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Abstract
DNA replication introduces a gradient of gene copy numbers, and in Bacteria it affects gene expression accordingly. In E. coli and other
species, the slope of the gradient averaged over the population can be predicted on the basis of its relationship with growth rate. In
this work we integrated this growth- and position-dependent gradient into a classical transcriptional regulation model, to highlight their
interaction. The theoretical treatment of our model highlights that the sensitivity to transcription factor-mediated regulations acquires
an additional dimension related to the position of a locus on the oriter axis and to division time. This reinforces the idea of replication
as an additional layer in gene regulation. We highlight here that replication- and transcription factor-mediated regulations can in theory
work in concert or counteract each other, and we discuss why this is important from an evolutionary point of view with respect to both
steady state transcript abundance and its variance across conditions. Finally, we note that this treatment may improve the estimation of
kinetic parameters for transcription factor activity using RNA-seq data, and the estimation of the dispersion factor in differential gene
expression analysis when division time across conditions changes significantly.
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Introduction
Most Bacteria in the environment experience a so-called feast-famine cycle
[15]: short periods of exponential growth in nutrient-rich conditions, followed
by nutrient depletion and then by a starvation period. During the latter
most cells die while the remaining slow down their growth rate significantly.
Therefore, species that can grow faster in rich conditions can outcompete other
bacteria in the community by consuming a much larger fraction of the available
nutrients before another famine period [12]. E. coli implements a successful
strategy in this sense: it is mono-ploid when slow growing - e.g. at µ ≈ 0.7h−1

(τ ≈ 1h) but in rich conditions, it can shift to a mero-oligoploid growth mode,
whereby cells are able to fire multiple replication forks during the same cell
cycle round (e.g. at τ ≈ 25min or µ ≈ 1.7h−1, and Figure 1) [9]. This growth
mode enables E. coli and other species to divide faster than the time required
to copy the chromosome, which in E. coli is relatively constant (C ≈ 40min)
[5]. While mono-ploid species have at most two copies of the same gene as a
consequence of replication, mero-oligoploids can have up to 8−10 copies of
a same locus (Figure 1).

Copy numbers were shown to obey a relatively simple formula, defined
since the late 60s [3, 5, 10]; in this framework, the copy number na of locus a
located at position pa on the Ori/Ter axis, can be calculated as:

na = 2(paC+D)/τ , (1)

where C, D have the meaning as in Figure 1b and τ is the division time (τ =

ln2/µ , with µ the growth rate); pa is the relative distance of the locus from
terminus such that pOri = 1 and pTer = 0. By introducing these parameters into

Fig. 1. a) Representation of a circular chromosome with three active replication forks (nOri = 4).
Genes x and y, are in a 4 : 1 ratio but this ratio changes with the number of replication forks. b)
Cell cycle for mono- (exact), poly- and mero-oligoploid (idealized) species. C is the time needed
for the replication of an entire chromosome. D is the time needed for segregation and cell division.
In E. coli B is a virtual cell cycle phase, since during exponential phase newborn cells immediately
start replicating the genome.

Eq. 1, we get:

nOri = 2(C+D)/τ (2)

nTer = 2D/τ . (3)

Although the model was based on E. coli, where it has an extremely good
fit over a wide range of growth rates, it is similarly valid in other species [17].
Moreover, since Eq. 2 and 3 imply:

log2
nOri

nTer
=

C
τ
, (4)
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Fig. 2. (a) Multiplicity na as a function of genomic position pa , computed in a range of 4 division
times using Eq. 1; (b) Estimation of C/τ in many different species, using genome sequencing
reads.

one can extrapolate the growth rate in vivo by exploiting shotgun metagenomic
sequencing coverage. Indeed, the argument of the logarithm in Eq. 4
corresponds to the so-called peak-to-trough ratio (PTR) that was shown to be
a good predictor of growth rate in vivo in different organisms [13, 18, 22, 11].

In Fondi et al., 2023 (doi: 10.1101/2022.09.05.506644), we estimated
C/τ for many species grown in laboratory conditions, by mapping genome
sequencing libraries on selected 100kb regions centered on the Ori and Ter loci,
localized by compositional analysis [4]. Since growth conditions for genome
sequencing are usually designed to achieve fast growth, we assume that these
values are a proxy of each species’ maximum growth rate. Since only mero-
oligoploids can divide faster than the time for chromosome replication (C),
they can be identified as the fraction of species with C/τ > 1 i.e. τ <C (Figure
2b).

Since replication and transcription occur concomitantly in Prokaryotes,
copy number variations directly affect the abundance of transcripts [1, 19,
18], therefore replication becomes an additional player in determining the
transcriptome configuration of an organism.

In this work we integrate the above observations in a standard gene
regulation model and we show that this approach highlights interesting
evolutionary cues together with a deeper understanding of this global level
of regulation and its interactions with transcriptional regulation.

Results

Mathematical formalization
A standard model describing the evolution in time of the abundance of a
transcript a, under the regulation of a transcription factor T is:

da
dt

= f (T, ppp)− γa (5)

Where γ is the degradation rate, assumed to be constant across conditions
and genes; f (T, ppp) models the transcription rate of a promoter, as a function of
the abundance of a transcriptional regulator T plus parameters. Often, this is a
sigmoid (Eq. 6) or hyperbolic function that can be an increasing (activation) or
decreasing (repression) with respect to the regulator’s abundance [7]:

h+(T, ppp = [κ,θ ,n]) = κ
T n

θ n +T n (6)

h−(T, ppp = [κ,θ ,n]) = κ−h+(T, ppp = [κ,θ ,n]). (7)

Above, κ is the maximum transcription rate achievable by this promoter at
saturating regulator concentrations and θ (in units of concentration), is the
regulator’s abundance inducing an half-maximal rate. Implicitly, this function
represents the output from a single copy of the promoter. However, since
prokaryotic genes can be transcribed just after their replication, it is natural
to integrate a locus’ copy number as a multiplier of transcription rate in Eq. 5:

da
dt

= na f (T, ppp)− γa, (8)

where na is the multiplicity of locus a defined in Eq. 1. Eq. 8 can be solved in
a at the steady state (when da

dt = 0):

ass = na
f (T, ppp)

γ
= 2(paC+D)/τ f (T, ppp)

γ
(9)

A solution that can be better discussed taking the log2:

log2 ass =
paC+D

τ
+ log2

f (T, ppp)
γ

. (10)

Eq. 10 highlights the different contributions to the steady state abundance
of the transcript; as expected, the relative activity of the regulator with respect
to the degradation rate is one, together with the dependence on division
time and locus position. Therefore, changes in doubling time can affect the
abundance of a transcript even with no change in the regulator’s activity.
Since the two contributions can be considered as potentially independent, one
pertinent question at this point is how sensitive the steady state transcript
abundance is with respect to (i) the replication induced copy number variations
and (ii) changes in the regulator’s activity.

Sensitivity Analysis
To evaluate how the transcript steady state abundance depends on the two
contributions in a quantitative way, we derived analytical formulas for the
sensitivity of the solution to the two parameters of interest. Sensitivities can
be calculated by partial derivation of the steady state expression with respect
to one model parameter at time, obtaining:

∂ass

∂T+
= na

i
κn

γT+

θ n

T n
++θ n

T n
+

T n
++θ n (11)

∂ass

∂T−
= −

∂ass

∂T+
, (12)

for the two possible regulatory effects, and:

∂ass

∂τ
=− ln2

(paC+D)2(paC+D)/τ

τ2
f?(T, ppp)

γ
, (13)

where f? is the original regulatory function (positive or negative).
Sensitivities are represented in Figure 3 for biologically meaningful

parameter ranges (T ∈ [0.1,250]µmol, i.e. ≈ 11.3 log fold change around
θ and τ ∈ [30,70]min). In Figure 3a we show the sensitivity of steady state
transcript abundance to division time, when the transcription factor is constant,
for all genomic positions. As expected, genes located closer to the origin
are more sensitive to copy number changes; the negative sign comes out
from the inverse relationship of division time and copy number i.e. when τ

decreases (cells divide faster), a locus copy number grows. Additionally, copy
number and sensitivity are positively correlated. In Figure 3b we show that
the sensitivity to a positive regulator with a sigmoidal functional response
acquires a positional pattern once replication is accounted for. As before,
the sensitivity is higher nearby the origin and it increases at shorter division
times (or equivalently, toward the origin). In Fig.3c the functional response
is of the hyperbolic type; sensitivity in this case is maximum at very low
regulator abundances and increases with copy number; the usual sigmoidal
function instead translates into a log-normal shape, with a global maximum
just before the regulator reaches a concentration θ (Fig. 3d). Increasing
the steepness parameter (n) in the Hill function, makes the range of non-
zero sensitivity narrower (not shown). The above clearly illustrates that copy
number variations and genomic position affect the sensitivity to the regulator,
therefore replication can introduce a positional and growth rate-dependent
pattern in input/output relationships of gene regulatory networks.
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Fig. 3. Sensitivity analysis. (a) Sensitivity to τ around different τ values, relative to genome
position. (b) Sensitivity to transcription factor abundance (T ) at various τ values (T = const =

θ ); (c) Sensitivity to transcription factor abundance at various τ values, relative toT itself for
hyperbolic promoters; (d) as in (c) for a sigmoidal functional response; (e) parameters used, if not
otherwise indicated.

Variance decomposition
Since the steady state transcript level depends on both replication and
transcriptional control, its variance across conditions must also be a function
of both. Using Eq. 10 and the rule for calculating the variance of a sum of
functions, we get:

Var(log2 ass) =Var(log2 f (τ, ppp))+

+Var(log2 f (T, ppp))+

+2Cov(log2 f (τ, ppp), log2 f (T, ppp)), (14)

where f (τ, ppp) = na as from Eq. 1, Var(x) is the variance of x and Cov(x,y) is
the covariance of x and y. The variance and covariance shape depend on the
family distribution of functions and the exact values of parameters, but general
implications can be nonetheless derived. First, DNA replication introduces
a position- and division time-dependent pattern to the variance: since genes
at the origin have a wider range of copy numbers, their variance will be
larger than for Ter-proximal genes. Second, if changes in copy number due
to division time variations ( f (τ, ppp)) and the activity of the regulator ( f (T, ppp))
are uncorrelated, the covariance term in Eq. 14 will be zero. Therefore, the
variance of the log-transformed transcript abundance is additive in those of the
two functions. On the other hand, when the covariance term is positive, the
variance of the transcript will increase faster than in the purely additive case.
This can be interpreted as a replication-induced amplification of the activity
of the regulator and could therefore be particularly advantageous for genes
involved in growth-rate dependent processes (e.g. σ70-dependent promoters).
This reasoning provides a formal explanation to the documented tendency
of E. coli and other fast-growing species to keep genes benefiting from high
expression levels toward the origin [21]. On the converse, when the covariance
term is negative, the result is a reduction of the variance with respect to the
uncorrelated case (Figure 4).

We can therefore say that replication and transcription can cooperate or
counteract each other, with a likely different impact on the Input/Output
relationships of the system.

Input/Output Analysis
To study how the covariation in the inputs (multiplicities, f (τ, ppp) and
transcription rates, f (T, ppp)) might affect the Input/Output relationships in

the system, we rely on the simulations described in methods. Shortly, by
generating inputs at different covariance levels, we solve the system and check
how the output (ass) relates to the inputs.

Results of this analysis are summarized in Tables 1-4. We consider positive
and negative regulation, and promoters with functional response of type II
(hyperbolic) and III (sigmoidal). The emerging pattern can be summarized as:
(i) positive correlation in the inputs always results in significant correlations of
the output with both inputs. This should be a fairly common case for regulators
not depending on post-translational activation, as their gene expression will
be affected by division time changes in a way similar to their targets; (ii)
Type III promoters tend to reflect the expected correlation with the regulator’s
function but often not with multiplicity, basically disentangling the transcript’s
abundance from the latter; (iii) Type II promoters tend to produce outputs
that are instead more correlated with multiplicity than the regulator’s function;
when T is a repressor it is more effective in defining patterns (ii) and (iii).
(iv) However, the interference of copy numbers and regulator’s activity often
masks the expected input/output relationship of ass and transcription rate.
While being aware that the exact values of correlations and their significance
depends on the parameters, by testing biologically meaningful regulator
concentrations and division times, we highlight here that the interaction of
copy number variations induced by changes in division time and transcription
factor mediated regulation can result in an extended range of input/output
relationships: positively correlated inputs provide a way to amplify the signal
mediated by the regulator; on the converse, negative regulation on a type
III promoter may provide a way to render a transcript’s abundance relatively
independent from multiplicity.

f (τ, ppp) f (T, ppp)
output / input - 0 + - 0 +

- 0.22 0.00 0.00 0.00 0.00 0.00
0 0.78 0.82 0.00 0.59 0.29 0.00
+ 0.00 0.18 1.00 0.41 0.71 1.00

Table 1. Input/output correlation analysis for an activator. (κ = 10, n = 2, other
parameters are indicated in the main text). Rows corresponds to correlations of the
output (ass) with the function indicated in the header of each column block. In
all cases, + (−) means a significant (p ≤ 0.0001) positive (negative) correlation
and 0 means the correlation is not significant. Columns concern the correlation
in the inputs (corr( f (τ, ppp), f (T, ppp))). The ”−” columns for instance mean that
in the samples with inputs negatively correlated, ass is negatively correlated with
multiplicity in 22% of the cases while the correlation is non significant in the
remaining 78%; additionally, in only 41% of those cases, a significant and positive
correlation with the transcription rate was detected; therefore, negatively correlated
inputs often result in loss of correlation of the transcript abundance with respect to
the regulator’s function. If the inputs are uncorrelated, the outputs also can become
uncorrelated from the inputs. Differently, positively correlated inputs always result
in high correlations in the outputs.

f (τ, ppp) f (T, ppp)
output / input - 0 + - 0 +

- 0.00 0.00 0.00 0.22 0.00 0.00
0 0.39 0.25 0.00 0.78 0.72 0.00
+ 0.61 0.75 1.00 0.00 0.28 1.00

Table 2. Same as Table 1 but with n = 1.

Conclusions
The relationship between genomic position and transcription rate due to
replication-induced copy number variations introduces an additional layer
of regulation for modulating gene expression. This hypothesis is congruent
with papers demonstrating that gene position is a good predictor of gene
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f (τ, ppp) f (T, ppp)
output / input - 0 + - 0 +

- 0.00 0.00 0.00 0.00 0.00 0.00
0 1.00 0.83 0.00 0.21 0.25 0.00
+ 0.00 0.17 1.00 0.79 0.75 1.00

Table 3. Same as Table 1, for a negative regulator. In this case, a negative correlation
in the inputs translates in the loss of correlation of the output and multiplicity, while
correlation with transcription rate is significant in almost 80% of the cases.

f (τ, ppp) f (T, ppp)
output / input - 0 + - 0 +

- 0.00 0.00 0.00 0.00 0.00 0.00
0 0.07 0.30 0.00 1.00 0.78 0.00
+ 0.93 0.70 1.00 0.00 0.22 1.00

Table 4. Same as Table 3 but with n = 1.

expression levels [1, 2, 6, 16, 19, 20] and that there are genome organization
patterns that can be explained consequently. In this work, we studied the
interaction of replication-induced copy number variations and transcriptional
regulation, from a theoretical perspective. By deriving analytical formulas
for the sensitivity of steady state transcript’s abundance to both division time
and regulator’s activity we showed that replication introduces a position- and
division time-dependent pattern to the sensitivity of a transcript’s abundance
with respect to the regulator’s activity. In this way, the cells have an additional
mean to modulate the sensitivities of promoters on the basis of their position
on the ori/ter axis. We highlight that the contribution of copy numbers
and transcriptional regulation can interfere constructively or destructively in
determining the variance of transcripts, and that this produces an enriched
set of regulatory outputs that can be manipulated by controlling how the
inputs are related to each other. A recent work [23] showed that constitutive

promoters with the highest sensitivity to growth rate changes (after the copy
number effect is removed), tend to be located toward the origin, and that their
position is moreover conserved across many species. This could be explained
by the evolutionary exploitation of the constructive effect of copy number and
regulation variations highlighted by our treatment.

The decoupling of the variance of steady state transcript abundance into
its components, shows that detecting target-regulator dependencies using
gene expression data could be hampered by division time variations across
conditions. Indeed, predicting the multiplicity of loci from gene expression
data may enable to get rid of the variance introduced by replication, when
the target is for instance promoter or regulator kinetic parameter estimation.
Indeed, Eq. 10, highlights that even with constant regulator activity and
degradation rate, growth in conditions affecting division times, would translate
into different abundances at steady state; however, those fluctuations would be
considered as genuine variations in regulator’s activity and incorporated into
the parameters.

Similarly, when reconstructing gene regulatory networks using gene
expression compendia (e.g. [8] replication can mask the dependency of targets
with respect to the regulator; therefore, one may devise a correction of gene
expression data to reduce the effect of copy numbers and consequently to
highlight the relationship with regulator’s abundance.

We conclude adding that this work also suggests that multiplicity may
help in the estimation of gene-specific dispersion factors in differential gene
expression analysis (e.g. [14]) when replicates are in small number, and the
conditions differ in terms of division times.

Methods
Scripts in R for reproducing all the analysis and figures in the paper are
available at the team’s repository on github: Comparative Systems Biology
Lab.
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Simulations for Covariance and I/O analysis
Simulations corresponding to data points in Figure 4 and Tables 1-4were done
with each iterations consisting of the following.

1. Copy numbers and transcription factor abundances were generated to
have a known covariance using mvrnorm with µ = [0,0] and variance-
covariance matrix:

VVV 2×2 =

[
5 σ

σ 5

]
, (15)

where σ is the covariance and the diagonal entries are variances. We tested
50 covariance levels from −5 to 5 in 0.2 steps; each covariance level was
tested 20 times.

2. Scale values to have τ ∈ [20,70]min and T ∈ [2,12]µmol.
3. Calculate steady state transcript abundances for the above parameters

using Eq. 9 and the following values κ = 10,θ = 5µmol,C = 40min,D =

20min,γ = 0.0067min−1. Several parameter combinations were tested but
the results are not significantly different.

4. Variance/Covariance and Correlations:

• Calculate variances and covariances (Eq. 14), shown in Figure 4.
• Calculate Input/Output and Input/Input correlations for Tables 1-4.
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