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Abstract

The outbreak of SARS-CoV-2 and the corresponding surge in patients with severe symptoms of

COVID-19 put a strain on health systems, requiring specialized material and human resources, of-

ten exceeding the locally available ones. Motivated by a real emergency response system employed

in Northern Italy, we propose a mathematical programming approach for rebalancing the health

resources among a network of hospitals in a large geographical area. It is meant for tactical planning

in facing foreseen peaks of patients requiring specialized treatment. Our model has a clean combi-

natorial structure. At the same time, it allows to include as options the handling of patients by a

dedicated home healthcare service, and the efficient exploiting of resource sharing. We introduce

mathematical programming heuristic based on decomposition methods and column generation to

drive very large scale neighborhood search. We evaluate its embedding in a multi-objective opti-

mization framework. We experiment on real world data of the COVID-19 in Northern Italy during

2020, whose aggregation and post processing is made openly available to the community. Our ap-

proach proves to be effective in tackling realistic instances, thus making it a reliable basis for actual

decision support tools.

Keywords: OR in health services; COVID-19; facility location-allocation; mathematical

programming

1. Introduction

In the last two decades epidemics of several infectious diseases emerged with increased frequency,

in some cases reaching continental or global scale (Jain et al., 2018). This is due to a combination

of factors, such as proximity of urban areas and wildlife (Cunningham et al., 2017), globalization

of tourism and of the commercial exchanges (McMichael, 2013), climate changes (McMichael, 2013;

Shuman, 2010). The harm posed by epidemics is primarily measured in terms of human losses and

health consequences; moreover, responses to epidemics emergencies typically entail high societal and

economic costs (see Nicola et al. (2020) for an account of diverse socio-economic consequences of the

recent COVID-19 epidemic in high-income countries). These considerations explain the increasing
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attention of national and international public health agencies toward science-based management of

epidemic emergencies. In this context, Operations Research (OR) plays a central role, providing

effective methods to support decision-making in epidemics control (Silal et al., 2020) and more

generally in large-scale emergencies (Stilianakis and Consoli, 2013).

The outbreak of SARS-CoV-2 and the corresponding surge in patients with severe symptoms of

COVID-19 put a strain on health systems. The treatment of COVID-19 patients requires specialized

material and human resources, often exceeding the available amount. In order to provide them with

the best possible service, a relocation of health resources between areas in need and areas with a

surplus may be put in place.

In this paper we propose a mathematical programming approach for rebalancing the health

resources among hospitals of a large geographical area in order to face a foreseen surge in incoming

patients requiring specialized treatment. The rebalancing includes the repurposing of hospital wards,

the relocation of medical staff and medical resources, the assignment of incoming patients to suitable

wards, the relocation of inpatients between wards, the allocation of medical resources available at

external suppliers, and as a last resort the selective discharge of mild patients, possibly through

dedicated home healthcare services. Our idea is illustrated in Fig. 1 and we later formalize the

overall problem as a mixed-integer linear programming (MILP). Its core stems from the so-called

facility location-allocation problems, which arise not only from epidemics management but also from

industrial applications: actually, the rebalancing problem described above extends and combines

several features of existing facility location-allocation variants and, as such, it has not been treated

before.

The problem considered in this paper has relevance at different stages, as it asks to improve the

preparedness of the health system in the face of a long-lasting epidemic. We focus on the tactical

aspect: the solutions of our methods let decision makers (a) perform a scenario-based validation of

the health system resistance depending on the intensity of the epidemic, and (b) actually reorganize

the system in case one of the considered scenarios occurs.

To solve our problem we introduce a mathematical programming heuristic algorithm exploiting

MILP decomposition methods and column generation algorithms. These are used to drive a very

large scale neighborhood search (VLSNS) procedure. The effectiveness of our MILP approach is

evaluated from two perspectives. First we assess its practical applicability to deal with problems

arising from real-world situations. This includes the possibility of solving large-scale optimization

problems populated with real data. Second, we consider its flexibility in prospective decision support

tools. We consider various key performance indicators related both to the quality of service provided

to the patients and to the economic effort arising from the implementation of the MILP solutions,

adapting our algorithms to perform bi-objective optimization.

We perform scenario-based experiments, simulating the application of our model to the first

wave of COVID-19 infections in Lombardy, a region of Northern Italy, during Spring 2020. The

experimental results indicate that our methodology is effective both in terms of computational

efficiency and in terms of solution quality.
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Figure 1: Graphical example of the problem under study: a pandemic outbreak leads to a surge of incoming patients
in a geographical area; to serve these latter, all hospitals of the area (H1, H2 and H3) need to redistribute both
inpatients and resources among them; resources can be provided by external suppliers, inpatients can be discharged.
Redistributions can happen also among wards of a single hospital, and a ward can be repurposed to host different
type of patients.

Outline. This paper is organized as follows. In Sect. 2 we highlight similarities and novelties of

our work with respect to the existing approaches for related variants of facility location-allocation

problems. In Sect. 3 we provide our model, composed of a core of combinatorial features that may

appear in generic rebalancing problems, and constraints arising from real-world emergency-specific

features. In Sect. 4 we provide the details of our mathematical programming heuristic and its

embedding in a bi-objective optimization approach. To assess their computational effectiveness our

algorithms are tested experimentally in Sect. 5, relying on a parametric analysis. The conclusions

of our research are given in Sect. 6.

2. Literature Review

The literature on OR applications to epidemics logistics and large-scale emergencies is vast.

Indeed, the scarcity of health resources is a critical issue triggering actions and reactions of different

players. A full survey is beyond the scope of this section. We therefore refer the reader to Dasaklis

et al. (2012) and to Altay and Green III (2006) for extensive literature reviews on these topics.

A first line of research that is strictly related with our work is the optimal location of facilities

during large-scale emergencies (Boonmee et al., 2017). Problems of this type subsume the well-

known facility location-allocation (FLA) problem, a combinatorial optimization problem where a

set of facilities must be opened in either predetermined candidate sites (discrete FLA) or in a

continuous region (continuous FLA) and customers must be allocated to the opened facilities so

to cover the total customers’ demand while minimizing the location and allocation costs. FLA

problems naturally arise in business logistics (Klose and Drexl, 2005; Melo et al., 2009). As such,
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classical FLA problems often overlook system congestion, facility unavailability and heterogeneity,

resource scarcity and time-dependent demands, which instead characterize large-scale emergency

applications, Jia et al. (2007a).

FLA problems taking into account such emergency aspects are first introduced in Jia et al.

(2007a) and Jia et al. (2007b). These two works adapt classical combinatorial optimization problems

(such as the p-median, the p-center and the maximum covering problems, see e.g., Ahmadi-Javid

et al. (2017)) and also stress the concept of quality of service in the modelling phase.

Two additional studies relevant to our discussion are presented in Ekici et al. (2008) and Carr

and Roberts (2010), where simulation models forecasting commodity demands are combined with

algorithms to minimize the cost of locating emergency facilities needed to satisfy the demands. In

both works, the optimization problem is modelled as an integer linear program (ILP) and is resolved

iteratively over a rolling time horizon, updating dynamically the total commodity demand through

the forecasting model. Ekici et al. (2008) considers the distribution of a single commodity through

facilities belonging to a three-levels supply-chain and allows demand split, while Carr and Roberts

(2010) considers a multi-commodity distribution without demand split but under resource-customer

compatibility constraints. In our paper we combine several of these aspects: we model the presence

of a global supplier and the redistribution of multiple health resources (e.g., physicians, ventilators,

beds) among the facilities, taking into account compatibility and demand split aspects.

Addressing the aspect of unavailability of facilities during emergencies, the research proposed

in Huang et al. (2010) develops a dynamic programming algorithm for solving, on a path network,

a specific FLA problem based on a modified p-center problem and proposes a heuristic based on

an ILP relaxation for solving the same problem on general networks. Although unavailability of

facilities typically occurs in non-epidemic emergencies like earthquakes, this aspect is also partially

present in our study: due to the high inter-human transmissibility of SARS-CoV-2, specific types

of inpatients (e.g., geriatric ones) cannot be allocated to COVID-19 wards.

More recently, in Sun et al. (2014) mono- and bi-objective mathematical models have been

developed and solved exactly to tackle the problem of allocating patients and resources over a

network of hospitals during an epidemic. The objectives of the models are the minimization of the

total and the maximum distances travelled by patients for reaching the assigned hospitals. The

most comprehensive model presented in Sun et al. (2014) considers several patient and resource

types, along with patient-resource compatibility, resource shortages and external suppliers. Such

high level of detail is also considered in our paper. Moreover, we will extend the above approach by

also considering hospital ward repurposing and both resource and patient relocation over a network

of hospitals.

Indeed, experts estimate these latter strategies to be effective in mitigating hospital congestion

during large-scale epidemics, see e.g., Scarfone et al. (2011); Her (2020); Meschi et al. (2020);

Gagliano et al. (2020). At the same time, some of them, as relocation of patients, have received

little attention in the healthcare OR literature, see the discussion in Andersen et al. (2017). In fact,

in this context, OR-based approaches most often consider repurposing and reallocation within a
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single hospital (Thomson et al., 2009; Andersen et al., 2017; Pishnamazzadeh et al., 2020), while,

to the best of our knowledge, they have not been applied to large networks of hospitals.

Two recent works exploit similar ideas for industrial FLA problems. The first of these problems

is the capacitated mobile facility location (CMFL) introduced in Raghavan et al. (2019). In the

CMFL problem, a set of heterogeneous facilities of finite capacities must be relocated from their

starting position to some destinations and must be assigned to a given set of customers so to

satisfy their total demand without exceeding any facility capacity. The goal is to minimize the

total distance covered by facilities (to reach the destination points) and customers (to reach the

assigned facility). In Raghavan et al. (2019) the CMFL problem is modelled by means of a set

partitioning ILP and solved by means of an effective branch-and-price algorithm. While relocation

problems are common in the FLA literature (see e.g., Melo et al. (2006); Demaine et al. (2009)

for two distinct perspectives) the CMFL presented in Raghavan et al. (2019) combines several

characteristics that are also present in the problem studied in our paper: facilities (wards in our

problem) are heterogeneous; the capacities of the facilities are finite; the facility relocation costs

are not fixed, but depend on both origin and destination locations (initial and new ward types

in our problem). There are relevant differences too: interpreting each patient type as a customer

we allow demand splits, that is, patients of a given ward may be relocated to several new wards;

in our problem ward capacities are not fixed, but depend on the assigned resources, and thus are

part of the decision process; we consider a multi-commodity setting; finally, we take into account

customer-resource compatibility. All these aspects, not modelled in Raghavan et al. (2019), allow

a greater flexibility of our solutions in meeting the customers’ demands; as a consequence, directly

applying the methods of Raghavan et al. (2019) to our problem would yield, in general, infeasible

or sub-optimal solutions.

In the context of FLA problems, the dependency of the ward capacities on the assigned resources

is called capacity transfer and has been introduced in Corberán et al. (2020). The paper investigates

the facility location problem with capacity transfers (FLPCT), a capacitated FLA problem where

it is possible to increase the (physical or productive) capacity of a facility by transferring it from

other facilities at some cost. In Corberán et al. (2020), the FLPCT is modelled by means of

non-linear and linear integer programs, and solved using a branch-and-cut approach. The models

proposed in Corberán et al. (2020) are suitable for homogeneous facilities (there is only one type of

customer demand). We extend the capacity transfer feature to a multi-commodity setting which is

additionally complicated by several constraints, arising from the specific real-world application.

In Table 1 we summarize the differences between the problem studied in this paper and the

literature. For each relevant feature of our problem, we use the checkmark symbol (✓) if the

feature is considered in the paper and we leave the entry blank otherwise.

3. Modeling relocation and reallocation in the health system

In the following we introduce our general modeling framework in terms of entities involved

(subsection 3.1), variables and constraints of our model (subsections 3.2–3.4) and optimization
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Table 1: Summary of literature gap. Column HRM represents our contribution. The first three lines are the essential
combinatorial features of FLA problems. In our work ‘customers’ are patients; ‘resource-customer compatibility’
is checked even just on the basis of geographical distances and ‘heterogeneous facilities’ is checked even just when
facilities have distinct capacities; our model takes into account additional real-world aspects, not listed in this table.

HRM Sun et al.
(2014)

Ekici et al.
(2008)

Carr and
Roberts
(2010)

Corberán
et al.
(2020)

Raghavan
et al.
(2019)

discrete facility loca-
tion/relocation

✓ ✓ ✓ ✓ ✓

capacitated facilities ✓ ✓ ✓ ✓ ✓ ✓
customer allocation ✓ ✓ ✓ ✓ ✓ ✓
external supply of resources ✓ ✓ ✓ ✓
bi-objective model ✓ ✓
customer categories ✓ ✓
resource-customer compati-
bility

✓ ✓ ✓

multi-commodity resources ✓ ✓ ✓
heterogeneous facilities ✓ ✓ ✓ ✓
demand split ✓ ✓ ✓ ✓
capacity transfer ✓ ✓

performance indicators (subsection 3.5). The complete model is summarized in Appendix A, which

also contains Tables reporting the complete sets of model entities (Table 3), variables (Table 4) and

parameters (Table 5). An intuitive overview of our modeling choices is given in Fig. 2.

3.1. Model Entities

The set of hospitals H (large rounded corner rectangles in Fig. 2) encompasses all hospitals that

are available to relocate resources or patients. Each hospital h ∈ H contains a set Wh of logical

wards (circles within dashed-line rectangles in Fig. 2). Each logical ward is related to real-world

physical wards in three (mutually exclusive) ways:

(a) in a 1-to-1 relationship: a logical ward represents the physical space of a single ward in a

hospital;

(b) in a 1-to-many relationship: a logical ward represents a cluster of two or more physical wards,

grouped to represent one or more specialties that, for the purpose of tactical optimization, may

be pertinent to consider together. As an example, a logical ward of this type may represent

a set of COVID-free wards hosting inpatients that cannot be discharged;

(c) in a many-to-1 relationship: a single physical ward is split in two or more logical wards, to

manage their capacity at a smaller granularity. For example, if the structure of the rooms in

a ward allows to be physically separated in smaller spaces with distinct access points, those

become eligible as COVID-19 wards.

The mapping between physical and logical wards is performed by the decision maker in preprocess-

ing, and is therefore part of data. Hence, in the following we simply use ward to refer to the logical
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Figure 2: An intuitive overview of our modeling framework. The left and right layers represent the settings before and
after planning decisions, respectively, in a sample instance with |H| = 2 hospitals, |V | = 5 wards, |R| = 3 resource
types and |P | = 2 patient types. A few of the decision options are represented as arrows between layers. Shade and
patterns of a shape correspond to distinct entity types.

ones. We consider W =
⋃

h∈H Wh, and for each w ∈W we denote as h(w) the element h ∈ H such

that w ∈ Wh, that is the hospital to which w belongs. In the set W we also include two special

wards:

• the homecare ward v̄, modelling domiciliary healthcare services such as telemedicine or assis-

tance by qualified medical staff;

• the home ward v representing (as last resort) the discharging of patients from hospitals, with

no domiciliary healthcare service except the standard one from the health system.

Wards and operators are characterized by a specialty chosen from a set S (different color shades

of circles in Fig. 2), which contains all medical specialties appearing in the system, or additional

aggregate specialties crafted by merging subsets of them when it is feasible for the purpose of

planning to consider them as equivalent.

Patients are characterized by a type chosen from a set P (different color shades of triangles and

diamonds in Fig. 2), that identifies both the ward specialty in which the patients need to be hosted,

and the severity of their disease.

A set of resources R (squares in Fig. 2 with different patterns) contains one element for each

type of human personnel, medical device, or consumable that is needed to treat inpatients. Clearly,
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material resource entities abstract from the extensive set of resources that are located in a hospital

and R includes only that subset which more significantly limits the number of patients that can

be hospitalized at once. As an example, the set R may contain elements for beds, ICU equipment,

oxygen supply, etc. Human resource entities (i.e., physicians and nurses with their specialties)

also belong to R: the corresponding elements are assumed to match logical wards. For example,

COVID-related specialties (anaesthetists, pulmonologists and emergency physicians) and specialties

related to non-deferrable pathologies (e.g., neurologists, cardiologists, etc.) should be considered as

distinct resource categories, while other specialties may be merged in a single aggregate specialty

to treat non-COVID and non-emergency patients.

Finally, a set of suppliers E (element e1 in Fig. 2) models additional resources, which are external

to the system of hospitals. These include for example additional device supplies, as well as candidate

locations to set up temporary support structures like field hospitals. To ease notation, we model

suppliers as dummy wards, assuming E ⊂W .

3.2. Decision Variables.

Our rebalancing model considers three main actions from the decision maker: (a) to change

wards type, providing more room for expected peaks of demand, (b) to move resources from one

ward to another and (c) to reassign patients between wards. In a tactical planning scenario, while

actions (a) are crisp, actions (b) and (c) are meant more as estimates for future actions. These

are described in the following. To ease their reading, decision variables and model parameters are

summarized in Tables 4 and 5 of Appendix A.

Ward type. The first key assumption of our model is the following: the specialty of a ward can be

changed, to meet an expected peak of inpatients demand which is far from that of standard load.

Such a change requires suitable setup time, and often different resources to be made available in

the ward.

We therefore introduce for each ward w ∈ W and each specialty s ∈ S a binary variable χw,s,

taking value 1 if ward w is assigned to specialty s, 0 otherwise. In the example of Fig. 2, ward w1

keeps its specialty (χw1,s1 = 0, χw1,s2 = 1) while ward w2 changes it (χw2,s1 = 0, χw2,s2 = 1).

Resources allocation. The second key assumption of our model is the following: during emergency

situations, staffers, device and material resources can be temporarily moved from one ward to

another, potentially in different hospitals.

Accordingly, we introduce for each resource type r ∈ R, each source ward w1 ∈ W and each

destination ward w2 ∈ W a variable ρr,w1,w2 ∈ R≥0, representing the amount of resources of type

r that need to be moved from w1 to w2. Since E ⊂ W , these variables describe also the amount

of resources transferred from the external suppliers to wards. In the example of Fig. 2, a certain

amount ρr1,w3,w2 of resources of type r1 is moved from ward w3 to ward w2, another amount ρr1,w1,w1

of resources r1 is kept in ward w1 and ρr,e1,w2 represents the amount of resource r obtained by w2

from supplier e1.
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Patients’ allocation. Under normal load, the health system expects patients to refer to the nearest

hospital. However, under system stress conditions, handling all patients of a certain type in their

nearest hospital might lead to the collapse of certain wards. Therefore, assuming to have a forecast-

ing on the expected number of patients of each type, we plan in advance the (expected) number of

new patients of each type p ∈ P appearing in each hospital h ∈ H to be transported for treatment

to a ward w ∈ W , either in the same or in another hospital. This is modeled by introducing a set

of variables πp,h,w ∈ R≥0.

Furthermore, the third key assumption of our relocation mechanism is the following: even

existing inpatients can be moved from one ward to another, potentially located in a different hospital,

provided the destination ward is eligible to host the patient. We also assume that the treatment of

some types of patients can be postponed, and even that inpatients of selected types of diseases can

be discharged from the hospital and treated by means of a dedicated domiciliary healthcare system.

That practice is in fact the main one experimented with success to reduce wards congestion during

the COVID-19 emergency (Zuccotti et al., 2020).

We therefore include in the model also a set of variables µp,w1,w2 ∈ R≥0 that represent the

number of inpatients of type p ∈ P to move from ward w1 ∈ W to ward w2 ∈ W . Wards w1 and

w2 can belong to the same hospital, or different ones; w2 can even be the special ward representing

the domiciliary healthcare system or the discharge of the patient.

For instance, in Fig. 2 a certain number µp1,w1,w1 of inpatients of type p1 is kept in ward w1,

while a number µp2,w5,v is discharged from hospitals. At the same time, a number πp1,h1,w2 of new

patients of type p1 is expected to be transported from hospital h1 to ward w2, a number πp2,h1,w4

to ward w4 (which is located in hospital h2), and a number πp2,h2,v̄ to dedicated homecare services.

3.3. Modeling system rebalancing

In order to detail a valid tactical plan, the setting of variables must respect the following con-

ditions.

Ward types single assignment and patients compatibility. A single specialty is assigned to each ward

w ∈ W , chosen among a subset of specialties which are considered to be valid for w depending on

its functional and physical structure. Let aw,s be a coefficient, set to 1 if it is feasible for ward

w ∈W to have type s ∈ S, 0 otherwise:

∑
s∈S

aw,sχw,s = 1 ∀w ∈W (1)

Patients and resources flow consistency. Patients and resources are modeled as units of flow, origi-

nating in source wards and sent to destination wards. Let q0p,w be the number of existing inpatients

of type p in ward w and qp,h be the number of new patients of type p expected to arrive for

hospitalization in hospital h ∈ H.

It is not always possible to move a patient from one ward to another. Typical restriction are

due to travel distance or time. For each patient type p ∈ P and hospitals h1, h2 ∈ H, let coefficient

ap,h1,h2 take value 1 if moving patients of type p from h1 to h2 is possible, 0 otherwise.
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The number of patients moving from each ward must match these initial values, i.e., all existing

inpatients in wards must be moved to another compatible ward, and the treatment of all new

patients must be planned by moving them to compatible wards:∑
w2∈W

ap,h(w1),h(w2)µp,w1,w2 ≥ q0p,w1
∀p ∈ P,w1 ∈W (2)

∑
w∈W

as,h,h(w)πp,h,w ≥ qp,h ∀p ∈ P, h ∈ H (3)

We remark that in (2) w1 can be equal to w2, in which case the inpatients do not move. Similarly, in

(3) h(w) can be equal to h, in which case the new patients are treated directly in the hospital where

they appear. These latter actions are always possible, hence the corresponding coefficients ‘a’

are equal to 1; moreover, variables µ and ρ linked to coefficients ‘a’ of value 0 are set to 0 in

preprocessing. The transportation of resources among wards, including suppliers, must satisfy a

symmetric condition: no more resources than the available ones can be moved from the initial

wards.. Letting q0r,w be the amount of resource r ∈ R initially available in ward w ∈ W , we get

constraints:

∑
w2∈W

ρr,w1,w2 ≤ q0r,w1
∀r ∈ R,w1 ∈W (4)

Wards capacity. Wards have capacities: they can host only a limited amount of each resource. At

the same time, wards can host only a limited number of inpatients for a specific disease, depending

on both their structure and the amount of allocated resources.

For each resource r ∈ R and for each ward w ∈W , let mr,w be the maximum amount of resource

r that the ward w can host. The amount of resources sent to each ward w2 ∈W cannot exceed its

capacity: ∑
w1∈W

ρr,w1,w2 ≤ mr,w2 ∀w2 ∈W, r ∈ R (5)

Similarly, let np,r be the amount of resource r required by each unit of patient of type p ∈ P .

The amount of each resource r ∈ R required by all patients sent to each ward w2 ∈ W cannot

exceed the availability of r in w2:

∑
p∈P

np,r

∑
h∈H

πp,h,w2 +
∑

w1∈W
µp,w1,w2

 ≤ ∑
w1∈W

ρr,w1,w2 ∀w2 ∈W\{v̄, v}, r ∈ R (6)

For instance, in Fig. 2 sending ρr1,w2,w2 + ρr1,w3,w2 units of resource r1 to w2 allows to host

πp2,h1,w2 new patients of type p2 in ward w2. Similarly, acquiring ρr3,e1,w4 units of resource from

supplier e1 allows to host πp2,h1,w4 new patients in w4. Resources are not consumed in the case of

transportation to wards ‘v̄’ and ‘v’, representing homecare treatment and patient’s home, respec-
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tively (e.g. for discharged inpatients or postponed elective treatments).

Wards compatibility. Wards can host only specific types of patients. For each patient type p ∈ P

and for each specialty s ∈ S, let ap,s be a binary parameter, set to 1 if patients of type p can be

hosted in wards of specialty s, 0 otherwise. Let also

q̄0p,w1,w2
= min{q0p,w1

,min
r∈R
⌊mr,w2/np,r⌋}

be an upper bound on the number of existing inpatients of type p that can be moved from w1 to

w2, and let

q̄p,h,w = min{qh,p,min
r∈R
⌊mr,w/np,r⌋}

be an upper bound on the number of new patients of type p that appear at hospital h and are sent

to ward w. A ward cannot host new patients of a certain type unless it is switched to a compatible

speciality:

πp,h,w ≤ q̄p,h,w
∑
s∈S

ap,sχw,s ∀p ∈ P,∀h ∈ H,∀w ∈W. (7)

For instance, in Fig. 2, ward w2 must change its specialty to s2 (χw2,s2 = 1) to host patients of type

p1 (πp1,h1,w2). Similarly, a ward cannot host existing inpatients of a certain type unless its speciality

is compatible:

µp,w1,w2 ≤ q̄0p,w1,w2

∑
s∈S

ap,sχw2,s ∀p ∈ P,∀w1 ∈W, ∀w2 ∈W. (8)

3.4. Modeling emergency-specific features

In the following we introduce additional constraints arising from the COVID-19 emergency in

Northern Italian health system, as suggested by domain experts (e.g. Villani MD (2020)).

Keeping critical inpatients at their hospital. Not every inpatient can safely leave his/her hospital to

be transported to other ones. We assume that a fraction fp,w ∈ [0, 1] of patients of each type p ∈ P

that are initially placed in ward w ∈ W cannot leave the hospital hosting them. Accordingly, the

following set of constraints is added to the model:∑
w1∈Wh(w)

µp,w,w1 ≥ q0p,wfp,w ∀p ∈ P,w ∈W (9)

Providing support resources for comorbidities. The treatment of each patient may require more than

a single specialist. It is certainly the case of COVID-19, where a large part of critical inpatients

suffers other chronic diseases. As discussed in the previous subsection, these inpatients require a set

of main mandatory resources of COVID-19 wards, in exclusive way. Additionally, they need a set

of support resources only in case of need, or as low frequency routine. These latter can be provided
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on a proximity basis: inpatients of a certain ward are serviced by resources hosted in potentially

different wards, if they are located within a given distance range.

Accordingly, we assume that the amount n̂p,r of support resources of type r needed by patients

of type p is given, as well as the maximum distance d̂ between the patients and the ward hosting

the support resources. Introducing variables τr,w2,w3 describing the amount of resource r located in

w3 and serving inpatients in w2, our model is enriched by the following set of constraints:

∑
w3:dh(w2),h(w3)

≤d̂

τr,w2,w3 ≥ n̂p,r

( ∑
h∈H

πp,h,w2 +
∑

w1∈W
µp,w1,w2

)
∀p ∈ P, r ∈ R,w2 ∈W\{v} (10)

∑
w2∈W

τr,w2,w3 ≤
∑

w1∈W
ρr,w1,w3 ∀w3 ∈W, r ∈ R (11)

Constraints (10) are imposed also for patients moved to ‘homecare’ treatment (ward v̄); indeed,

we model the homecare treatment as a non exclusive use of resources. Finally, we remark that the

possibility of patients to change type during the planning horizon is not taken into account, since

we assume such an option to be important at an operational level, but to have a limited impact in

tactical planning, for which our model is designed.

Alternative resources. Another mean of coping with a critical lack of resources during emergencies is

to replace specific ones with viable alternatives. A relevant case is given by the choice of physicians

in COVID-19 sub-intensive care units: wards formally require either anaesthetist, pulmonologist or

emergency physicians. However, different specialists are allowed to support, if at least some among

them hold the specific ICU skills.

Accordingly, let rA ∈ RA be a set of resources which are considered to be equivalent, and let

n̄p,rA be the amount of alternative resources in the set rA needed by each patient of type p. We

impose

∑
p∈P

n̄p,rA
( ∑
h∈H

πp,h,w2 +
∑

w1∈W
µp,w1,w2

)
≤

∑
w1∈W,r∈rA

ρr,w1,w2 ∀w2 ∈W\{v̄, v}, rA ∈ RA (12)

From an application point of view, introducing alternative resources (and therefore constraints (12))

allows to reduce the set of specific ones required by some types of patients, thereby relaxing some

constraints in the set (6).

3.5. Key Performance Indicators

There are many aspects that need to be balanced to obtain an effective planning. In the following

we detail each of them as a Key Performance Indicator (KPI). Then we discuss on how it is more

appropriate to manage them, i.e., imposing target constraints or combining them into an objective

function. We keep a minimization philosophy: for each KPI, the lower the better.
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Quality of Service (QoS). The QoS in our system is measured regarding the patients’ side. In

particular, we measure (a) the number of inpatients that are moved from one hospital to another

and (b) the number of patients that are not treated in a hospital (i.e., those either discharged or

for which the hospitalization has been delayed even if required).

Let cp,w1,w2 ∈ R≥0 be part of data, representing the cost for moving inpatients of type p from

ward w1 to ward w2; similarly, let cp,h,w ∈ R≥0 be the cost for relocating incoming patients of type

p from hospital h to ward w. We define the following QoS measure:

CQoS =
∑

p∈P,w∈W

∑
h∈H

cp,h,wπp,h,w +
∑

w1∈W
cp,w1,wµp,w1,w

 (13)

We remark that sending patients to homecare (ward v̄), as well as resorting to their discharge from

the hospitals without dedicated domiciliary healthcare (ward v) imply costs that affect the QoS.

The latter is in fact assumed to be set by a decision maker to very high values. A high level of

service is associated with low KPI values.

Logistics. As a second KPI we take into account the economic effort to setup wards and transport

resources. Let s0(w) be the element s ∈ S that identifies the initial speciality of ward w and

cs1,s2 ∈ R≥0 be the cost to change the specialty of a ward from s1 to s2. Moreover let cr,w1,w2 ∈ R≥0

be the cost to move resource of type r from ward w1 to ward w2. We compute the economic effort

as:

CE =
∑

w∈W,s2∈S
cs0(w),s2χw,s2 +

∑
r∈R,w1,w2∈W

cr,w1,w2µr,w1,w2 (14)

The lower this KPI, the better. We remark that the arrangement of temporary field hospitals has

a cost, that can conveniently be encoded through coefficients cs1,s2 .

Reallocation effort. As a third KPI we consider the time needed to setup wards and move resources.

Let tr,w1,w2 (resp. tp,w1,w2) be the time needed to move one unit of resource r ∈ R (resp. patient

of type p ∈ P ) from ward w1 ∈ W to ward w2 ∈ W ; let also ts1,s2 be the time needed to convert a

ward from specialty s1 ∈ S to s2 ∈ S. We define

TR =
∑

w∈W,s2∈S
ts0(w),s2χw,s2+∑

w1,w2∈W

(∑
r∈R

tr,w1,w2ρr,w1,w2 +
∑
p∈P

tp,w1,w2µp,w1,w2

)
representing the number of working hours needed to perform the full relocation. We remark that

the model does not include the scheduling of these resources: they only represent the overall effort

required. The actual time to perform reallocation depends therefore on the amount of personnel

actually available.
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Expected patients relocation time. Part of the flexibility of the model in managing the capacity

is obtained by assuming new patients to be moved from the nearest hospital to other ones. The

expected moving time of these patients is also an important KPI, being part of the overall quality

of service. Let tp,h,w be the time needed to move an incoming patient of type p ∈ P from hospital

h to ward w. We define

TA =

∑
p∈P,h∈H,w∈W tp,h,wπp,h,w∑

p∈P,h∈H qp,h

as the expected moving time of a single new patient.

Combining KPIs. There are different ways in which these KPIs can be combined in a pertinent way.

In the following we assume fixing bounds on time KPIs to be more relevant for a decision maker

than minimizing them. We therefore assume that the decision maker is fixing the value of two

parameters T̄R and T̄A, representing the available man hours limit of time to move initial resources

and inpatients, and the maximum allowed average time for the displacement of incoming patients,

respectively. We impose

TR ≤ T̄R (15)

TA ≤ T̄A (16)

and focus on the optimization of the cost KPIs. The general model we start from is:

minimize αCQoS + βCE (17)

s.t. (1)− (16)

CQoS ≤ C̄QoS

CE ≤ C̄E

χw,s ∈ {0, 1} w ∈W and s ∈ S

πp,h,s, ρr,w,w′ , µp,w,w′ , τr,w′,w′′ ∈ R≥0 p ∈ P, h ∈ H, r ∈ R,w,w′, w′′ ∈W

where α and β are two real nonnegative parameters, and C̄QoS and C̄E are upper bounds for CQoS

and CE , respectively. We will consider two specializations of (17): in the first one C̄QoS = C̄E =

+∞ and α, β > 0, so that we minimize a weighted sum of unbounded cost KPIs; in the second

specialization we adopt a multi-objective approach setting to 0 precisely one weight α or β while

imposing finite upper bounds on the related KPIs. The above problem (17) will be referred to as

hospital resource management (HRM).

4. Optimization Algorithms

In a preliminary phase, we experimented on solving model (17) with the commercial solver

Gurobi 9.1 (Gurobi Optimization (2021)). Due to the size of real-world instances, even the resolution

of the LP relaxation (root node) ran out of memory on a workstation equipped with 32GB of RAM.
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In fact, model (17) is meant more as a baseline for the design of a mathematical programming

heuristic than as a direct resolution tool. In our algorithms we search for good solutions through

a VLSNS approach. The main idea is to iteratively (a) choose a subset of binary variables, fixing

them to promising values, and (b) explore the space of all possible solution completions. Neither

step (a) nor step (b) is a trivial task. To accomplish step (a) we design a column generation (CG)

algorithm, exploiting the structure of reduced costs arising during its execution. To accomplish step

(b) we solve restricted MIPs by a truncated run of a general purpose solver. The process iterates

in a local search fashion.

In this context, the CG algorithm has several advantages over e.g., the direct resolution of the LP

relaxation of formulation (17): first, it lets us run the VLSNS procedure repeatedly, thus exploring

a larger set of feasible solutions; moreover, it exploits a natural decomposition of model (17),

thus limiting the computational burden; finally, the valid lower bound it provides lets us control

consistently the quality of the heuristic solutions generated in the process.

We start by describing our column generation algorithm (subsection 4.1), then we proceed by

describing the VLSNS procedure (subsection 4.2).

4.1. Column-generation algorithm

Decomposition scheme. We employ the well-known scheme of Dantzig-Wolfe relaxation to get a

valid lower bound to formulation (17). For a general treatment of this approach we refer the reader

to Desrosiers and Lübbecke (2005). The details of our reformulation, and its full notation, are

reported in Appendix B.

The overall algorithm works as follows. We relax (17) by mapping constraints (2), (3), (4), (10),

(15) and (16) as constraints of an extended formulation called master problem, whose number of

columns grows combinatorially, encoding the extreme points of the convex hull of the remaining

constraints. Then, we solve this extended formulation by means of column generation: we start

with a small subset of columns, solve this restricted master problem (RMP), and use the values of

dual variables to find which columns are left out, having minimum reduced cost (pricing problem).

Our choice of relaxed constraints has three appealing features. First, it allows the pricing

problem to disaggregate in one independent subproblem for each w ∈ W . Each of them contains

the set of binary variables χw,s corresponding to a particular value of w ∈W , as well as other sets of

continuous variables, also related to a particular w ∈W . Therefore, these |W | pricing subproblems

can be solved independently. Second, pricing subproblems do not possess the integrality property,

which means that the lower bound obtained with our relaxation is potentially stronger than that

given by the continuous relaxation of (17). Third, we are able to exploit the multiple-choice structure

of constraints (1), to solve them efficiently: we optimize each pricing problem w ∈W by iteratively

fixing one of the χw,s variables to 1 and the others to 0, solving the remaining LP, and retaining as

final pricing solution for each w ∈ W the best one among these |S| iterations. This yields optimal

pricing solutions in polynomial time.

If no column of negative reduced cost is found by pricing, then the optimal RMP solution is

optimal for the full master problem as well, and therefore represents a valid dual bound to (17).
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Otherwise, the RMP is enriched by the negative reduced cost columns produced by pricing and the

process is iterated until convergence (Desrosiers and Lübbecke, 2005).

Constraints strengthening and handling. We strengthen the pricing sub-problem associated with

w′ ∈W , by including in its formulation the following constraint:

ρr,w1,w′ ≤ q0r,w1
, ∀r ∈ R,w1 ∈W (18)

The above is a disaggregation of constraints (4). Its meaning is that the amount of resource r ∈ R

sent from w1 ∈W to w′ ∈W cannot exceed the total available amount q0r,w1
of r in w1.

In preliminary experiments we observed numerical issues and very slow convergence of our

column generation algorithm, that we were able to ascribe to the presence of the proximity resource

constraints (10), which appear in the master problem as (10-DWR), see Appendix B.

Therefore, we treat such constraints in a lazy way in an iterative process. Initially, we remove

them from the master problem. When our CG algorithm ends, we check if the best heuristic solu-

tion found violates (10). The violation check is performed by solving a linear program, described

in Appendix C. If one or more constraints of family (10) are violated, the corresponding con-

straints (10-DWR) are added to the master problem and a further iteration of resolution of the

CG algorithm is performed, using the updated master problem, and setting the previous master

solution as a warm start.

In our experiments this technique provided substantial speedups: the process always ended at

the first iteration, as we found that it was always possible to satisfy constraints (10) in the best

heuristic solution found at the end of the first CG procedure by means of our LP postprocessing

model. Intuitively, variables τ are used only to enforce consistency of constraints (10) and (11), and

do not appear in the objective function. Constraints (10-DWR) are however made easy to satisfy

in the master, since the structure of constraints (6) and (12), which are additionally handled in a

convexified way in the pricing problems, are pushing their left and right hand sides apart.

Column generation speedup. We designed the following stopping criterion for the column generation

algorithm: letting c̄w be the objective function value of pricing sub-problem (20) for w ∈ W , we

stop the column-generation algorithm (a) if no negative c̄w is found in the iteration, or (b) after 500

iterations or (c) as soon as the gap between the objective function value z̄ of the RMP and the valid

lower-bound z̄ +
∑

w∈W, : c̄w<0 c̄w is less than 1% (the validity of this lower-bound is shown e.g., in

(Desrosiers and Lübbecke, 2005, p. 11)).

We further speed up our column-generation algorithms by stopping each pricing sub-problem

after 2 seconds or after 1000 simplex iterations. To limit the number of columns added to the RMP

after solving the pricing sub-problems, their optimal solutions are sorted by non-decreasing reduced

cost. Following this order, at most ⌊|W |/2⌋ columns with negative reduced cost are added at each

iteration.
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4.2. Very large scale neighborhood search.

Model (17) is not tractable for direct optimization. Its combinatorial complexity derives from the

choice of χ variables. In fact, once these are fixed, a linear program remains, which can additionally

be split in several subproblems. Clearly, the choice for optimal χ values is highly non-trivial. To

effectively optimize it, we devised the following algorithm.

An incumbent solution χ0 is initially generated by fixing a subset F of χ variables. Our initial-

ization policy is detailed in Section 5. We then iteratively improve χ0 along the execution of our

column-generation algorithm by exploiting the information contained in the optimal solution of the

pricing sub-problems.

More precisely, let SF := {s ∈ S : χw,s ∈ F for some w ∈W}; at a given iteration of the column-

generation algorithm and for every w ∈ W and s ∈ S, let χ̄w,s be the value of variable χw,s in the

best heuristic solution generated so far and let c̄w,s be the value of (20) fixing χw,s = 1. Note that

c̄w,s is the reduced cost of the associated column. We define for each s̄ ∈ SF :

∆s̄ =
∑
w∈W

c̄w,s̄ −
∑

w∈W :χ̄w,s̄=1

c̄w,s̄ =
∑

s∈S:χ̄w,s̄=0

c̄w,s̄. (19)

Interpreting the reduced cost of a variable as the potential improvement in the objective function

yielded by increasing that variable of one unit, the smaller the value of ∆w̄, the more likely the

ward type w̄ is assigned to the correct wards w ∈W by the vector χ̄.

This suggests to sort the ward types s ∈ SF by non-decreasing values of ∆s and to define

S′ ⊆ SF as the set of the first |SF | − unfixed ward types ward types in the ordering, where

unfixed ward types is a fixed parameter (the actual value used in our experiments is specified in

Sect. 5). Then, letting F ′ = {χw,s : w ∈W, s ∈ S′} we solve to optimality model (17) after fixing to

value χ0
w,s each variable χw,s ∈ F ′, thus obtaining a new feasible solution. Note that, by definition,

F ′ ⊆ F , hence a smaller number of variables is fixed with respect to the initial heuristic solution.

This implies that all heuristic solutions generated during the execution of the column-generation

algorithm are not worse than the initial solution. At each step, we keep the best generated heuristic

solution.

Our complete mathematical programming heuristic (MPH for short) is summarized as pseudo-

code in Algorithm 1. In a generic setting, conditions can be imposed for a run of VLSNS (line 12

of Algorithm 1). In our implementation, we define three conditions: (1) the value LB computed

at line 7 of Algorithm 1 must be greater than zero; (2) the lower bound computed in the current

CG iteration LB′ must improve the best lower bound LB found so far and (3) is the first use of set

F ′. Indeed, in the process described above, it is possible that the same subset F ′ is generated in

multiple column-generation iterations.

4.3. Multi-objective optimization

As detailed in subsection 3.5, our problem includes two objectives: the economical costs CE

and the penalties of quality of service CQoS . We have designed an approach to explore the Pareto
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Algorithm 1: Mathematical programming heuristic (MPH) for HRM

Input : an instance of HRM, a value of unfixed ward types, a set
F ⊆ {χw,s : w ∈W, s ∈ S}, an starting feasible solution χ0

Output: a valid lower bound LB, a primal solution χ̄ to the instance of HRM and its
value UB⋆

1 SF := {s ∈ S : χw,s ∈ F for some w ∈W};
2 UB0, χ̄ = value and solution to HRM instance after fixing variables in F ; UB⋆ = UB0;
3 initialize RMP with columns from χ̄;
4 repeat
5 z̄, θ̄ = value and solution to RMP;
6 c̄w = {mins∈S{c̄w,s = solve (20) with θ and χw,s = 1},∀w ∈W} ;
7 LB′ = z̄ +

∑
w∈W : c̄w<0 c̄w; LB = max{LB′, LB};

8 compute ∆s̄ using c̄w,s with (19);
9 sort SF by non-decreasing value of ∆s̄;

10 S′ = first |SF | − unfixed ward types elements in the ordering;
11 F ′ = {χw,s : w ∈W, s ∈ S′};
12 if conditions to run VLSNS then
13 UB, χ = value and solution of HRM instance after fixing variables in F ′ to value χ0;
14 if UB < UB⋆ then
15 UB⋆ = UB, χ̄ = χ;
16 end

17 end
18 add columns with negative c̄w to RMP;

19 until CG stopping criterion;

set of solutions of HRM. The literature on multi-objective optimization is rich (Marler and Arora,

2004) and includes various approach such as fuzzy compromise programming (Parra et al., 2005)

and augmented ϵ-constraint (Mavrotas, 2009). Here, our main aim is to get a better understanding

of the relationship between the two terms of the objective function. Our approach is inspired by

the augmented ϵ-constraint method, and its pseudo-code is presented in Algorithm 2.

The two terms CE and CQoS affect the model via the value of their weight in the objective

function (resp. β and α) and the threshold value (resp. C̄E and C̄QoS). First, the utopia values of

the two terms are computed (resp. UBU
E and UBU

QoS): our algorithm MPH is run twice, setting the

weight of the term not to consider to value 0, and not imposing any threshold value (or, equivalently,

setting C̄QoS = C̄E = +∞)

To compute the nadir values, we run MPH setting the weights with same value 1 and no

threshold value imposed. This execution provides a heuristic solution χ⋆ with value UB⋆. This

value is decomposed in the two terms CE
⋆ and CQoS

⋆ , which are used as nadir values.

The gap between utopia and nadir is explored setting a number of equally spaced grid points

between them (parameter grid length in Algorithm 2); each grid point identifies the threshold

value of a term while optimizing the other term. For example, the optimization of CE in the

first grid point is carried running MPH with α = 0 and β = 1 and imposing a threshold value
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Algorithm 2: Multi-objective optimization scheme for HRM

Input : an instance of HRM, a value of unfixed ward types, a set
F ⊆ {χw,s : w ∈W, s ∈ S}, a value of χ0, a value of grid length

Output: a valid lower bound LB, a primal solution χ to the instance of HRM and its
value UB for the 2 · grid length combinations of augmented ϵ-constraints
setting and utopia values for CE and CQoS

/* unless otherwise stated C̄QoS = +∞ and C̄E = +∞ */

/* utopia for CE */

1 UBU
E , χ

U
E , LB

U
E ← MPH with α = 0, β = 1;

/* utopia for CQoS */

2 UBU
QoS , χ

U
QoS , LB

U
QoS ← MPH with α = 1, β = 0;

/* solution with equally weighted CE and CQoS */

3 UB⋆, χ⋆, LB⋆ ← MPH with α = 1, β = 1;

4 compute CE
⋆ and CQoS

⋆ from UB⋆;
/* intermediate values between utopias and solution UB⋆ */

5 for i = 0..grid length do
/* if i > 0, initialize RMP of MPH with all columns found up to iteration i− 1 */

6 CE
ϵ-i, χ

ϵ-i
E , LBϵ-i

E ← MPH with α = 0, β = 1, C̄QoS = UBU
QoS + i · CQoS

⋆ −UBU
QoS

grid length+1

7 CQoS
ϵ-i , χϵ-i

QoS , LB
ϵ-i
QoS ← MPH with α = 1, β = 0, C̄E = UBU

E + i · CE
⋆ −UBU

E
grid length+1

8 end

C̄QoS = UBU
QoS + (CQoS

⋆ − UBU
QoS)/(grid length+ 1). On the i-th grid point ϵ-i, our algorithm

MPH provides a heuristic solution χϵ-i, its value CE
ϵ-i and a valid lower bound LBϵ-i

E .

We exploit the CG framework of our algorithm MPH to speed up the computation of grid

points. We start the computation from the grid point with the stricter threshold value, loosening

this value in each subsequent visited grid point. At the end of the computation of the grid point

i, the computation of the following point i + 1 is initialized including to the RMP all columns

generated up to iteration i, which are feasible also for point i+ 1.

5. Experimental Evaluation

In this section we test on the effective use of our algorithms for tactical response to an epidemic

in a vast geographical area. To this end, we define instances of realistic size starting from data

available at public institutional repositories. These include: the number and location of hospitals

and their wards in Lombardy region; staff size and historical number of inpatients for each ward;

number of incoming COVID-19 patients during the considered time period.

The data collection was not easy, as their sources are heterogeneous and some of them are unfor-

matted plaintext reports. The precise repositories URLs, the formulas and the assumptions used to

setting up parameter values are found in a companion technical report available in (Premoli et al.,

2021), together with the complete instances used in our experiments. While most of parameters are

fixed to specific values, we perform a scenario-based analysis by varying some of the parameters of

our model. In the following we summarize only the main aspects of the parameters initialization.
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Parameters initialization. Our model considers 86 hospitals in set H and 486 logical wards in setW .

These latter include home and homecare wards (v, v̄), one global supplier and 483 hospital wards

(retrieved from repository in Regione Lombardia (2020b), listing hospitals and wards in Lombardy

as of September 2020). The costs of transporting resources and patients between hospital wards

coincide with their geographical distances. Moreover we set cr,w,v̄ = cr,w,v = 0 for all r ∈ R and

w ∈ W ; transportation costs of patients toward home and homecare logical wards are treated as

scenario parameters, see below.

Our model considers 10 patients types in set P : seven are obtained from the set of ward special-

ties found in Regione Lombardia (2020), to which we have added three additional types representing

COVID-19 patients with increasing severity levels of illness (such a distinction is adopted by several

governments, see, e.g., Son et al. (2021); National Health Institution (2020)):

• patients with mild pneumonia and dyspnea, requiring oxygen through a mask. They can

be treated at home in case of lack of human resources and beds in hospitals. We label the

corresponding type as COVID-mild.

• patients requiring treatment in sub-intensive care units (sub-ICU), requiring additional equip-

ment (e.g., Continuous Positive Airway Pressure helmets). They cannot be treated at home.

We label the corresponding type as COVID-subICU ;

• patients in intensive care unit (ICU) requiring full ICU equipment and that cannot be treated

at home. We label the corresponding type as COVID-ICU.

Note that our model does not consider asymptomatic and paucisymptomatic patients affected by

COVID-19: the former require only isolation surveillance, while the latter can self-treat at home.

Each category in P gives rise to a corresponding ward type in S, which also includes two additional

types representing the “home” and “homecare” logical wards.

We consider the very initial phase of COVID-19 spread in Spring 2020 in Lombardy region

(Italy). That is, in the starting state of the system, the hospitals have no COVID-19 wards and no

COVID-19 inpatients. These latter are the only patient types considered as incoming patients. We

treat their total quantity and their distribution among hospitals as scenario parameters.

Finally, we consider 10 resources in set R reasonably existing in most Italian hospitals. The

minimum quantity of each resource per patient of each type is defined by the Italian legislation (Min-

istero della Sanità della Repubblica Italiana, 1988), while the initial amount of resources in each

hospital ward is computed using data in Regione Lombardia (2020). The amount of resources

available at the global supplier is treated as a scenario parameter.

Scenarios. We vary some parameters to create a set of instances covering multiple realistic scenarios.

A summary of such parameters is given in Appendix A, Table 6. Here we describe them in details.

• Magnitude of the infection (parameter qnewp for p ∈ {COVID-mild, COVID-subICU, COVID-

ICU}). Let qnewp for p ∈ {COVID-mild, COVID-subICU, COVID-ICU} be the total number
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of incoming patients of type p (in the whole system). It will be used to compute parameter

qp,h which appears in our model. We consider three values for qnewp :

– Baseline scenario: qnewp is drawn from Regione Lombardia (2020a);

– Heavy scenario: qnewp corresponds to the value in the baseline scenario increased of 25%;

– Light scenario: qnewp corresponds to the value in the baseline scenario decreased of 25%.

• Distribution of new COVID-19 patients in the hospitals (parameter qp,h for p ∈ {COVID-mild,

COVID-subICU, COVID-ICU} and h ∈ H). There are two cases:

– proportional distribution of new COVID-19 patients: qp,h = qnewp

∑
w∈Wh

q0p,w∑
w∈W q0p,w

;

– real-data distribution of new COVID-19 patients: we first get the total number scℓ

of SARS-CoV-2 positive individuals in each province ℓ ∈ L of Lombardy from (Di-

partimento della Protezione Civile, 2020) on the 9th of April 2020 (corresponding to

the first peak of 2020 in Lombardy); then we distribute all such individuals as new

COVID-19 patients to each hospital h of that province according to the formula qp,h =

qnewp

∑
w∈Wh

q0p,w∑
h∈Hℓ

∑
w∈Wh

q0p,w

scℓ∑
ℓ∈L scℓ

,, where Hℓ is the set of hospitals in province ℓ ∈ L.

• resource availability from suppliers (parameter q0r,e, for r ∈ R and e ∈ E): we define the

amount of resources available to be purchased from supplier as a percentage of the total amount

of resources already present in all wards. That is, q0r,e = ξ ·
∑

w∈W q0r,w with ξ ∈ {0, 0.02, 0.05}.

• Maximum transportable distance (all parameters ap,h1,h2 and d̂). Binary parameters ap,h1,h2 ,

used in constraints (2) and (3) to allow the transportation of patients between hospitals are set

to value 0 (hence forbidding transport) if the distance between the departure and destination

hospital exceeds a threshold value d̄. In each considered scenario d̂ = d̄ and values for both

distance types are d̂, d̄ ∈ {50km, 100km}.

• Objective function multiplier for home ward (parameter cp,w1,v for all p ∈ P and w1 ∈ W ).

cp,w1,v = γ · max{cp,w1,w2 : p ∈ P,w1 ∈ W,w2 ∈ W \ {v, v̄}} for p ∈ P and w1 ∈ W with

γ ∈ {2, 10, 20}.

By combining all cases for the parameter values above we get a total of 108 instances.

Implementation details. The column-generation and the heuristic algorithms of Sect. 4 have been

implemented in C++, using Gurobi 9.1 as LP and MILP solver. We used default values for all

parameters of Gurobi. We run our experiments on a machine equipped with an Intel i7 8-core

4.00GHz processor and 32GB of RAM.

In all our experiments, parameter unfixed ward types of the heuristic of Algorithm 1 is set

to 2. This low value is justified by recalling that, each time we generate a subset F ′ of variables to

fix in formulation (17), we need to check that F ′ has not been generated in some previous iteration.

Such an operation is time-consuming for higher values of unfixed ward types. Moreover, an
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initial heuristic solution χ0 was found by fixing wards to their initial type (s0(w)) if their type does

not allow hosted inpatients to be discharged, i.e., χw,s0(w) = 1 if and only if as0(w),w = 0.

5.1. Computational Results

Testing reports infeasibility on all 36 instances with ξ = 0; moreover, there are 12 additional

infeasible instances corresponding to parameters d̄ = 50km, ξ ∈ {0.02, 0.05}, γ ∈ {2, 10, 20} under
the real-data distribution of new COVID-19 patients and in both baseline and heavy scenarios.

Finally, the CG algorithm does not terminate on three additional instances with γ = 20.1

For each of the remaining 57 instances, the best solution obtained by our heuristic is feasible

also with respect to constraints (10) in which n̂s,r is initialized from real-world data: our LP-based

post-processing is always able to verify the compliance with such constraints and to compute the

corresponding values of variables τ . The performance of our algorithms is analysed below on the

same set of 57 instances. The exact CPU times, optimality gaps and infeasibility details are reported

in Table 7 of Appendix D.

The total CPU times of our algorithm MPH are represented in the boxplot of Fig. 3a. In the

same figure each gray dot represents the execution of the CG algorithm on one of the feasible

instances. As we see, there is a huge difference between the fastest CG execution and the slowest

one (25149 sec. vs. 73153 sec.). The median CPU time value is 45065 sec. (orange line in the

boxplot) which is close to the average CPU time (45805 sec.). We recall that, as specified in Sect. 4,

Gurobi was not able to load in memory our instances of HRM and was not even able to solve their

continuous relaxations.

Looking at the computational results more closely we found out that the scenario parameter

that mostly influence the CPU time is the distance d̄ (and hence the related parameters ap,h1,h2).

A qualitative view of the change in the CPU time with respect to this parameter is Fig. 3b. By

increasing d̄ from 50km to 100km the median CPU time increases from 31730 sec. to 47543 sec.

Moreover, by looking at the gray dots in the boxplots we see that only 7 out of the 23 instances

with d̄ = 50km yield a worse CPU time than at least one instance of those with d̄ = 100km. For

the other parameters we did not observe such strong impact on the CPU times of MPH, hence we

omit the corresponding analyses.

The overall conclusion is that, although CPU times are quite high (in average solving a single

instance takes about 12 hours), they are still adequate to tackle epidemic emergencies that last

from weeks to months, such as that of COVID-19. Moreover, our experiments highlight that only

the maximum transport distance of the patients has a relevant effect on the CPU time of our

algorithms. We impute this behaviour to the fact that small values of d̄ set to 0 more parameters

ap,h1,h2 , which in turn, through constraints (2) and (3), fixes to 0 the corresponding variables in our

model: d̄ = 50km sets to 0 the 58% of µ and π variables, while d̄ = 100km sets to 0 the 28% of

them. Then, d̄ = 50km corresponds to a smaller solution space of the CG, which terminates in less

1This is due to memory overflow or to the limit of time and iterations imposed for the resolution of the pricing
sub-problems.
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(a) complete MPH (b) d̄ parameter effect

Figure 3: CPU time analysis

(a) Master executions time (b) Pricer executions time (c) CG iterations

Figure 4: Impact of distance threshold d̄ on the computational performance of the CG

time. To further investigate this effect, in Fig. 4 we provide the disaggregated master and pricer

CPU times, as well as the number of CG iterations: the higher value of d̄ only slightly increases

the median execution time of the CG master model, and even decreases the median execution time

of the CG pricers (Fig. 4a–4b); instead, the more relevant effect can be seen in the increase of the

number of CG iterations when d̄ increases (Fig. 4c).

Primal solution profiling. We hereby present a profiling of the primal heuristic solutions provided

by the iterative runs of VLSNS (line 13 of Algorithm 1), taking into consideration the number of

runs with different sets of fixed variables F ′ and the execution time. Let: UB0 be the value of the

solution χ0 which initialize MPH; UB⋆ be the value of the best solution found by MPH; UBi be

the best primal solution found after i runs of VLSNS; and UBt be the best primal solution found

stopping the execution of MPH after t seconds. In this analysis we set i = 10 and t = 104 seconds

(i.e., less than 3 hours). The boxplots in Fig. 5a summarize the relative gaps between each upper

bound defined above and the lower bound obtained at the end of the CG algorithm (value LB),
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computed as (UB − LB)/LB; the boxplots in Fig. 5b summarize the CPU times needed to obtain

the upper bounds defined above.

First, we analyse the quality of the best solution UB⋆ provided by MPH. In Fig. 5a we observe

that the relative gaps of UB⋆ range from 11% to 0.1% with a median value of 2%. Addition-

ally we report that the median relative gap improvement between UB0 and UB⋆ (computed as

(UB0 − UB⋆)/UB0 on each instance) is about 4.7%. These results lead to the conclusion that the

combination of our CG algorithm and the VLSNS procedure provides solutions of suitable quality

and effectively improves the starting heuristic solution.

Next, we focus on the quality of the solutions produced by MPH by truncating its execution

after i runs of VLSNS. The corresponding boxplot in Fig. 5a shows that the relative gaps of UBi are

very similar to the ones of UB⋆. This suggests that just after 10 runs of VLSNS we get solutions of

good quality through our MPH algorithm; indeed, we report that UBi is strictly better than UB0

on all 57 instances and that UBi = UB⋆ in 39 instances. Concerning the quality of the solutions

obtained by stopping MPH after 10000 seconds, the median relative gap of UBt is one percentage

point higher than those of UB⋆ and UBi. These solutions improve the starting upper bound UB0

in 46 out of 57 instances, and in 13 of these we have UBt = UB⋆.

We finally study how much CPU time is actually needed to obtain the primal solutions corre-

sponding to UB⋆, UBi and UBt. The first boxplot in Fig. 5b shows that the median time needed

to find UB⋆ is around 16000 seconds, with a maximum of ∼53000 seconds; the average time to get

UB⋆ is ∼19000 seconds. This is much lower than the ∼45000 seconds required to terminate the

MPH algorithm in median. The remaining two boxplots of Fig. 5b reports the quartiles of the CPU

times for obtaining UBi and UBt respectively. In median, we need ∼12000 seconds to find UBi

and ∼4500 seconds to find UBt.

From these additional results we deduce that the MPH algorithm is suitable to support tactical

planning decisions demanded by realistic HRM instances: a truncated MPH algorithm is able to

find good solutions in less than a quarter of the time needed to complete the column generation

procedure.

5.2. Multi-objective optimization

We experiment the multi-objective optimization scheme presented in Algorithm 2 on a subset of

our instances. We set a baseline scenario with parameters γ = 2, ξ = 0.05, d̄ = 50 and ‘proportional’-

‘light’ distribution of new COVID-19 patients. We experiment on this baseline scenario and all

configurations that change the value of exactly one parameter starting from the baseline, for a total

of 8 instances. In Table 2 we present a summary of computational results, averaged over the 8

instances. The complete set of results is presented in Appendix D, Table 8.

First we check the distance between utopia UBU and the value UB⋆ provided by our algorithm

MPH, and the distance between the utopia and the lower bound computed at the end of CG for

its computation (LBU ). The gap between the utopia and its lower bound ((UBU −LBU )/LBU ) is

fairly low (2% for CE and 3% for CQoS). In terms of absolute values, CE is much smaller than CQoS
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(a) Gap of primal solutions (b) Time to reach primal solutions (sec.)

Figure 5: Profiling of MPH

Table 2: Average value of computational results of multi-objective optimization experiments

CE CQoS

utopia UBU 39.50 37976.00
nadir UB⋆ 83.15 38343.90

(UB⋆ − UBU )/(UBU ) 1.936 0.012
(UBU − LBU )/(UBU ) 0.024 0.032

time UB⋆ (s.) 38053.25 38053.25
time UBU (s.) 6094.75 43591.00

time 1st ϵ-constr. iteration (s.) 18579.5 25927.38
CG iter. 1st ϵ-constr. iteration 185.5 257.88

time ϵ-constr. reoptimization (s.) 1601.81 2475.56
CG iter ϵ-constr. reoptimization 2.8 4.7

(around 0.1%); that yields high relative gap between its utopia and the nadir ((UB⋆−UBU )/UBU ).

Instead, the gap between the utopia and the nadir for CQoS is very low (around 1%).

It is therefore not surprising that no new solution is found in the 8 experiments using CE as

objective function, as any such solution should fall into that narrow gap. It was instead possible

to find non dominated solutions on 2 of the 8 experiments using CQoS as objective. Concerning

the computational profiling: the first visited grid point requires an execution time and a number of

CG iterations similar to those required by the setting without threshold values; on the other hand,

the subsequent grid point requires only a small amount of time and CG iterations, thanks to the

warm start described in Sect. 4.3. Overall, in terms of problem structure, using CE as objective

and limiting CQoS by a constraint, results in faster runs.

6. Conclusion

In this paper we have studied the HRM, a tactical facility location-allocation problem applied

to the reorganization of medical resources and hospitals in large geographic areas. In the HRM the
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combinatorial structure of standard facility location-allocation problems is enriched with constraints

and features emerging from the management of medical resources in real world applications, such as

times and costs of transportation of resources and patients, incompatibility between different types

of patients in a same ward, need of specific wards and staff for each patient type, etc.

To obtain primal solutions to the HRM we have developed a mathematical programming heuris-

tic, intertwining column-generation with very large scale neighborhood search. Our heuristic is

based on a MILP model for the HRM whose objective function balances between the quality of

service delivered to the patients and the economic costs resulting from the health system reorga-

nization. The flexibility of our heuristic allowed us to embed it in a multi-objective optimization

algorithm inspired by the augmented ϵ-constraint approach, where the quality of service and the

economic costs are minimized separately. Both the mathematical programming heuristic and the

multi-objective approach provide valid lower bounds through the column generation mechanism,

allowing an evaluation of the primal solutions quality.

To show the practical applicability of our algorithms we tested them on instances inspired by the

COVID-19 emergency that occurred in Lombardy (Italy) at the beginning of 2020. Data collection

itself was not trivial, as real data is available only by aggregating multiple heterogeneous public

repositories of Italian institutions, which are partially unstructured. We openly release them as

structured instances, to foster reproducibility and further research.

We have performed scenario-based experiments, by considering several estimations of the COVID-

19 incoming patients at the epidemic peak and other parameters related to the resource availability,

to geographical constraints and to the quality of service.

The experimental results indicate that our mathematical programming heuristic is successful in

terms of both computational times and solutions quality: it detects infeasible instances quickly and

solves most of feasible instances employing a CPU time which is adequate for tactical purposes; the

obtained solutions are of good quality, as we have shown by estimating their optimality gaps, based

on the lower-bound provided by the column generation algorithm.

Concerning the task of optimizing the two objectives independently, in a multi-objective ap-

proach we found that (a) our aggregation method is effective in producing solutions dominating a

large portion of the potential space of Pareto-optimal solutions (b) our column generation method

fits well in this context, given its strong reoptimization potential when ϵ-constraints iteratively

change.

We examined several research directions for future works. First, we would study exact algorithms

for solving the HRM. A branch-and-price algorithm is the most natural extension in this direction,

since it is based on column-generation techniques. Second, we would integrate our tactical decision-

support model with tools for estimating epidemic peaks (epidemiological models, data analysis,

etc.). Finally, we would test the approach resulting from the previous two steps also in a rolling-

horizon setting, in which the reorganization of the health system is performed at successive moments

of a same epidemic spread.
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Appendices

A. Notation Summary

For the ease of reading, we report model sets, variables and parameters in Tables 3, 4 and 5,

respectively. Table 6 reports the parameters that define experimental scenarios.

Finally, we report the complete model of HRM:

min αCQoS + βCE (17)

s.t. CQoS ≤ C̄QoS

CE ≤ C̄E∑
s∈S

aw,sχw,s = 1 ∀w ∈ W (1)

∑
w2∈W

ap,h(w1),h(w2)µp,w1,w2 ≥ q0p,w1
∀p ∈ P,w1 ∈ W (2)

∑
w∈W

as,h,h(w)πp,h,w ≥ qp,h ∀p ∈ P, h ∈ H (3)

∑
w2∈W

ρr,w1,w2 ≤ q0r,w1
∀r ∈ R,w1 ∈ W (4)

∑
w1∈W

ρr,w1,w2 ≤ mr,w2 ∀w2 ∈ W, r ∈ R (5)

∑
p∈P

np,r

(∑
h∈H

πp,h,w2 +
∑

w1∈W

µp,w1,w2

)
≤
∑

w1∈W

ρr,w1,w2 ∀w2 ∈ W\{v̄, v}, r ∈ R (6)

πp,h,w ≤ q̄p,h,w
∑
s∈S

ap,sχw,s ∀p ∈ P, h ∈ H,w ∈ W (7)

µp,w1,w2 ≤ q̄0p,w1,w2

∑
s∈S

ap,sχw2,s ∀p ∈ P,w1, w2 ∈ W (8)

CQoS =
∑

p∈P,w∈W

(∑
h∈H

cp,h,wπp,h,w +
∑

w2∈W

cp,w2,wµp,w2,w

)
(13)

CE =
∑

w∈W,s2∈S

cs0(w),s2
χw,s2 +

∑
r∈R,w1,w2∈W

cr,w1,w2µr,w1,w2 (14)

TR ≤ T̄R (15)

TA ≤ T̄A (16)

1Corresponding Author
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∑
w1∈Wh(w)

µp,w,w1 ≥ q0p,wfp,w ∀p ∈ P,w ∈ W (9)

∑
w3:dh(w2),h(w3)≤d̂

τr,w2,w3 ≥ n̂p,r

( ∑
h∈H

πp,h,w2 +
∑

w1∈W

µp,w1,w2

)
∀p ∈ P, r ∈ R,w2 ∈ W\{v} (10)

∑
w2∈W

τr,w2,w3 ≤
∑

w1∈W

ρr,w1,w3 ∀w3 ∈ W, r ∈ R (11)

∑
p∈P

n̄p,rA

( ∑
h∈H

πp,h,w2 +
∑

w1∈W

µp,w1,w2

)
≤

∑
w1∈W,r∈rA

ρr,w1,w2 ∀w2 ∈ W\{v̄, v}, rA ∈ RA (12)

χw,s ∈ {0, 1} w ∈ W, s ∈ S

πp,h,s, ρr,w,w′ , µp,w,w′ , τr,w′,w′′ ∈ R≥0 p ∈ P, h ∈ H, r ∈ R,w,w′, w′′ ∈ W

where:

TR =
∑

w∈W,s2∈S

ts0(w),s2
χw,s2+∑

w1,w2∈W

(∑
r∈R

tr,w1,w2ρr,w1,w2 +
∑
p∈P

tp,w1,w2µp,w1,w2

)
TA =

∑
p∈P,h∈H,w∈W tp,h,wπp,h,w∑

p∈P,h∈H qp,h
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B. Dantzig-Wolfe Reformulation Details

Dantzig-Wolfe relaxation is directly applied to formulation (17), relaxing constraints (2), (3), (4), (10), (15)

and (16). Let for every w′ ∈ W

Γ(w′) = {χw′,s, πp,h,w′ , ρr,w,w′ , µp,w,w′ : p ∈ P, h ∈ H, r ∈ R, s ∈ S,w ∈ W}

be a set of variables of formulation (17) related to w′ ∈ W (that is, having w′ as one of their subscripts); let Aw′
x ≤ bw

′

be the subset of constraints (1), (6) - (14), (9), (11), (12) (that is, the convexified ones) indexed by the variables in

Γ(w′). By the choice of relaxed constraints, the variables in Aw′
x ≤ bw

′
do not belong to any Γ(w′′) with w′′ ̸= w′;

that is, after the constraint relaxation, formulation (17) exhibits a block-diagonal structure, each block being indexed

by one w′ ∈ W .

Define Qw′
= conv{x : Aw′

x ≤ bw
′
} as the convex hull corresponding to each block of constraints, and Ωw′

=

{ω1
w′ , . . . , ω

m(w′)
w′ } to be the set of its extreme points. Letting ωi

w′ = (χi
w′,s, π

i
p,h,w′ , ρir,w,w′ , µi

p,w,w′) for all w′ ∈ W

and i = 1, . . . ,m(w′), the Dantzig-Wolfe relaxation (DWR) used in our column generation algorithm is:

min

α
∑

p∈P,w∈W

m(w)∑
i=1

ziw

(∑
h∈H

cp,h,wπ
i
p,h,w +

∑
w2∈W

cp,w2,wµ
i
p,w2,w

)
+

+ β

( ∑
w∈W,s∈S

cw,s

m(w)∑
i=1

ziwχ
i
w,s +

∑
r∈R,w1,w2∈W

m(w2)∑
i=1

ziw2
cr,w1,w2ρ

i
r,w1,w2

)

s.t.
∑

w2∈W

ap,h(w1),h(w2)

m(w2)∑
i=1

ziw2
µi
p,w1,w2

≥ q0p,w1
∀p ∈ P,w1 ∈ W (2-DWR)

∑
w∈W

ap,h,h(w)

m(w)∑
i=1

ziwπ
i
p,h,w ≥ qp,h ∀p ∈ P, h ∈ H (3-DWR)

∑
w2∈W

m(w2)∑
i=1

ziw2
ρir,w1,w2

≤ q0r,w1
∀r ∈ R,w1 ∈ W (4-DWR)

0 ≤

∑
w3:dh(w2),h(w3)≤d̂

m(w3)∑
i=1

ziw3
τ i
r,w2,w3

−

n̂p,r

m(w2)∑
i=1

ziw2

(∑
h∈H

πi
p,h,w2

+
∑

w1∈W

ηi
p,w1,w2

) ∀p ∈ P, r ∈ R,w2 ∈ W (10-DWR)

T̄R ≥

∑
w∈W,s∈S

tw,s

m(w)∑
i=1

zivχ
i
w,s+

∑
w1w2∈W

m(w2)∑
i=1

ziw2

(∑
r∈R

tr,w1,w2µ
i
r,w1,w2

)
+

∑
w1,w2∈W

m(w2)∑
i=1

ziw2

(∑
p∈P

tp,w1,w2µ
i
p,w1,w2

)
(15-DWR)

∑
p∈P,h∈H,w∈W

m(w)∑
i=1

tp,h,wz
i
wπ

i
p,h,w ≤ T̄A

∑
p∈P,h∈H

qp,h (16-DWR)

m(w)∑
i=1

ziw = 1 ∀w ∈ W

(CONV-DWR)

0 ≤ ziw ≤ 1 ∀w ∈ W, i = 1, . . . ,m(w)
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A direct optimization of the DWR is not viable because of the large number of involved variables. Therefore

a column-generation approach is used to tackle it. The pricing problem splits in |W | smaller pricing sub-problems.

To ease their presentation, we indicate the dual variables of the RMP by the letter θ, decorated with the index and

quantifiers of the corresponding constraints. With this notation the pricing sub-problem associated with w′ ∈ W is:

min

αCQoS + βCE

+
∑

p∈P,w1∈W

(
θ(15-DWR)tp,w1,w′ +

∑
r∈R

θ
(10-DWR)

p,r,w′ n̂p,r − θ(2-DWR)
p,w1

)
µp,w1,w′

+
∑

p∈P,h∈H

(
θ(16-DWR)tp,h,w′ +

∑
r∈R

θ
(10-DWR)

p,r,w′ n̂p,r − θ
(3-DWR)
p,h

)
πp,h,w′

+
∑

r∈R,w1∈W

(θ(4-DWR)
r,w1

+ θ(15-DWR)tr,w1,w′)ρr,w1,w′

−
∑

p∈P,r∈R,w1∈W :d(h(w1),h(w′))<d̂

θ(10-DWR)
p,r,w1

τr,w1,w′

+
∑
s∈S

θ(15-DWR)tw′,sχw′,s

− θ(CONV-DWR)
v

(20)

s.t. (1), (5)− (9), (11)− (14)

χw,s ∈ {0, 1} w ∈ W and s ∈ S

πp,h,w, ρr,w,w′ , µp,w,w′ , τr,w′,w′′ ∈ R≥0 p ∈ P, h ∈ H, r ∈ R,w,w′, w′′ ∈ W

C. Violation Check of Lazy-Constraints (10)

As specified in Sect. 5, constraints (10) of the model (17) and corresponding constraints (10-DWR) in master

problem of the CG are treated in a lazy way.

Given the best solution {ρ̄, µ̄, π̄, τ̄ , χ̄} for the model (17) obtained at the end our CG algorithm, we compute

its corresponding minimum violation of constraints (10) by solving the following LP model, which also provides the

actual values of variables τ :

min
∑
p∈P

∑
r∈R

∑
w2∈W

xp,r,w2

s.t.
∑

w2∈W

τr,w2,w3 ≤
∑

w1∈W

ρ̄r,w1,w3 ∀w3 ∈ W, r ∈ R

xp,r,w2 +
∑

w3:dh(w2),h(w3)≤d̂

τr,w2,w3 ≥ n̂p,r

(∑
h∈H

π̄p,h,w2 +
∑

w1∈W

µ̄p,w1,w2

)
∀p ∈ P, r ∈ R,w2 ∈ W

x, τ ≥ 0,∈ R

D. Result tables

In Table 7 we present the computational results of all instances considered in the experimental evaluation presented

in Sect. 5. Each row of the table represents one or more instances characterized by the combination of parameters

values, which in turn are defined in the first five columns of the table: γ, ξ, d̄, spatial distribution and magnitude of

incoming COVID-19 patients (columns with header ‘qp,h space’ and ‘qp.h magn.’, resp.). Remaining columns contains

computational KPIs: the first solution found by the mathematical programming heuristic (‘UB0’); the final lower

bound provided by the CG (‘LB’); the total execution time in seconds (‘time (s)’); the number of iterations of the

34



CG (‘nr. CG iter.’); the highest execution time in seconds of a single iteration of the CG (‘max t CG it. (s)’); the

mean execution time in seconds of a single iteration of the CG (‘E[t]’ CG it. (s)’); the best solution found by the

mathematical programming heuristic (‘UB⋆’) and the time at which it was found (‘UB⋆ time (s)’); the solution found

by truncating the execution to i = 10 runs of VLSNS (UBi) and the time at which it was found (‘UB⋆ time (s)’);

finally, the solution found by truncating the execution after t = 104 seconds (UBt) and the time at which it was found

(‘UBt time (s)’). For this two latter columns, label ‘-’ indicates that no solution improving UB0 was found in the

time limit. Last 5 entries of the Table contains the set of instances that our CG algorithm was not able to solve or

that were found to be infeasible.

Table 8 presents the computational results of all instances considered in the experimental evaluation of the multi-

objective optimization of Sect. 5.2. Each row of the table represents one or more instances characterized by the

combination of parameters values, which in turn are defined in the columns from the 2nd to the 6th of the table, with

the same format of Table 7. The first column contains the term that is minimized. The remaining columns, from the

7th onward, contain: the value of the minimized term in the ‘default’ setting of MPH (U⋆); the utopia value of the

minimized term UBU ; the gap between the utopia and U⋆; the gap between the utopia and its lower bound (LBU );

the time in seconds to run MPH to compute UB⋆; the time in seconds to run MPH to compute the utopia; tie time

in seconds to run MPH to compute the first grid point; the number of CG iterations of the run of MPH to compute

the first grid point; the average time in seconds and the average number of CG iterations of the executions of MPH

for the computation of all grid points after the first.
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Table 3: Model Sets

label description

H hospitals
Wh wards in hospital h ∈ H
E suppliers of resources
W

⋃
h∈H Wh ∪ {v̄, v} ∪ E

S ward specialties
P patient types
R health resources (equipment and staff)

RA ⊆ R subsets of resources that can be used as alternatives
to cover patients’ needs

RP
p ⊆ R subset of resources needed by patient type p ∈ P , but

that can be assigned to any ward within a threshold
distance from the patients.

Table 4: Variables

label domain description

χw,s {0, 1} to 1 if ward w ∈ W is assigned to type s ∈ S, 0
otherwise

ρr,w1,w2 R≥0 amount of resource of type r ∈ R moved from ward,
or supplier, w1 ∈W to ward w2 ∈W

µp,w1,w2 R≥0 quantity of inpatients of type p ∈ P moved from ward
w1 ∈W to w2 ∈W

πp,h,w R≥0 quantity of new patients of type p ∈ P appearing at
hospital h ∈ H and assigned to ward w ∈W

τr,w1,w2 R≥0 amount of resources of type r ∈ R located in ward
w2 ∈W serving patients in ward w1 ∈W

KPIs

label domain description

CE R≥0 overall setup costs (resource transportation between
wards)

CQoS R≥0 penalties of quality of service lowering
TA R≥0 assignment time of new patients to wards
TR R≥0 overall setup time (resource and patient transporta-

tion between wards)

36



Table 5: Model Parameters

parameter domain description

ap,s {0, 1} at 1 if patient type p can be hosted in ward type s
ap,h1,h2

{0, 1} to value 1 if transport of patients of type p from hospital h1 to h2

is allowed, 0 otherwise
aw,s {0, 1} to 0 if ward w cannot change specialty to type s

cp,w1,w2
R≥0 transportation cost for patient of type p ∈ P from wards w1 ∈

W ∪H to w2 ∈W
cr,w1,w2 R≥0 transportation cost for resource r ∈ R from ward w1 ∈ W to

w2 ∈W
cs1,s2 R≥0 cost to change ward-type from s1 ∈ S to s2 ∈ S
C̄E R≥0 upper bound on setup costs
C̄QoS R≥0 upper bound on QoS penalties

d̂ R≥0 maximum transport distance for resources and patients of any
type

dh1,h2
R≥0 distance between hospitals h1, h2 ∈ H

fp,w [0, 1] percentage of patient type p in ward w not to move (fixed)
mr,w R≥0 maximum amount of resources r ∈ R in ward w ∈W
np,r R≥0 amount of resource r needed by patient of type p
n̂p,r R≥0 amount of resources {r} ∈ RP

p needed by patient type p
n̄p,rA R≥0 amount of resources rA ∈ RA needed by patient type p ∈ P
q0p,q R≥0 initial number of inpatients of type p in ward w
qp,h R≥0 number of patients of type p arriving at hospital h
q0r,w R≥0 initial amount of resources of type r in ward w
s0(w) S initial ward type of ward w ∈W
T̄A R≥0 maximum average time to transport incoming patients
T̄R R≥0 total available time to transport resources and inpatients

tr,w1,w2 R≥0 transport time for resource r from wards w1 to w2

tp,w1,w2 R≥0 transport time for patient of type p from wards w1 ∈ W ∪ H to
w2 ∈W

ts1,s2 R≥0 time to change ward type from s1 ∈ S to s2 ∈ S

Table 6: Parameter values defining scenarios

parameter values description

d̄ 50km, 100km threshold distance for transportation of patients
and resources

γ {2, 10, 20} multiplier for the computation of the costs of as-
signments of patients to home wards

ξ {0, 0.02, 0.05} fraction of total resources available to be purchased
from supplier

qp,h : p ∈
{COVID-mild,
COVID-subICU,
COVID-ICU}

3 magnitude of infections: (qnewp ): ‘baseline’ computed from
from Regione Lombardia (2020a), ‘light’=‘baseline’·0.75,
‘heavy’=‘baseline’·1.25.

2 spatial distributions: ‘proportional’ to the initial number
of patients in hospital, using ‘real-data’ in Dipartimento
della Protezione Civile (2020)
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Table 7: Computational Results

γ ξ d̄ qp,h space qp,h magn. UB0 LB time (s) nr.

CG

iter.

max t

CG it.

(s)

E[t]

CG it.

(s)

UB⋆ UB⋆

time

(s)

UBi UBi

time

(s)

UBt UBt

time

(s)

2 0.02 50 proportional light 18461.2 15127.7 41998 227 181 82.4 16048.9 14495 16067.8 14495 18252.8 9399

2 0.02 50 proportional baseline 25268.5 21592.2 50336 261 247 84.1 22847.7 1980 22894.2 1980 22894.2 1980

2 0.02 50 proportional heavy 32309.9 28133.5 45065 311 265 101.1 29043.2 2556 29043.2 2556 29043.2 2556

2 0.02 50 real-data light 18778.2 15316.3 34256 236 206 84 16361.8 21853 16361.8 21853 - -

2 0.02 100 proportional light 18360.6 15044.3 51550 390 173 84.6 15371.4 1189 15371.4 1189 15371.4 1189

2 0.02 100 proportional baseline 25205.7 21811.9 49115 336 319 97 24291.1 14546 24291.1 14546 25034.7 2507

2 0.02 100 proportional heavy 32437.2 28594.6 70729 417 591 117.5 31317.9 2048 31317.9 2048 31317.9 2048

2 0.02 100 real-data light 18583.2 15223 50733 400 182 84.7 16253.2 3609 16253.2 3609 16253.2 3609

2 0.02 100 real-data baseline 25313.8 21934.4 59555 299 397 127.2 24445.6 19401 24445.6 19401 25213.4 485

2 0.02 100 real-data heavy 31973.6 27656.3 73153 433 182 110.1 29433.9 19013 31151.8 19013 - -

2 0.05 50 proportional light 17933 14575.3 30851 228 144 75.8 15603 1119 15603 1119 15603 1119

2 0.05 50 proportional baseline 24851.7 21221.8 63236 348 563 138.2 22345.4 21619 22345.4 21619 22400.5 1130

2 0.05 50 proportional heavy 31801.1 28252 35778 256 266 84.9 29836.3 11066 29836.3 11066 31695.7 8847

2 0.05 50 real-data light 18099.1 14758.2 33723 157 123 91.6 15721 12394 15721 12394 - -

2 0.05 100 proportional light 17705 14502.9 39790 267 221 87.4 15518.8 22619 15518.8 22619 15524.7 2454

2 0.05 100 proportional baseline 24644.4 21323.6 55686 367 654 109.5 22243.4 2546 22243.4 2546 22243.4 2546

2 0.05 100 proportional heavy 31725.3 28098.1 52210 358 407 94.9 29178 3648 31575.4 3648 31575.4 3648

2 0.05 100 real-data light 18017 14702.9 52159 417 169 87.6 15732.6 3159 15732.6 3159 15732.6 3159

2 0.05 100 real-data baseline 24894.5 21369.9 52847 359 661 97.9 22441.1 681 23810 681 23810 681

2 0.05 100 real-data heavy 31616.1 27932.9 56359 324 423 105.5 30471.5 14338 30471.5 14338 - -

10 0.02 50 proportional light 72489.8 68307.5 30146 226 145 79.5 69788.3 21697 69788.3 21697 71170.8 7925

10 0.02 50 proportional baseline 105448 100542 31647 243 169 83.8 102235 8626 103887 8626 103887 8626

10 0.02 50 proportional heavy 137715 133217 53428 334 172 110.2 135185 1852 135203 1852 135203 1852

10 0.02 50 real-data light 73071.2 69079.2 31000 205 138 86.2 70540 12239 70540 12239 70612.9 1761

10 0.02 100 proportional light 72018.4 68444.5 39542 310 151 85.2 70219.3 11238 70219.3 11238 72018.4 263

10 0.02 100 proportional baseline 105076 100413 42228 253 241 103.6 102166 699 103637 699 103637 699

10 0.02 100 proportional heavy 137798 132986 71140 408 200 120.5 135033 15500 135033 15500 - -

10 0.02 100 real-data light 72807.4 68990.9 46852 363 440 87.7 70423.3 12870 71804.2 12870 - -

10 0.02 100 real-data baseline 105129 100625 72343 418 218 127.3 102429 16132 102581 16132 104674 693

10 0.02 100 real-data heavy 136373 131743 71176 452 185 106.7 133799 1195 133992 1195 133992 1195

10 0.05 50 proportional light 67239.1 63325.6 31924 224 134 80.6 64594.4 16303 64594.4 16303 66040.8 622

10 0.05 50 proportional baseline 99838.5 95450.1 29156 225 169 79.3 97091.9 21344 97091.9 21344 98559.2 9726

10 0.05 50 proportional heavy 132729 128199 30229 194 178 81.2 130008 19401 130008 19401 132625 2099

10 0.05 50 real-data light 67919.3 63913 37756 270 233 87.6 65398.5 17456 65398.5 17456 66810.6 2654
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Computational Results (cont.)

γ ξ d̄ qp,h space qp,h magn. UB0 LB time (s) nr.

CG

iter.

max t

CG it.

(s)

E[t]

CG it.

(s)

UB⋆ UB⋆

time

(s)

UBi UBi

time

(s)

UBt UBt

time

(s)

10 0.05 100 proportional light 66968.5 63137.9 45019 320 142 84.8 64679 9295 65845.7 9295 65845.7 9295

10 0.05 100 proportional baseline 99563.7 95553.1 47543 215 213 106.4 98457.9 14970 98457.9 14970 99268.9 3191

10 0.05 100 proportional heavy 132459 128431 41216 207 146 86.4 129987 10243 131974 10243 - -

10 0.05 100 real-data light 67641.3 63824.3 40591 224 134 97.6 66619.3 11960 66619.3 11960 67466.1 1665

10 0.05 100 real-data baseline 99695.1 95634 48185 360 176 88.4 97247.4 2546 97247.4 2546 97247.4 2546

10 0.05 100 real-data heavy 132255 126768 60184 441 165 93.1 128705 3169 128705 3169 128705 3169

20 0.02 50 proportional light 139824 135199 31383 247 139 76.3 137221 11467 137221 11467 137221 1021

20 0.02 50 proportional baseline 204325 199300 31730 179 155 86.1 201961 21526 201961 21526 201999 796

20 0.02 50 real-data light 140965 136534 29312 225 239 80.7 138958 12810 138958 12810 140965 8124

20 0.02 100 proportional light 139910 135086 40682 208 150 99.2 136657 12684 136657 12684 138563 248

20 0.02 100 proportional baseline 204710 199362 56085 387 197 99.5 201823 11008 201823 11008 202017 1326

20 0.02 100 proportional heavy 270637 264387 63131 393 178 105.1 267469 276 269595 276 269595 276

20 0.02 100 real-data light 140919 136467 42590 310 215 88.6 138545 19952 139854 19952 140711 8327

20 0.02 100 real-data baseline 205134 199603 65973 367 221 131 202427 19774 204017 19774 - -

20 0.05 50 proportional light 128938 124331 27126 154 270 85.1 127619 9184 127619 9184 127619 9184

20 0.05 50 proportional baseline 193550 188533 26992 209 153 77.1 190490 9777 190490 9777 190490 9777

20 0.05 50 proportional heavy 261075 253637 25149 209 224 73.5 256652 14895 256652 14895 259274 2015

20 0.05 50 real-data light 130044 125745 32348 173 521 97.5 127682 647 127772 647 127772 647

20 0.05 100 proportional light 128416 124313 35298 243 168 88.7 126337 18763 126337 18763 - -

20 0.05 100 proportional baseline 194094 188525 47449 377 636 91.7 190413 14472 190413 14472 - -

20 0.05 100 proportional heavy 259955 253637 51831 384 221 90.6 256464 3699 256543 3699 256543 3699

20 0.05 100 real-data light 130961 125785 56358 411 327 97.6 127572 2668 127572 2668 127572 2668

20 0.05 100 real-data heavy 256680 250929 47029 354 143 80.1 256345 19488 256345 19488 - -

20 0.02 50 proportional heavy not solved

20 0.02 100 real-data heavy not solved

20 0.05 100 real-data baseline not solved

– 0 – – – infeasible

– – 50 real-data {baseline, heavy} infeasible
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Table 8: Multi-objective optimization computational results

min γ ξ d̄ qp,h space qp,h magn. UB⋆ UBU UB⋆−UBU

UBU
UBU−LBU

UBU time UB⋆

(s.)

time UBU

(s.)

time 1st ϵ-

constr. iter

(s.)

CG iter.

1st ϵ-constr.

iter

avg. time ϵ-

constr. re-

opt. (s.)

avg. CG iter

ϵ-constr. re-

opt.

CE

2 0.05 50 proportional light 73.96 16 3.623 0.032 30851 4979 18001 193 3748 11.5

10 0.05 50 proportional light 49.42 16 2.089 0.032 31924 4979 9004 113 940 1

20 0.05 50 proportional light 31.3399 16 0.959 0.032 27126 5018 9370 121 940 1

2 0.02 50 proportional light 54.86 16 2.429 0.032 41998 5391 25576 219 3422.5 5.5

2 0.05 100 proportional light 80 16 4.000 0.032 39790 6306 28390 273 939.5 1

2 0.05 50 real-data light 60.03 28 1.144 0.018 33723 5868 28603 254 943.5 1

2 0.05 50 proportional baseline 141.4 72 0.964 0.007 63236 7446 16898 173 941 1

2 0.05 50 proportional heavy 174.16 136 0.281 0.004 35778 8771 12794 138 940 1

CQoS

2 0.05 50 proportional light 15529 15450 0.005 0.051 30851 35471 27119 240 1524.5 2.5

10 0.05 50 proportional light 64545 64497 0.001 0.013 31924 35471 22509 243 1502 2.5

20 0.05 50 proportional light 127588 126222 0.011 0.008 27126 23733 26523 246 1536.5 2.5

2 0.02 50 proportional light 15994 15969 0.002 0.048 41998 69626 26911 253 1173.5 2

2 0.05 100 proportional light 15568 15403 0.011 0.052 39790 35370 31891 333 2019.5 3

2 0.05 50 real-data light 15661 15044 0.041 0.013 33723 31679 22263 247 1097 2

2 0.05 50 proportional baseline 22204 22204 0.000 0.040 63236 70876 31633 266 6317.5 13.5

2 0.05 50 proportional heavy 29662.2 29019 0.022 0.030 35778 46502 18570 235 4634 10
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