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Abstract 

Background:  Recent evidence highlights the epidemiological value of blood DNA methylation (DNAm) as surrogate 
biomarker for exposure to risk factors for non-communicable diseases (NCD). DNAm surrogate of exposures predicts 
diseases and longevity better than self-reported or measured exposures in many cases. Consequently, disease predic-
tion models based on blood DNAm surrogates may outperform current state-of-the-art prediction models. This study 
aims to develop novel DNAm surrogates for cardiovascular diseases (CVD) risk factors and develop a composite bio-
marker predictive of CVD risk. We compared the prediction performance of our newly developed risk score with the 
state-of-the-art DNAm risk scores for cardiovascular diseases, the ‘next-generation’ epigenetic clock DNAmGrimAge, 
and the prediction model based on traditional risk factors SCORE2.

Results:  Using data from the EPIC Italy cohort, we derived novel DNAm surrogates for BMI, blood pressure, fasting 
glucose and insulin, cholesterol, triglycerides, and coagulation biomarkers. We validated them in four independ-
ent data sets from Europe and the USA. Further, we derived a DNAmCVDscore predictive of the time-to-CVD event 
as a combination of several DNAm surrogates. ROC curve analyses show that DNAmCVDscore outperforms previ-
ously developed DNAm scores for CVD risk and SCORE2 for short-term CVD risk. Interestingly, the performance of 
DNAmGrimAge and DNAmCVDscore was comparable (slightly lower for DNAmGrimAge, although the differences 
were not statistically significant).

Conclusions:  We described novel DNAm surrogates for CVD risk factors useful for future molecular epidemiology 
research, and we described a blood DNAm-based composite biomarker, DNAmCVDscore, predictive of short-term 
cardiovascular events. Our results highlight the usefulness of DNAm surrogate biomarkers of risk factors in epige-
netic epidemiology to identify high-risk populations. In addition, we provide further evidence on the effectiveness of 
prediction models based on DNAm surrogates and discuss methodological aspects for further improvements. Finally, 
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Background
Emerging epidemiological evidence indicates that com-
posite scores based on blood DNA methylation (DNAm) 
at different CpG sites are valuable biomarkers to predict 
complex traits and identify high-risk populations [1–4]. 
DNAm scores are usually built to model the associa-
tion of CpG sites with the trait or disease of interest via 
epigenome-wide association studies (EWAS). However, 
EWAS suffer from a lack of replication in independent 
data sets [5], with few exceptions like the well-known 
DNAm CpGs associated with smoking [6, 7]. Further, 
it is unclear how the disease risk tracked by DNAm is 
complementary or redundant with other risk factors for 
non-communicable diseases (NCDs). In fact, the inclu-
sion of DNAm scores in prediction models often leads 
to null or marginal prediction improvement compared to 
traditional models based on classical risk factors like the 
Framingham Risk Score and SCORE2 for cardiovascular 
diseases (CVD) [1, 4, 8–10].

In contrast, it has been consistently shown that DNAm 
scores for estimating individual biological age, named 
epigenetic clocks [11–15], are associated with several risk 
factors for NCDs (smoking, alcohol intake, low physi-
cal activity, obesity, socio-economic position, and job 
characteristics) [16–18], and perform very well for pre-
dicting ageing-related diseases and all-cause mortality 
[19, 20]. These results may be explained by how ‘next-
generation’ epigenetic clocks like DNAmPhenoAge and 
DNAmGrimAge have been built [11, 12].

Contrary to classical DNAm scores for NCDs, ‘next-
generation’ epigenetic clocks use a two-step approach: (1) 
development of DNAm surrogates for NCDs risk factors 
and biomarkers associated with all-cause mortality; (2) 
development of DNAm epigenetic clocks as a weighted 
combination of DNAm surrogates. Such a procedure 
leads DNAm composite scores to be more reliable and 
reproducible across different cohorts. The best perform-
ing epigenetic clock, called DNAGrimAge, incorporates 
DNAm scores for seven circulating proteins and smok-
ing pack-years, and it has been consistently associated 
with longevity and numerous age-related diseases, and 
functional and cognitive outcomes [11, 19, 21]. Other 
examples of DNAm surrogate of exposures and risk fac-
tors include the DNAm biomarkers identified by Coli-
cino and colleagues for cumulative lead exposure [22], 
the one derived by Marioni and colleagues for several 

longevity-related and inflammatory proteins [23–26], 
the classification by Guida and colleagues of current, for-
mer (including time since smoking cessation) and never 
smokers based on blood DNAm biomarkers [7], and the 
recent characterisation of electronic health records phe-
notypes by Thompson and colleagues [27].

DNAm surrogates can outperform original expo-
sure measurements in predicting diseases in association 
studies. For example, Zhang and colleagues show that 
a combination of smoking-associated DNAm markers 
predicts lung cancer incidence better than self-reported 
smoking [28]. In addition, Green and colleagues sug-
gest that a DNAm proxy for C-reactive protein (CRP) 
predicts structural neuroimaging brain measures better 
than blood measured CRP [29]. DNAm characteristics 
can explain these counter-intuitive results: (1) DNAm is 
a more reliable biomarker than self-reported exposure 
(i.e. in the case of smoking or other exposures measured 
through self-reported questionnaires); (2) DNAm vari-
ability includes individual genetic and metabolic profiles 
that can influence individual response to exposure and 
stressors (i.e. the same amount of exposure can be more 
or less dangerous based on genetic profile and general 
state of health); (3) DNAm variations reflect long-term 
exposures and, in some cases, are more stable in time 
(e.g. in the case of inflammatory status, the levels of one 
of the best predictive blood biomarkers, CRP, can fluctu-
ate within a single day).

Because of the way ‘next-generation’ epigenetic clocks 
have been built (i.e. trained on a set of biomarkers asso-
ciated with longevity), they are non-specific biomarkers 
that mirror an individual general state of health rather 
than the risk for any specific diseases. This study aims 
to evaluate the possibility of developing disease-specific 
blood DNAm biomarkers, training a DNAm score on 
disease-specific exposure and risk factors (rather than on 
all-cause mortality, as has been done for ‘next-generation’ 
epigenetic clocks). Specifically, we aim to: (1) develop 
a DNAm composite biomarker for predicting cardio-
vascular events trained on CVD-specific risk factors 
(named DNAmCVDscore), and (2) to compare its predic-
tive performance for incident CVD events with (a) the 
‘next-generation’ epigenetic clock DNAmGrimAge; (b) a 
DNAm score for CVD based on a single-step approach 
developed by Fernández-Sanlés et al., named methylation 
risk score (MRS) [1]; and (c) a prediction model based on 

our results encourage testing this approach for other NCD diseases by training and developing DNAm surrogates for 
disease-specific risk factors and exposures.

Keywords:  DNA methylation, Molecular epidemiology, Risk scores, Surrogate biomarkers, Cardiovascular risk, 
Epigenetics
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traditional CVD risk factors (chronological age, sex, dia-
betes status, smoking, systolic blood pressure, total and 
HDL cholesterol levels), named SCORE2 [10]. Beyond 
the main study aims, we investigated the association of 
DNAmCVDscore with COVID-19 susceptibility and 
severity.

Results
Study sample and study design description
This study sample includes DNAm data from seven stud-
ies previously described [17, 19, 30–35], which is summa-
rised in Table 1.

EPIC Italy, the training set, contains 1,803 individuals 
(62% women), age range from 35 to 75  years, including 
295 (16.4%) incident CVD cases [17]. The average (stand-
ard deviation sd) time from recruitment to CVD events 
was 7.6 (3.8) years. The average (sd) follow-up time was 
11.3 (5.6) years.

EXPOsOMICS CVD is a case–control study nested in 
the EPIC Italy cohort, including 160 incident CVD cases 
and age- and sex-matched controls (not overlapping with 
EPIC Italy training set), age range from 35 to 70  years 
(53% women) [30]. The average (sd) time from recruit-
ment to CVD events was 9.6 (3.9) years. The average (sd) 
follow-up time was 12 (4) years.

TILDA includes data for 490 individuals, originally 
selected to investigate the association of epigenetic bio-
markers of biological ageing with intergenerational 
socio-economic trajectories, with individuals equally 
distributed among four socio-economic categories, age 
range from 50 to 80 years (50% women) [19].

The United Kingdom Household Panel Study (UKHLS), 
also known as Understanding Society, is an ongoing lon-
gitudinal, nationally representative study of the UK, 
designed as a two-stage stratified random sample of the 

general population. The data used here consist of two 
pooled cross-sectional waves (waves 2 and 3), age range 
from 28 to 98 years (59% women) [31].

GSE174818 contains data for 101 COVID-19 cases 
and 27 age- and sex-matched controls hospitalised with 
respiratory symptoms, ranging from 21 to 90 years (40% 
women) [32].

The Northern Ireland Cohort for the Longitudinal 
Study of Ageing (NICOLA) is a longitudinal cohort rep-
resentative of the non-institutionalised population of 
Northern Ireland age 50 years and over [34, 36]. In this 
study, we used all the individuals with available DNAm 
data at baseline and follow-up information about cardio-
vascular events (N = 1728; 83 CVD cases). The average 
(sd) time from recruitment to CVD events was 3.4 (0.4) 
years. The average (sd) follow-up time was 3.3 (0.3) years.

The Health and Retirement Study (HRS) is a nation-
ally representative longitudinal survey of more than 
37,000 individuals over age 50 in 23,000 households in 
the U.S.A. In this study, we used all the individuals with 
available DNAm data at baseline and follow-up informa-
tion about cardiovascular events (N = 2146; 209 CVD 
cases) [37]. The average (sd) time from recruitment to 
CVD events was 2.9 (1.1) years. The average (sd) follow-
up time was 3.6 (0.8) years.

In Fig. 1, we present the analytical flow chart summa-
rising the main steps for developing the DNAmCVDscore:

(1)	 Develop and validate novel DNAm surrogate bio-
markers (training set: EPIC Italy; testing sets: 
EXPOsOMICS CVD, Understanding Society, 
TILDA, and GSE174818) through LASSO regulari-
sation for linear regression model.

(2)	 Develop the DNAmCVDscore (training set: EPIC 
Italy; 60 candidate DNAm surrogate biomarkers) 

Table 1  Study sample description

Study name Description Country N Age means (min; max) Female % Training/Testing set

EPIC Italy Italian sub-sample of the Euro-
pean Investigation into Cancer 
and Nutrition study

Italy 1803 53.3 (34.7; 74.9) 62 Training set for DNAm surrogates 
and DNAmCVDscore

EXPOsOMICS CVD Case–control study on CVD 
nested in the EPIC Italy cohort

Italy 315 54.9 (35.2; 69.3) 53 Validation set for DNAm surrogates 
and DNAmCVDscore

Understanding Society The United Kingdom Household 
Panel Study (UKHLS)

UK 1174 58.0 (28.0; 98.0) 59 Validation set for DNAm surrogates

TILDA The Irish Longitudinal Study on 
Ageing

Ireland 490 62.1 (50.0; 80.0) 50 Validation set for DNAm surrogates

GSE174818 Case–control study on COVID-19 
susceptibility and progression

USA 127 61.8 (21.0; 90.0) 40 Validation set for DNAm surrogates

NICOLA The Northern Ireland Cohort for 
the Longitudinal Study of Ageing

UK 1728 63.99 (40.0; 96.0) 52 Validation set for DNAmCVDscore

HRS The Health and Retirement Study USA 2146 68.76 (50.0;100.0) 60 Validation set for DNAmCVDscore
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through elastic net for Cox proportional hazards 
model.

(3)	 Validation of the DNAmCVDscore investigating 
its prediction performance through ROC curve 
analysis, right-censoring follow-up data at different 
time points in EXPOsOMICS CVD data set, and 
through C-index in NICOLA and HRS data sets.

(4)	 Comparison of DNAmCVDscore, MRS, SCORE2, 
and DNAmGrimAge predictive value.

Estimation and validation of DNAm surrogates
By means of penalised linear regression models (see 
“Methods” section), we developed DNAm surrogates 
for body mass index (BMI), systolic and diastolic blood 
pressure, and ten blood measured biomarkers: total cho-
lesterol, HDL cholesterol, LDL cholesterol, triglycerides, 
plasminogen activator inhibitor-1 (PAI-1), C-reactive 

protein (CRP), D-dimer, platelet tissue factor (a.k.a. 
CD142 protein), fasting glucose, and insulin.

A 75% proportion of the EPIC Italy data set (N = 1352) 
was employed as training set, the remaining 25% as 
a primary testing set, while the other four studies 
(EXPOsOMICS CVD, Understanding Society, TILDA, 
and GSE174818) were considered for validation. In 
Table  2, we report the number of CpGs whose linear 
combination best predicted the corresponding marker 
and the Pearson correlation coefficients of observed 
(measured) vs predicted (DNAm surrogate) in the EPIC 
Italy testing set (25% of the total sample). The correlation 
of DNAm surrogates with the corresponding measured 
marker was always higher than 0.4 (all P values lower 
than 0.0001), ranging from 0.43 (DNAmPAI-1 vs PAI-1) 
to 0.73 (DNAmTriglycerides vs triglycerides). Further, in 
Table  2, we report the Pearson correlation coefficients 
of observed vs predicted values computed in the four 

Fig. 1  Flow chart for development and validation of DNAmCVDscore. Step 1: We train prediction models for developing DNAm surrogates for 13 
CVD risk factors/biomarkers using data from the EPIC Italy study (n = 1803). We tested the validity of DNAm surrogates in four independent studies 
(n = 2107). Nine out of 13 DNAm biomarkers were validated in the testing set. Step 2: 60 candidate DNAm surrogates (nine newly developed + 51 
from the literature) were regressed against the time from study recruitment to cardiovascular event in EPIC Italy (n = 1803). The elastic net 
regression model selected ten DNAm surrogates as components of the DNAmCVDscore. Step 3: In EXPOsOMICS CVD data set (N = 315), NICOLA 
(N = 1728), and HRS (N = 2146) we evaluated the prediction performance of DNAmCVDscore at different time points (right-censoring follow-up 
time) using logistic regression models adjusted for chronological age, sex, and recruitment centre (matching variables in EXPOsOMICS CVD) or 
Cox regression models (in NICOLA and HRS). DNAmCVDscore has a higher AUC for short-term cardiovascular events than for long-term CVD. Step 
4: We compared the prediction performance of DNAmCVDscore with previously developed composite biomarkers: MRS, DNAmGrimAge, SCORE2 
and SCORE2 + DNAmCVDscore. SCORE2 outperforms epigenetic predictors for long-term CVD risk (occurred more than 8 years after recruitment), 
whereas DNAmCVDscore predicts short-term events (occurred within 7 years after recruitment) better than other biomarkers. The enriched 
SCORE2 + DNAmCVDscore model outperformed all the competitors for the entire time horizon considered in the study
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validation data sets. The correlation of DNAm surrogates 
with the corresponding measured marker was always 
positive, ranging from 0.08 (DNAmHDL vs HDL choles-
terol) to 0.44 (DNAmInsulin vs insulin). The P value was 
lower than 0.05 for all but D-dimer, diastolic blood pres-
sure, LDL cholesterol, and total cholesterol. Based on the 
above, we validated nine (out of 13) DNAm surrogates for 
BMI, CRP, fasting glucose and insulin, HDL cholesterol, 
triglycerides, PAI-1, platelet tissue factor (CD142), and 
systolic blood pressure. In Additional file 1: Figure S1, we 
reported the scatterplots of the standardised observed vs 
predicted values for the nine DNAm surrogates validated 
in this study.

Comparison with previously developed DNAm surrogates
We compared our newly developed DNAm surrogates 
with previously developed DNAm surrogates for HDL 
cholesterol, BMI [23], and PAI-1 [11]. The Pearson cor-
relation coefficients of our DNAm surrogates with 

those previously developed were 0.31 (P < 0.0001), 0.45 
(P < 0.0001), and 0.36 (P < 0.0001) for HDL cholesterol, 
BMI, and PAI-1, respectively.

Development and validation of the DNAmCVDscore
We developed a combined score, DNAmCVDscore, pre-
dictive of future CVD events by regressing the time-to-
CVD event on 60 candidate DNAm surrogates: the nine 
newly developed within this study, 32 DNAm surrogates 
for blood measured (mainly inflammatory) proteins pro-
duced by Gadd and colleagues [23, 26]; three epigenetic 
clocks (HorvathDNAmAge, HannumDNAmAgem, and 
DNAmPhenoAge) [20]; two DNAm surrogates for lead 
exposure [22]; six ‘Houseman’ DNAm surrogates for 
white blood cell (WBC) proportion [38]; and the nine 
components of the DNAmGrimAge clock (DNAm surro-
gates for smoking pack-years, telomere length, and seven 
blood measured proteins) [11].

The elastic net Cox regression model employed for the 
purpose selected chronological age, sex, and DNAm sur-
rogates for blood measured glucose, HDL cholesterol, 

Table 2  List of newly developed DNAm surrogate biomarkers

For each candidate marker, we reported: the model used to extract significant CpGs (LASSO or mixed-effect LASSO depending on the association with the centre of 
recruitment), the number of CpGs whose linear combination constitute the best marker prediction, the Pearson correlation coefficient and p value in the primary test 
set (random 25% of EPIC Italy samples), the Pearson correlation coefficient and p value in independent test sets (random effect meta-analysis across studies). Nine out 
of 13 DNAm surrogates for CVD risk factors/markers were validated in independent testing set (P value for the Pearson correlation test lower than 0.05). The lists of 
CpGs and their weights to compute DNAm surrogates in independent data sets are provided in Additional file 1

Model training, EPIC Italy training set, n = 1352 Results on EPIC ITALY 
test set n = 451

Results on the validation set

Risk factor/biomarker Model type Number 
of CpGs

Pearson R P Validation data sets 
(N)

Pearson R P Validated 
DNAm 
surrogate

BMI Mixed-effect LASSO 405 0.59  < 0.0001 US, TILDA, EXPOsOM-
ICS, GSE174848 (2,045)

0.27  < 0.0001 Yes

CRP LASSO 265 0.57  < 0.0001 US, TILDA, EXPOsOM-
ICS, GSE174849 (1,893)

0.23  < 0.0001 Yes

D-dimer LASSO 483 0.72  < 0.0001 EXPOsOMICS, 
GSE174848 (248)

0.17 0.56 No

Diastolic blood pressure Mixed-effect LASSO 401 0.57  < 0.0001 EXPOsOMICS, TILDA 
(772)

0.10 0.36 No

Glucose Mixed-effect LASSO 354 0.67  < 0.0001 EXPOsOMICS, TILDA, US 
(1,810)

0.28 0.007 Yes

HDL cholesterol Mixed-effect LASSO 151 0.58  < 0.0001 EXPOsOMICS, TILDA, US 
(1,829)

0.08 0.001 Yes

Insulin Mixed-effect LASSO 574 0.66  < 0.0001 EXPOsOMICS (170) 0.44  < 0.0001 Yes

LDL cholesterol Mixed-effect LASSO 368 0.62  < 0.0001 EXPOsOMICS, TILDA 
(661)

0.15 0.36 No

PAI-1 LASSO 90 0.43  < 0.0001 EXPOsOMICS (171) 0.28 0.0001 Yes

Systolic blood pressure Mixed-effect LASSO 275 0.64  < 0.0001 EXPOsOMICS, TILDA 
(772)

0.28 0.001 Yes

Tissue factor (CD142) Mixed-effect LASSO 197 0.62  < 0.0001 EXPOsOMICS (171) 0.16 0.03 Yes

Total cholesterol Mixed-effect LASSO 257 0.53  < 0.0001 EXPOsOMICS, TILDA, US 
(1,830)

0.13 0.14 No

Triglycerides LASSO 471 0.73  < 0.0001 EXPOsOMICS, TILDA 
(661)

0.22 0.0003 Yes
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systolic blood pressure, PAI-1, CRP (developed within 
this study), Serine/threonine-protein kinase receptor 
3 (SKR3) and hepatocyte growth factor (HGF) (devel-
oped in Gadd et al. [25]), growth differentiation factor 15 
(GDF15) protein, smoking pack-years (developed in Lu 
et al. [11]), and lead level measured in patella bone (devel-
oped in Colicino et al. [22]). Since age and sex effects are 
considered in several DNAm surrogate biomarkers that 
were used to derive the DNAmCVDscore (Glucose, PAI-
1, SBP, CRP, HDL, GDF15, and PACKYRS) we re-trained 
the elastic net model without age and sex to derive bet-
ter calibrated coefficients (not influenced by the redun-
dant presence of age and sex). All the biomarkers except 
DNAmHDL have positive regression coefficients (higher 
risk associated with higher values). The linear combina-
tion of standardised values for the ten DNAm surrogates 
listed in Table  3 can be interpreted as a standardised 
(within the population in which it is computed) CVD risk 
score (named DNAmCVDscore). In Additional file 1: Fig-
ure S2, we report the pairwise Pearson’s correlation coef-
ficients for the 10 DNAm surrogates used to derive the 
DNAmCVDscore.

For validating the DNAmCVDscore, we used two dif-
ferent analytical approaches, depending on the study 
design of the validation data sets. The EXPOsOMICS 
CVD study had a nested case–control study design, with 
cases matched to healthy controls for chronological age, 
sex, recruitment centre, and technical covariates (con-
trols selected using the incidence sampling method). 
Therefore, we test the DNAmCVDscore prediction per-
formance using logistic regression models adjusted for 
matching variables. By contrast, NICOLA and HRS 
data sets include data from the general population over 
the age of 50 from Northern Ireland and the U.S.A., 

respectively (cohort study design), so we used Cox pro-
portional hazard regression models.

Also, in the independent test sets we compared DNAm‑
CVDscore predictive performance with those of MRS, 
SCORE2, and DNAmGrimAge. In EXPOsOMICS CVD, 
we performed ROC curve analyses of logistic regression 
models adjusted for matching variables, right-censoring 
the follow-up at constant intervals of one year from 18 to 
2 years to evaluate the prediction performance as a func-
tion of the follow-up time. In NICOLA and HRS, because 
of the different study design (cohort studies) and the 
lower follow-up time (up to 5 years, 3 years on average), 
we computed the Harrell’s concordance index (C-index) 
from Cox proportional hazard regression models. Fur-
ther, we have evaluated the prediction performance of a 
model including the DNAmCVDscore in addition to the 
traditional risk factors in SCORE2 (named from here on 
SCORE2 + DNAmCVDscore model).

Validation of DNAmCVDscore in EXPOSOMICS CVD
In Table 4 and Fig. 2, we present the area under the ROC 
curve (AUC), sensitivity, and specificity (best threshold 
selected according to the minimum distance from the 
top left corner of the ROC curve) of the five composite 
biomarkers as a function of the length of follow-up (right 
censored at regular intervals of one year) in EXPOsOM-
ICS CVD data set. For all models regressed only on 
epigenetic-based biomarkers, namely DNAmCVDscore, 
MRS, and DNAmGrimAge, the AUC increases as the 
follow-up time decreases, suggesting that epigenetic bio-
markers predict short-term events rather than long-term 
CVD risk (Table 4 and Fig. 2). By contrast, the AUC for 
SCORE2 was not time-dependent, ranging from 0.678 
(7 years follow-up) to 0.785 (4 years follow-up). The 
MRS had the worst performance independently of the 

Table 3  DNAm surrogates composing the DNAmCVD score

DNAmCVDscore is computed as a linear combination of standardised (mean = 0, variance = 1) DNAm surrogates with weights listed in the coefficient column. All 
biomarkers but DNAmHDL have positive coefficients (higher CVD risk associated with a higher value for the biomarker)

Study DNAm surrogate biomarker DNAmCVDscore 
coefficient

Original biomarker/risk factor

This study DNAmGlucose 0.0329 Blood glucose

This study DNAmHDL − 0.4473 Blood HDL cholesterol

This study DNAmSBP 0.1420 Systolic blood pressure

This study DNAmCRP 0.0276 Blood C-reactive protein

This study DNAmPAI1 0.1679 Blood Plasminogen activator inhibitor 1

Gadd et al. 2022 DNAmSKR3 0.0362 Blood Serine/threonine-protein kinase receptor R3

Gadd et al. 2022 DNAmHGF 0.0371 Blood Hepatocyte growth factor

Colicino et al. 2021 DNAmLeadPatella 0.0402 Lead levels in Patella’s bone

Lu et al. 2019 DNAmGDF15 0.0947 Blood Growth Differentiation Factor 15

Lu et al. 2019 DNAmPACKYRS 0.1192 Smoking pack-years
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follow-up length (Table  4 and Fig.  2). SCORE2 outper-
formed epigenetic biomarkers in predicting CVD events 
considering follow-up time from 18 to 8 years. However, 
right-censoring the follow-up time at 7 years or less, 
DNAmCVDscore and DNAmGrimAge perform better 
than SCORE2, with DNAmCVDscore having a slightly 
higher AUC than DNAmGrimAge (Table  4 and Fig.  2). 
Overall, the best performance throughout the considered 
time horizon is showcased by the SCORE2 + DNAm‑
CVDscore model, in which the original SCORE2 model 
is enriched with the DNAmCVDscore developed in this 
study. Epigenetic-based biomarkers improve the pre-
dictive accuracy of SCORE2, complementing the infor-
mation provided by traditional CVD risk factors. This 
is particularly true when a short follow-up time is con-
sidered, where the differences between SCORE2 and 
SCORE2 + DNAmCVDscore are evident.

Validation of DNAmCVDscore in NICOLA and HRS
In Cox regression models adjusted for age and sex, the 
hazard ratio (HR) for one standard deviation increase 
in the DNAmCVDscore was 2.05 (95% CI 1.13; 3.73, 
P = 0.02) and 1.70 (95% CI 1.12; 2.58, P = 0.01) in 

NICOLA and HRS data sets, respectively. In Table  5, 
we reported the C-index and their 95% confidence 
intervals for the five composite biomarkers (DNAm‑
CVDscore, DNAmGrimAge, MRS, SCORE2, and 
SCORE2 + DNAmCVDscore). In line with EXPOsOM-
ICS CVD, DNAmCVDscore performed slightly bet-
ter than DNAmGrimAge and SCORE2, whereas MRS 
had the poorest predictive performance. Finally, the 

Fig. 2  Prediction performance of DNAmCVDscore, MRS, DNAmGrimAge, SCORE2 and SCORE2 + DNAmCVDscore. Area under the ROC curve (AUC), 
on the y-axis, as a function of the follow-up length (x-axis) for the five composite biomarkers investigated in this study. MRS has the worst prediction 
performance at each time point. SCORE2 outperforms epigenetic predictors for long-term CVD risk (occurred more than 8 years after recruitment), 
whereas DNAmCVDscore and DNAmGrimAge predict short-term risk (CVD events within 7 years after recruitment or less) better than the other 
biomarkers. The enriched SCORE2 + DNAmCVDscore model outperformed all the competitors for the entire time horizon considered in the study

Table 5  Results from the Cox (proportional hazard) regression 
models in NICOLA and HRS validation data sets

For each composite biomarker, we report the C-index (95% CI) derived from Cox 
regression models adjusted for age and sex

NICOLA (N = 1728; 
83 CVD cases)

HRS (N = 2146; 
209 CVD cases)

C-index (95% CI) C-index (95% CI)

DNAmCVDscore 0.73 (0.68; 0.78) 0.70 (0.65; 0.73)

DNAmGrimAge 0.72 (0.67; 0.77) 0.70 (0.65; 0.74)

SCORE2 0.72 (0.67; 0.77) 0.69 (0.65; 0.74)

MRS 0.69 (0.64; 0.75) 0.68 (0.63; 0.72)

DNAmCVDscore + SCORE2 0.75 (0.69; 0.80) 0.71 (0.67; 0.75)
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combined model including SCORE2 variables + DNAm‑
CVDscore had a slightly higher C-index than the model 
with DNAmCVDscore alone.

We performed additional statistical comparisons, 
including sensitivity analyses, correlation of DNAm‑
CVDscore with epigenetic clocks, and the association of 
DNAmCVDscore with COVID-19 case–control status 
and severity. The results of these additional analyses are 
reported in Additional file 1.

Discussion
Emerging evidence highlights the epidemiological value 
of composite scores based on blood DNAm surrogates of 
exposures and risk factors, e.g. epigenetic clocks, associ-
ated with non-communicable diseases (NCDs) and pre-
dictive of mortality [20]. However, since ‘next-generation’ 
epigenetic clocks have been trained on time to death, 
they constitute non-specific biomarkers, representative 
of the general individual state of health, rather than dis-
ease-specific biomarkers.

In this work, we present a combined blood DNAm-
based biomarker for predicting future cardiovascu-
lar events, named DNAmCVDscore. To the best of our 
knowledge, this is the first example of a disease-specific 
biomarker using molecular data only, without the need 
for additional information (other than age and sex) about 
the personal history of exposure, general state of health, 
lifestyle habits, and other commonly used biomarkers. 
This may be important for future risk prediction reduc-
ing the scope of measurement error and bias attendant 
on self-reports of exposure to risk factors. For this aim, 
DNAm-based biomarkers are optimal candidates because 
DNAm is strongly influenced by long-term exposures, 
genetic susceptibility, and lifestyle habits [39]. In other 
words, it is possible to extract information about the his-
tory of exposures and susceptibility to complex diseases 
from whole-genome DNAm data with high accuracy.

We applied a two-step approach, following the success-
ful example of the epigenetic clocks. First, we developed 
and validated nine novel DNAm surrogates for CVD risk 
factors: systolic blood pressure, BMI, CRP, fasting glucose 
and insulin, HDL cholesterol, triglycerides, PAI-1, and 
platelet tissue factor (a.k.a. CD142 protein). In Additional 
file 1, we provided the lists of CpG sites and their weights 
for generating the new DNAm surrogates in independent 
data sets for future epidemiological research.

Then, we developed a DNAmCVDscore starting from 
60 candidate DNAm surrogates (nine newly developed 
within this study plus 51 from the previous literature), 
including surrogate measures for the main risk factors 
for CVDs (obesity, smoking habits, alcohol consumption, 
inflammatory proteins, lipid levels, blood pressure, coag-
ulation biomarkers). Our elastic net model extracted ten 

DNAm surrogate biomarkers whose linear combination 
constitutes the so-called DNAmCVDscore: fasting glu-
cose, HDL cholesterol, systolic blood pressure, smoking 
pack-years, lead exposure and blood levels of PAI-1, CRP, 
SKR3, HGF, and GDF15 proteins.

We validated the ability of the DNAmCVDscore to 
predict future cardiovascular events in an independ-
ent prospective case–control study nested in the EPIC 
Italy cohort (EXPOsOMICS CVD) and two cohort stud-
ies from Northern Ireland and the U.S.A. (NICOLA and 
HRS). EXPOsOMICS CVD matched incident CVD cases 
with healthy controls by age, sex, recruitment centre, and 
length of follow-up (up to 18 years; around 12 years on 
average) using the incident density sampling method, 
while NICOLA and HRS are cohort studies from the 
general population over the age of 50 with a follow-up 
time up to 5 years (3 years on average). We showed that 
existing prediction models based on traditional CVD 
risk factors (SCORE2 [10], based on chronological age, 
sex, diabetes, smoking, systolic blood pressure, total and 
HDL cholesterol) outperform epigenetic biomarkers for 
predicting long-term CVD risk according to the AUC 
measure. However, DNAmCVDscore predicts short-term 
(7 years follow-up or less) CVD risk better than SCORE2. 
Other known CVD scores based on traditional risk fac-
tors like the Framingham Risk Score (FRS) [40], share 
the majority of predictors with SCORE2, consequently, 
they have prediction performance comparable to that of 
SCORE2 (data not shown to avoid redundancy).

When traditional risk factors are combined with epi-
genetic biomarkers, as done in the SCORE2 + DNAm‑
CVDscore model, the best performance for both 
long- and short-term CVD risk is achieved. Interest-
ingly, the prediction performance of DNAmCVDscore 
and DNAmGrimAge was comparable (slightly higher for 
DNAmCVDscore for short-term events). Accordingly, 
in Additional file  2: Table  S2 we showed that the com-
bination SCORE2 + DNAmGrimAge was comparable 
(slightly lower) to the combination SCORE2 + DNAm‑
CVDscore, and that the combination SCORE2 + DNAm‑
CVDscore + DNAmGrimAge does not outperform 
SCORE2 + DNAmCVDscore, further supporting that 
DNAmCVDscore and DNAmGrimAge shared a sig-
nificant proportion of variability. This is not unexpected 
considering the DNAmCVDscore and DNAmGrimAge 
share four of the ten components (DNAmCRP, DNAm-
PAI1, DNAmPackYears, and DNAmGDF15), and the 
Pearson correlation coefficient for both epigenetic bio-
markers is R = 0.56 (P < 0.0001, Additional file  1: Figure 
S4). Such similarities may be explained by the fact that 
CVD is the leading cause of mortality worldwide and 
that the DNAmGrimAge was trained to predict time to 
death in the Framingham Heart Study, in which there is 
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detailed characterisation and documentation of heart 
disease [11]. From a biological perspective, these results 
confirm previous research indicating that heightened 
inflammation (associated with all four components com-
mon in both scores) plays a major role in biological age-
ing and the risk of age-related diseases, including CVDs 
[41].

Finally, we showed that the MRS, built directly from 
modelling the association of CpGs on CVD risk using 
a single-step approach, had the worst prediction per-
formance independently of the length of follow-up and 
study design.

Among the 10 DNAm surrogates used to derive the 
DNAmCVDscore, DNAmHDL had the largest abso-
lute coefficient, consistent with the strong association 
of serum HDL with CVD risk in the training set, which 
explains more than 65% of the variability in DNAmCVD‑
score (Pearson correlation coefficient between DNAm-
HDL and DNAmCVDscore = − 0.82, Additional file  2: 
Table  S2). As such, we performed additional sensitiv-
ity analyses to evaluate the prediction performance of 
DNAmHDL alone. In the testing sets, the prediction of 
DNAmCVDscore was higher than DNAmHDL, suggest-
ing that each of the 10 surrogate biomarkers captures a 
slice of the variability in the risk of future CVD events. 
Also, the pairwise correlation coefficients among the 10 
surrogates were generally lower than 0.3 with few excep-
tions (high mutual correlation between DNAmPACK-
YRS, DNAmHGF, and DNAmSKR3, Additional file  2: 
Table S2), further supporting previous interpretation.

The results described above suggest that blood DNAm 
predictor of diseases may be improved. For example, the 
DNAmCVDscore can be ameliorated in different ways:

(1)	 More DNAm surrogates, such as surrogate meas-
ures for air pollution exposure, physical activity, 
dietary quality (e.g. adherence to the Mediterranean 
diet or consumption of ultra-processed food) [30, 
42–44] should be developed and included among 
the list of candidates in the training model.

(2)	 Refined statistical methods can be used to improve 
DNAm biomarkers reproducibility and reducing 
noise due to unmeasured batch effect [45, 46] and 
to evaluate their predictive performance for mul-
tiple outcomes [47]. Given the likely life course 
effects on methylation trajectories, alternative func-
tional forms other than linear combinations should 
also be explored possibly using longitudinal data.

(3)	 Acknowledging the drawbacks of shrinkage meth-
ods like the elastic net [48], we should look towards 
increasing the sample size of the training set by 
combining data from multiple cohorts and different 

countries, possibly modelling country-specific risk 
factors to improve results generalisability.

(4)	 A more comprehensive evaluation of their real-
world value, incorporating calibration, clinical util-
ity, and net benefit [49].

Also, we showed that, although DNAmCVDscore is 
not directly trained on age, it is correlated with chrono-
logical age (R = 0.41, P < 0.0001) and epigenetic clocks 
(Additional file  1: Figure S2). These results further sup-
port the idea that susceptibility due to increasing ageing 
is included in the DNAmCVDscore, even if chronological 
age (or epigenetic clocks) does not directly contribute to 
it.

Further, we demonstrated the usefulness of DNAm 
surrogate biomarkers in investigating COVID-19 sus-
ceptibility and severity, showing that DNAmBMI was 
associated with case–control status, while measured BMI 
was not (Additional file 1; Additional file 2: Table S2), and 
that DNAmCRP outperformed blood measured CRP in 
predicting disease severity (Additional file  1; Additional 
file 2: Table S2). Finally, we showed that DNAmCVDscore 
is higher in COVID-19 patients than in controls (hos-
pitalised with respiratory problems) and that a higher 
DNAmCVDscore is associated with a worse prognosis 
(according to the GRAM score) after COVID-19 infec-
tion (Additional file 1: Figure S4). These results support 
recent literature suggesting COVID-19 shares direct and 
indirect determinants (i.e. ethnicity, socio-economic 
status) with other NCDs, supporting the concept of 
COVID-19 as a syndemic [50, 51] with implications for 
restrictions and prevention strategies.

This work has limitations. The training set for the time 
from recruitment to the cardiovascular events comes 
from the Italian population, and the predictive perfor-
mance for long-term CVD was poor. This result is par-
tially explained by our selection procedure in the training 
set, based on the time-to-CVD event. Also, it may sup-
port a previous report about DNAm as biomarkers of life 
course accumulation of exposure and stressors [52], lead-
ing to a better prediction of short-term outcomes rather 
than long-term risk. Thus, methylation levels are likely 
to have undergone severe changes as the follow-up time 
increased. Moreover, in the current study, incident CVD 
events many years after recruitment were mostly limited 
to individuals with baseline diabetes, an aspect taken into 
account by traditional scores based on risk factors but 
not included in our DNAm-based score.

We discussed previously how DNAmCVDscore could 
be refined by re-training the model after increasing the 
sample size and using updated analytical methods.
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Conclusions
We developed a combined biomarker as a linear combi-
nation of DNAm surrogates, named DNAmCVDscore, 
with high performance in predicting short-term cardio-
vascular events outperforming current state-of-the-art 
CVD prediction models based on traditional risk fac-
tors, and DNAm scores based on a single-step approach. 
Further, we provided new DNAm surrogates for CVD 
risk factors useful for further research in molecular 
epidemiology.

This work provides a proof of concept about the 
effectiveness of the described methodology based on 
a two-step approach which involve DNAm surrogates. 
Developing blood-based biomarker for risk prediction 
without the need for additional information or invasive 
measurements would provide significant opportunities to 
reduce disease burden from a public health perspective.

Our results encourage further studies investigating the 
association of the newly developed DNAmCVDscore with 
secondary outcomes that result from CVD (such as lung 
function, reduced cognitive and mobility outcomes), and 
to test this two-step approach for other NCD diseases 
(such as cancer, mental diseases, neurodegenerative dis-
eases, respiratory problems, and hearing and taste loss) 
by training and developing DNAm surrogates for dis-
ease-specific risk factors and exposures.

Methods
Subject recruitment, demographic/lifestyle variables 
acquisition, and DNA methylation measurements
EPIC Italy
Study participants were drawn from the Italian com-
ponent of the European Prospective Investigation into 
Cancer and Nutrition (EPIC) cohort [53], a large general 
population cohort consisting of ~ 520,000 individuals, 
with standardised lifestyle and personal history question-
naires, measured anthropometric data and blood sam-
ples collected for DNA extraction. Smoking habits data 
were collected at study enrolment using a questionnaire, 
and participants were categorised as ‘never’, ‘former’ and 
‘current’ smokers. Height and weight were measured at 
enrolment with a standardised protocol, and body mass 
index (BMI) was calculated as the ratio between weight 
in kg and squared height in metres, treated as a continu-
ous variable. Measurements methods for blood pressure, 
cholesterol levels, triglycerides, and PAI1, D-dimer, and 
CRP are reported elsewhere [54].

This study sample includes individuals from five nested 
case–control studies on breast, colon, and lung cancer, 
lymphomas, and myocardial infarction [55, 56]. Partici-
pants were sampled from the 47,749 participants of the 
EPIC Italy cohort and included 354 incident breast can-
cer cases, 169 incident colon cancer cases, 192 incident 

lung cancer cases, 72 incident lymphoma cases, 295 inci-
dent myocardial infarction cases and their 1079 matched 
controls. Controls were individually matched on age 
(± 5  years), sex, the season of blood collection, centre, 
and length of follow-up. Since the disease diagnoses were 
made years after the blood draw, all the subjects were 
treated as healthy at recruitment. In the time-to-CVD 
event analyses, the follow-up time was (right) censored 
at the time of diagnosis for incident cancer cases. Over-
all, after DNA methylation data quality controls and sam-
ple filtering 1,803 EPIC Italian subjects were used in this 
analysis.

EXPOsOMICS CVD
Study participants pertain to the EPIC Italy cohort. 160 
incident CVD cases and one-to-one matched controls 
(not overlapping with the EPIC Italy data set described 
hereafter) were extracted using the incident density sam-
pling method [30]. After DNAm data quality control and 
sample filtering, 315 individuals were included in this 
study.

For the microarray (in EPIC Italy and EXPOsOMICS 
CVD), DNA samples were extracted from buffy coats 
using the QIAsymphony DNA Midi Kit (Qiagen, Crawley, 
UK). Bisulphite conversion of 500 ng of each sample was 
performed using the EZ-96 DNA Methylation-Gold™ 
Kit according to the manufacturer’s protocol (Zymo 
Research, Orange, CA). Then, bisulphite-converted DNA 
was used for hybridisation on the Infinium Human-
Methylation450 BeadChip, following the Illumina Infin-
ium HD Methylation protocol. Briefly, a whole-genome 
amplification step was followed by enzymatic end-point 
fragmentation and hybridisation to HumanMethyla-
tion 450 BeadChips at 48 °C for 17 h, followed by single 
nucleotide extension. The incorporated nucleotides were 
labelled with biotin (ddCTP and ddGTP) and 2,4-dinitro-
phenol (DNP) (ddATP and ddTTP). After the extension 
step and staining, the BeadChip was washed and scanned 
using the Illumina HiScan SQ scanner. The intensities 
of the images were extracted using the GenomeStudio 
(v.2011.1) Methylation module (1.9.0) software, which 
normalises within-sample data using different internal 
controls that are present on the HumanMethylation 450 
BeadChip and internal background probes. The meth-
ylation score for each CpG was represented as a β value 
according to the fluorescent intensity ratio representing 
any value between 0 (unmethylated) and 1 (completely 
methylated).

The Irish longitudinal study on ageing (TILDA)
Is a large prospective cohort study examining the social, 
economic and health circumstances of 8,175 community-
dwelling older adults aged 50 years and over resident in 
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the Republic of Ireland. The sample was generated using 
a 3-stage selection process and the Irish Geodirectory as 
the sampling frame. The Irish Geodirectory is a compre-
hensive listing of all addresses in the Republic of Ireland, 
which is compiled by the national post service and ord-
nance survey Ireland. Subdivisions of district electoral 
divisions pre-stratified by socio-economic status, age, 
and geographical location, served as the primary sam-
pling units. The second stage involved the selection of a 
random sample of 40 addresses from within each PSU 
resulting in an initial sample of 25,600 addresses. The 
third stage involved the recruitment of all members of 
the household aged 50 years and over. Consequently, the 
response rate was defined as the proportion of house-
holds including an eligible participant from whom an 
interview was successfully obtained. A response rate 
of 62% was achieved at the household level. There were 
three components to the survey. Respondents completed 
a computer-assisted personal interview and a separate 
self-completion paper and pencil module which col-
lected information that was considered sensitive. All par-
ticipants were invited to undergo an independent health 
assessment at one of two national centres using trained 
nursing staff. Blood samples were taken during the clini-
cal assessment with the consent of participants. A more 
detailed exposition of study design, sample selection and 
protocol are available elsewhere [19]. The present study 
sample included 500 healthy individuals: 125 for each 
of the four socio-economic classes: stable professional, 
any downward mobility, any upward mobility, and stable 
unskilled. Buffy coat or peripheral blood mononuclear 
cells (PBMC) samples were available for all the individu-
als. Overall, after DNA methylation data quality controls 
and sample filtering, 490 subjects were analysed in this 
study.

For the microarray, DNA samples were extracted from 
buffy coats using the QIAGEN GENTRA AUTOPURE 
LS (Qiagen, Crawley, UK). Bisulphite conversion of 
500 ng of each sample was performed using the EZ DNA 
Methylation-Lightning™ Kit according to the manufac-
turer’s protocol (Zymo Research, Orange, CA). Then, 
bisulphite-converted DNA was used for hybridisation on 
the Infinium HumanMethylation 850  k BeadChip, fol-
lowing the Illumina Infinium HD Methylation protocol. 
Briefly, a whole-genome amplification step was followed 
by enzymatic end-point fragmentation and hybridisa-
tion to HumanMethylation EPIC Chip at 48 °C for 17 h, 
followed by single nucleotide extension. The incorpo-
rated nucleotides were labelled with biotin (ddCTP 
and ddGTP) and 2,4-dinitrophenol (DNP) (ddATP and 
ddTTP). After the extension step and staining, the Bead-
Chip was washed and scanned using the Illumina HiScan 
SQ scanner. The intensities of the images were extracted 

using the GenomeStudio (v.2011.1) Methylation mod-
ule (1.9.0) software, which normalises within-sample 
data using different internal controls that are present 
on the HumanMethylation 850  k BeadChip and inter-
nal background probes. The methylation score for each 
CpG was represented as a β value according to the fluo-
rescent intensity ratio representing any value between 0 
(unmethylated) and 1 (completely methylated).

Understanding society
The study sample consisted of participants from the 
United Kingdom Household Panel Study (UKHLS), also 
known as Understanding Society [57], an ongoing lon-
gitudinal, nationally representative study of the UK, 
designed as a two-stage stratified random sample of the 
general population. While Understanding Society is a 
panel survey, the data used here consist of two pooled 
cross-sectional waves where a nurse collected blood 
samples from the respondents, among other physiologi-
cal measures. The eligibility criteria for collecting blood 
samples were: (a) participation in the previous main 
interviews in England (had participated in all annual 
interviews between 1999 (BHPS wave 9) and 2011–2013 
(Understanding Society wave 2 and 3); (b) age 16 and 
over; (c) living in England, Wales, or Scotland. From the 
potential pool of 6337 survey respondents, eligibility 
requirements for epigenetic analyses meant that the sam-
ples for DNA methylation measurement were restricted 
to participants of white ethnicity, resulting in 1175 sub-
jects; more details can be found elsewhere [31]. Details 
about laboratory analyses for DNAm and how to access 
raw data can be found at the Understanding Society web 
site.

(https://​www.​under​stand​ingso​ciety.​ac.​uk/​docum​entat​
ion/​mains​tage/​datas​et-​docum​entat​ion/​varia​ble/​epige​
netics).

For the GSE174818 (Covid-19 case–control) study, 
details of sample characteristics and laboratory methods 
for DNAm and biomarker analyses are described in the 
original publication [32].

The Health and Retirement Study (HRS) is a nationally 
representative longitudinal survey of more than 37,000 
individuals U.S.A. [35]. The survey has been fielded 
every 2 years since 1992 and was established to provide 
a national resource for data on the changing health and 
economic circumstances associated with ageing at both 
individual and population levels. The cohort study is 
focussed on four broad topics: income and wealth; health, 
cognition, and use of healthcare services; work and 
retirement; and family connections. HRS data are also 
linked at the individual level to administrative records 
from Social Security and Medicare, Veteran’s Administra-
tion, the National Death Index, and employer-provided 

https://www.understandingsociety.ac.uk/documentation/mainstage/dataset-documentation/variable/epigenetics
https://www.understandingsociety.ac.uk/documentation/mainstage/dataset-documentation/variable/epigenetics
https://www.understandingsociety.ac.uk/documentation/mainstage/dataset-documentation/variable/epigenetics
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pension plan information. Since 2006, data collection has 
expanded to include genetic and epigenetic biomarkers. 
DNA methylation assays were done on a non-random 
sub-sample (N = 4018) of people who participated in the 
Health and Retirement 2016 Venous Blood Study. In this 
study, we used the sub-sample in which health assess-
ment at the follow-up was available (N = 2146). The sam-
ple is 60% female and has a median age of 67 years and 
ranges in age from 50 to 100. It has racial diversity: non-
Hispanic White and others (81.1%), non-Hispanic Black 
(10.0%), and Hispanic (8.9%). The sample is weighted to 
be representative of the U.S. population. DNA methyla-
tion data are based on assays using the Infinium Meth-
ylation EPIC BeadChip completed at the Advanced 
Research and Diagnostics Laboratory at the University 
of Minnesota. Samples were randomised across plates 
by key demographic variables (age, cohort, sex, educa-
tion, race/ethnicity) with 39 pairs of blinded duplicates. 
Analysis of duplicate samples showed a correlation > 0.97 
for all CpG sites. The minfi package in R software was 
used for data pre-processing, and quality control; 3.4% of 
the methylation probes (n = 29,431 out of 866,091) were 
removed from the final data set due to suboptimal per-
formance (using a detection p value threshold of 0.01). 
Analysis for detection p value failed samples was done 
after removal of detection p value failed probes. Using a 
5% cut-off we removed 58 samples. We also removed sex-
mismatched samples and any controls (cell lines, blinded 
duplicates).

The Northern Ireland Cohort for the Longitudinal 
Study of Ageing (NICOLA) is a longitudinal cohort rep-
resentative of the non-institutionalised population of 
Northern Ireland aged 50  years and older (N = 8504) 
[34]. The study, which was established in 2013, has three 
main components: a computer aided personal inter-
view (CAPI), a self-completion questionnaire and health 
assessment. Dietary intake was also assessed by a food 
frequency questionnaire. The CAPI was extensive in 
scope and included assessment of demographic, social 
and health-related factors. Measures of cardiovascu-
lar, physical, cognitive, and visual function were deter-
mined, and a biobank of biological samples collected. 
DNA samples were extracted from buffy coats by Euro-
fins Scientific and normalised using PicoGreen quantita-
tion. Bisulphite conversion of 500 ng of each sample was 
performed using the EX Zymo Methylation Kit (Zymo 
Research, Orange, CA) using the alternative overnight 
incubation conditions provided in the published proto-
col for use with the Illumina Infinium MethylationEPIC 
kit (Illumina USA). Then, bisulphite-converted DNA was 
used for hybridisation on the Infinium MethylationEPIC 
BeadChip array (Illumina, USA) following the manu-
facturer’s instructions, with arrays run on an Illumina 

HiScan. The intensities of the images were background 
adjusted and extracted as beta values using the Genom-
eStudio (v.2011.1) Methylation module (1.9.0) software.

DNA methylation data pre‑processing and quality controls
For all the studies but HRS (pre-processing procedure 
described previously), raw DNAm data were pre-pro-
cessed and normalised using in-house software written 
for the R statistical computing environment, including 
background and colour bias correction, quantile nor-
malisation, and BMIQ procedure to remove type I/type 
II probes bias, as described elsewhere [58]. DNAm levels 
were expressed as the ratio of the intensities of methyl-
ated cytosines over the total intensities (β values). Sam-
ples were excluded if the bisulphite conversion control 
fluorescence intensity was less than 10,000 for both type 
I and type II probes. Methylation measures were set to 
missing if the detection P value was greater than 0.01. 
Additionally, the set of cross-reactive and/or polymor-
phic (with minor allele frequency greater than 0.01 in 
Europeans) CpGs (N = 39,238) described by Chen et  al. 
[59] was excluded due to the low reliability of methyla-
tion measure.

The Fernández-Sanlés methylation risk score (MRS) 
was computed as a standardised weighted sum of 34 CpG 
sites, with weights defined by the estimates described by 
the authors in the Supplementary material of their origi-
nal publication [1]. DNAmGrimAge and other epige-
netic clocks were computed using Steve Horvath online 
DNAmAge calculator.

(https://​horva​th.​genet​ics.​ucla.​edu/​html/​dnama​ge/).

Outcome definition
In EPIC Italy and EXPOsOMICS, incident CVD cases 
were identified from hospital discharge databases when 
the clinical record reported the International Classifica-
tion of Diseases (ICD), Ninth Revision, Clinical Modi-
fication code 410, or ICD 410 plus the procedure codes 
for coronary revascularisation (e.g. percutaneous trans-
luminal coronary angioplasty and coronary artery bypass 
surgery), including. Suspect CHD events were confirmed 
when myocardial infarction (MI), acute coronary syn-
drome, ischaemic cardiomyopathy, coronary or carotid 
revascularisation, and ischaemic or haemorrhagic stroke 
were reported in the records, supported by information 
on onset symptoms, levels of cardiac enzymes and tro-
ponins, and electrocardiographic data coded according 
to the Minnesota Code. Cases were cross-checked with 
mortality files to identify fatal and nonfatal cases (the lat-
ter defined as alive 28  days after diagnosis). Study par-
ticipants with CHD at cohort entry were identified from 
the baseline questionnaire, from linkage with hospital 
discharge records, or by direct examination of clinical 

https://horvath.genetics.ucla.edu/html/dnamage/
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records, and were excluded from this study. In NICOLA 
and HRS, we defined CVD events accordingly with the 
definition used in the training set (EPIC Italy).

Statistical analyses
Development and validation of DNAm surrogates
We developed DNAm surrogates for BMI, systolic and 
diastolic blood pressure, and ten blood measured bio-
markers. We used the EPIC Italy data set randomly split 
into training (N = 1352; 75% of the sample) and test set 
(N = 451; 25% of the sample). For each risk factor/bio-
marker, we created a DNAm surrogate through a three-
step procedure:

(1)	 We identified risk factors/biomarkers showing sig-
nificant differences across EPIC Italy centres (Turin, 
Varese, Naples, Ragusa) via ANOVA analyses. We 
employed a linear model with a random intercept 
component, accounting for differences across cen-
tres for this subset of biomarkers, consisting of all 
but PAI-1, CRP, D-dimer, and triglycerides. We 
used a fixed-effect linear model for the other bio-
markers.

(2)	 Log-transformed risk factors/biomarkers were 
regressed on DNAm through a linear model 
adjusted for age, gender (fixed effect), and centre 
of recruitment (random effect, where necessary) 
to identify the top 1% ranked CpGs based on the P 
value.

(3)	 DNAm surrogates of risk factors/biomarkers were 
constructed, regressing the response variables on 
the top 1% CpG sites, adjusting for sex and age. 
Finally, we applied L1 penalised estimation for 
enforcing sparsity in the regression coefficients 
employing the LASSO procedure [60] or the cor-
responding penalised mixed model [61] (for the 
biomarkers showing difference by centre) depend-
ing on the biomarker. For the latter method, ad hoc 
R routines were devised: the source code is freely 
available in the form of an R package at https://​
github.​com/​Andre​aCapp​ozzo/​mixed​elnet.

We validated the DNAm surrogates investigating their 
association (Pearson correlation coefficients) with the 
corresponding measured risk factor/biomarker in the 
EPIC Italy testing set (N = 451, 25% of the sample), and 
four additional independent studies: Understanding Soci-
ety (N = 1174), TILDA (N = 490), EXPOsOMICS CVD 
(N = 315), and GSE174818 (N = 128). We used fixed-
effect meta-analysis (inverse variance weights) to com-
bine the results across the four validation data sets into 
a single estimate. As a result, we defined as ‘validated’ 
DNAm surrogates with significant associations (P < 0.05) 

in both EPIC Italy and the combined validation sets. As 
further validation, we investigated the correlation of our 
newly developed DNAm surrogates with those previously 
developed for BMI, HDL cholesterol [23], and PAI-1 [11].

Derivation of DNAmCVDscore  We developed a blood 
DNAm-based biomarker (that integrates several DNAm 
surrogates) for predicting the risk of future CVD events 
named DNAmCVDscore. We used a Cox regression 
model with elastic net regularisation to regress the time 
from recruitment to CVD event, and for selecting the 
most critical features from 60 (standardised: mean = 0, 
sd = 1) previously described blood DNAm surrogates.

The best λ parameter was derived from tenfold 
cross-validation to minimise the Harrell’s concordance 
C-index. The overall procedure includes 1,000 permu-
tations using 80% of the whole EPIC Italy data set each 
time (n = 1443). The DNAm surrogates comprising 
the DNAmCVDscore were selected among those with 
nonzero coefficients in at least half of the permutations. 
Finally, DNAmCVDscore was computed as a linear 
combination of the selected DNAm surrogates where 
weights correspond to the average (nonzero) coefficient 
among the 1,000 permutations.

Validation of  DNAmCVDscore and  comparison 
with MRS, SCORE2 and DNAmGrimAge  We validated 
the DNAmCVDscore in three independent data sets: 
EXPOsOMICS CVD, NICOLA, and HRS. Since the 
EXPOsOMICS CVD set is designed as a case–control 
study nested in a cohort, we ran logistic regression anal-
yses, and we evaluated the predictive performance of 
DNAmCVDscore through ROC curve analysis. Contra-
rily, in NICOLA and HRS (cohort studies) we run Cox 
proportional hazard regression models and we evalu-
ated the prediction performance through the Harrell’s 
C-index.

We compared the performance of five models:

(1)	 Based on DNAmCVDscore (adjusted for matching 
parameters in EXPOsOMICS CVD).

(2)	 Based on MRS (adjusted for matching parameters 
in EXPOsOMICS CVD).

(3)	 The SCORE2 prediction model based on chrono-
logical age, sex, diabetes, smoking, systolic blood 
pressure, total and HDL cholesterol, adjusting for 
matching parameters.

(4)	 An enriched version of SCORE2, denoted with 
SCORE2 + DNAmCVDscore, in which DNAm-
CVDscore is included in the set of covariates.

(5)	 Based on DNAmGrimAge (adjusted for matching 
parameters in EXPOsOMICS CVD).

https://github.com/AndreaCappozzo/mixedelnet
https://github.com/AndreaCappozzo/mixedelnet
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In EXPOsOMICS CVD, to investigate the predictive 
performance of the five composite biomarkers at differ-
ent time points, we computed the area under the ROC 
curve (AUC), sensitivity, and specificity as a function of 
the time from recruitment to diagnosis, right-censoring 
follow-up at constant intervals of one year from 18 to 
2 years. Confidence intervals for AUC were computed 
according to De Long et al. [62].

DNAm surrogates and DNAmCVDscore versus COVID‑19 
case–control status and severity  As an additional sensi-
tivity analysis, despite being out of the main scope of this 
work, we investigated the usefulness of using DNAm sur-
rogate biomarkers in epidemiological studies on COVID-
19 using the GSE174818 data set (101 patients with 
COVID-19 infection and 26 controls hospitalised with res-
piratory problems). Specifically, we investigated the asso-
ciation of BMI and blood measured CRP with COVID-
19 case–control status and severity (using the GRAM 
score as a proxy), and we compared the results with those 
obtained using their DNAm surrogates (DNAmBMI and 
DNAmCRP). Finally, since CVDs and COVID-19 share 
several risk factors [50] we investigated the association of 
the DNAmCVDscore with COVID-19 case–control status 
and severity. We used logistic and linear regression models 
adjusted for age and gender to investigate the association 
with case–control status and GRAM score, respectively.
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