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ABSTRACT. We provide full details of the proof of Theorem 3.4 (Theorem C in the Intro-
duction) in Colombo, Mari and Rigoli, Remarks on mean curvature flow solitons in warped
products. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 7, 1957-1991.
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1. INTRODUCTION

The purpose of this note is to provide full details of the rather involved proof of the following
result, [2, Theorem 3.4] (also, Theorem C in the Introduction). Indeed, the one appearing in
[2] was incomplete, especially in the concluding topological part. At the same time, we simplify
various arguments and reorganize the proof to make it more readable.

In what follows, (P™,(, )p) is a complete m-dimensional Riemannian manifold, M = I x; P
is the product of the interval I C R and of P, endowed with the warped product metric

g=dt* +h(t)*(, Je,
and 7y : I X, P — I is the standard projection. With our chosen normalization, a soliton with
respect to the vector field X = h(t)0;, with soliton constant ¢ € R, is an isometric immersion
W : M — M which solves
Xt =mH,

where H is the normalized mean curvature vector and L is the projection onto the normal bundle
of M. Writing n = 7 0 ¢, where j € C°°(M) is such that Vij = X, [2, Theorem 3.4] classifies
complete, stable solitons in manifolds M with constant sectional curvature, whose umbilicity
tensor @ satisfies |®| € L?(M, e"), where L?(M, e") is the space of functions v such that

/ v2e®dr < oo.
M

If M has constant sectional curvature &, we note that necessarily P has constant sectional cur-
vature too, say x, and by Gauss equations

B A%
1 ISR
) A . (h)
thus
(2) k+h"h—(K)*=0.

In this case, the stability (Jacobi) operator of M is given by

L=A_. + (0?+mk — ch’).
1
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2 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

We refer to [2] for further notation.

Theorem 1.1. Lety: M™ — M g Xp P be a connected, complete, stable mean curvature
flow soliton with respect to X = h(t)0; with soliton constant c. Assume that M is complete and
has constant sectional curvature g, with

(3) ch/(mrov) <mk on M.
Let ® =1 — (, Yo @ H be the umbilicity tensor of ¥ and suppose that
(4) @] € L*(M, e )

with n defined as above. Then one of the following cases occurs:
(1) ¢ is totally geodesic (and, if c # 0, (M) is invariant by the flow of X), or
(ii) I =R, h is constant on R, M is isometric to the product R x F with F a complete flat
manifold and M s also flat. By introducing the universal coverings mpr @ R™ — M,
7p : R™ = F and my; = idg X 7p : R™+1 — M, the map v lifts to an immersion
P R™ — R X R™ satisfying myp o ¥ = 9 o my, which up to an isometry of R™ and a
translation along the R factor of R™T! is given by
P R™ — R™TL (22, .. 2™) = (oy(2h), oo (xh), 2%, ... 2™)
where v = (01,02) : R — R? is the grim reaper curve with image
1 2
R)=<(z,y) eR? iz = ——1 hoy)), ly| < ——
o(®) = { (00) € B 10 =~ log(con(ehon). o] < 2}

and hg is the constant value of h on R. Furthermore, there exists a Riemannian sub-
mersion g : M — Q onto a compact, flat manifold Q0 with 1-dimensional, noncompact
geodesic fibers of the type (R x {(22,...,2™)}), for constant (z2,...,2™) € R™~1,
Such fiber is mapped by 1 into the grim reaper curve (o (R) x {(z2,...,2™)}).

Furthermore, any of the solitons in (ii) is stable, while a soliton in (i) is stable if and only if
L =A_.,+ (mk — ch') is non-negative.

Remark 1. The completeness assumption on M = I x, P forces I = R. However, completeness
can be weakened to the combination of the following two requirements:

(i) P is complete;
(#4) either I = R or h extends continuously to dI C R with value 0.

Proof. We split the proof into several steps.
Step 1: the function u = |®|? either vanishes identically, or it is everywhere positive and satisfies
(5) UA _eyu + 2| + mk — ch/ (77 0 ))u? = %|Vu|2.
Proof of Step 1. Having fixed a local unit normal v and set H = (H,v) we clearly have
|®|? = |TI|* — mH? > 0.
Furthermore,
(6) Vo2 = |VII|? — m|VH|?

We recall, see for instance equation (9.37) in [1], that in the present setting we have the validity
of the Simons’ type formula

1
(7) 3 A-en[l* = —(ch’(mr 0 ) + W) + mF|@|* + [VII]2.
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On the other hand, from [2, Formula (65)], valid in the present assumptions, we have
1
) DA H? = —(ch(my o) + [IP)H? + [VHI
Putting together (7) and (8) and using (6) we obtain
1
(9) 3 e[ @[ + (e (wp 0 ) + [ = mR)| @[ — [VO[* = 0.
The function u = |®|? therefore solves
(10) uA_equ + 2(JI> + mk — k(77 0 ))u? = 2|VO[*u + 4(mk — ch/ (71 0 1))u.
Now by (3) we deduce
mk—ch’ >0 on M,
while from Kato’s inequality |V|®||? < |[V®|? we get
1
(11) 2u|V®|? > §|Vu|2.
Substituting in the above we eventually have
1
(12) uA_eyu+ 2(|JI* + mk — ch/ (77 0 p))u? > §|Vu|2.
The stability of the soliton implies the existence of v > 0 on M solving
(13) A_eyv+ ([T + mk — ch/)v = 0.
We now apply [2, Theorem 3.1] with the choices

a(e) = 2P +mi — el (x o 0))(w), f=-en, p=j3, A=y K=0,

|~

In case M is non-compact, by choosing the admissible 5 = f% Wi

([, =) eeees

that corresponds to [2, Formula (60)] for the choice p = 2. Applying [2, Theorem 3.1] we deduce
that either u =0 (so ¥ : M — M is totally umbilical) or u > 0 and u? satisfies the equation

A_eyut? £ (T2 4+ m& — ch/ (7 0 p))u'/? = 0

¢}

see that (4) implies

or equivalently

1
(14) UA_eyu + 2(|JIL* + mk — ch/ (77 0 ))u® = §|Vu|2.
This proves Step 1.

Step 2: if u = 0, then ¥ is totally geodesic and, if ¢ # 0, X is tangent to ¥)(M). The stability
of 1 is equivalent to the non-negativity of L = A_., + (mk — ch’).

Proof of Step 2. M is a space of constant curvature, so the tensor field I is Codazzi. Fixing a
local orthonormal coframe {#'}; on M we write Il = a;;0' ® 0/ @ v, VIl = a;;,0* ® 6' ® 67 @ v,
dH = H6". Since u = 0, the umbilicity tensor ® = I—(, ) ® H vanishes, so we have a;; = Hd;;
and a;j, = 0;;Hy, by parallelism of the metric. For 1 < k < m and for any index ¢t # k we have
Hy = 644 Hy, = apr = agpe = O Hy = 0, where ag, = agg holds true as II is Codazzi. It follows
that dH = 0, therefore H is constant and so is |I|> = mH?2. Plugging this into (8) we get

H?*(ch/(rr0¢) +mH?*) =0 on M.
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4 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

In particular, either H = 0, and ¢ is totally geodesic, or H # 0, ch’/(wr o)) # 0, ch/(7wy o)) =
—mH? on M. We now prove that the second case cannot occur.

Suppose, by contradiction, that w = 0, H # 0 and that 7y o ¢ is constant: then (M) is a
slice {to} x P for some to € I such that ch/(ty) = —mH? = —m 71/((:(?)); and from (1) the stability
operator of 1) can be written as

_h 2
Aoy + (I +mk —ch'(ts)) = A+m <H2 LRt H2>

h(to)?
(15) K+ N (to)?
= A pMT A
+m o)
where A is the Laplace-Beltrami operator of (P, h(tg)?(, )p). Condition (3) now reads as
Wit _ K W' (to)”
/ _ _ -
) = = 7 == R T Wt

that is x > 0. Since (P, h(to)?(, )p) has constant sectional curvature WIT)P > 0, the bottom of
the spectrum of —A is zero (cf. [5]). It follows that the stability operator (15) is non-negative
if and only if x = 0 and h’(tp) = 0. But h'(tg) = 0 implies that H? = ’;;((:5))22 = 0, contradicting
the assumption that H # 0.

Suppose, by contradiction again, that v = 0, H # 0 and that 7 o ¢ is not constant on M.
Then A’ is constant on the nondegenerate interval (my o )(M) C I and by (1) this forces & = 0.
From || = mH? and ch/(7; o)) = —mH?, the stability operator becomes

L= Ao+ ([IP +mi — o/ (m; %)) = Aoy + 2mH>.

The Gauss equation and the fact that ¢ is totally umbilic imply that M has constant sectional
curvature H? > 0, whence it is compact. Therefore, the first eigenvalue of L is —2mH? < 0,
contradiction.

So far, we have proved that if © = 0 then v must be totally geodesic. The stability operator
reduces to A_., + (mk —ch’). If ¢ # 0, the fact that X is tangent to /(M) follows by the soliton
equation cX* = mH, which concludes the proof of Step 2.

Step 3: if u > 0 solves (14), then I = R, M is flat, X = hod; for some constant ho > 0, and u
is not constant on any open subset of M.

Proof of Step 3. From (10) and (14) we have
1
§\V|<I>|2|2 = 2u|V®|? + 4(mFk — ch’)u?.
Since mik — ch’ > 0 and u > 0, from the above and Kato’s inequality (11) we deduce
(16) mk = ch/ (7 01)), |V®|? = |[V|®|> on M.
Note that u cannot be constant on an open set of M, since otherwise equation (14) would reduce
to 0 = 2[T|*u?, which is absurd since [T|* > u > 0.

We prove that M is flat. Indeed, if ¢ = 0 then & = 0 by (16); if ¢ # 0, then again by (16)
and since (M) is not a slice (as slices are totally umbilical), we see that A’ is constant on the
nondegenerate interval (my o ¢)(M) C I, so K = —h”/h = 0 by (1). Inserting this into (16) we
see that Y = 0, so h is constant and the completeness of M or Remark 1 imply that I = R.

Moreover, k = 0 by (1) and we conclude that P is flat and X = hod; for some hy > 0. This
concludes the proof of Step 3.
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ERRATUM TO: REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS 5

Step 4: if u > 0 solves (14), then M is isometric to a cylinder R x 3 for some complete 3, with
metric and second fundamental form given by

(17) (V=ds@ds+(,)n, T=pm(s)ds@ds@,

where v is a unit normal vector to M — M. Moreover, p; # 0 on R, and the soliton constant
satisfies ¢ # 0.

Proof of Step 4. By Step 3, we know that u cannot be constant on any open set of M, thus
the set {Vu # 0} is nonempty and dense in M. Fix a point p € M such that Vu(p) # 0. The
tensor field II is Codazzi, as observed in Step 2, and its traceless part ® attains the equality in
Kato’s inequality by (16). By applying [2, Lemma 3.3] with A = II, we obtain the existence of
a neighbourhood U of p that splits as a Riemannian product (—¢,) x ™! and such that the
metric (, ) of M and the tensor field I can be written as

(18) (,Y=ds®ds+(, )u, I = (ul(s)ds@)ds—i—ug(wz)(, )g)®u7

for some smooth functions p1 : (—€,€) = R, g : ¥ — R satisfying
(19) p1(s) # pa(xz) for each s € (—e,¢), z € X.
Up to reparametrizing (—¢,¢), we can write

(20) p=1(0,q) for some ¢ € X.

Now we prove that ju1(s)uz(ms) =0 on U. Let {0} be a local orthonormal coframe on U as
the one described in the last part of the proof of [2, Lemma 3.3]. In particular, we assume that
#! = ds and then we have 0; =0on U for 1 <j <m. Writing

= aijé)i R v,
we have
ail = p1, ai; = po for 2<i<m and a;; =0 for each 7 # j.
On the other hand, since M is flat, Gauss’ equations give
(21) Rijie = ainaj: — irajg for 1 <i,5,k,t<m

where R;;i; are the components of the Riemann curvature tensor of M along {6%}. Recalling
that 9]1- =0 for 1 < j < m, by Cartan structural equations

1 4 ,
5Rijkt0kA0t:d9;+glkA9§ for 1<i,j<m

we immediately see that
Rijke =0 for 1 <jk,t<m.
Putting together these facts, from (21) we obtain

Ml(s)uQ(Wz) = 11022 = Q11022 — G12012 = Ri212 = 0.

Note that uq and ps can never be both zero at the same point by (19). Since they depend on
disjoint sets of variables, this implies that exactly one of them identically vanishes on its domain
while the other one never attains the zero value. In the 2-dimensional case where m = 2 we can
assume without loss of generality that ¥ is an interval and then pus = 0, up to renaming indices.
We claim that po identically vanishes on ¥ also in case m > 3. Suppose, by contradiction, that
p2 # 0. Then p; = 0 on (—e,e) while us has constant (by [2, Lemma 3.3]) nonzero value.
By (18), ¢ has constant mean curvature H = mT_l o in U. Putting this constant value of H
into equation (8) we obtain 0 = |I[|2H?, contradiction. So, we have proved that s = 0 on X.
Moreover, the mean curvature of v is given by H = % u1(8) # 0 on U, so ¢ is not a minimal
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6 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

hypersurface and therefore ¢ # 0. Also, the rank of II is exactly 1 in a neighbourhood of p.
Since u > 0, we observe that M does not possess totally geodesic points, hence the rank of 1I
it at least 1 everywhere. Since the rank of II is lower-semicontinuous and it is 1 on the dense
subset {Vu # 0}, we deduce that II has rank one everywhere. In particular, the distribution
corresponding to the nullity of II is smooth, totally geodesic and integrable (cf. [3, Proposition
1.18]). Hence, the entire M splits as R x X for some complete X, and the metric and second
fundamental form write as claimed on the entire M.

Step 5: if u > 0 solves (14), then v lifts to a (possibly tilted) grim reaper immersion P R™ =
R™HL

Proof of Step 5. By Step 3 and by completeness of M, I x, P = R x F, with (F,{, )p) =
(P, h3(, )p) a complete flat manifold, and ¢ is a translating soliton with respect to the parallel
vector field 9; with soliton constant chg, which is non-zero by Step 4. Without loss of generality,
we can therefore assume ¢ > 0.

Let 7 : R™ — F be the universal Riemannian covering of F'. Then

T =idg X T :RXxR™” 5 Rx F=M

is the universal Riemannian covering of M. The deck transformation group of the covering = is
a discrete subgroup I'r of the isometries of R™, and F = R™ /T g, while the deck transformation
group of the covering 747 consists of the maps of the form idg x T : R™** — R™ ! with T' € T'p.
Consider the immersion 1[1 = omy : R™ — M. Then, 15 uniquely lifts to an immersion

P :R™ — R™! such that 75709 = 9.

It is easy to see that ’(ZJ is again a translating mean curvature flow soliton with respect to the lift
Oy € X(R™*1) of 9, with soliton constant chg. Furthermore, by Step 4 the universal covering
of M splits as R™ = R x R™~ !, where R™ ! covers ¥ and the metric and second fundamental
form on R™ have the expression

(,)=ds®ds+(, )gm-1, I=p(s)ds®ds @ 0,

with 2 the local normal vector field along 1[} given by the lift of v. In particular, ¥ is totally
geodesic in R™.

From the expression of metric and second fundamental form of M, and from Gauss equations,
we deduce that M is flat. Since the nullity of II has dimension m — 1, a classical theorem of
Hartman [4] guarantees that 7,@ is a flat cylinder over a plane curve. More precisely, for each
g € R™1 we define

Ye: Rx R™, s+ (8,q).

Then, 1/3(7(1) is contained in the 2-plane II, = (QZ)*TQR’”_l)l C Td;(o,q)]Rm“‘l7 and the planes II,
are all parallel. We denote with IT the plane associated to ¢ = 0. As observed in the proof of [2,
Theorem 2.3], 7o is itself a translating soliton with soliton constant chg in II, with respect to the
orthogonal projection of the vector field d, onto II. We let V denote such orthogonal projection

and define
(22) a€[0,7/2) such that ||V|| = cosa.

In fact, V is a nonzero vector, since otherwise ¢)(7p) would be a straight line and ¥ would be

totally geodesic. Then, (o) is a translating soliton curve with soliton constant

(23) k = chocosa >0
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with respect to a parallel unit vector field in the Euclidean plane and therefore, under a suitable
1

choice of cartesian coordinates (x!,22) on II such that V = cos a9y, it can be reparametrized as
the grim reaper curve
o RE) o B
7 = o(r) = (o1(1),02(7)) = (—% log(cos(kT)),T) .
Indeed, a translating soliton curve with respect to d; in R? with soliton constant k can always
be locally written as a graph z7 = f(z2) with f satisfying

(24)

1+ L+ (f)?

Hereafter, the point ¢(0) of the grim reaper curve parametrized as above will be referred to as
the vertex of the grim reaper. So, z/; is a (possibly tilted) grim reaper cylinder, and up to an
isometry of the second factor of the ambient space R™! = R x R™ and a translation in the first
factor (which does not affect the validity of (4)) we can assume

k= 1+(f’)2< f'(f,)2> = s = (arctan()

(25) zﬁ(s,xg,xg,...,xm)

= (xgsina+ o1(7(s)) cos a, o2(7(8)), x2 cosa — o1 (7(s)) sin v, z3, . . ., Ty ,
where 7(s) is the change of parameter from arclength s to 7 in (24). To introduce Step 6, let
Qo = {0} x R™~1 C R™ be the “valley” of the grim reaper, that is mapped by z/J to the vertices
of the grim reaper curves w('yq), g € R™7L. Also, let Q = mp7(Q0).

Step 6: the grim reaper v is not tilted (that is, the angle o defined in (22) vanishes).

Proof of Step 6. Suppose by contradiction, that « # 0. Let W be the orthogonal projection of
d, onto the subspace ’(/J*TQ() of TR™, so W # 0, and let W € T be the (never vanishing)
induced vector field on €. Explicitely, we have

w
w

(sin? , 0,sinacos v, 0, ..., 0) € R™+1
(0,sin v, 0,...,0) € R™.

As W is parallel on g, it allows to split € as the product 207”72 X R, where the tangent
vector to the R direction is W. Let £y C o be a line in the universal covering R x ¥y x R
of M of the form fy (t) = (0,z ) for t € R and fixed z € ¥g. Next, observe that W is not
tangent to the “horizontal” factor R™ of R™*! = R x R™, so for any deck transformation
[=idg x T € deck(mz7), condition T(p(R™)) = 1(R™) forces the map T to act as the identity
in the direction given by the projection of W on the horizontal R™. In particular, this implies
the following properties:

(i)  there exists no nontrivial deck transformation of w3; fixing D(lw);
(26) (i) ()W =W

(#i1) w7 is injective on P(fyy).
From (#4), @ o mpr = 77 © 1[1 is injective on £y, since 1& is injective. As a consequence, g is
injective on £y and ¢ is injective on s (¢w ). Note also that 1 o mp (b ) = 757 0 Y (bw) is a

proper curve in M, and thus the curve 757 (fyy) is proper in M (and contained into €2). Indeed,
for each compact set K C M,

(mar 0 bw) " H(K) C ($oma o bw)  (P(K))
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8 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

is therefore closed in a compact set, hence it is compact. Summarizing, my (fw) is a proper
and injective immersion, hence a proper embedding. Next, observe that if two lines fyy, £}, are
different (hence, they do not intersect), then either my (b ) Nar (€y,) = 0 or war (bw) = mar ().
Indeed, if mar (6w ) and mar(€;,) intersect but do not coincide, since they are geodesics in M they
have to intersect transversely. However, the two curves ¢ (fy) and z/A)(%V) are parallel straight
lines on R™*1 = R x R™ in the direction of W, hence by (i) in (26) their projections cannot be
transverse.

Set ¥ = w1 (o) C Q, and take a small, contractible and relatively compact open subset %’/
of . By a compactness argument that uses the properness of 7y (¢y ), up to reducing ¥/ we
can guarantee that each mp;(fy) meets ¥’ at most once. Summarizing the above properties,
since 7y (4w ) is a geodesic, the exponential map expt : ¥t — Q realizes a diffeomorphism
between T'Y'+ and the union E C Qg of all curves 7y (¢y) passing through Y’. Note that 7%+
is diffeomorphic to ¥’ x R since ¥/ is contractible. From Q¢ = X9 xR and the constructions of £y,
and Y, we deduce that the pulled-back metric via exp’ on %' is the product metric, whence
E is isometric to ¥’ x R. In conclusion, M contains a subset M, of positive m-dimensional
measure that splits as R x E' = Rx R x ¥'. Fix U C %, an open subset such that 7y : U — ¥
is a diffeomorphism. Then

7TM|R2XU:RXRXU—>MO

is an isometry, and from

’ﬁ(ﬂ'[) = ho(ﬂ'[ — to) for some tg € R,
(27) @2 = (O -2H?=(u )2—2(ﬂ)2= () _1( k)
! 2 2 2 \[¢][/ ~
1
(TP = 1+tan’(kr) = ———
[6OIP = 1+ tand(he) = s
we can estimate
111(s)* i sa—
/ |(I)|26c7] 2/ ‘(I)|2€Cn _ |E/| echo(wzsmaJro’l(T(s))cosa to) dsdazs
M Mo Rz 2
—choto .
_ |E,|k‘71'€ /e(chosma)zz dzs = +0
2 R
where |¥'| is the (m — 2)-dimensional volume of ¥’ and we have used (23) and
/ul(s)zek"l(T(s)) = k2 / cos?(kr(s))e™ oslcoshm(5) qg — }2 / cos(kT(s))ds
R R R
(28) */(2K)

kQ/.szQ/T’(s)ds:kz/ dr = k.
R [0(T(s))l R —7/(2k)
So, |®| & L?(M,e"), contradicting (4).

Step 7: if u > 0 solves (14), then there exists a Riemannian submersion mq : M — Q with 1-

dimensional, noncompact, totally geodesic fibers that are sent, via ), to the grim reaper curves
(24).

Proof of Step 7. Having shown that o = 0, 1[1 writes as

(29) ?/’(Sa T2,T3,. .- 7xm) = (0-1(7_(5))3 UQ(T(S))v Z2,T3,..., ZEm) .
We first describe the structure of translations T = idg x T’ € deck(mg7). Choose Cartesian
coordinates (¢, 41,92, -, Ym) = (t,y1,5") on R™1 so by (29) the image of ¢ can be written as
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ERRATUM TO: REMARKS ON MEAN CURVATURE FLOW SOLITONS IN WARPED PRODUCTS 9

t =01(7(s)), y1 = 02(7(s)). To preserve )(R™), the component T of 1" shall satisfy T'(y1,1) =
(£y1,T'(y1,9y’)), since the image of lines obtained by fixing y; have bounded y; coordinate and
since 1 (¢( ™)) is invariant by T. As T is an isometry, T’ only depends on y'. In particular,
cither T(¢h(7,)) = P (7q) or T()(74)) Neh(74) = 0. Therefore, either WM(IZ)(’}/(I)) and 737(¢¥(vq))

coincide or they have empty intersection, in particular, they cannot be transverse.

We next study the geodesics mas(74). First, again since deck transformations of w37 act as the
identity on the first component, 737 0 1(v,) is a proper curve in M, thus, as in Step 6, mas(7,)
is a proper geodesic in M. We claim that mp(v,) is injectively immersed, hence embedded
because of its properness. If mys(s1,q) = mar(s2,q) for some s1 # so, then ¢(s1,q) and 1(ss,q)
project onto the same point in M. Comparmg the first component of the two points in R™*1, we
deduce s; = *s9, hence s1 = —s5. Let T € deck(mgz) be the deck transformation that satlsﬁes
T(z/;(sl,q)) = z/;(fsl,q), and consider the geodesic ¢ C R™*! joining @(sl,q) and w( 51,9)-
Then, T(0) = o, and since T'()(R™)) = ¢)(R™) the middle point of the segment joining U(s1,q)
and 1[}(—817 q) shall necessarily be a fixed point of T. Hence T' = id, contradiction.

Having proved that ma(7y,) is injectively immersed, we claim that for ¢ # ¢’ either mas(7,) N
7mam (vg) = 0 or they coincide. We proceed by contradiction: since both the curves are geodesics,
we assume that mar(y,) and mar(7yy) are transverse somewhere. Then, also their images 9 o
T () = T30 @_/;('yq) and Yoma(vyy) =m0 1/;('yq/) are transverse somewhere, which contradicts
the observations at the beginning of this Step.

With the above preparation, let € M and (s, q), (s',¢') € W]T/[l(x). From the fact that mps(7y,)
and mas(7y,) either coincide or they do not intersect, we also deduce that mas (0, ¢) = mas(0,¢').
Hence, the map

T M — Q, ma(z) = ma((0,q))  for any chosen (s,q) € Ty ()

is well defined. Fix a contractible, small open subset ' C €, and let Q) C Qg be one of its
diffeomorphic lifts by 7. Proceeding as in the end of Step 6, we can prove that the union
E C M of lines ma(7y,) passing through points ¢ € Q' is isometric to R x €2, the isometry being
(s,q) = mar(yq(s)). It follows that mg is a fibration and a Riemannian submersion.

Step 8: (2 is compact.
Proof of Step 8. A straightforward computation that uses (27) and (28) then shows

[ lofzen = |Q|e—choto/]RM1(2) kor(7(9) g5

ke ¢hoto
- e

where |Q] is the (m — 1)-dimensional volume of Q. So in this case |®| € L?(M, e") holds true if
and only if the manifold €2 has finite volume. Being 2 flat, £ must be compact.

Step 9: Each of the solitons ¢ in Item (ii) is stable.

Proof of Step 9. Tt is known that the embedding 1[1 :R™ — R™*t! is stable: to show this, denoting
with © a global choice of the normal vector, it is enough to observe that the function v = (7, 3t>
has a sign, say it is positive up to suitably choosing 7, and satisfies 0 = A_.,; 0 + |25 = L on
M by [2, Proposition 1]. Let T : R™ — R™ be a deck transformation of mas. For fixed x € M, we
compare 9(%) to (T(Z)), where & € 7, (). Since every deck transformation of 57 act as the
identity in the first factor of R x R™, the product of & with &; is constant on the fiber T L(ap(x)).
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Therefore, since (), )(T(Z)) € 77&1 (1(z)), we deduce that ©(Z) = 0(T(%)), hence ¢ induces a
smooth, positive function v : M — R which solves Lv = 0, proving the stability of 1. d
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