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1. Introduction6

The purpose of this note is to provide full details of the rather involved proof of the following7

result, [2, Theorem 3.4] (also, Theorem C in the Introduction). Indeed, the one appearing in8

[2] was incomplete, especially in the concluding topological part. At the same time, we simplify9

various arguments and reorganize the proof to make it more readable.10

In what follows, (Pm, 〈 , 〉P) is a complete m-dimensional Riemannian manifold, M = I ×h P11

is the product of the interval I ⊂ R and of P, endowed with the warped product metric12

ḡ = dt2 + h(t)2〈 , 〉P,
and πI : I ×h P → I is the standard projection. With our chosen normalization, a soliton with13

respect to the vector field X = h(t)∂t, with soliton constant c ∈ R, is an isometric immersion14

ψ : M →M which solves15

cX⊥ = mH,

where H is the normalized mean curvature vector and ⊥ is the projection onto the normal bundle16

of M . Writing η = η ◦ ψ, where η ∈ C∞(M) is such that ∇η = X, [2, Theorem 3.4] classifies17

complete, stable solitons in manifolds M with constant sectional curvature, whose umbilicity18

tensor Φ satisfies |Φ| ∈ L2(M, ecη), where L2(M, ecη) is the space of functions v such that19 ∫
M

v2ecηdx <∞.

If M has constant sectional curvature κ̄, we note that necessarily P has constant sectional cur-20

vature too, say κ, and by Gauss equations21

(1) −h
′′

h
= κ̄ =

κ

h2
−
(
h′

h

)2

,

thus22

(2) κ+ h′′h− (h′)2 ≡ 0.

In this case, the stability (Jacobi) operator of M is given by23

L = ∆−cη + (|II|2 +mκ̄− ch′).
1
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We refer to [2] for further notation.1

Theorem 1.1. Let ψ : Mm →M
m+1

= I ×h P be a connected, complete, stable mean curvature2

flow soliton with respect to X = h(t)∂t with soliton constant c. Assume that M is complete and3

has constant sectional curvature κ̄, with4

(3) ch′(πI ◦ ψ) ≤ mκ̄ on M.

Let Φ = II− 〈 , 〉M ⊗H be the umbilicity tensor of ψ and suppose that5

(4) |Φ| ∈ L2(M, ecη)

with η defined as above. Then one of the following cases occurs:6

(i) ψ is totally geodesic (and, if c 6= 0, ψ(M) is invariant by the flow of X), or7

(ii) I = R, h is constant on R, M is isometric to the product R× F with F a complete flat
manifold and M is also flat. By introducing the universal coverings πM : Rm → M ,
πF : Rm → F and πM = idR × πF : Rm+1 → M , the map ψ lifts to an immersion

ψ̂ : Rm → R × Rm satisfying πM ◦ ψ̂ = ψ ◦ πM , which up to an isometry of Rm and a
translation along the R factor of Rm+1 is given by

ψ̂ : Rm → Rm+1, (x1, x2, . . . , xm) 7→ (σ1(x1), σ2(x1), x2, . . . , xm)

where γ = (σ1, σ2) : R→ R2 is the grim reaper curve with image

σ(R) =

{
(x, y) ∈ R2 : x = − 1

ch0
log(cos(ch0y)), |y| < 2

π|c|h0

}
and h0 is the constant value of h on R. Furthermore, there exists a Riemannian sub-8

mersion πΩ : M → Ω onto a compact, flat manifold Ω with 1-dimensional, noncompact9

geodesic fibers of the type πM (R × {(x2, . . . , xm)}), for constant (x2, . . . , xm) ∈ Rm−1.10

Such fiber is mapped by ψ into the grim reaper curve πM (σ(R)× {(x2, . . . , xm)}).11

Furthermore, any of the solitons in (ii) is stable, while a soliton in (i) is stable if and only if12

L = ∆−cη + (mκ̄− ch′) is non-negative.13

Remark 1. The completeness assumption on M = I ×h P forces I = R. However, completeness14

can be weakened to the combination of the following two requirements:15

(i) P is complete;16

(ii) either I = R or h extends continuously to ∂I ⊂ R with value 0.17

Proof. We split the proof into several steps.18

Step 1: the function u = |Φ|2 either vanishes identically, or it is everywhere positive and satisfies19

(5) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 =
1

2
|∇u|2.

Proof of Step 1. Having fixed a local unit normal ν and set H = 〈H, ν〉 we clearly have20

|Φ|2 = |II|2 −mH2 ≥ 0.

Furthermore,21

(6) |∇Φ|2 = |∇II|2 −m|∇H|2.

We recall, see for instance equation (9.37) in [1], that in the present setting we have the validity22

of the Simons’ type formula23

(7)
1

2
∆−cη|II|2 = −(ch′(πI ◦ ψ) + |II|2)|II|2 +mκ̄|Φ|2 + |∇II|2.
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On the other hand, from [2, Formula (65)], valid in the present assumptions, we have1

(8)
1

2
∆−cηH

2 = −(ch′(πI ◦ ψ) + |II|2)H2 + |∇H|2.

Putting together (7) and (8) and using (6) we obtain2

(9)
1

2
∆−cη|Φ|2 + (ch′(πI ◦ ψ) + |II|2 −mκ̄)|Φ|2 − |∇Φ|2 = 0.

The function u = |Φ|2 therefore solves3

(10) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 = 2|∇Φ|2u+ 4(mκ̄− ch′(πI ◦ ψ))u2.

Now by (3) we deduce4

mκ̄− ch′ ≥ 0 on M,

while from Kato’s inequality |∇|Φ||2 ≤ |∇Φ|2 we get5

(11) 2u|∇Φ|2 ≥ 1

2
|∇u|2.

Substituting in the above we eventually have6

(12) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 ≥ 1

2
|∇u|2.

The stability of the soliton implies the existence of v > 0 on M solving7

(13) ∆−cηv + (|II|2 +mκ̄− ch′)v = 0.

We now apply [2, Theorem 3.1] with the choices8

a(x) = 2(|II|2 +mκ̄− ch′(πI ◦ ψ))(x), f = −cη, µ =
1

2
, A = −1

2
, K = 0.

In case M is non-compact, by choosing the admissible β = − 1
2 we see that (4) implies9 (∫

∂Br

uecη
)−1

6∈ L1(+∞),

that corresponds to [2, Formula (60)] for the choice p = 2. Applying [2, Theorem 3.1] we deduce10

that either u ≡ 0 (so ψ : M →M is totally umbilical) or u > 0 and u
1
2 satisfies the equation11

∆−cηu
1/2 + (|II|2 +mκ̄− ch′(πI ◦ ψ))u1/2 = 0

or equivalently12

(14) u∆−cηu+ 2(|II|2 +mκ̄− ch′(πI ◦ ψ))u2 =
1

2
|∇u|2.

This proves Step 1.13

Step 2: if u ≡ 0, then ψ is totally geodesic and, if c 6= 0, X is tangent to ψ(M). The stability14

of ψ is equivalent to the non-negativity of L = ∆−cη + (mκ̄− ch′).15

Proof of Step 2. M is a space of constant curvature, so the tensor field II is Codazzi. Fixing a16

local orthonormal coframe {θi}i on M we write II = aijθ
i ⊗ θj ⊗ ν, ∇II = aijkθ

k ⊗ θi ⊗ θj ⊗ ν,17

dH = Hkθ
k. Since u ≡ 0, the umbilicity tensor Φ = II−〈 , 〉⊗H vanishes, so we have aij = Hδij18

and aijk = δijHk by parallelism of the metric. For 1 ≤ k ≤ m and for any index t 6= k we have19

Hk = δttHk = attk = atkt = δtkHt = 0, where attk = atkt holds true as II is Codazzi. It follows20

that dH ≡ 0, therefore H is constant and so is |II|2 = mH2. Plugging this into (8) we get21

H2(ch′(πI ◦ ψ) +mH2) ≡ 0 on M.
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In particular, either H ≡ 0, and ψ is totally geodesic, or H 6= 0, ch′(πI ◦ ψ) 6= 0, ch′(πI ◦ ψ) =1

−mH2 on M . We now prove that the second case cannot occur.2

Suppose, by contradiction, that u ≡ 0, H 6= 0 and that πI ◦ ψ is constant: then ψ(M) is a3

slice {t0} × P for some t0 ∈ I such that ch′(t0) = −mH2 = −mh′(t0)2

h(t0)2 and from (1) the stability4

operator of ψ can be written as5

(15)

∆−cη + (|II|2 +mκ̄− ch′(t0)) = ∆ +m

(
H2 +

κ− h′(t0)2

h(t0)2
+H2

)
= ∆ +m

κ+ h′(t0)2

h(t0)2
,

where ∆ is the Laplace-Beltrami operator of (P, h(t0)2〈 , 〉P). Condition (3) now reads as6

ch′(t0) = −m h′(t0)2

h(t0)2
≤ mκ̄ = m

κ

h(t0)2
−m h′(t0)2

h(t0)2
,

that is κ ≥ 0. Since (P, h(t0)2〈 , 〉P) has constant sectional curvature κ
h(t0)2 ≥ 0, the bottom of7

the spectrum of −∆ is zero (cf. [5]). It follows that the stability operator (15) is non-negative8

if and only if κ = 0 and h′(t0) = 0. But h′(t0) = 0 implies that H2 = h′(t0)2

h(t0)2 = 0, contradicting9

the assumption that H 6= 0.10

Suppose, by contradiction again, that u ≡ 0, H 6= 0 and that πI ◦ ψ is not constant on M .11

Then h′ is constant on the nondegenerate interval (πI ◦ψ)(M) ⊆ I and by (1) this forces κ̄ = 0.12

From |II|2 = mH2 and ch′(πI ◦ ψ) = −mH2, the stability operator becomes13

L = ∆−cη + (|II|2 +mκ̄− ch′(πI ◦ ψ)) = ∆−cη + 2mH2.

The Gauss equation and the fact that ψ is totally umbilic imply that M has constant sectional14

curvature H2 > 0, whence it is compact. Therefore, the first eigenvalue of L is −2mH2 < 0,15

contradiction.16

So far, we have proved that if u ≡ 0 then ψ must be totally geodesic. The stability operator17

reduces to ∆−cη + (mκ̄− ch′). If c 6= 0, the fact that X is tangent to ψ(M) follows by the soliton18

equation cX⊥ = mH, which concludes the proof of Step 2.19

Step 3: if u > 0 solves (14), then I = R, M is flat, X = h0∂t for some constant h0 > 0, and u20

is not constant on any open subset of M .21

Proof of Step 3. From (10) and (14) we have22

1

2
|∇|Φ|2|2 = 2u|∇Φ|2 + 4(mκ̄− ch′)u2.

Since mκ̄− ch′ ≥ 0 and u > 0, from the above and Kato’s inequality (11) we deduce23

(16) mκ̄ ≡ ch′(πI ◦ ψ), |∇Φ|2 = |∇|Φ||2 on M.

Note that u cannot be constant on an open set of M , since otherwise equation (14) would reduce24

to 0 = 2|II|2u2, which is absurd since |II|2 ≥ u > 0.25

We prove that M is flat. Indeed, if c = 0 then κ̄ = 0 by (16); if c 6= 0, then again by (16)26

and since ψ(M) is not a slice (as slices are totally umbilical), we see that h′ is constant on the27

nondegenerate interval (πI ◦ ψ)(M) ⊆ I, so κ̄ = −h′′/h ≡ 0 by (1). Inserting this into (16) we28

see that h′ ≡ 0, so h is constant and the completeness of M or Remark 1 imply that I = R.29

Moreover, κ = 0 by (1) and we conclude that P is flat and X = h0∂t for some h0 > 0. This30

concludes the proof of Step 3.31
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Step 4: if u > 0 solves (14), then M is isometric to a cylinder R×Σ for some complete Σ, with1

metric and second fundamental form given by2

(17) 〈 , 〉 = ds⊗ ds+ 〈 , 〉Σ, II = µ1(s) ds⊗ ds⊗ ν,

where ν is a unit normal vector to M → M . Moreover, µ1 6= 0 on R, and the soliton constant3

satisfies c 6= 0.4

Proof of Step 4. By Step 3, we know that u cannot be constant on any open set of M , thus5

the set {∇u 6= 0} is nonempty and dense in M . Fix a point p ∈ M such that ∇u(p) 6= 0. The6

tensor field II is Codazzi, as observed in Step 2, and its traceless part Φ attains the equality in7

Kato’s inequality by (16). By applying [2, Lemma 3.3] with A = II, we obtain the existence of8

a neighbourhood U of p that splits as a Riemannian product (−ε, ε)× Σm−1 and such that the9

metric 〈 , 〉 of M and the tensor field II can be written as10

(18) 〈 , 〉 = ds⊗ ds+ 〈 , 〉Σ, II =
(
µ1(s) ds⊗ ds+ µ2(πΣ)〈 , 〉Σ

)
⊗ ν,

for some smooth functions µ1 : (−ε, ε)→ R, µ2 : Σ→ R satisfying11

(19) µ1(s) 6= µ2(x) for each s ∈ (−ε, ε), x ∈ Σ.

Up to reparametrizing (−ε, ε), we can write12

(20) p = (0, q) for some q ∈ Σ.

Now we prove that µ1(s)µ2(πΣ) ≡ 0 on U . Let {θi} be a local orthonormal coframe on U as13

the one described in the last part of the proof of [2, Lemma 3.3]. In particular, we assume that14

θ1 = ds and then we have θ1
j ≡ 0 on U for 1 ≤ j ≤ m. Writing15

II = aijθ
i ⊗ θj ⊗ ν,

we have16

a11 = µ1, aii = µ2 for 2 ≤ i ≤ m and aij = 0 for each i 6= j.

On the other hand, since M is flat, Gauss’ equations give17

(21) Rijkt = aikajt − aitajk for 1 ≤ i, j, k, t ≤ m
where Rijkt are the components of the Riemann curvature tensor of M along {θi}. Recalling18

that θ1
j ≡ 0 for 1 ≤ j ≤ m, by Cartan structural equations19

1

2
Rijktθ

k ∧ θt = dθij + θik ∧ θkj for 1 ≤ i, j ≤ m

we immediately see that20

R1jkt = 0 for 1 ≤ j, k, t ≤ m.
Putting together these facts, from (21) we obtain21

µ1(s)µ2(πΣ) = a11a22 = a11a22 − a12a12 = R1212 = 0.

Note that µ1 and µ2 can never be both zero at the same point by (19). Since they depend on22

disjoint sets of variables, this implies that exactly one of them identically vanishes on its domain23

while the other one never attains the zero value. In the 2-dimensional case where m = 2 we can24

assume without loss of generality that Σ is an interval and then µ2 ≡ 0, up to renaming indices.25

We claim that µ2 identically vanishes on Σ also in case m ≥ 3. Suppose, by contradiction, that26

µ2 6= 0. Then µ1 ≡ 0 on (−ε, ε) while µ2 has constant (by [2, Lemma 3.3]) nonzero value.27

By (18), ψ has constant mean curvature H = m−1
m µ2 in U . Putting this constant value of H28

into equation (8) we obtain 0 = |II|2H2, contradiction. So, we have proved that µ2 ≡ 0 on Σ.29

Moreover, the mean curvature of ψ is given by H = 1
mµ1(s) 6= 0 on U , so ψ is not a minimal30
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hypersurface and therefore c 6= 0. Also, the rank of II is exactly 1 in a neighbourhood of p.1

Since u > 0, we observe that M does not possess totally geodesic points, hence the rank of II2

it at least 1 everywhere. Since the rank of II is lower-semicontinuous and it is 1 on the dense3

subset {∇u 6= 0}, we deduce that II has rank one everywhere. In particular, the distribution4

corresponding to the nullity of II is smooth, totally geodesic and integrable (cf. [3, Proposition5

1.18]). Hence, the entire M splits as R × Σ for some complete Σ, and the metric and second6

fundamental form write as claimed on the entire M .7

Step 5: if u > 0 solves (14), then ψ lifts to a (possibly tilted) grim reaper immersion ψ̂ : Rm →8

Rm+1.9

Proof of Step 5. By Step 3 and by completeness of M , I ×h P = R × F , with (F, 〈 , 〉F ) =10

(P, h2
0〈 , 〉P) a complete flat manifold, and ψ is a translating soliton with respect to the parallel11

vector field ∂t with soliton constant ch0, which is non-zero by Step 4. Without loss of generality,12

we can therefore assume c > 0.13

Let π : Rm → F be the universal Riemannian covering of F . Then14

πM = idR × π : R× Rm → R× F = M

is the universal Riemannian covering of M . The deck transformation group of the covering π is15

a discrete subgroup ΓF of the isometries of Rm, and F = Rm/ΓF , while the deck transformation16

group of the covering πM consists of the maps of the form idR×T : Rm+1 → Rm+1, with T ∈ ΓF .17

Consider the immersion ψ̃ = ψ ◦ πM : Rm →M . Then, ψ̃ uniquely lifts to an immersion18

ψ̂ : Rm → Rm+1 such that πM ◦ ψ̂ = ψ̃.

It is easy to see that ψ̂ is again a translating mean curvature flow soliton with respect to the lift19

∂̂t ∈ X(Rm+1) of ∂t with soliton constant ch0. Furthermore, by Step 4 the universal covering20

of M splits as Rm = R × Rm−1, where Rm−1 covers Σ and the metric and second fundamental21

form on Rm have the expression22

〈 , 〉 = ds⊗ ds+ 〈 , 〉Rm−1 , ÎI = µ1(s) ds⊗ ds⊗ ν̂,

with ν̂ the local normal vector field along ψ̂ given by the lift of ν. In particular, Σ is totally23

geodesic in Rm.24

From the expression of metric and second fundamental form of M , and from Gauss equations,25

we deduce that M is flat. Since the nullity of ÎI has dimension m − 1, a classical theorem of26

Hartman [4] guarantees that ψ̂ is a flat cylinder over a plane curve. More precisely, for each27

q ∈ Rm−1 we define28

γq : R× Rm, s 7→ (s, q).

Then, ψ̂(γq) is contained in the 2-plane Πq = (ψ̂∗TqRm−1)⊥ ⊆ Tψ̂(0,q)R
m+1, and the planes Πq29

are all parallel. We denote with Π the plane associated to q = 0. As observed in the proof of [2,30

Theorem 2.3], γ0 is itself a translating soliton with soliton constant ch0 in Π, with respect to the31

orthogonal projection of the vector field ∂̂t onto Π. We let V denote such orthogonal projection32

and define33

(22) α ∈ [0, π/2) such that ||V || = cosα.

In fact, V is a nonzero vector, since otherwise ψ̂(γ0) would be a straight line and ψ would be34

totally geodesic. Then, ψ̂(γ0) is a translating soliton curve with soliton constant35

(23) k = ch0 cosα > 0
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with respect to a parallel unit vector field in the Euclidean plane and therefore, under a suitable1

choice of cartesian coordinates (x1, x2) on Π such that V = cosα∂1, it can be reparametrized as2

the grim reaper curve3

(24)
σ :

(
− π

2k ,
π
2k

)
→ R2

τ 7→ σ(τ) = (σ1(τ), σ2(τ)) =
(
− 1
k log(cos(kτ)), τ

)
.

Indeed, a translating soliton curve with respect to ∂1 in R2 with soliton constant k can always4

be locally written as a graph x1 = f(x2) with f satisfying5

k =
√

1 + (f ′)2

(
f ′√

1 + (f ′)2

)′
=

f ′′

1 + (f ′)2
= (arctan(f ′))′.

Hereafter, the point σ(0) of the grim reaper curve parametrized as above will be referred to as6

the vertex of the grim reaper. So, ψ̂ is a (possibly tilted) grim reaper cylinder, and up to an7

isometry of the second factor of the ambient space Rm+1 = R×Rm and a translation in the first8

factor (which does not affect the validity of (4)) we can assume9

(25)
ψ̂(s, x2, x3, . . . , xm)

= (x2 sinα+ σ1(τ(s)) cosα, σ2(τ(s)), x2 cosα− σ1(τ(s)) sinα, x3, . . . , xm) ,

where τ(s) is the change of parameter from arclength s to τ in (24). To introduce Step 6, let10

Ω0 = {0} ×Rm−1 ⊂ Rm be the “valley” of the grim reaper, that is mapped by ψ̂ to the vertices11

of the grim reaper curves ψ̂(γq), q ∈ Rm−1. Also, let Ω = πM (Ω0).12

Step 6: the grim reaper ψ̂ is not tilted (that is, the angle α defined in (22) vanishes).13

Proof of Step 6. Suppose, by contradiction, that α 6= 0. Let Ŵ be the orthogonal projection of14

∂̂t onto the subspace ψ̂∗TΩ0 of TRm+1, so Ŵ 6= 0, and let W ∈ TΩ0 be the (never vanishing)15

induced vector field on Ω0. Explicitely, we have16

Ŵ ≡ (sin2 α, 0, sinα cosα, 0, . . . , 0) ∈ Rm+1 ,
W ≡ (0, sinα, 0, . . . , 0) ∈ Rm .

As W is parallel on Ω0, it allows to split Ω0 as the product Σm−2
0 × R, where the tangent17

vector to the R direction is W . Let `W ⊂ Ω0 be a line in the universal covering R × Σ0 × R18

of M of the form `W (t) = (0, z, t) for t ∈ R and fixed z ∈ Σ0. Next, observe that Ŵ is not19

tangent to the “horizontal” factor Rm of Rm+1 = R × Rm, so for any deck transformation20

T̂ = idR × T ∈ deck(πM ), condition T̂ (ψ̂(Rm)) = ψ̂(Rm) forces the map T to act as the identity21

in the direction given by the projection of Ŵ on the horizontal Rm. In particular, this implies22

the following properties:23

(26)

(i) there exists no nontrivial deck transformation of πM fixing ψ̂(`W );

(ii) (πM )∗Ŵ = Ŵ ;

(iii) πM is injective on ψ̂(`W ).

From (iii), ψ ◦ πM = πM ◦ ψ̂ is injective on `W , since ψ̂ is injective. As a consequence, πM is24

injective on `W and ψ is injective on πM (`W ). Note also that ψ ◦ πM (`W ) = πM ◦ ψ̂(`W ) is a25

proper curve in M , and thus the curve πM (`W ) is proper in M (and contained into Ω). Indeed,26

for each compact set K ⊂M ,27

(πM ◦ `W )−1(K) ⊂ (ψ ◦ πM ◦ `W )−1(ψ(K))
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is therefore closed in a compact set, hence it is compact. Summarizing, πM (`W ) is a proper1

and injective immersion, hence a proper embedding. Next, observe that if two lines `W , `
′
W are2

different (hence, they do not intersect), then either πM (`W )∩πM (`′W ) = ∅ or πM (`W ) = πM (`′W ).3

Indeed, if πM (`W ) and πM (`′W ) intersect but do not coincide, since they are geodesics in M they4

have to intersect transversely. However, the two curves ψ̂(`W ) and ψ̂(`′W ) are parallel straight5

lines on Rm+1 = R×Rm in the direction of Ŵ , hence by (ii) in (26) their projections cannot be6

transverse.7

Set Σ = πM (Σ0) ⊂ Ω, and take a small, contractible and relatively compact open subset Σ′8

of Σ. By a compactness argument that uses the properness of πM (`W ), up to reducing Σ′ we9

can guarantee that each πM (`W ) meets Σ′ at most once. Summarizing the above properties,10

since πM (`W ) is a geodesic, the exponential map exp⊥ : TΣ′⊥ → Ω realizes a diffeomorphism11

between TΣ′⊥ and the union E ⊂ Ω0 of all curves πM (`W ) passing through Σ′. Note that TΣ′⊥12

is diffeomorphic to Σ′×R since Σ′ is contractible. From Ω0 = Σ0×R and the constructions of `W13

and Σ′, we deduce that the pulled-back metric via exp⊥ on TΣ′⊥ is the product metric, whence14

E is isometric to Σ′ × R. In conclusion, M contains a subset M0 of positive m-dimensional15

measure that splits as R×E = R×R×Σ′. Fix U ⊆ Σ0 an open subset such that πM |U : U → Σ′16

is a diffeomorphism. Then17

πM |R2×U : R× R× U →M0

is an isometry, and from18

(27)

η̄(πI) = h0(πI − t0) for some t0 ∈ R,

|Φ|2 = |II|2 − 2H2 = (µ1)2 − 2
(µ1

2

)2

=
(µ1)2

2
=

1

2

(
k

||σ̇||

)2

,

||σ̇(τ)||2 = 1 + tan2(kτ) =
1

cos2(kτ)

we can estimate19 ∫
M

|Φ|2ecη ≥
∫
M0

|Φ|2ecη = |Σ′|
∫
R2

µ1(s)2

2
ech0(x2 sinα+σ1(τ(s)) cosα−t0) dsdx2

= |Σ′|kπe
−ch0t0

2

∫
R
e(ch0 sinα)x2 dx2 = +∞

where |Σ′| is the (m− 2)-dimensional volume of Σ′ and we have used (23) and20

(28)

∫
R
µ1(s)2ekσ1(τ(s)) = k2

∫
R

cos2(kτ(s))e− log(cos(kτ(s))) ds = k2

∫
R

cos(kτ(s)) ds

= k2

∫
R

ds

‖σ̇(τ(s))‖
= k2

∫
R
τ ′(s) ds = k2

∫ π/(2k)

−π/(2k)

dτ = kπ .

So, |Φ| 6∈ L2(M, ecη), contradicting (4).21

Step 7: if u > 0 solves (14), then there exists a Riemannian submersion πΩ : M → Ω with 1-22

dimensional, noncompact, totally geodesic fibers that are sent, via ψ̂, to the grim reaper curves23

(24).24

Proof of Step 7. Having shown that α = 0, ψ̂ writes as25

(29) ψ̂(s, x2, x3, . . . , xm) = (σ1(τ(s)), σ2(τ(s)), x2, x3, . . . , xm) .

We first describe the structure of translations T̂ = idR × T ∈ deck(πM ). Choose Cartesian26

coordinates (t, y1, y2, . . . , ym) = (t, y1, y
′) on Rm+1, so by (29) the image of ψ̂ can be written as27
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t = σ1(τ(s)), y1 = σ2(τ(s)). To preserve ψ̂(Rm), the component T of T̂ shall satisfy T (y1, y
′) =1

(±y1, T
′(y1, y

′)), since the image of lines obtained by fixing y1 have bounded y1 coordinate and2

since y1(ψ̂(Rm)) is invariant by T̂ . As T is an isometry, T ′ only depends on y′. In particular,3

either T (ψ̂(γq)) = ψ̂(γq′) or T (ψ̂(γq))∩ ψ̂(γq′) = ∅. Therefore, either πM (ψ̂(γq)) and πM (ψ̂(γq′))4

coincide or they have empty intersection, in particular, they cannot be transverse.5

We next study the geodesics πM (γq). First, again since deck transformations of πM act as the6

identity on the first component, πM ◦ ψ(γq) is a proper curve in M , thus, as in Step 6, πM (γq)7

is a proper geodesic in M . We claim that πM (γq) is injectively immersed, hence embedded8

because of its properness. If πM (s1, q) = πM (s2, q) for some s1 6= s2, then ψ̂(s1, q) and ψ̂(s2, q)9

project onto the same point in M . Comparing the first component of the two points in Rm+1, we10

deduce s1 = ±s2, hence s1 = −s2. Let T̂ ∈ deck(πM ) be the deck transformation that satisfies11

T̂ (ψ̂(s1, q)) = ψ̂(−s1, q), and consider the geodesic σ ⊂ Rm+1 joining ψ̂(s1, q) and ψ̂(−s1, q).12

Then, T̂ (σ) = σ, and since T̂ (ψ̂(Rm)) = ψ̂(Rm) the middle point of the segment joining ψ̂(s1, q)13

and ψ̂(−s1, q) shall necessarily be a fixed point of T̂ . Hence T̂ = id, contradiction.14

Having proved that πM (γq) is injectively immersed, we claim that for q 6= q′ either πM (γq) ∩15

πM (γq′) = ∅ or they coincide. We proceed by contradiction: since both the curves are geodesics,16

we assume that πM (γq) and πM (γq′) are transverse somewhere. Then, also their images ψ ◦17

πM (γq) = πM ◦ ψ̂(γq) and ψ◦πM (γq′) = πM ◦ ψ̂(γq′) are transverse somewhere, which contradicts18

the observations at the beginning of this Step.19

With the above preparation, let x ∈M and (s, q), (s′, q′) ∈ π−1
M (x). From the fact that πM (γq)20

and πM (γq′) either coincide or they do not intersect, we also deduce that πM (0, q) = πM (0, q′).21

Hence, the map22

πΩ : M → Ω, πΩ(x) = πM
(
(0, q)

)
for any chosen (s, q) ∈ π−1

M (x)

is well defined. Fix a contractible, small open subset Ω′ ⊂ Ω, and let Ω′0 ⊂ Ω0 be one of its23

diffeomorphic lifts by πM . Proceeding as in the end of Step 6, we can prove that the union24

E ⊂M of lines πM (γq) passing through points q ∈ Ω′ is isometric to R×Ω′0, the isometry being25

(s, q)→ πM (γq(s)). It follows that πΩ is a fibration and a Riemannian submersion.26

Step 8: Ω is compact.27

Proof of Step 8. A straightforward computation that uses (27) and (28) then shows28

∫
M
|Φ|2ecη = |Ω|e−ch0t0

∫
R

µ1(s)2

2
ekσ1(τ(s))ds

= |Ω|πke
−ch0t0

2
,

where |Ω| is the (m− 1)-dimensional volume of Ω. So in this case |Φ| ∈ L2(M, ecη) holds true if29

and only if the manifold Ω has finite volume. Being Ω flat, Ω must be compact.30

Step 9: Each of the solitons ψ in Item (ii) is stable.31

Proof of Step 9. It is known that the embedding ψ̂ : Rm → Rm+1 is stable: to show this, denoting32

with ν̂ a global choice of the normal vector, it is enough to observe that the function v̂ = 〈ν̂, ∂̂t〉33

has a sign, say it is positive up to suitably choosing ν̂, and satisfies 0 = ∆−cη v̂ + |II|2v̂ = Lv̂ on34

M by [2, Proposition 1]. Let T : Rm → Rm be a deck transformation of πM . For fixed x ∈M , we35

compare v̂(x̃) to v̂(T (x̃)), where x̃ ∈ π−1
M (x). Since every deck transformation of πM act as the36

identity in the first factor of R×Rm, the product of ν̂ with ∂̂t is constant on the fiber π−1

M
(ψ(x)).37
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Therefore, since ψ̂(x̃), ψ̂(T (x̃)) ∈ π−1

M
(ψ(x)), we deduce that v̂(x̃) = v̂(T (x̃)), hence v̂ induces a1

smooth, positive function v : M → R which solves Lv = 0, proving the stability of ψ. �2
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Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy16

Email address: luciano.mari@unito.it17
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