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Abstract The E) — EfD; and E, — EJD; decays
are observed for the first time using proton-proton collision
data collected by the LHCb experiment at a centre-of-mass
energy of /s = 13 TeV, corresponding to an integrated
luminosity of 5.1 fb~!. The branching fractions times the
production cross-sections of E; baryons relative to that of
Ag baryon are measured to be
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where the first uncertainties are statistical, the second sys-
tematic, and the third due to the uncertainties on the decay
branching fractions of relevant charmed baryons. The masses
of Eg and &, baryons are measured to be mgy = 5791.12+

0.60 + 0.45 + 0.24 MeV/c* and Mg, = 5797.02 £0.63 £

0.494+0.29 MeV/ ¢%, where the uncertainties are statistical,
systematic, and those due to charmed-hadron masses, respec-
tively.

1 Introduction

Hadrons are systems of quarks bound by the strong interac-
tion, described at the fundamental level by quantum chro-
modynamics (QCD). The production and decay of hadrons
involve the nonperturbative regime of QCD, making cal-
culations challenging. Much progress has been made in
recent years in experimental and theoretical studies of beauty
mesons, with the aim of testing the Standard Model and
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searching for new physics through measurements of branch-
ing fractions, C P asymmetries and rare decays [1]. However,
many aspects of beauty baryons are still largely unknown, due
to the difficulties to produce and detect them in experiments
other than those operating at the Large Hadron Collider.

So far, the Ag baryon has been more widely studied than
the other beauty baryons, including Ebo and & 1 Very few

decay modes have been measured for = }? =) baryons [2].
According to the quark model, the three beauty baryons AY,
E,? and ;" (referred to as Hj in the following) form an
SU(3) flavour multiplet, as do the A}, ZF and Z° states
(referred to as H, in the following). The Hj decay is dom-
inated by the weak transition of the b quark while the two
light quarks serve as compact spectators [3,4]. According
to heavy quark effective theory, the three decays of bot-
tom baryons into two charmed hadrons, H, — H.Dj,
should have approximately the same partial width [5,6]. The
Ag — AT D} decay has been measured to have a branching
fraction (B) at the percent level [7], but no measurements for
EI? & 5O D¢ decays are available. Measurements of
these decays not only test the SU (3) symmetry but also give
insights into the dynamics of weak decays of beauty baryons.

Beauty baryons of all species are abundantly produced at
the LHC [8-11], allowing them to be intensively studied.
This analysis presents the first observation of El(a) — BFXD;
and & — E? D¢ decays, using data from proton-proton
(pp) collisions at a centre-of-mass energy of /s = 13 TeV
collected by LHCb detector and corresponding to an inte-
grated luminosity of 5.1 fb~!. The relative production rates

of the decays, R, defined to be
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! The inclusion of charge-conjugate processes is implied throughout.
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are measured, where o denotes the production cross-section.
Given the similar lifetimes of the three beauty baryons [2],
if the decay widths of the three beauty-baryon decays are
also similar, the variables defined in Eqgs. (1)-(3) provide
measurements of the Hj production cross-section ratios,
i.e. b-quark fragmentation fraction ratios. Isospin symmetry
assures that o (27) /o (Z,7) ~ 1 to a good approximation,

—0

resulting in R % ~ | at leading order, which is tested in
“b

this analysis. The masses of the E,? and & baryons and the
mass differences between the three beauty baryons are also
measured.

2 Detector, samples and analysis strategy

The LHCDb detector [12,13] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < n < 5,
designed for the study of particles containing b or ¢ quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream of the magnet. The tracking
system provides a measurement of the momentum, p, of
charged particles with a relative uncertainty that varies from
0.5% at low momentum to 1.0% at 200 GeV/c. The momen-
tum scale is calibrated using samples of J/yy — u* ™ and
BT — J/ KT decays collected concurrently with the data
samples used for this analysis [14,15]. The relative uncer-
tainty of this procedure is determined to be 3 x 10™* using
samples of other fully reconstructed B, Y, and Kg-meson
decays. The minimum distance of a track to a primary pp
collision vertex (PV), the impact parameter (IP), is measured
with aresolution of (15+29/ pt) pm, where pr is the compo-
nent of the momentum transverse to the beam, in GeV/c. Dif-
ferent types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors. Pho-
tons, electrons and hadrons are identified by a calorimeter
system consisting of scintillating-pad and preshower detec-
tors, an electromagnetic and a hadronic calorimeter.

The data used in this analysis come from pp collisions at
/s = 13TeV, collected by LHCb between 2016 and 2018.
The total integrated luminosity is 5.1 fb~!. The online event
selection of LHCD is performed by a trigger [16], which
consists of a hardware stage, based on information from
the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. At the hard-
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ware trigger stage, events are required to have a muon with
high pt or a hadron, photon or electron with high transverse
energy in the calorimeters. A global hardware trigger deci-
sion is required based on the reconstructed candidate, the rest
of the event, or a combination of both. The software trigger
requires a two-, three- or four-track secondary vertex with
a significant displacement from any primary pp interaction
vertex. At least one charged particle within the secondary
vertex must have a transverse momentum pt > 1.6 GeV/c
and be inconsistent with originating from any PV.

Simulated decays are used to perform event selections,
calculate reconstruction and selection efficiencies, and deter-
mine the invariant-mass distributions of the reconstructed
signal Hj candidates. In the simulation, pp collisions are
generated using PYTHIA 8 [17] with a specific LHCb con-
figuration [13]. Decays of unstable particles are described
by EVTGEN [18], in which final-state radiation is generated
using PHOTOS [19]. The interaction of the generated particles
with the detector, and its response, are simulated using the
GEANT4 [20] toolkit as described in Ref. [21].

The A} and ZF baryons are reconstructed in the pK ~ 7+
final state, and the ECO baryon in the pK~ K —nt final
state. The D" mesons are reconstructed by combining three
charged particles identified as K ~, K+ and 7~ mesons. The
H, candidates are combined with D~ candidates to form the
Hj, candidates. The three R parameters are defined as

» =5 _ N (80— EFD;) /e (&) — EFDy)
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where N, ¢, and B denote the observed signal yields, the
total experimental efficiencies, and the branching fractions,
respectively. The world averages of branching fractions of
corresponding H, decays [2] are summarised in Table 1.
The signal yields are determined using unbinned extended
maximum-likelihood fits of the H.D; invariant-mass dis-
tributions. The efficiencies are determined using simulated
signal decays, calibrated by data driven methods.
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Table 1 Branching fractions of H, decays [2]

Decay Branching fraction

(6.28 £0.32) x 1072
(6.2+3.0) x 1073
4.8+1.2) x 1073

3 Event selections and efficiencies

In order to suppress background due to random combina-
tions of either the H. or Dy, and misidentification of final-
state particles, a series of event selections are performed.
Firstly, all final-state particles are required to be separated
from any PV and have pr > 100MeV/c. They must also
be correctly identified, with a high significance, as either a
proton, kaon or pion, using combined information from the
tracking system and sub-detectors related to particle identifi-
cation (PID) [12,22]. The final states of the H. and D candi-
dates must have a scalar sum of pt > 1.8 GeV/c, and at least
one of them must have pt > 0.5GeV/c and p > 5GeV/c.
They are additionally required to form a good vertex that is
significantly separated from any PV. The H, and D; candi-
dates should have an invariant mass within 25 MeV/c? of
the previous world average mass value [2], and their vertices
should be consistent with being downstream of the H), ver-
tex. The H, candidate formed by the H. and D; hadrons
must have a good vertex separated from its associated PV,
and its momentum must point back to the associated PV.
The final-state particles of the Hj, must have a scalar sum
of pr > 5GeV/c. Finally, H, candidates with transverse
momentum pt > 4GeV/c and rapidity 2.5 < y < 4 are
retained for further analysis.

There are backgrounds due to genuine particle decays,
where a pion or kaon decay product is misidentified as a
proton, resulting in a H, candidate. For A} and £ can-
didates, they include ¢ — K+YK~, Df — KK n™,
DT — KTK~ 7t and D - KK~ decays with the K+
meson misidentified as a proton, and D¥ — K- ntx™,
DY — K~ m%t decays with the 7+ meson misidentified as
a proton. For E? candidates, there are backgrounds due to
¢ — KTK~ and D — KTK~K~nt decays with the
K meson misidentified as a proton. For D~ candidates, the
A} — pK~mt background with the proton misidentified as
a KT mesonis considered. To remove these background, can-
didates are required to satisfy strict PID requirements or their
invariant masses, calculated with alternative mass hypothe-
ses for final states, must be outside a region around the known
mass of the corresponding genuine particle (¢, D, DT, DY,
or AF) [2]. Backgrounds due to D~ — K7~ 7~ decays
are also considered, and are found to be negligible.

Further event selections are performed using a gradient-
boosted decision tree (BDTG) [23] algorithm to reduce com-
binatorial backgrounds. Due to the similarity between the
topologies of the three H, — H.D; decays, and to ben-
efit from a cancellation of systematic uncertainties related
to the BDTG selection in the R measurements, the BDTG
classifier is trained with the E,? samples and is applied to all
the three decay modes. The BDTG algorithm is trained to
distinguish simulated Z) — & D" decays from the candi-
dates in the high mass sideband (m(Z))) > 5950 MeV/c?) of
data, which are representative of the background. The BDTG
classifier combines seventeen variables, including kinematic,
topological and PID information, to get a single discrim-
inating response. The optimal requirement on the BDTG
response is determined by maximising the figure of merit
F = S/VS+ B, where S (B) is the expected number of
signal (background) yield in the signal region of data with
BDTG response greater than a given value. The signal region
is defined to be 30 MeV/c? around the previous world aver-
age of Hj, mass [2], which is about three times the experi-
mental resolution. The value of S is calculated as the product
of the BDTG efficiency for the signal and the signal yield
before the BDTG requirement, which is obtained by fitting
to E[? invariant-mass distribution in data. Similarly, B is cal-
culated as the background retention rate multiplied by the
estimated background in the signal region without the BDTG
requirement. The background retention rate is evaluated
with the high-mass sideband data (m(AY) > 5700 MeV/c?,
m(Z)) > 5900 MeV/c?, m(Z,) > 5900 MeV/c?), and the
number of background candidates in the signal region is esti-
mated with a fitto =& 19 invariant-mass distribution in the high
invariant-mass sideband region of the data, with a subsequent
extrapolation to the signal mass region. The optimal BDTG
requirement corresponds to a signal efficiency of about 95%
with respect to other selection requirements for all three H
decay modes.

The total efficiency is calculated as the product of effi-
ciencies of detector acceptance, reconstruction, and selec-
tion. It is estimated using the simulated signal decays. These
samples are calibrated such that the shapes of several key
distributions match those of the data: the PID response, Hj,
kinematics, total charged-track multiplicity and H, resonant
structures. The Dy — KT K~ 7~ decay is simulated using
measured Dalitz compositions [24], thus no corrections are
applied. The PID efficiencies for the different particle species
are measured using charmed hadron samples in data [22]. The
large sample of Ag — A} Dy decays is used to correct for
the transverse momentum, pseudorapidity, and charged-track
multiplicity distributions of the three Hp decay modes. Fur-
ther corrections are made to align the shapes of the charged-
track multiplicity distributions in the data and simulation for
&}, decays. The H, Dalitz distribution is compared between
the data and simulation; a weight-based correction is applied
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Fig. 1 Invariant-mass distributions of (top left) A9, (top right) E[? , and (bottom) Z,~ decays. The data are overlaid on the fit results

to improve the agreement. The track-finding efficiency in
simulation is found to be slightly different from that in data,
and this difference is corrected as a function of the momen-
tum and pseudorapidity of final-state particles [25]. The cor-
rection factors are generally obtained in bins of relevant vari-
ables apart from that for the E? Dalitz distribution, where
the large number of dimensions implies a limited number of
candidates per bin. An unbinned multivariate algorithm is
therefore used [26]. The ratios of efficiencies between A9,
Eg ,and &~ decays are determined to be

=0

“Eb) _ 1 101 +0010,
e(Ap)
8(“’6) — 0.515 = 0.005.
e(Ap)
S(El?)

b) 5138 +0.017,
£(5;)

where the uncertainties are statistical only. The Ag and El?
decays have a similar efficiency, while the smaller &, effi-
ciency is due to one more final-state particle.
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4 Signal yield determination and mass measurements

To obtain the yields of signal Hj decays, an extended max-
imum likelihood fit is performed to the Ag, = [9 ,and 5,
invariant-mass spectra. A kinematic refit [27] is applied to the
Hj, decays to improve the mass resolution, constraining the
D¢ and H. masses to their previously measured values [2]
and the H, momentum to point back to its PV. The fitted
mass region is 5450 — 5800 MeV/c?, 5600 — 6100 MeV/c2,
and 5600 — 6000 MeV/c? for the AY), Z), and B, decays,
respectively.

As shown in Fig. 1, three components are identified in
each Hp, mass spectrum. The signal component is parame-
terised using the sum of a Gaussian and a double-sided Crys-
tal Ball function (DSCB) [28] sharing a common mean. The
common mean and the average resolution of the Gaussian
and the DSCB distribution are parameters that vary freely
in the fit, while the other parameters have values fixed to
those obtained from simulation. The contribution of com-
binatorial backgrounds in the mass spectrum is modelled
using a second order polynomial, with all parameters vary-
ing freely. The peaking structure in the low invariant-mass
region corresponds to partially reconstructed H, — H.D; X
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decays where X is an undetected particle. Distributions from
data in the low mass region are found to be consistent with
the H, — H.D}~, D{~ — Dy sequential decay, where
the y is not reconstructed. The subsequent H.D; invariant-
mass distribution depends on the D}~ helicity projection, for
which three possibilities, helicities of =1 and 0, are allowed.
The mass distributions for helicities of +1 and —1 are identi-
cal. Samples are generated with helicities of 1 and 0, and cor-
responding H.D; invariant-mass distributions are obtained.
The distributions convoluted with experimental resolutions
are used to fit data. The fraction of the component with a
helicity of O varies freely in the fit.

Figure 1 shows the H}, invariant-mass distributions super-
imposed by the fit results. The signal yields for A9, El?
and & decays are (2.609 + 0.017) x 104, 462 + 29, and
175 £ 14, respectively. The masses for Ag, E,? and &,
baryons are measured to be m A0 = 5619.34 + 0.06 MeV/ 2,

mgo = 5791.12 £ 0.60MeV/c?, and mg- = 5797.02 +

0.63MeV/c?, respectively, where the uncertainties are sta-
tistical only.

4.1 Non-dicharm background

The sample of H, — H.D; decays is polluted by beauty-
baryon decays that have the same final-state particles but do
not decay through the two intermediate charmed hadrons,
H. or D, we are investigating. These are referred to as
non-dicharm decays. For these peaking background contri-
butions, their Hj, invariant-mass distributions are signal-like,
but the invariant-mass distributions of H,. and/or Dy can-
didates are flat. The distributions of non-dicharm compo-
nents in the H. or Dy invariant-mass distribution are found
to be approximately linear. Therefore, the H), signal yields
in the H, and D; sideband regions are extrapolated to the
signal region (425 MeV/c? around the previously measured
H. and D; masses [2]) to estimate the contamination of
non-dicharm background in the signal region. Details of
the estimation are shown in Appendix A. The fractions of
non-dicharm decays are measured to be (5.70 £ 0.13)%,
(8.39 £ 1.75)% and (6.44 + 1.48)% for AY, & and &,
decays, respectively. These background contributions are
subtracted from the total signal yield obtained from the
fit. The non-dicharm contamination is dominated by the
H, — H.(K*K~m™) component.

5 Systematic uncertainties

5.1 Uncertainties on the branching fraction

Measurements of the ratios of branching fractions are
affected by a number of systematic uncertainties. Apart from

those due to the input charmed-decay branching fractions,
they are generally related to either the signal yields or the
efficiencies. Due to the similar topologies of the three H)
decays, many sources of systematic uncertainties are either
cancelled or largely suppressed in ratios of the branching
fractions. The remaining systematic uncertainties are out-
lined below and summarised in Table 2.

5.1.1 Systematic uncertainties on the signal yield

The fit results are affected by the imperfect modelling of
the signal, the combinatorial background and the partially
reconstructed background. Variations of the signal model are
studied by changing the fixed value of the fraction of Gaus-
sian component to 0.0 and two times of the nominal value,
respectively. For the background modelling, a polynomial of
third order is used instead of one of second order. In order
to study the impact of the modelling of the partially recon-
structed background in the signal yield, the lower edge of the
fit range is increased to 5575, 5740, and 5750 MeV/c2 for
the Ag, Eg ,and &,  decay modes, respectively, excluding
partially reconstructed background. Alternative fits to data
with these alternate approaches are performed. The largest
deviation of the H), signal yield in these alternative fits from
the nominal result is taken as the systematic uncertainty on
the signal yield due to the modelling of the fit components,
which is at the level of 2%.

The uncertainty on the fraction of non-dicharm back-
ground discussed in Sect. 4.1 originates from the limited size
of the data sample and possible nonlinearity of the H. and
Dy background invariant-mass distributions. The effect is
studied by using alternative regions of sideband data to cal-
culate the non-dicharm yield, and the difference with respect
to the nominal results is quoted as the systematic uncertainty,
which is found to be at the subpercent level.

5.1.2 Systematic uncertainties on the efficiency

As efficiencies are studied using simulation samples, the sys-
tematic uncertainty on efficiencies arises due to the limited
size of simulation samples and imperfect simulations. The
uncertainty due to the limited simulation sample size is 1.0%
for the three H}, efficiency ratios.

The hardware trigger is approximately modeled in the sim-
ulation. The trigger efficiency in measured in the data [29],
and the difference between data and simulation is assigned
as a systematic uncertainty. This systematic uncertainty is
found to be approximately cancelled among the three Hj
decay modes, resulting in a relative difference of less than
1.5% between data and simulation on the efficiency ratios of
the two Hj, decay modes. A common value of 1.5% is quoted
as the relative systematic uncertainty of the hardware trigger
on the relative branching fraction.

@ Springer
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Table 2 Systematic —0 o 0

uncertainties on the relative Source R (%) R (%) R ( — )

branching fraction b b o

measur.ements. Rgs ul.ts are given Imperfect modelling of invariant-mass fit 2.7% 1.3% 3.4%

as relative uncertainties
Fraction of non-dicharm background 2.0% 1.6% 2.5%
Limited simulation sample size 0.9% 1.0% 0.8%
Trigger efficiency 1.5% 1.5% 1.5%
Reconstruction efficiency 0.1% 1.6% 1.7%
Corrections to simulations 1.3% 4.3% 4.3%
Total 4.0% 5.4% 6.5%

The estimation of the reconstruction efficiency is affected
by the model of detector material in simulation which affects
the description of interaction between the final-state parti-
cles and the material. It leads to a relative uncertainty of
1.2% between &, and the other two H), decays due to one
additional kaon in the &~ decay [30]. Moreover, the estima-
tion of the track-finding efficiency in data and simulation is
subjected to uncertainties related to the detector occupancy
and limited sizes of the calibration samples [25]. The for-
mer gives a relative value of 0.8% per track, while the latter
results in an uncertainty of around 0.1% on the efficiency
ratios. In total the uncertainty on the ratio of reconstruction
efficiency is about 1.6% between =" and Ag decays, and
between EJ}? and &, decays. It is below 0.1% for the effi-
ciency ratio between E}()) and Ag decays.

Corrections to simulation samples to match data to the
distributions of final-state particle PID responses, H}, kine-
matics, charged-track multiplicity and H, Dalitz distributions
are subject to uncertainties. Uncertainties on the corrections
of PID responses are evaluated using alternative corrections
and measuring the relative change of efficiencies [22], which
is found to be negligible. The uncertainty on corrections of
Hj, kinematics is studied with pseudoexperiments. For each
pesudoexperiment, the correction factor in each transverse
momentum and rapidity of the Hj, baryon is varied following
a Gaussian distribution constructed from the nominal value
and its uncertainty. The new correction factors are used to cal-
culate the efficiency. The width of the efficiency distribution
among a set of pseudoexperiments is taken as the systematic
uncertainty. Similar studies are performed for corrections of
the charge-track multiplicity and A}, £ Dalitz distribu-
tions. The uncertainty of the unbinned correction to the Z°
Dalitz distribution is studied by varying the configurations of
the algorithm [26]. In total the uncertainty on the efficiency
ratio originating from corrections to simulation samples is
about 4.3% between =, and Ag, 4.3% between Eg and
=, , and 1.3% between Ez? and Ag.

@ Springer

5.2 Uncertainties on the H; mass measurements

The uncertainties on the mass and mass difference measure-
ments come from the invariant-mass fit model, the momen-
tum scale calibration, and the uncertainties on the =, and
D¢ masses [2]. They are summarised in Tables 3 and 4.

The Hjp mass determined from the fit to the invariant-
mass distribution is affected by the imperfect modelling of
the signal, the combinatorial background and the partially
reconstructed background. Variations of the model for each
fit component are studied in the same way as for the deter-
mination of the uncertainties on the signal yield described
in Sect. 5.1.1. The largest variation of the mass obtained in
these alternative fits compared to the nominal one is con-
sidered as the systematic uncertainty, which is 0.02, 0.19
and 0.09 MeV/ c? form 29> mE[g) and mE[:, respectively. The
larger uncertainty for m g0 is due to the higher background
level.

Due to effects such as an imperfect alignment of the track-
ing system and the uncertainty on the magnetic field, the mea-
sured track momenta need to be calibrated to correct for pos-
sible biases. The calibration is performed using the masses of
known hadrons [31,32] with a precision of 0.03%. The uncer-
tainty is propagated to the Hj, mass measurement by varying
the calibration by +1 standard deviation. Half of the differ-
ence between the two corresponding new Hj, masses is taken
as the systematic uncertainty. The result, about 0.4 MeV/c2,
approximately scales with the energy release of the decay
as (m(Hp) — m(H;) — m(D;)) x 0.03%. The uncertainty
due to momentum scale calibration is assumed to be fully
correlated for the three Hj masses.

As mentioned in Sect. 4, the H}, invariant mass is calcu-
lated with the D and H,. masses constrained to their pre-
vious world averages [2]. The systematic uncertainty due
to the H, and D, masses is 0.16, 0.24, and 0.29 MeV/c2
for the AY), £, and 5, mass measurement, respectively.
When measuring the mass difference between two different
H, states, the uncertainty on the D" mass is cancelled. The
remaining uncertainty on the H, mass varies between 0.23
and 0.31 MeV/c? depending on mass difference.
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Table 3 Systematic

.. Source
uncertainties for the Hj mass

m 5o [ MeV/c?] mzo [ MeV/c?] mg- [MeV/c?]

measurements
Mass fit model

Momentum scale calibration

Uncertainties on the H. and D;” masses

0.02 0.19 0.09
0.44 0.41 0.48
0.16 0.24 0.29

Table 4 Systematic

. Source
uncertainties for the Hj,

_ 2
Mgo = m 40 [ MeV/c?]

Mg —my [ MeV/c?] Mg —mgo [ MeV/c2]

mass-difference measurements
Mass fit model

Momentum scale calibration

Uncertainties on the H, mass

0.19
0.03
0.27

0.09 0.21
0.04 0.07
0.31 0.23

Table 5 Measured H), masses and mass differences and the previous
world averages [2]

This analysis Previous world aver-
[MeV/c? ] age [MeV/c? |

m 5 5619.34 +0.47 5619.60 £+ 0.17

mgo 5791.1 £0.8 5791.9+0.5

Mg 5797.0 £ 0.8 5797.0 £ 0.6

Mg —m 40 171.8 £0.7 1725+ 0.4

Mgs =m0 177.7£0.7 177.46 +0.31

Mg- — Mg 59+09 59+£0.6

6 Results

Using the results presented in the previous sections, the Hj,
masses and mass differences are measured to be

m 4 = 5619.34 £ 0.06 £ 0.4 £ 0.16 MeV/c?,
0 = 5791.12 4 0.60 & 0.45 + 0.24 MeV/c?,
Mg = 5797.02 % 0.63 % 0.49 + 0.29 MeV/c?,
Mgy —m 0 = 17178 £0.60 £ 0.19 £ 0.27 MeV/c?,
Mg —m 40 = 177.68 % 0.63 +0.10 + 0.31 MeV/c?,

=b

Mg —mgy =590 %087+ 022 +0.23MeV/c?,

where the first uncertainties are statistical, the second sys-
tematic, and the third due to those on masses of A}, &1,
£9, and D hadrons. The measurements are consistent with
previous world averages [2], and comparisons are shown in
Table 5 and Fig. 2.

The relative production rates of the three H, — H.Dj
decays, given in Egs. (1)—(3), are measured to be

=0
R (%) = (1584 1.1£0.6 £7.7)%,
b

R <:,_,6> — (1694 1.3+ 0.9+ 4.3)%,
Ab
=0
b

~

R < :) =(93.6+9.6 £6.1 =£51.0)%,
“p

where the first uncertainties are statistical, the second sys-
tematic, and the third due to those on the branching fractions
of AF, 8}, and 80 decays. Figure 3 shows the measured R
values. The results are consistent with the SU (3) flavour sym-
metry and predictions of phenomenological models [33,34].

7 Summary

In this analysis, the dicharm decays of =} baryons 5}9 —

EFfD; and B, — E9D; are observed for the first time.

Fig. 2 Comparison of T T T T T
measured (red) b baryon masses LHCDH 5.1 fb—l
with (blue) the PDG values [2]. ’
The mass of Ag is shifted ——— —— —t———
upward by 175 MeV/c? to —_—— FéA ——i
reduce the range of this plot. m 2 m_
The inner (outer) error bar is for 52 mAg + 175 MeV/e =p
the statistical (total) uncertaint . .
Y —=— This analysis
—— PDG
5790 5792 5794 5796 5798

Mass [MeV/c2]
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LHCb =
5.1 17!
— R

—— Ab

=
R =%
—a— \ 4,

0 0.5 1 1.5

Ity
~——

Fig. 3 Measured R values. The inner (outer) error bar is for the sta-
tistical (total) uncertainty

The data sample is the proton-proton collision data col-
lected by the LHCb experiment at a centre-of-mass energy of
/s = 13 TeV and corresponding to an integrated luminosity
of 5.1 fb~!. The masses of the Ag, E,? and &, baryons are
measured through these two decays, and are consistent with
the previous world average values [2]. These measurements
will improve the world averages. The relative branching frac-
tions of these two decays are also measured. The results are
consistent with SU(3) flavour symmetry and several pre-
dictions for relative production rates and decay branching
fractions of b baryons [6,33-35].
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Appendices
A Non-dicharm contribution

Three distinct sources of non-dicharm backgrounds are con-
sidered:

e The H, — (pK~ (K™ )n™)(KTK~7™) decay with nei-
ther the H, nor the D hadrons.

e The H, — (pK (K~ )n")D; decay without the H,
baryon.

e The H, — H. (K"K n™) decay without the D,
meson.

Figure 4 shows the two-dimensional H, versus D~ invariant-
mass distribution in the signal region and the H. and/or D
sideband regions. There are four regions illustrated in Fig. 4:

e The region 1 lies in the H. and D sideband region.

e Theregion2liesinthe H, signal and Dy sideband region.
e Theregion 3 liesinthe H, sideband and D signal region.
e The region 4 lies in the H. and D signal region.

The H, — (pK~(K)r")(KTK~ ") decay populates
every region, the H, — (pK~(K~)n")D; decay popu-
lates regions 2 and 4, the H, — (pK~(K™)m+)D; decay
only populates regions 3 and 4, and real signal only populates
region 4. Besides, the distributions of non-dicharm compo-
nents in the H. or D invariant-mass distribution are found
to be approximately linear. Thus, the number of non-dicharm
backgrounds in region 4 can be calculated as

Nhon-dicharm = 0.5 x (N2 + N3) — 0.25 x Ny, @)

where N1, N> and N3 are the Hp yields in region 1, 2, and
3, respectively. Ny, N2 and N3 are estimated by simultane-
ous fitting to the H}, invariant-mass spectra in these regions.
The fit model is similar as the one mentioned in Sect. 4. Fig-
ures S, 6, and 7 show the Ag, E,?, and &, invariant-mass
distributions in the H. and/or D sideband regions superim-
posed by the fit results, respectively.
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