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Abstract

Visual Object Tracking is a continuously developing and competitive field in computer

vision and machine learning. It is based on the idea of being able to follow any object,

unknown up to that moment, in its movements without losing it or letting it run away.

It is of fundamental importance to keep under observation a specific object other-

wise difficult to track, in particular in very sensitive contexts such as security, more

specifically in video surveillance, or autonomously guided or unmanned aerial vehicles

(UAV), and in contexts in which it is of great help to perform automated tasks, such

as in video production.

As in any other field, deep learning methodologies became part of visual tracking,

bringing with them the state-of-the-art of many methodologies including object detec-

tion, super-resolution, adversarial generative networks, and image classification. Most

of these methodologies cooperate in a single architecture dedicated to tracking, to the

point that the computational resources required for this purpose are very intensive,

having to coexist and collaborate with multiple deep models.

Visual object tracking has evolved more and more over the years from using

correlation models based on transformations in the frequency domain, to allowing a

global and highly efficient correlation, compatible, with learning based on gradient

descent. It evolved again using models based on correlation of elements with similar

characteristics extracted from a module that is able to recognize the characteristics of

objects previously trained on the classification of images with large datasets. Moreover,

we have recently witnessed the advent of transformers models with their explosion in

the field of NLP and computer vision. These models were also rapidly included in

methodologies for the field of visual tracking.



The following thesis aims to inspect methodologies that can enrich the current

state-of-the-art by building and exploring architectures not yet defined in the literature

as well as trying to improve those already developed.

We started our research with the idea of using Generative Adversarial Networks

for their reconstruction power, putting the tracking problem in the point of view of

subject segmentation.

Going further into the topic, the work continued with the application of models

based on Siamese networks that effectively allow to correlate the element to be tracked

with the research space itself. However, these models have already been widely studied

which has led us to develop even more complex networks. Although we remained in

the context of Siamese networks, we started from the use of conventional convolutional

networks to novel techniques in computer vision as the Transformers. These have

proven to be the center of interest of a large part of the scientific community in every

field and, therefore, we tried to apply them in a field that is new compared to the

state-of-the art. As a result we obtained a method that is able to be compared with

all current techniques, obtaining scores that allow the implemented methodology, not

only to enter in high positions in the benchmark leaderboards of the various datasets,

but also to participate in VOT2022, which is the challenge of reference for the world of

visual tracking and which is the goal of every tracking algorithm.

In addition, we investigated what the tracking algorithms are actually observ-

ing through methodologies of eXplainable Artificial Intelligence (XAI) and how the

transformers and the attention mechanism play a very important role.

During the research activity learning models that are different from those based on

traditional crisp logic have also been developed. The aim was to try to find a common

point that could combine fuzzy logic with the flexibility of deep learning and how this

can be used to explain the relationships between the data as the complexity of the

neural network increases. Fuzzy logic was applied to transformers to build a Fuzzy

Transformer, where the attention component is more easily explained given the success

of fuzzy models in the field of explainability.
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All the work of XAI has allowed us to verify how our idea of using the internal

components of the mechanism of attention has produced a direct link between this

and the elements on which we are actually going to act in order to produce the desired

output. In addition, the experiments conducted on the fuzzy components, in this first

phase, seems to validate our idea that not only can using a specific highly interpretable

component produce results similar to the state of the art, but this also makes it easier

to understand them.
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Introduction

To start, press any key.

Where’s the ANY key?

Homer Simpson

In the field of Computer Vision, there are many tasks that are deeply present in

everyday life. For instance, face recognition is used each time a photo is taken by a

smartphone, as well as object classification is used to sort the photo album efficiently

in order to provide a thorough search for users.

Nowadays, one of the most challenging tasks in computer vision is visual object

tracking. In a nutshell, it can be defined as the procedure of locating an object of

interest in a video sequence. Therefore, it is plain to see the importance given to this

sector in terms of application.

For instance by considering the possibility of using it in the field of security and

video surveillance where, it is possible to follow ill-intentioned people wandering in a

sensitive place and verify they do not act illegally in the camera field of view.

Other uses could also be in the industrial sector, tracking of an object in the

production process of a company or even tracking of a cell or a probe device in the

biomedical field are a case in point. In addition, this can lead to the possibility of

using tracking techniques in synergy with other artificial intelligence tools e.g. the

classification of abnormal behavior.

As mentioned above, the difficulties that must be addressed come from its own

characteristics that require having to deal with multiple issues simultaneously, ranging

1
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from the classic ones found in computer vision, for instance changes in brightness or

physical alteration of an object, to more complex ones such as the presence of similar

objects within the image under analysis and the total or partial occlusion of an object

that compromises in part or in its entirety its physical structure from different points

of view.

Over time, several techniques have been studied to deal with each of these issues

and gradually have made the Visual Object Tracking one of the most active fields

of study. For this reason over the years new datasets [22, 23, 32, 57, 82] have been

developed and continue to be developed to tackle the problem of visual tracking, trying

to identify what the needs of the various methodologies are, e.g. having a sufficient or

well characterized number of samples and have a homogeneous distribution of visual

attributes.

All this leads to the creation of growing competition, so much so that some of these

provide remote evaluation tools with leaderboards that allow to decide immediately the

most efficient algorithm. Moreover, the competition continues with the introduction

of real challenges, such as VOTChallenge [40, 41], which every year allows authors to

compete in an exhaustive and well-balanced way, pushing them to make their work

accessible and assessable. It all started by using methods based on almost punctual

matching between two images [7, 45], based on features such as color, histograms or

density functions [17]. Furthermore, techniques using dynamic models and a priori

distribution of objects has been studied, as in the case of the Kalman filter [35], which

assumes the existence of a discrete system described by linear equations that represent

in turn a Gaussian distribution, or techniques based on Particle Filters [2] that are

based on non-linear models where it takes into account the a posteriori probability of

the elements. Still, it has been tried to model subspaces of features with techniques

such as Principal Component Analysis (PCA) and Indipendent Component Analysis

(ICA) [71]. Subsequently, other methodologies aimed to recognize which elements are

background and which are not [3] using features such as Local Binary Pattern (LBP)

[29], Histogram of Oriented Gradients (HOG) [53] and HAAR-like features [80]. It

2
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was then decided to use global techniques that worked in the space of frequencies by

exploiting the properties of convolution in the new domain, making these strategies

much less sensitive to certain problems and consequently hardening the tracking [6].

The real turning point was with the advent of the use of artificial neural networks [59],

which allowed to implement learning techniques with a high degree of generalization.

In addition, it manually enabled to break away from the need to choose what the best

features could have been by opting those of the objects that are the result of machine

learning itself and that can be improved and adapted to the context from time to time.

This has paved the way new patterns of correlation, which did not take long to

arrive with the use of the so-called Siamese networks [5]. These exploit the capabilities

of convolutional networks allowing to relate the objects searched in the space where

the search is made. All this has been the result of the constant innovation that has

always taken place in the field of computer vision and artificial intelligence.

Nowadays, for instance, there is a discussion about neural architectures that can

remember the long-term relationships between the elements that make up the data

and find which are the relationships that best define them are. This does not only

happen in computer vision, but also in other environments such as Natural Language

Processing. However, the techniques used can be adapted to a wide-range of scenarios

as well.

One of the proposed objectives is to use an architecture born for the NLP context

and bring it in the context of images and yet adapt it to a new task different from the

one initially proposed when using techniques already known in the state-of-the-art.

Another important aspect in any field of artificial intelligence and therefore also in

the case of visual tracking too, is to be able to create models that are easily explainable

through the use of eXplainable Artificial Intelligence (XAI) techniques. This field

has become increasingly important over time to improve the confidence of humans

in the results obtained. In this way the concept of black box that is often present in

machine learning, where the results of the proposed solution are not explainable by the

internal operations nor by its creators, is cancelled. To this end, various techniques

3



List of tables

have been created, called post-hoc, because they allow you to explain a model from the

output and the relationships that are internally generated, over the years, such as the

technique of integrated gradients [77] that uses a simple technique of integration from

the calculation of gradients produced by a neural network, or using DeepLIFT [76]

that decomposes the response of a neural network for a specific input and propagates

the response backward to each feature of the input.

In recent times with the rise of transformers we have also tried to interpret, instead,

the response of the attention mechanism, to understand, if the neural network is

effectively putting focus on the right elements. For this purpose it is possible to use

algorithms such as the attention rollout [1] which gives the attention to all layers by

using the information on residual connections to weigh the final attention matrix.

Another significant concept in the field of explainability also comes at the regulatory

level, for example the European Union has introduced the "right to explanation" 2, in

the GDPR. In this category, some Fuzzy-Rule based systems [8, 54, 55] are also having

great importance, because they fall, instead, in the category of ante-hoc techniques,

which is explainable by design. This has prompted the investigation on such topic,

producing research to create alternative models that are easily explainable, and try

improving existing techniques, for instance, attention mechanism, without losing the

learning power generated in a neural network.

2Recital 71: https://www.privacy-regulation.eu/en/r71.htm
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Chapter 1

Visual Object Tracking

Though this be madness, yet

there is method in’t.

William Shakespeare

In this chapter the basis of Visual Object Tracking will be briefly explained, and

in particular, the important difference between training and tracking phases of a

tracker. Furthermore, visual attributes will be shown, with issues regarding every video

sequence.

1.1 Introduction

Visual Object Tracking is the computer vision task where the proposed algorithm has

to follow a designed object, which is called target or template z, in a video sequence,

which is a sequence of frames. The single frame connected with the object is also called

search image and it will be denoted by x (figure 1.1). This operation can happen by

following the same criteria, based on the type of tracking that is needed. Mainly there

are Single Object Tracking (SOT) and Multiple Object Tracking (MOT), where, as

defined by the name itself, in the former there is an attempt to track a single object,

while, in the latter, there are multiple objects of the same category. Tracking can

5



1.1 Introduction

(a) (b)

Fig. 1.1 A search image at a specific time xt in a video sequence and the target to
follow specified at a previous time zt−1

further be divided in some other categories, in [41] authors have identified in the Single

Object Tracking two categories:

• Short Term Tracking: The target position is identified in each frame and the

subject is always present in the sequence without ever disappearing

• Long Term Tracking: The target is not always visible in the scene and its

position is not reported when the it is not visible in the frame.

Moreover, for those categories, as reported in [38], there are two sub-categories for

each of them:

• ST tracker (ST0): It is not required to re-detect the subject after it is lost and it

is also not required to identify the occlusion type

• ST tracker with conservative updates (ST1: The robustness of tracking process

increases the update of the visual model based on a confidence estimation

technique

• Pseudo LT tracker (LT0): There is not a true re-detection method, it uses an

internal method to identify and report tracking failure

• Re-detecting LT tracker (LT1): The tracker is able to identify tracking failure

and implements a proper re-detection algorithm.
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Code Attribute Definition
CM Camera Motion Abrupt motion of the camera
IPR In-Plane Rotation The target rotates in the image plane

OPR Out-Plane Rotation The target rotates out of the image plane
DEF Deformation The target is deformable during tracking
FOC Fully Occluded The target is fully occluded in the sequence
POC Partially Occluded The target is partially occluded in the sequence

IV Illumination Variation The illumination in the target region changes
OV Out-of-View The target completely leaves the video frame
VC Viewpoint Change Viewpoint affects target appearance significantly
SV Scale Variation The ratio of bounding box is outside a range
BC Background Clutters The background has a similar appearance to the target
MB Motion Blur The target region is blurred due to target or camera motion

ARC Aspect Ratio Change The ratio of bounding box aspect ratio is outside a range
LR Low Resolution The target box is smaller than tr pixels in at least one frame
FM Fast Motion The motion of the target is larger than the size of its bounding box

SOB Similar Object there are objects of similar shape or same type near the target

Table 1.1 Common visual attributes in video sequences

Another distinction that can be made is between model free and model based

trackers:

• Model free tracking aims to track an arbitrary object with no prior knowledge of

the object itself. It means that the algorithm is not able to recognize if the target

is a car, a person, a plane, or any other possible categorization. In this situation

the methodology knows a generic characterization of any possible object and try

to do its best to follow it and avoid to be distracted by similar objects

• Model based tracking is specialized on a specific object in the scene, for example,

if it is needed to follow a face or a car. It has a thorough and specific knowledge

of that object and cannot be used on others unless it has first been thoroughly

retrained on that subject.

Typically, most research interests are on model free tracking that allow for a greater

number of challenges while at the same time managing to produce excellent results with

a significantly higher degree of generalization than their model based counterparts.

1.1.1 Visual Attributes

Tracking brings with it several issues that depend on the state of the target frame by

frame. This means that the target changes throughout the video sequence and can
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(a) (b) (c)

Fig. 1.2 Examples of visual attributes. (1.2a) Target deformation. (1.2b) Camera
motion blur. (1.2c) Illumination and scale variation.

result in frequent errors in the tracker. These issues, which will be called visual attribute,

are present, virtually, in every sequence and can combine with each other, among them

it is possible to find: lighting changes, scale variations, occlusions, deformations, low

resolution and many others that are reported in the table 1.1 with the associated codes

used in the literature that work as a caption in section 3.4, while in the figure 1.2 there

is a representation of some of them. This implies that the visual model of tracking

must be able to be updated in order to cope with the continuous changes that the

target may undergo with the possibility of locating it with the least number of errors.

1.2 Training and tracking phases

Despite what one might believe and what happens with other tasks both in the computer

vision field and not, the training and testing/tracking phases differ from each other.

In the training phase we usually choose to work with single images, not that there

are no approaches based on video, but most of the known techniques prefer the first

methodology. Partly, because in this way it is possible to create a method that works

in real time and is therefore able to process frame by frame and does not need a greater

number of frames to understand what is happening. One reason is that the amount of

data available for training networks is never sufficient, so much so that many datasets
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are used simultaneously to carry out training. Moreover, by using single frames it is

also possible to propose targets that, even if they are part of the video sequence, are in

different temporal moments and present alterations that are not directly present in the

frame. This type of augmentation allows to reach higher generalization capacities than

an approach based on direct matching. In the testing phase instead it is possible to add

components to perform what is called online learning. This allows not to be strictly

relegated to the target presented in the initialization phase, but to be able to learn

how it transforms itself, as a result of movement and visual attributes, penalizing or

encouraging the result, for example, of the confidence score obtained in the localization

phase. It is also possible to add or turn off components later, such as the use of

algorithms that reconstruct the segmentation mask of a given object.
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Chapter 2

State of the Art in Single Object

Tracking

You do something and then

someone else comes along and

does it better

Pablo Picasso

The chapter explains the state-of-the-art and modern methodologies for tracking.

It starts with a general overview and then focus on most relevant methodologies that

are also used or compared in the proposed work.

2.1 Introduction

Visual Object Tracking, is highly dependent on two inputs, the search area image and

the target image. Dealing with this kind of problem is not an easy task, meaning that

architectures have to be built to handle two data inputs that are different in size and

significance, but are highly correlated. The key point is precisely this correlation that

must take place in the most efficient way, both from the point of view of individual

characteristics and from the point of view of the ability to correlate the two according

to the chosen technique. One of the first effective methodologies that encapsulates this
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2.1 Introduction

idea is the Normalized Cross-Correlation filter (NCC) used in template matching [7],

it is based on the assumption that two similar elements will have a high correlation

score. Unfortunately, in tracking there are a lot of problems to face, such as, but not

limited to, illumination and scale changes, occlusion, rotation, movement, blur and

others. NCC is not able to deal with some of these problems which, by the way, are

present in most real world scenarios.

Tracking has always attracted the interest of the scientific community and many

other methodologies have been studied and implemented, but the most significant

innovations have been the use of artificial neural networks and the transition from

handcrafted, static features, to learning them from data itself. Obviously, this last

change as well is due to the introduction of deep neural networks that are able to

incredibly describe an object starting from pixels intensity values. Usually this family

of methodologies come from Image Classification task.

The most important introductions are the Siamese Neural Networks [5] and the

Discriminative Correlation Filters (DCFs) [19, 31]. The former is able to process two

inputs and efficiently correlate them, the latter uses the properties of frequency domain

to perform an effective operation by reducing the complexity of the model.

Over the last years a new category of architectures exploded in deep learning, they

are called transformers [79], originally used to work on NLP problems, where they

have reached state-of-the-art performance overwhelming the NLP sector. Recently

they have also been using on image classification [20] and object detection [9] problems.

Starting from those few examples they have shown great potential in tracking [12, 85]

and the attention mechanism is a powerful alternative to cross-correlation modules.

All those strategies are not limited their own architecture, they are modular and can

be mixed together to build more robust and promising complex architectures.
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2.2 Siamese Networks

2.2 Siamese Networks

State-of-the-art trackers are based on Siamese architecture [5]. After the introduction

of Deep Neural Network in tracking, the usage of Siamese networks has been the

greatest innovation in this field and they have been is use successfully for several years.

The Siamese architecture uses the same model to process search and target images. It

helps to extract features that are easy to correlate because the same feature extractor

should extract characteristics that are very similar for similar objects. It means that

a strong feature extractor can help to extract better results. Siamese networks are

highly modular and a base structure is shown in figure 2.1. Four main modules can be

identified with the following modules:

Backbone

Backbone is responsible for extracting features from the input images using neural

networks that have a great discriminative ability, because they are aware of the main

features of an object that has been previously learned. In the case where an item is

totally new, they are still able to perform the best feature extrapolation that can be

expected in an extreme case. This capability is made possible by a pre-training on

the image classification task, usually using the ImageNet-1000 dataset [72]. That is, a

thousand different classes of objects to be learned to recognize. The backbone can be

fine tuned on the tracking task in the training phase. Most of the trackers in literature

use ResNet50 as backbone [30]. Some tests are done also with a deeper ResNet, but it

gives slightly better results at the cost of heavy computation, so the trade-off is not

reasonable enough to prefer the most accurate versions.

Neck - Adjust Layer

Backbone outputs a high number of features, it depends on which internal layer is

used to extract characteristics, for example using a ResNet50 is common to have

1024 (for internal layer3 ) and 2048 (for internal layer4 ) of them. Due to the high
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2.2 Siamese Networks

data dimensionality neck, it is useful to down-sample the number of features, in order

to work with a smaller number of components, coping with the process more easily,

requiring less computational resources and keeping an high robustness. Neck is also

shared for both inputs to preserve the property of the backbone where similar patterns

have similar features. It will learn a non-linear sub-sampling projection from both data

inputs.

Encoder - Body Layer

The Encoder or Body is the most interesting layer because it is responsible for all

processing operations including correlation computation. It can be implemented to

continue using the Siamese scheme or process the inputs separately to provide the

network with the ability to learn a more specific representation of data. The second

methodology remains very valid because it is influenced by the subsequent correlation

that takes place between the two inputs. Therefore, the learning is conditioned by the

gradients calculated on the operations carried out in the successive phases where the

output component is the result of the search image processed using the features of the

target image.

Head

The last part of the architecture is the Head module. Its role is to produce the desired

output by mainly processing the correlated component resulting from the encoder part.

Its use is not limited to the encoded data alone, but it is based on the task. It can use

features coming from previous modules too, e.g. the backbone, the neck, or internal

states of the encoder. The head can be divided in sub-modules or, as it is defined,

in multiple heads, and each one is task-specific. There are three main sub-modules:

bounding box regression, mask generation, foreground/background classification. These

outputs are not all necessarily present at the same time.
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Fig. 2.1 Generic Siamese Architecture

Inspired by the literature the Siamese architecture is embedded in most of the proposed

models. In chapter 4 an overview of each researched module will be presented without a

specific architecture composition. In section 5.1 is shown how they have been organized

in tracking architecture.

2.3 Head Selection

2.3.1 Bounding Box Regression

The main aim in visual object tracking is to find optimal images coordinates where

it is possible to build the minimum area of the bounding box. It means that the

object is centered in the bounding box and the edge of the box should perfectly enclose

the target, avoiding including too many background components. Many techniques

have been studied during the years starting from directly regress the two corners to

use multiple areas where the target could be with a high probability. Generally, it is

possible to divide these methods in two macro-categories:

• Anchors estimation;

• Anchor-free detection.
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2.3.2 Region Proposal Networks

Firstly used in object detection Region Proposal Network (RPN) [66] performs greatly

in locating objects. It works on multi-scale object detection introducing the concept

of anchors. Each anchor can be seen as an objects proposal with an associated

objectiveness score, which acts like a membership score, giving the probability that a

region is of the class object identified by the network. The objects proposal and the

object score are two components represented by two fully connected layers (figure 2.2):

the box regression layer and the box classification layer, which share the same input

corresponding to the spatial location in the feature map, producing two different, but

linked responses. The two networks final layers are built using a number of features

that are parametrized by the number of anchors k. The regression layer has 4k features

to indicate the four coordinates of the bounding box corner for each anchor and the

classification layer uses 2k features, which represent the prediction over the two classes

(background/foreground) per anchor. Each output anchor can overlap with each other

and a Non-Maxima Suppression (NMS) algorithm is used to suppress no maximum

response based on the object score.

Fig. 2.2 Region Proposal Network structure schema
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2.3.3 Fully Convolutional One-Stage Object Detection

Fully Convolutional One-Stage Object Detection (FCOS) [78] is an anchor-free object

detector, meaning that it avoids the computation of hyperparameters needed to

work with an anchor-based approach. It performs a bounding box estimation with

Bi = (xi
0, yi

0, xi
1, y1

1, ci) where (xi
0, yi

0) are in the left-top corner coordinates of the

bounding box, (xi
1, yi

1) are in the right-bottom corner coordinates and ci is the class

estimation, based on the number of classes in the dataset. Bounding boxes are found

based on the (x, y) location on the last network feature map. It is considered a positive

sample if it is located in the ground truth location and the class estimation is the

expected one. The winning bounding box is the one with the minimum area. It uses

two neural network layers at the top of the architectures, one for the bounding box

regression and another for the box class. In FCOS the classification network does not

predict the C classes, but uses C binary classifier for estimating (object / no-object) a

score.

To ensure positive values for the regression branch an exp function is applied to

the output vector. Multi-level estimation is achieved by using a Feature Pyramid

Network approach [50] where feature maps extracted from multiple internal layers are

used to compute multiple locations (figure 2.3a). The last important element in FCOS

is the use of centerness (figure 2.3b) to determinate whether or not the prediction is

valuable. It is computed by using the location target l∗, r∗, t∗, b∗ where they corresponds

respectively to [left, right, top, bottom] corners:

√√√√ min(l∗, r∗)
max(l∗, r∗) × min(t∗, b∗)

max(t∗, b∗) (2.1)

and is trained by using Binary Cross Entropy taking into account the regression

output values. The aim is to weigh the classification score in order to get the prediction

distance from the object center. The further it is, the more likely that the bounding

box will be filtered out by the NMS.
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(a) (b)

Fig. 2.3 (a) FCOS-FPN structure [93], with three output branch for each head. (b)
Centerness where red color is equal to 1 and blue is equal to 0

2.3.4 Alpha-Refine

Alpha-Refine [86] is an anchor-free refinement module for tracking. As a tracking

algorithm it aims to estimate the position of the target in the video sequence accurately.

It adopts a Siamese strategy using a pixel-wise correlation strategy to preserve spatial

location information. Most importantly, this has been designed to work as a refinement

module, namely, it can be easily embedded in other trackers without the necessity

of retraining or fine-tuning it on existing methodologies. It uses two branch heads,

one for bounding box regression and an auxiliary one for mask generation. It uses a

corner prediction with a set of (Convolution, Batch Normalization, ReLU) layers. The

last layer is predicted by using a convolutional layer in order to predict two heatmaps,

which are used for the top-left and bottom-right corners. In the end, a soft-argmax is

applied to heatmaps allowing the precise localization of each component. An auxiliary

mask head is also added for a more accurate estimation. It enhances the extraction of

spatial information in a pixel-wise manner. The full tracker architecture is represented

in figure 2.4.
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2.4 Mask generation

Fig. 2.4 Full tracking architecture of Alpha-Refine and the detail of refinement module
[86]

2.4 Mask generation

Object segmentation mask is one of the possible outputs of a tracker. It can coexist and

be trained with other heads. The most traditional module is composed by a sequence

of convolutions of upsampling interpolations over the feature map (figure 2.5) [81].

Features extracted at any level of the backbone are involved to refine the shape of

the object. Each feature maps in samples are downsampled from a high number of

channels to a lower one, i.e. typically the first layer goes from 256 to 32. The same

operation is performed on backbone features, bringing a number of features that is, as

in the case of for the last component, from 2048 or 1024 to 32 (depending on the layer

extraction). All the other features are scaled using the same processing schema. At

each level the image features is added to the corresponding upsampling.

Another technique is to use a mask generation from semantic segmentation task

[88], where the intra-class inconsistency is addressed by implementing a sequence of

operations similar to the above methodology. However, in this case, different modules

are use for refinement and low and high level features combination
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2.5 Class estimation

Fig. 2.5 Generic mask reconstruction head

2.5 Class estimation

Class prediction is the most simple branch. It assists the regression branch encouraging

the regression to output the value in the same location where the classification found

a foreground object. It usually outputs a map where each pixel corresponds to a

foreground or background object as in [27, 93].

In score computation, the two methodologies match the index of the two classes

and weighting the result or directly matching the ground truth map with the predicted

one.
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Chapter 3

Datasets and Metrics

Why does a right angle

measure ninety degrees?

Misplaced question: it does

not measure anything, it is

others who measure him

Umberto Eco

This chapter aims to introduce the datasets used for training and testing tracking

algorithms, as well as the evaluation metrics used for performance comparisons. The

chapter is divided in two main sections. In the first section the basic information and

the visual attributes will be explained, representing the difficulties that a tracker has

to face during tracking phase for each dataset. In the second section an overview of

the metrics used in all datasets for evaluation will be addressed.

3.1 Introduction

Visual tracking is a hard problem to deal with. One of the most important elements

is the possibility of having a good definition of the bounding boxes that encloses the

object to search and that has an available number of modifications of the target that

allows to capture all the important aspects of the real world. It must, therefore, be
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able to provide real-world problem cases on which to perform training. Given the wide

variance of objects that it is possible to track, hypothetically, every type of object, in

its most generic meaning, is existent and non-existent at the same time. This gives

us the opportunity to use not only a single dataset, but a set of them, so as to have

an increasing number of elements for comparison. The training phase can vary from

tracker to tracker: most of them prefer not to include temporal information in the

training phase in order to reduce the dependence on the latter and to allow a greater

generalization capability. The ability to track the same object over time can later be

provided in the actual tracking phase through online learning strategies. A list of the

main datasets used is given in the following paragraphs. A very important factor is to

use a metric to compare trackers and also to compare performances between different

datasets. As explained in the section 3.4 the most important ones are represented by

the Area Under the characteristic Curve (AUC) [83], Precision and Average Overlap

(AO) or the Success rate. In addition, most datasets provide benchmark tools to make

sure the usage of the same metrics without errors. There are also datasets that are

an integral part of competitions such as VOTChallenge [42] which provides its own

metrics designed to compare the main features of the videos within it.

3.2 Datasets

Following a briefly presentation of datasets for training and benchmarking is provided

below. It is reported how datasets are composed in term of number of frames and main

features. A comparison on visual attributes is shown.

3.2.1 OTB

Online Object Tracking [82] provides 50 and 100 fully annotated sequences. It is divide

in two versions the OTB50 (or OTB2013) and OTB100 (or OTB2015), the second is an

expansion of the first version with more than 50 sequences. To evaluate the robustness

of the trackers for common problems they are evaluated on more than 660.000 expected
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Code OTB TrackingNet LaSOT GOT10K VOT NfS TC128 UAV123
CM ✓ ✓ ✓ ✓ ✓
IPR ✓ ✓ ✓ ✓ ✓

OPR ✓ ✓ ✓ ✓ ✓
DEF ✓ ✓ ✓ ✓ ✓ ✓
FOC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
POC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OV ✓ ✓ ✓ ✓ ✓ ✓ ✓
VC ✓ ✓ ✓ ✓
SV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BC ✓ ✓ ✓ ✓ ✓ ✓ ✓
MB ✓ ✓ ✓ ✓ ✓

ARC ✓ ✓ ✓ ✓ ✓
LR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SOB ✓ ✓ ✓

Table 3.1 Visual attributes for main tracking datasets. The number of attributes can
differ from those reported in the paragraphs due to the expansion of them in some
dataset (i.e. POC and FOC in TrackingNet and LaSOT became OCC in OTB). Code
caption can be found in 1.1.

bounding box. Video sequences used in evaluation have 11 different problematic visual

attributes (table 3.1), many of them may be present at same time.

OTB laids the foundation for evaluation metrics Success and Precision. These

metrics are explained in section 3.4

3.2.2 COCO

Common Object in Context (COCO) [49] is a large-scale object detection, segmentation,

and captioning dataset released by Microsoft in 2014 for object recognition. It does

not provide video sequences, but static labelled images. Objects are labeled using

per-instance segmentations to aid in precise object localization. It contains 91 photos

of objects types distributed in 328000 images with 2.5 million labeled instances. It

contains 165482 training images, 81208 validation images and 81434 testing images

with a high number of instances per category (figure 3.1). There is a very little chance

of getting near-duplicate images across splits.
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Fig. 3.1 Comparison of categories instances per category between COCO and Pascal
VOC [21]

3.2.3 LaSOT

Large-scale Single Object Tracking (LaSOT) [22] is composed of 1.400 sequences with

more than 3.5M frames which are Accurately annotated with a bounding box. The

average video length of LaSOT is more than 2.500 frames. In each sequence a challenging

scenario deriving from the wild is present, where target objects may disappear and re-

appear again in the scene. It also contains 70 categories and most of them are a subset

of ImageNet-1000 categories, with each consisting of twenty sequences. Long-term

videos are provided in LaSOT and further bounding box specific rules are set for the

same category. For example, in presence of mice, the tail is excluded from the bounding

box because it gives an inconsistent deformation with respect to the object shape. As

in OTB, a set of attributes have been designed to be associated with sequences. There

are a total of 14 attributes (table 3.1), some of them are shared with OTB and TC-128

[47] datasets. This can be seen in figure 3.2a with the distribution over video instances.

LaSOT introduced a new measure compared with the two introduced by OTB. It is

called Normalized Precision, which is computed from the basic OTB version. This is

explained in the section 3.4 with the other measures.

3.2.4 TrackingNet

TrackingNet [58] provides more than 30000 videos with more than 14 million dense

bounding box annotations. It is released as a subset of Youtube-BoundingBoxes (YT-

BB) dataset [65], which is designed for object detection with a number of video segments
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up to 380000, annotated at every second with upright bounding boxes. TrackingNet

removed videos that do not present movements, such as potted plants and toilets,

re-categorizing same classes to be better distributed based on subjects. In figure 3.3

the class distribution and the difference with YT-BB are showed. There are 30132

video sequences. The annotations are artificially provided by a DCF tracker [31]. The

test set is composed of 511 videos that are labelled using Amazon Mechanical Turk

service. Furthermore, in TrackingNet there are 15 visual attributes (table 3.1). The

evaluation is performed on an evaluation server and can not be done locally.

3.2.5 GOT10K

Generic Object Tracking in the Wild [32] is built upon the backbone of WordNet

structure [56] and it populates the majority of over 560 classes of moving objects and

87 motion patterns. It provides more than 10.000 video segments with more than

1.5 million manually labeled bounding boxes. Test sets that consist of 420 videos

belong to 84 object classes and 31 motion classes. In addition, the one-shot protocol

for tracker evaluation is introduced, where there is no overlapping of classes in training

and test. The video collection started using five nouns from WordNet: animal, person,

artifact, natural object. For motion classes instead, the authors expanded their search

including: locomotion, action, and sport. Word sub-trees are filtered and pruned (e.g.

removing extinct, static and repeated object classes, grouping close sub-classes, etc.).

2.500 object classes and over 100 motion classes have been obtained in this first phase.

To improve the efficacy, 2.500 object classes are categorized into 121 groups with the

(a) LaSOT distribution comparison for com-
mon attributes

(b) LaSOT distribution of sequences for
each attribute
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Fig. 3.3 Class distribution and aggregation with YT-BB differences.

purpose of making sure that each one is collected. Then, we rank the object classes in

each group based on their corresponding searching volumes on the YouTube website.

After many verification phases the final pool contains 563 classes of moving objects and

87 classes of motion. The evaluation protocol requires that trackers must be trained

only on the training set provided by GOT10K, without using datasets from other

sources. Also in this case the evaluation is performed on an evaluation server and can

not be done locally.

3.2.6 NfS

Need for Speed [23] is a higher frame rate video dataset consisting in 100 videos, for a

total of 380k frames with a frame rate of 240 FPS. 75 sequences are captured using an

iPhone and an iPad Pro, and the remaining 25 are taken from Youtube. Each frame is

annotated with an axis aligned bounding box and labeled with nine visual attributes

3.1.

3.2.7 TC128

Temple Color 128 [47] is based on the idea that color information is important in

computer vision tasks and most of all in the tracking task. It is composed of 128 color

sequences annotated with visual attributes 3.1.
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3.2.8 UAV123

UAV123 [57] is an aerial video dataset for low altitude UAV tracking. It provides

123 fully annotated HD video sequences with more than 110k frames. Each video is

annotated with many attributes 3.1. The dataset is composed of videos captured with

three different devices. 103 sequences have been captured using a professional-grade

UAV (DJI S1000) with an altitude varying between 5 to 25 meters and a variable

framerate in a range between 30 − 96. 12 sequences have been captured using a

boardcam, without image stabilization, mounted on an UAV. The last 8 sequences are

synthetic and produced by the UAV simulator provided by the authors.

3.2.9 VOT

Many versions of Visual Object Tracking (VOT) dataset exist. Approximately, each

year a new version of the dataset is released. It is a compound of videos in many other

dataset test sets (OTB, GOT10k, NfS, etc.). It can not be used for training, but it is

a challenging dataset that is coupled with VOT Challenge (section 3.3). In VOT2013,

targets were annotated by axis-aligned bounding boxes; in VOT2014 rotated bounding

boxes are used; from VOT2020 to VOT2021, bounding boxes are not longer in use,

as a precise segmentation mask is preferred. The current edition of the VOT2022

reintroduces the Bounding Box sub-challenge in the short-term tracking.

3.3 VOT Challenge

VOT [38–40] is an annual challenge where the best trackers challenge each other on

many tasks, there are five challenges:

1. VOT-ST: for short term tracking. Starting from VOT22 it has been divided

into two other sub-categories:

(a) Segmentation: trackers must provide a segmentation mask of the object

(b) Bounding Box : trackers must provide the enclosing bounding box
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2. VOT-RT: a short-term tracking that requires real time performances

3. VOT-LT: for long-term tracking

4. VOT-RGBT: it is a short term tracking with thermal imagery

5. VOT-RGBD: a long term tracking with depth dimension

The evaluation of VOT-ST and VOT-RT is on segmentation mask. Instead, the

rest requires bounding box output. The organizers give an evaluation toolkit that help

to download the sequences and perform the tracking by using TraX [10] a protocol that

communicates with the tracker code to send frames, it then receives the appropriate

output that will be processed by the toolkit. In the challenge, it is prohibited to

train a tracker on the following datasets: OTB, VOT, ALOV, UAV123, NUSPRO,

TempleColor, RGBT234 and 1000 sequences in GOT10K. This happens because many

sequences in VOT come from these datasets. Furthermore, the use of class labels in

not allowed.

3.4 Metrics

Given the wide variety of datasets present, it is also necessary to define the metrics

used to define the capability of a tracking algorithm. Among those presented LaSOT

and TrackingNet are based on what OTB introduced about the calculation of Success,

Accuracy and Normalized Accuracy. The One-Pass Evaluation (OPE) methodology is

used, i.e., the tracker is initialized with the first bounding box and lets it proceed with

tracking. The three metrics are calculated as follows:

• Success (S) is computed as the Intersection Over Union of the pixels of the

ground truth bounding box bgt and the tracker bt output. It measures the

bounding box overlap score and is computed as:

S = |bgt ∩ bt|
|bgt ∪ bt|

(3.1)
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where ⋂ is the intersection and ⋃ is the union of the two regions denoted by |.|,

that is the number of pixels in the region. To measure the performance on a

sequence of frames, the number of successful frames whose overlap S is larger

than the given threshold to ∈ [0, 1] is counted. The success rate is not considered

at a certain to, but the corresponding AUC is evaluated.

• Precision (P ) is the center location error, which is defined as the Euclidean

distance between the center locations of the tracked targets ct and the ground

truths cgt. To overcome the tracker’s problem of identifying a region that is far

from the true target, a distance threshold is taken into account (usually equals

to 20 pixels):

P = ||ct − cgt||2 (3.2)

• Normalized Precision (Pnorm) due to the fact that precision P is sensitive to

the image resolution, the normalized version is used to remove the dependency

on the image size:

Pnorm = ||W (ct − cgt)||2 where W = diag(bx
gt, by

gt) (3.3)

Unfortunately, not all datasets use the same metrics. VOT uses its own metrics

[38, 41] to calculate three key elements: Expected Average Overlap (EAO), Robustness

(R) and the Accuracy (A). VOT needs the concept of anchors and failure. The former

is an initialization point in the sequence and is placed in a specific point in order

to reduce the bias of re-initialization. It divides a sequence in sub-sequences with a

specific starting point of a of length ∆anc = 50. The latter happens when the overlap of

the predicted bounding box bt over the ground truth bgt is less than a threshold value

θt and tracker does not recover the target in a specific window time of θN = 10 frames.

After a failure the tracker must be re-initialized. This concept can introduce a bias in

the tracking because a failure at time t can also occur at time t+1 since it is easy to
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assume that in the next frame the type of visual attribute creating the problem can

persist. To avoid it a number of frames equals to Nskip = 5 are skipped. This notion is

useful for short-term tracking where the length of the video is short and penalize those

which fail frequently. All measures are computed on sub-sequences:

• Accuracy: taking into account a sequence s that starts from an anchor a, the

accuracy As,a is the average overlap between the target prediction and the ground

truth computed on the frames before the tracker failure:

As,a = 1
NF

s,a

∑
i=1:NF

s,a

Ωs,a(i) (3.4)

NF
s,a is the number of frames before a failure and Ωs,a(i) is the overlap between

the prediction and the ground truth at frame i. The accuracy for a sequence is

the average value of all sub-sequences accuracy:

As = 1∑
a=1:NA

s
NF

s,a

∑
a=1:NA

s

As,aNF
s,a (3.5)

where NA
s is the number of anchors in the sequence s. The total accuracy A is

the average of all sequences accuracy:

A = 1∑
s=1:N NF

s

∑
s=1:N

AsN
F
s (3.6)

where N is the number of sequences in the dataset, Ns is the number of frames in

sequence s and NF
s = ∑

a=1:NA
s

As,aNF
s,a is the number of frames used to compute

the accuracy.

• Robustness: Rs,a is defined as the number of times the tracker fails on sub-

sequence:

Rs,a =
NF

s,a

Ns,a

(3.7)
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as in accuracy NF
s,a is the number of frames before a failure and Ns,a is the number

of frames in a sub-sequence. Robustness on a sequence Rs is the average of all

sub-sequence robustness:

Rs = 1∑
a=1:NA

s
Ns,a

∑
a=1:NA

s

Rs,aNs,a (3.8)

where NA
s is the number of anchors in the sequence s. The total robustness R is

the average of all sequences robustness:

R = 1∑
s=1:N Ns

∑
s=1:N

RsNs (3.9)

• Expected Average Overlap: is the combination of accuracy and robustness.

The EAO curve is computed and averaged over a typical short-term sequence

interval. If a tracker fails in a sub-sequence (s, a) the overlap drop to zero. The

EAO curve Φ̂i at sequence length i is defined as:

Φ̂i = 1
|S(i)| .

∑
s,a∈S(i)

Φs,a(i) (3.10)

where Φs,a(i) is the average overlap calculated between the first frame and the

i-th frame of a sub-sequence starting at anchor a, S(i) is the set of sub-sequences

with length greater or equal to i; |S(i)| is the number of the sub-sequences. The

curve is then computed in a interval bounds [Nlow, Nhi] determined by the mean

±, one standard deviation of the anchor generated sub-sequences.
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Chapter 4

Proposed methodologies

The best ideas don’t come

from reason, but from lucid,

visionary folly

Desiderius Erasmus Roterodamus

In the following chapter the methodologies are described. These consist of state-

of-art techniques and new proposed solutions acting as building blocks of a series of

cutting-edge tracking strategies. The chapter is organized starting from preliminary

studies on Generative Adversarial Networks to methodologies that are used in literature,

such as Siamese networks and online learning.

4.1 Introduction

The main purpose of the research activity is to give an alternative strategy to visual

object tracking by introducing new ideas to study the feasibility and possibility of

presenting some techniques not adopted nowadays. The study started from baseline

ideas of representing the alteration of the target during the training phase and reducing

the influence of them during the tracking phase. During the research activity, many

ways have been tested, with the influence of the state-of-the-art methodologies coming

from several contexts, not just from computer vision, but also, for example, from

31



4.2 Generative Adversarial Networks

Natural Language Processing. Hundreds of architectures have been developed and

tested to discover a valid guideline and limitations.

4.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have the ability to generate fake data directly

derived from the capacity to approximate the input data distribution, in this way,

we can perform various tasks, such as image generation, denoising, super-resolution,

in-painting, and so on. Incredible results have been reported with regards to those

tasks, so the idea is: why not try using the generative capacity of the network to

estimate the position of a target in an image? And if it works, is the latent space,

learned from subjects, stable and not greatly influenced by variations and deformations?

Usually, GANs are very effective on a single task generation. The entire network,

for example, is trained on face generation or face translation. Alternatively, there is

a strong tendency of being trained on semantic segmentation or picture in-painting

because the objective of the network is to learn a common latent space that is able to

map all elements of a specific nature and not more than one.

Proposed modification

Tracking is a more complex problem from this point of view, because there is not a

specific object to map, but the network needs to learn a generalization of multiple and

possibly unknown subjects. To face this problem, the idea is to simplify the problem

by going from multiple objects to simply learn an input object that is strictly related

to the image as a background/foreground problem. This brings us to the main notion

of giving to a generative adversarial architecture the input image and the target as

inputs to the generator, getting the resulting foreground mask reconstruction in output.

The discriminator objective is commonly used to understand if the input foreground

mask is the output of the generator or the ground-true. From the mask output a

bounding-box is generated to recognize the target spatially.
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4.2 Generative Adversarial Networks

Fig. 4.1 Correlation DCGAN

4.2.1 Proposed strategy: Correlation DCGAN

The first attempt is to put into practice the concept of a Deep Convolutional GAN to

purely work with images without restructuring them. In the naive GAN random noise

generated from a normal distribution is used as input tensor to generate a random

and coherent output. In the tracking case, it is mandatory to give information on the

search image and the target image. These have been utilized as input for a GAN with

a two-branch input, without a direct interaction. Inspired by the correlation strategy

in [5], a cross-correlation is carried out on the last layer of the Generator Encoder.

A depthwise convolution is used taking as input the search image feature maps xL−1
enc

and the target feature maps zL−1
enc as convolutional weights. It is guaranteed that the

target feature maps are correlated over all channels in the search image, getting the

maximum correlation factor on depth dimension. The single output correlation is

performed in the next step as input for the Generator decoder in order to reconstruct

an image with same size as the original, namely, the resulting foreground mask of

the correlation of both inputs. During the reconstruction phase a skip-connection is

used as in [70], where the features are extracted from the search image at any level
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4.2 Generative Adversarial Networks

xl
enc where l ∈ [0, L − 1] are concatenated with the decoded one, the idea is to reinforce

the correlation of the target that is present in the image to obtain a fine-reconstruction

of the subject. In figure 4.1 it is possible to observe the network structure. In order

to better understand the capabilities of the GAN and to get a good training many

architectures have been tested. The second attempt is to modify the encoder structure

trying to give multiple feedback by correlation to image search. At each encoder

step, this is developed through the execution of the correlation by target depthwise

convolution over image, propagating forward the result of the correlation as search

image features map. In this process, the current target does not have any computation

other than convolutional encoder layer. It is designed to increase the correlation

score at each layer with an explicit relation to learn in the backpropagation phase

automatically. The third attempt puts into effect the concept of Self-Attention in GAN

[92], but with a modification, since a Cross-Attention is obtained in order to give more

importance to zl over xl, xl
zl = CrossAttn(xl, zl) and additionally more importance of

xl over zl, zl
xl = CrossAttn(zl, xl). The concept of cross-attention will be preserved

in every developed model and in this case, the Cross-Attention GAN (CAGAN) is

built. It is applied on the previous architectures to further enhance the generative and

approximation capabilities. Many other architectures have been developed, but they

are not satisfactory enough to be reported.

4.2.2 Proposed approach: SiamCAGAN

The GAN based approach itself is not sufficient for a good estimation of target

localization through mask generation. Starting from the idea of Siamese trackers, a

single encoder branch has been developed to encode search and target images preserving

the notion of cross attention before the convolutional operation in each layer, that is

used to halve the size of the inputs. The single encoder should process the two images

in similar way, also taking into account the cross influence of each one over the other.

Unfortunately, results are not as promising as expected. The last attempt is to use

the ResNet50 as backbone and the resulting features map will be cross-correlated by
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the encoder. To give stronger feedback in the learning phase this network has two

output branches, one for the mask generation and another for background/foreground

classification. In this case, the intermediate layer outputs of the resnet in mask branch

are used to be concatenated in the decoder to reinforce the reconstruction.

4.3 Proposed approach: SiamCA

Generative approaches are not enough if used as main component. Following the state of

the art the research path moved to more flexible solutions based on Siamese architecture

with dilated kernel pretrained on ImageNet as backbone. In this approach the purpose

is to preserve the Cross-Attention module and use it before the correlation. Most of the

trackers rely on a Region Proposal Network (RPN) to regress the bounding box. In the

proposed strategy, the aim is to have an anchor-free tracker, which has three output

branches with mask generation, bounding box regression and FG/BG classification.

Mask generation is a group of upsampling interpolations and convolutional layers that

at each step are added with the resnet output for the corresponding spatial dimension.

Bounding box and classification are two convolutional neural networks to estimate a

single bounding box and a class score map of reduced size. It is believed that branches

influence each other even if there is not a direct link among them. This makes it

possible to tune a single hyperparameter and get an improvement of the others in a

predictable positive-negative way.

4.4 Proposed approach: Temporal relation

Classification and regression tasks could be considered to be directly correlated. The

output classification score map is used in the tracking phase too so as to work in

combination with the regression and to choose the best bounding box based on the best

probability score. The correlation is obtained by extrapolating the global localization

context vector of the cross-correlation output of target over image. In parallel, a
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Fig. 4.2 Comparison of vector field representation in discrete residual networks and
odenet [11]

recurrent neural network with long-short term memory capabilities (LSTM) is used.

In the end the output of the LSTM is added to the context vector and the result is

included in a classification branch and in a regression branch. The aforementioned

global vector is obtained by utilizing a Global Average Pooling as stated in [94]. This

is due to the fact that it is able to better preserve localization information thanks to

the average operation, which does not hard-cut the network response. The idea is

to strengthen the recurrent features with localization patterns and use the memory

information to extrapolate the relevant information for the two different tasks.

4.5 Ordinary Differential Equation Networks

ODENet [11] exploits how dynamical systems can be of great interest in training

neural networks. They remove the necessity of specifying a discrete number of hidden

layers. Neural networks are used to parametrize derivative of hidden states. Residual

networks sequentially perform operation on the hidden state ht+1 = ht +f(ht, θt) where

t ∈ 0, ..., T and ht ∈ RD, which can be seen as Euler discretization of continuous

operations [52]. Adding more layers and increasing the model complexity is tantamount
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4.5 Ordinary Differential Equation Networks

Fig. 4.3 Generic Mask Head with ODE module

to parametrizing the continuous dynamics of hidden units by an ordinal differential

equation

dh(t)
dt

= f(h(t), t, θ) (4.1)

where t = 0 is the input layer and t = T the output layer in a neural network on

the condition that h(t) represents the ODE solution at some time T . The final state

can be computed by an ode solver, evaluating the hidden units dynamics f for the

determination of the solution, as shown in figure 4.2.

4.5.1 Proposed approach: ODE Mask Generation

In literature [60, 61], many studies have demonstrated the benefits of relying on low-level

features aggregation to generate fine mask reconstruction. It allows to incorporate the

spatial information in low-level features that represent high-level semantic information.

This aggregation could also be seen as a reconstruction of residual information [88].

Along this line of reasoning, an ode module is studied to make it possible to embed

a continuous space residual reconstruction to get a fine-significant output mask. In the

proposed case, rk4 integration method is used with no adjoint learning schema due to

the instability of the method in similar contexts [73].
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Based on a simple reconstruction architecture as explained in section 2.4, the main

contribution is to modify the residual part of the algorithm, following the schema in

[24] and introducing a composition of convolutional layers, batch normalization, and

some kind of attention to be evaluated with an ode solver as a time dependent function,

with t = 1.

4.6 Proposed approach: Geometric Constraints

Fig. 4.4 Siamese structure with geometry neck add-on

The possibility of adding geometric constraint is explored. During the tracking

phase, no constraints or elements that help to learn modification through time are

usually implemented. It is left to the tracking phase the burden of the visual model

update, introducing penalties based on score maps or online learning. This is based

on the idea in [69] where it is used for geometry matching and descriptor similarities,

along with their spatial locations, are considered for geometry estimation. It is

composed of a correlation layer followed by a normalization. As shown in figure

4.5a there are fA, fB ∈ Rh×w×d that are the resulting feature maps at the end of the

encoder and the correlation CAB can be seen as the dot product of the two matrices

CAB(i, j, k) = fB(i, j)T fA(ik, jk), where each component of one matrix is correlated

with all the components of the other matrix. It is modified to add a self-attention
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(a) Geometry constraint [69] (b) Geometry Neck

layer on the output based on Efficient Channel Attention (ECA) [64]. Usually, it is

used on convolutional layers, but it gives an efficient local cross-channel interaction in

order to better extrapolate stronger relations on geometric correlated features. To give

stronger feedback, the geometric constraint is inserted at the end of the encoder after

the correlation is performed.

In the architecture the two inputs are represented by the encoder output and

modified target features. Those features are the result of a new component in the

network, which is called Geometry Neck. It is placed at the same level as the common

neck (figure 4.4), but it downsamples the target on features dimension, but upsamples

it on the spatial dimension in order to match the size of the encoder output and make

the correlation possible (figure 4.5b).

The geometry constraint layer is tested in various solutions. In some architecture

it acts differently in the training phase, where the input target is used. The same

happens in the tracking phase, where the target with the alteration is used and an

online learning is expressed by an alternative module, as it is explained in section 4.7.2.
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4.7 Online learning

Online learning seems to be an important part of the tracking process. In a video

sequence the target undergoes many modifications due to its movement, the movements

of other objects, movements of the camera and other type of alterations. Updating the

visual model by learning the target alternations can lead to reduce the problems that

have been discussed in section 1.1.1. Consequently, it allows to minimize the chances

of losing the target.

4.7.1 Learning Target Dynamics

Keeping track of alterations and try to correct them is not applicable, but it is possible

to use a fast general transformation learning model that allows target variations learning

and background suppression, completely shifting the focus completely on the target

from previous frames [28]. It extends the common matching problem to a dynamic

Siamese matching process:

Sl
t = corr(V l

t−1 ∗ f l(O1), W l
t−1 ∗ f l(Zt)) (4.2)

where Sl
t is the response map, V l

t−1 is the Target Variation Transformation and

W l
t−1 the Background Suppression Transformation. Both update the visual model

learned from original image O1 and search region Zt. This modification stimulate

f l(O1) to be similar to f l(Ot−1). Those transformation are learned using Regularized

Linear Regression [74] by a fast circular convolution operation in the frequency domain.

In figure 4.6, it is shown the effect of the transformation on the target image O1 to

Ot−1 and the search region Zt with a cropping centered on target at previous frame

Gt−1 and a Gaussian weight map applied to highlight the foreground object Ḡt−1.

The online module is attached to various developed trackers to check the contribution

of learning target transformations during time. A modification is also implemented

adding a memory parameter to keep track of multiple variations and using multiple

targets at different times. The first element is always assigned to O1 in order to preserve
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4.7 Online learning

Fig. 4.6 Target Appearance Variation Transformation and Background Suppression
Transformation [28]

the capacity of the original method, having additional k elements. Each element is

shifted to the previous position to keep the memory updated. The best result is chosen

by taking the variation with max response after the circular convolution so as to be

used to update Vt−1 variation transformation.

4.7.2 Proposed approach: Learning Target Geometry

The learning of target variations is modelled using Contractive Autoencoder [68]. They

help to learn a compact representation of the data that can be used for dimensionality

reduction and to find a latent space where similar data have near vector representations.

Opting for the contractive version means to choose a penalty term that corresponds to

the Frobenius norm of the Jacobian matrix of the encoder activations with respect to

the input. The penalty helps to find a representation that best expresses data local

directions variation, corresponding to a lower-dimensional non-linear manifold, while

being more invariant to the vast majority of orthogonal directions to the manifold.

The autoencoder learns various augmentations of the initial target to best represent it

if some alterations arise in the next frames. After the initial learning phase, geometry

neck weights (section 4.6) are used to build the encoder part of the autoencoder. It

41



4.7 Online learning

Fig. 4.7 Modification of tracking pipeline with online target geometry learning

ensures that geometry neck is fine-tuned on various target representations. Following

this strategy target features are processed by the new tuned version of the geometry

neck in order to get a compact representation generated by the encoder subspace. This

is injected into the tracker body as input for the geometry constraint layer (figure

4.7). At each step, the autoencoder is fine-tuned with the next localized bounding box,

which is yet augmented to provide many random different modifications.
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(a) Transformer structure from [79] (b) Multi-Head Attention from [79]

4.8 Transformers Networks

Transformers [79] are widely used in Natural Language Processing. This architecture

has completely changed the capacity of a neural network to work with text values. In

the original form, it consists of an encoder part and a decoder part. In both there

are many internal layers that are composed of a well studied structure (figure 4.8a)

with a positional embedding on the input, because the internal operation is not able to

recognize and remember the position of the input values. In each layer, there is the so

called Multi-Head (Self) Attention, which is a composition of matrix products where

the correlation of the data is estimated by itself. After that, the normalization of the

residual is computed and passed to a simple Feed Forward Network. In the end, the

normalization of the residual is computed again.

The decoder structure is similar to the encoder, excepts for the initial Attention

that can be masked to estimate the masked value. The Multi-Head Attention module

is a cross attention of the encoded representation of the input values and the decoding

elements on which they should be correlated. In this model, the attention plays the
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most important role because it is the key to the success of this architecture. Nowadays,

most studies are conducted on how to enhance the attention calculation of finding

numerically stable alternative to it. Attention is an easy and effective concept that

has been used for years [14, 84, 87], but it reached the maximum of its power within

transformers architecture. In figure 4.8b, the structure of the attention is explained.

Inputs are processed by three linear projections to get the right number of features that

must be decomposed by the number of the heads. The heads are the components that

help to give a different correlation index for each value. To enhance the final result,

it is as the problem is broken down into smaller ones, allowing each one to be able

to extract a proper correlation. Transformers solve the long-term memory problem

of recurrent networks. The structure is able to propagate the temporal information

through the many layers of which it is composed of, reducing the risk of forgetting

information.

Over last years the research community has started to use this architecture in

computer vision tasks as well, obtaining excellent results. In the next section, there

will be description of many methodologies applied in the tracking field.

4.8.1 Vision Transformer

Vision transformer (ViT) [20] is an attempt to put into effect the power of transformers

to work on images. The aim is to classify images using only an encoder. The structure

is shown in figure 4.9

One of the interesting components is the position embedding, that in the case of an

image becomes a patch embedding where the image is divided in patches of a specific

size. A flattening and a final projection are applied to bring the number of channels to

the desired number of embedded features. All patches are used in the encoder along

with an additional token that learns the classification representation of the data. In

the end only the classification token is retained and passed to a mlp head whose result

is the image classification.
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4.8 Transformers Networks

Fig. 4.9 Vision Transformer [20]

In the current research many architectures have been studied to be suitable for

tracking and multi-branch outputs. The first step that is common to all models is to

substitute the patch embedding of a plain image with patch embedding of the extracted

and adjusted features originated from the backbone and neck sides.

4.8.2 Proposed approach: MCRViT

One of the limitations of ViT is that the output token loses all spatial information,

since it has the individual classification information. In the case of tracking, however,

this is a problem, as this information is still needed in order to get the output of the

various heads. To solve this issue, it was necessary to move the compression of the

spatial features within the encoded feature space. Unfortunately, this leads to the

explosion of the number of features to process, reducing the overall value of the hyper

parameters available, such as the internal features number and the internal layers

number.

The main idea is to enrich the base architecture by adding new additional tokens that

are specialized for tasks of each output branch in order to obtain learned parameters.

45



4.8 Transformers Networks

Fig. 4.10 MCRViT Structure

There are from two to three tokens one for classification branch (similar to the original

model) one for regression branch, and another for mask branch. The MLP head can

be removed based on the network design. The architecture is shown in Figure 4.10 and

is called MCRViT.

4.8.3 Proposed approach: Shared Vision Transformer

As stated before ViT demonstrated great performance on image classification, taking the

advantage of learning a component specialized for classification which uses an encoder-

only structure. In addition, it could be utilized to extrapolate more discriminative

and important features with the possibility of correlating two different elements that

are ideally linked together. The encoder encapsulates the relation between search

image and target features with an iterative correlation by encoding them with the

same computing layer, especially after taking advantage of multi head cross correlation

ability to correlate target over image continually. In this situation, the class token and

the mlp head have been removed.

4.8.4 Convolution-enhanced image Transformer (CeiT)

As in this case with many promising tools, ViT is continually studied and enhanced by

the research community. One of the most innovative researches is called Convolution-

enhanced image Transformer (CeiT) [91]. It involves convolution to extract low-level

features, empowering the locality with the ability of Transformers to model long-range
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(a) Layer-wise Class token
Attention [91]

(b) Locally-enhanced Feed-Forward layer [91]

dependencies. It provides three fundamental modules (the whole architecture is in

figure 4.11a):

• Image-to-Tokens (I2T) module: it extracts patches from low level features

• Locally-enhanced Feed-Forward (LeFF) layer: it promotes the correlation

among neighboring tokens in the spatial dimension. It is substituted with FFN

in ViT reshaping the feature vector in a matrix that is treated as an image and

a Depthwise convolution is applied. In the end, a new flattening is performed

(figure 4.11b)

• Layer-wise Class token Attention (LCA): it uses the multi-level representation

of the attention at the top of the model. It is based on the concept that each

convolutional layer depends on the previous one with a influence inherited by

the receptive field size. Taking into account the spatial relation in convolution

and relations that are embedded in each attention module, it relies on the full

history of token attention to strengthen the final token, avoiding the possible loss

of important information in the dependency path built by the transformer
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4.8.5 Proposed approach: Convolution-enhanced image Cross

Transformer (CeiXT)

Starting from the CeiT structure, the proposed embedding in a tracking architecture

is to substitute the I2T module with the feature extracted from ResNet50 at layer3 in

order to not enforce high-level features, eliminating the necessity of CeiT. There are

two distinct inner encoders to process the search features x and the target features

z independently. After the encoding phase, there is a modification of the standard

encoder with cross correlation operation. By using multi head cross attention with

image and target, the LeFF module is modified in a Locally-enchanced Feed Forward

Cross Correlation Network (LeFFX) where the target z is used as weight matrix for

the depthwise convolution, as it usually happens in standard, cross correlation module.

It enforces the features represented by the cross attention of the target z over the search

xz_attn. Furthermore, three tokens have been used as in section 4.8.1 for mask, class,

and regression; three LCA modules are applied on each token, taking into consideration

the attention history of each token. This architecture is called MCRCeiXT.

4.8.6 Proposed approach: Shared Cross Transformer

The shared cross transformer splits each layer in two submodules: the first follows the

classic transformer; the last is a Cross Encoding Layer that uses cross attention of x

over z and cross attention of z over x. Iteratively, each transformer layer computes the

separate encoding and the aggregation of features. At the top of the encoder, there is

the last cross encoding layer and just the search image is preserved in the end. The same

layers process both search image x and target image z. Two sinusoidal embeddings are

employed for each input and the decoder is not present in the architecture.

4.8.7 Proposed approach: ViTCRT

As it has been shown in paragraph 4.8.3 Vision Transformer is deployed as a base to

model the encoder part of the tracker in order to be able to correlate both search image
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Fig. 4.12 Shared Cross Transformer architecture

feature and target image feature. Two tokens have been used, one for classification

and another for regression. Based on the strategy in [85], the patch embedding is

reduced to have size 1; it is further computed on backbone output feature maps, but

this is equivalent to taking a patch of one pixel size on an image. The next step is

to concatenate on length dimension, both features in a unique vector that is used

as input for the transformer. It ensures that features will be naturally correlated by

using multi-head self attention, which in our case, become a mix of self-attention and

cross attention. It computes simultaneously the image self attention along with target

and cross attention of target over image and image over target. In this specific case,

it helps to compute the importance of the classification and regression tokens over

both pieces of data, where each element expresses its relevance towards the desired.

In figure 4.13, the architecture is shown. It is extremely relevant because it directly

influences the tokens. At the top of the encoder tokens are extracted with the learned

representation of the pixels in the transformer. One important difference with MCRViT
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4.8 Transformers Networks

Fig. 4.13 ViTCRT Architecture

is the embedding space, because this new version relieves the burden of solving the

spatial incompatibility of the token with the head. Differently from the original ViT,

which employs the last MLP head as output layer for classification, the tracker needs

to further process tokens on spatial dimension too so as to create appropriate feature

maps that are a sub-space representation of the initial search image, where encoded

information on foreground/background scores and bounding box location based on the

technique in [86] are present.

50



Chapter 5

Models Architectures

If you’re not trying to be

real, you don’t have to get it

right. That’s art.

Andy Warhol

All methodologies reported from the previous chapter are part of multiple architec-

tures, in order to understand what works and what does not in combination with the

visual tracking task. For each experiment a figure and an explanation of the concept is

reported.

5.1 Architectures

The following explanation describes how the various proposed methodologies reported

in chapter 4 have been arranged to build multiple architectures, which are investigated

to understand how they can contribute to the tracking area. All architectures put

ResNet50 backbone into effect with or without convolutional dilation. Layers of

ResNet50 are fine-tuned on the tracking task. There are three main structures:

1. SiamCA. It uses a Siamese Cross Attention encoder before the depthwise cross-

correlation in all experiments.
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5.1 Architectures

Legenda
SPL Simple Encoder
CA Cross Attention Encoder

ODE ODE in Mask generation
SUM Features sum in Mask generation
CAT Features concatenation in Mask generation
RCT Recurrent LSTM layer

ATTN Efficient Channel Attention in Mask generation
ODYN Online Dynamics Learning (M: Multiple)

OAE Online Geometry Learning
MTL Multiple Layers

Table 5.1 Experiments Acronyms Caption

2. SiamSPL. It does not use cross attention before the depthwise cross-correlation.

It is used as an ablation study to check whether or not the cross-attention module

is important in developed architectures.

3. Transformer Correlation: The correlation is performed through a transformer

before the head module.

5.1.1 SiamCA-Base

SiamCA is a Siamese Cross Attention tracker. It uses a ResNet50 backbone with

dilated convolution. The encoder is a simple cross attention module with the last cross

correlation operation. It has a basic three-branch head output. It relies on a series

of Convolution-BatchNorm-ReLU operations to generate the output bounding box

regression and the output classification map. The methodology is expressed in the

state of the art for mask generation.

5.1.2 SiamCA-Base-DYN

SiamCA-Base-DYN is equal to its counterpart in section 5.1.1 on offline part. The

difference lies in online tracking where the learning of target dynamics (section 4.7.1)

has been added (as shown in fig. 5.1).
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5.1 Architectures

Fig. 5.1 Integration of Online Target Dynamics learning in the network architecture.
Dotted lines represent modules which are activated only in tracking stage

Multiple-Dynamics

Multiple-Dynamics (ODYNM) is referred to the attempt to add multiple temporal

targets with the aim to learn the best transition from the state T0 to Tn−l where n is

the previous target and l is the state of the target in a moment before n is stored in a

memory buffer.

5.1.3 SiamCA-ODE

Mask branch of SiamCA is enriched with ODE layers (sec. 4.5). In this implementation

the sum of low-level features and high-level backbone features is preserved.

SiamCA-ODE-SUM

This sum is enriched with an ode function composed of a single convolutional layer

with a kernel size of 1 in order to resample the features by continuous operations.

• SiamCA-ODE-SUM-DYN. Dynamic module is added in online tracking to

check the compatibility and the contribution that it can give to a more continuous

approach.

53



5.1 Architectures

Fig. 5.2 Recurrent Head

• SiamSPL-ODE-SUM. An ablation study is performed removing the cross

correlation attention module and using the simple encoder

SiamCA-ODE-CAT

High-level features from backbone are concatenated with the mask reconstruction as

in skip-connections. After that they are processed with an ODE function consisting of

a convolutional layer and a batch normalization. This occurs at any level before being

upsampled.

SiamCA-ODE-CAT-ATTN

In the case of mask generation, the aim is to start with a set of features that are globally

representative and spatially consistent. For this reason, the global context is computed

by an average pooling and it is later used as a starting point for the computation. The

ODE function is modified with the following operations Conv-BatchNorm-ECA. The

Efficient Channel Attention is a cross channel attention mechanism that is implemented

by 1d convolution. Concatenation is employed for skip-connection with backbone

high-level features.

SiamCA-ODE-SUM-ATTN-RCT

The only difference in mask is the use of SUM operator instead of concatenation. The

main changes are on classification and regression branches. To enrich the correlation
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5.1 Architectures

Fig. 5.3 SiamCA-ODE-SUM-ATTN-ViT

of both and try to put an element that helps to memorize the recurrent pattern in

the localization and classification, a recurrent layer (consisting of an LSTM layer) is

implemented. The head also tries not to lose important spatial information through

the flattening and reconstruction of the signal, thanks to the LSTM, which adds the

global context to the encoder output. The architecture is shown in figure 5.2.

• DYN version is also tested

5.1.4 SiamCA-Transfomers

Transformer networks has been used to maintain a strong correlation based on a

compact representation and to remember recurrent patterns. In addition, in this

section many architectures have been tested and the most relevant have been reported.

SiamCA-ODE-SUM-ATTN-ViT

Mask branch has the same structure shown in paragraph 5.1.3. A vision transformer is

used, following the classic structure with one output token (figure 5.3). This token is

spatially enriched, as demonstrated in previous paragraph, by using the global context.

At the top of the head the token has been given input to classification and mask

branches.
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5.1 Architectures

SiamCA-ODE-SUM-ATTN-MCRViT

Fig. 5.4 SiamCA-X-ATTN-MCRViT

The whole structure, including the reason for inserting global context, is identical to

4.8.7. The difference is that multiple tokens have been learned by Vision Transformer.

Instead of using just the classification token as a “global” token, there are three

particular elements that will be learned for a specific task: one for mask, one for

classification and one for regression.

SiamCA-SUM-ATTN-MCRViT

It is conducted as an ablation study on ODE mask generation. The structure remains

the same as in paragraph 5.1.4, but mask ode function is removed from the branch. The

efficient channel attention is moved after the layer upsample in order to make output

upsampling convolution stronger on channel dimension. In figure 5.4 the architecture

is shown.

• SiamCA-SUM-ATTN-MCRViT-MTL. Same structure of the above experi-

ment, but a greater number of layers is employed in transformer, preserving all

other components and hyperparameters. It acts like a comparison test with the

one layer version.
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5.1 Architectures

Fig. 5.5 SiamSPL-VTGC

• SiamSPL-SUM-ATTN-MCRViT. As an ablation study the cross attention

encoder is removed and the simple version is implemented.

5.1.5 SiamSPL-VTGC

SiamVTGC is the acronym for Siamese Vision Transformer with Geometry Constraint

(figure 5.5). The structure follows the other transformer implementation, using MCRViT

with the global context for spatial consistency. Before head computation, tokens will be

geometrically constrained (sec. 4.6) through the target features refined by a geometry

neck. This can be considered a kind of attention over the target structure.

• SiamSPL-VTGC-OAE. The online version uses an autoencoder to learn the

target variations and to to substitute the geometry neck with an updated invariant

version of the target features. An additional use involves geometry constraint

• SiamSPL-VTGC-MTL. A multilayer version of SiamVTCG

• SiamSPL-VTGC-MTL-OAE. A multilayer version of SiamVTCG with the

online learning module

5.1.6 SiamSPL-GC-FCOS

It does not use transformers for middle computation. It preserves the Geometry

Constraint schema (Geometry Neck + Geometry Constraint). Mask is computed after
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the constraint, whereas classification and regression are done using FCOS (sec. 2.3.3)

detector.

5.1.7 SiamSPL-VTGC-FCOS

The architectures is the same as 5.1.5, with the difference that the FCOS detector is

used as head and the inputs are the classification and regression tokens.

5.1.8 SiamConnector-MCRCeiXt

The encoder is a modified transformer named MCRCeiXt (sec. 4.8.5). To summarize

the transformer has two parallel encoders that take care of search image features and

target features, correlating them using cross attention. The output uses FCOS as

detector.

5.1.9 SiamSharedTransformer

One of the most simple structures, it uses a shared transformer to encode both inputs

and to cross-correlate them at each step. The output is a single element that is deployed

by FCOS. No mask generation in this architecture.

5.1.10 ViTCRT

It shares similarities with MCRViT as it uses the same structure, but the encoding is

more based on a transformer baseline approach where spatial dimension is flattened

and encoding is all on embedding dimension. Extracted tokens undergo a multiplicative

spatial attention thanks to the encoded features performed by ViTCRT . It reconstructs

the spatial dependencies of the tokens. A structure similar to Alpha-Refine (section

2.3.4) is used for bounding box regression. Classification is a simple MLP, outputting a

vector that will be reshaped to fit the image size used as score map. It has been built

with 6 layers in the encoding and 8 heads. To search the best architecture, many of
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Tracker Config MLP HEAD ATTN CLS AUC Pnorm OP50 OP75
baseline Full Spatial MLP 53.91 64.36 66.0 39.4
box_mix Full Spatial BOXMIX 51.12 48.64 49.33 25.63
multihead MT Spatial MLP 46.48 56.11 57.6 33.17
tokens Tokens Spatial MLP 56.05 67.54 68.75 40.75
nomlp none Spatial MLP 57.06 68.65 69.83 40.47
nomlp token attn none Token MLP 59.15 71.70 72.37 41.88
nomlp masking none Spatial MLP 56.73 67.47 69.11 40.26
multihead token attn MT Token MLP 67.34 81.71 84.17 52.38

Table 5.2 Comparison of ViTCRT configuration on OTB100. MLP is the final mlp
head in ViT possible values are Full to process the full sequence, Tokens use one head
to learn a representation for all tokens, MT creates a different mlp head for each token.
HEAD ATTN is an experiment on spatial reconstruction of token after ViT output,
Spatial means the encoded features multiplied by the attention, Token use the token
representation to reconstruct the matrix. CLS represents the use of class prediction
using a single MLP or BOXMIX weighting the output MLP with the probability scores
from regression head.

them have been tested on OTB100 in order to have fast and relevant results (table

5.2):

• With / without mlp heads in ViT

• With multiple mlp heads in ViT

• Weighting the class score map using the bounding box scores

• With / without attention masking

The last configuration, in table 5.2, seems to be the most relevant. More specifically

than mentioned above, it is composed of a multiple head in transformer where each

token can learn a proper representation without being mixed with others. This should

enforce the task-capability of each one. The ViT outputs are two tokens without length;

they just have an embedding representation, which is problematic because heads need

to process spatial features as well. For this reason, the feature spatial representation is

also returned and multiplied with tokens to get a lightweight attention. Then, it is

multiplied again with the token, ensuring that the token has a spatial dimension too.

In an experiment (box_mix), a different type of head is used in training, generating
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5.2 Training

a feedback from the regression head where the probability score maps are used to

weight the output of classification. The final scores are summed with a weight of 0.5.

Unfortunately, this has not proved to be the best solution.

5.2 Training

For the training stage an offline approach has been chosen, like in many of the most

important techniques. It consists in showing single images to the network with the

corresponding target. The target representation depends on the type of dataset and

for those that are based on single image the exact matching target is used. Conversely,

for those based on video sequences, target is not the exact image that is present in

the search image, but a sampling. The strategy is used to choose the same object in a

different position over time. The main strategy is called causal and consists taking

a frame at time ti as reference image and choosing the next valid frame index tv
i as

a starting point for sampling the target image. A “valid” frame means, one where

the target is present because this is not true for all frames in a sequence, in fact,

some of the datasets are both for short-term and long-term tracking or just for object

detection or segmentation. Starting from the first valid index the next frame at time

tv
i+n is chosen. This strategy guarantees both to teach to the network how to precisely

identify an object based on shape and position. It further helps to reduce bias in the

localization based on the exact shape of the target, forcing the network at the same

time to find the best candidate with the most relevant and similar shape in the frame.

For training, a collection of different datasets has been used jointly to allow the network

to see as many different samples and objects as possible. Moreover, the sampling

strategy diversifies what the true sample and the related target are. In addition, data

augmentation artificially enriches the dataset and, most importantly, it reduces the

bias, since all images have a hypothetically similar context. The image is randomly

jittered in any direction and to a different scale, adding black border to fit the expected

size of the image. The same process can be applied on target. It also avoids that the

60



5.2 Training

target is always at the center of the image, reducing another possible bias introduced

by the data. From the dataset, bounding box annotations and mask information are

extracted with the same pre-processing operations in a way that is applicable to the

two types of data in order to make all input elements consistent with each other. After

data have been computed by the neural network the output is learned with appropriate

loss functions or multiple losses, for each branch. For most of the presented models the

loss does not change. For all models, except for ViTCRT , Stochastic Gradient Descent

with Momentum [63] was used as the optimizer. For ViTCRT model, ADAMW [51]

was used with 500 epochs at a learning rate of 1e-4 with a step learning rate decay of

0.1 every 200 epochs.

Computational Costs

One of the biggest problems in tracking is the computational resources required to

perform the training phase. It must be taken into account that a tracker is a collection

of many components, some of them already quite large on their own, such as the

backbone. In addition, the datasets used are large, leading to a fairly high number of

samples per epoch. This means that being able to perform a single experiment is not

at all simple. Most of the experiments carried out took hours and hours for a single

epoch. This implies that even a small number of training steps required weeks and

months of training time. Obviously, this involved a trade-off betweeen the time used

to research new solutions and the time needed to test their effectiveness. In the results

section, statistics at a different number of epochs are reported for some trackers. A

low number of iterations are often found, which can lead to results that do not fully

express the capabilities of the technique itself. For example when it was decided to

work using transformers, based on their formulation, a complex obstacle was faced,

so much so that the number of epochs in the first experiments is very limited, as

well as the utilization of the number of hidden layers present within it. Apart from

the experiment with SiamSharedTransformer and ViTCRT all other experiments

have been conducted using a single layer and a very low number of input features.
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On the other hand the experiments called Multilayers have used two hideen layers.

SiamSharedTransformer instead has been tested with 2 and 5 layers while ViTCRT

has the basic architecture of ViT with 6 layers in the encoder. As reported in the

section of the proposed methodologies (section 4.8.1), the main problem with the first

set of transformers is that when using ViT, the final output is a single token that loses

the length and the spatial dimension. Therefore, it has been encapsulate it within the

encoding itself, thus exploding the number of features to be processed and lowering

the amount of layers.

5.2.1 Loss Functions

For each task, one or multiple loss functions have been used with an appropriate

weighting factor to differently impact on the total loss and to reduce excessively steep

slopes, avoiding getting an extremely small contribution of a loss in comparison with

another. The loss will be formulated as:

L = λ1Lreg + λ2Lcls + λ3Lmask (5.1)

where, obviously, each loss can be formed by one or more task specific losses. This

forces the network to learn from multiple error functions. As a result, the whole

network models a composed function, where each element is optimized.

Regression Branch

The regression branch has to predict the bounding box where the target is located. To

measure the error of the localization the intersection over union is used as the main

measure. Many IOU loss functions exist, and three of them used in the experiments

are shown as follows:

• IoU: as stated before (section 3.4), the IoU measures the overlap of the pixels

number in the resulting bounding box estimated boundaries and the ground truth

box. It does not take care of the noise in the bounding box such as background

62



5.2 Training

elements or occlusions because the important element is just the location of the

object. It is usually employed as distance metric and generally the IoU measure

equation 3.1 of the predicted bounding box bt and the ground truth bounding

box bgt is

Liou = 1 − IoU (5.2)

In this specific case, an optimized version of the loss is used in [89] as likelihood

in a cross entropy function. It minimizes the negative log likelihood:

Liou = − log(IoU(bt, bgt)) (5.3)

• Generalized IoU (GIoU) [67]: it is a more general metric that tries to reduce

the gap in IoU where there is no information, in particular when a bounding box

does not overlap the ground truth or if the bounding box cover a part of the

image that is outside of the ground truth. Both pieces of information can be used

to represent a detailed behavior of the proposed estimation by including theme

in the learning schema. This is carried out by computing the smallest convex

shape C enclosing bt and bgt. Furthermore, the ratio of area of C is computed,

excluding bt and bgt and dividing the total area of C. In the end the ratio is

subtracted from the IoU:

GIoU : IoU − |C\(bt
⋃

bgt)|
|C|

(5.4)

consequently:

Lgiou = 1 − GIoU (5.5)

• Smooth-L1 [25]: in regression tasks, it is common to find the optimization of

a norm, such as L1 or L2, which are the Absolute Mean Error (MAE) and the
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Mean Squared Error (MSE). They can be seen as distance from one point to

another in the Euclidean space. The advantages of taking them separately are

that L2 has less oscillation when values are small, L1 has steady gradients for

large values and helps to introduce sparsity. It is possible to get both benefits by

relying on the smooth-L1, which uses the bounding box values formulated as:

Lsmooth-l1 =


0.5(bt − bgt)2

β
if |bt − bgt| < β

|bt − bgt| − 0.5 ∗ β otherwise
(5.6)

It can be seen that when β → 0 it converges to a L1 loss instead when β → +∞

it converges to a L2 loss.

Classification Branch

For classification, the evaluation is done on a map of responses that identifies two

classes: foreground or background. For this reason the classification can be treated as

a binary classification problem classifying each single element in the output matrix.

Generally, the loss is computedby using the cross entropy loss, namely:

Lce = −
∑

i

yi log ŷi (5.7)

An alternative is to use the Focal Loss [48], which is very popular in object detection

and can be used in environments where there is an imbalance dataset. This may be the

case of tracking because the number of background elements class is supposed to be

greater than the foreground one. It modifies the standard cross-entropy loss in order to

balance the loss obtainedd for widely expressed examples. It adds a factor of (1 − pt)λ

with λ ≥ 0 to cross entropy:

Lfce = −α(1 − ŷt)λ log ŷt (5.8)

where α is a balancing factor.

64



5.2 Training

Mask Branch

This branch tries to reconstruct the input image with a binary mask that represents

the background and the foreground element. The concept is similar to the classification

branch because each reconstructed output pixel can be seen as a foreground/background

class. However, it tries to have a refined output in order to obtain a fine segmentation

representation of the target in the frame, taking care of the scale, position and occlusions.

The loss is managed by means of the L1 loss, which in reconstruction achieves impressive

results and from a visual point of view the reconstruction is smoother and less blurred

than the L2 loss. The L1 is simply the Mean Absolute Error described by the following

equation:

Ll1 = 1
N

N∑
i=1

|yi − ŷi| (5.9)

GAN

When training the Generative Adversarial Network the loss is relatively different. The

MiniMax game loss is used where the Generator tries to minimize the following function,

instead, the Discriminator tries to maximize it:

L min
G

max
D

(D, G) = Ex[log(D(x))]Ez[log(1 − D(G(z)))] (5.10)

where Ex is the expectation over discriminator probability D(x) of real data x.

Ez is the expectation of the Discriminator probability over the fake values generated

by G(z). It derives from the cross entropy, mixing the probability of real and fake

data, in order to bring the fake data distribution close to the real data distribution.

Following the literature [26], the generator loss is modified to avoid sticking the network

at the initial stage of the training, minimizing the quantity log(1 − D(G(z))) that is

mathematically equivalent. As experimented the generator can minimize more than

one loss function [33]. The loss is structured using the first term plus the L1 loss so as

to get a more structured reconstruction. Many test have been done trying to optimize
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a loss function that will give a significant contribution. The best combination resulted

in using minimax modified with focal loss, L1 + L2 loss combination.

5.3 Testing - Tracking

Tracking is performed with a different pipeline compared to the training phase as

mentioned in section 1.2. In this specific case, the tracking will be presented with

ViTCRT because, based on the type of estimation, there are several ways to post-

process the output and make it consistent to represent a bounding box. During the

initialization phase, where the first frame of the sequence is passed to the tracker

together with the initial bounding box so that it can extrapolate the initial target

image, preprocessing it and extracting the features. This is done in advance because,

unless the systems are updated, it helps to speedup the performance in the tracking

phase since the target remains the same for the whole sequence. Pre-processing and a

forward step are performed using the same modalities shown in training. Firstly, the

bounding box is regressed and the values are brought from the normalized interval

[0, 1] to the search image size. Regarding the classification branch the network has

been tested with and without it. The update schema in STARK [85] is tested. Then,

the next step is to take the logits of class prediction and post-process them by applying

a softmax function. A penalty score is computed using a Hanning window w as follow:

ρ = s ∗ (1 − α) + w ∗ α (5.11)

where ρ is the penalty score, s is the prediction score, and α the window influence.

The penalty is useful to make the prediction more robust to target variations and

penalize predictions that are far from the target. This score is used to find the position

of the maximum value that represents the most probable region where an object could be

located. As opposed to other approaches that select the most discriminative bounding

box, the score is used as a center point and is checked if the score mapping falls in the

bounding box region. If that is the case and the score is greater than a threshold value
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ViTCRT (updates) ViTCRT (no updates) Increment (%)
AUC (%) 60.38 67.34 +10%
Pnorm(%) 72.54 81.71 +11%

Table 5.3 Comparison on OTB100

t = 0.45, the bounding box is used in the next run as a supplementary target allowing

the tracking not only to be influenced by the first target (the most important one),

but also to take advantage of the subsequent targets which brings information on the

target updated state. Unfortunately, this technique has demonstrated to return lower

scores (table 5.3), so it was abandoned along with classification in the tracking phase.

5.4 Fuzzy models

Our work, despite being focused mostly on visual tracking, has led to the exploration

of other fields of artificial intelligence as well. During the studies on the attention

mechanism and the explainability of the models, we thought of investigating the

possibility of creating a deep model fully composed of fuzzy operations that could

exploit the learning features used today in artificial neural networks. At the same

time, given the very nature of these operations, they help us develop efficient models

that may obtain results comparable with those of the current state of the art and that

could be naturally explainable. This was possible by adapting the fuzzy compositions

to local operations, made in the surroundings of the pixels of an image, similarly to

convolutions. From here, it was studied an alternative layer to the convolutional one,

using the MaxMin composition. All details are reported in the appendix A. As for the

attention, however, it was decided to insert the same type of relationship by replacing

the one that comes out of the classic matrix product, followed by the softmax function.

This is because, as it has been analyzed, the type of behavior describes precisely the

type of relationships that we try to express in fuzzy environment. All the details are in

the appendix B. Currently, these elements are under active research and development.

Finally, an integration of a transformer, based on fuzzy model, into a tracking algorithm
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is also being carried out. Unfortunately, the results and framework are too premature

to report in this thesis work. Results are shown in section 6.2.

68



Chapter 6

Experimental Results

Have no fear of perfection -

you’ll never reach it

Salvador Dalì

In this chapter all methodologies have been tested and compared to figure out

their limitations and to motivate how any modification in architectures increases or

decreases the effectiveness of theoretical reasoning. For the best model all results are

reported and deeply explained.

6.0.1 Preliminary studies on GAN

Firstly, tests are conducted on COCO test-set [49] where they have produced some

promising results on static images. Before proceeding to the tracking of unknown

objects, it has been attempted to specialize the network on specific tasks. The aim

was to enhance the characterization ability of the network and simplify the generation

process working on a single problem: the localization of a targeted face in an image.

In this way, we moved from a N classes problem with potentially N different data

distributions to a one class problem that is easier to work on. Model is trained on

FDDB dataset [34], which provides faces location as ellipses. In figure 6.1, the learning

progresses in terms of discriminator accuracy, generator IOU, and loss progression
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of network discriminator/generator on face localization. It is possible to see in 6.1c

that discriminator loss on training (blue curve) after an initial decreasing phase of

40 epochs, there is a convergence without big oscillations. Instead, the generator loss

in 6.1d is decreasing. From the snapshot, it is not simple to define a true overfitting

state, but it is presumable. It is important to remember that in GAN architecture

comparing the curves of both network for good assumptions plays a key role. In figure

6.2 and figure 6.3 it is possible to check outputs on training data and validation data

respectively. Network output appears quite outlined with a shape that follows the

ground truth even in situations with more faces. Another situation that does not seem

to interfere with the localization is the partial occlusions observable both in training

(on the fourth row, with a hat that overlays the bottom right angle of the target image)

and in validation (on the fourth row, where a tennis ball slightly covers the face on the

top left margin of the target).

Another interesting behavior can be seen in situations where more faces are in

the images: in some scenarios it seems to be able to localize a single face, but not in

others. The most problematic occurrence can be found in the validation phase, where

three out of four images with multiple faces are recognized in the wrong way. No

post-processing is applied on the generated mask, which could surely help to reduce

this kind of problem, but the aim of the methodology has been to built an end-to-end

network. Clearly, it fails in the intrinsic task to generate a single object localization.
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(a) D: fake accuracy (b) D: real accuracy

(c) D: loss (d) G: loss

(e) G: IOU

Fig. 6.1 GAN statistics. Train Validation
Tensorboard live dashboard

It is also chosen to test the network on a single video sequence contained in OTB,

where a person is moving in the scene with the camera focused on his face. The network

showed problems with some kind of deformation. From various tests, it is apparent

that the main problems arise with in-out plane rotation and changes in illumination.
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(a) Source (b) Target (c) GT (d) Generated (e) Bounding box

Fig. 6.2 FLGAN outputs of training set
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(a) Source (b) Target (c) GT (d) Generated (e) Bounding box

Fig. 6.3 FLGAN outputs of validation set
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6.0.2 Siamese trackers

For each experiment in table 6.7, the test results on VOT Challenge 2019 are shown.

The table shows the most relevant and difficult test in tracking. Unfortunately, none of

the tests carried out has managed to reach a very important score especially considering

the EAO parameter, which is the reference parameter. Some of the trackers show very

fluctuating behaviors and probably structural problems within them. It is interesting to

note that SiamCA-Base has achieved considerable improvement with the introduction

of dynamic online learning. On the contrary, our proposal to modify it so that it could

evaluate more than a single representation of the target seems not to have borne any

fruit even though it indeed lowers the initial base result. The first improvement is

made by using a mask generated via ode functions and along with the concatenation of

high and low level features. This solution, unfortunately, involves a computational cost

much higher than the sum. In addition, the dynamic layer has completely sent off the

tracker using the ODE function. Another interesting behavior is the improvement that

emerges when a recurrent layer encodes the two classification and regression heads.

Nonetheless, the second instability is in the version that uses MCRViT, in fact, as the

number of epochs increased, there was a strange spike in the performance. However,

the results trend from the previous epochs seemed to improve the performance. The

addition of geometric constraints and geometric online learning did not increase any

results and there was no stopping difference whatsoever. Unexpected behavior occurred

with the first attempts to use FCOS, a recognized state-of-the-art object detector

and successfully implemented in other trackers. This is probably another sign of

a problematic architecture. One of the best results (SiamSharedTransformer) was

achieved by abandoning tokens within the transformers and by using internal encoding

of extracted features. Among all the implementations, we chose to pursue ViTCRT

both for its results, and because it manages to have a high enough performance in

the training phase, processing up to 50 frames per second. This is an incredible result

compared with other algorithms that took so many hours to finish even a single epoch.
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SiamFC MDNet ATOM SiamRPN++ SiamAttn TransT STARK ViTCRT
[5] [59] [18] [46] [90] [13] [85]

AUC (%) 57.1 60.6 70.3 73.3 75.2 81.4 82.0 78.52
Pnorm(%) 66.3 70.5 77.1 80.0 81.7 86.7 86.1 83.49

Table 6.1 Results on TrackingNet test set

SiamFC MDNet ATOM SiamRPN++ Ocean TransT STARK ViTCRT
[5] [59] [18] [46] [93] [13] [85]

AO (%) 34.8 29.9 55.6 51.7 61.1 72.3 68.8 65.6
SR0.5(%) 35.3 30.3 63.4 61.6 72.1 82.4 78.1 75.0
SR0.75(%) 9.8 9.9 40.2 32.5 47.3 68.2 64.1 59.8

Table 6.2 Results on GOT10K test set

Given the promising results of ViTCRT , it was chosen to be used as the main tracker

with which to carry out other tests.

In table 6.1, 6.3, and 6.2, there are results of ViTCRT on the three main benchmark

large-scale datasets: TrackingNet, LaSOT and GOT10K respectively. These are

compared to other state-of-the-art and reference techniques in tracking. As it can be

seen, ViTCRT is not able to achieve the best results, but it reached important scores

on AUC and AO metrics, which are the main comparison parameters. Moreover, in

figure 6.4a and 6.4b is possible to check the normalized precision plot and the success

plot compared with many state-of-art trackers. ViTCRT follows the same trend of the

top trackers in literatures with same overlapping in performance and a clear distance

from the others, which is indicative of higher AUC and better accuracy, error resistance,

and ability to generate overlap with the true target. On TrackingNet, referencing to

the evaluation server 1 appears to be in the Top 15 approaches for tracking in the

worldwide leaderboard. On GOT10K ViTCRT some difficulties arose, but it provided

an excellent result too, as it seems to be close to STARK performance. The results have

been verified on the evaluation server with a public leaderboard2. In the comparison

ViTCRT together with TransT and STARK are the only ones to use a transformer

model. Some other techniques exist, but the main reference and most powerful are
1http://eval.tracking-net.org/web/challenges/challenge-page/39/leaderboard/42
2http://got-10k.aitestunion.com/leaderboard
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SiamFC MDNet ATOM SiamRPN++ SiamAttn TransT STARK ViTCRT
[5] [59] [18] [46] [90] [13] [85]

AUC (%) 33.6 39.7 51.5 49.6 56.0 64.9 67.1 64.57
Pnorm(%) 42.0 46.0 57.6 56.9 64.8 73.8 - 67.77

Table 6.3 Results on LaSOT test set

(a) Normalized precision plot (b) Success plot

Fig. 6.4 LaSOT comparison plots

the aforementioned. SiamFC and ATOM are very important to rely on because they

brought great innovations in the tracking field. In table 6.4, there is the comparison

with all other benchmark datasets.

The tracker,despite not presenting the best results yet, continues to be ranked

among those with the best results and on one sequence (UAV123) it was considered with

the undisputed winner of the entire current tracking scene. The proposed methodology,

even though it does not represent the state of the art, is an excellent compromise

in terms of performance proposal. Additionally, it represents an excellent trade-off

between the ability to produce high-level tracking and execution speed, which, as we

SiamFC RT-MDNet ATOM SiamRPN++ Ocean TransT STARK ViTCRT
[5] [59] [18] [46] [93] [13] [85]

NFS 37.7 43.3 58.3 57.1 49.4 65.3 66.1 66.12
OTB100 58.3 65.0 66.3 68.7 68.4 69.5 68.5 67.34
TC128 48.9 56.3 59.9 57.7 55.7 59.6 63.1 59.40

UAV123 46.8 52.8 63.2 59.3 57.4 68.1 69.1 68.63

Table 6.4 Comparison on all the remaining benchmark datasets (AUC %)
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baseline realtime unsupervised
EAO A R EAO A R AUC

ViTCRT 0.433 0.774 0.711 0.434 0.774 0.711 0.609
Table 6.5 Preliminary results of ViTCRT on VOT2022 - Short Term - Bounding Box
challenge

Tracker Speed (FPS) FLOPs (G) Params (M)
ViTCRT ⋆ 83.7 11.3 18.8

STARK-S50⋆ 42.2 12.1 28.1
STARK-ST50⋆ 41.8 12.8 28.2

TransT-N2♦ 70.0 - 16.7
TransT-N4♦ 50.0 - 23.0

SiamRPN++⋆ 35.0 48.9 54.0
Table 6.6 Comparison with major trackers, especially with the two that use Transformers.
⋆ tested on Nvidia Tesla V100. ♦ tested on Nvidia Titan RTX

.

see from Table 6.6, is able to reach 80 FPS in its basic configuration, preserving a

relatively low number of parameters. The results presented were achieved with the

hardware configuration specified in the table.

77



Tracker Identifier A (↑) R (↓) LN EAO (↑)
SiamCA-Base 0.562 0.843 168.0 0.204
SiamCA-Base-ODYN 0.558 0.727 145.0 0.226
SiamCA-Base-ODYNM 0.556 0.803 160.0 0.201
SiamCA-ODE-SUM 0.562 0.843 168.0 0.204
SiamCA-ODE-SUM-ODYN 0.146 5.006 998.0 0.018
SiamCA-ODE-CAT 0.556 0.778 155.0 0.229
SiamSPL-ODE-SUM (ep. 20) 0.487 0.848 169.0 0.194
SiamSPL-ODE-SUM (ep. 25) 0.528 0.873 174.0 0.195
SiamSPL-ODE-SUM (ep. 40) 0.538 0.873 174.0 0.207
SiamSPL-ODE-SUM (ep. 45) 0.503 1.018 203.0 0.180
SiamCA-ODE-CAT-ATTN 0.544 0.762 152.0 0.209
SiamCA-ODE-SUM-ATTN-RCT 0.580 0.783 156.0 0.218
SiamCA-ODE-SUM-ATTN-RCT-ODYN 0.398 0.762 152.0 0.153
SiamCA-ODE-SUM-ATTN-ViT (ep. 25) 0.586 0.888 177.0 0.197
SiamCA-ODE-SUM-ATTN-ViT (ep. 27) 0.588 0.958 191.0 0.191
SiamCA-ODE-ATTN-MCRViT (ep. 15) 0.550 0.903 180.0 0.191
SiamCA-ODE-ATTN-MCRViT (ep. 20) 0.569 0.903 180.0 0.195
SiamCA-ODE-ATTN-MCRViT (ep. 25) 0.571 0.933 186.0 0.195
SiamCA-ODE-ATTN-MCRViT (ep. 28) 0.514 3.045 607.0 0.076
SiamCA-ATTN-MCRViT (ep. 15) 0.588 0.913 182.0 0.205
SiamCA-ATTN-MCRViT (ep. 20) 0.585 0.933 186.0 0.205
SiamCA-ATTN-MCRViT (ep. 25) 0.563 0.818 163.0 0.213
SiamCA-ATTN-MCRViT (ep. 28) 0.584 0.918 183.0 0.207
SiamCA-ATTN-MCRViT-MTL 0.583 0.838 167.0 0.201
SiamSPL-ATTN-MCRViT 0.584 0.903 180.0 0.196
SiamSPL-VTGC (ep. 13) 0.570 0.878 175.0 0.201
SiamSPL-VTGC (ep. 15) 0.515 1.084 216.0 0.168
SiamSPL-VTGC (ep. 20) 0.527 1.084 216.0 0.161
SiamSPL-VTGC-OAE 0.515 1.084 216.0 0.168
SiamSPL-VTGC-MTL 0.412 0.998 199.0 0.162
SiamSPL-VTGC-MTL-OAE 0.421 0.998 199.0 0.162
SiamSPL-GC-FCOS 0.412 1.866 372.0 0.101
SiamSPL-VTGC-FCOS 0.149 1.209 241.0 0.084
SiamConnector-MCRCeiXt 0.487 1.971 393.0 0.103
SiamSharedTransformer 0.588 0.597 119.0 0.271
ViTCRT 0.784 0.445 87.0 0.398

Table 6.7 Results of trackers on VOT2019. Caption in table 5.1.
(A) Accuracy; (R) Robustness3; (LN) Lost Numbers; (EAO) Expected Average
Overlap

3Up to VOT2019 robustness is computed as lower is better.
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6.1 Tracking Attention

Fig. 6.5 Good outputs for sequence BlurCar1 in OTB100 with the attention of two
tokens overlaying the image. First row: Bounding Box outputs. Second row: Regression
token attention. Third row: Classification token attention.

6.1 Tracking Attention

Given the use of a transformer and that it relies primarily on the attention mechanism,

it is interesting for the purposes of the research and explanation of the results to see

where attention is focused on the image. To carry out the proposed tests we used video

sequences from the test dataset and to verify the contribution of attention we considered

the procedure of attention rollout [1] that allows to extract, through a combination

of attention in each layer, which is the area of the image where the correlation of the

input is maximum. In the basic case, it allows us to extract where the algorithm is

more focused, but in the proposed case, given the type of input or the concatenation

of target and search image, it is interesting to see how both of the learned tokens

behave. In figure 6.5, it is possible to see on the first row, the output bounding box

(yellow) compared with the ground truth (red) and on the second and third columns,

how the attention is mapped on the image, taking into account both tokens. It seems

that the tracker is able to correctly recognize the subject even in the presence of not

excessive blurring, showing a good robustness for this kind of visual attribute. In the
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6.1 Tracking Attention

Fig. 6.6 Good outputs for sequence Group1_2 in UAV123 with the attention of two
tokens overlaying the image. First row: Bounding Box outputs. Second row: Regression
token attention. Third row: Classification token attention.

same way, it is possible to observe in the figure 6.6 a second sequence (the image has

been cropped to improve the visualization), in which the shooting is done by a drone

that simultaneously rotates around the subject and moves away, leading to a change in

perspective and a variation in scale. At the same time, we see the person on the right

of the subject being tracked looking more and more like the target subject and moving

in front of it. The tracking continues to occur successfully and the attention is at first

completely focused on the target while with the transit of a similar subject, it slightly

shifts towards it, but this is not enough to confuse the network.

In figure 6.7, there are problematic frames from both sequences. In the first two

columns, the attention, due to the movement of the camera and the consequent extreme

blur effect expands its area of importance beyond the designated object. The subject

is encapsulated in the bounding box, but noisy objects entered too. On the last two

columns, it is observable how the network gets confused and the attention starts to

be very relevant for the person on the left; the bounding box follows this behavior,

expanding itself to both subjects and when most of the attention goes to the wrong
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6.1 Tracking Attention

Fig. 6.7 Bad outputs for both sequences with the attention of two tokens mapped on
the image. First row: Bounding Box outputs. Second row: Regression token attention.
Third row: Classification token attention.

person, the bounding box too is encouraged to follow it. Those visualizations seem to

demonstrate that attention, for the most part, follows the behavior of the bounding box,

and vice-versa, as expected. Therefore, it is essential to specify that an uncertainty

in the attention brings the uncertainty in the bounding box and class prediction.

Furthermore, it is possible to notice how the attention of the two tokens is really similar

to each other. For this reason, it can be hypothesized that in the training process, the

two tokens undergo a similar influence regarding the correlation process. This could

lead to suppose that the influence of the multiple loss functions also propagates into

the other elements, as it was expected to happen.
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6.2 Fuzzy Models

MNIST CIFAR10
T V T V

Model A L A L A L A L
Conv2D+ReLU 0.99 0.007 0.97 0.1 0.59 1.17 0.53 1.29
MaxMin 0.99 0.008 0.97 0.08 0.52 1.38 0.49 1.46
MaxMin (2L) 0.99 7.9e-4 0.98 0.09 0.52 1.36 0.50 1.43

Table 6.8 Results comparison

6.2 Fuzzy Models

In this section, results will be shown on the two studied fuzzy methodologies with an

evaluation from an explainability standpoint. The techniques are still under research,

so we will show a comparison with traditional techniques and the results, which already

look very promising.

6.2.1 Advanced Fuzzy Relational Neural Network

AFRNN has been applied to images classification and the MNIST [44] and CIFAR10

[43] datasets are considered for this study. Input images are scaled in range [0 − 1] as

fuzzification step. The single hidden layer architecture uses a feature map of size 8

while in the two hidden layers setup there are respectively feature maps of size 8 and

16 respectively. Weights are randomly initialized using a uniform distribution in range

[0 − 1] in order to define a random degree order. Further weights are constrained to

be in the same range after the backpropagation phase, because they have to define

a data membership degree for all channels at any moment. There is a hard clipping

of the weights on boundaries, like in the gradient clipping case. All layers have a

kernel size of 3 on spatial dimensions. In table 6.8 it is possible to notice performance

of CNN compared with fuzzy architectures. It is further possible to observe that

performances on MNIST are comparable, but on CIFAR10, CNN is slightly better

than AFRNN. However, observing the activations and the heatmaps (Fig. 6.8) of the

models and some others visualizations based on GradCAM [75], Gradients*Inputs [4],

and Integrated Gradients [62] (Fig. 6.9, 6.10), it is plain to see that AFRNN can
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6.2 Fuzzy Models

explain the information used in classification more accurately. GradCAM shows that

conv2d and relu function cut-out important features of the object, retaining the non

relevant one. Instead, AFRNN, if irrelevant areas are present, is able to preserve the

shape of the ships. This appear clear from observing the gradients. Both techniques

have some noise, but the fuzzy module is able to focus more on the image subject.

The same analysis is possible with MNIST in fig. 6.10, where gradients, that is the

attention of the network, are located following the object shape. This statement is not

valid for the convolutional layer that shows a lot of noise and therefore it is unable to

focus on the main subject.

(a) CIFAR10 (b) MNIST

Fig. 6.8 Activations and heatmaps of layers on CIFAR10 and MNIST datasets
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6.2 Fuzzy Models

Fig. 6.9 Comparison between MaxMin layer and Conv2D network on CIFAR10. G*I is
Gradients*Inputs - IG is Integrated Gradients

Fig. 6.10 Comparison between MaxMin layer and Conv2D network on MNIST. G*I is
Gradients*Inputs - IG is Integrated Gradients
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6.2 Fuzzy Models

Patch size Embed # Encoder Heads FFN Dropouts Comp Memb
ViT 4 1024 8 16 2048 0.1 -
Fuzzy ViT-1 4 1024 8 16 2048 0.1 MaxMin Gaussian
Fuzzy ViT-2 4 1024 8 16 2048 0.1 MaxMin Sigmoidal

Table 6.9 Composition of ViT regular and fuzzy versions

6.2.2 Fuzzy Transformer

For this study the transformer model chosen for the experiment is a standard ViT [20],

composed of 8 encoder layers, 16 heads, an embedding dimension of 1024 elements

and a patch size of 4. All parameters are reported in table 6.9, trained on CIFAR10

with Adam [36] optimizer and cosine learning decay. For the fuzzy alternative, the

same settings are used, but the Multihead Attention has been replaced with the Fuzzy

Attention and with Max-Min composition, using two different fuzzification functions,

the sigmoidal membership and the Gaussian membership. The fuzzy model is able to

reach an accuracy of around 60% after few epochs without pretraining while the basic

ViT needs be trained a lot before convergence.

A first short comparison can be done on the attention heads visualization as shown

in figure 6.11. In the first row, the quantity of information presented in each head is

very little and it helps to focus on the most important elements during the forward

phase. On the contrary, in the second row, it is possible to notice that the amount of

information is very high and going on with the number of layers, some lose a relevant

quantity of information in order to provide only the most important ones, others, on

the other hand, appear to be completely dense. The situation is similar for both Fuzzy

ViT-1 and Fuzzy ViT-2, so in the figure, the Fuzzy ViT-1 experiment is shown. This

leads to a problem that needs to be addressed in the fuzzy composition, because by

doing so, it does not take into account the relationships that are not helpful for learning

the network. Research on this avenue, as a consequence, will move forward, trying to

reduce this problem. The first idea that we are trying to prune the heads that carry

too much information from the entropy computation. In this way, it is possible to

eliminate those that have too high entropy, as it exceeds a predefined threshold value.
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6.2 Fuzzy Models

(a) Layer 1 (b) Layer 5 (c) Layer 8

Fig. 6.11 Attention heads at third encoder. The first row contains attentions of the
standard method. The second row contains the attentions of the fuzzy version

This leads to the need to analyze the focus from an explainability perspective. For

this purpose, it has been chosen to use the rollout [1] method on CIFAR10 test set,

verifying the correlation of the classification token over the input image. In figure

6.12, on the first columns, there are the input images, whereas on the second row,

the rollout of ViT is located and on the third and fourth the rollouts of Fuzzy ViT-1

and Fuzzy ViT-2 can be found respectively. There is a strong tendency of the basic

attention not to find coincident correlations with the input images, but is confused by

the background elements, such as in the case of the frog, which has a very similar color

to that of the background or the car, where the tones of the wheels share similarities to

those of the asphalt. On the other hand, we can see that the fuzzy attention, although

it did not seem to give a good result from the point of view of filtering information,

as discussed above, it takes more into account those which are the relationships with

objects. Eventually, it is apparent how the memberships influence the final result.
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6.2 Fuzzy Models

Input image ViT Fuzzy Vit-1 Fuzzy Vit-2

Fig. 6.12 Attention rollout for each model on four samples of CIFAR10 test set

Fuzzy ViT-1 tends to focus on very specific elements, such as the cat’s face, the bumper,

and the car wheels. Despite being compressed, this produces a focus that easily defines

the object and its absolute position. In addition, in this case we can witness instances

where the background has created non-existent correlations, such as with the frog. The

last Fuzzy ViT-2 experiment retains the properties of the previous one, but there is a

greater dilation, or rather, correlations in a larger area on the object itself without,

however, having a high percentage of focus in wrong areas of the image.
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Conclusions

Plausible nonsense is always

better than a possibility that

doesn’t convince.

Aristotle

6.3 Conclusions and future works

The dissertation presented herein is a study of visual object tracking and new techniques

that may or may not be useful in the construction of new methodologies. Various

techniques have been developed and shown, inspired by the state-of-the-art approaches,

which have made it possible to outline a path towards an innovative solution in line

with the current interest of the scientific community. This solution, named ViTCRT ,

possesses the methodological characteristics at which we have aimed, being internally

composed of a transformer that manages to be used without difficulty on images

and with a fair amount of data in a complex task and not immediate from the

architectural standpoint. Finally, this has allowed to find an effective solution for

the evaluation of result, both from the point of view of metrics, and from that of

computational resources, being today of great importance, given the extreme power of

deep learning methodologies, which is counterbalanced with the ever-increasing demand

for performing physical resources. In addition, such a solution enables to compare itself

with the state of the art and to compete with it, so much so that it can be included

among the highest positions in the world leaderboards (which are constantly updated
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6.3 Conclusions and future works

by the community) and in the VOTChallenge competition, having objectively become

the fundamental point of arrival in the world of tracking and decreeing, thanks to

the tools provided and the type of evaluations that are directly carried out by those

responsible for the race, who are the best trackers in the world.

Overall, the following work proved an inspiration to conduct research that has

brought different aspects of machine learning and computer vision closer together. The

explainability results showed from the tracker also allows to judge the quality of the

process, not just from a numerical point of view, but from a human perspective as

well. Nowadays, it is crucial to demonstrate why an artificial intelligence algorithm

is working in such a way. Thanks to our study, we have shown that ViTCRT can be

described as an algorithm whose predictions are trustworthy because it has provided,

through attention analysis, a high degree of consistency whether it returns a good

result or not. From this, it is natural to think about how to continue the work done

with the possibility of extracting new ideas and present new research proposals that can

push the research even further. In part this has already happened during the research

activity, where the inspiration to build alternative systems to the conventional ones

has risen, thanks to fuzzy logic that allows to have a good degree of reliability, having

analyzed in depth the answer that these techniques have returned. This has been

possible in every instance through the use of explainability techniques and even though

in some cases, like in very complex models (such as fuzzy transformer), the response

was improvable, we witnessed that the models at the base have this type of property

that makes us confident about the next results. In the future, we expect to be able to

build more efficient tracking systems and thanks to XAI systems, this can be easily

achieved, making the process leading to improvement even simpler, intervening with

problem identification and allowing an extensive dissemination of these methodologies.
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Appendix A

Advanced Fuzzy Relational Neural

Network

In the following sections, a fuzzy neural model will be shown, named Advanced

Fuzzy Relational Neural Network (AFRNN), which is proposed as an alternative to

convolutional layer, from performance and explainability perspective.

Introduction and related works

Fuzzy systems have been used to model the smoothness in classic problems. They have

produced great results during the year and they are actively under research. Nowadays,

most of the researchers have decided to study artificial neural networks and one of

the most used operations is the convolutional one. Over the years, many neuro-fuzzy

systems have appeared, but with less relevance. The aim is to model a new neuro-fuzzy

system with a set of operations that are based on the application of t-norm locally,

in particular on a patch sliding windows fashion, in order to extrapolate relevant

information at a higher level of abstraction. Furthermore, convolutional operations

need post-hoc techniques for improving their interpretability and explainability. In

the last years, fuzzy systems have raised great interest for their ability to develop

reliable and explainable systems. This work aims to introduce a fuzzy relational neural
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network based on a model for extrapolating relevant information from images data

permitting to obtain a clearer indication on the classification processes. Techniques for

eXplainable Artificial Iintelligent (XAI) can be model agnostic (i.e. they can be applied

to any AI algorithm), or model specific (i.e. they can only be applied to a specific

AI algorithm). Moreover, they can be ante-hoc (transparent or “white box/glass box”

approaches, explainable by design or inherently explainable) or post-hoc (divided

into global explanations or local explanations) explainability methods [37]. Ante-hoc

methods are explainable by design and great interest in the last years has been showed

in Fuzzy Rule-based systems [8, 54, 55]. In this work we propose a fuzzy relational

neural network that is based on a fuzzy inference scheme for the classification of images.

Triangular Norm

A Triangular Norm (T-norm) generalizes intersection in a lattice and conjunction

in logic. The name “triangular norm” refers to the fact that in the framework of

probabilistic metric spaces, t-norms are used to generalize the triangle inequality of

ordinary metric spaces. A t-norm is a function T : [0, 1] × [0, 1] → [0, 1] that satisfies

many properties:

• Commutativity: ⊤(a, b) = ⊤(b, a)

• Monotonicity: ⊤(a, b) ≤ ⊤(c, d) if a ≤ c and b ≤ d

• Associativity: ⊤(a, ⊤(b, c)) = ⊤(⊤(a, b), c)

• Identity element: ⊤(a, 1) = a

T-norms are used to model the intersection of fuzzy sets or as aggregation operators.

Many t-norms have been developed during the years, some of the most famous ones

are:

• Gödel t-norm (minimum): ⊤min(a, b) = min {a, b}

92



• Product t-norm: ⊤prod(a, b) = max {a · b}

• Łukasiewicz t-norm: ⊤Luk = max {0, a + b − 1}

Another operator that is associated with t-norms is the t-conorms. Given a t-norm

⊤, the complementary conorm is defined by:

⊥(a, b) = 1 − ⊤(1 − a, 1 − b) (A.1)

This also generalizes the De Morgan’s laws.

Referring to the previous t-norm, the corresponding t-conorms are:

• Maximum t-conorm: ⊥max(a, b) = max {a, b} dual to Gödel t-norm

• Probabilistic sum: ⊥sum(a, b) = a + b − a · b dual to product t-norm

• Bounded sum: ⊥Luk(a, b) = min {a + b, 1}

Fuzzy Relational Neural Network model

Fuzzy Rule-based Systems (FRSs), have raised great interest in XAI in the last years as

ante-hoc methodologies [37]. The main components of any FRS are the knowledge base

(KB) and the inference engine module. The KB comprises all the fuzzy rules within

a rule base (RB) and the definition of the fuzzy sets in the data base. The inference

engine includes a fuzzification interface, an inference system, and a defuzzification

interface [8, 15]. Fuzzy Relational Neural Network (FRNN) [16] is an adaptive model

based on a FRS. AFRNN can be developed with different norms and a backpropagation

algorithm is used for learning. In this work, we have modeled local t-norms, modifying

the inner operation of convolution and replacing the linear combination provided by

matrix multiplication with fuzzy operators. We have defined a receptive field that

applies a triangular operation to a restricted area. As it usually happens in convolution,

we have a kernel size of N ×M ×Cin ×Cout where N and M are the spatial dimensions,

Cin is the number of input channels and Cout the number of output features maps.
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Kernel slides over the image with a parametric step. Weights are initialized in range

[0, 1] and constrained to be in the same interval after the optimization step, using

a weight clipping operation. After some studies, this has proved to be the best

method, because by means of a scaling operation (such as minmax scaling or Gaussian

projection) weights are forced to endure a variation that, according to a determined

logic, completely affects all the learned values. This implies that the net has to re-learn

all the values, putting a halt to network so as to advance in learning. With clipping,

instead, it automatically learns to take the weights in the desired numeric interval after

few epochs.

The network structure is composed of an input layer and a fuzzification layer,

where the membership function is just a scaling of the pixel value in range [0 − 1]. We

compare the results by using one or two hidden layers. Next, there is a defuzzification

operation that consists of a fully connected layer like in [16] and an output layer with

a Categorical Crossentropy is used for classification. Architectures have been tested

with and without a threshold activation function and a modification of leaky relu with

a minimum boundary > 0. Networks are compared with equivalent CNN architectures.
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Appendix B

Fuzzy Attention in Transformers

The most effective mechanism in Transformers is the Multihead Attention (figure B.1a.

It is continuously under study and a lot of variants have been made. Mathematically,

it is expressed as:

MHA(q, k, v) = softmax
(

qk√
d

)
v (B.1)

Where q, k, v are the query, key, value matrices respectively, which can be repre-

sented as (q = k = v) for self-attention or (q = v, k) for cross-attention. Softmax

function with its argument is the attention matrix and the multiplication with v gives

the attention applied to it. During the research activity, the deep study of the attention

made evident that attention can be seen as a composition function of two matrices.

Usually, this composition is employed when the common matrix multiplication is fol-

lowed by a softmax function applied on each row. Obviously, the matrix multiplication

can be seen as a linear combination that returns the relation of every row element with

each column element. This highlights to the importance of finding the correlation of

every element with each other. On the other hand, the softmax function, points out

what the most important correlations for each element in a row are, because its nature

is to normalize each element, lowering the less significant components and raising

up the most relevant ones. This allows to obtain the self or cross attention of the
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(a) Classical Multihead Attention (b) Fuzzy Multihead Attention

matrices, which could further be seen as an importance mask and a subsequent matrix

multiplication of the attention for the v matrix. The aforementioned are the elements

on which it is important to focus in the output projection.

Starting from the concept of composition and the concept of fuzzy composition

expressed by t-norms (refers to appendix A), a transformer that uses Fuzzy Attention

is built. The modification, shown in figure B.1b, is done by replacing the attention

multiplication with a max-min t-norm. As a result, the softmax function is removed

because the same kind of relation is intrinsically represented by the t-norm. In this

case, the attention is described as:

attn(q, k) = max min(q, k) (B.2)

The last multiplication is another max-min composition.

Fuzzy_MHA(q, k, v) = max min(attn(q, k), v) (B.3)

Based on the fuzzy logic needs, the inputs q, k, v must be fuzzified before they can be

processed with a fuzzy operation; for the membership function, sigmoidal membership

and a Gaussian membership functions are tested on the linear projection of the inputs.

Additionally the attention itself is defuzzified by using the final projection that does not
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change from the original one in attention because it naturally follows the defuzzification

rule in [16].

Given the previous work on computer vision and the ease of explaining data in

the case of images, fuzzy attention was applied to the Vision Transformer, which is,

moreover, the main subject of study in the proposed work. It is also possible to easily

verify the contribution of the classification token by using attention rollout to see what

the most focused element is in the image.
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