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Are Shortfall Systemic Risk Measures One Dimensional?
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Abstract

Shortfall systemic (multivariate) risk measures ρ defined through an N-dimensional multi-
variate utility function U and random allocations can be represented as classical (one dimen-
sional) shortfall risk measures associated to an explicitly determined 1-dimensional function
constructed from U . This finding allows for simplifying the study of several properties of ρ,
such as dual representations, law invariance and stability.
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1 Introduction

We consider risky financial positions (X1, . . . , XN ) := X and assume, to simplify the exposi-
tion in this introduction, that X ∈ (L∞(Ω,F , P ))N := (L∞)N . We also let π : (L∞)N → L∞

be a pricing functional, U : RN → R be a multivariate utility function and we set U(X) :=
E [U(X)] and C := {Y ∈ (L∞)N | π(Y) ∈ R}. Then the functional ρπ,U(X) : (L∞)N →
[−∞,+∞] defined by

ρπ,U(X) := inf {π(Y) | Y ∈ C, U(X+Y) ≥ 0} , X ∈ (L∞)N (1)

represents a general capital requirement, as introduced in [9], as well as a shortfall systemic
risk measure, as extensively analysed in [1], [2] and [3]. A related, but alternative approach,
based on set-valued maps, is considered in [7]. Observe that the amount π(Y) is enforced
to be deterministic, even though the terminal-time allocations Y ∈ (L∞)N are allowed to be
scenario-dependent. The map π(Y) =

∑N

i=1 Y
i is a classical example for a pricing functional.

Frequently used multivariate utility functions have the form U(x) =
∑N

i=1 U
i(xi) for univariate

utility functions U i : R → R, as in e.g. [3], where also a detailed discussion on scenario-
dependent allocation can be found. A conditional version of (1) was treated in [5].

In this paper, we aim at establishing whether the functional ρπ,U can be reduced to a
classical univariate shortfall risk measure

ρE[g](X) := inf {α ∈ R | E [g(X + α)] ≥ 0} , X ∈ L
∞
, (2)

based on some function g : R → R that can be explicitly recovered from U and π. As a
corollary of one of our main results, Theorem 2.9, we show that under suitable conditions on
π and U

ρπ,U(X) = ρE[g](π(X)) = inf {α ∈ R | E [g(π(X)) + α)] ≥ 0}, X ∈ (L∞)N , (3)
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for g(x) = �πU(x) := sup{U(w) | w ∈ R
N , π(w) = x}, x ∈ R. Moreover, we prove that

ρπ,U(X) admits a (unique) optimum YX, given by YX = −X + Θ(π(X) + ρπ,U(X))) for a
continuous explicit function Θ : R → R

N depending on U and π.
The fact that a particular class of shortfall systemic risk measures (based on the particular

choices U(x) =
∑N

i=1 U
i(xi) and π(Y) =

∑N

i=1 Y
i) could be reduced to univariate ones, was

already observed in [2] Proposition 5.3, [3] Proposition 3.1 (ii), as well as in [10] Theorem
3.16. One main difference from our work is that we provide very explicit representations (i.e.
(3) and the more general case in Theorem 2.9 below) and produce explicit formulas for the
function g and for the optimum.

The representation (3) is obtained as a particular instance of a more general result. Indeed,
in (1) U needs not be an expected utility, but can rather be taken to be a general (multivariate)
utility functional U : (L∞)N → R. In such a case, we prove that (3) takes the form

ρπ,U(X) = inf {α ∈ R | �πU(π(X) + α) ≥ 0} , X ∈ (L∞)N , (4)

where �πU(Z) := sup{U(W) : W ∈ (L∞)N , π(W) = Z}, Z ∈ L∞, is the functional coun-
terpart of �πU . Our results cover also cases when (i) we allow for unbounded positions X
and (ii) π is R

M -valued, for some M ≥ 1. When M ≥ 2, the analogue of (3), namely (13)
or its functional counterpart (8) in the more general case, can be seeing as a dimensionality
reduction property induced by random allocations. In this case, the RHS of (3) takes the form
of a shortfall type systemic risk measure with deterministic allocations, i.e. in the form (5)
below, as those treated e.g. in [1]. The case M ≥ 2 also covers grouping examples, in which
terminal-time exchanges are allowed only within certain subgropus of the whole system (see
Section 2.1).

One first application of these findings is the law invariance of multivariate shortfall risk
measures in the form (1) (see Section 3.1). Section 3.2 is devoted to establishing a Law of
Large Numbers - type result in the style of [12] for systemic shortfall risk measures in the form
(1). Our approach here is inspired by the one of [4].

2 Systemic risk measures can be reduced to univari-

ate risk measures

We consider a vector subspace L of L0(Ω,F , P ), with R ⊆ L, and we induce on the Carte-
sian product LN , N ≥ 1, the order from the standard componentwise P -a.s. ordering
from (L0(Ω,F , P ))N . For N ≥ M ≥ 1, let π = (π1, . . . , πM )T : LN → LM and set
C := {Y ∈ LN | π(Y) ∈ R

M}.
Given the functions U : LN → [−∞,+∞) and G : LM → [−∞,+∞) we define ρπ,U :

LN → [−∞,+∞] and ρG : LM → [−∞,+∞] by

ρπ,U(X) := inf

{
M∑

m=1

π
m(Y) | Y ∈ C,U(X+Y) ≥ 0

}
, X ∈ L

N
,

ρG(X) := inf

{
M∑

m=1

α
m | α ∈ R

M
, G(X+ α) ≥ 0

}

, X ∈ L
M
. (5)

Let ei be the i-th element of the canonical basis of RN . We say that U : LN → [−∞,+∞)
is strictly increasing in some component, if for any X ∈ LN there exists some j ∈ {1, . . . , N}
such that the function x → U(X+ ejx), x ∈ R, is strictly increasing.

Assumption 2.1 .
a) π : LN → LM is linear and satisfies, for L+ = L ∩ L0

+(Ω,F , P )

π
(
L

N
+

)
= L

M
+ and π(RN

+ ) = R
M
+ . (6)
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b) U : LN → R is concave, increasing and strictly increasing in some component.

Remark 2.2 Observe that (6) implies that π is monotone and that

π
(
L

N
)
= L

M and π(RN) = R
M
. (7)

Indeed, Z = Z+ − Z− ∈ LM , for Z± the componentwise positive and negative parts, so that
Z± = π(X±) for X± ∈ LN

+ (by (6)) and by linearity Z = π(X+ −X−). The same works with
deterministic vectors in particular, yielding the second equality.

In the following we adopt the conventions inf ∅ = +∞, sup ∅ = −∞.

Definition 2.3 We call the function �πU : LM → [−∞,+∞] defined by

�πU(Z) := sup{U(W) | W ∈ L
N
, π(W) = Z}, Z ∈ L

M

the sup-convolution of U under π.

In Section 5 the analogous concept, defined for convex functions f , is there named image
function of f under π, a terminology mutuated from [11]. Our choice is motivated by the
following observation. Take M = 1, suppose that U

i : L → [−∞,∞), i = 1, . . . , N, are
N given univariate utility functions, consider the multivariate utility U : LN → [−∞,∞)
defined by U(W) =

∑N

i=1 U
i(W i) and the functional π : LN → L given by the sum of the

components, namely π(W) =
∑N

i=1 W
i. Then by computing the sup-convolution U

1
� . . .�U

N

of the functions Ui we get

(U1
� . . .�U

N )(Z) = �πU(Z), Z ∈ L.

Observe that in case M = 1, ρ(�πU) is a classical (univariate) risk measure. One first
interesting finding is that any systemic risk measure in the form ρπ,U(X) can be written as
a univariate risk measure ρ(�πU)(π(X)) associated to the sup-convolution �πU, namely to an
explicitly determined univariate function. For 1 ≤ M < N we analogously obtain a reduction
in dimensionality, as explicitly described in the following proposition, whose proof is in Section
4.

Proposition 2.4 Suppose that Assumption 2.1 holds true and that �πU(Z) < +∞ for every
Z ∈ LM . Then

1. The functional �πU is finite valued, concave and increasing on LM .

2. If X ∈ LN satisfies sup{U(X+ y) | y ∈ R
N} > 0, then

ρπ,U(X) = ρ(�πU)(π(X)). (8)

Remark 2.5 The assumption in Item 2 of Proposition 2.4 is automatic if L = L∞ and
sup{U(y) | y ∈ R

N} > 0, by monotonicity of U.

Remark 2.6 Recall the general notion of a capital requirement ρπ,A : LN → [−∞,+∞] (see
[9]) and of a monetary risk measure ρB : L → [−∞,+∞] (see [8]) :

ρπ,A(X) := inf {π(Y) | Y ∈ C,X+Y ∈ A} , X ∈ L
N
, (9)

ρB(Z) := inf {α ∈ R | Z + α ∈ B} , Z ∈ L, (10)

for some acceptance sets A ⊆ LN and B ⊆ L. If π is linear and for C := {Y ∈ LN | π(Y) ∈ R}
we have for all X ∈ LN

ρπ,A(X) = inf {α ∈ R | π(Y) = α,X+Y ∈ A}

= inf {α ∈ R | ∃W ∈ A s.t. π(W) = π(X) + α}

= inf {α ∈ R | π(X) + α ∈ π(A)} = ρπ(A)(π(X)).

Hence, any capital requirement (or systemic multivariate risk measure) of dimension N in the
form (9) with π linear can be reduced to a classical univariate risk measure in the form (10).
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In the remaining of this section we work in the following

Setting 2.7

1. We select L = L∞

2. The linear functional π : (L∞)N → (L∞)M is assigned by

π(X) = AX,

where the (deterministic) matrix A in R
M×N satisfies A(RN

+ ) = R
M
+ .

3. The multivariate utility function U : RN → R is nondecreasing (w.r.t. the componentwise
order), differentiable, strictly concave throughout all RN with sup{U(y) | y ∈ R

N} > 0.

4. The functional U : (L∞)N → R has the form

U(X) := E[U(X)], X ∈ (L∞)N .

We point out that A(RN
+ ) = R

M
+ implies that A has full rank, rank(A) = M , and that π

in Item 2 satisfies π((L∞)N+ ) = (L∞)M+ . Moreover, the function U in Item 4 is also strictly
increasing (in any component). Thus, in the Setting 2.7 the Assumption 2.1 holds true. The
choices made in the Setting 2.7 lead to the classical shortfall systemic risk measure:

ρπ,U(X) := inf

{
M∑

m=1

π
m(Y) | Y ∈ C,E [U(X+Y)] ≥ 0

}
, X ∈ (L∞)N , (11)

which is a monotone increasing, convex, cash additive map. By definition, the sup-convolution
�πU : RM → R of U under π is assigned by:

�πU(y) := sup{U(x) | x ∈ R
N
, π(x) = y}, y ∈ R

M
. (12)

Assumption 2.8 For some y ∈ R
M , the problem in (12) admits an optimum, namely there

exists x = x(y) ∈ R
N such that π(x) = y and �πU(y) = U(x).

We provide in Lemma A.1 in Appendix mild conditions which guarantee the validity of As-
sumption 2.8.

The main result of this note is described in the following Theorem. Shortfall systemic
risk measures ρπ,U(X) defined through a N-dimensional multivariate utility function U can
be represented as a shortfall risk measure ρ(E[�πU ])(π(X)) associated to the M -dimensional
function �πU . Additionally, we provide the explicit formula for the optimum. The proof is
deferred to Section 6.

Theorem 2.9 Suppose that Assumption 2.8 is satisfied. Then

1. �πU(Z) = E [(�πU)(Z)] for every Z ∈ (L∞)M .

2. For every X ∈ (L∞)N we have

ρπ,U(X) = ρ(E[�πU ])(π(X)) := inf

{
M∑

m=1

α
m | α ∈ R

M
, E [�πU(π(X) + α)] ≥ 0

}

. (13)

If additionally there exists an optimum α̂ ∈ R
M attaining the infimum in RHS of (13),

then also ρπ,U(X) admits a (unique) optimum YX, given by

YX = −X−∇U
∗
(
π
T · ∇(�πU)(π(X) + α̂)

)
= −X+Θ

(
π(X) + α̂

)
, (14)

where U∗ is the concave conjugate of U , πT is the transposed map of π and Θ : RM → R
N ,

Θ(y) := −∇U∗
(
πT · ∇(�πU)(y)

)
, is continuous.
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In case M = 1, ρπ,U is finite valued, the optimum in the RHS of (13) always exists, and it is
given by α̂ = ρ(E[�πU ])(π(X)).

In the case M = 1, as an immediate byproduct of Theorem 2.9, the dual representa-
tion for the systemic risk measure ρπ,U(= ρ(E[�πU ])) can be directly obtained from the well
known classical dual representation of the univariate convex risk measure ρ(E[�πU ]). Indeed,
letting ℓ(x) = −�πU(−x), x ∈ R the dual representation of ρ(E[�πU ]) follows from [8] The-
orem 4.115 with minimal penalty function αmin in [8] Theorem 4.115 explicitly given, since
ℓ∗(z) = −U∗(AT z), z ∈ R.

2.1 Grouping case

In Lemma 2.10 below, whose simple proof is omitted, we show how the dimensionality reduc-
tion put in evidence in (13) covers also the grouping case in Example 5.2 of [3] and Definition
5.1 of [5]. More precisely, we show that with an appropriate choice of π we get:

C := {Y ∈ L
N | π(Y) ∈ R

M} =

{

Y ∈ (L∞)N |
∑

n∈Im

Y
n ∈ R ∀m = 1, . . . ,M

}

. (15)

Lemma 2.10 Let I1, . . . , IM ⊆ {1, . . . , N} be a partition of {1, . . . , N}, clearly with M ≤ N .
Define the matrix A = (amn)mn ∈ R

M×N via

amn =

{
1 if n ∈ Im

0 otherwise
n = 1, . . . , N ;m = 1, . . . ,M.

Furthermore, set L = L∞ and π(X) = AX (as a matrix-vector product). Then A is full rank,
the first Item in Assumption 2.1 and the second Item in Setting 2.7 are satisfied, and (15)
holds.

3 Applications

3.1 Law invariance

We use the same notation of Section 2, we write PX (resp. PX) for the law of a random

variable X (resp. vector X) on R (resp. RN ) and X
P
∼ Y if the random variables (or vectors)

X,Y have the same law under P .

Proposition 3.1 Assume that π(X)
P
∼ π(Y) with X,Y ∈ LN . Then

(1) If π(A) is law invariant then ρπ,A(X) = ρπ,A(Y).

(2) If (8) holds and if B = {Z ∈ LM | �πU(Z) ≥ 0} is law invariant then ρπ,U(X) = ρπ,U(Y).

Proof. Item (1) is an immediate consequence of ρπ,A(X) = ρπ(A)(π(X)) proven in Remark

2.6. (2) From π(X)
P
∼ π(Y) and the law invariance of B we get: �πU(π(X) + α) ≥ 0 iff

�πU(π(Y) + α) ≥ 0. From ρπ,U(X) = ρ(�πU)(π(X)), we deduce that ρπ,U(X) = ρπ,U(Y).

Remark 3.2 Obviously, if π is law invariant and X
P
∼ Y then the assumption in the previous

proposition holds, so that Proposition 3.1 gives in particular sufficient conditions for the law
invariance of the systemic risk measures ρπ,A and ρπ,U.

Corollary 3.3 Let U : RN → R be nondecreasing, differentiable, strictly concave throughout
all RN and satisfying sup{U(y) | y ∈ R

N} > 0 and Assumption 2.8. Then ρ defined by

ρ(X) := inf

{
N∑

i=1

Y
i | Y ∈ (L∞)N ,

N∑

i=1

Y
i ∈ R, E [U(X+Y)] ≥ 0

}

, X ∈ (L∞)N , (16)

is finite valued and law invariant.
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Proof. Observe that ρ = ρπ,U(X) for U(·) := E[U(·)] and π(Y) := Y1 + ... + YN , the
latter being law invariant. Thus the assumptions in the Setting 2.7 hold. By Proposition
5.7, �πU is continuous on R and, by Theorem 2.9, Item 1, �πU(Z) = E [�πU(Z)]. Thus,
B := {Z ∈ L∞ | �πU(Z) ≥ 0} = {Z ∈ L∞ | E [�πU(Z)] ≥ 0} is law invariant. The conclusion
follows from Theorem 2.9 and Proposition 3.1 (2).

3.2 Stability

Let (Ω,F , P ) be an atomless standard probability space. If ρ : (L∞)N → R is a law invariant
functional, then it is possible to think of ρ as defined on the class of probability measures on

R
N . Indeed, whenever PX = PY on R

N we have X
P
∼ Y and ρ(X) = ρ(Y ), and since the

underlying space is non atomic every probability measure on R
N is realized as the law under

P of some random vector Z defined on Ω by the Skorokhod Theorem. By a slight abuse of
notation we write ρ(Q) meaning ρ(Z) for every Z having law Q on R

N .

Corollary 3.4 In Setup 2.7 with M = 1 and Ax =
∑N

j=1 x
j for every x ∈ R

N , suppose

that the assumptions of Corollary 3.3 are satisfied. Take probability measures {Qn}n on R
N ,

for n = 1, . . . ,+∞, such that for some positive radius r > 0 we have Qn(Br) = 1 for every
1 ≤ n ≤ +∞, Br being the ball of radius r in R

N . Suppose additionally that Qn converges to
Q∞ in the weak sense for probability measures. Then ρ defined in (16) satisfies

lim
n→+∞

ρ(Qn) = ρ(Q∞).

Proof. By the Skorokhod Representation Theorem there exist N-dimensional random vectors
Zn, 1 ≤ n ≤ +∞ on (Ω,F , P ) such that Qn is the law of Zn under P and Zn → Z∞ P -a.s.
In particular then Zn ∈ (L∞)N , π(Zn) → π(Z∞) and ‖π(Zn)‖∞ ≤ Nr P−a.s. for every
n. Then for 1 ≤ n ≤ +∞ we have ρ(Qn) = ρ(Zn) = ρ(E[�πU ])(π(Zn)) by Theorem 2.9,
where �πU : R → R is increasing and nonconstant by Proposition 5.7. We now show that
ρ(E[�πU ])(π(Zn)) →n ρ(E[�πU ])(π(Z∞)). By [8] Proposition 4.113 ρ(E[�πU ]) is continuous from
below. Then it has the Lebesgue property ([8] Corollary 4.35) and the desired convergence
follows.

Take now X ∈ (L∞)N . Replacing the law PX in ρ(PX) with the empirical measure P̂n

based on an i.i.d. sample (X1, . . . ,Xn), we obtain the empirical estimate/historical estimate

ρ(P̂n) of ρ(PX) = ρ(X). Under the assumptions of Corollary 3.4, we have in particular

limn ρ(P̂n) = ρ(PX) P−a.s. by weak convergence (a.s.) of P̂n to PX. This can be exploited in
conjunction with the explicit formula for the optima (14), since in the case M = 1 we know
α̂ = ρ(X), to guarantee a.s. convergence of the approximated optimal allocation functions

x 7→ −x+Θ(π(x) + ρ(P̂n)).

4 Proof of Proposition 2.4

Proof of Item 1. The functional �πU is finite valued since, by (7), �πU(Z) > −∞ for any
Z ∈ LM .

Concavity. By (7), given any Z1,Z2 ∈ LM , there exist W1,W2 ∈ LN such that π(Wi) =
Zi for i = 1, 2. Hence, for any α ∈ [0, 1]

�πU(αZ1 + (1− α)Z2) ≥ U(αW1 + (1− α)W2) ≥ αU(W1) + (1− α)U(W2),

where the former inequality is due to the definition of �πU and the linearity of π, the latter from
concavity of U. Concavity of �πU then follows by taking the supremum over all W1,W2 ∈ LN

such that π(W1) = Z1 and π(W2) = Z2.
Monotonicity. Take Zi ∈ LM such that Z1 ≤ Z2 and take by (7) W1 ∈ LN s.t. π(W1) =

Z1. Now Z2 − Z1 ∈ LM
+ , so that Z2 − Z1 = π(W) for some W ∈ (L+)

N by (6). Hence,
W2 := W1 +W ≥ W1 satisfies π(W2) = Z2 and U(W1) ≤ U(W2) ≤ �πU(Z2). Take now a

6



supremum over W1 satisfying π(W1) = Z1 to get �πU(Z1) ≤ �πU(Z2).
Proof of Item 2. Observe first that under the additional assumption in Item 2, we have
ρπ,U(X) < +∞. From the linearity of π and the definition of C, we have for any X ∈ LN

ρπ,U(X) = inf

{
M∑

m=1

π
m(Y) | Y ∈ C,U(X+Y) ≥ 0

}

= inf

{
M∑

m=1

π
m(Y) | Y ∈ C,U(X+Y) > 0

}
(17)

= inf

{
M∑

m=1

α
m | α ∈ R

M satisfies π(Y) = α for some Y ∈ L
N
,U(X+Y) > 0

}

= inf

{
M∑

m=1

α
m | α ∈ R

M
, ∃W ∈ L

N
,U(W) > 0 s.t. π(W) = π(X) + α

}

= inf

{
M∑

m=1

α
m | α ∈ R

M
, sup

{
U(W) | W ∈ L

N
, π(W) = π(X) + α

}
> 0

}

= inf

{
M∑

m=1

α
m | α ∈ R

M
, �πU(π(X) + α) > 0

}

= inf

{
M∑

m=1

α
m | α ∈ R

M
, �πU(π(X) + α) ≥ 0

}
(18)

= ρ(�πU)(π(X))

where only the equalities (17) and (18) are not evident. To prove the equality in (17), observe
first that, obviously,

ρπ,U(X) ≤ inf

{
M∑

m=1

π
m(Y) | Y ∈ C,U(X+Y) > 0

}
:= a

with a ∈ R. Suppose by contradiction that ρπ,U(X) < a and let 0 < ε <
a−ρπ,U(X)

2
. Then

there exists Y ∈ C such that U(X+Y) ≥ 0 and

M∑

m=1

π
m(Y) < ρπ,U(X) + ε. (19)

Since U is strictly increasing on one component, say component i, take Ŷ := Y+ε e
i

∑
M
m=1

πm(ei)+1
,

noticing that this is well defined as πm(ei) ≥ 0, for all m, by (6). Since π is linear and

π(RN) ⊆ R
M (Remark 2.2) then

∑M

m=1 π
m(Ŷ) =

(∑M

m=1 π
m(Y) + ε

∑M
m=1

πm(ei)
∑

M
m=1

πm(ei)+1

)
∈ R

and Ŷ ∈ C. Moreover, U(X + Ŷ) = U(X + Y + ε e
i

∑
M
m=1

πm(ei)+1
) > U(X + Y) ≥ 0

so that a ≤
∑M

m=1 π
m(Ŷ). But this is a contradiction using (19): a ≤

∑M

m=1 π
m(Ŷ) =

∑M

m=1 π
m(Y) + ε

∑M
m=1

πm(ei)
∑

M
m=1

πm(ei)+1
< ρπ,U(X) + 2ε < a. To prove the equality in (18), we set

gX(α) := �πU(π(X) + α), α ∈ R
M

and show that

inf

{
M∑

m=1

α
m | α ∈ R

M
, gX(α) > 0

}

= inf

{
M∑

m=1

α
m | α ∈ R

M
, gX(α) ≥ 0

}

.
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The fact that LHS≥RHS is clear, and the equality is trivial if the set in RHS is empty. Then
we assume this is not the case and prove LHS≤RHS. Take a minimizing sequence (αn)n such
that gX(αn) ≥ 0 for each n and

∑M

m=1 α
m
n ↓n inf{

∑M

m=1 α
m | α ∈ R

M , gX(α) ≥ 0}.
Case 1: (αn)n admits a subsequence (αnk

)k with gX(αnk
) > 0 for each k. Clearly we get

LHS≤
∑M

m=1 α
m
nk

↓kRHS, which is the desired remaining inequality.
Case 2: gX(αn) = 0 definitely in n. We assume the equality holds for each n w.l.o.g..

Define now the functions hn(β) := gX(αn+β1), β ∈ R, and observe that Proposition 2.4 Item
1 ensures that, for each n, hn : R → R is increasing and concave on R and thus continuous.
Moreover,

gX(α) ≤ hn

(
max
m

|αn
m|+max

m
|αm|

)
, ∀α ∈ R

M

guaranteeing that supβ∈R
hn(β) = supα∈RM gX(α) := ĝ. By the linearity of π we then get

sup
β∈R

hn(β) = sup
α∈RM

gX(α) = sup
α∈RM

{
sup{U(W) | W ∈ L

N
, π(W) = π(X) + α}

}

= sup
α∈RM

{sup{U(X+Y) | Y ∈ C, π(Y) = α}}

= sup{U(X+Y) | Y ∈ C} (20)

≥ sup{U(X+ y) | y ∈ R
N} > 0, (21)

where we used: in (20) the equality π(C) = R
M (a consequence of (7)); in the first inequality

in (21) the fact that π(RN) ⊆ R
M , and the last strict inequality is guaranteed by hypothesis.

Observe that since gX(αn) = 0, we also have hn(0) = 0 < supβ∈R
hn(β) = ĝ. Let β̂n =

inf{β ∈ R | hn(β) = ĝ} ≤ +∞. From hn(0) < ĝ, the continuity and monotonicity of
hn, we have β̂n > 0 for every n. Additionally, hn as a univariate concave and increasing
function is strictly increasing on (−∞, β̂n). Thus, for some 0 < εn < min( 1

n
, β̂n) we have

0 = hn(0) < hn(εn) = gX(αn + εn1). Thus βn := αn + εn1 defines a minimizing sequence,
with gX(βn) > 0:

M∑

m=1

β
m
n =

M∑

m=1

α
m
n +Mεn ↓n inf{

M∑

m=1

α
m | α ∈ R

M
, gX(α) ≥ 0}

and one can argue as in Case 1.

5 Image functions on R
N

We now present some key properties of image functions. All definitions, as well as the notation,
are mutuated from [11]. For convenience of the reader and to simplify the comparison with
this reference, we thus opted to present the concepts and results for convex functions f and
linear maps A, which replace the function (−U) and the linear map π in the previous sections.

In this Section 5 we work again in Setting 2.7 without further mention. We set
f = −U : RN → R and denote by f∗ the usual convex conjugate function of f ,

f
∗(z) := sup

x∈RN

(
N∑

j=1

x
j
z
j − f(x)

)
∈ (−∞,+∞] , z ∈ R

N
.

Definition 5.1 The image function of f under A is the function �
Af : RM → [−∞,+∞]

�
A
f(y) := inf

{
f(x) | x ∈ R

N
, Ax = y

}
, y ∈ R

M
, (22)

with the usual convention inf ∅ = +∞. We say that, for a given y ∈ R
M , the problem in (22)

admits an optimum if there exists x = x(y) ∈ R
N such that Ax = y and �

Af(y) = f(x).
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In [11] the image function �
Af is denoted by Af . Observe that �Af = −�πU , as in (12), for

f = −U and A = π and that �Af is a convex function (Th. 5.7 [11]) and, since f is real valued
on the whole R

N and A has full range, �Af(y) < +∞ for every y ∈ R
M . We stress that by

strict convexity of f , the problem (22) admits at most one optimum.

Remark 5.2 Under Assumption 2.8, we have that for some y ∈ R
M , the problem in (22)

admits an optimum.

We refer to [11] Chapter 26 for definitions of essentially smooth functions and Legendre
type pairs. In our setting, f is essentially smooth on the whole R

N and thus (f,RN) is of
Legendre type. We also briefly recall the following key results:

Theorem 5.3 ([11] Theorem 26.5) Let h : RD → (−∞,+∞] be a closed (i.e. proper lower
semicontinuous w.r.t. the usual Euclidean topology) convex function. Set C := int dom(h), C∗ :=
int dom(h∗). Then (h,C) is a convex function of Legendre type iff so is (h∗, C∗). When these
conditions hold, ∇h is one-to-one from the open convex set C onto C∗, continuous in both
directions, and (∇h)−1 = ∇h∗.

Theorem 5.4 ([11] Theorem 16.3) Suppose that there exists λ ∈ R
M such that ATλ ∈

ri dom(f∗). Then for every y ∈ R
M there exists an optimum for (22).

Proof. Since f is real valued and convex we have f = (f∗)∗ on R
N . Moreover (AT )T = A

and thus we can rewrite

inf
{
f(x) | x ∈ R

N
, Ax = y

}
= inf

{
(f∗)∗(x) | x ∈ R

N
, (AT )Tx = y

}

Setting g = f∗, which is a convex function on R
N , we recognize the setup of the last part in [11]

Theorem 16.3 with f, λ,x,y, AT here in place of g∗,x,y∗,x∗, A in the reference respectively.
By hypothesis we have ATλ ∈ ri dom(g) and so by [11] Theorem 16.3 the infimum in (22) is
attained.

Proposition 5.5 Take y ∈ R
M such that �Af(y) > −∞. Then �

Af(y) ∈ R and the following
are equivalent:

(i) there exists the optimum x = x(y) ∈ R
N for (22)

(ii) there exist (x, λ) = (x(y), λ(y)) ∈ R
N × R

M solving

{
∇f(x) = ATλ

Ax = y
(23)

Proof. We already know that �
Af(y) < +∞ for every y ∈ R

M , thus �
Af(y) ∈ R. Observe

that, once y ∈ R
M is fixed, (22) is what is called in [11] Chapter 28 an ordinary convex

program admitting a feasible solution (since f is real valued). Its set of constraint is given
by y − Ax = 0, and C = ri(C) = R

N in the notation of [11]. By the Kuhn-Tucker Theorem
([11] Corollary 28.3.1, whose hypotheses are met since we are assuming �

Af(y) > −∞), (i)
in the statement is equivalent to: there exists a pair (x, λ) ∈ R

N × R
N satisfying conditions

(a),(b),(c) in [11] Theorem 28.3 (with x in place of x and λ in place of u∗). By the discussion
following the proof of [11] Theorem 28.3, since f and the functions enforcing the constraints
are differentiable, condition (c) can be rewritten as ∇f(x) − ATλ = 0. Condition (b) is
Ax = y, and conditions (a) can actually be ignored since we have no inequality constraints.
This proves that (i), (ii) are equivalent.

Proposition 5.6 The following are equivalent:

(1) there exists the optimum for (22) for all y ∈ R
M .

(2) there exists the optimum for (22) for some ŷ ∈ R
M .
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Proof. Clearly (1) implies (2). As to the converse, observe that since f is essentially smooth,
by Theorem 5.3 ∇f(RN ) = int domf∗ ⊆ ri domf∗. Then, by the equivalence established in
Proposition 5.5, ATλ(ŷ) = ∇f(x(ŷ)) ∈ int domf∗ ⊆ ri domf∗ and Theorem 5.4 yields the
existence of the optimum for every y ∈ R

M .

Proposition 5.7 Under Assumption 2.8, the map �
Af : RM → R is continuously differen-

tiable and strictly convex on R
M . Its conjugate is given by (�Af)∗(z) = f∗(ATz), z ∈ R

M ,
which is continuously differentiable on the interior of its domain. The gradient ∇�

Af(·) is a
homeomorphism between R

M and int dom(�Af)∗ = int{z ∈ R
M | AT z ∈ domf∗} =: O ⊆ R

M ,
and its (continuous) inverse is given by ∇(�Af)∗(z), z ∈ O. Finally, the unique optimum
x = x(y) of problem (22) is given by

x = Θ(y) = ∇f
∗
(
A

T · ∇(�A
f)(y)

)
(24)

where Θ : RM → R
N is continuous on R

M .

Proof. By Remark 5.2 and Proposition 5.6 there exists an optimum of (22) for all y ∈ R
M .

In particular �
Af(y) ∈ R ∀y ∈ R

M . As argued in the proof of Proposition 5.6 there exists
λ ∈ R

M s.t. ATλ ∈ int dom(f∗) ⊆ ri dom(f∗). Since f is essentially smooth on the whole R
N ,

by [11] Corollary 26.3.3 �
Af is itself essentially smooth throughout the whole RM . Existence of

optima yields by standard arguments the strict convexity of �Af , which is induced by the one of
f , and (�Af,RM ) is then of Legendre type. By Theorem 5.3 applied to h = �

Af , �Af : RM → R

is continuously differentiable on R
M . Its conjugate (�Af)∗ is continuously differentiable on O,

the gradient ∇(�Af)(·) is a homeomorphism between R
M and O, and its (continuous) inverse

is given by ∇(�Af)∗(·). Now, fix y ∈ R
M and take (x, λ) = (x(y), λ(y)) ∈ R

N × R
M solving

(23). In particular ATλ ∈ int dom(f∗), and x = (∇f)−1(ATλ) = ∇f∗(ATλ), by Theorem 5.3.
Since Ax = y, we get y = A∇f∗(ATλ). The last step is to prove that λ ∈ int dom(�Af)∗ = O
and A∇f∗(ATλ) = ∇(�Af)∗(λ), as this would give λ = (∇(�Af)∗)−1(y) = ∇(�Af)(y) by

Theorem 5.3 so that x = ∇f∗
(
ATλ

)
= ∇f∗

(
AT · ∇(�Af)(y)

)
.

We come to these verifications. First, observe that as argued before ATλ ∈ int domf∗,
which is open. Then, λ belongs to the pre-image of int domf∗ under AT , which is open by
continuity of AT . Set now O′ := (AT )−1(int domf∗). Since AT (O′) = int domf∗ ⊆ domf∗,
then λ ∈ O′ ⊆ O. To conclude we prove that

∇(�A
f)∗(z) = A∇f

∗(ATz), z ∈ O′ ⊆ O.

First, by [11] Theorem 16.3 (�Af)∗(z) = f∗(ATz) for all z ∈ R
M . The map (�Af)∗ on O′ is

then the composition of the map AT , differentiable on O′ and taking values in int domf∗, and
f∗, differentiable on the latter set. The formula is then the usual chain rule. Continuity of Θ
follows observing that for every y ∈ R

M , ATλ(y) ∈ int domf∗, where ∇f∗ is continuous, and
that λ(y) = ∇(�Af)(y), the latter being continuous on R

M .

6 Proof of Theorem 2.9

We work again in the Setting 2.7. By Remark 5.2 we may apply the results in Proposition
5.7. The proof is indeed based on the following two facts that are proven in Proposition 5.7,
using there the notation f := −U , AX := π(X) and �

Af = −�πU .
a) The function �πU : RM → R is continuous on R

M ;
b) Fix any z ∈ R

M . There exist a unique optimum x = Θ(z) ∈ R
N for the problem �πU(z)

with Θ : RM → R
N being the continuous function on R

M defined in (24). In particular we
have: (b1) �πU(z) = U(Θ(z)) and (b2) π(Θ(z)) = z.

Proof of Item 1. Fix Z ∈ (L∞)M . We now prove

sup
{
E [U(Y)] | Y ∈ (L∞)N , π(Y) = Z

}
=: �πU(Z) = E [�πU(Z)] . (25)
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Fix z ∈ R
M and observe that if y ∈ R

N satisfies π(y) = z then

U(y) ≤ sup
{
U(x) | x ∈ R

N
, π(x) = z

}
= �πU(z) .

Now, we can plug in Y ∈ (L∞)N s.t. π(Y) = Z, to get U(Y) ≤ �πU(Z). From (a) we know
that �πU , as well as U , is a continuous function and so no measurability issues arise and both
U(Y) and �πU(Z) are bounded random variables. We can then take expectations on both
sides of the latter inequality and deduce (�πU)(Z) ≤ E [(�πU)(Z)]. We prove the converse
inequality. Consider the continuous function Θ in (b) and set Ŷ := Θ(Z). Then Ŷ ∈ (L∞)N

and by (b2) above, π(Ŷ) = π(Θ(Z)) = Z. Thus, Ŷ satisfies the constraints in LHS of (25).
Consequently,

sup
{
E [U(Y)] | Y ∈ (L∞)N , π(Y) = Z

}
≥ E

[
U
(
Ŷ
)]

= E

[
U
(
Θ(Z)

)]
= E [�πU(Z)] ,

by (b1), which concludes the proof of (25).
Proof of Item 2. Recall that in Setting 2.7 Assumption 2.1 holds true. Fix Z ∈ (L∞)M

and X ∈ (L∞)N . From (a) we deduce that E [�πU(Z)] < ∞ and by (25), �πU(Z) =
E [�πU(Z)] < ∞. By the assumption sup{U(y) | y ∈ R

N} > 0 we obtain sup{U(X +
y) | y ∈ R

N} > 0. Thus all the assumptions in Proposition 2.4 are satisfied and hence
ρπ,U(X) = ρ(�πU)(π(X)) = ρ(E[�πU ])(π(X)), by (25). Recalling the definition in (5), we
thus proved (13). Regarding the optimality of YX := −X + Θ(π(X) + α̂), observe that
U(X+YX) = U(Θ(π(X)+ α̂)) = E [U(Θ(π(X) + α̂))] = E [�πU(π(X) + α̂)] ≥ 0, where in the
last equality we used (b1), and the inequality follows from the optimality of α̂ in (13). Thus
YX satisfies the inequality constraint in (11) Moreover, using the linearity of π and (b2) we
get

π(YX) = π
(
−X+Θ(π(X) + α̂)

)
= −π(X) + π

(
Θ(π(X) + α̂)

)
= −π(X) + π(X) + α̂ = α̂

so that YX ∈ C. Finally,
∑M

m=1 π
m(YX) =

∑M

m=1 α̂
m = ρπ,U(X), by optimality of α̂. Thus

YX is the desired optimum, which is unique by the strict concavity of U.
Conclusion, for the case M = 1. If ρπ,U(X) is finite, then the optimality of α̂ = ρπ,U(X)

is directly checked by monotone convergence theorem, considering that �πU is continuous on R

and nondecreasing by Proposition 5.7. Thus, we only need to show that ρπ,U(X) ∈ R for every
X ∈ (L∞)N . Since we are in Setting 2.7, by Remark 2.5 we have sup{U(X+y) | y ∈ R

N} > 0
which yields ρπ,U(X) < +∞. Suppose now by contradiction that ρπ,U(X) = −∞ and take a
minimizing sequence Yn ∈ C with π(Yn) ↓n −∞ and E [U(X+Yn)] ≥ 0 for every n. By
Proposition 5.5, since we are under Assumption 2.8 and Remark 5.2 applies, there exists a
λ ∈ R such that ATλ ∈ ∇f(RN ). By Theorem 5.3 we have ATλ ∈ intdom(f∗) ⊆ (−∞, 0)N ,
the latter following from monotonicity of f = −U , which implies λ < 0: indeed all the
components of A are nonnegative, as A(RN

+ ) = R+. Now by Fenchel inequality we have
−f∗(ATλ) − f(x) ≤ (−λ)Ax. Substituting x with X +Yn and taking expectations yields a
contradiction, as f∗(ATλ) ∈ R and E [−f(X+Yn)] ≥ 0 for each n, while RHS tends to −∞,
as π(Yn) ↓n −∞.

A Appendix

A function Φ : [0,+∞)N → R is called multivariate Orlicz function if it is null in 0, convex,
continuous, increasing in the usual componentwise order and satisfies: there exist A > 0, B
constants such that Φ(x) ≥ A

∑N

j=1 x
j − B for every x ∈ [0,+∞)N . We refer to [1] and

[6] for further details. Inspired by [6] Definition 3.4, we say that a function U : RN → R

is well controlled if there exist a multivariate Orlicz function Φ̂ : RN → R and a function
h : [0,+∞) → R such that U(x) ≤ −Φ̂((x)−) + ε

∑N

j=1

∣∣xj
∣∣+ h(ε) for every ε > 0.
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Lemma A.1 Suppose U : RN → R is strictly concave, strictly increasing in the component-
wise order and also well controlled. Suppose also that π satisfies Assumption 2.1 (a), and that∑M

m=1 π
m(x) =

∑N

j=1 x
j for every x ∈ R

N . Then Assumption 2.8 is satisfied.

Proof. Take z = 0 ∈ R
M and take a maximizing sequence (xn)n for �πU(0), w.l.o.g.

assuming that U(xn) ≥ �πU(0) − 1 for every n. By [6] Lemma 3.5.(iv) we have for some
a > 0, b ∈ R that

�πU(0) − 1 ≤ U(xn) ≤ a

N∑

j=1

(xj
n)

+ − 2a
N∑

j=1

(xj
n)

− + b

= a

N∑

j=1

x
j
n − a

N∑

j=1

(xj
n)

− + b = a

M∑

m=1

π
m(xn)− a

N∑

j=1

(xj
n)

− + b = a

M∑

m=1

z
m + b− a

N∑

j=1

(xj
n)

−

It follows that
∑N

j=1(x
j
n)

− needs to be bounded, and since also
∑N

j=1(x
j
n)

+ =
∑N

j=1 x
j
n +

∑N

j=1(x
j
n)

− =
∑M

m=1 z
m+

∑N

j=1(x
j
n)

− the same holds for
∑N

j=1(x
j
n)

+. Thus (xn)n is bounded

in R
N . Passing to a subsequence converging to some x∞ ∈ R

N we get by continuity of π

(which is linear on R
N and takes values in R

M by hypothesis) that π(x∞) = z, and since
U is continuous on R

N (by [11] Theorem 10.4 applied to f = −U , since it is finite-valued
on the whole R

N by assumption) we have U(x∞) = limn U(xn) = �πU(0). This proves the
optimality of x∞.
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