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`2
AND `1 trend filtering are two of the most popular denoising algorithms that are widely
used in science, engineering, and statistical signal and image processing applications.

They are typically treated as separate entities, with the former as a linear time invariant (LTI) fil-
ter which is commonly used for smoothing the noisy data and detrending the time-series signals
while the latter is a nonlinear filtering method suited for the estimation of piecewise-polynomial
signals (e.g., piecewise-constant, piecewise-linear, piecewise-quadratic and etc.) observed in ad-
ditive white Gaussian noise. In this article, we propose a Kalman filtering approach to design
and implement `2 and `1 trend filtering with the aim of teaching these two approaches and
explaining their differences and similarities. Hopefully the framework presented in this article
will provide a straightforward and unifying platform for understanding the basis of these two
approaches. In addition, the material may be useful in lecture courses in signal and image pro-
cessing, or indeed, it could be useful to introduce our colleagues in signal processing to the
application of Kalman filtering in the design of `2 and `1 trend filtering.
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Relevance
Trend filtering is the process of smoothing a time series

by filtering out the noise. Assuming that a time series yk,
k = 1, · · · , L, consists of an underlying slowly time vary-
ing trend xk and a more rapidly varying random component
vk (i.e., yk = xk + vk), the goal of trend filtering is to re-
construct the trend component xk or, equivalently, estimate
and remove the random component vk = yk − xk from
the time series yk. It can be considered as an optimization
problem with the objective of maximizing the smoothness of
xk and minimizing the residual error between the actual and
smooth series. The process of estimating xk is known as “fil-
tering” or “smoothing” in some contexts. The term “filtering”
is used in analogy with trend filtering. It is actually a batch
method for estimating the trend component taking all mea-
surements (past, present and future samples) into account, so
implemented non-causally in the literature.

Trend filtering has a broad range of applications in sci-
ence, engineering, statistical signal and image processing,
financial time series analysis, geophysics, and biological
and medical sciences. Among many trend filtering methods
(e.g., moving average filtering, band-pass filtering, smoothing
splines, Gaussian process regression, and many other popular
methods), `2 trend filtering and its variation `1 trend filter-
ing provide significant advances for estimating signals that
exhibit varying degrees of smoothness across the input do-
main [1, 2]. In the following, a brief discussion on these two
methods is given.

`2 trend filtering
The `2 trend filtering also known as quadratic variation

(QV) regularization is a linear time invariant (LTI) filter which
is commonly used for smoothing the noisy data and detrend-
ing the time-series signals. There are a lot of connections in
the literature to `2 trend filtering. Some of them are QV reg-
ularization and smoothness priors; the ill-posed inverse prob-
lems and problems of statistical Tikhonov regularization; the
problem of estimating a smooth trend embedded in white
noise addressed by Whittaker and Bohlmann’s work who
studied the application of regularized method for time series
smoothing; Hodrick-Prescott (H-P) filtering also known as
Hodrick-Prescott decomposition to remove the cyclical com-
ponent from time-series data and estimate the trend signal
(see [3, 4, 5] and the references therein). `2 trend filtering is

defined as the problem of minimizing the `2-norm of the sig-
nal derivative subject to a data fidelity constraint [see equation
(2a)]. It is an effective smoothing filter method for recovering
the smooth polynomial (slowly time varying) signals. Figure 1
illustrates an example of `2 trend filtering. The noise-free sig-
nal (slowly time varying signal), the Gaussian white noise and
noisy signal (the mixture of the signal and Gaussian white
noise) with SNR = 5 dB are shown in Figures 1(a)-1(c). The
time scale for changes in the noise and the signal are different,
so the signal and the noise does not overlap in frequency do-
main (i.e., the signal is a low-frequency component and noise
is a high-frequency component). It can be seen from their
spectral representation that are shown at the bottom of each
figure. The signal obtained using `2 trend filtering (with dif-
ferent orders, n = 1, 2, 3) are shown in Figures 1(d)-1(f). For
quantitative comparison, the result of NSR which is a classi-
cal ratio between the power of the reconstruction error and the

power of the signal (i.e., NSR =
√∑

k (xk − x̂k)
2
/
∑

k x
2
k,

where xk and x̂k are respectively the original and estimated
signal [3]) is also reported. The results show that `2 trend fil-
tering is able to effectively recover the desired signal. Note
that the original signal is highly smooth. Therefore, the `2
trend estimate becomes close to the original signal as the or-
der of the method increases. The reason is that `2 trend fil-
tering has a strong connection to LTI filtering and smooth-
ing. Specially, it is a smoothing method defined by a prob-
lem of optimization with a smoothing constraint, in which
the weight controlling the constraint is directly related to cut-
off frequencies and the smoothing order is directly controlled
with the order of derivatives [3, 4, 5]. Therefore, it is able
to effectively separate the slow time varying signal and the
rapidly time varying noise. However, in some signal process-
ing applications, the signals are more complex. For instance,
consider a situation in which a discrete event phenomenon
is observed in the presence of a smooth (polynomial) signal
(i.e., the signal derivative is discontinuous). Such signals are
known as sparse-derivative (step or piecewise-polynomial)
signal. In such cases, the time scale for changes in the noise
and the signal are similar, so the signal and the noise over-
lap in frequency domain considerably. As a result, for such
signals, `2 trend filtering has some limitations that make it in-
efficient to reconstruct the signal of interest. In other word,
`2 trend filtering is unable to separate signal and noises that
overlap in frequency domain. As an example, a piecewise-
constant signal and its noisy signal are depicted in Figure 2(a)
and 2(d), respectively. Such noisy step-like time series is ob-
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Figure 1: Example 1. `2 trend filtering. (a) Noise-free signal. (b) Additive white Gaussian noise (c) Noisy signal with SNR = 5
dB (d) Output of the first order `2 trend filtering (NSR = 0.26) (e) Output of the second order `2 trend filtering (NSR = 0.15) (f)
Output of the third order `2 trend filtering (NSR = 0.13).

served in molecular machines which are corrupted by molecu-
lar noise [6]. We need to remove the noise and reconstruct the
desired time series. The signal obtained using the first order
`2 trend filtering is shown in Figure 2(e). The estimated signal
does not have sharp discontinuity. The reason is that the sig-
nal and noise overlap in frequency domain (see their spectral
representation). Another reason is that `2-norm is sensitive
to the large values of signal derivative [the signal derivative
is depicted in Figure 2(b)]. Therefore, there is a need for an-
other solution that is less sensitive to the abrupt changes of the
signal derivative. `1-norm is less sensitive to the large values
than `2-norm. So, it is more effective to estimate the signal by
minimizing the `1-norm of the signal derivative instead [see
equation (2b)]. The method is known as `1 trend filtering. The

details of the method is provided in the following subsections.
The output of `1 trend filtering is illustrated in Figure 2(f). As
can be seen it is approximately a step function.

`1 trend filtering

The `1 trend filtering better known as total variation
(TV) regularization is a nonlinear filtering method which
produces trend estimates that have a sparse derivative, and
therefore is well suited for the estimation of sparse deriva-
tive (i.e., piecewise-polynomial) signals observed in additive
white Gaussian noise. It was firstly introduced by Rudin et
al. in the field of signal/image processing as a variation on `2
trend filtering (or QV regularization) which substitutes a sum
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Figure 2: Example 2. Piecewise constant signal smoothing. (a) Noise-free signal. (b) the first derivative (c) Additive white
Gaussian noise (d) Noisy signal with SNR = 10 dB (e) Output of the first order `2 trend filtering (NSR = 0.29) (f) Output of the
first order `1 trend filtering (NSR = 0.12).

of absolute values (i.e., an `1-norm) for the sum of squares
used in `2 trend filtering to penalize variations in the esti-
mated trend [7] and later popularized by Kim et al. as a varia-
tion of H-P filtering in applied mathematics literature [2]. The
term TV (`1-norm) was used as a regularization approach in a
wide range of applications in image processing, including im-
age restoration, denoising, deconvolution, interpolation and
compressed sensing, etc. The `1 trend filtering is similar to `2
trend filtering but produces a piecewise-polynomial estimate
of the trend makes it suitable for analyzing the time series
with an underlying piecewise-polynomial trend. The `1 trend
filtering is challenging due to the non-differentiability of the
`1-norm while `2 trend filtering is not since the `2-norm is
differentiable.

In this lecture note, we present a unified framework based
on Kalman filter (KF) and Kalman smoother (KS) to imple-
ment these two approaches. The proposed framework pro-
vides a unifying platform for understanding the basis of these
two approaches and explaining their differences and similari-
ties. It is shown that the `2 trend filtering is a special case of
the `1 trend filtering. As mentioned before, the `2 and `1 trend
filtering approaches are implemented non-causally in the lit-
erature. Based on the proposed framework, it is possible to
causally implement these trend filters: while KS can be used
to implement the traditional non-causal trend filters, the KF
can be used to convert them to a causal filter design scheme.
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0.1 `2 trend filtering

Prerequisites

This lecture note requires basic knowledge of system the-
ory, state-space model, estimation theory and Kalman filter.

Problem Statement

The problem is to estimate an unknown signal xk from the
observation yk in the model:

yk = xk + vk, k = 1, · · · , L, (1)

where vk is the unwanted additive noise signal, which we can
use the different `2 trend filtering (QV regularization) or `1
trend filtering (TV regularization) for rejecting the noise and
preserving the smoothness of the estimated xk, by solving the
following optimization problems [3, 7]

`2 trend filtering: argmin
xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

[∇nxj ]
2

(2a)

`1 trend filtering: argmin
xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

|∇nxj |,

(2b)

for all k = 1, · · · , L, where the regularization parameter λ
controls the degree of smoothing, ∇xj = xj − xj−1 is the
first order difference and ∇nxj = ∇(∇n−1)xj is the n-th
order difference which is precisely defined by

∇nxj =

n∑
i=0

(−1)i
(
n

i

)
xj−i.

For instance, the first and second order difference are defined
as {

∇xj , xj − xj−1
∇2xj , xj − 2xj−1 + xj−2

. (3)

Consequently the first and second order `2 trend filtering are

respectively defined as
argmin

xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

[xj − xj−1]
2

argmin
xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

[xj − 2xj−1 + xj−2]
2

,

(4)

while in `1 trend filtering, they are defined as
argmin

xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

|xj − xj−1|

argmin
xk

L∑
j=1

[yj − xj ]2 + λ

L∑
j=1

|xj − 2xj−1 + xj−2|

. (5)

In the derivation that follows, we consider the problem of sig-
nal smoothing using `2 and `1 trend filtering. We derive a KF
model for implementing these two approaches and pointing
out their differences and similarities.

Solution
In this section, we derive a KF model for `2 trend filter-

ing and `1 trend filtering, respectively. First, we derive a dy-
namic model in state-space form to represent each approach
and combine it with the Kalman filtering framework to esti-
mate the desired signal.

0.1 `2 trend filtering

The unconstrained optimization problem (2a) can be repre-
sented in the form of the optimal Wiener smoothing filter.
See [4, section 4] for more details. The linear state-space
model corresponding to it can be represented as [4, equation
(16)] {

∇nxk = wk

yk = xk + vk
, (6)

where vk is known as the observation noise, wk is an additive
zero-mean random term and known as the process (model)
noise. The optimal value of λ in (2a) is related to the process
noise power σ2

w and the observation noise power σ2
v (see [4,

equation (20)] and [8, equation (30)]):

λ =
σ2
v

σ2
w

(7)
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0.2 `1 trend filtering

In other word, the effect of process noise power and obser-
vation noise power are hidden in the regularization parame-
ter. Therefore, constrained optimization parameter, λ, plays
the role of balancing the optimization between the two noise
terms power. In other word, λ can be chosen based on the ra-
tio of variance of the two noises. As mentioned before, the `2
trend filtering is a low-pass smoothing filter and the regular-
ization parameter is related to the cutoff frequency [3, equa-
tion (23)]:

λ =
1

(2 sin ωc

2 )2n
. (8)

So, for extracting a signal within a predetermined frequency
band, the regularization parameter can be chosen based on the
value of cutoff frequency (8). It is more convenient to express
(6) as 

xk =

n∑
i=1

αixk−i + wk

yk = xk + vk

, (9)

where αi = (−1)i+1

(
n

i

)
. In order to estimate the smooth

trend signal xk using KF structure, we need to consider the
canonical observable representation of (9). A standard dy-
namical model of (9) that can be used in the framework of
KF is as follows:{

xk = Anxk−1 + bnwk

yk = hnxk + vk
, (10)

where

xk =


xk

xk−1
...

xk−n+1

 ,An =



α1 α2 . . . αn−1 αn

1 0 0 . . . 0

0
. . . . . . . . .

...
...

. . . 1 0 0

0 · · · 0 1 0



bn =


1

0
...
0

 ,hn =


1

0
...
0


T

(11)

For instance, for the first and second order `2 trend filtering,
the matrix An, the vectors xk, bn and hn are respectively

defined as

1-order `2 trend filtering: xk = xk, A1 = 1, b1 = 1, h1 = 1,

2-order `2 trend filtering: xk =

(
xk

xk−1

)
, A2 =

(
2 −1

1 0

)
,

b2 =

(
1

0

)
,h2 =

(
1

0

)T

.

0.2 `1 trend filtering

In `1 trend filtering (or TV regularization), the unknown
piecewise-polynomial signal x is estimated by solving (2b)
which formulates the sparsity based denoising as the prob-
lem of minimizing the `1 norm of the derivative of x subject
to the data fidelity constraint. Unfortunately, the second reg-
ularization term is non-differentiable. That is why the opti-
mization problem (2b) is known as a difficult minimization
problem with no explicit solution. One way to deal with is
to replace it with a sequence of simpler ones. This proce-
dure is known as majorization-minimization (MM) method
(also known as bound optimization or surrogate optimization
method). An overview of MM algorithms in signal process-
ing, machine learning and communications is presented in [9].
As an application of MM approach, it can be used to convert
the optimization problem (2b) to a simpler one. To this pur-
pose, the MM approach proposes the following majorizer for
the |xk| [9, Example 6]:

|xk|≤
1

2

x2k

|x̂(m)
k |

+
1

2
|x̂(m)

k |, (12)

where x̂(m)
k denotes the estimated signal after m iterations

(with an initialization, e.g., x̂(0)k = yk). We leave the deriva-
tion of the majorizer in (12) as an exercise to the reader. The
idea of using the MM approach to `1 trend filtering (TV regu-
larization) was first proposed by Figueiredo et al. [10]. With
it, a majorizer for the `1 norm is defined as

L∑
j=1

1

2
|∇nxj |:=

L∑
j=1

1

2

[∇nxj ]
2

|∇nx̂
(m)
j |

+ C, (13)

where

C ,
1

2

L∑
j=1

|∇nx̂
(m)
j |

and does not depend on xj . Therefore, in order to solve (2b),
one can solve the following iterative optimization problem,
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0.3 Kalman filter implementation

instead:

(14)argmin
xk

1

2

L∑
j =1

[yj − xj ]2 + λ

L∑
j =1

1

2

[∇nxj ]
2

|∇nx̂
(m)
j |

+ C.

Note that the second regularization term is now differentiable
and x̂(m)

k is considered as a constant with respect to xk. In the
next section, we derive a KF model for `1 trend filtering. (14)
can be expressed as

argmin
xk

1

2

L∑
j =1

[yj − xj ]2 + λ

L∑
j =1

1

2

 ∇nxj√
|∇nx̂

(m)
j |

2

+ C.

(15)

As shown in the appendix, the linear state-space model corre-
sponding to (15) can be represented as

∇nxk√
|∇nx̂

(m)
k |

= wk

yk = xk + vk

, (16)

which can also be rewritten as{
∇nxk = φ

(m)
k wk

yk = xk + vk
(17)

where φ(m)
k =

√
|∇nx̂

(m)
k |. We express (17) as

xk =

n∑
i=1

αixk−i + φ
(m)
k wk

yk = xk + vk,

(18)

where αi is defined before. (18) can be rewritten in the fol-
lowing state space dynamical model:{

xk = Anxk−1 + bn,kwk

yk = hnxk + vk
, (19)

where An, xk and hn are defined before and bn,k =

[φ
(m)
k , 0, · · · , 0]T . For instance, for the first and second order

`1 trend filtering, the matrix An, the vectors xk, bn and hn

are respectively defined as

First order `1 trend filtering: xk = xk, A1 = 1,

b1,k = φ
(m)
k , h1 = 1,

Second order `1 trend filtering: xk =

(
xk

xk−1

)
,

A2 =

(
2 −1

1 0

)
, b2,k =

(
φ
(m)
k

0

)
,h2 =

(
1

0

)T

.

0.3 Kalman filter implementation

The state space models derived in the previous sections can be
coupled with the Kalman filtering framework in order to esti-
mate the desired signal. The KF for (10) and (19) are given as
follows [11]:

Time Update:

{
x̂k|k−1 = Anx̂k−1|k−1

Pk|k−1 = AnPk−1|k−1A
T
n + bn,kqkb

T
n,k

(20)

Measurement update:


x̂k|k = x̂k|k−1 + Kk

[
yk − hnx̂k|k−1

]
Kk = Pk|k−1h

T
n

(
hnPk|k−1h

T
n + rk

)−1
Pk|k = Pk|k−1 −KkhnPk|k−1

, (21)

where qk , E{w2
k}, rk , E{v2k}, x̂k|k−1 ,

E{xk|yk−1, · · · , y1} is the a priori estimate of the state
vector xk in the k-th stage using the observation y1 to
yk−1, and x̂k|k , E{xk|yk, · · · , y1} is the a posteriori

estimate of the state vector after using the k-th observa-
tion yk. The matrices Pk|k−1 , E{(xk−x̂k|k−1)(xk−
x̂k|k−1)T } and Pk|k , E{(xk − x̂k|k)(xk − x̂k|k)T }
are also defined as the prior and posterior state covari-
ance matrices, while Kk is the Kalman gain.

A KS is usually employed after KF to produce a smoother
results. It consists of a forward KF stage followed by a back-
ward recursive smoothing stage. Comparing the KF equations
for `1 and `2 trend filtering, the only difference is that the
system noise gain matrix in `1 trend filtering is time variant
(bn,k = [φ

(m)
k , 0, · · · , 0]T ) while it is constant for `2 trend

filtering (bn,k = [1, 0, · · · , 0]T ). It is worth to mention that
against the KF implementation of `2 trend filtering that we run
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0.3 Kalman filter implementation

KF only one time over all k, in `1 trend filtering, one should
run KF over all k, for a given m; and then this has to run mul-
tiple times for m = 1, 2, 3, · · ·. Finally, `2 trend filtering is a
special case of `1 trend filtering when we set φ(0)k to 1 (i.e.,
the initial estimation, x̂(0)k , is chosen such that ∇nx̂

(0)
k = 1).

In other word, the initial estimation is chosen as a polynomial
of order n.

In the context of estimation theory, it is proved that for
stationary processes, the KF converges to the optimal Wiener
filter in steady state. It is also shown in appendix that the op-
timization problems (2b) and its particular case (2a) converge
to the optimal Wiener smoothing filter. The time of conver-
gence depends on the covariances of the process and mea-
surement noises, namely qk and rk [or to their ratio, as seen
in equations (22) and (32)]. Therefore, in the Kalman filtering
framework, we set qk and rk such that

λ =
σ2
v

σ2
w

=
rk
qk
. (22)

Illustrative Example
The motivation behind `1 trend filtering was discussed in

the previous sections. It was shown that `2 trend filtering is
a special case of `1 trend filtering. An example of piecewise-
constant signal smoothing was given in Section and the first
order `1 trend filtering was used to reconstruct the desired sig-
nal. We saw that the first order `1 trend filtering can be used
to effectively separate the piecewise-constant signal and the
random noise even if they are overlap in the frequency do-
main. The key point is that for fitting a piecewise-polynomial
of degree n − 1 to the data, a weighted `1-norm of the n-th
order difference of the signal can be used as the penalty term
in `1 trend filtering formula. In this section, we mainly focus
on `1 trend filtering as `2 trend filtering is a special case of it.
Let us consider again the piecewise-constant signal given in
Example 2. In Figure 2, we saw the result of `2 trend filtering
using KS (trend smoothing in the Kalman filtering). The re-
sult of applying the first order `1 trend filtering implemented
by KF and KS to the noisy piecewise-constant signal is shown
in Figure 3. The KF is a causal algorithm and can be used for
real time applications. The KS algorithm preserves the edges
better than KF. This is because the KS algorithm uses infor-
mation brought by “future” observations, therefore, provides
better estimates of the current states than KF. However, it can

only be used for offline applications.

Now, we consider the signals that have more complex
shape. We give an example from electrocardiogram (ECG)
signal smoothing. ECG is a time-varying signal which pro-
vides some information of the cardiac health status. It con-
sists of different complex waveforms, classically labeled as
P-wave (linked to atrial depolarization), QRS complex (cor-
responds to ventricular depolarization) and T-wave (corre-
sponds to ventricular repolarization). In the following, we use
`2 and `1 trend filtering for ECG signal smoothing. We use
the MIT-BIH Atrial Fibrilation Database [12]. As an exam-
ple, Figure 4(a) shows a specific case record 08378m from
this database. Its noisy data is plotted in Figure 4(b). The
noisy data is the result of contaminating the original sig-
nal by a random noise with SNR = 10. The ECG smooth-
ing for this specific case using `2 and `1 trend filtering are
reported in panels 4(c) and 4(d), respectively. For both `2

and `1 trend filtering algorithm, we use n = 3, which cor-
responds to modeling the ECG components segment as hav-
ing a sparse order-3 derivative (i.e., approximately piecewise
polynomial with polynomial segments of order 2). As can be
seen, `2 trend filtering leads to the distortion of QRS com-
plexes, while `1 trend filtering does not, as highlighted using
arrows in panels 4(c) and 4(d). It is possible to solve the prob-
lem of `2 trend filtering by decreasing the regularization pa-
rameter (i.e., increasing the cutoff frequency). In that case, it
follows the shape of QRS complexes but follows the noises
in low-frequency components as highlighted using arrows in
Figure 5.

What we have learned
Based on this article, using KF and KS, readers could im-

plement the `2 and `1 trend filtering. One of the major ad-
vantages of the proposed framework is that it brings `2 and
`1 trend filters together in a unified way. Therefore, it can be
used for explaining their differences and similarities.

Appendix
Considering the fact that the n-th order difference of xk

can be expressed as the convolution of θn,k with the signal
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0.3 Kalman filter implementation
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Figure 3: The piecewise-constant (sparse first order derivative) signal smoothing using `1 trend filtering implemented by KF
and KS procedure.
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(b) Noisy ECG signal (SNR = 10)
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(c) Estimated ECG using `2 trend filtering
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(d) Estimated ECG using `1 trend filtering

Figure 4: ECG signal smoothing for record 08378m from the MIT-BIH Atrial Fibrilation Database (afdb) using the third order
`2 and `1 trend filtering (a) Original ECG signal (b) Noise ECG signal (c) Estimated ECG using `2 trend filtering with λ = 4000
(NSR = 0.3) (d) Estimated ECG using `1 trend filtering (NSR = 0.11).

xk, where θn,k is

θn,k =

n∑
i=0

(−1)i
(
n

i

)
δk−i (23)

and δk is the Dirac delta function, (15) is expressed as:

(24)argmin
xk

1

2

L∑
j =1

[yj − xj ]2 + λ

L∑
j =1

1

2

[
θn,j ∗ xj
φ
(m)
j

]2
+C,

where ∗ denotes the convolution operator. In the following,
for simplifying the notation, we will drop the superscript (m)

and we will simply refer to φ(m) as φ. The optimal solution
of (24) is found by setting its derivative with respect to xk
to zero. Doing it and considering that ∂/∂xk(θn,k ∗ xk)2 =

2θn,−k ∗ θn,k ∗ xk [4, Lemma 2], the optimal solution using

`1 trend filtering is obtained as

φ2kxk + λθn,−k ∗ θn,k ∗ xk = φ2kyk. (25)

On the other hand, the state-space model (17) can be ex-
pressed as {

θn,k ∗ xk = φkwk

yk = xk + vk
. (26)

The optimal mean-square error estimator that estimates xk
from yk is the optimal Wiener smoothing filter, whose transfer
function is given by

Gopt(z) =
Sxx(z)

Sxx(z) + Svv(z)
, (27)

where Sxx(z) and Svv(z) denote the power spectral densities
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Figure 5: The Estimated ECG using `2 trend filtering with λ = 20 (NSR = 0.13).
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(PSDs) of the signal and observation noise process, respec-
tively. According to the process model, the PSD of x is equal
to

Sxx(z) =
Φ(z) ∗ Φ(z) ∗ Sww(z)

Θn(z)Θn( 1
z )

. (28)

Substituting (28) in (27) and after some simplifications, we
find

Gopt(z) =
Φ(z) ∗ Φ(z) ∗ Sww(z)

Φ(z) ∗ Φ(z) ∗ Sww(z) + Svv(z)Θn(z)Θn( 1
z )
.

(29)
Let us consider a specific case where the observation and pro-
cess noises are Gaussian white noises with variances σ2

v and
σ2
w, respectively. The output of the Wiener smoothing filter in

frequency domain is

(30)
σ2
wΦ(z) ∗ Φ(z) ∗ Y (z) = σ2

wΦ(z) ∗ Φ(z) ∗X(z)

+ σ2
vΘn(z)Θn(

1

z
)X(z).

Taking the inverse transform of (30) and after some manipu-
lation, we find

φ2kyk = φ2kxk +
σ2
v

σ2
w

θn,k ∗ θn,−k ∗ xk. (31)

Comparing (31) with (25), we conclude that the `1 trend fil-
tering is a special case of Wiener smoothing filter when the
regularization parameter is chosen as

λ =
σ2
v

σ2
w

. (32)

In a particular case, when φk = 1, (31) becomes the optimal
solution of (2a):

yk = xk +
σ2
v

σ2
w

θn,k ∗ θn,−k ∗ xk. (33)

It confirms that the `2 trend filtering is a special case of
Wiener smoothing filter [4, section 4].
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