A:I — Dct in which every image A(7)

for ¢ € I is a doctrine with a finite number of axioms added, so the colimit adds all the needed
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axioms. This construction gives another homomorphism P — f} into the colimit f}, and in
particular a homomorphism P — 1_3> The doctrine 1_3> is rich: for each formula ¢(x) there exists
a constant ¢ such that ¢(c) and Jxp(z) have the same truth-value.

When the starting doctrine P is also bounded—i.e. a doctrine in which we can interpret also the
false—, we find the properties for P in order to have that the construction P — g preserves
coherence, since we obviously do not want the doctrine ]_3> to be such that the true constant and
the false collapse in the same formula. Section 3.5 and Section 3.7 collect all these results: initially
Proposition 3.5.6 establishes the consistency of ]_3> in the Boolean case, then Proposition 3.7.1
shows consistency in the implicational setting. Proposition 3.7.1 follows from Proposition 3.5.6
itself and on the existence of a suitable notion of Boolean completion for bounded implicational
doctrines, provided in Section 1.4.

Finally, we prove in Proposition 3.8.1 that a bounded consistent implicational existential rich
doctrine has a homomorphism to the doctrine of subsets, the “standard” model. Applying this

proposition to the rich doctrine 5, we obtain Theorem 3.8.5:

Let P be a bounded ezistential implicational doctrine, with non-trivial fibers and with
a small base category. Then there exists a bounded existential implicational model of
P in the doctrine of subsets X:Set¥ — Pos.

The last chapter proposes a further analysis of the procedure for adding structure and ax-
ioms to a theory, this time in the context of elementary doctrines—i.e. a doctrine in which
we can interpret equality of terms. It is well known in universal algebra that adding struc-
ture and equational axioms generates forgetful functors between varieties, and such functors
all have left adjoints. From a categorical point of view, every variety is equivalent to a cat-
egory of homomorphisms of elementary doctrines ED(HFF, &) between a doctrine of formu-
lae and the subsets doctrine. Moreover, adding structure and equational axioms translates
to a doctrine homomorphism (E,¢):HFY — HF-,E-,/. Precomposition with this homomorphism
induces a functor — o (E,¢): ED(HFY , 2) — ED(HFY, 2), and it represents the forgetful
functor between the correspondent varieties, hence it has a left adjoint. If we start from
any elementary homomorphism (F,f): P — R we can again define the precomposition func-
tor —o (F,f): ED(R, Sub) — ED(P, Sub), where Sub is the subobject doctrine of a Grothendieck
topos. The whole chapter is dedicated to the proof that also in this case the functor — o (F,f)
has a left adjoint, showing how the existence of free functors in universal algebra follows from a

more general result that lives in the theory of elementary doctrines.



Chapter 1

Preliminaries and initial results

In this chapter, we lay the groundwork for the thesis by introducing the language of doctrines
and establishing their key properties. We then prove several general results that will serve as
essential tools in later chapters. Specifically, we compute the Eilenberg-Moore and Kleisli objects
for comonads in the 2-category of indexed posets, which will be instrumental in Chapter 2. We
also demonstrate the existence of directed colimits in the category of doctrines, which will enable
us to construct our main argument in Chapter 3. Finally, we define the Boolean completion of an
implicational doctrine with a bottom element and review some key findings about filters, which
will be crucial in the latter part of Chapter 3.

Most of the notions and results concerning category theory used in this thesis are standard, and

we refer to any textbook, for instance [Bor94, Joh02, MacT71].

1.1 Doctrines

In this section, we define the 2-category of doctrines and show some relevant examples. Then
we will gradually add more structure in order to be able to interpret symbols of first-order

logic—such as connectives and quantifiers—in the context of doctrines.

Definition 1.1.1. Let C be a category with finite products and let Pos be the category of
partially-ordered sets and monotone functions. A doctrine is a functor P:C°? — Pos. The
category C is called base category of P, each poset P(X) for an object X € C is called fiber, the

function P(f) for an arrow f in C is called reindexing.

By viewing doctrines as a broad generalization of doctrines of well-formed formulae, we can
interpret the objects of category C as lists of variables, the arrows as terms, the fibers as sets of

formulae, and reindexing as substitutions, providing an intuitive understanding of the strucure.

Example 1.1.2. We propose the following examples.
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(a)

The functor £2:Set®® — Pos, sending each set in the poset of its subsets, ordered by
inclusion, and each function f: A — B to the inverse image f~1: Z(B) — 2(A) is a
doctrine.

For a given category C with finite limits, the functor Subc: C°? — Pos sending each object

to the poset of its subobjects in C and each arrow f: A — B to the pullback function
f*:Subc(B) — Subc(A4), is a doctrine.

For a given theory 7 on a one-sorted first-order language £, define the category Ctx, of
contexts: an object is a finite list of distinct variables and an arrow between two lists

Z=(x1,...,2y) and § = (y1,...,Ym) is
(t1(Z)y ..yt (@) (1, -y 2n) = (Y1, - -+ YUm)

an m-tuple of terms in the context Z. The empty list () is the terminal object in Ctx,, the
product of two lists Z and ¥ in Ctx, is given by any list whose length is the sum of the length
of Z and y—if the variables in the two lists are all distinct, their product can be written
as the juxtaposition (Z;J) = (x1...,Zn,¥Y1,...,Ym). The functor LT§—: Ctx” — Pos sends
each list of variables to the poset reflection of well-formed formulae written with at most
those variables ordered by provable consequence in T; moreover, LT'7C—: Ctx” — Pos sends
an arrow £(Z):Z — 7 into the substitution [£(Z)/7], that maps the equivalence class of a
formula (%) to the equivalence class of the formula «(Z()/7). We refer to any standard
textbook about first-order logic for definitions of concepts including language, variables,

theory, terms, substitution, formulae, see for instance [TZ12].

For a given category D with finite products and weak pullbacks, the functor of weak subob-
jects Wp:DP — Pos sending each object A to the poset reflection of the comma category
D/A is a doctrine: for each arrow f: A — B, ¥p(f) sends the equivalence class of an arrow
a:dom a — B to the equivalence class of the projection 71 of a chosen weak pullback of «

along f—see Example 2.9 in [MR13] for more details.

W -2 dom

’”l la

AﬁB

Definition 1.1.3. A doctrine homomorphism—1-cell or 1-arrow—Dbetween P:C°P — Pos and

R:D°? — Pos is a pair (F,f) where F:C — D is a functor that preserves finite products and

f: P = R o F°P is a natural transformation. Sometimes a morphism between P and R will
be called a model of P in R. A 2-cell between (F,f) and (G,g) from P to R is a natural
transformation 6: F' — G such that f4(a) < R(64)(ga(a)) for any object A in C and o € P(A).

Doctrine, doctrine morphisms with 2-cells defined here form a 2-category, that will be denoted

Dct.
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Fop
cop FeP DoP cop /e_op T DoP
\‘/T\}/ — g —
P R
Pos I

Pos

By definition of doctrine, the fibers are simply posets. However, we can define specific doctrines
by imposing additional structure on these posets or by requiring the existence of adjoints to
certain reindexing. To work in a setting that interprets the conjunction of formulae and the true

constant, primary doctrines are necessary.

Definition 1.1.4. A primary doctrine P:C°? — Pos is a doctrine such that for each object A
in C, the poset P(A) has finite meets, and the related operations A: P x P = P and T:1 = P

yield natural transformations.
Example 1.1.5. Examples seen in 1.1.2 are primary doctrines:

(a) For any set A, intersection of two subsets is their meet, A is the top element.

(b) For any object A in C, the pullback of a subobject along another defines their meet.

dom(a A ) =2~ doma

R 4

dOHl,B >T>\ A

The arrow id 4 is the top element.

(c¢) For any list Z, the conjunction of two formulae is their binary meet, the true constant T is

the top element.

(d) For any object A in D, a choice of a weak pullback of a representative of a weak subobject

along another defines their meet,

dom(a A B) —2— doma

ol et
dom T\ A
the class of id4 is the top element.

In order to interpret equality, we define elementary doctrines. The following definition is taken

from unpublished notes by G. Rosolini.
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Definition 1.1.6. A primary doctrine P:C°? — Pos is elementary if for any pair of objects
B, C of C, the map P(id¢ xAp): P(C x B x B) — P(C x B) has a left adjoint

ES:P(C x B) = P(C x B x B),

which is natural in C'; moreover, the adjunction BZ - P(idc xAp) satisfies the Frobenius
reciprocity, i.e. for any a € P(C x B) and 8 € P(C x B x B) the inequality

EZ(a A P(ido xAp)(8)) < BE(a) A B

given by properties of the adjunction is an equality.

Remark 1.1.7. In the Definition above, naturality in C' is usually known as Beck-Chevalley

condition with respect to any pullback diagram of the form:

C x Bi%C x Bx B
fxidBl B J{indeB

C'xB ——(C'xBxB
ldC/XAB

An equivalent way to define elementary doctrines can be found in Proposition 2.5 of [EPR20]:

Definition 1.1.8. A primary doctrine P:C°? — Pos is elementary if for any object A in C
there exists an element 64 € P(A x A) such that:

1. T4 < P(AA)(5A);
2. P(A) = %ess,:={a € P(A) | P(pr;)(a) Ads < P(pry)(a)};
3. 64X dp < daxp, where §4 K dp = P({pry,prs))(da) A P({pry,pry))(0p).

In 2., pr; and pr, are the projections from Ax A in A; in 3., the projections are from Ax Bx Ax B.

The element §4 will be called fibered equality on A.
Proposition 1.1.9. Definition 1.1.6 and Definition 1.1.8 are equivalent.

Proof. Suppose P:C° — Pos be an elementary doctrine with respect to Definition 1.1.6. Define
for each object A in the base category, 64 = B (T 4) € P(A x A), where B 4 P(A,). The
first condition of Definition 1.1.8 holds using the unit of the adjunction. Concerning the second

one, take any a € P(A) and use Frobenius reciprocity to get
P(pry)(e) A B (Ta) = £ (P(Aa)P(pri)(a) A Ta) = £ (a)

but Bl (a) < P(pry)(a) if and only if a < P(A,)P(pry)(a) = a, hence also 2. holds. To
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conclude, compute

P(<Pr17pr3>)}EtA(TA) A P((prz,pr4>)}EtB(TB) <AxBxAxB }E?XB(TAxB) if and only if
P((pr3,pr4>)Ef(TA)/\P(<pr1,pr2>)Ef(TB) <BxBxAxA P((pr3,prl,pr4,pr2))fEfXB(TAX3)

applying the isomorphism P({(prs,pr;, pry,pry)), but using naturality of EA with respect to
the arrow !gxp: B X B — t, we know that P((prs,pr,))E{ = Ep, zP(prs), so by Frobenius

reciprocity we need

Ep 5(Texnxa A Pidpxp xAx)P({pry, pra)) B (TB)) <pxpxaxa

P((pr3, pry, pry, pra)) B (T axp)
if and only if
P((pry, pro)) B¢ (T5) <pxsxa P((prs, pro.prs, pra)) B (T axs)
if and only if
P((prQ,pr3>)/Ef(TB) SAxBxB P((prl,prz,prl,pr3>)}EfXB(TAxB)

applying the isomorphism P({pr,, prs, pr;)). Now as before, use naturality of EP with respect to
the arrow !4: A — t, so P((pry, pr3))EE = BE P(pr,), hence by the adjunction A5 P(id4 xAp)

we want
Taxs <axp P(ida xAp)P({pry, pry, pry, pra)) By P (T awp) = P(Aaxp) B (T axp)
hence 3. holds, as claimed. Conversely, define for any pair of objects B, C,
B¢ (a) = P({pry, pra))(a) A P((pry, pr3)) (95).

This defines a left adjoint of P(ide xAp), and the proof of this is in Proposition 2.5 of [EPR20].
Now take any f:C’ — C, we check that P(f x idgxp)ES = BE, P(f x idp):

P(f x idpx5)BE(a) = P({pr;, pro))P(f x idg)(@) A P({pry, prs))(3s) = EEP(f x idp).

At last, we show Frobenius reciprocity. First of all compute:

B¢ (a A Plide xAp)(8)) = P({pry, pra))(a A P(ide xAp)(8)) A P({pry, prs)) (5) =
P({pry,pra))(a) A P((pry, pra, pra)) (8) A P({pra, pr3))(0)
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then,

EB(a)AB < BE(anP(de xAp)(B)) if and only if
P({pry,pry))(e) A P({pry, prs))(65) A B <
P({pry,pry))(e) A P((pry, pra, pra))(8) A P((pry, prg))(ép) if and only if
P((pry, pra))(a) A P({pra, prs))(d5) A B < P({pry, pry, pra))(8)

so it is enough to show P({pry,pr3))(dp) A 8 < P({pry,pry,pry))(B). To see this, observe that
in P(C x B x B x C x B x B) we have that both inequalities

P(<pr15pr27pr3>)ﬁ A\ 6C><B><B S P(<pr47pr57pr6>)ﬁ (USing 2)
P(({pry, pry, pry, prs))dcx B A P((pr3, pre))op < doxpxp (using 3.)

hold, so that

P(<pr17pr27pr3>)ﬂ A P(<pr1apr27pr47pr5>)60><3 A P(<pr3apr6>)5B S P(<pr47pr55pr6>)/8'

Apply P({pry, pry, prs, pry, pry, Pra)) so that in P(C' x B x B) we have:

B A P({pry, pry, pry, pry))dcx s A P({prs, pry))dp < P((pry, pry, pry))s-

However, P({pry,pry, pry, pra))dcxs = P({pry, pra)) P(Acxs)dcxs = Toxpxp. Moreover, ob-
serve that in P(B x B), we have dg < P({(pry,pry))ds. Indeed, in P(B x B x B x B) we have
using 3. and 2. that

P({pry,prs))dp A P({pry,pr3))dp A P((pry, pry))dp <
P((pry,pry))0p A dpxp < P((pr3,pr4>)53.

Taking the reindexing along P((pry, pry, prs, pry)), we obtain in P(B x B) (using 1.) that dp <
P({(pry,pry))dp. Now take the reindexing of this last inequality along P((prsy, prs)), so that in
P(C x B x B) we have P({pry,pr3))dp < P((prs,pry))dp. We conclude by observing:

P({pra, pr3))(68) A B < P((pr3; pry))(0p) A B < P((pry, pra; pra)) (5),

so Frobenius reciprocity holds, and the two stated definitions are equivalent. O
Example 1.1.10. Examples seen in 1.1.2 are elementary doctrines:

(a) For any set A, the subset Ay C A x A is the fibered equality on A.
(b) For any object A in C, the map A4: A — A X A is the fibered equality on A—see in [MR12]
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the Example 2.4.a.

(c) For any list Z, the formula (z1 = 2{ A+ Az, = 2),) in LT4(Z; &) is the fibered equality
on Z.

(d) For any object A in D, the equivalence class of the map As: A — A x A is the fibered
equality on A.

We now generalize the existential and universal quantifier, which are defined as adjoint to some

reindexing.

Definition 1.1.11. A primary doctrine P:C° — Pos is existential if for any pair of objects
B, C of C, the map P(pr;): P(C) — P(C x B) has a left adjoint

38: P(C x B) — P(C),

which is natural in C; moreover, the adjunction 35 - P(pr,) satisfies the Frobenius reciprocity,
i.e. for any o € P(C x B) and 8 € P(C) the inequality 32 (a A P(pry)(8)) < 33(a) A B given by

properties of the adjunction is an equality.

Remark 1.1.12. In an elementary existential doctrine, every arrow f: A — B in C the reindexing
P(f): P(B) = P(A) has a left adjoint 3¢: P(A) — P(B), computed as follows:

35(@): = 35 (P(pra)(a) A P({pry, pry)) P(f x idp)(65)),

for any « in P(A) and where pry,pr, are the projections from A x B. This fact is stated in
Remark 2.13 of [MR13]. Since we could not find a reference for the proof, we provide it here for
the sake of completeness. For any o € P(A) and any 8 € P(B), we need to show that 3¢(a) < 8
in P(B) if and only if o < P(f)8 in P(A). We obtain:

Jd¢(a) <p B if and only if
P(pry)(a) A P((pry, pry))P(f X id5)(35) <pxa P(pr,)8  if and ouly if
P(pry)(@) A P(f xidB)(d8) <axp P(pra)f

using at first the adjunction 34 - P(pr;) and then applying the isomorphism P({(pry,pr;))
between P(B x A) and P(A x B). Now, applying P(A4)P(id4 x f) to the last inequality, we get

aAP(AA)P(ida x f)P(f xidg)(6p) <a P(f)B

but since (f x idg)(ida xf)(Aa) = Apf and P(f)P(Ap)dp = P(f)(Tp) = Ta we get that
a < P(f)B in P(A), as claimed. Conversely, apply P(f x idg) on both sides of the inequality
P(pr,)(B) Adp < P(pry)(8) in P(B x B) to get P(pry)P(f)(8) A P(f xidp)ip < P(pry)(f) in
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P(A x B). If we assume « <4 P(f)5, we then get P(pr;)(a) A P(f x idp)(05) <axp P(pry)ps,

which is equivalent to 3y <p 3. This concludes the proof.

Definition 1.1.13. A doctrine P:C°P — Pos is universal if for any pair of objects B, C of C,
the map P(pr;): P(C) — P(C x B) has a right adjoint VZ: P(C x B) — P(C'), which is natural
in C.

Remark 1.1.14. In both Definition 1.1.11 and Definition 1.1.13, naturality in C' is usually

known as Beck-Chevalley condition with respect to any pullback diagram of the form:

CxB -2, ¢

-
fxidsl lf

C'x B 5 c’
Definition 1.1.15. A doctrine P: C°? — Pos:

e is implicational if for any object A, the poset P(A) is cartesian closed, and the related
operations A:P x P = P, T:1 = P, —: P°° x P = P yield natural transformations-in

particular it is a primary doctrine;

e has bottom element if for any object A, the poset P(A) has a bottom element, and the

related operation, 1:1 — P yields a natural transformation;

e is bounded if for any object A, the poset P(A) has a top and a bottom element, and the
related operation, T:1 — P and 1:1 — P yield natural transformations;

e has finite joins if for any object A, the poset P(A) has finite joins, and the related operations
V:P x P P, 1:1 - P yield natural transformations;

e is Horn if it is implicational and universal;
e is Heyting if for any object A, the poset P(A) is an Heyting algebra, and the related
operations A:P x P - P, T:1 5 P, %P x P 5 P, V:Px P - P, 1:1 = P yield

natural transformations;

e is Boolean if it is Heyting and the operation —(—): = (=) — L: P°®? = P is an isomorphism.

Example 1.1.16. The doctrine LT%:CtXZP — Pos is Boolean elementary existential univer-
sal: in addition to the structure mentioned above, the implication of two formulae gives the
implicational structure, the disjunction of two formulae is their join, the false is the bottom

element, existential and universal quantifier define the left and the right adjoint to the inclusions

of formulae LT4 (%) C LT4(#;9) for any pair Z = (z1,...,%s), §= (Y15, Ym):
Hyl...ﬂgm

— €L —
LT#(Z;§) +—— LT#(Z)

—
YY1...YYm
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Definition 1.1.17. Any homomorphism (F,f): P — R from P:C°® — Pos to R:D°® — Pos
is called respectively primary, elementary, existential, universal, implicational, bounded, Horn,
Heyting, Boolean if both P and R are, and § preserves the said structure. For example an

elementary homomorphism is such that for any object A in C, and any a, o’ € P(A):

falanaa’) =Fa(a) Apafla); fa(Ta)=Tra; faxa(0a) =dFa;

while an universal homomorphism is such that for any pair of objects B, C in C, and any element
a € P(C x B):

feVe(a) = Viédfoxs(a).
Example 1.1.18. For a given category C with finite limits, the inclusion of Subc(A) into the

poset reflection of C/A yields a natural transformation Subc — W¢; pairing it with the identity

on the base category C, this defines a 1-arrow in ED.
Notation 1.1.19. We will write some 2-full 2-subcategories of Dct as follows:

e PD for the category of primary doctrines and primary homomorphisms;
e ED for the category of elementary doctrines and elementary homomorphisms;

e Bool for the category of Boolean doctrines and Boolean homomorphisms.

1.2 Eilenberg—Moore and Kleisli constructions in the 2-

category of indexed posets

This section is devoted to show the existence of Eilenberg—Moore and Kleisli objects for comonads
in the 2-category of indexed posets. We will use them in Chapter 2 to prove a universal property
of a construction we will introduce later. Before we delve into the details, we will provide a brief
overview of the relevant definitions and concepts. In the 2-category IdxPos of indexed posets

the cells are defined as follows:

e a (-cell is a functor P:C°? — Pos;

o a I-cell between P:C°® — Pos and R:D°°? — Pos is a pair (F,f) where F:C — D is a

functor and f: P — R o F°P is a natural transformation;

e a 2-cell between (F,f),(G,g): P — R is a natural transformation 6: F — G such that
fa(a) < R(04)(ga(a)) for any object A in C and o € P(A).

Remark 1.2.1. The 2-category Dct is a 2-full 2-subcategory of IdxPos.

In the following section, definitions of comonads, Eilenberg—Moore and Kleisli objects in a 2-
category are taken from [PWO02] (see also [Str72]).
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A comonad in the 2-category of indexed posets is a list (P:C°P? — Pos, (K, t),~,¢) where P is
a indexed poset, (K, ¢) is a 1-arrow, v and € are 2-arrows, and (K, ~,¢) is a comonad in C. In

particular, the following diagrams commute:

K2 K2

P e

K? 5, K3 K? 5 K o K°

Moreover, since v and € are 2-arrows, the following inequalities hold:
EA(Oé) SP(’)/A)BKAEA(()&); EA(Oé) SP(EA)(O().

1.2.1 Eilenberg—Moore construction
We now define the 2-category Cmd(IdxPos).
e a (-cell is a comonad (P:C°? — Pos, (K, t),7,¢);
e a [-cell from the comonad (P:C° — Pos, (K,¢),v,¢) to (P':C'°" — Pos, (K',¥),7,¢)
is a lax morphism of comonads, i.e. a pair ((F,f),j) where the first entry (F,f): P — P’
it (F ) (K, ) — (K, ¢)(F,f) is a 2-arrow, i.e.
j: FK — K'F such that frata(a) < P'(ja)¥pafa(a), satisfying the coherence diagrams

is a l-arrow in IdxPos and the second one

below;

FK — 3 K'F A FK —— K'F

oo N Nee I
FE? = gp X0, gep

o a 2-cell between ((F,f),j) and ((G,g),h) is a 2-arrow n: (F,f) — (G, g) in IdxPos, i.e.
n: F' = G such that f4(a) < P'(na)ga(c), satisfying the coherence diagram below.

Definition 1.2.2. A 2-category x has Filenberg—Moore object for comonads if the 2-functor
Inc: x — Cmd(x), which associates to every object the identity comonad, has a right 2-adjoint

(—)-Coalg: Cmd(x) — x.

We will dedicate the whole section to prove the following:
Proposition 1.2.3. The 2-category IdxPos has Eilenberg—-Moore object.

Although this result can be also found in [DR21], for the sake of completeness we decided to
display this proof, since we adapted it to show that IdxPos has also Kleisli objects.
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Proof. In order to prove the statement, we shall explicitly construct the right 2-adjoint
(—)-Coalg: Cmd(IdxPos) — IdxPos.

We obviously begin with

0-cells: Fix a comonad (P:C° — Pos, (K, £),7,¢), and consider the functor PX:CK°" — Pos.
Let CX be the category of coalgebras for the comonad (C, K,~,¢) in Cat: its objects are pairs
(A, ¢) where A is an object of C and ¢: A — K A is a C-arrow such that

A— >3 KA A—S5 KA

[ [ \\\1f1$ [
KA 225 K24 A

while an arrow between (A4, ¢) and (B, d) is a C-arrow f: A — B such that

A%B

c d
£4m”£é
Let PE(A,c) be {a € P(A) | a < P(c)ta(a)} and PE(f) be P(f). This restriction is well
defined: take 8 € P(B) such that 8 < P(d)¢g(B), so that P(f)(8) < P(f)P(d)ts(B) =
P(c)PK(f)ts(B) = P(c)taP(f)(B), ie. P(f)(B) € PE(A,c). Moreover, PX is a functor be-
cause P is.
1-cells: Consider ((F,§),j): (P, (K,¥),7v,e) = (P":C'°"? — Pos, (K',¥),v',¢') in Cmd(IdxPos).
The corresponding 1-cell in IdxPos will be (F”,{') from P¥X to P'K'

CK°P F'Op CIK'Op
\\\ /ﬁ;

Define F'(A,c):= (FA,jaF(c)). Using naturality and coherence of j and properties of ¢, we

prove that this is indeed a K’-algebra:

K'(jaF(c))jaF(c) = K'(1a)K'F(c)iaF(c) = K'(ja)ik aAF K(c)F(c)
= K'(ia)ikaF (va)F(c) = YpaiaF(c);
eh iaF(c) = F(ea)F(c) = F(ida) = idpa .

Then, take a morphism between K-coalgebras f:(A,c) = (B,d), F'(f):= F(f) is a morphism
of K'-coalgebras:
ipF(d)F(f) =jpFK(f)F(c) = K'F(f)iaF(c)
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because of naturality of j and properties of f. Consider that f: PX = P’K,F’Op, i.e. for any
(4,0)

fla:{a € P(A) [a < P(ota(@)} = {a' € P'F(A) | o/ < P'(aF(c))trala’)}.
So define f{ 4 .\ (a): = fa(a): it is well defined since
fa(e) < faP(c)ta(e) = P'F(c)fxata(a) < P'F(c)P'(ja)tpafala)

from naturality of f and inequality property of j. Naturality of §f follows trivially from the
naturality of .
2-cells: Take a 2-cell n: ((F\),i) = ((G,9),b), and define 1, : (F'A,jaF(c)) = (GA,haG(c)),

772 Ae) = NA- Clearly n’ is a morphism of coalgebras:
haG(e)na =hankaF(c) = K'(na)jaF(c)

because of naturality and coherence of 7. Naturality of 1’ follows trivially from the naturality of

7. Finally, n is indeed a 2-arrow since the definition of 1 implies the following:

fla.e (@) = fa(e) < P'(na)ga(a) = P/K/(WEA,C))(QI(A,c) (@)

Universal property: In order to prove that (—)-Coalg: Cmd(IdxPos) — IdxPos is indeed a

right adjoint, we have to find for each comonad (P, (K,¥),v,) a universal arrow
(PX,(id,id),id,id) — (P, (K,¥),7,¢)

i.e. a l-arrow ((UX u),v) such that, for any indexed poset R:D°° — Pos and any arrow

((F,f),i):Inc(R) — (P,(K,¢t),7,¢), there exists a unique morphism ((Ff),j) between the in-

dexed posets R and PX such that (U, u),v) o (((F,§),j),id) = ((F,f),i)-

(UFw)p)

(P¥.(id,id),id, id) (P, (K,t),v,¢)

)’\\ /
(F),0)

- (R, (id,id), id, id)

Define (UX,u): PX — P, where UK:CX — Cis the forgetful functor and the natural transforma-
tion u: PX = PUX®? is the inclusion on each component U(A,c): PX(A, c) — PA. Finally, define
the 2-arrow v: (UX,u) — (K, €)(UX,u) to be vi40:= (:UX(A,c) = A — KUK (A,c) = KA).
This is indeed a 2-arrow, since PX(A,¢) 3 a < P(c)(byx(a,0)(a)) = P(c)(ta()) by definition of
PE(A,c).

Now consider ((F,f),j); by definition of 1-cells in Cmd(IdxPos), we know that (F,f) is a l-arrow
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from R to P, and j: F — KF is such that fx(z) < P(jx)trxfx(z), and the coherence diagrams

become:

F— 3 KF F— S KF

ok T
xkr X9, grp

which exactly means that for any D-object X, the pair (FX,jx) is a K-coalgebra. Moreover,
for any D-arrow f: X — Y, naturality of j is the diagram that proves that F(f) is a morphism
between coalgebras; to sum up, we can define a functor (F(—),j—)):D — CK that sends a
morphism f: X — Y to F(f): (FX,ix) = (FY,jy).

To conclude the definition of ((F,f),j), we have to find a natural transformation
f’l R —> PK(F(—),j(,))Op

Set fiy:= fx: this is well defined since, taking z € R(X), and recalling that PX(FX,jx) =
{a € P(FX) | a < P(ix)(¢rx(a))}, we have that fx(z) € PX(FX,jx) if and only if fx(z) <
P(jx)trxfx(x), which follows from the definition of j. Naturality follows trivially from naturality
of §.

We now prove that (U, u),v) o (F(=),i(-)),T),id) = ((F'),])

pop Uo7 (F.5)°? cKoP UK Uyker

Nk

The composition of the functors is indeed F':

(75 57 ) (PO (P Xix) = (FY.iv) ) s (FUARFX 5 FY),

while the composition of the natural transformations is f because u is the inclusion on every
component.

The composition (v oid)x is V(rjx = Vrx,ix) = ix-

Finally, suppose that also (G, g) is such that (UX,u),v) o ((G,g),id) = ((F,f),i). Then in
particular UKG = F, so that GX = (FX, *); moreover jx = vgx = V(FX,x) = %, S0 that the
coalgebra structure on F'X must be jx, i.e. G = (F,j). To conclude, since g post-composed with
the inclusion must be equal to f, we deduce that g = f = f', so that ((F,j),f) is indeed unique
and ((U¥,u),v) is a universal arrow.

The isomorphism between the Hom-categories: The adjunction we proved above induces
a bijection on objects of the Hom-categories below for any indexed poset R and any comonad
(P, (K,t),v,e) € Cmd(IdxPos). We need to extend it on 2-arrows and prove it is an isomorphism

of categories.
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Inc
IdxPos L Cmd(IdxPos)
(—)-Coalg

Cmd(IdxPos)[Inc(R), (P, (K,¥),v,¢)] = IdxPos[R, PX]

((F’ f)a)) (<F(_)5J(7)>7f>

[ :

((Gag)>h> (<G(_)7b(7)>’g)
Take n: ((F,1),i) = ((G,9),h), i.e

1. n: F = G is a natural transformation;

2. fa(a) < P(na)ga(a) for any object A in D and « € RA,;
F—— KF
3. nl lKn is commutative.

GT>KG

We prove that n in also a 2-arrow between the correspondent indexed posets. Each component is a
well defined CX-arrow: nx: (FX,jx) — (GX, hx) following from 3. It is a natural transformation
between the functors (F),j), (G, h):D — CX following from 1. Finally, fx(a) < PE(nx)gx ()
follows from 2, since PX(nx) = P(nx). These three condition we proved are actually equivalent
to 1,2 and 3, so the association is full. Faithfulness follows by definition, and it is essentially
surjective because of the properties of adjunction. It is clear that the quasi-inverse is actually

an inverse. O

1.2.2 Kleisli construction
We now define the 2-category Cmd*(IdxPos): = Cmd(IdxPos?)°P

e a (-cell is a comonad (P:C°P — Pos, (K, t),v,¢);

e a I-cell from the comonad (P:C° — Pos, (K,¢),v,¢) to (P':C'°* — Pos, (K',¥),7,¢)
is an oplax morphism of comonads, i.e. a pair ((F,f),j) where the first entry (F,f): P — P’
is a l-arrow in IdxPos and the second one j: (K',¥)(F,§) — (F,f)(X,t) is a 2-arrow, i.e.
j: K'F = FK such that €5 ,fa(a) < P'(ja)fxata(a), satisfying the coherence diagrams

below;
K'F —— FK 'F —— FK
BN e o
k?r X0 grpg e, pre
o a 2-cell between ((F,f),j) and ((G,g),h) is a 2-arrow n: (F,f) — (G, g) in IdxPos, i.e.
n: F = G such that fa(a) < P'(na)ga(«), satisfying the coherence diagram below.
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Definition 1.2.4. A 2-category x has Kleisli object for comonads if the 2-functor associating to
every object the identity comonad Inc: y — Cmd*(x), has a left 2-adjoint

(—)-coKl: Cmd™(x) — x-

We will devote the whole section to prove the following:
Proposition 1.2.5. The 2-category IdxPos has Kleisli object.

Proof. In order to prove the statement, we shall explicitly construct the left 2-adjoint
(—)-coKl: Cmd* (IdxPos) — IdxPos.

We obviously begin with

0-cells: Fix a comonad (P:C°? — Pos, (K, t),7,¢), and consider the functor Pg:Cx°” — Pos.
Let Cx be the category of free coalgebras for the comonad (C, K,~v,e) in Cat: it is the full
subcategory of C¥ whose objects are pairs (K A,v4) where A is an object of C. Let Px (KA, v4)
be PE(KA,v4) = {a € P(KA) | o < P(ya)txa(a)} and Pg(f) be PE(f) = P(f). This

restriction is well defined because P¥ is.

Remark 1.2.6. The category Cx is isomorphic to the category Cx whose objects are the same
as C, and a Cg-arrow A ~» B is a C-arrow KA — B; composition between g: A ~ B and
h: B ~ C'is computed as

KA g2 K9 gep by o

the identity of A is given by €4.

The functor Cx — Cg sends f:(KA,v4) — (KB,vp) to egf: A ~ B: it trivially respects
identity; concerning composition, we have to prove that given f:(KA,v4) — (KB,vg) and
' (KB,yg) = (KC,~¢c) we have

ecf'K(epf)va=cecf'f,

but K(f)va = v f by definition of f, and K(ep)vyp is the identity, so the equality holds. The
inverse Cx — Cx sends g: A ~ B to K(g)y4. This is well defined since

K(K(g)va)va = K*(9)vkava = 78K (9)7a.
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Identity is trivially preserved; concerning composition, we need to show that

K(h)yK(g9)va = K(hK(g)va)7A,

however K (h)K?(g)K(va)va = K(h)K?(9)Ykava = K(h)ysK(9)ya, as claimed. Now take
f:(KA,v4) = (KB,vp), map it to egf and then into K(epf)ya = K(ep)ypf = f; conversely
take g: A ~» B, map it to K(g)ya and then into e K (g)ya = gexaya = g. So the two functors

are one the inverse of the other.

We now resume the proof of Proposition 1.2.5.
1-cells: Consider ((F,f),j): (P, (K,¥€),v,¢) = (P":C'°" — Pos, (K',¥),7/,¢’) in Cmd* (IdxPos).
The corresponding 1-cell in IdxPos will be (F’,§") from Pk to Pj..

F/op
C/., %P
\ /K/

Define F'(KA,~v4):= (K'FA,~%,), which is by definition a free K’'-coalgebra.

Then, take a morphism between free K-coalgebras f:(KA,v4) — (KB,~vg), and let F'(f) be
K'(F(epf)ia)vpa- ‘
K'FA% FrA 29 prp 262 pp
F'(f):= (K’FA Jray perp g KEER), g FB)

This is a morphism of K’-coalgebras if and only if the following diagram commutes:

F'(f)

k'FA D kPR
o VrB
K?FA" D grepp

VoK' (F(epf)ia)vpa = K*(F(epf)ia)Viravea = K*(F(epf)ia)K' (Vpa)Veas

which holds using naturality of 7 and its comultiplication property.
Consider that f: Px — P’ F' i.e. for any (KA, v4)

fzKA,'yA):PK(KAvaA) - PI/(’(K/FAa’Y%A)7

where P (KA, v4)C PKA and Pp, (K'FA,vp,)C P'K'FA. So define fiy , ) to be the re-

striction of the following composition:

PEA A, prpgea P00, prperp g Sieay prgenp g PO, prgerp g
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To prove that the restriction is well defined, take a@ € P (K A,v4), i.e. @« € PKA such that
a < P(ya)tga(a), we want to check that

fir (@) < P (Yea)eirra(Facaqa (@)

However we compute:

P'(Virpa) e patir pal (14)fral@)
P'E' (Ypa)¥krpatioral’ (1a)fxala)
o paP (Vpa) P K’ (14) € afrca()
U paP (Vpa) ¥ paP' (14)fala)

PI(V%A)E}('FAP/OA)TKA( ) < <P YrA

S 55 5 5
A
\_/\_/E/V\_/

EK’FA(f(KA 4y (@),

since 7/: (K',¥') — (K',¥)? is a 2-arrow, by comultiplication property of 4/ and by naturality of
.
Naturality of f means we have to prove that for any f:(KA,v4) — (KB,vg), the following

diagram commutes:

Pic(K B, 75) 278 Pl (K'F B, )
lro | Eenninn
Prcl A7) 228 Pie (K'F A Ay )

Observe that we can decompose the diagram above as follows:

PKB 2, priB s prgpr g7 K08 prgerpp 08 pryepp

lP(f) JP’F(f) JP/K'F(f) J/P/(K/(F(EBf)jA)'Y;‘A)

PiA 2y prpia e prgrpie AT 00 prger p g PO prerp

The first two square commute because they are naturality squares of f and € respectively. To prove

commutativity of the third square, it is enough to prove that the following square commutes:

K'FA 2may grepg K04 prppea
J{K (F(eBf)ia)Vra J{K F(f
K'FB 22, gepp K08 ppgp

K'(8)vrpK' (Fepf)ia)vra = K'(iB)K?(F(epf)ia)Vi pavra
= K'(5K'F(epf)K*(a)vk patra = K' (FK(Epf)ika)K?(a) K (Ypa)Vra
= K'FK(epf)K'(ikaK'(1a)Vpa)vra = K'FK(epf)K' (F(v4)ia)Vra
= K'F(K(epf)va)K'(14)7Fa-
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from naturality of 7/, naturality of j, 7' comultiplication property, j coherence.

To conclude, observe that K(epf)ya = K(eg)ysf = f because of the definition of morphism
between coalgebras and a property of €, so that the diagram above commutes, and ' is indeed a
natural transformation.

2-cells: Take a 2-cell n: ((F,f),j) = ((G,9),b), and look for ’: F* = G’ such that

Firc ama) (@) < Prer(Migc a ) (85 a7 4) (@)

Define n(;e 4 i (K'FA,vp ) = (K'GAvGA)s Niga =K' (04).
Naturality diagram of 7’ applied to 14 proves that 7’ is a morphism of coalgebras.
To prove naturality of 7" we have to check that for any f:(KA,va) — (KB,vp) the following

diagram commutes:
(K'FA ) " (K'GA )

J/K/(F(EBf)jA)'Y%‘A lK/(G(EBf)bA)'Y(/’;A
(K'FB,vpp) % (K'GB,vfp)

K'(Gepf)ba)vaaK' (na) = K'G(ep /)K'(ha) K™ (na)Vra
= K'(G(epf)nxaia)vps = K'(npF(epf)) K (14)VFa;

from naturality of 4’ coherence diagram of 1 and its naturality.

Finally, ’ is indeed a 2-arrow:

flrcann) (@) = P (Yra)€xpaP (1a)frala)
< P'(Ypa)tkrpal (1) P (nxa) (9K a(@)) = P'(Ypa) i p aP K (na)P'(ha) gk a(e)
= P'(Ypa)P'K"*(a) ¥k caP (ha)gra(a) = P'(K(na)ypa)ticaP (ha
= P'(vgaK'(n4))¥kgaP (ha)gxa(e) = P'(K'(na)) (P (vga) bk calP’ (ha

= Py, (ngKA,'yA))(g/(KA,'yA)(O‘))

)oK A(Q)
Jora())

since 7 is a 2-arrow, its coherence, naturality of € and naturality of 7.
Universal property: In order to prove that (—)-coKl: Cmd* (IdxPos) — IdxPos is indeed a

left adjoint, we have to find for each comonad (P, (K, £),v,¢) a universal arrow
(Pa (Kv E)7 v, E) — (PK7 (lda 1d>7 1d7 ld)

ie. a l-arrow ((Fk,),)’) such that, for any indexed poset R:D°® — Pos and any arrow

((F,f),3): (P, (K,¥),7,e) — Inc(R), there exists a unique morphism ((F,#¥),j) between the in-

dexed posets Pk and R such that (((F,¥),j),id) o ((Fk,¥),)’) = ((F,f),j)-
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(P,(K,®),7.¢) () 1) (Px, (id, id), id, id)

((m (R, (id,id), id,id) <

Define (Fk,¥): P — Pk, where Fi:C — Cg is the cofree functor

(74 B) o (KO (A0 > (Bom) )

and the natural transformation ¢': P — Py Fg°P is computed as £: this is well defined since,
recalling that v is a 2-arrow, we know that €4(a) < P(va)txata(a), ie ta(a) € PxFKA.
Naturality of € follows from naturality of .

Finally, define the 2-arrow j’": (F,€) — (Fk,®)(K, ) to be j’y: = 74. This natural and a 2-arrow
because 7 is.

Now consider ((F,§),j); by definition of 1-cells in Cmd* (IdxPos), we know that (F, ) is a 1-arrow
from P to R, and j: F' — FK is such that fa(a) < R(ja)fxata(a), and the coherence diagrams

become:

F—) 4 FK F-— s FK

lj J{F("/) k} lp@)
FK -5, FK? F

Define the functor F':Cx — D to be the one that maps f:(KA,v4) — (KB,yg) to the
composition F(egf)ja:FA — FB. We check that this is indeed a functor, proving that
F'(gf) = F'(g)F'(f) for any pair of composable arrows f: KA — KB, g: KB — KC between

free coalgebras.

F'(9)F'(f) = F(ecg)ipF (e f)ia = Fecg)FK(epf)ixaja
= F(ecgK(ep))FK(f)F(va)ia = F(ecgK(e)yBf)ia
= F(ecgf)ia=F'(gf)

from naturality of j, its coherence, definition of morphism between coalgebras and property of
the counit.

To conclude the definition of ((F,f),j), we have to find a natural transformation ': P — RF'".
Define f/(KA.,"YA): Pr(KA,va) = RFA to be the restriction of R(ja)fxa. To show § is natural

we need for any f: KA — KB between free coalgebras that the following diagram commutes:

f/
PK(KB7’7B) M)RF/(KB7’73>
lP(f) lRF’(f)
Flac A
P (KA, ya) "4 RF'(KA, )

To see this, observe that it is enough to prove the commutativity of the second square of
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PKB 252, rrkB 292, REB

lP(f) lRF(f) lR(F@Bf)jA)
PKA 54 prkA 294 ppa

since commutativity of the first square follows from naturality of f, but again it is enough to

prove:
FA 244 FKA

J{F(EBf)jA J{F(f)
FB -2, FKB

ipF(epf)ia = FK(epf)ixaja = FK(epf)F(va)ia
= F(K(ep)vBf)ia = F(f)ia

from naturality of j, its coherence, definition of morphism between coalgebras and counit prop-
erty; so f' is indeed a natural transformation.
We now prove that ((F',§),id) o (Fk,t),7v) = ((F,f),}).

Cor 7 ¢ pon E, pop

bz

The composition of the functors is indeed F':

(f:A—>B> — (K(f):FKA—> FKB)
— (KU 043 = (KBw) ) > (FEnK(£)in:FA— FB)

but F(egK(f))ja = F(fea)ia = F(f) from naturality of ¢ and coherence of j.
Concerning the composition of the natural transformations, we need to check the equality
R(a)fxata(a) = fa(a). The direction (>) follows from the definition of j. To prove the

converse, recall that coherence of j implies that F'(£4)j4 is the identity, so
fa=R(Ga)RF(ea)fa = R(Ga)fxaP(ca)

from naturality of §. Moreover, since ¢ is a 2-arrow, we know that €4(a) < P(e4)(a), so that
R(ia)fxata(a) < R(ia)fxaP(ea)(@) = fa(a), ie. (<) holds.

The composition (id 0y) 4 is F'(v4) = F(exava)ja =ja-

Finally, suppose that also (G,g) is such that ((G,g),id) o ((Fk,®),y) = ((F.,f),j). Then in
particular GFx = F, so that G = F’ on objects; moreover, id oy = j means that G(y4) = ja.
Observe also that, given a C-arrow g, GK(g9) = GFk(g) = F(g). We claim that for any morphism
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f: KA — KB between free coalgebras, G(f) = F'(f), i.e. G(f) = F(epf)ja. First of all,
coherence of j proves that
G(f) = F(eB)isG(f)F(ea)ja.

However,

iBG(f)F(ea) = G(y)G(f)GK (ca) = G(v8)G(fK(£4))
= G(K(f)yaK(ea)) = F(f)iaF(ca)

using the properties of G described above, definition of morphism between coalgebras; so we
obtain G(f) = F(ep)F(f)jaF(ea)ja = F(epf)ia = F'(f), i.e. the functor G is indeed the
functor F”.

To conclude, we have to prove that g = §, i.e. g(xa,,,) = R(a)fxa. We know that gt = §, i.e.
O(KAva)€a = fa, where g(xa,): Pr(KA,v4) = RFA.

Note that

fircanay = R0a)fxa = RG240 KA

= RG(YA)8(K>Ayia) EKA = (KA1 P(74)EK A,

because of the property of the composition of £ and g described above and naturality of g. We
only need to prove that the composition P(v4)txa acts like the identity on Px(KA,v4). So
take & € PK A such that oo < P(y4)€x a(a); we claim that o = P(y4)€x (). Clearly (<) holds
by definition, so we prove the converse. Recall that € is a 2-arrow, so €x4(a) < P(exa)(a), and
apply P(7a4):

P(ya)trxa(e) < P(yva)Plexa)(a) = o

so we proved that g = f and ((Fk,#t),) is a universal arrow.

The isomorphism between the Hom-categories: The adjunction we proved above induces
a bijection on objects of the Hom-categories below for any indexed poset R and any comonad
(P, (K,®),v,e) € Cmd*(IdxPos). We need to extend it on 2-arrows and prove it is an isomorph-

ism of categories.

IdxPos I?rc Cmd* (IdxPos)
(—)-coKl
Cmd*(IdxPos)[(P, (K, £),7v,¢),Inc(R)] = IdxPos|[Pg, R]

b b

((Gvg)vb) (GI,R([J)QK)
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where F'(f: (KA, v4) = (KB,vp)) = (F(esf)ja: FA — FB), and similarly for G’.
Take 7: ((F.f),i) — ((G,9).b), Le.

1. n: F = G is a natural transformation;

2. fa(a) < P(na)ga(a) for any object A in C and a € PA,;

F )~ KF
3. "J, J{"K is commutative.

GT>KG

We prove that 7 in also a 2-arrow between the correspondent indexed posets, defining 1(g a,~,) =
na:FA — GA. Tt is a natural transformation between the functors F’ and G’ if for any
f:(KA,va) = (KB,vp), we have ngF(epf)ja = G(epf)hana. However:

nF(epf)ia = G(epf)nrxaja = G(epf)hana

using 1. and 3. Then we need R(ja)frxa(a) < R(Nkaq.))R(Ha)gra(a), but we know that
R(na)R(ha)gxa(a) = RGa)R(nka)gx (), so the inequality follows from 2.

To show this functor is full, take a natural transformation n: I/ — G’ such that R(ja)fxa(a) <
R(n(k Aya))R(ba)gxa(c) for any a € P(K A) satisfying o < P(ya)€x (), and we prove that 1.,
2. and 3. hold. Take any f: A — B, sothat K(f): (KA,va) — (KB,vyp) is a Cx arrow; apply nat-
urality to K(f) so nxpye)F'(Kf) = G'(K )Nk Ay, However, F'(Kf) = F(ep)FK(f)ja =
F(ep)ipF(f) = F(f), using naturality and coherence of j; similarly G'(K f) = G(f), so n is a nat-
ural transformation from F to G. To show 2., take any 5 € PB, we want fg(8) < R(ngs)as(8),
but by some computation we did above, we know that f5 = R(jp)fxpts—and similarly gp =
R(hp)oxpts—; so fp(B) = R(ip)ixkpts(B) < R(np)R(hp)gxsts(8) = R(np)gs(B), using the
fact that €5(8) € Pk (B) and definition of n. Finally, observe that by definition of v, we have
that ya: (KA,v4) — (K?A,vg24) is a Cx-arrow, so apply naturality of 7 with respect to v
to obtain G'(YA)N(kAya) = NK2An e ) F (74), 6. G(exkava)hana = nxal (exava)ia, hence
hana = niaja, so that also 3. holds. Again, faithfulness follows by definition, and it is essentially
surjective because of the properties of adjunction. It is clear that the quasi-inverse is actually

an inverse. O

1.3 Existence of directed colimits in Dct

This section is devoted to the construction of direct colimits in the category Dct. We will
demonstrate that this construction preserves many properties, which will be crucial for our later
work in Sections 3.1 and 3.3. Specifically, we will use these results to verify that two constructions
we introduce respect all the needed structure of the starting doctrine.

While some of the results in this section are well known, such as how directed colimits are
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computed in categories like Cat or Pos, we present them here in detail in order to compute how

additional structure is preserved.
Proposition 1.3.1. The category Dct has colimits over directed preorders.

Proof. We begin by considering a directed preorder I, so that for each i,7 € I there exists a
k € I such that k > 4,j. Then suppose to have a diagram over this preorder, i.e. a functor
D:I — Dct. In particular, for all ¢ € I we have P, := D(i):C;® — Pos, and for all i < k
a morphism (F, fir): P; — Pr where Fj;:C; — Cy, is a functor preserving finite products and
fir: P, — PiF," is a natural transformation. Moreover, we ask for (Fj;, f;;) to be the identity on
P;, and for (Fj, fjx) o (Fij, fij) = (Fik, fix) whenever ¢ < j < k.

Our goal is to define a suitable doctrine P,: CJP — Pos, and then show that it is the colimit over
1.

The base category C,: The base category C, is the colimit over I in Cat of the diagram given

by C;’s and Fj;’s: objects are classes of objects from any C;, identified as follows.

obC, = |—| Ci/m

icl

where two objects A(;), B(;) in C; and C; respectively are such that A ~ By if and only if
there exists k > i, j such that Fip A;) = FjpB(;) in Cy. Then for any pair of objects [A¢], [B(j)]

we have as morphisms:

H Fi Agy B
Home, ([A)]; [Bj)) kL_Jj omc, (Fix Agiy, Fik (J))/

where (fk: FikA(i) — ijB(j)) ~ (fk’:Fik'A(i) — ij/B(j)) if and only if there exists h > k‘,]{i/
such that Fypfr = Fiunfir in C,. This is well defined: suppose i@ < [ and j < m, so that
[Aw)] = [FuAw)] and [B(;)] = [FjmBj)], we want to show that the inclusion

|_| HOmC” (EanlA(z)a anijB(]) |_| Homck ( "kA(%) JkB(J))

n>l,m k>i,j

becomes a bijection on the corresponding quotients:

L1 Home, (Fin Ay, FinB(j)) —— Ugsi; Home, (Fir Ay, FjrB(j))

| |

Unzt.m Home, (FinAqy, FinB() /.y Uiz Home, (Fis Ay, FirB(y) .

Take fn,, fn,, with ng > I,m, and fn,: Fin, Ag) — Fjn, By for s = 1,2. It follows from the
definition that f,, ~ f,, as arrows seen in the union on the left if and only if f,,, ~ f, seen in
the union on the right, so that the dotted arrow is both well defined and injective. This arrow is

also surjective: consider fi: Fip Ay — FjiB(;) for some k > 4,1 and take n > k, [, m; then clearly
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[f&] = [Frnfx], with Fjp fr belonging to the union on the left. To conclude, since the preorder
is directed one can show the isomorphism between such quotients of unions also in the general
case i £l or j & m.

Composition in C, between two composable arrows

[fx] [fr]
[A@)] == [By) —= [Cu),

where kakA(z) — ijB(j) and fk/5ij/B(j) — Flk”C(l)v is [fk/] o [fk] = [Fk’hfk’ o Fkhfk] for a
given h > k,k’. This is clearly well defined on the choice of h, and on the representative of f
and fk’-

Finite products in C,: The category C, has binary products, defined in the obvious way:
take objects [A(;], [B(;)] and call [A(i)]g[B(j)] = [Fir Ay % Fji.B(j], having as projections the
classes of projections from Fjx Ay x FjpB(jy in Cy, for some k > i,l—note that [Fjp Ag)] = [Ax)]
and similarly for the other object, so the codomains of projections make sense in the diagram

below. Such class of objects is well defined because the Fj.,’s preserve products. To see that it

is indeed a product consider the diagram:

[B:]

where as: FpsVipy — FisAqy, Be: FueViny — FjiByjy, for some s > h,i and t > h,j. Now let

m >1,j,k,h,s,t and consider the diagram in C,,:

Fhm‘/(h)

th(Bt)

Fsm(as) (Fsm(as)thm(/gt))
Fim Ay X FjmB(j)

Fim A FimBj)

Clearly [(Fom(as), Fim(B:))] makes the diagram in C, commute. Now, to prove uniqueness, take
U = (Y1, Una): FanViny = FinAqy X Fj,Byjy for some n > h, k, such that [¢,,] = [a,] and
[¥ns] = [B¢]. Then, there exists r > n, s, t such that Fy,.(¢n1) = Fer(as) and Fop(¥n5) = Fr(Be);
in particular

Wn] = [<Fnr(¢n1)7Fnr(¢n2)>]
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Finally, take u > r, m:

qu(<E9m(O‘s)7 th(ﬂt») = <F5u(0és)7 Ftu(ﬂf»
= (FruFyp(as), Fru Fir(B)
= Fri(Frr(¥n1), Fp (¥n)),

ie. [<Fsm(as)a th(/Bt»] = [wn]
In order to conclude the argument about existence of finite products, observe that if t; is a
terminal object in C;, then [t;] is a terminal object in C,: take an object [B(;], k > 4,j and

consider the unique map !g, B, : FjxB) — tr in Cp. Then [!ijB(j)] is a map from [B(;]

to [t;] = [Fixt:] = [tx]. We show uniqueness by considering a map [uy]: [B(;] — [t;] for some
uh:thB(j) — Fihtii then Up = !thB(j) in Ch. Takingl Z k,hwe get [!ijB(j)} = [Fkl(!ijB(j))] =
MFuBgy) = [Fn(lF )] = F B, ] = [ual-

P, on objects: Now that we built a suitable base category with finite products, we define the

doctrine P,. For an object [A(;], we take:

Pu(Aw)) = Ll PrFida)

k>1i

where ay, ~ ag,, with ay, € Py, (Fix,Ag) for s = 1,2, if and only if there exists j > ki, ko such
that
(F13) o, 4y (@80) = (Frai) ) (@) 100 P (Fig Agyy)-

This is well defined on the choice of the representative of [A(;)]: in a similar way to what we did
above defining arrows in C,, we prove that the dotted arrow induced by the inclusion is bijective,

in the case [ > 1.

Lisi Pr(FirAg)) = U Pa(FinAg))

| |

Lzt Pe(FikAwy) 7, oy Unsi Pa(FinAy),/

Take ap,,an, for hi,ho > 1, then ap, ~ ap, on the left if and only if they are equivalent on
the right, hence well-definition and injectivity of the function follows. Surjectivity also follows
Fim Agy (bm) S Pu(quA(z))
as wanted. If we fix A(;), we observe that P,([A(;)]) is a directed colimit in Pos on the diagram

easily: take [by,] for some m > 4, and let w > m,l. Then b,, ~ (fmu)

defined over elements of I greater or equal to i. An element j > i is sent to P;(Fj;A(;)), and

for any j < k we have the monotone function (fjk) P;(FijAq)) — Pe(FirAgy). Hence we

FijAa'
defined a poset for each object of C,.
P, on arrows: Take a Co-arrow [f]:[A¢)] — [B(;] for some f: Fip Ay — FjiB;) € arrCy, k >

1, 7.
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CP ———— Pos

(Bl P([Bpl) = Pu[FjrBe))
[fﬁ lp.qf])
[Ag)] P ([Ap]) = Pel[FirAw))

For any given [ > k we have Fy(f): FuAy)y — FjB(j) € arrCy and
Pi(Fr(f)): P(FjuBgj)) — Pi(FuAg))-

Since P ([FjrB(;)]) = Lli>x Pl(Fle(J'))/N, we prove that the map

P, (Fi, Ay,
|| P(FuBy) — m|—>|k {(Emd)
1>k =

sending any f; in [P(Fgi(f))B:] is well defined on the quotient, hence defining a map from
Po([B(;)]) to Pe([A(y]). Take I’ > I—then, the statement for any h > k follows—, so that

By ~ (fll/)Fle(j)ﬁl € Py(Fji Bgjy) and
(fll’)Fle(j)ﬂl — [Pz'(Fkl'(f))(fll/)FﬂB(j)ﬁl]~

We now use the naturality of f;;; and get:

[Py (Fkl’(f))(fll’)FﬂB(j)Bl] = [(fu')F“Ampl(sz(f))ﬁl] = [Pi(Fu(f))B]

as claimed.

The following step is to prove that the definition of P, ([f]) does not depend on the representative
of [f]. Take k" > k, then [f] = [Fyx(f)], with Fipr (f): Fir Ay — Fjr B(j). Hence we have for
any By € Py(FjuBgy), ! > K

Br] = [Pr(Frw Frr (f))5rr]

but Fy Fpr = Fy, the two maps act in the same way from Py ([B(;)]) to Pe([A(;])-

It follows from the fact that Ps([f]) is defined on any suitable k' > k and that both [—]—in any
P,([Cr])—and Py (Fyi(f)) preserve the order, that P, ([f]) preserves the order; moreover, also
functoriality comes easily. Hence P,: Ce® — Pos is indeed a doctrine.

A universal cocone into P,: Now, for any i € I, define the 1-cell (F;,f;): P, — P, in Dct as

follows:
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F;°P

Pi, P,

Pos

cyr C,°"

The functor F; is the quotient map, sending f: Ay — B to [f]: [A@;)] — [B)]; observe that
by construction such functors preserve finite products. Similarly f;: P, — P, F;® is the quotient

map on every object of C;:
(fi)A(,)ZPi(A(i)) — Po([A(3)]) is defined by the assignment a; +— [a].

Such functions are clearly order preserving. It follows trivially from the definition of P, on arrows

that f; is a natural transformation. Now, to check that it is indeed a cocone, take i < k: we want
(Fk, i) © (Fir, fir) = (F3, §i)-

Cop Fp°P C.°P Fk cop

& Lo |n y
Pos
Concerning the functors between the base categories, observe that the composition

A FiAg) [FieAw] = [Ap)
lf — lFik(f)’—> l[Fm(f)] :[f]l
B Fi B [FitBay] = [Bg)

is indeed F;. Then, for any a; € P;i(A(;)), we have:

(fr 0 fik)A(i)Oéi = (f’“)FikA@) (fik)A(i)ai = [(fik)A(i)Oéz'] =[] = (fi)A(i)au

so that f o fir = f;.

Suppose we have another cocone, i.e. any doctrine R:D°? — Pos that comes with a family of
1-cells {(G,9:): P; — R}icr such that for any ¢ < k one has (Gg, gr) o (Fix, fix) = (Gi, 8:) we
look for a unique 1-cell (G, g): Po — R such that (G, g) o (F;, ;) = (Gi,9:) for all i € I.

In order to define G:C, — D, take any [f]:[A¢)] — [B(;)] with f: FixAgy — FjrB;) for some
k > i, and send it to G (f): GiA;) — G B(j). This is well defined because of the commutativity
properties of the cocone. Similarly we define g: P, = RG°P: for a given object [A(;], we take

8(ae) Pe([A@]) = RGiAq), such that [ay] = (o) Fu Ay @

for any ar € Pp(FirAg)),k > 4. This is well defined on both [ax] and [A(;] again from the

properties of the cocone. Naturality of g is also easy to see: given an arrow [f]: [A;)] — [B(j)]
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we compute both RG([f])g[B(j)} and g[A(i)]P.([f]) on a given [fi] € Po([B;)]):

RG([f))a, 5] = RGk(f) (El)FﬂB(_ﬂﬂl = RGZ(sz(f))(GZ)F].ZB(J.)@
= (Gl)F“Asz(Fkl(f))ﬁl = 914 [P (Fa () Bi] = gpag, Pe (LFD1BI-

Uniqueness is given by the fact that all triangles like the one below must commute.

(Gi,81)

P; R
(me %,9)
P,

1.3.1 Additional structure

We now show that many properties are preserved by a directed colimit.

Proposition 1.3.2. Let I be a directed preorder, D:I — Dct be a diagram, D(i < j) =
[(Fij,fij): P; — Pj] for any ¢,j € I, and let (Ps, {(F;,f;)}icr) be the colimit of D. Suppose that
for every i,j € I, the doctrine P; and the morphism (Fj;,f;;) are primary. Then the doctrine
P, is a primary doctrine, and for every ¢ € I the morphism (Fj, f;) is primary. Moreover, if for
any cocone (R, {(Gi,9:)}icr), R and (G, g;) are primary, then the unique arrow (G, g): Po — R
defined by the universal property of the colimit is primary. The same statement holds if we write
respectively bounded, with binary joins, implicational, elementary, existential, universal, Horn,

Heyting, Boolean instead of primary.

Proof. Algebraic properties: It is a well known fact that directed colimit of algebraic struc-
tures exists, hence if for all i € I, P; is endowed with equational structure such as A, T or V, L,
then these operation are defined also in P,, preserved by f; for all ¢ € I. Such properties are
also preserved by reindexing: this can be shown using naturality of f;; and the fact that they are
preserved by reindexing in each P; . Moreover, since g is defined through g;’s, which preserve
operations, also g preserves them.

Implication: We define for each pair of elements [ax], [Br/] € Po[A(y], with ap € Fip Ay and
Brr € Fipr Ay for some k, k" > i

lag] = [Br] = [(fkh)FikA(i)Olk — (fk’h)Fik,A(i)ﬂk’]

for some h > k, k’. This is well defined because every function in {f;;}; jer preserves implications.

Moreover, this is indeed a right adjoint to the binary meet operation:

(5] < lax] = [Brr] in Pe[Ag] (1.1)
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if and only if there exists s > k, k, k’ such that in Py(FisAgiy)

(5 by % S (i) o, @ = (Frs) g a, B

but this inequality holds if and only if

(fﬁs)FmA(i)VE A (fks) Fik A a < (fk’s) Fik’A(i)ﬁk/

o (1.1) holds if and only if
vzl A low] < [Bir]-

Now, since [ag] — [Bks] is computed in a common poset, as in the case of algebraic properties,
implication is preserved by reindexings, {f;}:cr and g.
Elementarity: For a given pair of objects [C(;)], [B(;)], take the reindexing over id(c, ﬁ)A[Bm]

computed as
Po(lidrioq, XArn,) ) Po([Cin] X [Bi) | X [B(j)]) = Pe([Ciiy] X [B(i))

for any k > 4,j. We define &, { <f)]] as the function sending [ay] to

[ gffgf]f (fhk)FihmethB(j)o‘h]

for some k > 14,4, h, where we write £y for the left adjoint to Py (id XxA) (see Definition 1.1.6).
This is well defined since every map in {f;;}: jer preserves the structure. Again, one can prove
that it is indeed the left adjoint of the reindexing above, naturality in [C(;)] and Frobenius
reciprocity—it follows from Frobenius reciprocity for any Aj. Moreover, {f;}ic; and g preserve
the structure.

Existentiality and Universality: In a similar way to what we did to define the element-
ary structure, we build the existential and the universal quantifier. Take [C(; ], [B(;], consider
[pry]: [Cu )] [Bjy] = [C(iyl, where we call pry: Fir,C(;y x Fjp By — FixC(;) the projection in Cy
for any k > i4,j. Then consider

Pollar]): Po([Ca)]) = Po([Cp)] X [Biy»))

and define
[B») [Bj] FjiB(;
Eo[c((;)] [ﬂl] = [ F];C:J))/Bl] and VO[C(J))] [ﬂl] = [\V/IFZZC((:)) l]
for 5; € H(leC(l) X Fle(j)).
This is well defined since every map in {f;; }i jer preserves the structure, with similar arguments
to the above. Moreover, one can prove that EI.{CW]] nd V, {C(’) define respectively the left adjoint

and the right adjoint to Ps([q1]), that they are both natural in [C;)] and Frobenius reciprocity
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for the existential quantifier holds. Furthermore, {f;};c; and g preserve the structures. O

1.4 Boolean completion

In this section, we focus on constructing the Boolean completion of an implicational doctrine
P with bottom element. In other words, we seek for a universal way to associate P with a
Boolean doctrine. To construct the Boolean completion of P, we begin by associating to each
fiber of P, which is a bounded implicative inf-semilattice, the set of its closed elements. We then
show that this construction respects reindexing and other additional structure that P might
have. All general results about bounded implicative inf-semilattices can be found in [Fri62]
and [Nem65]. Ultimately, our goal is to use the Boolean completion to improve upon a result,
specifically Proposition 3.5.6, by deriving a new proposition, Proposition 3.7.1, that has weaker
assumptions.

Given an implicational bounded doctrine P:C" — Pos, we define its boolean completion as

follows: for each object X € obC,
P (X)={aecP(X)| a<a}CPX),

where —« := o — L. The order is induced by the order of P(X).

The reindexing is defined as the restriction of the reindexing in P(X) and it is well defined since
P preserves the negation—in fact, it preserves both implication and bottom element. We have a
doctrine homomorphism (idg, =—): P — P_-, where (——)x: P(X) — P__(X), sends a — ——a«
for all X € obC and for all & € P(X).

Before we go on, we recall some auxiliary properties. The proofs are trivial, and can be found in
[Nem65].

Lemma 1.4.1. Let P be a bounded implicative inf-semilattices. Then for any «, 5 € P:
(i
(ii

~T=1,-1L=T;
a < —a;

(iii) if o < B, then =8 < —q;
(v

(vi

—(aNB)=a— p;
(= B) = ——a A-p;

)
)
)
(iv) =——a = —a
)
)
)

(vii) ~—(a A B) = ~—a A =B

From [Fri62] we get that each fiber P (X) is a Boolean algebra with top element, meets and
implication computed as in P(X), and the join of a pair «, 5 € P (X) is defined as =(—aA—3);

moreover from [Nem65] the map preserves the structure of bounded implicative inf-semilattices.
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Theorem 1.4.2. Let Dct,y 1, | be the 2-full 2-subcategory of Dct whose objects are im-
plicational doctrines with bottom element, and 1-morphism are the one that preserve the said
structure, and Bool 2-full 2-subcategory of Boolean doctrines and Boolean morphism. Then,
for any P € Dcta 1, 1, precomposition with (ide,——) in Decta 1, 1 induces an essential

equivalence of categories
— o (id¢, —7m): Bool(P--, R) — Dcta 1. 1 (P, R)

for every R in Bool.

Proof. Precomposition sends 6: (K, €) — (K',¥) to 0: (K,t-—) — (K’,#——), so the functor is
trivially faithfull. Also fullness is easy: suppose to have a 0: K — K’ such that for any object X
and any S € P(X) it holds that tx(=—f3) < R(0x)(¥(=—3)), but then for any o € P (X), we
have oo = =—a, so tx (o) < R(0x)(¥(«)), i.e. 0 is a 2-arrow between (K, t) and (K', '), which is
sent to 6. To conclude, take a 1-arrow (H,h): P — R in Dcta 7, 1. We look for a 1-arrow from
P__ — R, such that it is equal to (H, §) when precomposed with (idc, =—). The functor between
the base categories is necessarily H: C — D; define ¢: P._, — RH°P to be on each component the
restriction of h to P-_. It preserves all the operations since in P-_, they are computed as in P,

and are preserved by h. Now take the composition
P(X) 2 P (X) 25 R(HX)

which must be equal to hx. However, for any o € P(X), tx(——a) = hx(—-—a) = ~—bhx(a) =
hx («), since b preserves operations and R(X) is a Boolean algebra. Uniqueness of the functor
between base categories is trivial. Moreover, suppose ¥ such that (H,¥)(idc, =—) = (H, ), then
¥ (8) = ¥ (-—0) = hx(B), hence ¢ must be the restriction of b. O

Proposition 1.4.3. Let P be a bounded implicational doctrine and (idc, =—): P — P-_ be its

Boolean completion. If P is elementary, then P-_, and (idc, ) are elementary.

Proof. Take dx € P(X x X) and define 6x = ——6x € P--(X x X). First of all we prove
Tx < P(Ax)(dx), but P (Ax)(6x) = P(Ax)(==dx) = —P(Ax)(0x) = —Tx = Tx.
Then we show that for any element a € P (X) we have P (pr;)(a) Adx < P (pry)(a), i.e.
P(pry)(a) A —==dx < P(pry)(a) but a = =—a, so:

P(pry)(@) A ==dx = ~=P(pry)(a) A ~=dx
= 2(P(pry) (@) Adx) < ==P(pry)(@) = P(pry)(a).

To conclude, we show that 0 x X0y < dxxy, i.e.

P ((pry, pr3)) (770x) A Poa((pry, pry) ) (72dy ) < 270y
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however

== P({pry,pr3))(6x) A == P({pry, pry))(dy) = ==(0x M dy) < ~=dxxv,

so P-_, is indeed an elementary doctrine. Moreover, by definition the fibered equality is preserved

by the l-arrow (idc, ). O

Corollary 1.4.4. The equivalence of Theorem 1.4.2 restricts to an equivalence between the

subcategories of correspondent elementary doctrines.

Proof. Tt is enough to add some details to the prof of the fact that precomposition is essentially
surjective. Given (H,H): P — R, where b preserves also the fibered equality, we show that its

restriction € to P preserves the fibered equality:

Exxx(0x) =hxxx(m0x) = bhxxx(0x) = hxxx(6x) = Sux. O

Proposition 1.4.5. Let P be a bounded implicational doctrine and (idc, —=—): P — P-_ be its

Boolean completion. If P is existential, then P-_ and (idc,——) are existential.

Proof. Recall the adjunction in P:

3¢
P(CxB),_ 1L PC)
P(pry)

Define 35: P._(C x B) — P-_(C), 32a = —--3Ba; we show that it is the left adjoint of
the restriction of P(pr;): take o € P-_(C x B) and § € P._(C). Suppose 35a < B, so
FBa < =—3Ba < B, but then a < P(pr;)B. For the converse, if a < P(pry)3, then 38a < 3,
so -—38a < =—=B = B, as claimed. Concerning naturality, take a C-arrow f:C — A and
ve P._(AxB):

FEP(f xidp)y = —=3EP(f x idp)y = ~=P(f)3Fy = P(/)~-3F = P()) 3.
Lastly, we show Frobenius reciprocity: given o € P.(C x B) and 8 € P (C) we have

Aanp=--3Banp=--3Ban--8=--3Eanp)
= (3¢ (a A P(pry)B) = 38 (a A Ppry)B).

So P, is indeed an existential doctrine.

Moreover, (id, ) preserves the existential quantifier, i.e for any « € P(C x B), we have
——35a = 3E--a. Since a < =—a, clearly ~—35a < =—3E--a = 3E--a. Conversely, start
from o < P(pry)3Ba, so that T < o — P(pr;)38Ba; then apply Lemmas 1.4.1.(iii) and 1.4.1.(vi)
to get ——a A —~P(pry)3Ba = ~(a — P(pr;)3Ba) < =T = L = P(pr;).L; using the definition
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of existential, Frobenius reciprocity and the fact that P(pr;) preserves -, we equivalently get in
P(C) the following:

38-—-aA-38Ba =35 (-—a A =P(pr;)3Ba) < L.

From here we get ﬁﬂga < ﬁﬂgﬁﬁa: then, applying Lemma 1.4.1.(iii), we get Elgﬁﬁa =

—=38--a < -=38a as claimed. O

Corollary 1.4.6. The equivalence of Theorem 1.4.2 restricts to an equivalence between the

subcategories of correspondent existential doctrines.

Proof. Tt is enough to add some details to the prof of the fact that precomposition is essentially
surjective. Given (H,bh): P — R, where b preserves also the existential quantifier, we show that

its restriction € to P, preserves it: for any a € P (C x B)

Iietoxp(a) = —Ictoxp() = ~—358bexs(a)

= b3 () = ho(=—3E(a) = tc(3E(a)). -

1.5 Filters, ultrafilters, quotients

Filters play a significant role in lattice theory, particularly in the study of Boolean algebra. In
this section, we present some essential findings concerning filters and ultrafilters in bounded
implicative inf-semilattices. While these proofs are already established in the context of Boolean
algebras—see for example [Mon89] or [BS81]—, we demonstrate their adaptability in this weaker
framework.

Then, for a given primary doctrine P, we will define the quotient of the doctrine over a filter in
the fiber of the terminal object, and prove that the quotient map preserves many properties of
P itself.

The quotient of a doctrine over some suitable ultrafilter will be a key point in the proof of the

existence of a model in Section 3.8.

Definition 1.5.1. Let A be an inf-semilattice. A subset V C A is a filter if the following
properties hold:

e T €EV;
e ifa e Vanda<b, thenb e V,;

o ifa,be V, thenaNbe V.
A filter V is proper if V. # A

Remark 1.5.2. In a bounded inf-semilattice, a filter V is proper if and only if 1 ¢ V.
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Definition 1.5.3. Let A be a bounded implicative inf-semilattice and V C A a filter.

e V is an ultrafilter if for all a € A, either a € V or —a € V, where —a :=a — L.

e V is a mazimal filter if it is maximal with respect to the inclusion, meaning that V # A
and, whenever V & V' where V' is a filter, then V' = A.

Lemma 1.5.4. Let A be an inf-semilattice and £ C A. Consider the set
F ={y e A| there exist z1,...,2, € E such that z1 A--- Az, <y} U{T},

Then (E) = F, where (E) is the filter generated by E.
Proof. First of all, observe that F is a filter:

o T € F|

eletye Fand z€ A,y <z Ify=T, then 2 =T € F. Otherwise, take z1,...,2, € E
such that x1 A--- Ax, <y < z, then also z € F};

o take y,z € F. If y =T then y Az = z € F; similarly if z = T. Otherwise 1 A--- Az, <y,
WA AWy, < zwithxy, ..., 2, w1, ..., Wy € B;then xy A Az AW A Awy, < YAz,

sothat yAz € F.

Then E C F: take x € F, since ¢ < z, we have € F. In particular (F) C F. To conclude,
take y € F. If y = T, then y € (E); otherwise, take 21 A --- Az, < y for some z1,...,z, € E.
Any filter G D F is such that 1 A--- Az, € G and since 1 A --- Az, <y, also y € G. Hence
y € (E), as claimed. O

Lemma 1.5.5. Let A be a bounded implicative inf-semilattice and V C A a filter. Then V is a

maximal filter if and only if V is an ultrafilter.

Proof. Suppose V is an ultrafilter. Since T € V, then V3-T =T - L =TA(T —» 1) = 1,
so V # A. So take another filter V & V', in particular there exists y € V' such that y ¢ V. By
assumption y — 1 € V and also y — L € V’. Then, since y A (y — L) < L, 1 € V’, so that
V' = A. For the converse, suppose V is a maximal filter. In particular, given x € A, it cannot
be the case that both z,2 — 1 € V—otherwise we would have also 1. € V, which would give
V = A. Suppose that z ¢ V, we claim that -2 =2 — L € V. Consider F = V U {z} and take
(E). Clearly (E) 2 V, since € E but x ¢ V. Hence by assumption (E) = A. In particular
-z € A= (E). If -z = T, then we have ~x € V. Otherwise there exist z1,...,z, € VU {z}
such that 1 A --- Az, < —z. Now, if every x;’s belong to the filter V, we get —z € V. Instead,
if some z;’s are actually x, we can rewrite the inequality as x A y < -z for some y € V. But
r Ay <z — Lifand only if x Ay < L if and only if y < 2 — L, hence again -z € V, as

claimed. O
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Lemma 1.5.6. Given a proper filter V of a bounded implicative inf-semilattice A, there exists
an ultrafilter U D V.

Proof. We use Zorn’s Lemma. Take .# the set of all proper filters that contain V, ordered by
inclusion. Clearly V € #. The upper bound of a chain VC V; C--- C V,, ... is given by the
union U;enV;. So take U a maximal element in .%. This is a maximal filter: let W be a proper

filter containing U, in particular it contains V, so W = U. O

Moreover, given a bounded implicative inf-semilattice A and an ultrafilter V. C A, define the

function a: A — 2, where 2 = { L < T} is the two-element boolean algebra, as follows:

T ifr eV
L ife ¢ V.

alz) =

This function preserves the structure of a bounded implicative inf-semilattice.

e TV, T—T;

e L ¢V, L 1

e take a,b € A, then:
—ifa,beV,thenaAbeV,soaland) =T = a(a) Aa(b);
— ifa ¢ V, then anb ¢ V—indeed: aAb < a—, so a(aAb) = L = LAa(b) = a(a) Aa(b);
— if b ¢ V same proof as above;

so « preserves the meet;
e take a,b € A, then:

—ifbe V,since b<a —b, then a — b € V, so compute a(a > b) =T =afa) > T =
afa) — a(b);

—ifb¢ Vanda €V, then a — b ¢ V—indeed: a A (a = b) <b—,s0afla ->b) =1L =
T — 1L =a(a) = ab);

—ifb ¢ Vand a ¢ V, then -b,-a € V. Observe that —a A b < a — b since
aN-aAN-b=1<bsoa—beV. Henceafa —>b)=T=1—= 1 =ala) = ab);

S0 « preserves the implication.
In particular we use this fact to prove the following characterization.

Lemma 1.5.7. Let A be a bounded implicative inf-semilattice and V C A a filter. Then V is
an ultrafilter if and only if V = a~1(T) for some morphism a: A — 2 of bounded implicational

inf-semilattice.

Proof. If V is an ultrafilter, we define « as above, and it is indeed a morphism. For the converse,

take a morphism a: A — 2, we prove that a~1(T) is an ultrafilter. It is clearly a filter: a(T) = T;
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if a(a) =T and a < b, then a(b) = T; if a(a) = T and «(b) = T, then a(a Ab) = T. Now
take any a € A: it cannot be the case that both a,—~a € a~!(T); suppose then a(a) # T, hence
afa) =1, so that a(a > L)=1 — L =T. O

1.5.1 The quotient of a doctrine over a filter

Let P:C°? — Pos be a primary doctrine and V C P(t) be a filter in the fiber of the terminal
object t. Define, in each X € obC the following preorder: o Ty S if and only if there exists a
6 € V such that P(1x)0 Ao < §in P(X). This is clearly reflexive; it is also transitive: take
P(lx)01 Aa < g and P(lx)0z A B <~ for some 61,02 € V, then P(!x)(0; AO2) Ao < B.

Now define P/V:C° — Pos as follows: for each object X, P/V(X) is the poset reflection of
the preorder defined above. In particular we have [a] = [5] if and only if there exists § € V
such that P(!1x)0 A a = P(!x)0 A B: indeed, suppose 601,05 € V such that P(lx)61 Aa <
and P(!x)02 A B < a, then P(Ix)(01 A O2) Ao = P(1x)(01 A b) A B, with 81 A2 € V. Then,
take a C-arrow f: X — Y and define P/V(f)[a] = [P(f)a] for a given [a] € P/V(X). If this is
monotone with respect to the preorder Cv, it is well defined on equivalence classes: take o Cv 3
for a, 8 € P(Y), hence there exists § € V such that P(ly)0 Aa < 8 in P(Y); applying P(f)
we get P(1x)0 A P(f)a < P(f)5, hence P(f)a Cv P(f)B. So P/V is indeed a doctrine, since
composition and identities are clearly preserved.

Note that the quotient map of each P(X) is a monotone function: if o < 3, also @ Ty 8 by
taking § = T € V. Call for each object Y, qy the quotient map: qy(a) = [a] € P/V(Y) for a
given a € P(Y); then (idc, q) is a morphism of doctrines. Indeed, to prove that g is a natural

transformation, take f: X — Y and observe that:
ax P(f)a = [P(f)a] = P/V(f)la] = P/V(f)ay(a).

Moreover, P/V is primary, with top and meet of P/V(X) computed as in P(X): given two
elements [a], [8] € P(X), clearly [a A B8] < [a],[f]; then take [y] < [a],[8], i.e. P(Ix)01 Ay < «
and P(lx)f0: Ay < 3, for some 01,05 € V. Then P(!x)(61 Ad:) Ay < aAfand 0; AOy € V,
hence [7] < [a@AS]. Soin P/V(X) we have [a] A [5] = [a A B], as claimed. Naturality of the meet
in P/V follows from naturality of q and of the meet in P.

Then, observe that [T x] is the top element in P/V(X): take any [a] € P/V(X) and note that
P(lx)T¢Aa = a < Tx. Again, the top element is trivially preserved by reindexing. In particular

the quotient (idc, q) is a morphism of primary doctrines.

Proposition 1.5.8. Let P:C°? — Pos be a primary doctrine and V C P(t) be a filter. The
l-arrow (idc, q): P — P/V is such that T < q¢(6) in P/V(t) for all § € V, and it is universal with
respect to this property, i.e. for any primary l-arrow (G,g): P — R, where R:D°? — Pos is a
primary doctrine, such that T < g¢(#) in R(tp) for all § € V, there exists a unique up to a unique
natural isomorphism primary l-arrow (G’,g¢’): P/V — R such that (G’,¢’) o (idc, q) = (G, g).
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Proof. At first, observe that any 6 € V is sent to the top element of P/V(t): indeed, consider 6 €
V itself to observe that 6 AT < 6, to that [T] < [f]. We now show the universal property. First
of all, since G’ idc = G, we observe that G’ = G: C — D. Then we show that fo any fixed C-object
X, the function gx: P(X) — RGX factors through the quotient qx, defining g’y ([¢]) = gx ().
To prove that this is well-defined, take o Cy 3 in P(X), i.e. P(!x)(0) A < 8. Then apply gx
to get gx P(!x)(0) ANgxa < gxf in R(GX). However gx P(!x)(0) = R(l¢x)g¢(0) = Tax, hence
gx (@) < gx(B). As a result we obtain a well-defined monotone function g'y: P/V(X) — R(GX)
such that g’yqx = gx—and it is also unique. Since gx preserves finite meets, and finite meets
in P/V are computed as in P, it follows that g’y preserves finte meets. Moreover, we can use
naturality of g to show that g’: P/V — RG°P defines a natural transformation. In particular
(G'¢’) is a primary l-arrow such that (G',g¢’) o (idc, q) = (G, g), and it is unique with respect to
this property, as claimed. O

In the following Lemma we show that if P has some additional structure, then P/V has them as

well, and the structure is preserved by the quotient morphism.
Lemma 1.5.9. Let P be a primary doctrine, V C P(t) be a filter and P/V be the quotient.

(i) If P is bounded, then the doctrine P/V and the 1-arrow (idc, q) are bounded.

(ii) If P is implicational, then the doctrine P/V and the 1-arrow (idc, q) are implicational.

)

)

(iii) If P is elementary, then the doctrine P/V and the 1-arrow (idc, ¢) are elementary.

(iv) If P is existential, then the doctrine P/V and the l-arrow (idc, q) are existential.
)

(v) If P is universal, then the doctrine P/V and the l-arrow (idc, q) are universal.

Proof. (i) We show that qx(Llx) = [Lx] < [a] in P/V(X) for all [a] € P/V(X), but this
holds since P(!x)Tt A Lx = Lx < a in P(X). Naturality of the bottom element follows
from naturality of q and of the bottom in P. The quotient (idc, q) trivially preserves the

bottom element.

(ii) We show that qx(8 — v) = [8 = 7] = [6] = [7] in P/V(X) for all [],[y] € P/V(X).
Suppose [a] A [B] < [v], if and only if there exists § € V such that P(!x)0 Aa A B <+ in
P(X), if and only if there exists § € V such that P(lx)0 Ao < § — v in P(X), if and
only if [a] < [B — 4], i.e. [8 = 7] = [8] = [7] in P/V(X). Naturality again follows from

naturality of q and of the bottom in P. The quotient (idc, q) preserves implication.

(iii) Consider the elementary doctrine P, with left adjoint A% - P(id4 xAp) for any arrow of
the kind idy xAg:AXx B — Ax B x B in C.
We show that qaxp(E5a) = [Efa] = £S[a] in P/V(A x B x B) for all [a] € P/V(A x
B). To show that Ef is well defined on the quotients, suppose a Ty 3, for some pair
a,f € P(A x B), i.e. there exists § € V such that P(laxp)0 Aa < in P(A x B); then
EE(P(laxp)0Aa) = BE(P(idy xAp)P(laxsxs)0Aa) = BEa AP 4 pyxp)0 < BES in
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P(A x B x B) by using Frobenius reciprocity, i.e. [E5a] < [E5 ], so Bf[a] = [E5a] is
well defined.

This is the left adjoint to the reindexing along id4 xApg: indeed, take [a] € P/V(A x B)
and [y] € P/V(A x B x B), then B[] < [y] if and only if there exists en element § € V
such that P(!axpx5)0 A Eﬁa <~ in P(A x B x B), but by Frobenius reciprocity we have
P(laxpxp)d A BEa = BE(a A P(ida xAp)P(!axpxp)0) = BE(a A P(laxp)f), hence if
and only if there exists § € V such that a A P(laxp)f < P(ida xAp)y in P(A x B), if and
only if [a] < P/V(ida xAp)[y], as claimed.

Naturality of E(Ei) and Frobenious reciprocity follow from the same properties of }Eg) in
P.

So the doctrine P/V is elementary, and the quotient is a morphism of primary elementary

doctrines.

Consider the existential doctrine P, with left adjoint 3§ - P(pr;) for any projection
pri:Ax B — AinC.

We show that q4(35a) = [3%a] = 35[a] in P/V(A) for all [a] € P/V(A x B). To show
that ﬂfi is well defined on the quotients, suppose o Cy (3, for some «, 8 € P(A x B), i.e.
there exists § € V such that P(!axp)0 Ao < B in P(A x B); then 35 (P(laxp)d A a) =
FB(P(pr)P(14)0 A a) = 3Za A P(14)8 < 3B in P(A) by using Frobenius reciprocity,
ie. [38a] < 357, so 35[a] = [35a] is well defined. This is still the left adjoint to the
reindexing along the first projection: take [a] € P/V(A x B) and [y] € P/V(A), then
3%[a] < [4] if and only if there exists § € V such that P(14)0 A 3Fa < v in P(A), but
P(la)0AFEa =3B (anP(pry)P(14)0) = 35 (aAP(lax5)0) by Frobenius reciprocity, hence
if and only if there exists § € V such that a A P(laxp)8 < P(pr;)y in P(A x B), if and
only if [a] < P/V(pry)[v], as claimed.

Naturality of ﬂf_) and Frobenious reciprocity follow from the same properties of Elf_) in P.
So the doctrine P/V is existential, and the quotient is a morphism of existential primary

doctrines.

Consider the universal doctrine P, with right adjoint P(pr;) - V& for any projection
pri:Ax B — AinC.

We show that qa(VEa) = [VBa] = ¥5[a] in P/V(A) for all [a] € P/V(A x B). To show
that yﬁ is well defined on the quotients, suppose a Cy 3, for some «,8 € P(A x B),
i.e. there exists § € V such that P(lax5)0 Aa < B in P(A x B); then P(14)0 AVSa <
VB P(pry)P(14)0 AVEa = VE(P(laxp)d A a) < VBB in P(A) by using the unity of the
adjunction and the fact that right adjoint preserve limits—hence meets too—, i.e. [Vﬁa] <
VB8], so Y5[a] = [VEa] is well defined. This is still the right adjoint to the reindexing
along the first projection: take [o] € P/V(A x B) and [y] € P/V(A), then [y] < ¥5[a] if
and only if there exists § € V such that P(14)0Ay < VB« in P(A), if and only if there exists
6 € V such that P(!4xp5)0 A P(pry)y < a in P(A x B), if and only if P/V(pr;)[y] < [a],
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as claimed.
Naturality of jf_) follows from the same property of Vf_) in P.
So the doctrine P/V is universal, and the quotient is a morphism of universal primary

doctrines. O



Chapter 2

Adding a constant and an axiom

to a doctrine

In this chapter, we explore how to translate into the language of doctrines, seen as a generalization
of the doctrine of well-formed formulae, the process of adding a constant of some fixed sort and
adding a sentence to a theory. Although these may seem like separate processes, we show that
they can be computed simultaneously.

Given a formula ¢ of some sort X, we add a constant of sort X to our language and require that
it satisfies . If we simply wish to add a constant, we choose ¢ to be the true constant so that
the new constant automatically satisfies . Conversely, if we add a constant of the empty sort,
we are not adding anything new, but rather making ¢ true. Notably, in this case, ¢ is a sentence

and does not depend on any variable.

For the whole chapter, P: C°? — Pos is a fixed

primary doctrine, unless otherwise specified.

2.1 A comonad on the indexed poset P

Fix an object X in the base category C, and an element ¢ € P(X).

(X x—)P

cop ; cep
—_—
P P
Pos
idx % f

Consider the product functor X x —: C — C sending (A ER B) to (X x A —— X x B), and

define each component of the natural transformation f: P — P o (X x —)°P as follows:

fa: P(A) = P(X x A), a = P(pr;)(¢) A P(pry)(a)
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where pr; and pr, are the projection from X x A to X and A respectively.

Note that f is monotone, and is indeed a natural transformation: to prove the first part, take o <
o/ in P(A), 50 P(pr,)(a) < P(pry)(a’), and then P(pr,)(9)AP(pry)(a) < P(pr,)()AP(pra)(a),
i.e. fa(a) < fa(a’); to prove the second one, take § € P(B):

B P(B) -2 P(X x B)
fT lpu) lpodxn
A P(A) 4 P(X x A)

P(id x )fs(8) = P(id xf) (P(pr,)(2) A P(prs)(8)) = P(id x [)P(pr;) () A P(id x )P (pry) ()
— P(pr,)() A P(pry) P(£)(8) = faP(f)(8),

where the projections are from X x A and X x B.

Then, (X x —,§) is a 1-cell between P and itself in the category IdxPos.

We now prove that the l-arrow (X x —,f) is part of a 2-comonad on P; to do this, we have
to find two 2-arrows e: (X x —,f) — idp and v: (X x —,f) = (X x —,f)? satisfying the proper
diagrams. We adapt the comonad on the functor X x — (also known as the reader comonad) to
indexed posets.

Define €4: X x A — A to be the second projection €4 = pry, which is clearly natural, and is
indeed a 2-arrow since f4(«) = P(pry)(¢) A P(pry)(a) < P(pry)(a) = P(ea)(ida(e)) for any
a € P(A). Then, define v4 == Ax xida: X x A — X x X x A, which is again natural; it is a
2-arrow if and only if f4(«a) < P(A x id)(fxxafa(a)), however

P(A xid)(fxxafa(a)) = P({pry, pry, pry)) (P 1)@ A P((pry, pr3)) (P(pry)e A P(pr2)a))
P({pry,pry,pra)) (P(pry)e A P(pry)y A P(prs)a)
P(pry)p A P(pry)a = fa(a).

Finally, we check that the following diagrams commute:

X x - Xx— —5 (X x-)?
/ b\ lv lidxxw
XxfW(Xx—)zﬁXxf (X x —)2 5 (X x —)3

® cxxa 074 = (pry, pry) o (Ax xida) = idx x 4;
e (idx xpry) oya = idxxa;
o (idx xAx xida) o (Ax xida) = (pry,pry,pry,pra) = (Ax X idxxa) o (Ax xidy).

Proposition 2.1.1. With the notation defined above, (P,(X x —,f),7v,¢) is a comonad in
IdxPos.
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Remark 2.1.2. We are interested in finding a distributive law between two different comonads,
both of the form seen in Proposition 2.1.1 on the same primary doctrine P seen as an indexed
poset: for two objects X,Y and two elements p € P(X),1 € P(Y), the first comonad relies on
the 1-cell (X x —, ), where f = P(pry)(p) A P(pry)(—), while the second one relies on the 1-cell
(¥ x —,g), where g = P(pr)(#) A P(pr,)(~).

Dualizing distributive laws for monads in [Bec69], recall that in general, for two given comon-
ads (P, (K,f),v,¢) and (P, (C,g), A, d) in IdxPos on the same indexed poset P:C°? — Pos, a
distributive law between two comonads is a 2-cell £: (K, f) o (C,g) — (C,g) o (K,f) such that
((K,f),£) is a lax morphism of comonads and ((C,g),¥) is an oplax morphism of comonads.
In details, in IdxPos, we ask for /: KC — CK to be a natural transformation, such that
foaga(a) < P(la)gr afa(a) for any object A in C and o € P(A) and such that the following

diagram commute:

KC £ CK KC £ CK
K(A)l lAK ’Ycl lC(v)

2 2 2 2

KC T}OKOWOK KCwKOKTC’K

KC KO K KC e C
CK CK
In our case, define for each object A in C,

l4 = (pry,pri,pry): X XY x A=Y x X x A

This is trivially a natural transformation. Moreover, recall that the comultiplication is given by
A x id, and the counit by the projection on the second component. With these definitions, the

diagrams clearly commute:

(pry,pry,prs)
X XY xA 2 s YxXxA
<pr1,pr2,pr2,pr3>l J/(prpprpprz»prs)

XXY XY XA —YXXXxYXxA—Y xXYXxXxA

(pro,pry,pry,pry) (pry,prs,pra,pry)

(pra,pry,pr3)
XxYxA CALAR L YxXxA
(prl,prhprzvprs)J{ J{(prpprmprz,pm

XXXXYXxA— X XY XXxA—YXxXXxXxA

(Pry,prs,pra,Pry) (Pra,pry,Pr3,Pry)
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X xV x AP v oy X x Y x ATy o g
(prz,prl,pr:s)i /(pr;p@) <Pr27pr1,pr3)l /{mjpr3>
YXxXxA YXXxA

Now we need to prove that £ is indeed a 2-cell, i.e.

P(A) —4 5 P(X x A) 254 p(Y x X x A)

EAJ/ < J,P(EA)

P(Y x A) P(X xY x A)

fca

Compute:

feaga(a) = foa(P(pry)y A P(pry)a) = P(pry)e A P(pray)i A P(pry)e
= P(€4)(P(pry)y A P(pry)e A P(prg)a)
= P(la)gra(P(pry)e A P(pry)a) = P(la)gx afa(c).

In this particular case ¢ is actually an isomorphism.

By looking at the commutative triangles, we observe that ¢ is unique:

prila = prl(prl,pr3>£,4 = pry (pr27pr3> = Pra;
prala = pry(pry, pry)fa = pry(pry, prs) = pry;
prsla = pro(pry, pry)fa = pry(pry, pry) = pry.

We conclude that the distributive law £ induces a composite comonad, having the 1-cell computed
as (X x —,f)o (Y x —,g) = (X xY X —,fog), where

(fog)a=fyxaga: P(A) = P(X xY x A), aw P(pry)p A P(pry)i A P(prs)a.

Moreover, the composite comonad induced by the distributive law is again of the form seen in
Proposition 2.1.1, defined with respect to the object X x Y and the element P(pr;)p A P(pry)y
in P(X xY).

2.2 The Eilenberg—Moore and the Kleisli construction for
the comonad (X x —,§)

We now study the Eilenberg—Moore and the Kleisli construction of the comonad described before,
applying the results shown in Section 1.2 to this particular case. Recall that the Eilenberg—Moore
category CX*~ has as objects pairs (4,c), where c: A — X x A is an arrow in C such that the

following diagram commutes:
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C

A——— X x A

1 [

A+—— X xA— XxXxA
EA=PTy id xc

so that the second component of ¢ = (c1, ¢o) must be the identity co = id 4, while the first one can
be any map c;: A — X. Moreover, an arrow f: (A, c) — (B,d) in CX*~ is an arrow f: A — B in

C such that the diagram commutes:

A—1 B

(017idA>l J{<d17idB>

XxALY x B

i.e. we ask for the C-arrow f to satisfy dif = c¢;. From now on, we will write CX instead of
CX*~. By looking at the description of objects and arrows of the category C¥, it is easy to
observe C¥X is isomorphic to the slice category C/X: they are both categories of coalgebras of
the reader comonad X x —.

As seen in Proposition 1.2.3, the induced indexed poset P(X-#): CX? — Pos is defined as follows:

(B,d) {8 P(B)|B<P)(fsB)}
For fT the reindexing is J{p( N
(4, ¢) {ae P(A)|a < P(c)(fala))}

with the order of the subsets given by P(B) and P(A) respectively. Since by definition f4(«) =
P(pry)(p) A P(pry)(a), we can write

PE#) (A e) ={a € P(A) | o < P((c1,id))(P(pry) () A P(pry)(e))}
={a € P(A) |a < Ple1)(p)} = P(A) P(er)(p)-

Note that there is an adjunction in the 2-category of indexed posets between P and P(X:#) | that
is a pair of I-arrows (UX,u): PX#) — P (FX §): P — P%%) and two 2-arrows 7:id — FXUX
and e: UX FX 5 id such that (CX,C,UX, FX n,¢) is an adjunction in Cat.

e The functor U is the forgetful functor from the Eilenberg-Moore category CX in C;

e the natural transformation u: PCX%) - PUXP is the inclusion on every component
uae) PP (A, 0) = {a € P(A) | a < P(e)(Fa(a))} < P(A);

o the functor FX is the co-free functor that sends A % B to (X xA,va) LN (X x B,vB);

e the natural transformation f: P = P(5%) FXP g defined as f on each component—we will
write § instead of f'—: indeed, §' 4 has image in PX9)(X x A,v4) = P(X X A) | p(or,)(9);
hence we define f 4, = fa: P(A) — PSP (X x A, v4) = {0 € P(X x A) | § < P(pry)(p)},
where a — P(pr;)(¢) A P(pry)(a);
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e define the natural transformation 7:id = FXUX to be N(A,c) = ¢. This is indeed a map
from (A,c) to (X x A,va = (pry,idxxa)), since pr;c = ¢;; moreover, it is a natural
transformation, since the definition of maps in C¥ is exactly the naturality diagram for
7. In conclusion, to check that 7 is a 2-arrow, we prove that for any o € P(X’“’)(A,c),
the inequality o < P9 (4 o)) ((Fou)(a,) () holds: take a € P(A),a < P(c1)(y), then
P(e)((Fou)(a,e(a)) = P(c)(Fauca,e) (@) = P(e)(P(pr) () A P(pry)(a) = Per)(p) ha >
Qa;

e the natural transformation € is defined as before as the second projection on every com-
ponent €4 = pry: X X A — A, so it is clearly natural and is again a 2-arrow, since the
inequality (uof)a(a) < P(ea)(ida(w)), i.e. P(pry)(p) A P(pry)(a) < P(pry)(«), trivially
holds;

e in conclusion, we check the triangular identities for 1 and &, so that UX - FX is indeed an
adjunction: first of all eyx (4, UX(n(A,C)) = e4¢ = pryc = id4 for any co-algebra (4, c) in

CK, and moreover FX(e4)npx(a) = (id xpry)(Ax x ida) = id(xxa,,,) for any object A
of C.

Now, consider the Kleisli category Cxx_, i.e. the full subcategory of CX whose objects are the
co-free algebras. From now on, we will write Cx instead on Cxx_. Observe that an arrow
f={f1,f2): (X x A) — (X x B) has to satisfy pr;f = pry, so f; must be the first projection
pr; and the map f is uniquely determined by its second component fo: X x A — B. For this
reason, we use the equivalent description of Cyx, that has as objects the same as C, and as
map g: A ~ B is a C-arrow ¢: X X A — B—see Remark 1.2.6 for more details; moreover, the
composition between two arrows g: A ~» B and h: B ~» C' is the arrow h(pry,g): A ~» C. A new
indexed poset P(x .y is trivially induced on the Kleisli category by simply taking the restriction

of P(X:%) on Cx°P, so that P(x,4):Cx°” — Pos is defined as follows:

(X x B,v5) P(X X B)p(pr,)(p)
For <pr1,g>1\ the reindexing is P((pry,9))
(X x A,74) P(X X A) L ppry) ()

Translating this in the equivalent description of the Kleisli category defined above instead, we
can write P(x ) (A) = P(X X A) p(pr,)(p) and, given g: A ~ B, define P(x ,)(g) = P({pry, g))
We can now define in the obvious way the 1-arrow (Ux,u): P(x ,) — P, the restriction of (UX,u),
and (Fx,f): P — P(x ) the restriction on the image of (FX,); moreover, this is clearly part of

a 2-adjunction between P x ) and P, with the same unit and co-unit as before.

2.3 The doctrine Fx,) and its inherited properties

We now want to study if some properties of P can be translated to Py ), and when so, if they

are preserved by the l-arrow (F'x,f). We will use again the description of Cx with the same
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objects as C and arrows A ~» B that are actually C-arrows X x A — B; so the functor Fx
sends f: A — B to its precomposition with the second projection fpry: A ~» B. First of all, we
check that Cx has finite products, preserved by Fx, so that both P and P(x . are doctrines and
(Fx,f) is a l-arrow in Dct. Then we study a few other properties of Cx that can be inherited

from C; then we will take a look to various properties of P.

Ccop FXfop Cx°?
_
R Aﬂw)
Pos

We begin by collecting some elementary results regarding the category Cyx, as we could not find

precise references.

Proposition 2.3.1. Let C be a category with finite products, and Cx be the Kleisli category of
the comonad (C, X x —, Ax xid, pry). Then the category Cx has finite products and the co-free

functor F'x preserves them.

Proof. For a given pair of object A, B in C, consider the following diagram in Cx:

Pro pr3

where a: X x V — A, 5: X x V — B are arrows in C, and the projections are from X x A x B.
Since C has binary products, there exists a unique 1: X x V — A x B such that

X xV
a the 8
Ax B
% pro
A B

commutes, so that it is easy to check that ¥:V ~» A x B is the unique arrow that makes the
product diagram in Cx commute.

The category Cx also has a terminal object, it being t, the terminal object of C.

To conclude, observe that F'y trivially preserves finite products, since F'x is part of the adjunction

Ux - Fx and right adjoints preserve all limits. O

Now that we proved that P x ) is indeed a doctrine, we check some structure concerning the

base category, that is inherited by Cx.
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2.3.1 Closedness

Proposition 2.3.2. Let C be a category with finite products, and Cx be the Kleisli category
of the comonad (C, X x —, Ax X id, pry). If the category C is closed, then Cx is closed and the

co-free functor F'x preserves the exponential.

Proof. Suppose that for any object Y there is a natural bijection
Hom(— x Y,=) = Hom(—, (=)").
om(— x Y, =) = Hom(—, (=)")

We sum up the naturality in the two components with the following diagrams:

Axy DY pyy b,z Bxy —k 79 ,g
At g gy Bk gy 9, g

Consider the functor — x Y:Cx — Cx, that maps f: A ~ B, ie. f: X x A — B, to the arrow
fxid:AXxY ~» BxY, ie fxid:X x AxY — B xY. Such functor is a left adjoint, since for
each object A, there exists an object AY —which we will prove to be the exponential in C—and
a Cx-arrow €4: AY x Y ~» A ie. £4: X x AY x Y — A such that, for any object B and arrow
f:B xY ~» A, there exists a unique f B ~» AY —which we will prove to be the same hatted
arrow in C—such that
BxY L% AY xv -S4 A
f

Define €4 == pry: X x AY x Y — A, the C-map corresponding to pry: X x AY — AY so that e4
is indeed a Cx-map AY x Y ~» A. We only have to check that the composition of Cx-arrows

above equals to f, i.e. in C

—~— ~

pry o (pry, f x id) = pry o ((pry, f) x id) = pryo (pry, /) = f = f

At last, to prove the uniqueness of f, suppose f’ such that pryo{qi, f' xid) = f, but the left-hand
side is equal to f’, SO J?’ = f, ie. f/ = f
To conclude, take a C-arrow g: A x Y — B, and its corresponding map g: A — BY, we want to

—

prove that Fx(g) = Fx(9).

Fx(g): X x Ax Yy 2Pl 4y 9, g

pra

Fx(@):X x A2 4% gy

By naturality we have:
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XxAxYMAXY%B

XxA—2 ,p_9 ,pY

—

i.e. gpry = g(pry x id) = g(pry, pry), so that gpry = g(pry, prs) O

2.3.2 Finite coproducts

Proposition 2.3.3. Let C be a category with finite products, and Cx be the Kleisli category of
the comonad (C, X x — Ax X id, pry). Moreover, suppose that C has binary coproducts. The
endofunctor X x —:C — C preserves binary coproducts if and only if Cx has binary coproducts

preserved by the co-free functor Fx.

Proof. Consider the coproduct diagram in C, its image in Cx through F'x and a pair of arrows
a:XxA—Vand 8: X xB—>V:

A B A B
LA LAPTy
% (,—'"JJLJ;:Iz
A+B . A+B
B
%

Define the map A+ B ~» V to be the composition (g)w: X x(A+B) 2, (X xA)+(X xB) &)—> v,

where v is the inverse of the canonical arrow below:

X xA X x B

LX XA
LXxB

(X xA)+ (X x B)
o [ Camp=(aiam)
Xx(A+B

)
X/ \(

(LXXA> _ id(XxA)+(X><B) _ ¢<<Pr17LAPI“2>) _ <¢<Pr17LAPI“2>)'

LX xB (pry, tBpry) Y (pry, LBPry)

A+ B)

In particular,

(3)v

So the composition X x A Sorueapra), g (A+ B) —— V is equal to (g)w<pr1,LApr2> =
(g)LXXA = «; similarly, for 8. Hence, (g)w makes the diagram commute, and it is clearly
unique, so Cx has coproducts, preserved by F'x by constrution.

Conversely, suppose that Cx has coproducts, preserved by Fx, our claim is that in C, X x —

distribute over 4. So in Cx take A, B and their coproduct
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A 283 (A+ B) ¢ B.

LB Py
Recall that Ux:Cx — C, that maps g:C ~» D to (pry,g): X x C — X x D is a left adjoint, so
it preserves all colimits, and in particular X x (A4 B) = (X x A) + (X x B), as claimed. O

Remark 2.3.4. Is it important to observe that the hypothesis about F'x preserving coproducts is
necessary for the equivalence just described. Indeed, suppose C to be a bounded lattice (R, A, V),
and fix z € R; so Cx = R = (|R|,C) where a C o’ if and only if A a < a’. The poset R has
coproducts: indeed, aVb := (x Aa) V (z Ab). Clearly a T aVb and b T aVb; moreover, take
a,bCy,ie.zANa<yand zAb<y, then aVb C y if and only if

xA((zANa)V(zAD) <y,

which holds, so that R has indeed coproducts. However, if z A — does not distribute over V,

coproducts are not preserved—=x A (aV b) # (x Aa) V (x A D).

Proposition 2.3.5. Let C be a category with finite products, and Cx be the Kleisli category
of the comonad (C, X x —, Ax X id, pry). Moreover, suppose that C has initial object I. The
endofunctor X x —: C — C preserves the initial object if and only if Cx has initial object preserved

by the co-free functor Fx.

Proof. Consider any object A, we show that FxI = I is initial in Cx: we look for a unique
arrow I ~» A, i.e. a unique arrow X x I — A, but X x I = I by assumption. Conversely,
suppose that Cx has initial object, preserved by Fx. Use again that Ux:Cx — C, that acts
(g: C ~ D) — ((prl,g>:X xC — X x D), is a left adjoint, so it preserves all colimits, and in

particular X x I = I, as claimed. O

We now study the structural properties of the fibers of P that are inherited by P x ) and
preserved by the morphism (F,f).

2.3.3 Finite meets

Proposition 2.3.6. Let P:C°? — Pos be a primary doctrine and P(x ) be the Kleisli object
of the comonad (P, (X x —,§),v,¢) defined by the pair X € C and ¢ € P(X). Then P x ) is a

primary doctrine, and (Fx, f) is a primary homomorphism.

Proof. Recall that, by assumption, for any object A of C, the poset P(A) has finite meets. We
want to check that P(x ,)(A) = P(X X A)| ppr,)() has finite meets too: for any two elements
a,B € Pix,)(A), define oM B := a A . The operation just described is clearly the meet, since
the order of P(x ,)(A) is given by its overset P(X x A), and M is natural because A is. Moreover,

the poset P(x ,)(A) has the top element, which is 14 := P(pr;)(¢), and 1 is again natural.
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Take fa: P(A) = Px,)(A) = P(X X A) p(pr,)(p)- For any a, 3 € P(A), one has fa(a A jB) =
P(pry) () A P(prg)(a A B) = P(pry)(e) A P(prg)(a) A P(pry)(8) = fa(a) M§a(B). Moreover,
fa(Ta) = P(pri)(p) A P(pry)(Ta) = P(pr) () A Txxa = P(pr)(¢) = la. 0

2.3.4 Elementarity

Proposition 2.3.7. Let P:C° — Pos be a primary doctrine and P(x ) be the Kleisli object of
the comonad (P, (X x —,f),, ) defined by the pair X € C and ¢ € P(X). If P is an elementary

doctrine, then P(x , is an elementary doctrine, and (Fx,f) is an elementary homomorphism.

Proof. We already proved that, since P is a primary doctrine, P(x . is a primary doctrine too.

So now take objects B, C' and consider the reindexing
P(idxxc XAB):P(X x C' x B x B)UD(PH)(S@) — P(X x C' x B)lP(Prl)(L/’)'

Define its left adjoint }Ex,gog to be the restriction of A% . Such restriction is well defined:
take 8 < P(pr;)(¢) in P(X x C x B), one has }Eﬁxc(ﬁ) < P(pry)(p) if and only if g <
P(idxxc xAp)P(pry)(¢) = P(pry)(p), which is true by assumption. Naturality in C' and
Frobenius reciprocity for /& X#,g come easy from the same properties of Pﬂgxc.

Consider the following diagram:

P(C x B) —Z*2 P(X x C x B)p(ry) (o)
P(ide XAB)TI—leg P(idxxc xAB)T}—JfEX,@g:/EQXc
P(C x B x B)'Z2 P(X x C x B x B) | p(sy)(e)

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of BZ:

B
P(Cx B) — ¢ 4 p(C x B x B)
lP(<pr2,pr3>> lP«pr%prS,pu))
E)B;XC

P(Xx(CxB) — P(XxCxBxB)

So now take 8 € P(C x B):

foxpxBEE(B) = P(pry)(p) A P({pry, pry, pry)) (EE(8))
= P(t1)(¢) A BX o P({pra, pr3)) (8)
= EB% «c(P((pra, pr3))(8) A Plidxxc xAp)P(pry)(y))
= B «c(P((pra, pr3))(8) A P(pry)(9)) = Blixxc (),

which proves our claim. O
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2.3.5 Existential quantifier

Proposition 2.3.8. Let P:C°? — Pos be a primary doctrine and P(x . be the Kleisli object of
the comonad (P, (X X —,f),,¢) defined by the pair X € C and ¢ € P(X). If P is an existential

doctrine, then Px ) is an existential doctrine, and (Fx, f) is an existential homomorphism.

Proof. We already proved that, since P is primary, P(x,) is primary as well. So now take objects
B, C and consider P((pry,pry)): P(X X C) ppr,)(p) = P(X XC X B) | ppr,)(e), and define its left
adjoint Elx#,g to be the restriction of 3% . Such restriction is well defined: take 8 < P(pr)()
in P(X x C x B), one has 3§, ~(8) < P(pry)(¢p) if and only if 8 < P({(pry, pry))P(pry) ()

P(pry)(p), which is true by assumption. Naturality in C' and Frobenius reciprocity for 3 X#,g

come easy from the same properties of 3§, .

Consider the following diagram:

P(C x B) 125 P(X x C % B) 1p(pry)(¢)

P(prl)T \FB P(<pr1,prﬁﬁklﬂchza)wc

—I% s P(X X C) poryie)

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of 35:

B
P(C x B) — 2 P(C)
lP(prQXidB) lP(prz)
B

P(XxCxB)ﬁP(ch)

So now take g € P(C x B):
fe3E(B) = P(pr1)(¢) A P(pr2)(33(8))

= P(pr))(¢) A 3% P(pry x id)(B)
= 3% o (P((pry, prs)) (B) A P((pry, pry)) P(pry)(9)) = 3% cfxxc(B),

(
(

which proves our claim. O

2.3.6 Universal quantifier

Proposition 2.3.9. Let P:C° — Pos be a primary doctrine and P(x ) be the Kleisli object
of the comonad (P, (X x —,f),v, ) defined by the pair X € C and ¢ € P(X). If P is a universal
doctrine, then P(x ) is a universal doctrine, and (Fx,f) is a universal homomorphism.

Additionally, if the universal quantifier of P satisfies the Frobenius reciprocity, then also the

universal quantifier of P x ) does.
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Proof. Take a pair of objects B,C' and consider

P((prl,pr2>):P(X X C)iP(prl)(cp) — P(X x C' % B)iP(prl)(cp)

Define its right adjoint VX1¢g( ) =VE (=) A P(pr;)(¢). To check that this yields indeed an
adjunction, take v < P(pry)(¢) in P(X x C) and 5 < P(pry)(p) in P(X x C x B), we want to
prove that P({prq,pry))(y) < B if and only if v < Vx,</,g(,8) VR o (B)AP(pry)(p). First of all,
suppose P((pry,pry))(y) < B, then it follows from the adjunction P((pry,pry)) =4 VE, ~(B) that
v < V&, o(B); combining this with the assumption on ~, the inequality v < VX#,C(B) holds.
Conversely, suppose v < VB (8) A P(pry)(¢) < VE, o(8), then the claim holds again because
of the adjunction.

We now want to prove the naturality of VXWB. Take an arrow fo: C" ~ C, ie. fo: X x C' — C,
and write f := (pry, f2): X x C’ — X x C. Recall the naturality diagram for V5:

(XxCxB)L%P(XxC)
|Pirian) . Po

P(X x C" x B) ELTA P(X x C")
and use it to prove the naturality for VXWB:

ch

P(X x C X B)p@pr,)(e) — P(X X O)ppr,) ()
J{P(fxidB) JP(f)
Vx, o2,
P(X % C" X B) 1 p(pr,)(p) —— PX X ') ppry) ()

So take f € P(X x C x B):

P(f)¥x.00(B) = P(f)(V5 o (B) A P(pry)(¢) = P(f)¥5 . c(8) A P(pry)()
= VR P(f xid)(8) A P(pry) () = Vx oo P(f x id)(B).

It is worth mentioning that, if we ask in addition that the doctrine P satisfies Frobenius recipro-
city for the adjunction P(({pry, pry)) 4 V% ~(8), then also the doctrine Py ) satisfies Frobenius
for the adjunction P((pry,pry)) - vX,soc- for any v < P(pry)(¢) and 5 < P(pry)(p),

P((pry, pro)) (v A Vx o0 (8)) = P((pry, pra)) (v AVE . (8) A P(pry) ()
= P((pry,pry))(7) A B,

using v A P(pry )¢ = v and Frobenius reciprocity.

Consider the following diagram:



Adding a constant and an axiom to a doctrine 53

C X B) m P(X x C x B),LP(prl)(Lp)

Por, T lvB P(un14w2»T¥+lvx;¢c

C) —1%— P(X X O) psr) (o)

We want to prove that the square with arrows pointing down and right is commutative. To do

this, recall that the following diagram is commutative because of the naturality of VZ:

P(C x B) — 7, p(C)

lP(pr2 Xidg) lP(prz)
v
P(X x C x B) =5 P(X x C)
So now take § € P(C' x B):

Vxpotoxn(B) = Vx,eo(P(pri)(9) A P((pry, pr3))(5))
= V% o (P(pr1) () A P((pra, pr3))(8)) A P(pry)(p)-

On the other hand
foVEa(B) = P(pry) () A P(pry)(VE(8)).

To prove Vx o gch 5(8) < fcVE(B), note that if holds if and only if —since it is trivially smaller

than P(pry)(¢)—
Vxpofoxn(B) < P(pry)VE(B)

but by naturality P(pry)VE = V& . P(pry x id) and moreover P(pr;)(¢) A P({pry, pr3))(8) =
P(pry)(p)AP(pry x id)(8) < P(pryxid)(8), so applying V£ . - to both sides of the last inequality
the claim follows.

Conversely, foVE(8) < Vx.oBicxn(B), if and only if P((pry, pro))icVB(8) < foxn(8) but
P({pry,pry)) = P(x,0) Fx(pry), so equivalently foxpP(pri)VE(8) < foxp(8). This proves the
claim, by applying fox s to P(pr;)VEZ(8) < B—which is the counit of the adjunction. O

2.3.7 Implication

Proposition 2.3.10. Let P:C° — Pos be a primary doctrine and P(x . be the Kleisli object
of the comonad (P, (X x —,f),7v,¢) defined by the pair X € C and ¢ € P(X). If P is an
implicational doctrine, then P(x ) is an implicational doctrine, and (Fx,f) is an implicational

homomorphism.

Proof. Since we already know that Px ) is primary, we check that Pix ,)(A4) = P(XXA) p(pr,)()
is cartesian closed too: for any 3,v € P(x,,)(A), define g = v := (8 — v) A P(pr;) ().

This is indeed a natural transformation: take fo: A ~~ B, i.e. fo: X x A — B, and write for
convenience f := (pry, f2): X x A — X x B.
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P(X X B) ppry)(0) " X P(X X B) ppr)(9) —— P(X X B) por)(9)

lPudepm lpw>
P(X X A) 1 por) (o) X P(X X A) p(pry) () — P(X X A) p(pr, ) (9)

So, take a pair a,a’ € P(X X B)| ppr,)(p): On the one hand it is sent to P(f)(a = o) =
P()((a = o) A Ppry)(p)) = (P(f)(a) = P(f)(@)) A P(pr)(p); on the other hand to
P(f)(@) = P(f)(a) = (P(f)(a) = P(f)(&)) A P(pry)(p), so that = is indeed a natural
transformation.
Now, to check that Px .)(A) endowed with this operation is cartesian closed, take three elements
a,B,7 € P(X x A) p(pr,)(e), and we prove that a A 8 < v if and only if @ < 8 = 7. So,
suppose a A f < -, then from < f — v combined with the assumption on « we obtain
a < (B — ) A P(prq)(7). Conversely, from a < (8 — v) A P(pr;)(y) < B — 7, it follows that
anpB<n.
Take fa: P(A) = Px,)(A) = P(X X A) p(pr,)(e)- For any a, 3 € P(A), one has on the one
side fa(a — B) = P(pry)(p) A P(pry)(a — B), and on the other hand fs(a) = fa(B8) =
(P(pry)(¢) A P(pry)(a)) = (P(pry)(¢) A P(pry)(8)). So now we prove that in any cartesian
closed poset,

((xNa) = (zAbD) Az =2 A(a—Db)

First of all, z A (@ = b) < ((zAa) = (xAb)) Az ifand only if z A (a — b) < (xzAa) = (zAD) if
and only if 2 A (a = b) AxAa <z Ab.

Conversely, ((zAa) = (xAb)) Az <z A(a—b)ifand only if (zAa) = (xAb)Az<a—Dbif
and only if ((x Aa) = (xAD)AxAa<b but (xAa) = (xAD)AxANa<zAb<b O

Corollary 2.3.11. Let P:C°? — Pos be a primary doctrine and P(x ,) be the Kleisli object
of the comonad (P, (X x —,f),7,¢) defined by the pair X € C and ¢ € P(X). If P is a Horn

doctrine, then P(x ) is a Horn doctrine, and (Fx,f) is a Horn homomorphism.

Proof. Both universal and implicational structure is preserved by the construction. O

2.3.8 Finite joins

Proposition 2.3.12. Let P:C° — Pos be a primary doctrine and P x ,) be the Kleisli object
of the comonad (P, (X x —,f),7,¢) defined by the pair X € C and ¢ € P(X). If P is bounded,

then P(x ) is bounded, and (Fx, f) preserves the bottom element.

Proof. The poset P(x ,)(A) has bottom element, which is 04 := L x x4, and 0 is natural.
Take fa: P(A) = Px,4)(A) = P(XXA) | p(pr,)(p)- Compute fa(La) = P(pry)(p)AP(pry)(La) =

1 xxa =04, so the bottom element is preserved. O

Proposition 2.3.13. Let P: C°? — Pos be a primary doctrine and P(x . be the Kleisli object of
the comonad (P, (X x —,f),~,e) defined by the pair X € C and ¢ € P(X). If P has binary joins,
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then P(x ) has binary joins. If each fiber of P is a distributive lattice, then (Fx,f) preserves

binary joins.

Proof. To check that Px )(A) = P(X x A) pepr,)(p) has binary joins, take any two elements
a,B € Pix,4)(A), and let a U 8 be oV . The operation is well defined and is clearly the join,
since the order of P(x ,y(A) is given by its overset P(X x A), and LI is natural because V is.
Now, for any two elements a, € P(A), one has fa(a V 8) = P(pry)(¢) A P(pry)(aV p) =
P(pry)(2) A (P(pry) (@) V P(pry)(8))

On the other hand, f4(a) Ufa(8) = (P(pr,)(¢) A P(pry)(@)) V (P(pr)(¢) A P(pr,)(8)); in
general this is not equal to f4(aV ), computed above. However, the equality holds if we ask for

P(pry)(p) A (=) to preserve joins, e.g. whenever the lattice is distributive. O

Corollary 2.3.14. Let P:C°? — Pos be a primary doctrine and P(x .y be the Kleisli object of
the comonad (P, (X x —,f),v,¢e) defined by the pair X € C and ¢ € P(X). If P is a Heyting

doctrine, then P(x , is a Heyting doctrine, and (Fx,f) is a Heyting homomorphism.

Proof. Finite meets, finite joins and implication are preserved by the construction. O

2.3.9 Booleanness

Proposition 2.3.15. Let P:C° — Pos be a primary doctrine and P(x . be the Kleisli object
of the comonad (P, (X x —,f),~,¢) defined by the pair X € C and ¢ € P(X). If P is a Boolean

doctrine, then Px ) is a Boolean doctrine, and (FXx, ) is a Boolean homomorphism.

Proof. We want to check that P(x ,)(A) = P(X x A) p(pr,)(p) is a boolean algebra: for any
element o € P(x,,)(A), define Ja:= a = 1L = (a — L) A P(pry)(p) = ~a A P(pry)(p). Since we
already know that P(x .)(A) is a Heyting algebra, we only have to prove that |]a = a:

[Ta =](=a A P(pry)(p)) = ~(=a A P(pry)(#)) A P(pry)(p)
= (=ma VvV =P(pry)(v)) A P(pry)(¢) = (aV P(pry)(=¢)) A P(pry)(p)
= (A P(pry)(p)) V P(pry)(mp Ap) =aV L =a.

To conclude, (Fx,f) is Boolean since the Heyting structure is preserved by f. O

2.3.10 Variations on negation

There are other ways to introduce negation in the context of inf-semilattices. Here we describe

two examples and check that properties are again preserved.

Definition 2.3.16. A primary doctrine P:C°P — Pos is *-autonomous if for every object A,

the poset P(A) is #-autonomous, that is: P(A) is cartesian, endowed with operation — such that
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——a = a for every a € P(A) and such that a A b < —¢ if and only if a < —(b A ¢). Moreover the
operation —: P°P — P yields a natural transformation.
A primary doctrine homomorphism between two *-autonomous doctrines is *-autonomous if it

preserves the negation.

Proposition 2.3.17. Let P:C° — Pos be a primary doctrine and P(x ,) be the Kleisli object
of the comonad (P, (X x —,f),7,¢) defined by the pair X € C and ¢ € P(X). If P is a *
autonomous doctrine, then P(x ) is a *-autonomous doctrine, and (Fx,f) is a *-autonomous

homomorphism.

Proof. For any o € Pix ,)(A) = P(X X A) | p(pr,)(¢), define Ja = =a A P(pr;)(¢). The operation
extended on each fiber [: Px )" — P(x ) is trivially a natural transformation. We call 2 =

P(pry)(p) for simplicity, and we prove ||a = a.

a <]]a if and only if a <](-a A z) if and only if & < =(-a A z) Az

if and only if @ < =(—a A z) if and only if a A z < =—a = «a.
Conversely,
1la < aif and only if ~(-wa A z) Az < == if and only if ~(-a A z) < =(z A —a).

Now, to prove the equivalence, take «, 8,7 < z, then

aAB<]yifand only if a A f < -y Az if and only if a A 8 < =y
if and only if @« < —=(8 A~) if and only if « < = (BAy) Az =](BA7Y).

To conclude, we prove that f4: P(A) — P(x,,)(A) preserves the negation. On the one hand

fa(=a) = P(pry)(p) A P(pray)(—a) = P(pry)(¢) A =P (pra)(e) and, on the other hand fa(a) =
—fa(a) A P(pry)(e) = =(P(pry) (@) A P(pry)(a)) A P(pry)(e). To see this, it is enough to check

that in a *-autonomous inf-semilattice we have x A —a = =(z A a) A z, for any a,z. First of all,
xA-a < —(zAa)Azif and only if 2 A —a < =(z Aa) if and only if x A —a Az < —a;
conversely,
—(xANa) Az <z A-aif and only if ~(x Aa) Az < —a if and only if ~(x Aa) < —(xAa). O
Definition 2.3.18. A primary doctrine P:C°? — Pos has pseudo-complements if for every
object A, the poset P(A) has pseudo-complements, that is: the poset P(A) is cartesian, endowed

with an operation — and a bottom element 1, where —a = max{b | a Ab = L}; moreover the

operations 1:1 — P, —: P°? — P yield natural transformations .
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A primary doctrine homomorphism between two doctrines with pseudo-complements preserves

pseudo-complements if it is bounded and preserves the negation.

Proposition 2.3.19. Let P:C° — Pos be a primary doctrine and P(x ) be the Kleisli object
of the comonad (P, (X x —,f),v,¢e) defined by the pair X € C and ¢ € P(X). If P has pseudo-

complements, then P(x ) has pseudo-complements, and (Fx, f) preserves pseudo-complements.

Proof. For any a € Px,,)(A) = P(X X A)p(pr,)(e), define Ja == —a A P(pry)(p); clearly
1: Px,0)” = P(x,,) is a natural transformation. First of all we observe that aA]a = L, since
aA-a A P(pry)(p) = L; then, suppose 8 < P(pry)(¢) such that « AS = L, but from e« Af = L,
B < —a follows in P(X x A), so 8 < —a A P(pry)(¢) =]a, hence Ja = max{f | a A B = L}.

To conclude, we prove that f4: P(A) — P(x,,)(A) preserves the negation. Take f4(—c) and
1fa(e) computed as above—in the x-autonomous case—, so again we check that x A —a =

—(z A a) Az for any a,z in a pseudo-complemented poset. First of all,

zA-a<—(zAa) Az iff 2 A—a < =(zAa),so it is sufficient (z A —a) A (x Aa) = L.
Conversely,

“(zANa) ANz <z A-aiff 2(x Aa) Az < —a, so it is sufficient (n(z Aa) Az)Aa=1. O

2.3.11 Weak Power Objects

Recall from definition 4.9 in [Pasl5] that a doctrine P has weak power objects if for every
object A in the base category C, there exists an object P(A) and an element € 4€ P(A x P(A))
such that for any object B and ¢ € P(A x B) there exists an arrow {¢}: B — P(A) such that

¢ = P(ida x{¢})(€4).
Proposition 2.3.20. Let P:C° — Pos be a primary doctrine and P(x . be the Kleisli object
of the comonad (P, (X x —,f),7,¢) defined by the pair X € C and ¢ € P(X). If P is has weak

power objects, then P(x ,) has weak power objects.

Proof. Since Cx has the same objects as C, for any object A consider P(A) and the element

faxp(a)(€a) € Px,p) (A x P(A)), ie. P(pry)p A P({pry, pr3))(€4) € P(X X A x P(A)),ppr,)e-
We want to prove that (P(A),faxp(a)(€4)) is a weak power object of A in the doctrine P(x ).
To see this, we take any object C' and ¢ € P(x o)(A x C) = P(X x A X C)_p(pr,)e and look for
an arrow [¢]: C' ~» P(A)—i.e. a C-arrow X x C' — P(A)—such that

Y = P(x,4)(ida Xcx [¥])faxpia)(€a).
Here, the product id4 X, [¢] is computed in Cx, hence it is actually the C-arrow

(pry, [¥]{pry,pry)): X X A x C — A x P(A).
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Using the fact that P has weak power object, we can take the object X x C' and the element
P({pry,pry,prs))y € P(A x X x C) and we know that there exists

[¥] = {P((pry, pry, prs))}: X x C — P(A)
such that
P({pry, pry, pr3))y = P (ida x{P((pry, pry, prs))e}) (€a) = P ((pry, [Y]{pry, prs))) (€4)-
Now comptte

Pix,p)(ida Xcy [¥])faxpa)y(€a) = P((pry, pra, [¢](pry, prs))) (P(pry ) A P((prg, pry))(€.4))
= P(pry)e A P ((pry, [¥](pry, pr3))) (€4)

which is equal to v if and only if P({pry, pry,prs))y = P(pry)e A P ({pry, [¢¥](prs, prs))) (Ea),
but this is true following from the definition of [¢)] and the fact that ¥ < P(pry)e. O

2.4 Universal properties of Px )

Consider the following diagram for a primary doctrine P. In particular, P(x ) is primary too.

We can interpret this l-arrow as follows: we are adding a constant of sort X to the theory P,

and making this constant verify ¢. Indeed, take fx(¢) € P(x,4)(X), which is the interpretation

of ¢ in P(x ), and consider the constant pry:t ~» X in Cx.

Notation 2.4.1. When there is no confusion, the terminal object of a given category will be
simply called t. Otherwise, a subscript will specify the category in which we are computing the

terminal object.

This map is the C-arrow pry: X x t — X, which is a direction of the canonical isomorphism
X x t = X, whose inverse is given by (idx,!x): X — X x t. This induces an isomorphism also
between the corresponding fibers P(X x t) = P(X), so that Pix ) (t) = P(X X t)p(pr,)p =
P(X),p. From now on we will write idx:t ~» X instead of pr;:t ~ X, and P(X),,, instead of
P(X xt),p(pr,)p- With this notation, we compute the reindexing of fx(¢) along the constant
idx:t ~ X, and we show that it is the top element in P(x ,)(t) = P(X),,. Indeed:

Px ) (idx)fx(p) = P(Ax)fx(¢) = P(Ax)(P(pry)e A P(pra)p) = ¢ Ap = ¢,
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and ¢ is the top element of P x ,(t) = P(X),.

Theorem 2.4.2. Let P:C°°? — Pos be a primary doctrine. Given an object X in the base
category C and an element ¢ € P(X), the l-arrow (Fx,f):P — Pix,,) and the Cx-arrow
idx:tcy, ~» X are such that T < Py o) (idx)fx () in Px ) (tcy), and they are universal with
respect to this property, i.e. for any primary l-arrow (G,g): P — R, where R:D°° — Pos is
a primary doctrine, and any D-arrow c:tp — G(X) such that T < R(c)gx(¢) in R(tp) there
exists a unique up to a unique natural isomorphism primary l-arrow (G',g'): Pix ) — R such
that (G',¢’) o (Fx,f) = (G, g) and G'(idx) = ¢

Proof. Consider the diagram

((Fx,),7)

(P, (X x = f),7€) (Pix.p), (id,1d),id, id)

\ (2.1)
(G0)) (R, (id,id), id, id) ¢ (G"a)id)

describing the universal property for the Kleisli construction for the comonad we are studying
on P, see Proposition 1.2.5.

So, in order to construct (G’, g’): Px,,) — R, we must define j in such a way that ((G,g),j) is an
arrow in Cmd*(IdxPos) as in (2.1), i.e. a natural transformation j: G — G(X x —), such that
g4 < R(ja)gxxafa and satisfying the coherence diagrams. Knowing that G preserves products,
we need to define for every object A an arrow ja:GA — GX x GA take ja = (clga,idga),
where !ga: GA — tp is the unique arrow from G A to the teminal object.

This is a natural transformation:
A GA 2 GX x GA
|s Jew Jata xp=ia xc)
B GB —~ GX xGB

Indeed, for any f: A — B, we have:

(id xG(f))(clga,idga) = (clga, G(f)) = (clap,idar)G(f).
Moreover, for any a € P(A), we have

R(ja)gxxafa(a) = R(Ga)axxa(P(pry)(p) A P(pry)(a))
= R(ja) (RG(pry)gx (¢) A RG(pry)ga(e)) = R(clga)ax (@) Agala),

using naturality of g and the fact that G preserves products.

So now observe that ga(a) < R(elga)gx(v) Aga(a) if and only if ga(a) < R(c!lga)gx(p), but
by assumption R(c)gx () =T in R(tp), so R(lga)R(c)gx(p) = R(clga)gx(p) = T in R(GA),
hence the inequality holds.
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To conclude, we prove that the coherence diagrams commute:

G—J L GX xG- G —— GX x G-

b lcm \d\> lcxe)
GX xG— 5 GX x GX x G— G

The first diagram commutes since

G(Ax xida)ja = (Agx xidga){clca,idga) = (clga,clga,idca)

= (clgx xa),daxxa))(clga,idaa),

while the second one commutes since
G(ea)ia = G(pry)ja = praja = idga .

So now we know from the universal property that there exists a unique (G, g'): P(x o) — R such
that ((G,9),j) = ((G',¢),id)((Fk,f),v). In particular there is an arrow (G', g'): P(x ) — R such
that (G',¢') o (Fk,f) = (G,g). Moreover, if we translate the universal property in Proposition
1.2.5 to the notation used here, we observe that G’(g: A ~ B) = G(g)ja, where g: X x A — B is
an arrow in C. In particular, taking A = tc, and g = idx: X — X, we obtain G’ (idx) = jit. = ¢
Here we use the fact that G preserves the terminal object, and that the product of an object
with the terminal object is the object itself.

We use the definition of G’ on arrows to prove that G’ preserves products; consider the following
three diagrams: on the left there is the C-diagram that mirrors a product diagram in Cx—in

the middle—, while on the right there is the image of such product through G’.
X xAxB AxGB

AxB G
prs x prs G(pr3)jA><B
ﬁrz \/ \é)—’;rz \L}/ ﬁ(p%)ijB \/
B A

A B GA GB

However, since G preserves products, G(pry) and G(prs) are respectively the second and third
projections from GX x GA x GB, and these precomposed with j4xp are precisely the first and
second projections from GA x GB, as claimed.

To show that g’ preserves infima and top element, recall from Proposition 1.2.5 that g/, is the

restriction of R(j4)gxxa. Then notice that for any o, 8 € Pix ,)(A) we have
ga(aAB)=R(a)gxxalaAB)=R(a)(gxxa(a) Agxxa(B)) = gale) Aga(B),
since by assumption g respect the structures, while for the top element:

g4 (P(pry)p) = R(a)axxaP(pry)¢ = R({clga,idga)) R(pry)gx e
= R(lga)R(c)gxey = Tga.
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So (G’,¢’) is indeed a primary 1-arrow.

Finally, suppose that (G, g): P(x,,) — R is another primary 1-arrow such that (G,39) o (Fx,f) =
(G,g) and G(idx) = c.

Then we can compute the composition ((G, g),j) = ((G,3),id)((Fx,f),7), where we define j 4: =
(idoy)a = G(exxaya) = G(idxxa)—see Remark 1.2.6 and Proposition 1.2.5. We claim that
j = j, so that by uniqueness given by the universal property, the equality (G, g') = (G, g) follows.
In our notation, we have to think of idx x4 as the map A ~ X x A, and it is uniquely defined by
its two components: the first one is pr;: A ~» X, the second one is pry: A ~» A. Observe that pry
is the identity of A in Cx, while pr;: A ~» X is the composition of the unique arrow A ~~ tc and
the constant idx:tc, ~» X. Since G preserves products, ja4 = G(idxxa): GA — GX x GA must
be the identity of GA on the second component; in particular the second components of j4 and
ja are the same. Concerning the first component we have G(pr;) = G(idx)G(!xxa) = ¢lga,
i.e. also the first component of j4 coincides with the first component of j4, hence the two maps

coincide as claimed. O

Theorem 2.4.3. Let P, Pix ), R, (G,g): P — R be the doctrines and a morphism with the

same assumption of Theorem 2.4.2. Then

if P, R and are elementary, then g’ preserves the elementary structure;
if P, R and

(G.9)

(G, g) are existential, then g’ preserves the existential quantifier;
if P,R and (G, g)

(

are universal, then g’ preserves the universal quantifier;

if P, R are bounded, with top and bottom elements preserved by g, then g’ preserves them;

)
)
)
(iv) if P, R and (G, g) are implicational, then g’ preserves the implication;
)
) if P, R have binary joins, preserved by g, then g’ preserves binary joins;
)

if P, R and (G, g) are respectively Horn, Heyting or Boolean, then g’ preserves the corres-

ponding structure.

Proof. (i) We need to check that B&Sg o, 5 = gbexBEX,wg'

}Eggg/CxB = EggR(ijB)gXxCxB = R(ijBxB)}Eg)B(xGCQXxCxB

= R(ijBxB)gXxCxBxBE)B}xC = gIC'xBxBEX#Pg'
(ii) We prove that 388¢/ .y g = QICHXWEZ

aggglcwg = ElggR(jCXB)gXxCxB = R(jC)Elg)B;xGCQXXCxB

= R(ic)ax xcI¥ v = 0Ixpo-
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(iii) The proof is similar to the one above, with a little alteration:

V& oxp = VEOR(cxB)axxoxB

= R(ic)VER cccoxxoxn = R(ic)gxxc V5«
and also

0oVx 2 = R(0)axxc (VRxe (=) A P(pry)e)
= R(jc)axxcV5o(—) AR(c)axxcP(pry)e = R(ic)gxxcVxxc-

Note that R(jc)gxxcP(pri)e = Tge since g’ preserves the top element—see Theorem
2.4.2.

(iv) Take o, B € Px ) (A):

gs(a=B) = R({a)gxxa((a— B)AP(pry)e)
= (R(a)gxxa(a) = R(a)gxxa(B8)) A R(a)gxxaP(pry)e = gs(e) = g4 (5).

(v) Compute g/4(04) = R(ja)gxxa(La) = Lga.
(vi) Take v, 8 € P(x,,)(A), then

galaV B) = R(ia)gxxalaV B) = ga(a) v ga(B).

Observe that in order to prove this point it was not necessary to ask for the condition that
P(pry)e A (=) preserves finite joins in P(X X A), which was necessary for § to preserve

finite joins in Proposition 2.3.13: it is enough to ask g to preserve them.

(vii) It follows trivially combining the previous properties. O

A stronger result for Theorem 2.4.2 holds. Let again P:C°® — Pos be a primary doctrine;
fix on object X in the base category, and an element ¢ € P(X). For any other primary doc-
trine R:D°? — Pos, define the category PD x .)(P, R) whose objects are pairs of the kind
((G,9),c:tp — GX), where (G, g) € PD(P, R), such that T < R(c)gx(¢) in R(tp), and whose
arrows are 2-arrows preserving the constant, meaning 6: ((G,g)m) — ((H, f)),d) is a 2-arrow
0:(G,g) — (H,bh) in PD such that cfx = d. There is an obvious functor induced by precom-
position with (Fx,§), from PD(Pix ), R) to PD(x (P, R): it maps any &: (K,€) — (K',¥)
into £py: ((K,€) o (Fx,f),K(idx)) = ((K’,¥) o (Fx,f),K'(idx)). This is well defined on ob-
jects since R(K (idx))(tryxfxp) = & Px,0)(idx)fxe = T, and well defined on arrows since
K(idx)éx = K'(idx) by naturality.

Theorem 2.4.4. Let P be a primary doctrine. Given an object X in the base category and
an element ¢ € P(X), the functor PD(P x ), R) = PDx (P, R) induced by precomposition
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with (Fx,f) is an equivalence of categories for any primary doctrine R.

Proof. The functor is essentially surjective following from Theorem 2.4.2 and faithfulness is
trivial since F'x is the identity on objects. To show that the functor is full, take any 2-arrow
0: (K,%) o (Fx,f), K(idx)) — ((K',¥) o (Fx,f),K'(idx)) and prove that 6: (K,€) — (K',¥')
is in PD(Px ), R). First of all we check that it is a natural transformation K — K': take
any f: A~ B in Cx and break it as the composition of idxx4: A ~ X x A and f(pr,,prs) =
Fx(f): X x A ~ B; moreover observe that idxxa has as first projection the composition of
the unique arrow A ~» t and the constant idx:t ~~ X, and as second projection the identity

pry: A ~» A—see the end of the proof of Theorem 2.4.2. So the naturality diagram becomes:

0a

A KA K'A
éidxXA l{K(idX)!KA,idKA) <K’(idX)IK/A,idK/A)l

HxxA k| KXxKA bxxon—— K'X x K'A )<
éFx(f) lKFxm KFx ()|
B KB K'B

0B

The lower square commutes since §: KFx — K'Fx by assumption, while the upper square
commutes since K(idy)fx = K’'(idx). To conclude, we need for any C-object A and any
@ € Pix ) (A) = P(X X A) p(pr,)e the inequality €4(a) < R(64)¥,(a) to hold. In particular

a € P(X x A), so we can consider
frsac = P(pry) () A P((pry, b)) (@) € Py (X x 4) € P(X x X x A);

apply then naturality of € to idxx4: A ~» X X A to observe that

R((K(idx)'xa,idra))txxafxxaa = €aPx ;) (idxxa)fxxac
= taP((pry, pry, pra)) (P(pry) () A P({pra, prs))(a)) = €a(P(pry)(p) A a) = ta(a)

since a < P(pry)(¢). Moreover, since in particular 6: (K, €)o (Fx,f) — (K',¥)o(Fx,f), we know

that txxafxxa(a) < R(Oxxa)ty, afxxala). So we have:

ta()

R((K(idx)'ka,idga))txxafxxaa
< R((K(idx)'xa,idka)) R(Ox x4 )y« afx xa(c)
R(0A)R((K'(idx )k, 1d i a) ) afx xa(a) = R(0.4)E, (). O

The process studied above in Theorem 2.4.2 describes how to add a constant of sort X that
verifies a formula ¢ in a universal way. Taking the particular case when X = t is the terminal

object, we are not adding any constant—the functor t x —:C — C is essentially the identity—,
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and we are just requiring ¢ € P(t) to be true in the new doctrine—i.e. we are adding the axiom
¢ to the theory P—, in a universal way. In this case we write P,:C°? — Pos; for any given
C-arrow f: A — B, we have P,(f): P,(B) = P,(A), computed as

P(f): P(B)1p(g)e = P(A)1pra)e-

The l-arrow P — P, becomes (idc,f), where f4: P(A) — P,(A) maps an element o € P(A)
to P(la)p Ao € P,(A). All the additional properties of P described in Section 2.3 are clearly

recovered by P,.

Corollary 2.4.5. Let P:C° — Pos be a primary doctrine. Given an element ¢ € P(t), the
l-arrow (idg, f): P — P, is such that T < f¢(¢) in P, (t), and it is universal with respect to this
property, i.e. for any primary l-arrow (G, g): P — R, where R: D°® — Pos is a primary doctrine,
such that T < g¢(¢) in R(tp) there exists a unique up to a unique natural isomorphism primary
l-arrow (G’,g¢'): P, — R such that (G',¢’) o (idc, ) = (G, g).

Remark 2.4.6. In the corollary above, the universal property is the same seen in Proposition
1.5.8, taking the filter V =1 ¢ = {a € P(t) | « > ¢}. It follows that there exists an isomorphism
between the primary doctrines P/ 1 ¢ and P,.

The category corresponding to PD(x (P, R) in Theorem 2.4.4 for some primary doctrine
R:D°® — Pos in this case is called PD,(P, R): objects are morphisms (G,g) € PD(P, R)
such that T < g¢(¢) in R(tp) and arrows are 2-arrows of PD. In particular PD (P, R) is
a full subcategory of PD(P, R). Precomposition with (idc, f) is a functor from PD(P,, R) to
PD(P, R), and has image in PD,(P, R): given (K, t): P, — R, the composition (K, £)(idc,f) is
such that (€f),(¢) = €&fe(p) = €(¢) = T in R(tp), since ¢ is the top element in P,(t).

Corollary 2.4.7. Let P be a primary doctrine. Given an element ¢ € P(t), precomposition
with (idc, ]C)
— o (ide, §): PD(P,, R) — PD,(P, R)

is an equivalence of categories for any primary doctrine R.

Similarly, we can take the particular case when ¢ = Tx € P(X) is the top element, so we are
not making any formula true—the natural transformation f4: P(A) — P(X x A) represent the
inclusion of formulae of sort A in the formulae of the same sort but in a language with a new
constant—, and we are just adding a constant idx:t ~» X, in a universal way. In this case
we write Px:CS — Pos; for any given Cx-arrow f: A ~» B, we have Px(f): Px(B) — Px(A)
computed as

P({prq, [)): P(X x B) = P(X x A).

The 1-arrow P — Px becomes (F,f), where f4: P(A) — Px(A) maps an element o € P(A)
to P(pry)(«) € Px(A). All the additional properties of P described in Section 2.3 are clearly
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recovered by Px. Observe that for this construction, the assumption that the starting doctrine

P is primary is not needed.

Corollary 2.4.8. Let P:C°? — Pos be a doctrine. Given an object X in the base category,
the l-arrow (Fx,f): P — Px and the Cx-arrow idx:tc, ~» X are universal, i.e. for any 1-
arrow (G,g): P — R, where R:D°® — Pos is a doctrine, and any D-arrow c:tp — G(X)
there exists a unique up to a unique natural isomorphism l-arrow (G’,g¢’): Px — R such that
(', g') o (Fx, 1) = (G,g) and G/(idx) = c.

The category corresponding to PDx ,,)(P, R) in Theorem 2.4.4 can be defined for any doctrine
R:D°P — Pos, and in this case is called Dct x (P, R): objects are pairs ((G, g), c:t — GX) where
(G,g) € Dct(P, R) and arrows are 2-arrows of Dct preserving the constant. Precomposition with
(Fx,f) induces a functor from Dct(Px, R) to Dctx (P, R): it maps any &: (K, ¢) — (K',¥) into
Epy: (K, ®)o(Fx,f), K(idx)) = ((K’,¥)o(Fx,f), K'(idx)). This is well defined on arrows since
K(idx)éx = K'(idx) by naturality.

Corollary 2.4.9. Let P be a doctrine. Given an object X in the base category, the functor
(— o (Fx,f),—(idx)): Dct(Px, R) — Dctx (P, R) induced by precomposition with (Fx,f) is an

equivalence of categories for any doctrine R.

Remark 2.4.10. We showed how to obtain from the universal 1-arrow (Fx,f(x,,)): P = P(x,¢)
for fixed object X and element ¢ € P(X), both universal 1-arrows (F'x,fx): P — Px in Corollary
2.4.8 for a fixed object X and (idc,f,): P — P, in Corollary 2.4.5 for a fixed element ¢ in
P(t) as particular cases. Note that we wrote some subscripts to avoid confusion between the
constructions. We now show that we can recover the first 1-arrow from the other two. To do
so, take a primary doctrine P:C°P — Pos, fix an object X and an element ¢ € P(X). Apply
the construction that adds a constant to obtain (Fx,fx): P — Px. Now consider the primary
doctrine Px:C% — Pos and the element ¢ in the fiber over the terminal object Px (t) = P(X).
Apply the construction that adds an axiom to obtain (idcy,f,): Px — (Px)e-

o idepP
F cor Yex cop
X X

Ccep

Compute for each object A, the poset (Px),(A) = Px(A) py
unique Cx-arrow from A to t. The reindexing along this arrow is Px(!xxa): Px(t) — Px(A),
that maps ¢ to P(pry)y, so (Px)y(A) = P(X X A)p(pr,), Which is exactly how the fibers
of P(x,,) are computed. Then compute reindexing in (Px),: given f: A ~ B, we know that
(Px)o(f) is defined as the restriction of Px(f), that is P((pr,, f)), which is how reindexing are

Ixxa)ps Where 'xxa: A~ tis the
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computed in P(x ,y. So the functor (Px), is P(x ). Moreover, observe that the composition of
the 1-arrows is (idcx R f¢)(Fx, fx) = (Fx, f(X#P))'

In the following, we apply separately the two constructions to a doctrine of well-formed formulae
in some language £ and theory 7. At first we apply the construction that adds a constant to a
doctrine, and show that there is an isomorphism between this doctrine and the doctrine of well-
formed formulae in the language with a new constant symbol. Then we apply the construction
that adds an axiom to a doctrine, and show that there is an isomorphism between this doctrine

and the doctrine of well-formed formulae where the theory has a new axiom.

Example 2.4.11. Let £ be a first-order language and 7 be a theory. Consider the doctrine
LT§—: Ctx}” — Pos and the fixed object (z) in the base category Ctx,. On the one hand, consider
the l-arrow (F{,),f): LTS — (LT%)(,), where (LT%),): (Ctxz)?;’) — Pos. Arrows in (Ctxz)(,) are
of the form #( (z); Z): Z ~» 7, and the fibers (LT4)(,(Z) are LT4( (z); ) for any list of variables .
On the other hand consider the doctrine LT?-U{C}: Ctx I s Pos, where c is a constant symbol
not appearing in £. There is a trivial l-arrow (F,¢): LT§— — LT?-U{C} : the functor E is defined
by the inclusion of terms in the extended language, the natural transformation e is defined by
the inclusion of formulae. The universal property of (F(,), f) defines a unique (E’, ¢'): (LT%) ;) —

LT?—U{C} such that (E',¢')(F(),f) = (E,¢) and such that £ (id(y): () ~ (z)) = (e: () = (2)).

Ctx’ = Ctx'zly ey
\F(pr)‘ Ey’
(Ctxg)(();))

|
/e |
(LT?)(M
— f\ll/ ¢/~

LT

Pos

The functor E' maps an arrow ( (z); Z): Z ~ § to the term £( [c/z];Z): Z — § in Ctxzyqey. For a
given pair £( (z);Z),3( (x); Z) such that #([c/z];Z) = 5([c/x]; Z), substitute again [z/c] and get
t =&, so E' is faithful. Then, for a given a term u(Z) in the language £ U {c}, we can consider
c as a variable and substitute each occurrence of ¢ with x, to obtain a term u'( (z); Z) obviously
written in the language £: in particular E'(v') = o/([c/z]; Z) = w(Z), so E’ is full. Moreover,
since E’ is the identity on objects, E’ is an isomorphism.

Concerning formulae, a component of the natural transformation e(;, sends a formula a( (z); %)
in (LT%) () (Z) = LT (2, %) to the formula a( [c/z];Z) € LT?-U{C} (Z). A similar argument to the
one that showed fullness of the functor E’ proves that ¢’ is a natural isomorphism.

To conclude, we can say that the doctrine (LT%)(I) is again a doctrine of well-formed formulae.

Example 2.4.12. Let £ be a first-order language and 7 be a theory. Consider the doctrine
LT4: Ctx” — Pos and the fixed L-sentence ¢ € LT%(). On the one hand, consider the 1-arrow
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(idcex,, f): LTS — (LT%),,, where (LT%),:Ctx® — Pos. Its fibers (LT4),(Z) are by definition
LT4(Z),,, for any list of variables Z. On the other hand consider the doctrine LT (o} Ctx” —
Pos. There is an obvious l-arrow (idctx,, ¢): LT§— — LT?U (o} the natural transformation e is
defined by the quotient of formulae with respect to the extended theory, meaning that for each
component Z it maps any T-provable sequent «(Z) F1 S(Z) into the T U {(}-provable sequent
a(Z) Frugey B(F). To use the universal property of (idcix,,f), we need to check that ey maps
¢ € LT%() to the top element of LTg’u{p}()' However this is true since clearly T Fryg,y .
Consequently there exists a unique (E’,¢'): (LT4), — LT%U{W} such that (E',¢)(idcex,,f) =
(idcix,» ©)-

: o
idgey .

. jop . Jop
\ldCtxc ldCV'

op
Ctx,
\
_— e | T~
LTS (LT%), LTH ey
— f \,AJ// ¢/

op op
Ctx, Ctx,

Pos

The functor E’ is the identity.

Concerning formulae, a component of the natural transformation e’ sends a formula (%) in
(LT4),(Z) = LTA(Z),, to the formula a(Z) € LT%u{y}(f)' Define the inverse function: it maps
B(%) to B(Z) A . This is well defined and monotone, since if we take a(Z) Frygpy B(7), it easily
follows that «(Z) A ¢ 7 B(Z) A ¢. On the one hand, take (%) such that o(Z) F7 ¢, apply e’
to get a(Z), and then send it to a(Z) A ¢, and observe that a(Z) A ¢ 7 «(Z) using the initial
assumption on «(Z). Conversely, take 5(Z) € LT%U{W}(f), send it to B(Z) A ¢, and then apply
¢l to get B(Z) A € LT (%). Observe that 3(%) A ¢ "F7uq,) B(F). So ¢ is indeed a natural

isomorphism.

U{e}

To conclude, we can say that the doctrine (LT%—)@ is again a doctrine of well-formed formulae.



Chapter 3

Rich doctrines and Henkin’s

Theorem

In this chapter, we explore a generalization of Henkin’s Theorem [Hen49], a crucial result in
first-order logic that is used to prove the Completeness Theorem. This theorem asserts that
any consistent theory has a model. To extend this result, we take inspiration from the various
steps involved in the classical approach, but from the perspective of doctrines. We will gradually
introduce the necessary properties that a doctrine (“theory”) P must possess to establish the
existence of a morphism into the subsets doctrine (“model”). A key element of Henkin’s proof is
to extend the language adding constant symbols, and extend the theory to a rich theory, meaning
that every provable sentence of the form Jzy(x) has a corresponding constant ¢ that makes ¢(c)
valid. He then proves that the set of constant in the extended language is a model of the rich
theory, hence in particular it is a model of the original theory.

We will generalize these results by defining a new doctrine ]_3> (“extended rich theory”) starting
from the given doctrine P. The properties of 17_3> will be explored in Sections from 3.1 to 3.7.
Section 3.8 will be dedicated to the definition of suitable models for rich doctrines in both the
elementary and non-elementary cases. Finally, we will conclude our discussion with a possible
statement of the “Henkin Theorem” in the language of doctrines, Theorem 3.8.5.

To begin, let us consider a doctrine P: C°? — Pos. We will not assume that the doctrine has any
specific structure at this time, but we will add the necessary properties as we proceed through

the chapter.

3.1 The construction of the directed colimit P

The directed preorder J:
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For the whole chapter, P: C°? — Pos is a fixed

doctrine, unless otherwise specified.

For a fixed cardinal A # 0, define J the set of finite lists with different entries with values in
{(X,A\)} xeobc,xen. We ask the empty list to belong to J. Define a preorder in J as follows:

(X1,21), s (X)) < ((Y1,91)s o s (Yony Um)

if and only if
{(X1,21), ..., (X, 20)} S{Y1,91)5 -, (Yons Um) }-

Whenever we have X <Y in J, there exists a unique function 7: {1,...,n} — {1,...,m} induced
by the inclusion such that (X;,2;) = (Yo, yr(s)) foralli =1,...,n.

Observe that J is actually a directed preorder: given X,Y € J, define the list Z to be the
juxtaposition of X with all the entries of Y that do not appear in X; then X < Z > Y.

On a sidenote, we point out that we will not to study the case J = (), since this would imply the
category C to have no object.

The diagram D:J — Dct: Define the following diagram on J:

J L Dct
0 P:C°? — Pos
A J{(nyfx)
X = ((X1,21),-+, (Xn,2)) —————— Pup_ x,:Cih_ x, = Pos
" |Fxr tan)
Y= ((91) s (Yo ym)) Py v,:Crpn y, — Pos

where:

e Cp»_ x, has the same objects of C and an arrow from A to B is actually a C-arrow
[1_, X, x A— B;

o Pun x,(A) = P(I[,_, X4 x A), with trivial definition on arrows—it is the usual Kleisli
contruction starting from P for the pair ([[_; X4, T);

e Fx(f:A— B) = (fopry: A~ B) seen as the composition []_; X, x A - A — B;

e (fx)a:P(A) = Pur_ x,(A) = P(I[,—, Xa x A) is the reindexing along the projection over
A;
e Fxy(f:A~ B) = (fo ((Prr(1ys - -+ s PLr(py) X ida): A ~ B) seen as the following com-
position [[;~, Y, x A — [[I_, X, x A — B. Here <p1"T(1)7 . ,prT(n)> is the projection on
the corresponding components from [];*, Y, to []_, X,, since X; appears as the 7(i)-th

component of Y;
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o (fxy)a:P(Ih—; Xa x A) — P(IT;, Ys x A) is defined as the reindexing along the map
(PTr(1)s -+ PTr(ny) X ida.

For any ) < X < Y compute that the composition (Fgy,fxyv)(Fx,fx) = (Fy,fy). Indeed,

between the base categories we have:

Fx: (f:A—>B> — (fprA:ﬁXa ><A—>B>

a=1

and then

Fsv: fpry— <fprA o ({PTr(1ys - -+ s Plr(n)) X ida): HYb X A — B) = <fprA: H Yy x A— B),
b=1 b=1

so Fxylyx = Fy. Moreover (fxy)a(fx)a = P((Prr(1),- -+ DPlr(ny) X ida)P(pry) = P(pry) =

(fy)a. Observe that both equalities follow from the fact that pr, o ((pr (1), ..., Prr(y)) X ida) =

Pry.

Similarly, for any X <Y < Z with induced functions respectively 7: {1,...,n} — {1,...,m} and

7:{1,...,m} = {1,..., s}, we compute the composition (Fyz,fyz)(Fxv,fxyv) = Fxz,fxz)

using the fact that

((Prr(1)s -+ s PLr(ny) X ida) © ((PTrr 1)y -+ 5 PLyr(my) X 1da) = ((PTrrr(1)s - - s Plrrr(n)) X 1da).

So D:J — Dct is indeed a diagram.

The colimit of D: Take the colimit of D in Dct, P:C°® — Pos, computed as in Section 1.3.
Objects in the base category are the same as C, since Fxy’s act like the identity on objects. An
arrow [f, X] in Hom¢ (A, B)—we write [f, )_(] : A --» B—is the equivalence class of an arrow
fiIlh_y Xa x A = B for some fixed X = ((X1,21),...,(Xn,2,)) € J. Recall that one has
[f.X] = [f,Y], for some f": [~ Yy x A = B with Y = (Y1, 41),---, (Yim,ym)) € J if and
only if there exists Z € J such that X < Z > Y making the following diagram commute:

[lo-1 Xa x A
prT(l) 7777 prT(nXId/) \
[, Z.x A B
(Pres(1ysesPre /mh /
Hgnzl Yb x A

Here 7 and 7/ are induced by X<ZandVY <ZinJ respectively.

For any object A, we have P(A) 5 [p, X] for some ¢ € P([],_; X, x A). Here [¢, X| = [¢/,Y],
where ¢’ € P([[,~, Y, x A) if and only if there exists Z € J such that X < Z > Y with induced
function 7 and 7' such that P((pr,(1y,...,Prr(n)) X ida)p = PPrr (1), -5 Plor(m)) X ida)¢’
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in P(T[._, Zc x A). Reindexing is defined in a common list of J: if [f,X]:4 --» B and
[v,Y] € P(B), take X < Z > Y; then

P([f,X]) [v.Y]
:B( |:fo(<pr7—(1)a'~'apr7—(n)> XidA)7Z:| ) |:P(<pr-r’(1)7"'7pr ’(m) deB IZ) Z:|
= [P((prl,...,prs,fo((prT(l),...,prT(n)> ><idA)>)P((prT,(1),...,prT,( x idpg) }

= [P(<PTT/(1)a~~apr7/(m)af° ((Prr(1)s - -3 Prrny) X 1da)))e, }

(Prr(1)se-sPT 7 (n)) Xida
%

[1Z.x A I1Xa xA-1.B

Z.x B Y, x B
[1Ze x (PTT’(l)v--wPfT/(m))XidBH b

Remark 3.1.1. Call (F,f): P — P the map in the colimit starting from D((}): the functor F
maps a C-arrow f: A — B into [f, 0]: A --+ B, a component of the natural transformation f, sends
a € P(A) into [«, ] € P(A). Moreover, by the universal property of the Kleisli constructions, any
morphism D(X) — P is uniquely determined by the homomorphism (F, f): P — P and a choice
of a constant t — [['_; X,. By definition of colimit, any doctrine homomorphism (G, g): P — R
is uniquely determined by its precompositions with (£, f) and a choice of a constant for any pair
(X, A) for every object X in C and any A € A.

Remark 3.1.2. Note that the same construction can be made if we change the cardinals over
the objects: take for any object X a cardinal Ax, and call J the set of finite lists with values
in {(X,\)}xeobc,rery- In this case we just ask for the existence of at least one cardinal Ax

different from 0.

3.2 Listing formulae and labelling new constants

For the whole chapter, P: C°? — Pos is a fixed

implicational existential doctrine, with a small

base category, unless otherwise specified.

Call A = card(| |ycopc P(X)) and build the colimit doctrine P with respect to this cardinal.
Since by Theorem 2.4.3 every doctrine and morphism that appear in the diagram D are implic-
ational and existential, also P is implicational and existential, as seen in Proposition 1.3.2. First
of all consider all objects of C—hence also all objects of C—as obC = {B} peobc. For any fixed
B, we can surely list all elements of P(B) as { [goj 7X(B j)] }jeA where we fix a representative

(B9

oF € P( H XB9) % B)

a=1
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for a given list x®9) ((XfB’j), aj(lB’j)), cee (XT(L](BB’Q) , xiféjj)))) in J. Now consider all formulae
of the kind

3B {%B,X‘B’”] , for all j € A.

Then we have in P(t)
o(B.j (B.j
ﬂtB [QOJBvX( ]):| = |:EI§X((IB,J')90J'BaX( J)] )
where we recall the adjunction:
B

PIXP7 % B) —7 PII X7
P(pry)

Here we write pr; meaning the first projection from the product (][] X\ )) x B.

For any fixed B € obC and for any j € A define df as follows:

o if j =0, then d(])g is the smallest ordinal such that
d? > (B0 for any a = 1,...,nB0;

e if j is a successor or a limit ordinal, then df is the smallest ordinal such that ij > dB for
all h < j and such that

df > mle’k) for any a = 1,...,nBR and k <.

Note that in particular for any j € A:

(B,j)

(B,d7) ¢ {(X{PD &P}

Now, since
(B3

oF e P(J] X9 x B)
a=1
we can take its equivalence class fixing X B2 ¢ g , hence we end up in P(B), or fixing the

list X = (P 2By (x5 2B (B dP)) e, adding (B,d?) to the list

: n(B:)> L (B.5)
X(B’j)—7 hence we end up in P(t). We compute in P(t):

Erd [%B,X(B’j)} — [@vaiB’j)} :
Define in P(]] X P9« B)

%B = P(ﬁ’ﬁﬁﬁﬂym)@f — 50}3
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so that taking its class fixing X, we get

B, B, —(B.j —(B.j
(w2, X% € p(e), with |8, X(PD] =37 [, xP0] — o8 X P )

3.3 The construction of the directed colimit ]_3>

Starting from P defined in the last section, we do another construction.

The directed preorder I and the diagram A:] — Dct: Define the poset I of finite sets
of pairs of the kind (B, j), where B € obC and j € A, ordered by inclusion. We want also the
empty set to belong to I.

I a Dct
0 P:C°° — Pos
N J(idafu)
U={(B1,j1); - (Bnsjin)} * PY:C" — Pos
N l(id,fuv)
V ={(B1,j1), -, (Busm;jntm)} ————— PV:C® — Pos
where
o P4(A) = B(A)iP(')/\" [ P X(,gi,m], with trivial definition on arrows—it is the usual

Kleisli contruction starting from P for the pair (t, Al [¢ X(B“Jl)} )

o (fu)a: P(A) — P(A) is the assignment

LB iy [ X (P30

7] = o] 29 A [ 5740):

. (fMV)A:B(A)iﬂ(!)/\?:l[ B, ;‘((an} — B(A)iP(!)/\?if” [wﬁi,XiBi‘ji)} is again the assignment
0 7] > [0, 7] A PO A" [0, X5
Use associativity and commutativity of conjunction to observe that this is a diagram.
The colimit of A: Take the colimit of A in Dct, B: C°? — Pos. The base category is C, since

all functors in 1-arrows of the diagram are identities.

We recall from Proposition 1.3.1 that the doctrine is defined as

- e,

—>( Uel

where [[o, Y], U] € E(C) for some [, Y] € P(C) such that [o, Y] < P() AT, [wﬁi,)_((*&’ji)
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with a fixed U = {(B1,j1),--.,(Bn,jn)} € I. Here [[a,Y] U] = [[8,Z], V], for [3,Z] € P(C),
8,Z] < PO)A™, [@yf"',XiD““)} with a fixed V = {(D1,11), ..., (D, lm)} € I, if there exists
aW={(A1,q1),...,(A.,q-)} 2 U,V such that in P(C) we have

a Y /\P /\ [ gck’X(Ak Qk)} ﬂ Z /\P /\ { :Iik,X(Ak7qk):|
ol k=1

This assignment appropriately extends to arrows in C.

Remark 3.3.1. We revise in a single diagram the two constructions we did above:

P

\\) Pos £

The doctrine P: C°P — Pos has a small base category, and it is implicational and existential.
Call the composition (id, L) o (E,f) = (F,f), so that both F" and f are the quotient map:

F:C— C, (f:A— B)— ([f,0]: A--» B)
fA:P(A) - ]_D>(A>7 a = [[O"@] 70)}

This morphism preserves implicational and elementary structure.

3.4 ]_3> is rich

We extend the concept of richness for a theory to the language of doctrines.

Definition 3.4.1. Let R: D™ — Pos be an existential doctrine. Then R is rich if for all A € obD
and for all o € R(A) there exists a D-arrow d:t — A such that 3¢ < R(d)o.

Remark 3.4.2. For every object A in the base category of a rich doctrine, there exists an arrow

from the terminal object to A.

Example 3.4.3. The subsets doctrine &2: Set®® — Pos is not rich, since there exists no arrow

t — (0. However, we can remove the empty set from the base category and consider the doctrine
A Set;P — Pos, which is rich.

Theorem 3.4.4. Let P be an implicational existential doctrine with a small base category.
Then the doctrine ]_3> is rich.

Proof. Now, given [[cp,Y] JUj € 1_3>(B)7 we will find an arrow [c, Z} :t --» B such that

Al Y] .U < B([e. Z)[e. Y] U).
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Note that [[¢, Y], U] = [[¢,Y],0]: indeed taking U D U, D we have in P(B)
/\ v, X0 = [, 7]

Moreover, since [¢,Y]| € P(B) in particular [p,Y] = {(p] ,X( ’J)} for some j € A, with

n(B.9)

eP e P( ] x{P7 x B).

a=1

First of all compute itB[[gp,Y} Ul = itB[[gof,)_((B’j)} 0] =3¢ {@f,)_((B’j)} ,0]. Then define

[c, (B, df)] :t --» B as the equivalence class of the identity
¢=idg: B - B,
and compute
B([e,(B,a)[e. V] .Ul = B([e. (B, af))I[ef, X 7] 0] = [[F, X177 0]

Then, in 1_3>(t) we have

if and only if
[T.01,0] < 2E([e. Y], U] — E([e, (B,d7)])[w, Y], U],

ie.
[T.0),0) < 37 [oF, XP] 0] — ([oF, X)L 01

but then compute the implication in P(t) as seen in (3.1) to get

.0),0) < [[w7, X)) o)

which holds since [[1/)3 x 9 ] ,0] is the top element of P (t) by definition: take {(B,j)} 2

and observe that in P(t):
<(B.j <(B,j +(B.j
T, 00 [0, XD = [P, X297 ol x50

This concludes the proof that g is rich.

0
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3.5 Consistency of 5

Definition 3.5.1. A doctrine R: D°P — Pos is consistent if there exists a pair a,b € R(t) such
that a € b. Moreover, R is two-valued if it is consistent and there exists a pair a,b € R(t) such
that a f b and for all ¢ € R(t) one has a <corb<c.

For the whole chapter, P: C°? — Pos is a fixed
bounded implicational existential consistent

doctrine, with a small base category, unless

otherwise specified.

Our goal is to show that the new doctrine ]_3> is consistent: we must be careful not to collapse

fibers of ]_3> to the trivial poset.

Lemma 3.5.2. If R:D°? — Pos is a doctrine with both T and L. Then the following are

equivalent:

(i) R(t) # {x};

11) Tt % J_t,

(iii) R is consistent;
)

(iv) R is two-valued.

Proof. ((i) = (i1)) If Ty < Ly, then for all @ € R(t) we have Ly <a < Ty < Ly, hence for all
a we have a = Ly, hence R(t) is a singleton.

(i) = (i)) Trivial.

((iv) = (iii)) By definition.

((ii) = (ii)) If Ty < L, then for all a,b € R(t) we have a < Ty < 1y < b, hence R cannot be
consistent.

((il) = (iv)) Take a = Tt and b = L and observe that for all ¢ € R(t) we have b= Ly <c¢. O

Remark 3.5.3. Let R be an existential doctrine with bottom element. If R is consistent and
rich, then each of its fiber is non-trivial—i.e. it is not a singleton. Indeed, suppose R(D) =
{Lp = Tp} for some object D in the base category. Then there exists a d:t — D such that
3PTp = R(d)Tp = IP1Lp = R(d)Lp, in particular Ty = L, which is absurd since R is

consistent.

We want to find the conditions making ]_3> a consistent doctrine as well. Using the lemma above,
we want [[T,0],0] £ [L,0],0] in B (t).
However, [[T,0],0] < [[L,0],0] if and only if there exists U = {(B1,51),---,(Bn,jn)} € I such
that .

A [z/;]l X (Bodi } < [L,0] in P(t). (3.2)

i=1



Rich doctrines and Henkin’s Theorem 77

We want to prove this to be a contradiction by induction on ¢. If ¢ = 0, we get [T,0] < [L, 0],
i.e. there exists Y = ((Y1,41), ..., (Yim,ym)) € J such that in P(J],;", Y3)

Py, )(T) < P(lny, ) (L)

ie. T < L in P(I[,~,Ys). It follows from this that a stronger requirement on P is needed:
not only P(t) must not be a singleton, but also each P(A) must not be a singleton, for every
A € obC. Otherwise, P(t) is trivial, hence also I_3>(t) is trivial. So, from now on we suppose that

P has bottom element and has each P(A) non-trivial.

For the whole chapter, P:C°P? — Pos is a fixed
bounded implicational existential doctrine,

with non-trivial fibers, and with a small base

category, unless otherwise specified.

With this additional assumption, we get a contradiction in the case ¢ = 0. Suppose now (3.2)
to be a contradiction for ¢; we will take the rest of the section to understanding when also ¢ + 1

gives a contradiction. Suppose

q+1

A [phn X5 < 1L0) i (),

i=1

,>Q

o ]l R < 40

Jg+1

i=1

For the sake of simplicity we write ¢ instead of y Tl. Moreover, up to a permutation of the
indices i = 1,...,¢ + 1, we can suppose that d; ‘fll > dBl fori=1,...,q.
Compute [z{;ﬁ‘,X( b ]7)] as the class of some @ paired with a list 7' of J with entries in
! Boio B\ V1 B;
= (s 00 ()}

Then call B
g+17g+1
G = { (X((quJrl)qurl), xt(qu“’jq“)) }n e :

a=1

and rename the pairs:

FNG={(Zs.2) Yoy,
FN(FNG)= {(WC,’LUC)}C 19
G\ (FNG) ={(Ve,ve) ey -

Observe that (Bgi1,d; ‘fll) ¢ GUF: it does not belong to G by definition of d; "“ , it is different
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from all the pairs (B;, dJ ) for i =1,...,q since we are taking the conjunction of ¢ + 1 formulae
by assumption, and it is different from all the pairs (Xt(lBi’ji),ngi’ji))
a=1,...,nBo3) since dfz‘f:;l > dﬁ" > 2P for i =1,...,gand a = 1,...,n(Bii),

From now on, we write (B,d) instead of (Bq+17dj q++11) in order to lighten the notation. We

for 2 = 1,...,q and

compute [9, T ] A [w, X iB’j q“)} as the equivalence class of an element in

_F
—_———
P(I[Wex [1%Zy x[[Ve x B)
g

paired with the list
S = (...,(Wawc),...,(Zb,zb),...7(Ve,ve),...7(B,d)).
We can assume 6 € P(ITW, x 11Z;,) and

W o (Zy20)s s (Veswe), s (Bod))] = [0, XL

where ¢’ € P(I1Z;, x IIV, x B) is a reindexing along a suitable permutation of 1. We can do so
recalling that

n(Ba+1:9g+1)

G = {(XC(LB(,H,qu), mngH,jw)) }a:1 = {(Zp, 2) oy U{(Ve,ve) Yo, -
Then
(B.jat1 G
[ ] [1/% Jut ):| [P((prl,pr2>)9/\P((prQ,pr3,pr4>)z//,S] GE(t)
Then [ [ B.jg+1 } [L, 0] if and only if there exists a set {(Y},, yh)}E:p disjoint from

FuUug U {( d)} such that in P(ITW, x I1Z; x IIV, x B x IIY},) one has

P((pry,pry))0 A P({pry,prs, pry))y’ < L

if and only if in in P(IIW, x I1Z;, x IIV, x IIY}, x B) one has

P((pry, pry))0 A P((pr2,pr3,pr5))w’ < 1 = P({pry,pry, prs, pry)) L

if and only if, using 35, 17wy xmy o P((Pre, Py, prs, pry)), in P(IW, x 17, x 1V, x 11Y},)

one has

I xnzxmv <y (P((pry,pra))d A P((pry, prs, prs))y’) < L;

then use Frobenius reciprocity, and note that P({pr;, pry)) = P({pr;, pry, prs, prs))P({(pry, pry))
as the composition of the projections from ITW, x I[1Z, x 11V, x 1Y}, x B to IIW, x 172, x I1V, x I1Y},
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to IW, x I1Z, in order to get

M xnzxrv <y P((Pra, prg, prs))v’ A P((pry,pry))d < L.

Claim 3.5.4. T < HEWXHZXHVXHYP«pr%prBapr5>)w/'

If this is the case, then we get P({pr;,pry))f < L, hence we have

[P({pry,pro))0, (- ooy We,we)y ooy (Zby28)y ooy (VeyVe)y e v oy Yy tn), .- )] =

q .
= 0.7] = A\ [p2 X)) <10
=1

which is (3.2), a contradiction for our inductive hypothesis.

Now recall the definition of
_ o Bat1 _ B Bgt1 Bgt1
w - qu+1 - P(prl)anxqu+1»jq+1)sojq+1 Squ+1 .

Using the same permutation that defines ¢/’ and naturality of the existential quantifier, the claim

above becomes equivalent to

T< HEWXHXXHYP«prQ,pM»w-

‘We have

3§W><HX><HYP(<pr27pr4>)w = HEWxHXanP“PrmPr37pr4>)P(<pr1aPr3>)w
= P(<Pr27pr3>)3§XxHYP(<PT1>Pf3>)¢7

so it is sufficient to prove T < 38, 1y P((pry, prs))i. Substituting ¢ with its definition, omitting

a+1 X(Bq+17jq+1)
a

+1

superscripts and subscripts of (pi and we want to prove

Claim 3.5.5. T <35, v (P(prl)EIEch — P((prl,prg))g0> in P(IIX x IIY').

For the whole chapter, P: C°? — Pos is a fixed
Boolean existential doctrine, with non-trivial

fibers, and with a small base category, unless

otherwise specified.

The doctrine P is Boolean, so we can suppose that

T= (ElﬁXanP(<Pr1apr3>)80) \ (ﬁHEXxHYP(@errg»‘P) .

Then, use naturality of Elf_) to write P({pry, pra)) 38 i1y P((DPr1, pr3)) ¢ instead of P(pry )35y p.
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Hence now it is sufficient to prove

3ﬁ){xnyp(@rbP]f3>)50
< HEXXHY<P(<pr17pr2>)agX><HYP(<pr17pr3>)90 - P(<pf1»Pr3>)90) (3.3)

and

ﬁHIBIXxHYP“prhprS”‘p
< E|§XxHY (P(<p1"1apr2>)3§XxHYP(<pr1ap1"3>)‘P - P(<Pr1ap1"3>)§0)v (3.4)

so that the Claim 3.5.5 follows by taking the join of (3.3) and (3.4).
To prove (3.3) it is sufficient to see that

P({pry, pry))e < P({pry, pra))IHix sy P((pry, prs))e — P({pry, pry))e (3.5)

if and only if

P(<Pr1vpr3>)90/\P(<P1“17Pr2>)3§XxHYP(<PT1aPr3>)80 < P({pry, pr3))ep,

which is trivially verified; then get (3.3) by applying 35y, 11y on both sides of (3.5).
Now write ¢’ instead of P({pr;, prs))y, and we prove (3.4) by showing first

ﬁEIgXxHY(PI < HEXxHYP«pI"pPf2>)_‘3§XxHY90/ (3.6)

and then

3 x sy P(Pr1, pra)) I x ey @' < IMxserry (PUPr, Pra)) W x v 9’ = ¢')- (3.7)

The proof of (3.7) is quite immediate: observe that in general in a Boolean algebra we have
—a < a — f—if and only if L = —a A a < f—, hence take o = P((pry,pra)) Iy @’y B=¢'
and apply 3B+, 11y to get (3.7).

To conclude, we show that given v € P(ILX x I1Y)) we have v < 35 11y P({pry, prs))7, so that
we get (3.6) by taking v = =35 1y ¢’. To do so, we need to look at the set {(Yh,yh)}g=1
defined above. We can suppose that one the Y}’s is actually the object B—in which case the
associated ordinal yp, is different from d. If this is not the case, we add the element (B, k) to
{(Vy, yh)}Z:1 for some ordinal k € A that does not appear in any second entry of (B, A) belonging
to FUGU{(B,d)}—note that such new pair does not belong to {(Y¥4, yh)}zzlz if it did, we did
not have to add it to such set. So, up to a permutation of indices and up to a change of h with

h + 1, we can suppose that in the set {(V, yh)}gzl we have Y = B.
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So now we look at the adjunction:

P({pry,prs))

b+e h _— b+e h
P(ITH Xa x oy Ya) T P(IeES X x [Ty Ya x B)
I I xxny I
bte -1 P(<PT17P1"2»PY§>) T4e 1
P( aielXaXHh;lnyXB)%P( aielXaXHh;1YhXBXB)
X XY

P({pry,pra,prs,prs))

so if we look at our claim in the lower part of the diagram we want that given v € P(IIX x ITY'),

then v < 3B 1y P((pry,pry, pr3))y. Now, consider the unit of the adjunction at the level
P(<pr17pr27pr3>)’ya hence

P({pry, pry, pr3))y < P(<Pr17Pr2>PT3>)3§XxHYP(<P1"17pr27pf3>)7;

now, apply P((pr,pry, prs,pry)), so we get exactly v < 3F x| 1y P((pry, pry, prs))y as claimed.
In particular we proved the following:

Proposition 3.5.6. Let P:C°? — Pos be a Boolean existential doctrine such that each fiber is

non-trivial, and the base category C is small, then the doctrine ]_3> is consistent.

Actually, we will later slightly weaken the assumption that P is Boolean, and prove the consist-

ency of g anyway.

3.6 Weak universal property of ]_3>

For the whole chapter, P: C°? — Pos is a fixed

implicational existential doctrine with a small

base category, unless otherwise specified.

Theorem 3.6.1. Let P:C°° — Pos be an implicational existential doctrine with a small base
category. The l-arrow (F,f): P — ]_3> is implicational existential and it is such that ]_3> is rich,
and it is weakly universal with respect to this property, i.e. for any implicational existential
morphism (H,h): P — R where R:D"" — Pos is an implicational rich doctrine, there exists an
implicational existential 1-arrow (G, g): E — R such that (G,g)(F,f) = (H,b).

Moreover, if P, R and (H,b) are respectively bounded, universal, elementary, then such (G, g)

is respectively bounded, universal, elementary.

p (H,H)

//Z
<FN " (G.9)

v
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Proof. Recall the colimit diagrams:

Prx,
(F)?V \ (F§ %)
(D)

Py,

ld fu) / ld,ql,{)
/(ld f)

(id fuv
m (id,qv)

First of all, fix a well-ordering of obC, and consider the lexicographic order on obC x A. We need

P

to define a constant in D for all new constant of C.
Recall that for any given object B we have P(B) = {[apJBJ_((B’J)] } - where
JjE

n(B.d)
oP e P(I] x{P7 x B).

a=1

Bg,0)

(
We start from (By,0): consider F° € P(IT_, X (P00 o By) which is used to define the last
entry of the list XiBO’O) in Section 3.2. Take hrix, x5,90° € R([] HXPO « HBy), hence there

exists a constant in D—which is actually a list of constants

n(Bo:0)
(Bo,0) _ . H (Bo,0)
[ = (C, . (Bp,0) (Bg,0)yy«-- Bg,0 Bg,0 c Boy )it — HX x HB
(o0 om0y Cx B, a0 ) C(B0.af) a 0
n ' a=1
such that

MTH Xy x HB B Bo,0 B
3 “HBop v« By 0n® < R(EPO)hnx, x5, wo°

by using the richness property of R. This defines an assignment (Y, \) — [c(y,»):t — HY] for
some pair (Y, A): our goal is to extend this to every pair of such kind. Consider now (B,j) >
(Bo,0)—i.e. B > By in obC, or B = By and j > 0—, and take ¥ € P[], X{%7 x B).
Take all the pairs (X ISB’j ),xéB’j )) that have already appeared as subscripts in the components
of some ¢4 for some (A,i) < (B,j). Their indexes form a subset K(5J) C {1,... n(B:)},
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n(B.d)

Evaluate the element hnxaxggof € R(II,_; HXPD x H B) in the corresponding constants:

R({pry,..., C(XZSByj)vngyj)y s PIp(B9) prn(B,j>+1>)fJnxaxB§0§3
n (3.8)
RHXP? x . x X x .. HX'%9) x HB)

where each HXZSB’j) for b € K(B:9) is the terminal object t. Let

ﬁHXngﬁ = JI Ex®7,
ag K (B.9)

and observe that there exists a canonical isomorphism

n(B:7)

Wy [ JHXSED x HB — HX{PD x - x HX{"P x . HXT7) < HB.
So now there exists a list of constants
C(B’j) = < ey C(X((lB,j)’mng,j))7 AN 7C(B,dj43)>:t — HHX(EB’j) x HB

such that

HPHXGXHBR(W(B,j))R(<pr13"'aC(XlSBJ) 1231.7))7”'7prn<3=j)+1>)hHXa><Bg0jB ( )
’ 3.9

< R(c(B’j))R(W(B,j))R(<Pr1a ceey C(XIEB,J-),:61(713’,3-))7 e ,prn(B,j)+1>)f)HXa><BLpJB

by using again the richness property of R. Note that the reindexing over projections and constants
is the same as above (3.8).

In this way, we are able to define c(y y) : t — HY for all Y € obC and A € A. Indeed, df >4
for all i € A—see Section 3.2; then consider (Y, \), so that we can surely find C(y,ay)- But then,
if d}\/ = A, we defined c(y,y); otherwise dg\/ > ), hence by choosing C(y,dy) We must have already
fixed c(y,r). Once completed the assignments given by all pairs (B, j) € obC x A, extend then the
assignment (Y, X) — c(y,) to all the remaining pairs by choosing any constant c(y »):t — HY".
To do so, recall that since R is rich, for any object D in D there exists a map t — D.

Now, in order to find a 1-arrow I_3> — R, we need to fix for all i € I, a 1-arrow (Sy,sy): PY — R
such that (Sy,sy) = (Sy,sv) o (id, firp). In particular all functors must coincide Sy, = Sy for all
U,V eI, we will call it G : C — D; hence syy = syfi;y whenever Y C V in I.

However, since PY—where U = {(B1,71)s -+ (Bnyjn)}—is a Kleisli construction starting from
P with respect to the pair (t, A}, [wﬁi,XiB“ji)}) , we can equivalently define (G,py): P — R

such that A}, [zbﬁ'i,XiBi’ji)} — T € R(t) through (py)¢; this allows us to get sy such that

pu = sufu. Equivalently, each [iji i X iBi’ji)} must be sent to the top element.
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Moreover, for () € I we need to have also s: P — RG. Since s = sy,fy, for all Y € I, we need—and
it is also sufficient—to define s such that it maps each [ PX (B. )} to the top element of R(t).
Now use the fact that P is a colimit as well, so that in order to get (G,s): P — R we need
for all X = ((X1,21),...,(Xy,2n)) € J a l-arrow (Hg,bx): Pux, — R such that (Hg,hx) =
(Hy,by)o(Fxy,fxy) forany X <Y in J. Since Prx, is the Kleisli construction, starting from
P with respect to the pair ([]_; X4, T), we want a l-arrow P — R and a choice of a constant
t — [[_, X,. Of course, take the arrow (H,§): P — R and the constant (¢(x, z1),- - C(x,.20))-
We dedicate the rest of the section to the check that the induced s maps each {%B X (*B’j)} to

the top element. Consider the C-arrow

n(B.D)

{id,XiB’j)} :t - [] X% x B,
a=1

equivalence class of the identity arrow in C

n(Bd) n(B:D)
id: [ X9 xB— [[ X9 xB.
a=1 a=1

The reindexing in P along this map is the evaluation in the corresponding new constants.

Compute now s { PX (Bi )}, using the naturality of s and the commutativity of the triangle

(Hv h) = (Gaﬁ) o (Evi)

se [uf, X7 = suP (fia, X177]) [0F,0] = RG (fid, X77] ) s, [07,0)

—R C B,j B,j ..., C B,j B,j C B B
({ex@n pBnys o xXBP, 2By (B,d%))) D, x BY;

xT

For simplicity, write ¢ = <C(X£B,j) SBDY C(X(J(Béj)v) (BE,B]‘)V)), C(B’d;s)> for the list of D-constants
, By (B :

above, and recall that
Qﬁf = P((pry, ... 7prn<B=j>>)3§X{gB‘j)@f — %0;3-
B ¥(B.J)] . :
SoTSﬁt[ j , X, } if and only if
R(e ‘ B B - B,
(@bnx,xsP(pry, ..., Propm.n))3nx, @5 < R@)bnx,xB¢;;

using naturality of h and the fact that H preserves products, and then the fact that b preserves



Rich doctrines and Henkin’s Theorem 85

the existential quantifier, we get

R(@)brix, x5 P((Pry, - .. Prye.0)) 3Hix, 07
= R(@R((pry, ..., pr,zi))bnx, IHx, @)

= R(E)R«prl, s aprn(ij)>)EggXabHXa><B<ija

so we need to prove

HB B - B
R(<C(X<B,j> 2By Cx (B (B )>)3HHXabHXaXB‘pJ‘ < R(@)hnx, x59; -
1 »T n(B.3) " (B,35)

Observe that the right-hand side of this inequality we have exactly same element of the right-hand
side of (3.9).

t
(B,j) — . .
lc *(“wC(X((IB,]),m(aB,]))v'wc(B,d;S))

[[EXx" x HB

ol

2| Y(B.j)
—_—

x HXP) x .. .HX'5?) x HB

J
l(Prwwc(XgB,j)JéB,.j))warn(B,j)H)
B,j B,j B,j
HX"? % x HXP? x .. .HX'T/) x HB

So it is enough to prove

R({C, (B.j) _(Bi)yy--+sCpyr(B y ()3 B
(< (Xia,ﬂ,ng,J))y 5 (Xilf);,)j)’miflg,)j))>) HHXahHXaxBQOJ
THX,xHB . B
< Elt a R(W(B7j))R(<pr1,...7C(XPEB,]‘)"T’()B,J‘)),...,prn(B,j)> X ldHB)bHXaXBSOj .
Write 7 for the list (prq,... Y C(X(BD (B . Pry, 5.5 ), o that
<pI‘17 . ,C(XEB,j)7w£B,j)), ce ,prn(B,j)+1> =7 X idHB,

write o for every component except for the last one for the map ¢(£+7) | so that ¢(F+7) = (o, c(B dB)),
)

and write w’ for the canonical isomorphism

[[axPD — BxPD %o x HXPD . HX G

n(B,
so that w(p, j) = w' X idgp. In particular ¢ = (7 x idgp)(w’ x idHB)c(B’j), SO we can compute
the list <C(X£B,j)’z§5,j)), ceey C(X,ffifj,;) ,szg-y)j))f
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<C(X§B,j),z§B,j))7 e 7C(X7(”L}(3],3J;.)i) ,a:if‘ij)j) > = <pr]_7 L) 7prn(B,j)>E
= (pry,..., Py ) (7 X idgp)(w' x idHB)C(B’j)
= <pr17 sy prn(Byj)>(TOJ, X idHB)C(B’j) = Tw/O'.

So now we have:

R(<C<X§B,j)@§3,]‘)), e ,C(X(B‘j)

o0 o DX, = ROR()3HEx,

) (B

= R(U)H%I?XQR(TW/ x idg);

hence, we are left to prove that R(0)35 < A XaxHE

Now, since Iy HXaxHE — A Xa 3B, we should prove R(0) < 3% but this holds since

o:t — [IHX, and we can apply R(c) to the unit dpdigx,) < R(!ﬁHXa)EIE?HX".

Since we defined (G, g) through directed colimits and Kleisli constructions, implicational and
existential structure are preserved by (G, g); moreover, if R has as additional structure any
between bottom element, universal quantifier, elementary structure, preserved by (H,b), then

also (G, g) does. O

3.6.1 2-arrows and weak universal property
We extend the result to 2-arrows.

Proposition 3.6.2. Let P:C°? — Pos be an implicational existential doctrine with a small
base category. Consider the l-arrow (F,f): P — ]_3>, and let (H,H): P — R be an implicational
existential morphism where R: D" — Pos is an implicational rich doctrine and let (G, 9): ]_3> — R
be an implicational existential 1-arrow such that (G, g)(F,f) = (H,§). Then precomposition with

(F,f) induces an equivalence between the coslice categories
—o(Ff):(G,9) | Detp 1 a(B, R) — (H,h) | Deta - 3(P R).

Proof. Take any two objects v: (G, g) — (M, m), u: (G,g) — (N,n) € (G,9) | Dct/\vrﬁﬂ,g(]_-’), R),
for some (M, m), (N,n): B — R; then take an arrow d:v — p. Since the functor F acts as the
identity on objects, precomposition with F' applied to the natural transformations v, u and ¢ is

the identity:
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(G.g) L Det 7 5(B.R) —— s (H.b) | Detp 7 -a(PR)
(M, m)(F,)

In particular, faithfulness of the precomposition functor follows trivially. We show that the
functor is essentially surjective.

Take a 2-arrow v: (H, h) — (K, ¢) where (K, £): P — R is an implicational existential morphism.
We want to find a morphism (M, m): B — R and a 2-arrow (G,g) — (M, m), where (M, m)

makes the triangle with (K, €) commute.

(H,b)
/E,Y\
P—"x&y 3R
\\ (G,%\“\

(F.f) ‘
B (am)

Recall that (G, g) is uniquely determined by (H,h) and a choice of c¢(x z):t — HX for each
(X,z) € J. Moreover, having a 2-arrow 7 means that we have a natural transformation
v:H = K such that hx < R(yx)tx for all X € obC. To define (M,m), we look for a con-
stant d(x g):t — KX for any (X, z) € J such that the corresponding induced map P — R maps
each [wf,)_(iB’j)} € P(t) in the top element of R(t). Define d(x ;) = Vx - ¢(x,z), and then we
check that in R(t)

T S R(<d<X£B,j)7x§B,j)), ey d(x(B 3) (B J) )7d(B’d],B)>)EHXa><B'I;/}jB'

(B, (L)
By using naturality of v and the fact that both H and K preserve products, we get the following

commutative triangle

(ool (B3 L (Bg) ool aB))

t L ., [IKX, x KB

(-4-70(XKB,J‘>,m{B.,j)y---vC(B,de\) A'XB

[[HX,x HB
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Then, using the definition of ¢(x ;)’s and the fact that v is a 2-arrow we have:

B
TS RU(ex ) 4501y s Cx B (B9 ) ¢(B,a7))) X, x BY;
’ ¥

n(B:3) " n (B

S R{Cx B0 By Cx B (B )7C(B,d]B)>)R('7HXa><B)BHXawajB

)
n(B:3) " n(B,7)

as claimed, so we defined a morphism (M, m) such that (M, m)(F,§) = (K, ¥8).
To conclude essential surjectivity, we show that v is actually a 2-arrow also between (G,g)
and (M, m). Take any C-arrow [f, )_(] :A --» B, where f:]]'_, X, x A — B is a C-arrow and

X = ((X1,21),..., (X, z,)) isalist in J. Naturality means that the following square commutes:

GA — MA
G[f,)_(]l lM[f,)_(]
GB 25 MB

Observe that the D-arrow v4: HA — KA is indeed an arrow from GA to MA, because the
functors G and M act like H and K on objects respectively. Use now the definition of G [ £, X }

and M [ f, X ], so that we need to prove the commutativity of the outer rectangle:

HA— 7 s KA
<E'!7idHA>l l{i!,idKA)
[THX, x HAT TS [[KX, x KA
)| |xe
HB ——X . KB
where € = (c(x, 2,)- -+ C(X,,z,)) and symilarly d= (d(xy,21)s -+ d(x,,2,)) Therectangle can be

easliy divided in two commutative squares: the lower one is clearly commutative by naturality
of ~, while the upper one is commutative too since ymx,xa = IIyx, X v4 and (d!,idg4) =
(Myx, xidga)(@!,idga). So we get v: G — M, as claimed.

To conclude, we show that it is indeed a 2-arrow: take any [[o, X|,U] € ]_3>(A) for some element
a€ P(ITh_; Xo x A) and X = ((X1,21),...,(Xn,zn)) € J, we prove that in R(GA)

gal[a, X], U] < R(ya)mal[a, X],U).

Using the same notation we used above for ¢ and d, we compute:

gallo, X]U) = gal[a, X] 0] = R((@],idga))bix, xaa < R(@idga)) R(ix, x4)biix, < A
= R(va)R((d-!,id g ) )brix, x a = R(va)mal[a, X] U]

as claimed.
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At last, we check that the functor — o (F,§) is a full functor between the coslice categories.
Suppose to have v: (G,g) — (M,m), u: (G,g) — (N,n) € (G,g) | DCt/\;r’_)’g(l_D),R), for some
(M,m), (N, 11):]_3> — R. Moreover, let §: (M, m)(F,f) — (N,n)(F,f) be a 2-arrow making the

triangle on the right commute.

(G.9) (H,b)
) . (N.n)(F.})

(T p—— e » (N,n) (M, m)(F,§

We prove that ¢ is also a 2-arrow between (M, m) and (N,n). Similarly to what we did be-
fore, define for any (X,z) € J the D-arrows d(x q):= M [idx, (X,2)]:t = MX and e(x )=
N lidx, (X,z)]:t — NX. Apply naturality of v: G — M and p: G — N to the arrow [idx, (X, z)]
to obtain respectively yxc(x o) = d(x,z) and pxc(xz) = €(x,z)- However, since dx - yx = fix,
we get

Oxd(xz) = €(x,z)- (3.10)

Now fix a C-arrow [f,X] :A --» B, where f:[[l_, X, x A — B is a C-arrow and X =
((Xl,xl), ey (X, xn)) is a list in .J; moreover write d = (dixy,21)> -+ d(x,,2,)) and symilarly

€=(e(x,,21)»€(Xn,an))- Naturality of 6: M — N means that the following square commutes:

MA——% s NA

(g‘!,idkf‘q)l l(é-!,idNA>
[[MX, x MA"™ ¢ T[NX, x NA

MF(f)l JNF(f)

MB —— % __ , NB

Commutativity of the lower square follows from naturality of 0: MF — NF, while the upper
square commutes if and only if dx,d(x, 2,) = €(x,,z,), but this follows from (3.10). This concludes
the proof. O

3.7 Consistency of ]_3>, weaker assumptions

Recall that, given a doctrine P: C°P? — Pos which is Boolean, existential, with non-trivial fibers,
and with a small base category, the construction I_3> is consistent and rich. As hinted at the end

of Section 3.5, weaken the assumption as follows.

Proposition 3.7.1. Let P:C°? — Pos be a bounded existential implicational doctrine such

that each fiber is non-trivial, and the base category C is small, then the doctrine 5 is consistent.

Proof. We start from P, and we build the boolean completion P-_:C” — Pos—see Section 1.4.
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We have the following commutative diagram:

The map P — F is (Fp,fp) defined in Remark 3.3.1, the map P — P-, is (id, =) given by the
completion, the map P, — P;; is (Fp__,fp._) again defined in Remark 3.3.1 corresponding
to the construction applied to the doctrine P-—. Then, use the weak universal property of
P — g—see Theorem 3.6.1: the doctrine P;; is implicational, rich, and the composition of
the upper morphism with the one on the right preserves the bounded implicational existential
structure because both arrows do; so there exists a map ]_3> — P;; closing the diagram and
endowed with the structure just mentioned. Note that all P__(X) are non-trivial, since top and
bottom element are computed in P(X), in which these are distinct element by assumption. In
particular, since P-_ is also Boolean, it follows from Proposition 3.5.6 that 1323 is consistent.
But then, since there exists a map g — P;; preserving, among others, T and L, if P;; is

consistent, ]_:; must be consistent too. O

3.8 A model of a rich doctrine

Let P:C° — Pos be a bounded consistent existential implicational rich doctrine. Let V C P(t)
be an ultrafilter and P/V:C°P — Pos the quotient doctrine. Such ultrafilter exists since T # L in
P(t), and we can take an extension of the proper filter {T}. The doctrine P/V is again bounded
existential implicational, and all of these structures are preserved by the quotient morphism
(ide,q): P — P/V. See Section 1.5.1 for more details.

3.8.1 Definition of a model

We now build a model of P/V in the doctrine Z:Set;® — Pos, meaning a doctrine homo-
morphism (T, g): P/V — . Also, this model preserves the bounded existential implicational
structure. Define I' := Homc(t, —): C — Set,. It is well defined since P is rich, and this clearly
preserves the products. Then, define for a given X € obC, gx: P/V(X) — A (Homc(t, X)):

gxlpl ={et = X [[T] < P/V(c)lp]} =
={at = X[[T] < [Plo)y]} =
={ct— X | Plc)p e V}.

] <
] <

Proposition 3.8.1. Let P be a bounded consistent implicational existential rich doctrine, let
V C P(t) be an ultrafilter, and let P/V be the quotient doctrine. Then the pair (T, g), where
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I' = Homc(t,—) and gx[p] = {e:t = X | P(c)p € V} for any object X and any [¢] € P/V(X)

is a bounded existential implicational morphism.

Proof. gx is monotone: Suppose [¢] < [¢] in P/V(X), i.e. there exists # € V such that
P(lx)0 < ¢ — 1; we show that gx[¢] C gx[¢)]. Let c:t — X be an arrow in C such that
P(c)p € V. Apply P(c) to the inequality above and get 8 < P(c)(¢ — 1); so P(c)(¢ — ¢) € V.
Then, P(c)p A P(c)(¢p = ¢) < P(e)y € V, ie. c € gx[¢].

gx is a natural transformation: Take f: X — Y an arrow in C. We want to show that the

following diagram commutes:

Y P/V(Y) £ 2(Homc(t,Y))
fT | Jwronr
X P/V(X) 25 2(Homc(t, X))

Consider c:t — X; ¢ € gxP/V(f)[p] if and only if P(c)P(f)¢p € V. On the other hand,
c € (fo—)"tgy[y] if and only if fc € gy[y] if and only if P(fc)p € V.

In particular, (Homc(t,—),g) is a morphism of doctrines. We now prove that all the other
properties are preserved.

gx preserves top and bottom elements: Compute
gx[Tx]={ct > X | P(c)Tx € V} = Homc(t, X),
since P(¢)Tx = Ty € V for any c.
gx[lx]={ct—> X |Plc)Lx € V} =10,

since P(c)Lx = L¢ ¢ V for any c. Moreover,

gx preserves meets: Compute

ax ([l A[]) = gx([p AY]) = {e:t = X | P(c)p A P(c)p € V}
={ct = X[ P(c)p € Vand P(c)y € V} = gx[p] Ngx[¢].

gx preserves implication: Compute

gx ([l = [¥]) = ax([p = ¥]) = {e:t = X | Pc)p = P(c)p € V5
gxlel = gx[P] = {c:t = X [ P(c)y e VIU{et = X [ P(c)p ¢ V}.

First of all, suppose c:t — X be such that P(c)p — P(c)yp € V; then consider P(c)p. If
Pe)p € V, we get P(c)p A (P(c)p — P(c)y) < P(e)y € V; otherwise, P(c)p ¢ V. In
both cases ¢ € gx|[p] = gx[¢]. For the converse, take at first ¢ such that P(c)) € V. Since
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P(e)y < P(c)p — P(c), we get P(c)p — P(c)y € V. Then, take ¢ such that P(c)y ¢ V; since
V is an ultrafilter, P(c)p — L € V. But then, P(c)p — L < P(c)p — P(c)y since P(c)p — (=)
is monotone; so P(c)p — P(c)yp € V.

gx preserves existential quantifier: Recall that, given a function between two sets h: A — B,
the left adjoint to the preimage h=': Z(B) — Z(A) acts on any subset of A as the image
3, =h: P(A) - P(B).

So now we show Jpr o gx <y [p] = gxﬂ§ [] for any pair X,Y of objects in C. First of all, observe

that the inclusion (C) holds if and only if gxxy[¢] € (pry o —) tgx [Tk ] but

(pry 0 =)~ tax[Bx ) = P (pry 0 —)gx[3x ] = gxxv P/V(pry)[Fx¥]
and [p] < P/V(pr;)[3%]. Concerning the converse, observe that

Jpr,0-0xxy[p] = {c:t — X | there exists d:t — Y such that (c,d) € gxxy[o]}
= {c:t — X | there exists d:t — Y such that P({c,d))p € V}.

Then take c:t — X such that P(c)3%¢ = 3¥ P((c!,idy))p € V. Since P is rich, we can take
d:t =Y such that

so that ¢ € Jpr o gxxy (@] -

Example 3.8.2. A counterexample to universality. We prove that in general, if we add the
universal quantifier to our structure, it is not necessarily preserved by the model. We will consider
a slight change of the domain in the realizability doctrine, defined in [HJP80]: R:Set,® — Pos
takes value from the opposite category of non-empty sets. For each non-empty set I, define
the following preorder in Z(N)! = {p:I — Z(N)}: we say that p < q if there exists a partial
recursive function ¢:N --» N such that for all i € I the restriction ¢),;):p(i) — ¢(i) is a total
function; reflexivity is witnessed by the identity idy, while transitivity by the composition of
the two partial functions. Then, define R(I) to be the poset reflection of this preorder. The
reindexing along a function «:J — I is given by precomposition — o a: R(I) — R(J); note that
if p < qin 2(N)! is witnessed by :N --» N, also pa < ga in Z(N)” is again witnessed by .

R is primary: First of all observe that in each R(I), the constant function T;:I — Z(N)
sending each i — N is the top element: take any other p: I — Z(N) and consider idy, so that
the inclusion idnj,¢;y:p(i) — N is a total function for every i € I, giving p < T7. Moreover,
for any «o:J — I, precomposition Tra = T; is again the constant function to the element N,
so the top element is preserved by reindexing. Then, for any p,q: I — Z(N), define for each
i€, (pAq(i) = {{(a,b) € N | a € p(i),b € q(i)}; here (—,—):N x N < N:{(m,m) are

Cantor’s pairing and unpairing functions. The inequalities p A q¢ < p and p A g < ¢ are witnessed
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by the—total—functions m1: N — N and m3:N — N respectively. Suppose now r < p and
r < g, with given recursive functions ¢ and v; then define {p,1): N --» N whose domain is the
intersection of the domains of ¢ and ¥, sending n € domyNdoms) to (¢(n),(n)), so that (p, )
is partial recursive and witnesses » < p A q. As before, take a: J — I: for any j € J we have
(pA@)(a(j) = {{a,b) € N | a € pa(j),b € qa(j)} = (pa A ga)(j), so the meet is preserved by
reindexings, hence R is a primary doctrine.

R has bottom elements: In each R(I), the constant function By:I — Z?(N) sending each
i — 0 is the bottom element: take any other p: I — Z?(N) and consider idy;, so that the inclusion
idnjp: ) — p(i) is a total function for every i € I, giving By < p. Moreover, for any a:J — I,
precomposition By = By is again the constant function to the element ), so the bottom element
is preserved by reindexing.

R is implicational: For any p,q:I — Z?(N), define for each i € I, (p — ¢)(i) as the set
{e € N | e encodes a partial recursive function : N --» N such that 6 maps p(¢) in ¢(i)}. To
prove that this is indeed the implication in R(I), take r € R(I) and suppose r A p < ¢, if
and only if there exists ¢:N --» N such that for every i € I, ©|apyi): (r A p)(i) — q(i) is a
total function. For a given n € N, we can consider the partial function ¢((n,—)):N --» N,
m +— p((n,m)) when it exists; define ¢: N — N the—total—function that maps n to the natural
number that encodes ¢({n, —)). For each i € I, the restriction .(;) is defined over all 7(i), and
its image is in (p — q)(4), proving r < p — ¢: indeed, take n € r(i), then (n) € (p — ¢)(7) if
and only if ¢({n, —)) maps p(i) to q(i), but if we take any m € p(i), then (n,m) € (r A p)(3), so
that ¢({n,m)) € q(i). Now, to prove the converse, suppose r < p — ¢, if and only if there exists
¥:N --» N such that for every i € I, ¥},(;y:7(i) = (p — ¢)(i) is a total function. For any k € N,
recall that k& = (n, m) where n = 71 (k) and m = wa(k); if ¥(n) exist, call 8,,: N --» N the partial
function encoded by the natural number 1(n). Define ¢:N --+ N such that (n,m) — 0,,(m)
whenever both +(n) and 6,(m) are defined. For each i € I, the restriction o ap)@) is defined
over all (r Ap)(i), and its image is in ¢(7), proving r Ap < ¢: indeed, take k = (n,m) € (r Ap)(i),
hence n € r(i) and m € p(i); then ¢ (n) is defined and belongs to (p — ¢)(%), hence encodes a
partial recursive function 6,, that maps p(i) to ¢(¢). Since m € p(i), we have (k) = 6, (m) € q(i),
as claimed.

Take then a: J — I: for any j € J we have on the one hand (R(a)(p — ¢))(5) = (p = ¢)(a(y)) =
{e € N | e encodes a partial recursive function 6: N --» N such that 6 maps p(a(j)) in g(a(y))},
and on the other hand

(R(a)(p) = R()(9)()
= {d € N | d encodes a partial recursive function 7: N --» N

such that 7 maps R(«)(p)(7) in R(a)(q)(5)},

so the implication is preserved by reindexings, hence R is an implicational doctrine.
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R is existential: For each pair of non-empty sets I,.J, consider pry: I x J — I and define
3/:R(I x J) — R(I) that maps a function ¢:I x J — Z(N) to I/q:I — Z(N), (3/q)(i) =
UjeJ q(i,7). This is the left adjoint to R(pr;): 37/q < p if and only if there exists ¢:N --» N
such that for all i € I, ¢|(374)(i): U, q(4,5) — p(i) is a total function, if and only if there exists
@:N --» N such that for all i € I and j € J, pj4(,5):q(4,7) — p(i) is a total function, if and only
if ¢ < R(pry)p.

To show naturality in I, take a function o: K — I: for any ¢ € R(I x J) and k € K,

R(e)(379) (k) = 31a) (k) = | ala(k), )

jeJ

and also
Gk R(a x idy)g)(k) = | (R(a x id,)g) (k. 5) = [ g(a(k), )
jeJ jeJ
so that R(a)(3{q) = 3/ R(a x id)q, hence naturality holds.
To show Frobenius reciprocity, for any ¢ € R(I x J), p € R(I),and i € T

3/ (g A R(pry)p) (i) = | (g A R(pry)p) (i, 4)) = | J{(a,b) € N[ a € q(4, 5),b € p(i)}
jeJ jeJ

and also

(37 g Ap)i) ={(a,b) eNJae | g 4),bepi)}

JjeJ

so that 3/ (g A R(pry)p) = 37¢ A p, hence Frobenius reciprocity holds.
R is consistent: Take R({x}) = Z(N); T, & B, since for any partial recursive function
@:N --» N is it not the case that ¢|n:N — () can be defined.
R is rich: Take any ¢ € R(J) for a non-empty set J, we then look for a function @: {x} — J,
hence an element ¢ = ¢(x) € J, such that EI*{’*}q < R(T)q, i.e. such that there exists a partial
recursive function ¢:N --» N such that )y, _ 4(): Ujesa(i) — a(c) is a total function. Here
is the point where the usual realizability doctrine defined over Set does not satisfy the needed
assumption, and we need to remove the empty set from the base category. If Uje 5a() =0,
choose any ¢ € J and ¢ = idy, so that idnjg: ) — ¢(c) is a total function, as claimed. On the
other hand, if {J;c ; q(j) # 0, there exist n € N and ¢ € J such that n € g(c); choose p:N — N
to be the constant function to n, so that the restriction @)y _ () Ujes (i) — a(c) is a total
function, again as wanted.
R is universal: For each pair of non-empty sets I,.J, consider pry;: 1 x J — I and define
V{:R(I x J) — R(I) that maps a function ¢:I x J — Z(N) to V{q: I — P(N), (V{q)(i) =
ﬂjeJ q(i,7). This is the right adjoint to R(pr;): p < V{q if and only if there exists ¢:N --» N
such that for all i € I, @,y p(i) — ﬂjEJ q(i,7) is a total function, if and only if there exists
@:N -+ N such that for all i € I and j € J, @p,¢;): (i) — q(i, j) is a total function, if and only
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if ¢ < R(pry)p. To show naturality in I, take a function a: K — I: for any ¢ € R(I x J) and
keK,

R(o)(V7q)(k) = (V{a)(c(k)) = () ala(k),])

and also

(Vi R(a xidy)q)(k) = [ (R(a x id,)q)(k, j) = [ a(a(k), )

jed jed

so that R(a)(V{q) = V{; R(a x id)g, hence naturality holds.
Universal quantifier not preserved—expanding the cofinite sets: Our next goal is to
find an ultrafilter V C R({x}) = Z(N) such that the morphism we built above (T, g): R/V — A
does not preserve the universal quantifier: in particular we will find a non-empty set J and
a ¢ € R(J) such that ¥i,gs[q] < g{*}j{‘]*}[q]. Recall that, given a function between two sets
h: A — B, the right adjoint to the preimage h™!: Z(B) — Z?(A) sends a subset S of A to
the set VS == {b € B | h71(b) C S}. In our case, we have V\,gs[q] # 0 if and only if
J Cgslgl =1{j € J]|q(j) € V}. Then, observe that g{*}[V{J*}q] # () if and only if V{*}q e V.

R(J) —Y— R/V(J) —2— 2(J)

J J
V{*}l Y{*}l lV’J

R({x)) = BRIV 5> 2({+))

Suppose V C Z(N) is an ultrafilter that contains all cofinite sets of N; then take J := N and
¢:N — Z(N) such that ¢(n) == N\ {n}. We show that for all j € J, ¢(j) € V, but V‘{’*}q ¢V,
so that Vi,gs[q] & g{*}y{]*}[q]. Since ¢(j) is clearly cofinite for every j, each ¢(j) € V; then
compute V{J*}q = ﬂjeJ q(j) = Npen N\ {n} = 0 ¢ V. To conclude our proof, we need to
show the existence of an ultrafilter over Z(N) that contains every cofinite set. It is enough to
prove that the filter generated by cofinite sets is a proper filter—i.e. does not contain the bottom
element. Take the filter F' = (%) where € is the set of all cofinite set of N and suppose that it
contains the bottom element. Recall from above that the bottom is ) and the meet of two subsets
A, B of N is computed as AA B = {{(a,b) € N|a € A,bc B}. Note that if A and B are cofinite,
A A B is not in general cofinite, hence % is not a filter, as it is instead by taking the intersection
as meet. However, suppose that A A B < ) for a given pair A, B C N, i.e. there exists a partial
recursive function ¢: N --» N such that ¢ 4n5: AAB — () is total, hence AAB = (). In particular,
it follows that at least one between A and B must be the empty set: if both A # () and B # 0,
we can take a € A and b € B, so that (a,b) € AA B # (). Having noticed this, if it were the case
that @ € F, there would exist Ay,..., A, € € such that ((Ay AAx)A---ANAp_1)ANA, < L, so
that one between ((A; A A3) A--- A A,_1) and A, would be the empty set; since A, € €, we
must have ((A; A A3) A--- A A,—1) = 0; by induction we get to a contradiction, so () ¢ F, hence
F' is a proper filter.

Remark 3.8.3. Suppose that the starting doctrine in Proposition 3.8.1 P:C° — Pos is also
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boolean, meaning that we have the additional condition that —— is the identity on each P(X).
Then, in particular, also P/V is a boolean algebra, since the quotient preserves both implication
and bottom element. Under this assumption, we obtain that the model (T, g) is boolean. In

particular, since the morphism is existential and boolean, it is also universal.

3.8.2 Definition of a model, elementary case

A little more work must be done in general if the starting doctrine is also elementary—in addition
to the bounded implicational existential rich structure—and we want the model to preserve
elementary structure. So this time we define a morphism (Q,h): P/V — 2 preserving the
bounded elementary existential implicational structure. Define for each object X the following
equivalence relation N)v( on Homc(t, X): given ¢,d:t — X, se say that ¢ N)v( d if and only if
P((e.d))BY (Tx) € V.

e Reflexivity: P((c,c)) By (Tx) = P(c)P(Ax)Ey (Tx) > P(0)Tx =Ts €V, 50 ¢ ~& ¢

e symmetry: suppose P((c,d))E; (Tx) € V, then
P({d, ) B¢ (Tx) = P({d, ¢)) P({pra, pry)) B¢ (Tx) = P((e. d) B (Tx) €V,

this follows from the fact that /Ef( = P({pr,, pr1>)}Ef(;

e transitivity: suppose ¢ ~& d and d ~& a, then apply P({(c,d,a)) to transitivity for

equality P({pry, pry)) ¢ (Tx) A P({pry, pra)) B (Tx) < P((pry,prs)) B (Tx) to get
P((c,a)) B (Tx) € V, hence ¢ ~ a.

Given f: X — Y, post-composition f o —: Homc(t,X) — Homc(t,Y) is well defined on the
quotients: take ¢ ~& d for some ¢, d:t — X, i.e. P({c,d)) By (Tx) € V, we show that fc ~¥ fd.
From Ty < P(Ay)E! (Ty) apply P(f) to get

Tx < P(/)P(Ay)E{ (Ty) = P(Ax)P(f x [)E{ (Ty)

so that &y (Tx) < P(f x f)E{ (Ty) and P({c,d))E{ (Tx) < P({c,d))P(f x [)E (Ty) =
P({fe, fd))EY (Ty) € V, as claimed. Hence, we can define the functor

Q = Homc(t, —)/Ng):C — Set,.

This preserves the products: take a,c:t — X and b,d:t — Y, we have (a,b) N)V(XY (e, dy if and
only if P({a, b, c,d))EF*Y (Txxy) € V. Applying P((a,b, ¢, d)) to the property By *¥ (T xxy) =
P((pry, pra)) Eq (Tx) A P({pry, pry)) By (Ty), we get

P((a,b,c, d>)E§XY(TX><Y) = P(<a7c>)E§(TX) /\P(<b7 d>)EE/(TY)7
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so that P((a,b,c,d)) By Y (Txxy) € V if and only if both
P({a,c))ES (Tx) € Vand P((b,d))E (Ty) €V,
if and only if a ~& ¢ and b ~¥ d; so we proved that
Homge (t, X x YV)/~g*Y = Homc(t, X)/~% x Home(t,Y)/~%.
Then, define for a given X € obC, hx: P/V(X) — Z(Homc(t, X)/~J):
bxlel = {le:t = X]| P(c)p € V}.

This is well defined, since whenever ¢ ~3 d and [c] € hx[p] we can apply P({c,d)) to the property
EX(Tx)AP(pry)e < P(pry)ep to get P(c)p — P(d)¢ € V, and hence P(d)p € V.

Proposition 3.8.4. Let P be a bounded consistent implicational elementary existential rich
doctrine, let V C P(t) be an ultrafilter, and let P/V be the quotient doctrine. Then the pair
(Q,h), where Q := Homc(t, f)/w(v_) and hx[p] = {[c:t = X] | P(c)p € V} for any object X

and any [p] € P/V(X) is a bounded elementary existential implicational morphism.

Proof. All proofs from Proposition 3.8.1 can be rearranged in this scenario to prove that (2, h)
is a morphism of doctrines, preserving bounded implicational existential structure. The last
thing left to prove is that (€2, 5) preserves elementary structure: for a given [p] € P/V(X x Y),
the inclusion =% hxyxy[p] C b Xxyxy@}/( [¢] follows from adjointness; for the converse, take
([al,[c],[d]) € bxxyxyEX, i.e. P({a,c,d))EXe € V. By naturality of BY, we know that
B (Ty) = P((a'ly xy, pry, pro)) B (T x <y ), hence

P({c,d)) B (Ty) = P({c,d))P({a-ly xy,pry,pra)) BX (T x xv)
= P({(a,c,d)) BX(Txxy) > P((a,c,d)EXp eV,

so that ¢ ~¥ d, i.e. [c] = [d], hence ([a], [c], [d]) €=% bxxv[¢]. O
We now have all the ingredients to generalize Henkin’s Theorem.

Theorem 3.8.5. Let P be a bounded existential implicational doctrine, with non-trivial fibers
and with a small base category. Then there exists a bounded existential implicational model of
P in the doctrine of subsets Z: Set,¥ — Pos.

Proof. Do the construction in Remark 3.3.1 to get a morphism (F,f): P — 5 that preserves
bounded implicational existential structure; moreover by Proposition 3.7.1 the doctrine 1_3> is

consistent. So ]_3> is an existential, implicational doctrine with bottom element, consistent and
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rich, then we can chose an ultrafilter V C g(t) and take the quotient over it, and then the model
(T, g) of such quotient. The composition

(F39) (id,q

P

) (T'9)
B B/ B0

is a model of P, preserving all said structure. O

Theorem 3.8.6. Let P be a bounded elementary existential implicational doctrine, such that
each of its fiber non-trivial and with a small base category. Then there exists a bounded ele-

mentary existential implicational model of P in the doctrine of subsets 42: Set;® — Pos.

Proof. Do as above but take (€2, h) instead of (T, g). O



Chapter 4

Left adjoint to precomposition in

elementary doctrines

In Chapter 2 we extensively explored the process of adding a constant and an axiom to a doctrine
P in a universal way, using the Kleisli object for some suitable comonads on P. Moreover we
observed that applying these two constructions to the doctrine of well-formed formulae for some
language and theory we obtain new doctrines that are isomorphic to the doctrine of well-formed
formulae for the extended language—or respectively the extended theory. Of course, in algebra
adding structure or axioms is a widely used technique: classical results say that for a given
category of algebraic structure—e.g. monoids—, adding some structure or axioms—e.g. groups,
commutative monoids—defines a forgetful functor from the new category to the original one,
with a left adjoint. The category ED of elementary doctrines provides a natural framework for
studying algebraic theories, with each theory T for a particular algebraic language . described
by some doctrine of formulae HFF; the models of such theories are morphisms in ED from the
doctrine of formulae to the doctrine of subsets Z:Set;® — Pos, and the process of adding
structure and axiom to a theory can be described by another morphism in ED between two
doctrines of formulae HFY — HF%. In particular the forgetful functor can be translated in ED
as the precomposition with this last morphism. In this chapter we extend this classical result in
ED by considering the subobject doctrine from a Grothendieck topos instead of the doctrine of
subsets, and precomposition with any morphism (F,f): P — R instead of the forgetful functor.

4.1 The definition of the functor

Fix in the category ED of elementary doctrines a morphism (F,f) between two doctrines:
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cop F;p Dop
—_—
S o
Pos

where F:C — D is a product preserving functor, f: P — RF°P is a natural transformation that
preserves meets, top element and the elementary structure. Moreover, suppose that C is small.
Consider a Grothendieck topos E, and the associated subobjects doctrine Sub: E°? — Pos, which
is elementary—indeed, it is enough to ask for a finitely complete base category, see Example
1.1.10. Trivially we can precompose any morphism (K, €): R — Sub in ED with (F,f) to obtain
a morphism (K, €)(F,f): P — Sub; this gives a functor

— o (F,§): ED(R, Sub) — ED(P, Sub).

We look for a left adjoint for this precomposition.

cop el

Dep

R e

Pos
The whole chapter is devoted to the proof of the following:

Theorem 4.1.1. Let (F,f): P — R be a morphism in ED, and suppose the base category of
P to be small. Moreover let E be a Grothendieck topos and Sub: E°? — Pos be the subobject

doctrine. Then, the functor induced by precomposition
— o (F,f): ED(R,Sub) — ED(P, Sub)

has a left adjoint.

We start from a morphism (H, §): P — Sub, our first goal is to find a functor D — E. An easy
choice is to take the left Kan extension of H along F', whose existence is granted by the fact that
E is a Grothendieck topos—since it is cocomplete, see Chapter X in [Mac71]. Recall that the
left Kan extension comes with a natural transformation p: H — (Lang H)F such that for any
other functor K:D — E and any other natural transformation §: H — K F there exists a unique

9: Lany H — K making the obvious diagrams commute:
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Before we continue, we need Lany H to be product preserving. Recall from [Mac71] that for any
object D € D, we have (Lang H)(D) = colim ((F | D) 25 ¢ 1L E).

Proposition 4.1.2. Let C,D, E be categories with finite products such that C is small and E is
cocomplete and cartesian closed, and let F:C — D and H:C — E be finite product preserving

functors. Then Lany H:D — E preserves finite products.

Proof. Take two objects D, D’ € D and consider the two projections pry: D x D' — D and

pry: D x D' — D', Since Lang H is a functor we have an arrow in E:
)= <L%nH(pr1),L%nH(pr2)>:L%nH(D x D) — L%nH(D) X L%nH(D’).
The arrow Lang H(pry) is the unique one such that
(L%n H(prl))b(57E:F5—>D><D’) = Y& pr,5CD) HC — L%nHD

and similarly (Lang H(pr,)) We want to prove that ¢ has an

Y CeFrC—DxD) = YC prye:C—D)"
inverse. Since E is cartesian closed, the product functor with a fixed object is a left adjoint,

hence it preserves colimits, so we have:

Lan HD x Lan HD' = ( colim HC’) X ( colim HC') =
F F (C,e:FC=D) (C',e":FC'—D")

>~  colim colim (HC x HC")
(C,e:FC—D) (C',c¢":FC'—=D")
The arrow from the double colimit to the product above is the unique w = (w1, ws) such that
W1L(C,e),(C ) = L(C,e)PT1 and wal(c,e),(cr ')y = L(C’,e)PTo- SO now we look for the inverse ¢ of

w™ ), defining an arrow

¢: colim colim(HC x HC") — colim HC.
(o) (Che!) @9

Build the following cocone: for any (C,c), (C’, ') we take the arrow

LCoxCrexey: HC X HC — cqlimHé.
(€0
Observe that here we use that both F' and H preserve binary products. Now take another
pair (C,¢),(C’,e) and two arrows f:C — C and f':C' — C” such that the following triangles
commute:
Fc L, pe Fer L

Ff Fé/
RN b
D D’

we need toxcrexey = (Hf x Hf/)L(C'xC',EXE’)7 but this holds by definition of inclusions in
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colim(aa HC.

HfxHf'

t(Cie),(C ey L(Ce),(Cle)
- —
colim colim(HC x HC")

Liexolexel)

Instead of proving that 1 is an isomorphism we prove that w™!4 is; so look at the following

arrows:

Lang H(D x D') —%— Lang HD x Lanp HD'

S -

colim ¢, ¢y colimer oy (HC x HC")

On the one side we want to show (w™ )¢ = ideolim colim(Hrex Hery, and then that o(w™1v) =
idpang #H(DxD7y- The first equality holds if and only if ¢ = w if and only if pryyp = prjw

and prytyyp = prow if and only if priYwic.e) o7,y = Priwi(c,e), 7,y and Pro¥pi(c ) (o7 ey =
przwL(Cﬁc)’(C/’c/) for every L(C,c),(C”,c’)- HOWGVGI‘7

PryYPL(C o) (C ety = (L%n Hpry)i(oxcrexery = HOXC pry(exe))

= L(CxCepry) = Y(C,c)Pr1 = PI1WL(CLe),(C e)s

similarly przw@L(C,c),(C/,d) = PToWi(C,e),(C" ')

C x FC x FC' HC x HCO' — 2 gC
. r cpry . .
J,p ! v { \ L(Cxcm l(c’ :
C FC ——— D colimc,.) HC

Concerning the second equality, it holds if and only if for every LGz We have @w_1¢b(5 o =

LG however

—1 —1 —1
WPl = PWT UG ) UG prae)) T PYT UG pr,2), (@t DG

= L(C’Xé,prlgxprgg)AHé =&
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as claimed.
c FC HC —2  HC x HC
JA AJ \ \ J/L(éXé,prlExprzE)
- - _ _ (C,2)
CxC FOXFO%J)XD/ colim(CC)HC'
pricxXpryc s

To see the equality <L<6,pr1a’b(é,pr2a> = WL(aprla(é,prgaA & above observe that LEpre) =

C
L(CNﬁprlﬁ’)prlAHa - wlL(é,prlﬁ)»(aprQE) AH@’
conclude the proof we need to show that the terminal object is preserved by Lany H. Recall that

and similarly also the second projections coincide. To

Lang Htp = colim(c1,..ro—tp) HC'; moreover for any object C' € C we have that ((¢ ia)!mc =

{(eAT )L
C HC —ne te
Ic FCJ{ \ L(Cm J/L(tc id)
tc to 4) to COllm(C7c) HC

In particular 'Lany Htpt(te,id) = idte; then t(ee ia)Lany Hto = idLang #tp if and only if for any

(C,'rc) we have t(ge ia) Lang Htol(C,lpo) = L(Clpe) DUL
U(te,id) Lanp HtpU(C\lpe) = Lite,id) HC = L(Clpe)s

as claimed; this concludes the proof. O

If E is a Grothendieck topos, the hypothesis of the proposition above are satisfied, so Lanp H
preserves finite products.

Define now a natural transformation [: R — Sub(Lang H)°P. For any object D € D, and any

v € R(D), write
N b))
(K,t),0

where (K,¢): R — Sub is an arrow in ED and 0: (H, h) — (K, 8)(F,f) is a 2-arrow, i.e. ha(a) <
0% (tra(fa(a))) for all A € C and a € P(A). Observe that €p(7) is a subobject of KD, g is
defined by the universal property of the left Kan extension, and 5}5 (¢p(7)) is the pullback of
tp(7y) along bp: (Lanp H)(D) — KD, hence it is a subobject of (Lanp H)(D). Since E is a

complete category, the infimum of {55 (¢p (7)) }(ke),0 exists, and we call it [p(7).
Lemma 4.1.3. The following properties hold:

1. I: R — Sub(Lanp H)°P is a natural transformation;
2. I: R — Sub(Lang H)°P preserves finite meets;

3. Ipxp(6p) € Sub ((Lang H)(D) x (Lang H)(D)) is an equivalence relation for any object
D eD.



Left adjoint to precomposition in elementary doctrines 104

Proof. 1. Take an arrow g: D’ — D in D, we prove that ((Lanp H)(g)) Ip(7) = [p'R(g)(7)
for any v € RD:

((Lang H)(9)) tp(7) = ((Lang H)(9)" (A0 050 (1))

= A ((Lang H)(9)) 05(ep(7) = A0 O (K (9) " (e())
(K,E),0

= N\ 05t R(9)() = p(R(g)y).
(K,t),0

Note that the second equality follows from the fact that pullback functors between sub-
objects categories preserve arbitrary limits—since in a regular categories they have a left

adjoint—; the other equalities follow from naturality of 9 and &.

2. The top element Tp € RD for any object D € D is preserved by Ip since €p(Tp) is
idgp: KD — KD the top element in Sub(K D) by assumption, and its pullback along any
fp is the identity of (Lang H)(D). Similarly, [p preserves binary meets since any tp and

any pullback functor do.

3. Compute

pxp(p) = N Obun(tpxn(®p) = /\ (@b xbp) (Axp).
(K,¢),0 (K,t),0

Note that each (§D X §D)*(AKD) is an equivalence relation on (Lang H)(D), since it is
the kernel pair of the map @D. By Lemma 4.1.4, we know that the infimum of equivalence
relations is itself an equivalence relation. Hence, we can conclude that [pyxp(dp) is indeed

an equivalence relation. O

Lemma 4.1.4. Let E be a complete category, X be an object of E, and let
{rt = (ri ri): Ry — X x X}ier € Sub(X x X)

be a family of equivalence relations on X. Then the infimum r = A r¢ is again an equivalence

iel
relation on X.
Proof.
Ri o Rl Xx Rl
NG o i
Ry — X x X Ry — X x X R ———— X x X

For every i € I, call §;: X — R; the arrow such that r'§; = Ax—reflexivity—, o;: Ri — R;

the arrow such that rio; = (ré,ri)—symmetry—and T7i: R; xx R; — R; the arrow such that
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rit; = (p}, pi)—transitivity—, where R; x x R;,p} and p} are defined as follows:

R xx R;

First of all, observe that r is a generalized pullback: it is the datum of an arrow ' R — X x X
and a family of arrows {m;: R — R;};cs such that 7im; = r for all i € I, with the property that
for any arrow s = (s1,82): S — X x X and family n;: S — R; such that r‘n; = s, then there

exists a unique n: S — R such that rn = s.

e r is a monomorphism. Take f,g: A — R such that rf = rg; so for any i € I we have
rim; f = rim; f, but each r? is a mono so m; f = m;g. Now {m;f}ic; = {mig}ics is a family
of arrow such that r*m;f = rf = rg, so there exist a unique n such that rn = rf = rg,

hence f = g.

r is the infimum of {r‘};cr in Sub(X x X). Using the existence of m; we have r < rt.

Then, suppose s above to be a mono, so that s < ¢ for all 4 € I and it follows that s < r.

e 1 is reflerive. From the pair (Ax: X — X x X,{6;}ies) such that r'§; = Ax, define
6: X — R such that rd = Ax.

e 7 is symmetric. From the pair ((ro,71): R — X x X, {oym; }ic) such that rio;m; = (rq, 1),
define o: R — R such that ro = (rq,71).

e 1 is transitive. Call «, 3 the projection maps in the pullback of r; along ry, p1 = ra
and ps = ro3. Define t;: R xx R — R; Xx R; the unique maps such that a’t; = m;o and
Bit; = m;[3. From the pair ((p1,p3): Rxx R — X x X, {7it; }scs) such that rir;t; = (p1, p3),
define 7: R xx R — R such that r7 = (p1, ps3). O

Recall from Section 4 of [MR12] that given any elementary doctrine P: C°? — Pos one can build
the category Rp of equivalence relations of P where objects are pairs (A, p), with p € P(A x A)
an equivalence relation on A, and arrows f:(A,p) — (B,o) are arrows f: A — B such that
p <axa P(f x f)(c). Composition and identities are computed in C. Then, (P),;: RY — Pos
will be given by (P)g(A, p) = Zes, = {a € P(A) | P(pry)(@) A p < P(pry)(@)}, and (P)y(f) =
P(f). Since [pxp(dp) is an equivalence relation on (Lanp H)(D), we can define a functor
& = (Lanp H(—),l_x_(0_)): D = Rgupb, where Rg,p is the category of equivalence relations of
Sub: E°? — Pos. Given an arrow g: D' — D in D, we define

Z(g) = (Lan H)(9): (Lan H)(D'), Ly (67)) — ((Lan H)(D), Ipxp(3))-
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£ is well defined on arrows: In order to prove this is well defined we need

p/sxp/(dpr) < ((LgHH)(Q) X (LgHH)(g))*([DxD@D))

in Sub((Lang H)(D x D)), so we need a map dom[p xp/(0p) — domIpyp(dp) making the

external diagram commute.

dom [D’XD’ ((51)/)

it

dom((LanF H)(g X g))*([DXD((sD)) —— dom [DXD((SD)
anp H)(!JXQ))*([DXD(éD))I ) I[DXD((SD)
(Lang H)(D' x D) L2 GX9 o HY(D x D)

[D/XD’(‘SD/)

So now consider for each (K, €): R — Sub and 6: (H,h) — (K, ¢)(F,T).

/

|dom 9* D(Ay)
0DXD|dom 9
(Akp)

domGD,XD,(AKD/) ***** > domerD
ag’xD’(AKD’)I IOEXD(AKD) IAKD
’ ’
(LanFH)(D XQL)anH)(q IﬁanFH (DXD) m KD x KD

K(gxg)é\D/ x D’

By definition of [ as infimum we can find the wanted arrow dom [p/« p/(6p/) — dom [pxp(dp).
Z preserves products: Moreover, .Z preserves products. To see this, compute £ (D x D’)
and .Z(D) x Z(D’): the first projections Lany H(D x D') = Lang H(D) x Lang H(D’) coin-
cide, since Lanp H preserves products; so we need to show that also the equivalence relations
Ipxp'xDxD (0pxp’) and [p(dp)XIp: (dpr) are the same subobject of (Lang H)(D x D' x D x D).
First of all, we have that:

(Dxp'xDx0(0pxD)) =\ Obxpixpxp (AkDxkD);
(K,¢),0
on the other hand we have:

(p(0p) B ip (0p) = (pry,pra)* |\ Opup(Bkp) | Alprapr)* (| N\ Ohixp (Axp)
(K,E),0 (K.t),6

= A (®r20a) Boen(Bicn) A (prapra) B pr (Bicr) )
(K,¢),0
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we prove with some diagram computation that for each (K, £),6 the arguments in the meets are

the same.
R §D><D/><D><D ‘domeDXD’XDxD/(A KD!)
domeBxD’xDxD’(AKDXKD’) ?eb x KD’
é\z}XD/xDXD’(AKDXKD/)I - IAKDXKD'
(Lang H)(D x D' x D x D') ———— KD x KD' x KD x KD’
DxD’xDxD’
~ (§DxD(PY17PY3>)\dom< rq,prg)* 0% (a )
dom(pry, prs) 8, p(Axp) N ),
<pr17pr3>*§BxD(AKD)I IAKD
Ty ,pr 0,
(Lang H)(D x D' x D x D')™™™ s (Lanp H)(D x D) —2*% KD x KD
GDXD/XN /prl,pr3
KD x KD'x KD x KD’
—~ (§D'XD/ <Pr2’Pr4>)‘dom<pr 1pr4>*§* , N N
dom(pry, pry)*07, p (Axpr) - pixpl KD KD’
(przypra‘)*ggsz/(AKD/)I IAKD/

(pra,pry) 9D’><D

(Langp H)(D x D' x D x D) ——*— (Lanp H)(D’ D' x KD’

GDXD/XN %pr4

KD x KD'x KD x KD’

/i\)

dom((pry, prs)*, p(Axp) A (pry, pry) O o (Axcpr))  dom(pry, pry)* O, o (Ax )

] \

w2 (Pr1vpr3>*913XD(AKD)/\<PT21PT4>*91*3/XD/(AKD/) <pr21pr4>*6*D/><D/(AKD’)

_ T

dom(pry, prs)*0}, p(Axp) ————— (Lanp H)(D x D' x D x D')
(prq,pr3)” GDXD(AKD)

Now, for each (K, ¥),0:

Obxp'xpxp (AxDxK D) < (Pr1,Pr3) 00 p(AxD) A (Pro; Pra) 07« pr (AK D)
if and only if both
Obxp'xpxp (AxDxKD') < (Pry, pr3) " 0hy p(Axp) and

0D« xpxp (AxDxkD) < (Proy Pry) 0D 5 pr(AKDr);
to show the first inequality, take the pair é\BxD’xDxD’(AKDXKD’) and the first projection of

~
ODpxD'xDx D'
‘do’“BDxD’xDxD’(AKDxKD’)
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then use the universal property of the second pullback above. Similarly, prove the second one by

taking the pair 05 1. py pr (Ax px i p) and the second projection of

—~
ODxD'xDxD" 4, - A .
MDD/ xDx D! " "KDxKD'

then use the universal property of the third pullback above. For the converse, take the pair

(pry, pr3>*§’be(AKD) A (pra, pr4>*§}5,xD,(AKD/) and the arrow that has as a first component

((’DxD@rl’pr3>)\dom<pr1,pr3> 85 (AkD)Y

and as second component

(0px D (pra, pr4>)|dom<pr2,pr4>*5g/w,(AKDJ““’

then use the universal property of the first pullback.

(Z,1) is well defined: We are now in the situation:

op
7zSub

We prove that I: R = (Sub),.Z°P is well defined by showing that for each v € RD, we have
[p(7) € Desi,,, p5p), 1. Prilp(7) Alpxp(0p) < prilp(y) in Sub(Lanp H)(D x D). Indeed

pf{ /\ 6‘D ED A\ /\ (é\D X é\D)*(AKD)
(K,2),0 (K.t),0

= A (prifs(o(:) A @b x 00) (M)
(K,8),0

= A\ (6p x8p) (013 (En(7) A Axp)

(K,¢),0

< A (@b x0p) (pr3(En(7)) = priln(y).
(K,t),0

So we proved that we have a 1-arrow between the doctrines ((Z,[): R — (Sub),.
(Z,1) is in ED: By construction [ is a natural transformation and preserves finite meets. Note
that in general in the doctrine (P)4: RE — Pos of descent objects from the quotient completion
of a doctrine P:C° — Pos, the equality in (P)q((4, p) x (A, p)) = Des m, is p itself. Indeed:
e p € Des,x,, using transitivity and symmetry of p;
o Tiap < (P)g(Aap)(p), since Ta < P(A4)(0a) < P(Aa)(p) using reflexivity of p;

o (P)y(A,p) = Des,, since descent objects with respect to P and (P), are the same;
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o (P)y((pr1,013))(p) A (P)y((pra,pra))(0) = p B o by definition of product (X, p) x (V;0) in
Rp.

So applying this to the case (Sub),, we obtain that

[DxDiR(D X D) — (Sub)q(((L%nH)(D), [DxD((sp)) X ((L%HH)(D), [DXD(aD)))

or, computing the codomain,

[DXD:R(D X D) — QBS[DxD((;D)g[DxD((;D)

so [ preserves the fibered equality and (£, 1) is in ED.

From (Sub), to Sub: Recall that our goal is to define for each (H, h): P — Sub in ED a suitable
l-arrow from R to Sub. So we look for an arrow (Q,q): (Sub), — Sub in order to define the
wanted map by the composition (Q, q)(-Z, ).

op
RSub

Sum /

To to this, we want to use the universal property of (Sub),: from Theorem 4.5 of [MR12] there

is an essential equivalence of categories
—0(J,7): QED((Sub),, Z) — ED(Sub, 2)

for every Z in QED, where QED is the 2-full 2-subcategory of ED whose objects are element-
ary doctrines P:C°? — Pos in which every P-equivalence relation has a P-quotient that is a
descent morphism; the 1-morphism are those arrows (G, g): P — Z in ED such that G preserves
quotients—meaning, if ¢: A — C is a quotient of a P-equivalence relation p on A, then Gq is a
quotient of the Z-equivalence relation gaxa(p) on GA. So we prove that Sub is in QED, and
define (@, q) as the essentially unique 1-morphism such that (@, q)(J,j) = idsup. We show that
every equivalence relation (s1,s2):S > X x X in E has a quotient that is a descent morph-
ism. Since Grothendieck topos are cocomplete, the quotient exists, and it is the coequalizer
q: X — X/S of s1 and s3. We then need ¢ to be such that ¢*: Sub(X/S) — Sub(X) is full. Take
y:Y — X/S and y": Y’ — X/S such that ¢*(y) < ¢*(v/').

y qy/

dom ¢*y 4 dom q*y’ Y -3 Y’

X/S
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We claim that y < 3. Since E is regular, we know that ¢, is a regular epimorphism—as a
pullback of the regular epimorphism ¢. In particular, g, is the coequaliser of its kernel pair, call

it [T, t1,t2]. Similarly ¢, is the coequaliser of its kernel pair [T, ¢/, t5].

By definition of kernel pair of g,/, we can define t:7 — T’ making the two squares on the
left commute if and only if g, ¢t; = gy {ts, if and only if y'q, 0ty = y'qylta—since y' is a
monomorphism—, i.e. ¢¢*(y')lt1 = qq* (Y )lta, i.e. q¢*(y)t1 = qq* (y)ta, i.e. ygyt1 = yq,ta, if and
only if gyt1 = gyt2, but this is true since g, is the coequaliser of ¢;,t2. So now we define a map
¢":Y — Y’ making the square on the right commute: it is equivalent to ask that g, ft; = g,/ lts,
if and only if g, tit = g, t5t, which is true. At last, we check that y'¢’ = y, if and only
if y'¢'q, = yg,—since g, is an epimorphism—, if and only if y'q, ¢ = ¢¢*(y), if and only if
aq* (v )¢ = qq*(y). This concludes the proof.

Claim 4.1.5. The assignment defined above, sending (H, ) to (Q,q)(.Z,!) extends to a left
adjoint to — o (F,f)

We look for the universal arrow

N(H,p)* (Ha h) - (Q,Q)(g, [)(F? f)

In particular, we need a natural transformation 7y p): H — QZF, i.e. for any object A € C

(M) o HA 25 (Lan H)(FA) LEEN Q((L%n H)(FA),lpaxra(dra))

To define p: Langp H — Q.Z, note that for any (X, s = (s1,82):5 — X x X) € Rgup, there is
an arrow idx: (X, Ax) — (X, s) in Rsyp—since s is an equivalence relation. Apply @ to obtain
Q(idx): X — Q(X,s) in E. So we can define pp = Q(id(ran, #)(p)); this is clearly a natural
transformation, since the naturality square
D/ (LanFH)(D’&_—> Q((LanFH)(D’),[D/XD/(éD/))
(dwanp 1) (D7)
{ (Lanr 1)) | QLanr 1)(a) |
Q(id(ran
D (Lang H)(D) 280r 00 6oy o HY(D), Uy b (60))
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is the image through @ of

((Lang H)(D'), A(Lany H)(D")) im ((Lang H)(D'),lp/xp (D))
anp

(Lang H)(gﬂ (Lanp H’(Q)J
id an
((Lang H)(D), Awany #y(p)) — P (Lang H)(D), Ipxp(6p))

So n(m,p) is defined, and it is a natural transformation, since it is the composition of natural
transformations.

n(m,p) is a 2-arrow: We need to show that

ba(a) < (i) (dzralpafa()) = phppa(azralpafa(a)).

Observe that from naturality of ¢, we have for any (X,s) € Rgup the following commutative

diagram:
(X,Ax) (Sub)y(X, Ax) “2% Sub Q(X, Ax)
lidx id}T TQ(idx)*
(X,s) (Sub)y (X, s) o Sub Q(X, s)

Note that id is just the inclusion Zess € Sub X, and q(x a,) = qsx is such that q;xjx =
idsub x, hence q(x ay) = idsubx, so to conclude we have that Q(idx)*q(x ) is the inclusion
Pess C Sub X. Apply this when

(X, 5) = (Lan H)(FA), lpaxra(dra)) = L (FA)
to get that p} 492 ra acts as the identity, so our claim becomes

hala) < pa(lpafala)).

But now

willpafa(@) =i (N Opaltrafa(@) = N wibpaltrafal@) = N Oi(trafale)),
(K.,t),0 (K,t),0 (K,t),0

but every 6 is a 2-arrow, so ha(a) < 0% (Erafa(a)), hence 1 p) is indeed a 2-arrow.
n(#,5) has the universal property: We now prove that for every arrow (K, €): R — Sub in ED
and every 2-arrow 0: (H,h) — (K, €)(F,§) there exists a unique 2-arrow 0: (Q, q)(-Z, 1) — (K, ¥),
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making the following diagram commute:

(H,b) Q. a)(Z, D(F, )
X« %(F,f)
(K, ®)(F.)

For any object D € D, observe that the image of 0, p:Langp HD — KD in Rgyy, through J factors

as follows:

idpan 9,
(Lanp HD, ALanF HD) ﬂD(Lanp HD7[D><D(6D)) 9*D> (KD,AKD)

Op

The first map trivially exists; the second one exists if and only if there exists a dotted arrow in

the diagram below:

dom [pwp(dp) Ipxp(dp)

XD(AK

N ~ o
S domBy, (Al 22 Yang HD x Lang HD

\\\ - ~ —~
\\\\ J/ ieDXQD

KD KD x KD

AxD

but it exists by definition of [pxp(dp) as the infimum of all subobject of the form é\BxD(AKD)'

Apply Q to the factorization of §D above to obtain in E:

) Q(0p)

Lanp HD —2+ Q(Lanp HD, IDxD(5p) KD

0p

Define 0p = Q(@D):Q.ZD — KD. For any given g: D’ — D in E, we have that the image
through Q of the square on the right in the diagram below gives naturality of 6:

Op

(Lanp HD', Apan, HD'}dIﬁD/(LanF HD'Iprypris,) = (KD',Axpr)

D/
Lanp H(g)l lLanF H(g) lK(g)
(Langp HD, Avan, HD)

idLanp HD

7
(Lang HD,py ps,)) ——— (KD, Akp)

0p
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Now, to prove that 6 is a 2-arrow we show that for any object D € D and any v € RD
a2plp(v) < 0p(Ep(7)).

Since [p(y) < é\E(ED(’y)), it is enough to prove that qua*D(ED('y)) < Q(@D)*(ED(W)). If p}, is
full, the last inequality is equivalent to p’bquajf,(ED('y)) < pEQ(éD)*(ED('y)), ie. é\’{)({?p('y)) <
Q(dLanp HD)*Q(é\D)*(ED('y)) = 5}5?,3 (7). So we check the following:

Claim 4.1.6. The arrow pp is a regular epimorphism.

Proof. For any (X,s = (s1,82): S — X X X) € Rgup, consider idx: (X, Ax) — (X, ) in Rgup
and Q(idx): X — Q(X, s) in E. We prove that Q(idx) is a regular epimorphism.

Note that given any (X,r) € Rgup, an Rgup-equivalence relation on (X, r) is an element s in
(Sub),((X,7) x (X,r)) = Zes,rg, C Sub(X x X) that is an equivalence relation on X such
that r < s. Tt follows that idx:(X,r) — (X,s) is an arrow in Rgyp. Moreover, it is an
Rsub-quotient of s: it is an arrow such that s < (id xid)*(s) = s, and for every morphism
g:(X,r) = (Y;u)—ie ¢:X — Y such that r < (g x g)*(u)—such that s < (g x ¢)*(u), we
find a unique morphism h: (X,r) — (Y, u) such that g = hid, indeed h = g, and it is an arrow
in Rgup since s < (g x g)*(u). If we take r = Ax, we have that idx: (X,Ax) — (X,s) is an
Rsub-quotient of s, hence Q(idx): X — Q(X, s) is a Sub-quotient of a Sub-equivalence relation,

hence it is a regular epimorphism. O

Now we check commutativity of the triangle for the universal property:

Ora(ny) , = Oraprapa = Opapia =04

To conclude, we show that 6 is unique. Suppose we have a 2-arrow A:(Q,q)(Z,[) — (K,¥)
making the triangle commute. In particular, for any object A € C we have Apappapas = 64 and
for any D € D,y € RD we have qplp(v) < A}, (¢p(y)). Consider the natural transformation
Ao p:Langp H — K. Tt is such that (Ao p)opu = 6, so by the universal property of y we have
Aop= 5, but then we have é\D = Appp = 5DpD, so that A\p = 0p.

This concludes the proof of Claim 4.1.5, hence of Theorem 4.1.1.

4.2 Examples

Before we dive into some examples, we prove a general result for some first-order theories. This
generalizes Example 2.5.a of [MR12].

We refer to [Carl7] for the definitions about first-order calculus. Note that here, in contrast to
what we defined in Example 1.1.2 about the doctrine of well-formed formulae, which had Boolean
elementary existential structure, we just consider the fragment of Horn logic. Moreover, a theory

in this context is not a set of closed formulae, but is instead a set of Horn sequents over 3. We
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write in this case HFF: Ctxy¥ — Pos for the elementary doctrine of Horn formulae: the base
category is the same defined in Example 1.1.2, each list of variable is sent to the poset reflection
of Horn formulae—defined inductively as the smallest set containing relations, equalities, true
constant and conjunctions of formulae—ordered by provable consequence in T; reindexing are

again defined as substitutions.

Proposition 4.2.1. Let X be a first-order language and T a first-order theory in the language

Y such that its axioms are Horn sequent. Then there exists an equivalence of categories:
- b
ED(HFT, Sub) = MTod

where HFY: Ctxy¥ — Pos is the elementary doctrine of Horn formulae in the language ¥ of the
theory T, Sub: C°? — Pos is the elementary doctrine of subobject for a given category C with
finite limits, and Mod-% is the category whose objects are models of the theory T in the category

C, and whose arrows are Y-homomorphism.

Proof. Since there is no confusion, we write HF instead of HF¥ and Mod instead of Mody. For
any given 0: (H,h) — (H',b’) in ED(HF, Sub), define 6,y: H(x) — H'(z). Observe that H(x) is
indeed a model of the theory T: each n-ary function symbol f in the language defines an arrow
flz1,...,zn): (z1,...,2,) — (z) in Ctx, hence its image through H—that preserves products—
defines a map f1: (H(x))n — H (), which is the interpretation of f in H(x); each n-ary predicate
symbol R defines R¥ = Bizr,an) (R(21, ., 20)): dom(R) »— (H(x))n From now on, we write
Z instead of the list (z1,...,x,). Satisfiability of axioms follows by the fact that hz(«(Z)) is the
interpretation of o in H (x) for each a(#) € HF(Z), and b is monotone, so if we have an axiom
a(Z) F B(Z) in T we have off < BH ie. H(x) satisfies a - 3. To check that hz(a(Z)) = ol we

work recursively on the complexity of a:

ea=T:al= id( n = hz(T) trivially holds;

H(x))
a= R(T): aff = R = pz(R) by the definition given above;

H

e a=a; Aag: aff =l Aokl =hz(ar) Abhz(az) = hz(ar A az) since bz preserves meets;

= (t1(T) = t2(Z)): o = Eq(t{’,t4"), the equalizer of the interpretations t{, ¢4 of the

terms tl, to in H(JC)

It is left to prove then that if o = (¢1( t2(Z)), we have o = bz (t1(Z) = t2(Z)). Naturality
of h with respect to the arrow (¢1(Z), t2( )) T — (y1,y2) in Ctx, applied to the formula (y; =
yg) € HF (y1, y2) gives:

HF (41, y2) "3 Sub((H (2))?)

@3 Lttty

HF (%) 5 Sub((H (x))™)
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in order to get:
bz (t1(Z) = t2()) = (11, 13)* (Anwy) = Eaty’, 1)),

as claimed. This proves that the association ED(HF, Sub) — Mod is well defined on objects.
Concerning arrows, first of all observe that since H, H' preserve products and 6 is a natural
transformation, 0z = 0,y X -+ X 0(;)—n times. So the naturality diagram of 6 with respect to
an arrow defined by an n-ary function symbol f(Z):Z — () gives the fact that 6, preserves

the interpretation of the function symbol f:
Oy 7= £ 05 = F7 (B0 x -+ x Oy
moreover, for any n-ary predicate symbol R, since 6 is a 2-arrow, we have
R™ = bz(R) < 63(vz(R)) = 0:R"",

so that 0,) is indeed a homomorphism in Mod. Now that the functor is well defined, we prove
that it is full, faithful and essentially surjective. Faithfulness is trivial since, as seen above, each
component of 8 is uniquely determined by its component on the context with one variable.

Take now g: H(x) — H'(x) an homomorphism in Mod, define 6% = g x - -- x g—|Z]| times, where
|Z| is the length of the list. This defines a natural transformation 6: H — H’: naturality with
respect to projections follows by definition, moreover for any function symbol the naturality
square commutes since g preserves interpretations, and then recursively since any other arrow is
composition of projections and terms—defined by composition of function symbols—, naturality

holds for any arrow in Ctx.

(%) H(z)13 22 1 ()12
Jt(i) tHJ/ ltH/
(z) H(z) —— H'(x)

We show that 69 is an arrow in ED(HF, Sub), i.e. that for any a(Z) € HF(Z) we have hz(a(Z)) <
9;7.* (b’f(a(f))) Recursively on the complexity of o we observe that if « = T or a = 3 A, the
inequality holds since b, b’ and 0?; preserve the top element and meets; if « is an equality of
terms o(Z) = (t1(%) = t2(7)), we show Eq(t{7,t8) < 65 (Eq(tH" #1")), but this holds looking at

the diagram below:
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dom(af)

wo H' H
6% (o) t

o =" s (H(x))" —= H(x)

v
J 2
g
[ g

the arrow dom(a*) — dom(a'")

tflﬂf?aH = tflﬂgaH, but this is true since tiHIOg = gtH for i = 1,2. So the dashed arrow above

exists and makes the outer left square commute if and only if

exists by the universal property of the pullback, hence aff < Gg*(aH /), as claimed. Finally, if
a = R for some predicate symbol R, we have to check R¥ < 93%* (RH /), but this holds by definition
of ¥-homomorphism. So §9: (H,h) — (H',b’) is well defined, and its image is g, so the functor
is full. To conclude, take M a model of T, and write f™: M™ — M for the interpretation in M
of any n-ary function symbol f in the language and R :dom(RM) »— M™ for the interpretation
of any n-ary predicate symbol R. We define a functor H™:Ctx — C that maps 7 — M7l
projections in projections, f(Z) — fM, and this trivially extends to lists of terms, defining a
product preserving functor. Now define h: HF - Sub H°P:
b3 (a(Z)) = o™,

the interpretation of o in M. It is well defined because M is a model. By definition of inter-
pretation, hM preserves top element, meet and fibered equality. To prove that it is a natural
transformation, take a list of terms (%) = (t.(Z),... y13(7)): @ — ¢ and we prove that the
following diagram is commutative:

M
by

HF(3) —~ Sub(M¥])
@) /5 lmM ----- tg)”

but this is true by definition of interpretation. Clearly (H™ hM) +— M so the functor is essen-

tially surjective and defines the equivalence of categories. O

Example 4.2.2. Some algebraic examples. We prove, using the equivalence of Proposition
4.2.1 in some specific theories, that many adjunction results in algebra can be obtained as a
particular case of the adjunction shown in Theorem 4.1.1. Suppose we have an algebraic language
¥, and extend the language with some new function symbols to obtain a new algebraic language
Y. Then suppose to extend the theory T—which is a theory also in the language ¥'—with some

new axioms of the form T F (t(Z) = (%)), where t and s are terms in the language '. Note
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that we could have ¥ = ¥, so we can just extend the theory, or T = T’, so we just extend the

language. This extension can be translated in a morphism (F, ¢): HFF — HF-?,' in ED

op E°P op
Ctxy, Ctxyy,
¢
/7
}& HFY/
Pos

The functor E is the inclusion of terms written in the language X in the terms of the language
Y'; each component ez of the natural transformation e is the composition of the inclusion of

—

HFZ(Z) in the poset HF¥ (Z) of Horn formulae in the extended language with respect to the
same theory, with the quotient from HF¥ (Z) into HFY (Z), that sends the equivalence class of a
formula—with respect to reciprocal provability in the theory T—to the equivalence class of the
same formula, with respect to reciprocal provability in the theory T’. In any such extension, we

have the following commutative diagram:

Mody —— Mod¥

IR IR
ED®HFY, ) Y ED(HF, %)
where Z:Set}’ — Pos is the elementary doctrine of subsets, and the arrow between the cat-
egories of models is the functor that forgets both the added structure from Y’ that is not in X
and the axioms in T’ that are not in T. So the left adjoint to the precomposition with (E,¢) de-
scribed in the first section generalizes all such adjunctions in algebra. Some examples include the
adjunction between: sets and pointed sets, groups and abelian groups, monoids and semigroups,

non-unitary rings and unitary rings, and so on.

Example 4.2.3. Extension and restriction of scalars. In a similar way, let R, S be two
commutative unitary rings, and let a: R — S be a ring homomorphism. One can obtain the
category RMod of modules over the ring R as the category of models in the language > =
{0,+, =} U {r-},er—where 0 is a constant, + is a binary function symbol, and — and each
r- are unary function symbols—of the algebraic theory T with axioms making {0, +,—} group
operations, and r- the scalar multiplication with » € R. As seen above, we can define the
equivalence ED(HFY, %) = RMod; similarly define the equivalence ED(HF?,/, Z) = SMod.
Here ¥’ and T’ are not extension of ¥ and T. However we can define a functor E: Ctxs, — Ctx,
that maps 0: () — (2),+: (x1,22) = (z), — (z) — (z) in themselves, and each r-: () — (z) in
a(r)-: (z) — (x); moreover define ez: HFF (Z) — HFY, (%), such that a(Z) — afa(r)/r](Z), meaning
that each formula is sent essentially in itself, but each occurrence of r in the terms that appear in
« is substituted by a(r), for every r € R. This function preserves trivially top element, meets and
fibered equality, and defines a natural transformation. The precomposition — o (F,¢) recovers

the adjunction between RMod and SMod given by extension and restriction of scalars.
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Example 4.2.4. A multisorted example. Consider the two-sorted language 3. and the theory
T that describes sets with an action of a monoid over it. The proof of Proposition 4.2.1 was done in
the single sorted case, but holds also in the multisorted setting. Then ED(HF¥, %) = Mon Set;
then extend the language and the theory to describe sets with an action of a group over it,
SO ED(HF-%,,7 A) =2 GrpSet. We can again recover the left adjoint to the forgetful functor:
for a given (M, X), where M is a monoid acting on a set X, let F(M) be the free group
generated by M. Define the equivalence relation ~ on the product F(M) x X generated by
(mn,x) ~ (m,n-z) for any m € F(M) and n € M; the action of F(M) on F(M) x X/ ~ maps
(m, [(m/,x)]) into [(mm/, x)] for any m,m’ € F(M) and € X. The universal arrow is given
by (Mar,tx): (M, X) — (F(M),F(M) x X/ ~) where ny: M — F(M) is the inclusion of the
monoid in the free group generated by it, and ¢tx: X — F(M) x X/ ~ maps z € X to [(e,x)],
where e is the identity of M.

Example 4.2.5. Some quasi-algebraic examples. Suppose we have an algebraic language
> and a quasi-algebraic theory T, meaning that axioms can be quasi-identities—i.e. formulae of
the form (t1(Z) = s1(Z)) A -+ A (te(Z) = s(Z)) b (¢(Z) = s(Z)). In this case we can recover,
for example, the left adjoint to the forgetful functor between torsion-free RMod and RMod,
between cancellative semigropus and groups, between pseudocomplemented distributive lattices

and boolean algebras.

Example 4.2.6. Some non-algebraic example. Let ¥ be a first-order language with a binary
relation R and T a theory such that the only axiom in T are reflexivity, transitivity, symmetry
or antisymmetry.

We can easily recover some adjunction by adding axioms—of the kind defined above—to the
theory, in the same way we did for the algebraic case: for example we can find the left adjoint
to the forgetful functor from the category of sets with an equivalence relation to the category of
sets with a reflexive and symmetric relation, or from the category of sets with a preorder to the
category of sets with an order, and so on.

A little more work must be done to recover the adjunction between the category of posets and
inf-semilattices. Recall that any inf-semilattice is a poset defining that an element is smaller than
another one if their meet is the first element, so there is a forgetful functor from inf-semilattices
to posets. This forgetful functor arises again from a precomposition between the doctrines of
Horn formulae: take the language > with a binary predicate symbol, and a theory T with
axioms of reflexivity, transitivity and antisymmetry; then take the algebraic language ¥/ with
a constant symbol T and a binary function symbol M, and the algebraic theory T’ that defines
inf-semilattices. The functor E: Ctxy, — Ctxss maps projections in projections and is extended
to lists of projections; ez:HFF (¥) — HF-%,/ (Z) is defined recursively: the top element, equalities
of variables and conjunctions are sent to themselves, while the formula R(z;,z;) is sent to the

formula (M1 (z;,2;) = ;).

Example 4.2.7. An examples in Sub. Consider Sub: E°? — Pos, where E is a Grothendieck
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topos. Consider the empty language and the empty theory, then
ED(HF,Sub) £ E
Extend the language with one constant symbol, so we have an equivalence of category
ED(HF{?} Sub) =~ E,

where {c} is the language with one constant symbol, and E, is the category of pointed object,
meaning that its objects are pairs (A,a:t — A) where A is an abject of E, and arrows are
morphism of E preserving the point.

So now we have the following commutative diagram:

E. u E
IR 1R

ED(HF}, Sub) Y ED(HF, Sub)

where the upper arrow is the forgetful functor the leaves out the point, and (E,¢): HF — HFie) is
the usual arrow that arises from the extension of the empty language to the language with one
constant symbol. The left adjoint to U generalizes in a Grothendieck topos the classical adjoint

that adds a new element to a set.

Example 4.2.8. Adding an axiom. Consider an elementary doctrine P, take an element
¢ € P(t), and do the construction (id, P(!)¢ A —): P — P, as in Corollary 2.4.5. Then take
(H,H): P — Sub and suppose that h(p) = T. We observe that applying the left adjoint functor
to (H,h) we obtain exactly the unique (H,b'): P, — Sub defined by the universal property of
(id,P())¢ A—): P — P,. Indeed, since the left Kan extension of H along the identity is H itself,
it is enough to check that [4(«) = b’(c) for all o € P,(A), so that L (A) = (HA,laxa(04)) =
(HA,Apa), and QZ(A) = HA. Consider the 1-arrow (H,bh'): P, — Sub and the identity 2-
arrow (H,bh) — (H,H')(id, P(1)¢ A —) along all the 1-arrows (K, €): P, — Sub and the 2-arrows
0:(H,H) — (K,¥)(id, P(1)¢ A —). By definition of [4 we obtain

a(a) = A 05a(a) < b4(a).

(K,8),0

Conversely, compute

bs(a) = 04 (P(la)g Aa) = bha(a) < B4(Ea(P(la)p Aa)) = B4 (ka(a))

hence b4 (o) < [4(c).
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