
Vol.:(0123456789)

Machine Learning (2024) 113:6395–6412
https://doi.org/10.1007/s10994-024-06579-y

1 3

Discrete‑time graph neural networks for transaction 
prediction in Web3 social platforms

Manuel Dileo1  · Matteo Zignani1 

Received: 4 March 2024 / Revised: 24 April 2024 / Accepted: 31 May 2024 /  
Published online: 25 June 2024 
© The Author(s) 2024

Abstract
In Web3 social platforms, i.e. social web applications that rely on blockchain technology to 
support their functionalities, interactions among users are usually multimodal, from com-
mon social interactions such as following, liking, or posting, to specific relations given by 
crypto-token transfers facilitated by the blockchain. In this dynamic and intertwined net-
worked context, modeled as a financial network, our main goals are (i) to predict whether a 
pair of users will be involved in a financial transaction, i.e. the transaction prediction task, 
even using textual information produced by users, and (ii) to verify whether performances 
may be enhanced by textual content. To address the above issues, we compared current 
snapshot-based temporal graph learning methods and developed T3GNN, a solution based 
on state-of-the-art temporal graph neural networks’ design, which integrates fine-tuned 
sentence embeddings and a simple yet effective graph-augmentation strategy for represent-
ing content, and historical negative sampling. We evaluated models in a Web3 context by 
leveraging a novel high-resolution temporal dataset, collected from one of the most used 
Web3 social platforms, which spans more than one year of financial interactions as well 
as published textual content. The experimental evaluation has shown that T3GNN consist-
ently achieved the best performance over time and for most of the snapshots. Furthermore, 
through an extensive analysis of the performance of our model, we show that, despite the 
graph structure being crucial for making predictions, textual content contains useful infor-
mation for forecasting transactions, highlighting an interplay between users’ interests and 
economic relationships in Web3 platforms. Finally, the evaluation has also highlighted the 
importance of adopting sampling methods alternative to random negative sampling when 
dealing with prediction tasks on temporal networks.
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1 Introduction

Financial and economic platforms built on blockchain technology are significantly trans-
forming the existing financial systems, primarily owing to their decentralized nature, 
which represents a distinct paradigm compared to traditional economics and currencies. 
These platforms, along with the financial data they generate, can be effectively repre-
sented as financial networks, where different relationships - expressed by asset transfers 
and financial operations—may occur among various actors, including accounts, wallets, 
developers, validators, and others. By modeling blockchain-based platforms as financial 
networks, we can harness the potential of machine learning techniques and cope with 
tasks such as node classification, link classification and prediction, and graph classifica-
tion (Wang et al., 2021). This enables us to better understand diverse and emerging phe-
nomena observed within these platforms, such as fraud (Xu et al., 2021), scams (Barto-
letti et al., 2018), pump-and-dump schemes (Xu et al., 2021), money laundering (Weber 
et  al., 2019), and financial crashes (Shamsi et  al., 2022). In the context of machine 
learning applied to financial networks, blockchain-based systems present advantages 
and application issues stemming from their inherent design principles: 

 (i) data are temporal annotated by design since operations generating relationships and 
features must be validated in timestamped blocks; notably, the time granularity of 
the data is on the order of seconds, and data may span extended periods marked by 
potential instability and volatility, properties that should be taken into account when 
designing and evaluating different solutions; and

 (ii) data and interactions stored within blockchains tend to be multifaceted and heteroge-
neous. This characteristic extends beyond financial operations, encompassing social 
relationships and comprehensive information regarding the system’s components. 
The data heterogeneity opens the possibility of integrating different kinds of infor-
mation to tackle network-oriented tasks through diverse multimodal approaches.

These characteristics, especially data heterogeneity, find their utmost expression in 
Web3 social platforms (Guidi, 2021), i.e. platforms where social traits and financial 
aspects are strictly intertwined forming a socio-economic complex system. Web3 social 
platforms are social web applications whose core functions are supported by an under-
lying blockchain that from one side ensures the persistence and validity of operations, 
and on the other side introduces economic operations, such as crypto-token transfers 
and wealth redistribution. In these platforms, every financial operation, such as cryp-
tocurrency exchanges, as well as social interaction, such as “follows”, postings, likes, 
and comments, is recorded in an accessible blockchain with a high-resolution timestamp 
(seconds)., producing a very large set of timestamped interactions among wallets associ-
ated with the platform accounts—formally a list of triples (u, v,  t), eventually accom-
panied by a weight w, whose meaning is application-dependent. From the viewpoint of 
machine learning for financial networks, Web3 social data can be used 

 (i) for benchmarking machine learning methods for temporal financial networks, or
 (ii) for addressing node, link, or graph classification tasks in a multimodal and temporal 

setting, where the multimodality is related to textual content and social interactions, 
which can be integrated to solve financial-related tasks
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In particular, among the issues addressable by machine learning methods, the transac-
tion prediction task, i.e. predicting whether there will be asset transfers between pairs of 
accounts, is central and peculiar for these platforms since it is at the basis of forecasting 
their wealth, tailoring services to facilitate token transfers, and identifying active users 
in the economic layer.

To this aim, our study centers on the task of transaction prediction—an instance of 
link prediction task—using data derived from Web3 social platforms, such as textual 
content (posts and comments). This context poses a few application challenges espe-
cially when designing models that ask for a representation combining temporal financial 
data and textual content generated by social interactions. To cope with these require-
ments our attention is directed towards the framework of temporal graph learning (TGL) 
due to its aptitude for learning from temporal networks, as well as its ability to seam-
lessly incorporate data from text or social interactions into the models. Within this con-
text, our primary objectives encompass three key aspects: 

 (i) Benchmark and evaluation: we evaluate existing temporal graph learning methods 
in solving the transaction prediction task in the novel context of Web3, wherein the 
textual content generated by users is incorporated as sentence embeddings;

 (ii) Methodology: we introduce an additional model denoted as T3GNN, which integrates 
textual content representation into the ROLAND framework (You et al., 2022); this 
integration aims to handle the dynamic structure of financial transactions effectively 
through the live-update setting; and

 (iii) Multimodality: a comprehensive evaluation of the impact of textual content on aug-
menting prediction performance; in other words, we seek to determine the usefulness 
of user-generated content in predicting future financial transactions

We cope with the above goals by leveraging a novel large-scale dataset with high-res-
olution temporal information on transactions and textual content gathered from Steemit, 
one of the most popular Web3 social platforms. The dataset covers the financial transac-
tions and the textual posts of about 15K accounts over one year, posing a few techni-
cal challenges when handling the computation of the representation of high volumes of 
textual content. Moreover, in the evaluation protocol, we introduce more fair and robust 
evaluation settings based on live-update and historical negative edges as negative sam-
pling strategy. In particular, through historical sampling we aim to make the evalua-
tion more robust, providing models more challenging and realistic instances to classify. 
Indeed, the findings obtained from the experimental evaluation conducted on the Web3 
dataset have yielded a few significant observations: 

 (i) in the evaluation setting based on live-update and historical sampling the T3GNN 
model outperformed other snapshot-based temporal graph learning methods previ-
ously applied to financial networks by combining into a unique representation of 
temporal and textual features, and, at the same time, adapting the learned representa-
tion and model in a continual learning fashion;

 (ii) adopting a more fair evaluation protocol based on historical negative edges, the per-
formances of the best-performing model have worsened as expected: this observation 
underscores the necessity of utilizing sampling methods other than random negative 
sampling to attain more realistic evaluations; and

 (iii) textual content contains useful information for predicting transactions as the gener-
ated embeddings allow to obtain better performance than a pure edge-memorization 
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baseline. However, the integration of textual embeddings only offered marginal 
enhancements in prediction performance and the graph structure is crucial for fore-
casting links.

We can summarize our main contributions to the transaction prediction task on Web3 
financial networks: 

 (i) we extend the set of benchmarks available for temporal graph learning by introducing 
a novel and large-scale high-resolution temporal and multimodal dataset gathered 
from an emerging blockchain-based social platform;

 (ii) we train and evaluate state-of-the-art temporal graph neural networks over the trans-
action prediction task using fair and recently introduced protocols, such as the live-
update setting and the historical negative sampling;

 (iii) we propose a methodology to leverage the heterogeneity of Web3 social data by 
learning a representation capturing both economic and social information to predict 
future financial transactions, introducing a novel model architecture inspired by the 
ROLAND framework; and

 (iv) we verify if textual content contains useful information to predict links and evaluate 
whether performances may be enhanced by document embeddings

The paper is organized as follows. Section  2 provides a brief introduction to the 
nature of blockchain-based online social networks and a review of works related to tem-
poral graph learning for financial applications. Section 3 describes the construction of 
the temporal financial network, how textual features are extracted, the temporal graph 
neural network models for predicting future transactions, and the training and evalua-
tion protocol. In Sect. 4 we provide a description of the dataset, the experimental setup, 
and all the experimental results. Finally, Sect. 5 reports the main findings of transaction 
prediction on Web3 social platforms and discusses potential future works.

2  Related work

Dealing with the task of transaction prediction in Web3 social networks within the frame-
work of temporal graph learning involves methods from temporal graph neural networks 
for financial networks and link prediction with text, and works on the application context, 
i.e. blockchain-based online social networks. In the following, we describe works related to 
the platforms our social data comes from. Then, we review the main methods of temporal 
graph learning, with a special focus on integrating textual information and application on 
financial networks.

2.1  Blockchain‑based online social networks

In the landscape of Web3 platforms, blockchain-based Online Social Networks (BOSNs) 
are web applications whose core functions are supported by an underlying blockchain 
that ensures the persistence and validity of the operations. Each “social operation” 
(e.g. following, voting, commenting) and “financial operation” (e.g. transfer of crypto 
money) is stored with a high-resolution timestamp. Since every action is recorded on a 
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blockchain, these platforms offer an extensive data source of interactions on networks, 
including not only the social sphere but also the economic side. These vast collections 
of temporal and heterogeneous data have recently emerged as beneficial for a wide range 
of research fields. Most of the research studies on BOSNs have been focused on Steemit 
since it is one of the most popular Web3 social platforms. The most relevant advance-
ments and issues are illustrated in a few recent works (Guidi, 2021; Ba et al., 2022a, b). 
With limited exceptions, the majority of previous studies have concentrated on examin-
ing the structure of financial or social relationships within BOSNs. Some of these stud-
ies have considered link dynamics (Ba et  al., 2022b) and small subgraphs (Galdeman 
et al., 2022). However, to our knowledge, none of the prior works have addressed the 
task of transaction prediction, particularly in the context of incorporating both temporal 
links and textual content.

2.2  Temporal graph neural networks

Temporal graph neural networks (TGNNs) are deep learning models for extracting, 
learning, and predicting from evolving networks such as recommender systems (You 
et  al., 2019), traffic networks (Zhao et  al., 2020), or online social networks (Dileo 
et al., 2023). They generalize model architectures for graph neural networks (GNNs) by 
extending the message-passing framework (Gilmer et al., 2017) to temporal networks. 
Based on the way temporal networks are modeled and on the different strategies to han-
dle temporal information on nodes and edges, several GNNs for temporal networks have 
been proposed in the literature. Longa et al. provides a comprehensive survey on GNNs 
for temporal networks (Longa et  al., 2023). In the context of financial networks, sev-
eral architectures based on TGNNs have been proposed to solve various tasks such as 
stock movement prediction, loan default risk prediction, or fraud detection (Wang et al., 
2021). Financial temporal networked data extracted from blockchains have been intro-
duced in a few works such as Kumar et al. (2018) or Weber et al. (2019). These datasets 
are extracted from the Bitcoin blockchain and used to evaluate models on different tasks 
such as fraudulent user prediction (Kumar et al., 2018), anti-money laundering (Weber 
et al., 2019), or transaction prediction (Pareja et al., 2020; You et al., 2022). However, 
the current models have been only evaluated on homogeneous financial networks based 
on blockchain data. In this work, we focus on more intertwined blockchain-based sys-
tems where temporal financial data are coupled with social and behavioral data.

2.3  Link prediction with text

Only a few studies have evaluated the role of textual node-related data in enhancing per-
formances in link prediction tasks. Among these works, Xu et al. (2021) used unstruc-
tured text content from heterogeneous datasets to obtain topic-aware node embedding 
representations with GNNs, while in Dileo et  al. (2023, 2022) we used respectively a 
temporal GNN with text-based features and a topic model (Blei et  al., 2003) to per-
form “follow” link prediction in online social networks. In financial applications, tex-
tual information has been leveraged mainly for stock movement prediction (Zou et al., 
2022), typically treated as a node classification task (Sawhney et  al., 2020). Overall, 
using text to make predictions seems to improve performance and give insights into the 
network being studied.
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To the best of our knowledge, within the aforementioned contexts, this work represents 
the first attempt at evaluating methods for temporal graph learning on the transaction pre-
diction task, utilizing multimodal data from Web3 social platforms, with an emphasis on 
textual information.

3  Methodology

In this section, we present a comprehensive description of how financial and text data 
extracted from Web3 social platforms can be effectively modeled to address the transac-
tion prediction task. Specifically, we outline the construction of a sequence of graph snap-
shots and elucidate our chosen approach for embedding the posts and comments published 
by users. Leveraging this representation, we undertake the task of transaction prediction 
by evaluating a selection of existing architectures for temporal graph learning, alongside 
a novel architecture inspired by the ROLAND model design. Furthermore, we provide a 
concise overview of the live-update setting employed for training and evaluating all the 
models. The overarching methodology devised in this study aims to assess whether user-
generated content can enhance the predictive accuracy of future financial transactions, as 
well as to identify the most suitable model for achieving this objective.

3.1  Data modeling and problem statement

Transaction links and text information stored in blockchain-based systems can be modeled 
as an attributed temporal directed graph G = (V ,E, T ,X) , where V is the set of users, links 
(u, v, t) ∈ E denote a directed transaction link—financial interaction—from user u to user v 
at time t, T is the set of all possible timestamps, and X is a |V| × f  matrix of node attributes 
related to textual content produced by users, with f the dimension of attribute vectors (Liu 
et al., 2023). Given a time interval [t0, t1] , the graph snapshot G[t0,t1]

 represents a directed 
graph, where for each link e = (u, v, t) ∈ E , we have that t ∈ [t0, t1] . For simplicity, since 
all the edges in a certain time interval are treated as they share the same timestamp, we use 
the notation Gt to denote a graph snapshot, where t is a time interval. We chose to model 
data as a snapshot-based, also known as discrete-time, temporal network in agreement with 
recent previous works on forecasting financial networks (Gandhi et al., 2021; Shumovskaia 
et al., 2021; You et al., 2022).

We encoded the textual content X, by a pre-trained BERT-based language model to get a 
vector-based representation. In particular, we selected Sentence-BERT (SBERT) (Reimers 
and Gurevych, 2019) as it can derive semantically meaningful sentence embeddings and 
is more suitable for articulated texts, as in our case. As a result, semantically similar sen-
tences will be close to one another in the vector space. For each time interval t, we denote 
as D(u,t) the set of documents (posts and comments) published by user u during time inter-
val t. The initial node features X(u,t) of u at time t corresponds to the average of its docu-
ment embeddings, i.e.

using the element-wise sum. Users with no published textual content—missing node fea-
tures—in one or more time intervals have a zeros vector as initial features for the specific 

(1)X(u,t) =
1

|D(u,t)|
∑

d∈D(u,t)

SBERT(d)
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time intervals. Their embedding representation is then updated through standard message-
passing (Gilmer et al., 2017) during the training process, together with all the other nodes.

Given a snapshot graph Gt , the goal is to predict which transactions are more likely to 
appear at a successive snapshot graph Gt+1 . The problem is known as future or dynamic link 
prediction and, in the context of financial networks, it can be defined as future or dynamic 
transaction prediction. We use information up to time t to predict potential edges at time 
t + 1 . The problem can be cast into a binary classification task, where label 1 is for exist-
ing links in the following time interval, 0 otherwise (Liben-Nowell and Kleinberg, 2003). 
Given a sequence of graph snapshots [Gt0

, ...,Gtn
] , we rely on the experimental setting for 

transductive temporal link prediction presented in Liu et al. (2016):

– Gt0
 is used to retrieve the list of edges and their relative nodes, and

– Gti
, i > 0 , is an induced sub-graph constrained around the nodes of Gt0

 . This limitation 
makes it possible to understand how a graph and its connections effectively evolve.

In our application scenario, Gt0
 represents a huge volume of historical information already 

happened and stored in a database, while Gti
, i > 0 are new updated information over time. 

Finally, when evaluating dynamic link prediction, negative edges are often randomly sam-
pled from any node pair. Considering the sparsity of real-world graphs, the majority of 
node pairs are unlikely to form an edge; therefore, random negative edges are easy negative 
edges. For this reason, we construct the negative set using the notion of historical negative 
edges introduced by Poursafaei et al. (2022), i.e. edges that occurred in the previous step 
but are not present in the current step. This process generates a set of negative instances 
more challenging for the model but more robust and realistic for a fair comparison and 
selection.

3.2  Temporal graph neural networks

Temporal graph neural networks (TGNNs) are deep learning models for extracting, learn-
ing, and predicting from evolving networks. They generalize model architectures for graph 
neural networks (GNNs) by extending the message-passing framework (Gilmer et  al., 
2017) to temporal networks. Based on the way temporal networks are modeled and on the 
different strategies to handle temporal information on nodes and edges, several GNNs for 
temporal networks have been proposed in the literature. When comparing TGNNs mod-
els, it is important to highlight that snapshot-based and event-based models (Longa et al., 
2023) are designed to handle two different kinds of temporal networks, and their train-
ing and evaluation strategies lead to two different settings (Huang et  al., 2023). Hence, 
it is unfair to compare snapshot-based and event-based models against each other. Con-
sequently, following the taxonomy presented in Longa et al. (2023), since we model our 
dataset as a discrete-time temporal network, we test four different snapshot-based TGNNs, 
further distinguishing two model evolution and two embedding evolution methods. Specifi-
cally, the TGNNs evaluated in this work are the following:

• EvolveGCN-O, EvolveGCN-H (Pareja et al., 2020). They utilize an RNN to dynami-
cally update the weights of the internal GCNs (Kipf and Welling, 2017), which allows 
the GNN model to change during the test time. In EvolveGCN-H, the GCN param-
eters are hidden states of a recurrent architecture that takes node embeddings as input, 
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while in EvolveGCN-O, the GCN parameters are input/outputs of a recurrent architec-
ture. They are called model evolution methods because they only evolve the learnable 
parameter of a static GNN over time.

• GCRN-GRU  (Seo et al., 2018). It is a generalization of the T-GCN model (Zhao et al., 
2020), which internalizes a GNN into the GRU cell by replacing linear transforma-
tions in GRU with graph convolution operators. GCRN uses ChebNet (Defferrard et al., 
2016) for spatial information and separate GNNs to compute different gates of RNNs.

• T3GNN (Temporal Graph Neural Network for Web3), our proposed model, based on 
the ROLAND model design (You et al., 2022). Figure 1 shows the pipeline of T3GNN. 
The architecture of our model includes: i) two MLP layers to preprocess the node 
features (high-dimensional BERT representations) and fine-tune the pre-trained text 
embeddings, ii) a simple yet effective graph augmentation technique, which consists 
of adding self-loops to the graph structure during the message-passing to avoid a dras-
tically diminishing importance of the initial node features compared to neighboring 
features, iii) a dynamic two-layer GCN based on the ROLAND model design; and iv) 
an HadamardMLP (Wang et al., 2022) as decoder, typically more effective than other 
decoders for link prediction. ROLAND introduces two primary innovations: firstly, the 
view of node embeddings across various GNN layers as hierarchical node states, and 
secondly, the recurrent updating of these states over time using customizable embed-
ding modules. In our model, node embeddings are updated using a one-layer Concat-
MLP (You et al., 2022).

To train and evaluate all the models, we adopt the live-update setting (You et al., 2022), 
where models learned in previous snapshots are fine-tuned with newly observed data, 
by utilizing historical information and predicting future links, so capturing the evolving 
nature of data and models. Given the current snapshot, it is partitioned into a training and 
a validation set. Subsequently, the model undergoes training to minimize the binary cross-
entropy loss. This training process continues until there is no further improvement in the 
prediction performance on the validation set, thereby satisfying the criteria for early stop-
ping. Following this, the model’s predictive performance is evaluated on the next snapshot. 
This procedure is systematically repeated, starting from the initial snapshot until the sec-
ond last, fine-tuning the learnable parameters of the model. At the end of this process, the 
prediction performance of the model over time is obtained by averaging the performance 
over each snapshot.

Fig. 1  Pipeline of T3GNN to perform future transaction prediction with text from a Web3 social platform. 
For each time interval, the method builds a snapshot of the financial network Gti

 and for each user, it com-
putes the sentence embeddings of posts/comments published in the time interval. The dynamics of the net-
work are handled by a two-layer GCN based on the ROLAND model design, preceded by two MLP layers 
to preprocess node features
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4  Experimental evaluation

In this section, we describe the experimental evaluation of temporal graph network models 
for the transaction prediction task on one of the most popular Web3 social platforms. Code, 
data, and supplementary information about the experiments can be found in our GitHub 
repository.1

4.1  Data

We perform transaction prediction using Web3 social data gathered from Steemit, one of 
the most popular Web3 social platforms, based on the Steem blockchain. Users on Steemit 
can perform many different actions, called operations. These operations, retrievable by a 
specific API, track users’ activities with a temporal precision of 3 s, so providing high-res-
olution temporal data. We collected data in its early stage: from the first block on the Steem 
blockchain, produced on 24th March 2016, up to the end of 2017; and considered both eco-
nomic and social operations, gathering two kinds of information: (i) transactions between 
users, available in the transaction operations; and (ii) post and comments written by 
users, available in the comment operations. Data related to 2016 were used to construct 
the initial training set, processing 274, 872 transaction operations and 241, 677 comment 
operations, and obtaining a snapshot graph—Gt0

—with 14, 814 nodes and 39, 937 edges. 
Data from 2017 were collected and processed sequentially in two-week snapshots to obtain 
a good balance between newly executed transactions, user-generated content, and fine-
grain time granularity. Figure 2 shows the number of new transactions and comment/post 
operations over the two-week snapshots. The number of posts and comments written by 
users is reasonably higher than the number of transactions but the two quantities have a 
quite similar trend over time.

Fig. 2  Number of new com-
ments/posts (orange line) and 
financial transaction (blue line) 
operations over the two-week 
snapshots. The y-axis is in log 
scale (Color figure online)

1 https:// github. com/ manuel- dileo/ t3gnn

https://github.com/manuel-dileo/t3gnn
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4.2  Experimental setup

We evaluated the temporal graph network models over the transaction prediction task. 
We used the area under the precision-recall curve (AUPRC) to evaluate models, as sug-
gested in Yang et al. (2014) and adopted in prior works as well (Rossi et al., 2020; Pareja 
et al., 2020; Poursafaei et al., 2022). To highlight the learning capability of the models, we 
also examined the performance of EdgeBank (Poursafaei et al., 2022), a simple memori-
zation-based baseline, which stores previously observed edges in memory, and then pre-
dicts existing edges in memory as positive at test time, that has surprisingly achieved great 
performance on current benchmark datasets (Huang et al., 2023). We considered histori-
cal negative edges and we adopted the live-update evaluation. We randomly chose 25% of 
edges in each snapshot to construct the validation set and determine the early-stopping con-
dition. We run experiments with 3 different random seeds as in You et al. (2022), reporting 
the average and standard deviation of the performance measure for each model.

4.3  Results

As for the evaluation of the different models, in Table 1 we report the average performance 
for the transaction prediction task over the time intervals, for the temporal graph network 
models detailed in Sect.  3. First, the EdgeBank is outperformed by all the other TGNN 
models. This result suggests that in our dataset there are complex mechanisms (Ba et al., 
2023) that lead to the formation of new links compared to just the repetition of past trans-
actions with known users. Moreover, it shows that all TGNN models are learning use-
ful information able to go beyond the pure memorization of past interactions. T3GNN 
achieves the best performance with an AUPRC score increase of more than 4% compared 
to the other baselines. Moreover, the variability of the performances in all the cases is very 
limited.

Thanks to the live-update setting, we can also evaluate the prediction performance of 
the models snapshot by snapshot. We report the performance trend of the models over the 
considered year in Fig. 3. The performance of EdgeBank is strictly dominated by T3GNN 
and EvolveGCN models. Overall, we observe a consistent level of variation from snap-
shot to snapshot: we move from AUPRC scores close to 0.9 to scores next to 0.4. This 

Table 1  Average AUPRC 
over time of the temporal 
graph network models for the 
transaction prediction task on the 
Steemit dataset

For each model, we ran experiments with 3 different random seeds, 
reporting the average result and standard deviation for each method

Model AUPRC

EdgeBank   0,528 ± 
0,0000

GCRN-GRU   0,634 ± 
0,0070

EvolveGCN-O   0,706 ± 
0,0005

EvolveGCN-H   0,706 ± 
0,0010

T3GNN + self-loops   0,747 ± 
0,0100
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phenomenon is much more evident in GCRN-GRU where its performance trend heavily 
oscillates throughout the year, showing that the model is very sensitive to changes in net-
work evolution due to user behaviors or external financial trends (Ba et al., 2022b). In con-
trast, the performance trends of EvolveGCN models are less prone to sharp falls but they 
do not reach the performance of an evolutionary embedding model such as T3GNN. In 
fact, T3GNN reaches the best performances on most of the snapshots even if there is no 
strict dominance on the performance of the other models: better average performances in 
Table 1 are mainly due to the marked gap in the first half of the evaluation period, while 
in the second half, performances are aligned with EvolveGCN models. Overall, T3GNN 
seems the best candidate among the baseline models for transaction prediction on Web3 
social platforms.

Ablation study. We conducted an ablation study of T3GNN by removing the following 
components: (i) the fine-tuning of the learnable parameters over time, (i) the GNN layers, 
and (iii) the node embedding update. Removing the node embedding update modules (e.g. 
a GRU cell or ConcatMLP) means that node embeddings are updated using the fine-tuning 
process only. We report their performance trends over time in Fig. 4a. Results show that 
GNN layers and fine-tuning are crucial for predicting future transactions as their removal 
leads to significantly worse performance for almost all the snapshots. In contrast, it seems 
there is no substantial gain in using node embedding update modules since their removal 
leads to quite a similar T3GNN performance trend. To further investigate this aspect, we 
run our model limiting the time window, i.e. the temporal information taken into account 
to obtain node embedding in a current snapshot. T3GNN, following the ROLAND model 
design (You et al., 2022), produces the node embeddings using the current snapshot and 
aggregation of the node embeddings of all the past snapshots. We symbolize this choice 
denoting a time window equal to infinity. However, the number of snapshots contribut-
ing to the current node embeddings could be limited to a certain time window size of tw. 
Specifically, by setting tw = 1 we are considering the current snapshot only, and leads to 
T3GNN w/o embedding update. We report the performance trends using a time window 

Fig. 3  Performances of temporal graph network models for the transaction prediction task over the two-
week snapshots in terms of AUPRC, using live-update and historical negative links. T3GNN (blue line) 
performs best on most of the snapshots and does not exhibit sharp falls as in the case of GCRN-GRU (red 
line). The gap in the performance is more evident in the first half of the evaluation period, while in the 
second half, performances are comparable with EvolveGCN-X models (EvolveGCN-O and EvolveGCN-H 
obtained the same performances, so their lines overlap) (Color figure online)
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equal to one, two, and infinity in Fig. 4b. Results show that the choice of the time window 
leads to slightly different performances over time. Hence, the time window size could be 
tuned for better performance on specific transaction datasets and/or periods. Specifically, in 
our dataset, utilizing a time window equal to one yielded better results on the majority of 
the snapshots, whereas incorporating all the snapshots significantly improved performance 
in the third month.

The importance of sampling strategy. The generation of negative instances, i.e. random 
negative sampling, is often a standard procedure in training and evaluating graph neural 
networks. However, random negative sampling represents an over-optimistic setting, espe-
cially in very sparse networks. To highlight the necessity of a more fair negative sampling 
strategy, we compare the performance of T3GNN—the best-performing model—using two 
different sampling strategies: random negative or historical negative edges. The results in 
terms of AUPRC scores are depicted in Fig. 5, snapshot by snapshot. We can observe that 
the performance of T3GNN increases significantly using random negative edges, show-
ing they are easy examples to classify, while the negative instances generated by historical 
sampling are more challenging to classify, resulting in lower scores over the entire period. 
This result stresses the need for a better sampling strategy for the evaluation of dynamic 
link prediction tasks.

Effectiveness of self-loops. Stacking several GNN layers and embedding update mod-
ules allow TGNNs to fully leverage graph and temporal information. However, the con-
tinuous update of the node embeddings through message passing and information from the 
past may lead the impact of the actual initial node features—the text embeddings of the 
current snapshot—to drastically diminish and contribute insignificantly to the final node 
embeddings. In the literature, some solutions based on graph augmentation, graph rewir-
ing, and model regularization have been proposed to mitigate this problem (Rusch et al., 
2023; You et al., 2020). Among the available solutions, we tested three simple solutions to 
enhance the contribution of the text embedding in our TGNN model: 

Fig. 4  a Ablation study of T3GNN (blue line) removing fine-tuning (orange line), the node embedding 
update module (green line), and the GNN layers (red line). GNN layers and fine-tuning over time are cru-
cial for predicting future transactions. b Performance trends of T3GNN for different considered time win-
dows for node embedding updates. The time window could be tuned for better performance on a specific 
dataset and/or period (Color figure online)
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 (i) The addition of self-loops, which enforce initial node features by inherently aggre-
gating them with obtained node embedding in each GNN layer;

 (ii) Skip or residual connections (You et al., 2020), which aggregate initial node features 
with the obtained node embedding after each embedding update module; and

 (iii) ContentMLP, a solution that processes text embedding through an MLP and aggre-
gates its output with the final obtained node embeddings

Fig. 5  Evaluation of T3GNN model for the transaction prediction task over the two-week snapshots in 
terms of AUPRC, using random negative edges (orange line) or historical negative edges (blue line). In the 
latter setting, performances are lower than in the random negative sampling setting for each two-week snap-
shot. It confirms that performances for random negative edges are over-optimistic based on easy examples 
to classify; while the historical negative sampling is a more challenging and realistic setting (Color figure 
online)

Fig. 6  Performances of temporal graph network models for the transaction prediction task over the two-
week snapshots in terms of AUPRC, using live-update and historical negative links. T3GNN + self-loops 
(blue line) reaches the best performance on most of the snapshots, showing its effectiveness against skip-
connection and ContentMLP solutions (green and red line) in enhancing the performance of a T3GNN 
model (orange line). Skip-connections and ContentMLP obtain the same performances, so their lines over-
lap (Color figure online)
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 We report the performance trend of the considered solutions in Fig. 6. The results show 
that the addition of self-loops reaches the best performance on most of the snapshots effec-
tively boosting the performance of a “vanilla” T3GNN model. In contrast, the solutions 
based on skip-connections and ContentMLP reach lower performance giving too much 
importance to the textual content of the current snapshot.

The role of textual content. Finally, we investigate the role of textual content on transac-
tion prediction by comparing the results obtained (i) using SBERT textual features for node 
representation; (ii) shuffling the node feature matrix along the first dimension, i.e. assign-
ing a random textual identity to each node; and (iii) replacing GNN layers in T3GNN with 
MLP layers—T3MLP, i.e. removing the effects of the network. We report the performance 
trends in Fig. 7a. In the plot, we also report the results for EdgeBank and a random classi-
fier to better understand the role of textual content. The performance trends highlight three 
important phenomena. First, the graph structure is crucial for predicting future transactions 
between users as shuffling the node feature and leaving the network unchanged—setting 
(ii)—leads to performance very similar to the original ones. Then, the textual content con-
tains useful information for predicting transactions. In fact, the performance of T3MLP, 
which leverages the node feature matrix only, is higher than the ones of the random clas-
sifier and the EdgeBank models, showing that using text embeddings allows discovering 
future transactions better than just predicting them at random or based on pure memoriza-
tion. Overall, the integration of textual features increases the prediction performance of 
T3GNN in the first half of the period, while in the remaining snapshots, the structure is 
enough as the T3GNN with shuffled features reaches merely the same performances. This 
behavior may be related to the price trend of the Steem USD, the cryptocurrency associ-
ated with Steemit. In fact, in the first half of the period, the price was quite low, but it 
started to increase significantly between May and June, reaching its peak by the end of 
the year (Ba et al., 2022b). However, it is noteworthy to notice that T3MLP benefits from 
text embeddings even in the second half of the year, as it does not have access to financial 
information.

Besides the role of textual content in predicting future transactions, we further investi-
gate the role of text embeddings in enhancing the performance of T3GNN. To this aim, we 
compare the results obtained (i) using SBERT textual features for node representation; (ii) 
replacing the text-based representation with random features2; and (iii) applying a constant 
encoder for node representation, i.e. no features. Recently, Sato et  al. (2021) has shown 
that random features strengthen the power of Graph Neural Networks. Hence, an increase 
in performance when node features are employed could be just related to the usage of 
d-dimensional random feature vectors in place of constant encoders, and not related to the 
actual node features’ content. We report the performance trends in Fig. 7b. The AUPRC 
scores of T3GNN models, averaged over all the snapshots, with constant, random, and 
textual features, are respectively 0.713, 0.713, and 0.747. Overall, leveraging textual con-
tent increases prediction performance by 3.4% . Moreover, the general trend related to the 
interplay between textual content and structural information described in Fig.  7a holds. 
Therefore, the content of the fine-tuned text embeddings plays a role in enhancing the per-
formance of T3GNN.

2 It is worth noting that placing random features on nodes is not equivalent to shuffling text-embeddings. 
Indeed, the latter setting maintains a representation coherent with the textual identity of a user while the 
former is not in the least connected with textual content produced by a user.
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5  Conclusions

In conclusion, this research paper focused on the application of machine learning tech-
niques to temporal graphs in the context of financial networks and Web3 social platforms. 
The study aimed to explore the transaction prediction task, incorporating both financial and 
textual data from Web3 platforms. Key contributions included the evaluation of temporal 
graph learning methods, the introduction of the T3GNN model integrating textual content, 
and the assessment of the impact of user-generated content on prediction performance. 
The study utilized a novel dataset from the Steemit platform and employed fair evaluation 
protocols. Results demonstrated the superior performance of T3GNN and highlighted the 
importance of alternative sampling methods for realistic evaluations. An extensive analy-
sis of the performance of T3GNN shows that, despite the graph structure being crucial 
for making predictions, textual content contains useful information for forecasting trans-
actions, highlighting an interplay between users’ interests and economic relationships in 
Web3 platforms. Indeed, using text embeddings allows discovering future transactions bet-
ter than just predicting them at random or based on pure memorization, and enhances the 
performance of T3GNN. Overall, this study extended the benchmark dataset for transaction 
and link prediction tasks, introduced a novel model architecture based on the ROLAND 
framework, and provided insights into leveraging the heterogeneity of Web3 social data 
for predicting future financial transactions. In future works, the heterogeneity and multi-
modality of Web3 data can be even more exploited by integrating the different types of 
social relationships as well as the roles of the different accounts in the management of the 
platforms.

Fig. 7  The role of textual content. In a, we report the performances for the transaction prediction task 
over the two-week snapshots in terms of AUPRC of T3GNN with textual features (blue line), node fea-
ture matrix shuffling (orange line), T3MLP (green line), a naive random classifier (red line), and EdgeBank 
(violet line). The structural information is crucial for predicting future transactions but the textual content 
contains useful information for this task. In b we report the performances of T3GNN models using SBERT 
textual features (blue line), random features (orange line), or constant encoding (green line). The integration 
of textual features increases the prediction performance in the first half of the period, while in the remain-
ing snapshots, the random features and textual features have obtained similar AUPRC scores (Color figure 
online)
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