1 ERRATUM TO: REMARKS ON MEAN CURVATURE FLOW SOLITONS IN 2 WARPED PRODUCTS

3 GIULIO COLOMBO, LUCIANO MARI, AND MARCO RIGOLI

Dedicated to Patrizia Pucci on her 65th birthday

Abstract. We provide full details of the proof of Theorem 3.4 (Theorem C in the Introduction) in Colombo, Mari and Rigoli, Remarks on mean curvature flow solitons in warped products. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 7, 1957-1991.

- ⁴ MSC 2010 Primary: 53C42, 53C40; Secondary: 35B50, 35B06.
- 5 Keywords Mean curvature flow · warped product · self-shrinker · soliton · splitting theorem

6 1. INTRODUCTION

 The purpose of this note is to provide full details of the rather involved proof of the following result, [2, Theorem 3.4] (also, Theorem C in the Introduction). Indeed, the one appearing in [2] was incomplete, especially in the concluding topological part. At the same time, we simplify various arguments and reorganize the proof to make it more readable.

11 In what follows, $(\mathbb{P}^m, \langle , \rangle_{\mathbb{P}})$ is a complete m-dimensional Riemannian manifold, $\overline{M} = I \times_h \mathbb{P}$ 12 is the product of the interval $I \subset \mathbb{R}$ and of \mathbb{P} , endowed with the warped product metric

$$
\bar{g} = dt^2 + h(t)^2 \langle , \rangle_{\mathbb{P}},
$$

13 and $\pi_I : I \times_h \mathbb{P} \to I$ is the standard projection. With our chosen normalization, a soliton with 14 respect to the vector field $X = h(t)\partial_t$, with soliton constant $c \in \mathbb{R}$, is an isometric immersion 15 $\psi: M \to \overline{M}$ which solves

$$
cX^{\perp} = m\mathbf{H},
$$

16 where **H** is the normalized mean curvature vector and \perp is the projection onto the normal bundle 17 of M. Writing $\eta = \overline{\eta} \circ \psi$, where $\overline{\eta} \in C^{\infty}(\overline{M})$ is such that $\overline{\nabla} \overline{\eta} = X$, [2, Theorem 3.4] classifies 18 complete, stable solitons in manifolds \overline{M} with constant sectional curvature, whose umbilicity tensor Φ satisfies $|\Phi| \in L^2(M, e^{c\eta})$, where $L^2(M, e^{c\eta})$ is the space of functions v such that

$$
\int_M v^2 e^{c\eta} \mathrm{d}x < \infty.
$$

20 If \overline{M} has constant sectional curvature $\overline{\kappa}$, we note that necessarily $\mathbb P$ has constant sectional cur-21 vature too, say κ , and by Gauss equations

(1)
$$
-\frac{h''}{h} = \bar{\kappa} = \frac{\kappa}{h^2} - \left(\frac{h'}{h}\right)^2,
$$

²² thus

$$
\kappa + h''h - (h')^2 \equiv 0.
$$

23 In this case, the stability (Jacobi) operator of M is given by

$$
L = \Delta_{-c\eta} + (|\mathbf{I}|^2 + m\bar{\kappa} - ch').
$$

- ¹ We refer to [2] for further notation.
- **Theorem 1.1.** Let $\psi : M^m \to \overline{M}^{m+1} = I \times_h \mathbb{P}$ be a connected, complete, stable mean curvature
- flow soliton with respect to $X = h(t)\partial_t$ with soliton constant c. Assume that \overline{M} is complete and
- has constant sectional curvature $\bar{\kappa}$, with

(3)
$$
ch'(\pi_I \circ \psi) \leq m\bar{\kappa} \quad on \ M.
$$

5 Let $\Phi = \mathbb{I} - \langle , \rangle_M \otimes \mathbb{H}$ be the umbilicity tensor of ψ and suppose that

$$
|\Phi| \in L^2(M, e^{c\eta})
$$

- ⁶ with η defined as above. Then one of the following cases occurs:
- 7 (i) ψ is totally geodesic (and, if $c \neq 0$, $\psi(M)$ is invariant by the flow of X), or (ii) $I = \mathbb{R}$, h is constant on \mathbb{R} , \overline{M} is isometric to the product $\mathbb{R} \times F$ with F a complete flat
	- manifold and M is also flat. By introducing the universal coverings $\pi_M : \mathbb{R}^m \to M$, $\pi_F : \mathbb{R}^m \to F$ and $\pi_{\overline{M}} = \text{id}_{\mathbb{R}} \times \pi_F : \mathbb{R}^{m+1} \to \overline{M}$, the map ψ lifts to an immersion $\hat{\psi}: \mathbb{R}^m \to \mathbb{R} \times \mathbb{R}^m$ satisfying $\pi_{\overline{M}} \circ \hat{\psi} = \psi \circ \pi_M$, which up to an isometry of \mathbb{R}^m and a translation along the R factor of \mathbb{R}^{m+1} is given by

$$
\hat{\psi}: \mathbb{R}^m \to \mathbb{R}^{m+1}, \quad (x^1, x^2, \dots, x^m) \mapsto (\sigma_1(x^1), \sigma_2(x^1), x^2, \dots, x^m)
$$

where $\gamma = (\sigma_1, \sigma_2) : \mathbb{R} \to \mathbb{R}^2$ is the grim reaper curve with image

$$
\sigma(\mathbb{R}) = \left\{ (x, y) \in \mathbb{R}^2 : x = -\frac{1}{ch_0} \log(\cos(ch_0 y)), |y| < \frac{2}{\pi |c|h_0} \right\}
$$

8 and h_0 is the constant value of h on $\mathbb R$. Furthermore, there exists a Riemannian sub- 9 mersion $πΩ : M → Ω$ onto a compact, flat manifold $Ω$ with 1-dimensional, noncompact ${\it geodesic\ fibers\ of\ the\ type\ }\ \pi_M(\mathbb{R}\times\{(x^2,\ldots,x^m)\}),\ for\ constant\ (x^2,\ldots,x^m)\in\mathbb{R}^{m-1}.$ Such fiber is mapped by ψ into the grim reaper curve $\pi_{\overline{M}}(\sigma(\mathbb{R}) \times \{(x^2, \ldots, x^m)\}).$

12 Furthermore, any of the solitons in (ii) is stable, while a soliton in (i) is stable if and only if 13 $L = \Delta_{-c\eta} + (m\bar{\kappa} - ch')$ is non-negative.

14 **Remark 1.** The completeness assumption on $\overline{M} = I \times_h \mathbb{P}$ forces $I = \mathbb{R}$. However, completeness ¹⁵ can be weakened to the combination of the following two requirements:

16 (i) P is complete;

17 (ii) either $I = \mathbb{R}$ or h extends continuously to $\partial I \subset \mathbb{R}$ with value 0.

- ¹⁸ Proof. We split the proof into several steps.
- 19 Step 1: the function $u = |\Phi|^2$ either vanishes identically, or it is everywhere positive and satisfies

(5)
$$
u\Delta_{-c\eta}u + 2(|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))u^2 = \frac{1}{2}|\nabla u|^2.
$$

20 Proof of Step 1. Having fixed a local unit normal ν and set $H = \langle \mathbf{H}, \nu \rangle$ we clearly have

$$
|\Phi|^2 = |\mathbb{I}|^2 - mH^2 \ge 0.
$$

Furthermore,

(6)
$$
|\nabla \Phi|^2 = |\nabla \Pi|^2 - m|\nabla H|^2.
$$

22 We recall, see for instance equation (9.37) in [1], that in the present setting we have the validity ²³ of the Simons' type formula

(7)
$$
\frac{1}{2}\Delta_{-c\eta}|\Pi|^2 = -(ch'(\pi_I \circ \psi) + |\Pi|^2)|\Pi|^2 + m\bar{\kappa}|\Phi|^2 + |\nabla\Pi|^2.
$$

¹ On the other hand, from [2, Formula (65)], valid in the present assumptions, we have

(8)
$$
\frac{1}{2}\Delta_{-c\eta}H^2 = -(ch'(\pi_I \circ \psi) + |\mathbb{I}|^2)H^2 + |\nabla H|^2.
$$

² Putting together (7) and (8) and using (6) we obtain

(9)
$$
\frac{1}{2}\Delta_{-c\eta}|\Phi|^2 + (ch'(\pi_I \circ \psi) + |\mathbb{I}|^2 - m\bar{\kappa})|\Phi|^2 - |\nabla\Phi|^2 = 0.
$$

3 The function $u = |\Phi|^2$ therefore solves

(10)
$$
u\Delta_{-c\eta}u + 2(|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))u^2 = 2|\nabla \Phi|^2 u + 4(m\bar{\kappa} - ch'(\pi_I \circ \psi))u^2.
$$

⁴ Now by (3) we deduce

$$
m\bar{\kappa} - ch' \ge 0 \quad \text{on } M,
$$

s while from Kato's inequality $|\nabla|\Phi||^2 \leq |\nabla\Phi|^2$ we get

(11)
$$
2u|\nabla\Phi|^2 \geq \frac{1}{2}|\nabla u|^2.
$$

⁶ Substituting in the above we eventually have

(12)
$$
u\Delta_{-c\eta}u + 2(|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))u^2 \geq \frac{1}{2}|\nabla u|^2.
$$

7 The stability of the soliton implies the existence of $v > 0$ on M solving

(13)
$$
\Delta_{-c\eta}v + (|\mathbb{I}|^2 + m\bar{\kappa} - ch')v = 0.
$$

⁸ We now apply [2, Theorem 3.1] with the choices

$$
a(x) = 2(|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))(x), \quad f = -c\eta, \quad \mu = \frac{1}{2}, \quad A = -\frac{1}{2}, \quad K = 0.
$$

In case M is non-compact, by choosing the admissible $\beta = -\frac{1}{2}$ we see that (4) implies 9

$$
\left(\int_{\partial B_r} ue^{c\eta}\right)^{-1} \notin L^1(+\infty),
$$

- 10 that corresponds to [2, Formula (60)] for the choice $p = 2$. Applying [2, Theorem 3.1] we deduce
- 11 that either $u \equiv 0$ (so $\psi : M \to \overline{M}$ is totally umbilical) or $u > 0$ and $u^{\frac{1}{2}}$ satisfies the equation

$$
\Delta_{-c\eta}u^{1/2} + (|\Pi|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))u^{1/2} = 0
$$

¹² or equivalently

(14)
$$
u\Delta_{-c\eta}u + 2(|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi))u^2 = \frac{1}{2}|\nabla u|^2.
$$

¹³ This proves Step 1.

14 Step 2: if $u \equiv 0$, then ψ is totally geodesic and, if $c \neq 0$, X is tangent to $\psi(M)$. The stability of ψ is equivalent to the non-negativity of $L = \Delta_{-c\eta} + (m\bar{\kappa} - ch')$.

16 Proof of Step 2. \overline{M} is a space of constant curvature, so the tensor field II is Codazzi. Fixing a h.c. local orthonormal coframe $\{\theta^i\}_i$ on M we write $\mathbb{I} = a_{ij}\theta^i \otimes \theta^j \otimes \nu$, $\nabla \mathbb{I} = a_{ijk}\theta^k \otimes \theta^i \otimes \theta^j \otimes \nu$, 18 $dH = H_k \theta^k$. Since $u \equiv 0$, the umbilicity tensor $\Phi = \mathbb{I} - \langle , \rangle \otimes \mathbb{H}$ vanishes, so we have $a_{ij} = H \delta_{ij}$ 19 and $a_{ijk} = \delta_{ij}H_k$ by parallelism of the metric. For $1 \leq k \leq m$ and for any index $t \neq k$ we have 20 $H_k = \delta_{tt}H_k = a_{ttk} = a_{tkt} = \delta_{tk}H_t = 0$, where $a_{ttk} = a_{tkt}$ holds true as II is Codazzi. It follows 21 that $dH \equiv 0$, therefore H is constant and so is $|\mathbb{I}|^2 = mH^2$. Plugging this into (8) we get

$$
H^2(ch'(\pi_I \circ \psi) + mH^2) \equiv 0 \quad \text{on } M.
$$

In particular, either $H \equiv 0$, and ψ is totally geodesic, or $H \neq 0$, $ch'(\pi_I \circ \psi) \neq 0$, $ch'(\pi_I \circ \psi) =$ $2 - mH^2$ on M. We now prove that the second case cannot occur.

3 Suppose, by contradiction, that $u \equiv 0$, $H \neq 0$ and that $\pi_I \circ \psi$ is constant: then $\psi(M)$ is a slice $\{t_0\} \times \mathbb{P}$ for some $t_0 \in I$ such that $ch'(t_0) = -mH^2 = -m\frac{h'(t_0)^2}{h(t_0)^2}$ 4 slice $\{t_0\}\times\mathbb{P}$ for some $t_0\in I$ such that $ch'(t_0)=-mH^2=-m\frac{h(t_0)}{h(t_0)^2}$ and from (1) the stability

operator of ψ can be written as

(15)
\n
$$
\Delta_{-c\eta} + (|\mathbf{I}|^2 + m\bar{\kappa} - ch'(t_0)) = \Delta + m\left(H^2 + \frac{\kappa - h'(t_0)^2}{h(t_0)^2} + H^2\right)
$$
\n
$$
= \Delta + m\frac{\kappa + h'(t_0)^2}{h(t_0)^2},
$$

6 where Δ is the Laplace-Beltrami operator of $(\mathbb{P}, h(t_0)^2 \langle , \rangle_{\mathbb{P}})$. Condition (3) now reads as

$$
ch'(t_0) = -m \frac{h'(t_0)^2}{h(t_0)^2} \le m\bar{\kappa} = m \frac{\kappa}{h(t_0)^2} - m \frac{h'(t_0)^2}{h(t_0)^2},
$$

that is $\kappa \geq 0$. Since $(\mathbb{P}, h(t_0)^2 \langle , \rangle_{\mathbb{P}})$ has constant sectional curvature $\frac{\kappa}{h(t_0)^2} \geq 0$, the bottom of 8 the spectrum of $-\Delta$ is zero (cf. [5]). It follows that the stability operator (15) is non-negative

if and only if $\kappa = 0$ and $h'(t_0) = 0$. But $h'(t_0) = 0$ implies that $H^2 = \frac{h'(t_0)^2}{h(t_0)^2}$ if and only if $\kappa = 0$ and $h'(t_0) = 0$. But $h'(t_0) = 0$ implies that $H^2 = \frac{h(t_0)}{h(t_0)^2} = 0$, contradicting 10 the assumption that $H \neq 0$.

- 11 Suppose, by contradiction again, that $u \equiv 0$, $H \neq 0$ and that $\pi_I \circ \psi$ is not constant on M.
- 12 Then h' is constant on the nondegenerate interval $(\pi_I \circ \psi)(M) \subseteq I$ and by (1) this forces $\bar{\kappa} = 0$.
- 13 From $|\mathbb{I}|^2 = mH^2$ and $ch'(\pi_I \circ \psi) = -mH^2$, the stability operator becomes

$$
L = \Delta_{-c\eta} + (|\mathbf{I}|^2 + m\bar{\kappa} - ch'(\pi_I \circ \psi)) = \Delta_{-c\eta} + 2mH^2.
$$

14 The Gauss equation and the fact that ψ is totally umbilic imply that M has constant sectional 15 curvature $H^2 > 0$, whence it is compact. Therefore, the first eigenvalue of L is $-2mH^2 < 0$. ¹⁶ contradiction.

17 So far, we have proved that if $u \equiv 0$ then ψ must be totally geodesic. The stability operator 18 reduces to $\Delta_{-c\eta} + (m\bar{\kappa} - ch')$. If $c \neq 0$, the fact that X is tangent to $\psi(M)$ follows by the soliton 19 equation $cX^{\perp} = mH$, which concludes the proof of Step 2.

20 Step 3: if $u > 0$ solves (14), then $I = \mathbb{R}$, \overline{M} is flat, $X = h_0 \partial_t$ for some constant $h_0 > 0$, and u ²¹ is not constant on any open subset of M.

22 *Proof of Step 3.* From (10) and (14) we have

$$
\frac{1}{2}|\nabla|\Phi|^2|^2 = 2u|\nabla\Phi|^2 + 4(m\bar{\kappa} - ch')u^2.
$$

since $m\bar{k} - ch' \ge 0$ and $u > 0$, from the above and Kato's inequality (11) we deduce

(16)
$$
m\bar{\kappa} \equiv ch'(\pi_I \circ \psi), \qquad |\nabla \Phi|^2 = |\nabla |\Phi||^2 \quad \text{on } M.
$$

24 Note that u cannot be constant on an open set of M , since otherwise equation (14) would reduce 25 to $0 = 2|\mathbb{I}|^2 u^2$, which is absurd since $|\mathbb{I}|^2 \ge u > 0$.

26 We prove that \overline{M} is flat. Indeed, if $c = 0$ then $\overline{\kappa} = 0$ by (16); if $c \neq 0$, then again by (16) and since $\psi(M)$ is not a slice (as slices are totally umbilical), we see that h' is constant on the 28 nondegenerate interval $(\pi_I \circ \psi)(M) \subseteq I$, so $\bar{\kappa} = -h''/h \equiv 0$ by (1). Inserting this into (16) we see that $h' \equiv 0$, so h is constant and the completeness of \overline{M} or Remark 1 imply that $I = \mathbb{R}$. 30 Moreover, $\kappa = 0$ by (1) and we conclude that $\mathbb P$ is flat and $X = h_0 \partial_t$ for some $h_0 > 0$. This ³¹ concludes the proof of Step 3.

1 Step 4: if $u > 0$ solves (14), then M is isometric to a cylinder $\mathbb{R} \times \Sigma$ for some complete Σ , with ² metric and second fundamental form given by

(17)
$$
\langle , \rangle = ds \otimes ds + \langle , \rangle_{\Sigma}, \qquad \mathbb{I} = \mu_1(s) ds \otimes ds \otimes \nu,
$$

3 where ν is a unit normal vector to $M \to \overline{M}$. Moreover, $\mu_1 \neq 0$ on R, and the soliton constant 4 satisfies $c \neq 0$.

 5 Proof of Step 4. By Step 3, we know that u cannot be constant on any open set of M, thus 6 the set $\{\nabla u \neq 0\}$ is nonempty and dense in M. Fix a point $p \in M$ such that $\nabla u(p) \neq 0$. The tensor field II is Codazzi, as observed in Step 2, and its traceless part Φ attains the equality in 8 Kato's inequality by (16). By applying [2, Lemma 3.3] with $A = \Pi$, we obtain the existence of

a neighbourhood U of p that splits as a Riemannian product $(-\varepsilon,\varepsilon) \times \Sigma^{m-1}$ and such that the 10 metric \langle , \rangle of M and the tensor field II can be written as

(18)
$$
\langle , \rangle = ds \otimes ds + \langle , \rangle_{\Sigma}, \qquad \Pi = \left(\mu_1(s) ds \otimes ds + \mu_2(\pi_{\Sigma}) \langle , \rangle_{\Sigma}\right) \otimes \nu,
$$

11 for some smooth functions $\mu_1 : (-\varepsilon, \varepsilon) \to \mathbb{R}$, $\mu_2 : \Sigma \to \mathbb{R}$ satisfying

(19)
$$
\mu_1(s) \neq \mu_2(x)
$$
 for each $s \in (-\varepsilon, \varepsilon), x \in \Sigma$.

12 Up to reparametrizing $(-\varepsilon, \varepsilon)$, we can write

(20)
$$
p = (0, q) \quad \text{for some } q \in \Sigma.
$$

13 Now we prove that $\mu_1(s)\mu_2(\pi_{\Sigma}) \equiv 0$ on U. Let $\{\theta^i\}$ be a local orthonormal coframe on U as ¹⁴ the one described in the last part of the proof of [2, Lemma 3.3]. In particular, we assume that

15 $\theta^1 = ds$ and then we have $\theta_j^1 \equiv 0$ on U for $1 \leq j \leq m$. Writing

$$
\Pi = a_{ij}\theta^i \otimes \theta^j \otimes \nu,
$$

¹⁶ we have

$$
a_{11} = \mu_1
$$
, $a_{ii} = \mu_2$ for $2 \le i \le m$ and $a_{ij} = 0$ for each $i \ne j$.

17 On the other hand, since \overline{M} is flat, Gauss' equations give

(21)
$$
R_{ijkt} = a_{ik}a_{jt} - a_{it}a_{jk} \quad \text{for } 1 \le i, j, k, t \le m
$$

18 where $R_{i j k t}$ are the components of the Riemann curvature tensor of M along $\{\theta^i\}$. Recalling 19 that $\theta_j^1 \equiv 0$ for $1 \leq j \leq m$, by Cartan structural equations

$$
\frac{1}{2}R_{ijkt}\theta^k \wedge \theta^t = d\theta^i_j + \theta^i_k \wedge \theta^k_j \quad \text{for } 1 \le i, j \le m
$$

²⁰ we immediately see that

$$
R_{1jkt} = 0 \qquad \text{for } 1 \le j, k, t \le m.
$$

²¹ Putting together these facts, from (21) we obtain

$$
\mu_1(s)\mu_2(\pi_{\Sigma}) = a_{11}a_{22} = a_{11}a_{22} - a_{12}a_{12} = R_{1212} = 0.
$$

22 Note that μ_1 and μ_2 can never be both zero at the same point by (19). Since they depend on ²³ disjoint sets of variables, this implies that exactly one of them identically vanishes on its domain ²⁴ while the other one never attains the zero value. In the 2-dimensional case where $m = 2$ we can 25 assume without loss of generality that Σ is an interval and then $\mu_2 \equiv 0$, up to renaming indices. 26 We claim that μ_2 identically vanishes on Σ also in case $m \geq 3$. Suppose, by contradiction, that $27 \mu_2 \neq 0$. Then $\mu_1 \equiv 0$ on $(-\varepsilon, \varepsilon)$ while μ_2 has constant (by [2, Lemma 3.3]) nonzero value. 28 By (18), ψ has constant mean curvature $H = \frac{m-1}{m} \mu_2$ in U. Putting this constant value of H 29 into equation (8) we obtain $0 = |\mathbb{I}|^2 H^2$, contradiction. So, we have proved that $\mu_2 \equiv 0$ on Σ . 30 Moreover, the mean curvature of ψ is given by $H = \frac{1}{m}\mu_1(s) \neq 0$ on U, so ψ is not a minimal 1 hypersurface and therefore $c \neq 0$. Also, the rank of II is exactly 1 in a neighbourhood of p. Since $u > 0$, we observe that M does not possess totally geodesic points, hence the rank of II ³ it at least 1 everywhere. Since the rank of II is lower-semicontinuous and it is 1 on the dense 4 subset ${\nabla u \neq 0}$, we deduce that II has rank one everywhere. In particular, the distribution corresponding to the nullity of \bar{I} is smooth, totally geodesic and integrable (cf. [3, Proposition 6 1.18]). Hence, the entire M splits as $\mathbb{R} \times \Sigma$ for some complete Σ , and the metric and second fundamental form write as claimed on the entire M .

Step 5: if $u > 0$ solves (14), then ψ lifts to a (possibly tilted) grim reaper immersion $\hat{\psi} : \mathbb{R}^m \to$ $\mathbb{R}^{m+1}.$

10 Proof of Step 5. By Step 3 and by completeness of \overline{M} , $I \times_h \mathbb{P} = \mathbb{R} \times F$, with $(F, \langle , \rangle_F) =$ $(1 \mathbb{P}, h_0^2 \langle , \ \rangle_{\mathbb{P}})$ a complete flat manifold, and ψ is a translating soliton with respect to the parallel 12 vector field ∂_t with soliton constant ch₀, which is non-zero by Step 4. Without loss of generality, 13 we can therefore assume $c > 0$.

14 Let $\pi : \mathbb{R}^m \to F$ be the universal Riemannian covering of F. Then

$$
\pi_{\overline{M}} = \mathrm{id}_{\mathbb{R}} \times \pi : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R} \times F = \overline{M}
$$

15 is the universal Riemannian covering of \overline{M} . The deck transformation group of the covering π is 16 a discrete subgroup Γ_F of the isometries of \mathbb{R}^m , and $F = \mathbb{R}^m/\Gamma_F$, while the deck transformation

group of the covering $\pi_{\overline{M}}$ consists of the maps of the form $\mathrm{id}_{\mathbb{R}} \times T : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$, with $T \in \Gamma_F$.

18 Consider the immersion $\tilde{\psi} = \psi \circ \pi_M : \mathbb{R}^m \to \overline{M}$. Then, $\tilde{\psi}$ uniquely lifts to an immersion

$$
\hat{\psi}: \mathbb{R}^m \to \mathbb{R}^{m+1} \quad \text{such that} \quad \pi_{\overline{M}} \circ \hat{\psi} = \tilde{\psi}.
$$

It is easy to see that $\hat{\psi}$ is again a translating mean curvature flow soliton with respect to the lift $\hat{\partial}_t \in \mathfrak{X}(\mathbb{R}^{m+1})$ of ∂_t with soliton constant ch_0 . Furthermore, by Step 4 the universal covering 21 of M splits as $\mathbb{R}^m = \mathbb{R} \times \mathbb{R}^{m-1}$, where \mathbb{R}^{m-1} covers Σ and the metric and second fundamental

22 form on \mathbb{R}^m have the expression

$$
\langle , \rangle = ds \otimes ds + \langle , \rangle_{\mathbb{R}^{m-1}}, \quad \hat{\mathbb{I}} = \mu_1(s) ds \otimes ds \otimes \hat{\nu},
$$

23 with $\hat{\nu}$ the local normal vector field along $\hat{\psi}$ given by the lift of ν . In particular, Σ is totally 24 geodesic in \mathbb{R}^m .

 25 From the expression of metric and second fundamental form of M , and from Gauss equations, es we deduce that M is flat. Since the nullity of $\hat{\mathbb{I}}$ has dimension $m-1$, a classical theorem of 27 Hartman [4] guarantees that $\hat{\psi}$ is a flat cylinder over a plane curve. More precisely, for each 28 $q \in \mathbb{R}^{m-1}$ we define

$$
\gamma_q : \mathbb{R} \times \mathbb{R}^m, \qquad s \mapsto (s, q).
$$

29 Then, $\hat{\psi}(\gamma_q)$ is contained in the 2-plane $\Pi_q = (\hat{\psi}_* T_q \mathbb{R}^{m-1})^\perp \subseteq T_{\hat{\psi}(0,q)} \mathbb{R}^{m+1}$, and the planes Π_q 30 are all parallel. We denote with Π the plane associated to $q = 0$. As observed in the proof of [2, 31 Theorem 2.3, γ_0 is itself a translating soliton with soliton constant ch_0 in Π , with respect to the 32 orthogonal projection of the vector field ∂_t onto Π. We let V denote such orthogonal projection ³³ and define

(22)
$$
\alpha \in [0, \pi/2) \quad \text{such that } ||V|| = \cos \alpha.
$$

34 In fact, V is a nonzero vector, since otherwise $\hat{\psi}(\gamma_0)$ would be a straight line and ψ would be totally geodesic. Then, $\hat{\psi}(\gamma_0)$ is a translating soliton curve with soliton constant

$$
(23) \t\t k = ch_0 \cos \alpha > 0
$$

- ¹ with respect to a parallel unit vector field in the Euclidean plane and therefore, under a suitable
- choice of cartesian coordinates (x^1, x^2) on Π such that $V = \cos \alpha \partial_1$, it can be reparametrized as ³ the grim reaper curve

(24)
$$
\sigma : (-\frac{\pi}{2k}, \frac{\pi}{2k}) \rightarrow \mathbb{R}^2 \tau \mapsto \sigma(\tau) = (\sigma_1(\tau), \sigma_2(\tau)) = (-\frac{1}{k} \log(\cos(k\tau)), \tau).
$$

Indeed, a translating soliton curve with respect to ∂_1 in \mathbb{R}^2 with soliton constant k can always be locally written as a graph $x_1 = f(x_2)$ with f satisfying

 $\begin{pmatrix} f' & \end{pmatrix}'$ f \prime

$$
k = \sqrt{1 + (f')^2} \left(\frac{f'}{\sqrt{1 + (f')^2}} \right) = \frac{f''}{1 + (f')^2} = (\arctan(f'))'.
$$

6 Hereafter, the point $\sigma(0)$ of the grim reaper curve parametrized as above will be referred to as the vertex of the grim reaper. So, ψ is a (possibly tilted) grim reaper cylinder, and up to an isometry of the second factor of the ambient space $\mathbb{R}^{m+1} = \mathbb{R} \times \mathbb{R}^m$ and a translation in the first factor (which does not affect the validity of (4)) we can assume

(25)
$$
\hat{\psi}(s, x_2, x_3, \dots, x_m) = (x_2 \sin \alpha + \sigma_1(\tau(s)) \cos \alpha, \sigma_2(\tau(s)), x_2 \cos \alpha - \sigma_1(\tau(s)) \sin \alpha, x_3, \dots, x_m),
$$

10 where $\tau(s)$ is the change of parameter from arclength s to τ in (24). To introduce Step 6, let $\Omega_0 = \{0\} \times \mathbb{R}^{m-1} \subset \mathbb{R}^m$ be the "valley" of the grim reaper, that is mapped by $\hat{\psi}$ to the vertices 12 of the grim reaper curves $\hat{\psi}(\gamma_q)$, $q \in \mathbb{R}^{m-1}$. Also, let $\Omega = \pi_M(\Omega_0)$.

13 Step 6: the grim reaper $\hat{\psi}$ is not tilted (that is, the angle α defined in (22) vanishes).

¹⁴ Proof of Step 6. Suppose, by contradiction, that $\alpha \neq 0$. Let \hat{W} be the orthogonal projection of ¹⁵ $\hat{\partial}_t$ onto the subspace $\hat{\psi}_* T\Omega_0$ of $T\mathbb{R}^{m+1}$, so $\hat{W} \neq 0$, and let $W \in T\Omega_0$ be the (never vanishing) 16 induced vector field on Ω_0 . Explicitely, we have

$$
\begin{array}{rcl}\n\hat{W} & \equiv & (\sin^2 \alpha, 0, \sin \alpha \cos \alpha, 0, \dots, 0) \in \mathbb{R}^{m+1}, \\
W & \equiv & (0, \sin \alpha, 0, \dots, 0) \in \mathbb{R}^m.\n\end{array}
$$

17 As W is parallel on Ω_0 , it allows to split Ω_0 as the product $\Sigma_0^{m-2} \times \mathbb{R}$, where the tangent 18 vector to the R direction is W. Let $\ell_W \subset \Omega_0$ be a line in the universal covering $\mathbb{R} \times \Sigma_0 \times \mathbb{R}$ 19 of M of the form $\ell_W (t) = (0, z, t)$ for $t \in \mathbb{R}$ and fixed $z \in \Sigma_0$. Next, observe that \hat{W} is not tangent to the "horizontal" factor \mathbb{R}^m of $\mathbb{R}^{m+1} = \mathbb{R} \times \mathbb{R}^m$, so for any deck transformation $\hat{T} = \text{id}_{\mathbb{R}} \times T \in \text{deck}(\pi_{\overline{M}}),$ condition $\hat{T}(\hat{\psi}(\mathbb{R}^m)) = \hat{\psi}(\mathbb{R}^m)$ forces the map T to act as the identity 22 in the direction given by the projection of \hat{W} on the horizontal \mathbb{R}^m . In particular, this implies ²³ the following properties:

(i) there exists no nontrivial deck transformation of $\pi_{\overline{M}}$ fixing $\psi(\ell_W)$;

(26)
$$
(ii) \quad (\pi_{\overline{M}})_*\hat{W} = \hat{W};
$$

(*iii*) $\pi_{\overline{M}}$ is injective on $\hat{\psi}(\ell_W)$.

24 From (iii),
$$
\psi \circ \pi_M = \pi_{\overline{M}} \circ \hat{\psi}
$$
 is injective on ℓ_W , since $\hat{\psi}$ is injective. As a consequence, π_M is

injective on ℓ_W and ψ is injective on $\pi_M(\ell_W)$. Note also that $\psi \circ \pi_M(\ell_W) = \pi_{\overline{M}} \circ \hat{\psi}(\ell_W)$ is a

26 proper curve in \overline{M} , and thus the curve $\pi_M(\ell_W)$ is proper in M (and contained into Ω). Indeed,

for each compact set $K \subset M$,

$$
(\pi_M \circ \ell_W)^{-1}(K) \subset (\psi \circ \pi_M \circ \ell_W)^{-1}(\psi(K))
$$

1 is therefore closed in a compact set, hence it is compact. Summarizing, $\pi_M(\ell_W)$ is a proper and injective immersion, hence a proper embedding. Next, observe that if two lines ℓ_W, ℓ'_W are different (hence, they do not intersect), then either $\pi_M(\ell_W) \cap \pi_M(\ell_W') = \emptyset$ or $\pi_M(\ell_W) = \pi_M(\ell_W')$. Indeed, if $\pi_M(\ell_W)$ and $\pi_M(\ell'_W)$ intersect but do not coincide, since they are geodesics in M they s have to intersect transversely. However, the two curves $\hat{\psi}(\ell_W)$ and $\hat{\psi}(\ell'_W)$ are parallel straight 6 lines on $\mathbb{R}^{m+1} = \mathbb{R} \times \mathbb{R}^m$ in the direction of \hat{W} , hence by (ii) in (26) their projections cannot be ⁷ transverse.

Set $\Sigma = \pi_M(\Sigma_0) \subset \Omega$, and take a small, contractible and relatively compact open subset Σ' 8 of Σ. By a compactness argument that uses the properness of $\pi_M(\ell_W)$, up to reducing Σ' we 10 can guarantee that each $\pi_M(\ell_W)$ meets Σ' at most once. Summarizing the above properties, is since $\pi_M(\ell_W)$ is a geodesic, the exponential map $\exp^{\perp} : T\Sigma'^{\perp} \to \Omega$ realizes a diffeomorphism 12 between $T\Sigma'^{\perp}$ and the union $E \subset \Omega_0$ of all curves $\pi_M(\ell_W)$ passing through Σ' . Note that $T\Sigma'^{\perp}$ is diffeomorphic to $\Sigma' \times \mathbb{R}$ since Σ' is contractible. From $\Omega_0 = \Sigma_0 \times \mathbb{R}$ and the constructions of ℓ_W 14 and Σ' , we deduce that the pulled-back metric via \exp^{\perp} on $T\Sigma'^{\perp}$ is the product metric, whence 15 E is isometric to $\Sigma' \times \mathbb{R}$. In conclusion, M contains a subset M_0 of positive m-dimensional measure that splits as $\mathbb{R} \times E = \mathbb{R} \times \mathbb{R} \times \Sigma'$. Fix $U \subseteq \Sigma_0$ an open subset such that $\pi_{M|U}: U \to \Sigma'$ 16 ¹⁷ is a diffeomorphism. Then

$$
\pi_M|_{\mathbb{R}^2 \times U} : \mathbb{R} \times \mathbb{R} \times U \to M_0
$$

¹⁸ is an isometry, and from

 $\bar{\eta}(\pi_I) = h_0(\pi_I - t_0)$ for some $t_0 \in \mathbb{R}$,

(27)
$$
|\Phi|^2 = |\mathbf{I}|^2 - 2H^2 = (\mu_1)^2 - 2\left(\frac{\mu_1}{2}\right)^2 = \frac{(\mu_1)^2}{2} = \frac{1}{2}\left(\frac{k}{||\dot{\sigma}||}\right)^2,
$$

$$
||\dot{\sigma}(\tau)||^2 = 1 + \tan^2(k\tau) = \frac{1}{\cos^2(k\tau)}
$$

¹⁹ we can estimate

$$
\int_M |\Phi|^2 e^{c\eta} \ge \int_{M_0} |\Phi|^2 e^{c\eta} = |\Sigma'| \int_{\mathbb{R}^2} \frac{\mu_1(s)^2}{2} e^{c h_0(x_2 \sin \alpha + \sigma_1(\tau(s)) \cos \alpha - t_0)} ds \, dx_2
$$

$$
= |\Sigma'| \frac{k \pi e^{-c h_0 t_0}}{2} \int_{\mathbb{R}} e^{(c h_0 \sin \alpha) x_2} dx_2 = +\infty
$$

20 where Σ' is the $(m-2)$ -dimensional volume of Σ' and we have used (23) and

(28)
$$
\int_{\mathbb{R}} \mu_1(s)^2 e^{k\sigma_1(\tau(s))} = k^2 \int_{\mathbb{R}} \cos^2(k\tau(s)) e^{-\log(\cos(k\tau(s)))} ds = k^2 \int_{\mathbb{R}} \cos(k\tau(s)) ds
$$

$$
= k^2 \int_{\mathbb{R}} \frac{ds}{\|\dot{\sigma}(\tau(s))\|} = k^2 \int_{\mathbb{R}} \tau'(s) ds = k^2 \int_{-\pi/(2k)}^{\pi/(2k)} d\tau = k\pi.
$$

21 So, $|\Phi| \notin L^2(M, e^{c\eta})$, contradicting (4).

22 Step 7: if $u > 0$ solves (14), then there exists a Riemannian submersion $\pi_{\Omega}: M \to \Omega$ with 1-

as dimensional, noncompact, totally geodesic fibers that are sent, via $\hat{\psi}$, to the grim reaper curves $24 \quad (24)$.

25 *Proof of Step 7.* Having shown that $\alpha = 0$, $\hat{\psi}$ writes as

(29)
$$
\hat{\psi}(s, x_2, x_3, \dots, x_m) = (\sigma_1(\tau(s)), \sigma_2(\tau(s)), x_2, x_3, \dots, x_m).
$$

26 We first describe the structure of translations $\hat{T} = id_{\mathbb{R}} \times T \in \text{deck}(\pi_{\overline{M}})$. Choose Cartesian

coordinates $(t, y_1, y_2, \ldots, y_m) = (t, y_1, y')$ on \mathbb{R}^{m+1} , so by (29) the image of $\hat{\psi}$ can be written as

 $t = \sigma_1(\tau(s)), y_1 = \sigma_2(\tau(s)).$ To preserve $\hat{\psi}(\mathbb{R}^m)$, the component T of \hat{T} shall satisfy $T(y_1, y') =$ $(\pm y_1, T'(y_1, y'))$, since the image of lines obtained by fixing y_1 have bounded y_1 coordinate and s since $y_1(\hat{\psi}(\mathbb{R}^m))$ is invariant by \hat{T} . As T is an isometry, T' only depends on y'. In particular, 4 either $T(\hat{\psi}(\gamma_q)) = \hat{\psi}(\gamma_{q'})$ or $T(\hat{\psi}(\gamma_q)) \cap \hat{\psi}(\gamma_{q'}) = \emptyset$. Therefore, either $\pi_{\overline{M}}(\hat{\psi}(\gamma_{q}))$ and $\pi_{\overline{M}}(\hat{\psi}(\gamma_{q'}))$ ⁵ coincide or they have empty intersection, in particular, they cannot be transverse.

6 We next study the geodesics $\pi_M(\gamma_q)$. First, again since deck transformations of $\pi_{\overline{M}}$ act as the 7 identity on the first component, $\pi_{\overline{M}} \circ \psi(\gamma_q)$ is a proper curve in \overline{M} , thus, as in Step 6, $\pi_M(\gamma_q)$ 8 is a proper geodesic in M. We claim that $\pi_M(\gamma_q)$ is injectively immersed, hence embedded because of its properness. If $\pi_M(s_1, q) = \pi_M(s_2, q)$ for some $s_1 \neq s_2$, then $\hat{\psi}(s_1, q)$ and $\hat{\psi}(s_2, q)$ 10 project onto the same point in \overline{M} . Comparing the first component of the two points in \mathbb{R}^{m+1} , we 11 deduce $s_1 = \pm s_2$, hence $s_1 = -s_2$. Let $\hat{T} \in \text{deck}(\pi_{\overline{M}})$ be the deck transformation that satisfies 12 $\hat{T}(\hat{\psi}(s_1, q)) = \hat{\psi}(-s_1, q)$, and consider the geodesic $\sigma \subset \mathbb{R}^{m+1}$ joining $\hat{\psi}(s_1, q)$ and $\hat{\psi}(-s_1, q)$. 13 Then, $\hat{T}(\sigma) = \sigma$, and since $\hat{T}(\hat{\psi}(\mathbb{R}^m)) = \hat{\psi}(\mathbb{R}^m)$ the middle point of the segment joining $\hat{\psi}(s_1, q)$ ¹⁴ and $\hat{\psi}(-s_1, q)$ shall necessarily be a fixed point of \hat{T} . Hence $\hat{T} = id$, contradiction.

15 Having proved that $\pi_M(\gamma_q)$ is injectively immersed, we claim that for $q \neq q'$ either $\pi_M(\gamma_q) ∩$ $\pi_M(\gamma_{q'}) = \emptyset$ or they coincide. We proceed by contradiction: since both the curves are geodesics, 17 we assume that $\pi_M(\gamma_q)$ and $\pi_M(\gamma_{q'})$ are transverse somewhere. Then, also their images $\psi \circ$ 18 $\pi_M(\gamma_q) = \pi_{\overline{M}} \circ \hat{\psi}(\gamma_q)$ and $\psi \circ \pi_M(\gamma_{q'}) = \pi_{\overline{M}} \circ \hat{\psi}(\gamma_{q'})$ are transverse somewhere, which contradicts ¹⁹ the observations at the beginning of this Step.

20 With the above preparation, let $x \in M$ and $(s, q), (s', q') \in \pi_M^{-1}(x)$. From the fact that $\pi_M(\gamma_q)$ and $\pi_M(\gamma_{q'})$ either coincide or they do not intersect, we also deduce that $\pi_M(0, q) = \pi_M(0, q')$. ²² Hence, the map

$$
\pi_{\Omega}: M \to \Omega, \qquad \pi_{\Omega}(x) = \pi_M((0, q))
$$
 for any chosen $(s, q) \in \pi_M^{-1}(x)$

is well defined. Fix a contractible, small open subset $\Omega' \subset \Omega$, and let $\Omega_0' \subset \Omega_0$ be one of its 24 diffeomorphic lifts by π_M . Proceeding as in the end of Step 6, we can prove that the union 25 $E \subset M$ of lines $\pi_M(\gamma_q)$ passing through points $q \in \Omega'$ is isometric to $\mathbb{R} \times \Omega'_0$, the isometry being 26 $(s, q) \to \pi_M(\gamma_q(s))$. It follows that π_Ω is a fibration and a Riemannian submersion.

- 27 Step 8: Ω is compact.
- 28 Proof of Step 8. A straightforward computation that uses (27) and (28) then shows

$$
\int_M |\Phi|^2 e^{c\eta} = |\Omega| e^{-c h_0 t_0} \int_{\mathbb{R}} \frac{\mu_1(s)^2}{2} e^{k\sigma_1(\tau(s))} ds
$$

$$
= |\Omega| \frac{\pi k e^{-c h_0 t_0}}{2},
$$

- 29 where |Ω| is the $(m-1)$ -dimensional volume of Ω. So in this case $|\Phi| \in L^2(M, e^{c\eta})$ holds true if 30 and only if the manifold Ω has finite volume. Being Ω flat, Ω must be compact.
- 31 Step 9: Each of the solitons ψ in Item (ii) is stable.

32 Proof of Step 9. It is known that the embedding $\hat{\psi}: \mathbb{R}^m \to \mathbb{R}^{m+1}$ is stable: to show this, denoting

- with $\hat{\nu}$ a global choice of the normal vector, it is enough to observe that the function $\hat{v} = \langle \hat{\nu}, \hat{\partial}_t \rangle$ ³⁴ has a sign, say it is positive up to suitably choosing $\hat{\nu}$, and satisfies $0 = \Delta_{-c\eta}\hat{v} + |\mathbf{I}|^2\hat{v} = L\hat{v}$ on
- 35 M by [2, Proposition 1]. Let $T : \mathbb{R}^m \to \mathbb{R}^m$ be a deck transformation of π_M . For fixed $x \in M$, we
- 36 compare $\hat{v}(\tilde{x})$ to $\hat{v}(T(\tilde{x}))$, where $\tilde{x} \in \pi_M^{-1}(x)$. Since every deck transformation of $\pi_{\overline{M}}$ act as the
- identity in the first factor of $\mathbb{R}\times\mathbb{R}^m$, the product of $\hat{\nu}$ with $\hat{\partial}_t$ is constant on the fiber $\pi \frac{-1}{M}$ 37 identity in the first factor of $\mathbb{R} \times \mathbb{R}^m$, the product of $\hat{\nu}$ with ∂_t is constant on the fiber $\pi \frac{-1}{M}(\psi(x))$.

Therefore, since $\hat{\psi}(\tilde{x}), \hat{\psi}(T(\tilde{x})) \in \pi \frac{-1}{M}$ 1 Therefore, since $\psi(\tilde{x}), \psi(T(\tilde{x})) \in \pi_M^{-1}(\psi(x))$, we deduce that $\hat{v}(\tilde{x}) = \hat{v}(T(\tilde{x}))$, hence \hat{v} induces a 2 smooth, positive function $v : M \to \mathbb{R}$ which solves $Lv = 0$, proving the stability of ψ .

- 3 REFERENCES
- [1] L. J. Al´ıas, J. H. de Lira and M. Rigoli, Mean curvature flow solitons in the presence of conformal vector fields, J. Geom. Anal. 30 (2020), no. 2, 1466–1529.
- [2] G. Colombo, L. Mari and M. Rigoli, Remarks on mean curvature flow solitons in warped products, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), no. 7, 1957–1991.
- [3] M. Dajczer and R. Tojeiro, Submanifold theory. Beyond an introduction. Universitext. Springer, New York, 2019. xx+628 pp.
- [4] P. Hartman, On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curva-tures. II. Trans. Am. Math. Soc. 147 (1970), 529–540.
- [5] J. Wang, The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature, Math. Res. Lett. 4 (1997), no. 4, 473–479.
- Dipartimento di Matematica, Universita degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy ` Email address: giulio.colombo@unimi.it
- Universita degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy `
- 17 Email address: luciano.mari@unito.it
- Dipartimento di Matematica, Universita degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy `
- 19 Email address: marco.rigoli@unimi.it