
Vol.:(0123456789)

Science & Education
https://doi.org/10.1007/s11191-024-00504-4

1 3

SI: EPISTEMIC INSIGHT & ARTIFICIAL INTELLIGENCE

Epistemic Insights as Design Principles
for a Teaching‑Learning Module on Artificial Intelligence

Eleonora Barelli1,4  · Michael Lodi2  · Laura Branchetti3  · Olivia Levrini1 

Accepted: 2 January 2024
© The Author(s) 2024

Abstract
In a historical moment in which Artificial Intelligence and machine learning have become
within everyone’s reach, science education needs to find new ways to foster “AI literacy.”
Since the AI revolution is not only a matter of having introduced extremely performant
tools but has been determining a radical change in how we conceive and produce knowl-
edge, not only technical skills are needed but instruments to engage, cognitively, and cul-
turally, with the epistemological challenges that this revolution poses. In this paper, we
argue that epistemic insights can be introduced in AI teaching to highlight the differences
between three paradigms: the imperative procedural, the declarative logic, and the machine
learning based on neural networks (in particular, deep learning). To do this, we analyze
a teaching-learning activity designed and implemented within a module on AI for upper
secondary school students in which the game of tic-tac-toe is addressed from these three
alternative perspectives. We show how the epistemic issues of opacity, uncertainty, and
emergence, which the philosophical literature highlights as characterizing the novelty of
deep learning with respect to other approaches, allow us to build the scaffolding for estab-
lishing a dialogue between the three different paradigms.

1  Introduction

In the era of Artificial Intelligence (AI), a radical change has been taking place. Undoubt-
edly, a change in the impact of science and technology on society: not only the applica-
tions of machine learning (ML) have reached people’s life and behavior (Rudin & Wagstaff,
2014) but they often generate strong emotional reactions, from a deep curiosity to fears and
negative attitudes (O’Neil, 2016). This has become more evident in the last months, with

 *	 Eleonora Barelli
	 eleonora.barelli2@unibo.it

1	 Department of Physics and Astronomy “Augusto Righi”, Alma Mater Studiorum - University
of Bologna, Bologna, Italy

2	 Department of Computer Science and Engineering, Alma Mater Studiorum - University
of Bologna, Bologna, Italy

3	 Department of Mathematics “Federigo Enriques”, University of Milan, Milan, Italy
4	 Present Address: IFAB - International Foundation Big Data and Artificial Intelligence for Human

Development, Bologna, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11191-024-00504-4&domain=pdf
http://orcid.org/0000-0002-1468-6950
https://orcid.org/0000-0002-3330-3089
https://orcid.org/0000-0002-2926-075X
https://orcid.org/0000-0002-4267-3989

	 E. Barelli et al.

1 3

large language models embedded in chatbots like ChatGPT and picture-generative models
like DALL·E 2 being easily available without any requirement of specific literacy. A recent
review by Leiter et al., (2023) studied how tweets and scientific papers perceived or dis-
cussed about ChatGPT: even though it is generally viewed as of high quality, the excitement
decreased since its debut, opening up many concerns specifically in the educational fields, in
which it is seen as a threat to academic integrity that can foster dishonesty (Ventayen, 2023).

At the epistemological level, the philosophy of computer science has started to investigate
the implications of new data-driven approaches and there are authors who have seen in these
changes a “paradigm shift” (Hey et al., 2009; Kitchin, 2014). The most radical supporters of the
paradigm shift claimed for a new purely inductive modus operandi in doing science (Prensky,
2009). According to these drastic views, the data are supposed to speak for themselves being
free of theory. The critics of this radical form of empiricism argue that each system, including
the ML ones, is designed to capture certain kinds of data (Berry, 2011; Leonelli, 2012) and,
then, the results cannot be considered as free from theory, neither can they simply ask from
themselves free of human bias (Gould, 1981). Between extreme positions that characterize the
debate, it became very common lately to consider a “data-driven science” (Kitchin, 2014) as a
hybrid combination of abductive, inductive, and deductive approaches.

Beyond the epistemological debate about how to define the potential ongoing “paradigm
shift,” this issue is of outstanding importance also for research in science education. On
one hand, big data and new data analytics such as ML techniques based on neural networks
(in particular, deep learning) and generative methods are disruptive innovations which are
reconfiguring in many instances our relationship with technology. On the other hand, these
rapid changes have only recently been supported by an educational and cultural reflection
on the implications of the unfolding revolution that touches not only technical and concep-
tual issues but also epistemological ones.

In this paper, we aim at contributing to this issue, by answering the following research
question: Which epistemological insights should and can be introduced to upper secondary-
school students to make them aware of the AI and ML revolution? To do that, we frame our
investigation within the perspective of epistemic insights, conceptualized by Billingsley as
“knowledge about knowledge with a focus on knowledge about disciplines and how they
interact” (Billingsley et al., 2018). For Billingsley and colleagues, interdisciplinarity is key to
making knowledge learned at school “epistemically insightful.” Indeed, fragmentation of
teaching in subjects leads often to a disconnected learning experience that hinders meaningful
connections between key concepts and knowledge across curriculum disciplines (Billingsley,
2017). On the opposite, there are central issues that can only be addressed by multiple
disciplinary perspectives: Billingsley formulates them as “big questions” that concern the nature
of reality and human personhood (Billingsley et al., 2018). We found this framework suitable
for our goal because, on one side, the paradigm shift brought by AI raises meaningful questions,
e.g., about the relationship between humans and machines and about the meaning of intelligence,
knowledge, and creativity, and, on the other, intersects several disciplines, from STEM domains
(like computer science, physics, and mathematics) to humanities (e.g., philosophy and arts).

To answer our research question, we analyze in this paper part of a module on AI tar-
geted to upper secondary-school students, designed within the Erasmus+ project I SEE
(https://​iseep​roject.​eu/.) and refined within the Horizon2020 project FEDORA* (https://​
www.​fedora-​proje​ct.​eu/). Both projects have developed and implemented—several times
and in different contexts—teaching-learning modules on advanced STEM topics, always
valuing the epistemological and cultural revolutions that issues like AI, climate change, and
quantum computers embed. In particular, the epistemological layer is the locus where we
positioned the key design principles that guided the educational reconstruction (Duit et al.,

https://iseeproject.eu/
https://www.fedora-project.eu/
https://www.fedora-project.eu/

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

2012) of the basic disciplinary content knowledge that we addressed in the AI module, the
object of this article. More specifically, the epistemic issues of opacity, uncertainty, and
emergence have been analyzed to build the scaffolding for introducing and critically com-
paring three very different paradigms within AI: the procedural imperative, the declarative
logic, and the deep learning. In this paper, we analyze how specific questions, grounded in
the literature on the epistemology of AI, can promote epistemic insights starting from the
presentation of simple examples like the game of tic-tac-toe (also known as “noughts and
crosses” or “Xs and Os”) addressed with the three aforementioned paradigms.

The paper is structured as follows. In Section 2, we present a literature review on the
state of the art of education to AI. In Section 3, we analyze the body of literature in the
field of philosophy to identify key epistemological issues related to AI and, in particular,
ML and deep learning. Then, in Section 4, we present the design principles that guided the
design of the module on AI, focusing in particular on the epistemic insights that we want to
foster. Section 5 is devoted to illustrating the articulation of the module in preparation for
the work we do in Section 6: here, we present the epistemic insights raised by the impera-
tive procedural, declarative logic, and deep learning paradigms when confronting the same
operational task, i.e., how to make a computer play tic-tac-toe.

2 � Literature Review: State of the Art of Education to AI

In the last years, massive attention has been devoted, in the context of computer science
education (CSEd), to teaching computational thinking (Lodi & Martini, 2021).

Computational thinking was informally defined by Wing (2006) as “thinking like a com-
puter scientist” to solve problems and, more formally, as “the thought processes involved in
formulating problems and their solutions so that the solutions are represented in a form that
can be effectively carried out by an information-processing agent” (Wing, 2011).

Zeng (2013) noted that this approach shows especially “logic- and algorithm-based per-
spectives.” He proposed to also consider what he called “AI thinking,” to “leverage knowl-
edge bases and case bases in problem solving, capture and reason about commonsense,
enable processing of semantics and contexts, and deal with unstructured data, among oth-
ers” (Zeng, 2013, p. 3).

The main focus of research regarding AI and education has been applying AI tools
to support education (AI in education). However, one of the aims of CS education is to
make computing systems appear not to be magic by explaining (some of) their underlying
mechanisms. Only an “undercurrent” dealt with teaching how AI works to K-12 students
(education to AI). Since the 1970s, this research followed the AI topics that were “hot” in
the different decades, focusing, for example, on robots navigating the environment, natural-
language processing, and expert systems. However, thanks to the explosion of data-driven
techniques like ML with neural networks, it is foreseen that “the next frontier in computer
science education research is how to teach artificial intelligence” (Tedre et al., 2021, p.
110559).

A very recent systematic review by Sanusi et al. (2022) analyzed 43 papers related to
teaching and learning ML in K-12 education. While they recognize that some ML activities
have been introduced in K-12, especially in high school, they also recognize a scattered sit-
uation: small sample sizes, limited and unstructured learning material and resources, lack
of teacher training, lack of structured assessment tools, a narrow focus on ML classification

	 E. Barelli et al.

1 3

tasks, need for more integration with other subjects’ domains, and lack of focus on societal
and ethical implications.

Tedre et al. (2021) conducted a scoping review, highlighting several educational changes
that are taking place in CS education according to the works focusing on the introduction
of ML in K-12 education. Following Tedre and colleagues’ work, we summarize the most
relevant in our context.

From a pedagogical and methodological point of view, some important aspects emerged
from the reviewed works.

First of all, the applications in which ML thrives are often media applications (e.g.,
image, music, and speech recognition), where it is easier to collect a lot of data and reach
the desired goal by training a neural network rather than write a traditional program (for
example, because precise algorithms or mathematical modelings of the phenomena are
lacking or extremely complicated). Many educational initiatives are in fact media-centered:
they fit well in modern pedagogies focused on playful exploration and creative learning
and allow students to reach non-trivial motivating results (i.e., programs that show com-
plex behaviors) more easily.

Next, ML can favor a STEAM integration by making students solve problems using
“rich, real-world data,” potentially favoring a “shift from rule-based (deductive, positivist)
reasoning towards data-driven (inductive, falsificationist) reasoning—which is well in line
with how natural sciences work” (Tedre et al., 2021, p. 110567).

The choice of the context in which to teach ML is crucial. Many ML in K-12 initiatives
recognize that features of services that kids and young people use are based on ML, and
ML will affect their lives and future work dramatically. Moreover, many scholars argue that
ML education also needs the ethics of AI. ML education can and should discuss topics like
“privacy, surveillance, job losses, misinformation, diversity, algorithmic bias, transferabil-
ity, and accountability.”

By asking students to train ML models with a lot of data, the curation, cleaning, and
labeling of data have become important learning objectives. The goal should be, of course,
not to master the technical details or to achieve professional results (often hindered by
poor-quality data like blurred photos or noisy recordings), but to better understand one of
the big ideas of AI—“Computers can learn from data” (Touretzky et al., 2019)—and its
implications (e.g., the impact, on the results, of the sample size or the biases introduced by
the sample choice).

Education to AI has to deal, at some point, with a language through which the machine
is programmed. Programming languages’ syntax has always been a source of cognitive
load for students, so traditionally CS Education developed alternatives, like the recent trend
on block-based languages. Some ML teaching initiatives maintain the traditional (textual
or block-based) approach, using traditional programming to teach ML topics. Other initia-
tives hid completely the programming syntax (e.g., with a web-based visual interface) or
changed the focus from programming to the design of the neural network structure, show-
ing, for example, nodes, layers, and connections of a deep neural network.

The biggest impact of the paradigm shift caused by ML techniques is exactly how one
can design and implement the solution to a problem with an information processing agent.

Traditionally, an algorithm is seen as a step-by-step method to solve a problem, with
“discrete, deterministic, unambiguous atomic operations” (Tedre et al., 2021, p. 110565).
In a neural network, it is impossible to find these “steps” in the solution. Moreover, most
ML applications hide what happens inside the network. When designing, training, test-
ing, and using an ML model, computer scientists do not think about algorithmic steps but
how to design a dataset that creates desired user behaviors: there is a shift from coding

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

to “teachable machines.” Therefore, students must “understand how ML ‘reasons’ using
models and representations built from data, and not rules coded in the system” (ibidem).
However, Tedre and colleagues recognize a need to teach traditional CT as well, because
real applications are always a combination of traditional programming and ML.

Traditional programming can be called a glass box in the sense that the “flow of pro-
gram execution, changes in values of variables, and everything else a program does are all
hand-coded in the program, and the program flow can be tracked, visualized, and paused
at any point to examine the program state at any given step of execution” (ibidem). In ML,
and especially in the sub-field of deep learning, we can see different levels of the so-called
black boxes, i.e., objects that “return outputs [...] by running internal processes that are
incomprehensible by human beings” (Carabantes, 2020):

•	 In a neural network, weights and parameters are not set by hand but trained by giving
the network a lot of data

•	 Examining the weights and parameters of a trained neural network gives no interpreta-
tion of what it does or how: this is considered one of the major challenges of AI educa-
tion, and more generally for AI (see Section 3)

•	 Educationally, you can always decide which levels of details to show and which to hide:
the more accessible, abstract, and simplified the model is, the more it hides from users,
the less they learn of what happens inside. This can lead to oversimplified or inaccu-
rate mental models of AI/ML systems, also creating in students unrealistic expectations
from them (with anthropomorphizing and personification), leading to the so-called
“Eliza effect,” when a system appears much smarter than it is

ML has a huge impact also on one of the most common practices of programmers:
debugging an ML model is very different from traditional programs. ML results are not
discrete but, for example, expressed as the probability that an input belongs to a certain
class. They are also “brittle”, i.e., very dependent on the environment or input data. How-
ever, this can teach students about relevant ideas like overfitting, accuracy, and precision.
Traditional debugging is systematic, while ML is more of a trial-and-error search for opti-
mal parameters, features, weights, and so on.

These didactical changes and open issues require an epistemological focus, to which the
following sections are dedicated.

3 � Literature Review: Epistemological Issues Related to AI

The epistemological issues concerning AI emerged since the very first attempts to write
a definition, on which there is nowadays very little consensus (Monett & Lewis, 2017;
Nilsson, 2010). The term “Artificial Intelligence” was coined by John McCarthy in 1956,
to mean the set of techniques, procedures, and methods to make machines do things that
would require intelligence if they were done by humans. The reference to human intel-
ligence started to be the benchmark to evaluate any kind of computational artifact; hence,
the difficulties in conceptualizing intelligence at large, together with the multiple interpre-
tations according to philosophical and cognitive theories, make the convergence on the
meaning of AI particularly challenging (Wang, 2019).

For the purposes of this paper, in the plethora of AI disciplines, we will specifically
enter the philosophical underpinnings of ML. Without any presumption of generalization

	 E. Barelli et al.

1 3

and completeness, we will introduce some concepts and issues that have been discussed
from an epistemological point of view in relation to ML.

ML is a vast field, including several techniques (like learning decision trees or linear
regression) with different characteristics with respect to the issues we discuss. Because of
the introductory nature of the work, while still using the more general and widespread key-
word “Machine Learning,” we focused on, and always refer to, its most widely used set of
techniques: deep learning (Russell & Norvig, 2021 p. 801) using neural networks.

Our analysis is organized around three main key issues: opacity, uncertainty, and emer-
gence. As we will show, these issues encompass many others.

Opacity is the property that characterizes the aforementioned “black boxes.” Jenna Bur-
rel states that opacity appears in the field of ML in three forms: (i) opacity as intentional
corporate or institutional self-protection and concealment; (ii) opacity as technical illiter-
acy, stemming from the current state of affairs where writing and reading code is a spe-
cialist skill; and (iii) opacity as arising from the characteristics of ML algorithms and the
scale required to apply them usefully. We focus our epistemological analysis on the latter
type of opacity since it refers to the mismatch between the inner conceptual structure of
many ML algorithms and the demands of human-scale reasoning and styles of semantic
and symbolic interpretation (Burrell, 2016). This opacity is not a matter of intentional hid-
ing nor of technical incapability: even the designers of ML systems are unable to explain
the outcomes produced by the machine. It is an inherent complexity that arises from algo-
rithmic optimization procedures that exceed the capacity of human cognition (Desai et al.,
2022). As human beings, we can store up to a certain amount of information in our brains
and can reliably handle even less, our computations are slow and too prone to errors, and
algorithms are extremely complex entities to be surveyed (Durán & Jongsma, 2021).

Opaque ML methods challenge our cognitive systems not only for a matter of prob-
lems’ scale (too much data, too long to be processed, and too many errors). From an epis-
temic perspective, algorithms like artificial neural networks are sub-symbolic. Contrary to
symbolic methods that rely on a knowledge base made by logic rules, ontologies, decision
trees, planning, and reasoning which are human-readable and interpretable, sub-symbolic
methods establish correlations between input and output variables that are not formulated
in terms of symbols but of numbers (Ilkou & Koutraki, 2020).

To overcome the limitations of these epistemically opaque systems, which are par-
ticularly evident when they support decision-making processes in real-life settings (e.g.,
autonomous driving, medical diagnostic and robotics, or finance), a new field in AI has
risen in the last decade: Explainable Artificial Intelligence (XAI), whose aim is to achieve
machines’ transparency by providing both textual and visual explanations for the outcomes
obtained and the procedures carried out, hence, to foster trust in algorithms and their results
(Goebel et al., 2018; Gunning & Aha, 2019; Zednik & Boelsen, 2021). In XAI, some inves-
tigators develop ML methods that are “inherently interpretable” (Rudin, 2019). Others, in
contrast, address the epistemic opacity issue by developing analytic techniques to enable
“post-hoc explanations” (Zednik, 2021). The latter type includes symbolic metamodeling
which proposes an interpretation of machines’ decisions in terms of familiar mathematical
functions that can be symbolically manipulated by humans (Alaa & van der Schaar, 2019).
The difference between inherent and post hoc explanations recalls the distinction that some
scholars draw between “explainable” and “interpretable” methods (Tsamados et al., 2021).
Explainability relates mainly to non-experts: in this context, XAI is particularly impor-
tant when considering the rapidly growing number of open source and easy-to-use models
and datasets, with increased numbers of non-experts who are experimenting with state-of-
the-art algorithmic models, often without having the necessary technical literacy to grasp

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

the meaning of their results. On the other side, interpretability regards mainly experts: the
methods of XAI should allow the unveiling of internal processes of ML systems in a way
that technically literate people can understand them. Hence, in the view of Tsamados and
colleagues, explainable methods presuppose interpretability but not vice versa.

The opacity of many classes of ML systems is connected to the second epistemologi-
cally relevant issue we want to address, which is uncertainty. The traditional view of com-
puting is usually conceived as a collection of symbolic and deterministic algorithms that,
because of these two features, can be verified (Shapiro et al., 2018). This approach has
valued correctness and verifiability as fundamental epistemological stances of determin-
istic systems, as highlighted by MacKenzie (2001), and has generated a bivalent view of
correctness, which assigns programs to one of two categories: either correct or incorrect
(Tedre et al., 2021). As computing has evolved toward ML methods, we have observed a
departure from this traditional view. For epistemologists, in ML, the emphasis is moved to
effectiveness rather than correctness.

According to Valiant (2013), the goodness of an ML solution can at best be “probably
approximately correct,” with its goodness statistically determined. This is due to at least
three factors (Hüllermeier & Waegeman, 2021; Kläs & Vollmer, 2018). The first is that
ML systems involve the interactions of large numbers of components to generate complex
emergent behaviors (this point is explored in detail in the next paragraph). The second
reason is connected to the data that feed the algorithms, from which the machines learn:
data are limited in accuracy and potentially affected by various kinds of quality issues and
biases (also this point is explored in the next paragraph). A third reason for the statistical
character of the output of ML methods is connected to the nature itself of tasks that are
addressed through this approach, i.e., problems for which at the moment we cannot elabo-
rate a procedure to achieve a unique correct result, but their complexity leads to uncer-
tainty in the prediction of the outcome.

For these reasons, the dichotomic view of correctness is not suitable to address the char-
acter of the results of ML systems: more fuzzy views have to be embraced, that involve
reliability and efficiency in a contextual, relative, and pragmatic view of goodness (Tedre
et al., 2021).

The third epistemologically relevant issue in ML we consider is emergence. The word
emergence is typical of complex systems that often display global overall properties that
arise—emerge—from simple procedures. Considering the very well-known example of
ants in a colony, biological and computational models have demonstrated that the intel-
ligent, efficient, and cooperative behavior of the colony is the result of the simple behavior
of each worker ant that searches for food and, when it finds it, goes back to the anthill
marking the path as it returns, and the path stimulates other ants to forage in the same
direction (van Zuylen, 2012). Emergence does not only concern the field of ML strictly
speaking but it is also considered broadly when dealing with big data: indeed, in the
so-called era of big data (Boyd & Crawford, 2012), the combination of data-intensive
approaches and ML, “much knowledge is [...] produced autonomously by the tools sci-
entists have made, and not directly by the scientists themselves” (Sætra, 2018, p. 509). In
ML, emergence stems from one of the very first definitions of it given by Arthur Samuel
who invented the word machine learning as the “field of study that gives computers the
ability to learn without being explicitly programmed” (Samuel, 1959). The abilities that
the machine obtains through training, e.g., the capacity to label unknown images as “cats”
or “chairs,” or to generate new images starting from a textual prompt, can be considered
emergent properties. The knowledge that the machine acquires is not an a priori set com-
petence but a property of the trained, validated, and tested algorithm that emerges from

	 E. Barelli et al.

1 3

simple local interactions and procedures coded. Many ML methods, particularly artificial
neural networks, lack a central control: the processing is distributed over the network in a
process of self-organization which starts from data and has learning as its result (Anegawa
et al., 2023; Cilliers, 1998).

The concept of emergence and “learning from data” has allowed achieving remarkable
results in the last decades but poses many challenges from an epistemological perspec-
tive. Indeed, learning from data starts from observations to achieve broader generalizations
(Hammoudeh et al., 2021). Hence, if we adopted sharp distinctions between deductive and
inductive approaches to knowledge, or between rationalism and empiricism, ML would
situate in the inductive and empiricist categories (Harman & Kulkarni, 2007). We need
to clarify that the bottom-up approach typical of ML is not common to all AI methods:
indeed, many AI systems are developed with a top-down approach, in particular, in the
case of expert systems that share many features with traditional programming, in which the
knowledge base is provided to the machine in the form of instructions (imperative proce-
dural approach) or of rules and statements and an inference engine deduces new statements
by applying rules to the known ones (declarative logic approach).

Several scholars argue that ML methods, powered with big data availability, have
given rise to a new epistemology and paradigm shifts in which data and algorithms can
drive scientific discoveries and knowledge creation (Hey et al., 2009), by revolutionizing
the scientific method (Prensky, 2009; Halevy et al., 2009) and eventually determining the
end of theory (Anderson, 2008). Kitchin (2014) critiques the enthusiasm for these claims
identifying four fallacies. First, data are not simply natural, values-free elements that can
be abstracted from the world, but they are generated through a complex assemblage that
actively shapes its constitution and often includes the perpetuation of biases (Ribes &
Jackson, 2013). Second, theory is embedded in data: no inductive strategy of knowledge
extraction from data occurs in a scientific vacuum, because it is framed by previous find-
ings, theories, experience, and knowledge (Leonelli, 2012). Third, data cannot speak for
themselves free of human bias: they are always examined through a particular lens that
influences how they are interpreted, and the construction of algorithms is imbued with par-
ticular values and contextualized within a particular scientific approach. Fourth, it is not
true that an understanding of statistics is enough to allow data interpretation, without the
need for any domain-specific knowledge: subject matter experts are still needed to assess
the results of the work, especially when we deal with sensitive data about human behavior
(Porway, 2014).

The concepts introduced in this section revolving around the three big issues of opac-
ity, uncertainty, and emergence will become the basis for the articulation of the design
principles of the module (see Section 4) and the analysis of the core activity of the module,
where the different approaches to AI are introduced and compared by applying them on the
simple case of tic-tac-toe (see Section 6).

4 � Design Principles of the Module

The design principles on which the module on AI is constructed lie on the Model of Edu-
cational Reconstruction (Duit et al., 2012) and its epistemological orientation. This model
concerns the transposition of domain-specific knowledge into knowledge that can be taught
by instruction. The process of transposition, as the authors argue, is not only a matter of
elementarization but of contextualization of the knowledge to make it fully accessible to

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

learners. In this way, the core scientific contents are enriched by perspectives that come
from disciplines like history and philosophy of science, cognitive sciences, pedagogy,
psychology, linguistics, or even from other disciplines when educational reconstruction is
addressed with an interdisciplinary perspective. Hence, the result is not a simpler version
of authentic disciplinary contents, but a more complex and stratified entity. We discuss
now the design principles that guide the educational reconstruction of the contents related
to AI. In particular, for the purposes of this paper, we focus on epistemic insights without
providing many details on the other principles.

4.1 � Design Principle #1: To Show the Connections Between AI and Society

In the module, time was devoted to making students explore the implications of the per-
vasiveness of AI applications along different dimensions (e.g., scientific, political, social,
economic, ethical, and environmental), in order to make them understand that AI opens
up nowadays professional opportunities and perspectives. In this context, specific atten-
tion was devoted also to making students explore the complex intertwining of humans and
machines in the age of AI.

4.2 � Design Principle #2: To Introduce a Variety of Approaches to AI
and Programming Paradigms

In the module, within the large variety of methods and approaches, three programming par-
adigms are introduced as three possible ways in which an AI algorithm can be exploited:
imperative procedural, declarative logic, and deep learning. The exposure to different
approaches allows a recognition of the commonalities and specificities of each approach.

4.3 � Design Principle #3: To Stimulate Reflections on Learning and Creativity Based
on the Ways Machines Learn

Through exposure to different types of programming paradigms in AI, the module aims at
making students reflect on their own learning (e.g., learning by following a set of instruc-
tions as in the imperative procedural paradigm, learning by moving within known con-
straints and sets of rules as in the declarative logic paradigm, or learning by being exposed
to examples as in the ML paradigm). In this way, students are encouraged to develop their
metacognition skills. Moreover, in the module, specific occasions are created to open up
spaces to reflect on the meaning of human and artificial creativity.

4.4 � Design Principle #4: To Keep the Technicality Level as Little as Possible

The module is not thought of as a learn-to-code experience but it aims at making students
learn about AI by focusing on the main ideas behind the revolution that has been character-
izing the last few decades. Hence, even if specific examples are presented and discussed in
depth in class, the students were guided through the conceptual structure of the algorithms,
without entering any technical detail of the programming languages. As we will detail in
Section 5, implementations of the AI algorithms in Python (for the imperative-procedural
paradigm) and Prolog (for the declarative-logic one) programs were given to students.
These languages have a very light syntax and were always presented by instructors with

	 E. Barelli et al.

1 3

high-level descriptions. The implementation of a neural network (for deep learning) in
Matlab was never shown to students, as they interacted only with a graphical interface.

4.5 � Design Principle #5: To Exploit Epistemic Insights as a Way to Compare Different
Approaches to AI

As shown in Section 3, AI touches many epistemologically relevant issues. Our choice is
to introduce them in our module on AI to foster the comparison between imperative pro-
cedural, declarative logic, and deep learning approaches, in the form of epistemic insights
(Billingsley, 2017), which we conceptualize here as questions to make students reflect
on the knowledge taught. We are not referring here to “big questions” (Billingsley et al.,
2018)—that, however, could have been pertinent—like “what is human intelligence com-
pared to artificial intelligence?”, “what is knowledge?”, and “what is the destiny of the
relationship between humans and machines?”. In particular, the epistemic insights that we
foster in the module to compare the three programming paradigms are more fine-grained
and can be grouped into three blocks, each corresponding to one of the epistemologically
relevant issues outlined in the framework (opacity, uncertainty, and emergence). In Table 1,
we report, for each issue, the questions through which each programming paradigm was
analyzed in the module.

4.6 � Design Principle #6: To Connect Epistemic Insights to Operational Vocabulary

The epistemic insights are explicitly addressed in the module and introduced to students as
a way to compare the approaches. However, they are linked to an “operational vocabulary”
that consists of terms that, on one side, are directly recognizable in the conceptual layer
of teaching the three different approaches and, at the same time, can foster the compari-
son of the dimensions identified by the epistemic insights. This resonates with what was
pointed out by Billingsley and Ramos Arias (2017): “by including the term insight and by
referring to knowledge about knowledge, we seek to signpost that a strategy to promote
epistemic insight is not the same as a course to teach epistemology. [...] Adding a focus
on discovering and advancing students’ epistemic insight in schools encourages teachers
to find pragmatic approaches to helping students make better sense of the messages they
receive in different subjects about the nature of knowledge across the subject bounda-
ries” (Billingsley et al., 2018, p. 1121). In our module, examples of terms that allowed the
epistemic insights to be anchored to the disciplinary realms are algorithm, the role of the

Table 1   Questions to foster epistemic insights on each epistemologically relevant issue identified in the lit-
erature

Issues Questions to foster epistemic insights

Opacity Is the method interpretable or inherently opaque?
Is the approach symbolic or sub-symbolic?

Uncertainty Has the output of the method a deterministic or a probabilistic character?
Emergence In the approach, does knowledge flow top-down or bottom-up?

Are instructions, rules, or examples given as inputs to the method?
Does the method imitate or generate knowledge?

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

programmer, problem-solving, and learning. We argue about the role of these terms and
how they connect to epistemic insights in the Discussion.

5 � Overview of the Module

The module on AI has been developed within the I SEE project and successively refined
within the FEDORA project. Like all modules elaborated within the I SEE project, it is
articulated in five teaching-learning phases. A detailed description of the module is avail-
able in more extended works (Barelli, 2022; Ravaioli, 2020), and all resources (e.g., slides
and worksheets) are available on the I SEE Project website (https://​iseep​roject.​eu/i-​see-​
module-​on-​artif​icial-​intel​ligen​ce/). In the following, we provide an overview of the activi-
ties that are most relevant for our reflection on epistemological issues and that will allow
setting the context for the analysis of the activities on tic-tac-toe.

The module begins with students encountering the focal issue of the module. This phase
is aimed at making students develop a preliminary level of awareness of the ways in which
conceptual and epistemological scientific knowledge, the specific language, and the meth-
odological and pedagogical approaches will interweave in the module. In the module on AI,
this phase consists of two activities. In the first, two overview lectures are held: one by an
expert in AI and the other by an expert in the science of complex systems. The lectures aim to
introduce conceptual and epistemological knowledge that will be developed and examined in
depth in the module. The focus is on (i) the development of AI over the last few years, (ii) the
different approaches to teaching a machine “to reason” and to solve a problem, and (iii) the
significance of studying a problem from the point of view of complexity. The second activity
of the first phase of the module engages the students in constructing collaboratively a map of
the state of the art of AI, as an overall picture of where AI can be encountered nowadays. Par-
ticular emphasis is placed on the different fields of AI applications (archeology, art, services,
scientific research, …), the risks and potentialities of AI applications, and future changes in
the job market and STEM careers that the use of AI has been leading to.

The second phase of the module contains the fundamental elements of the topic that stu-
dents engage with. In this phase, conceptual knowledge (focused on the disciplinary con-
tents which are reconstructed (Duit et al., 2012) from an educational perspective), episte-
mological knowledge and practice (such as the practices of modeling phenomena, arguing,
and explaining), and inquiry practice (such as the skills of posing questions, formulating
hypotheses, recognizing modeling as a process of isolating a particular phenomenon, and
moving from models to experiments and vice versa) are deeply intertwined. This phase
consists of three activities to introduce the three aforementioned approaches to AI: impera-
tive procedural, declarative logic, and deep learning through neural networks. The lectures
were interactive and carried out by the authors of the paper (a computer scientist, a math-
ematician, and two physicists) and included a first part with an introduction to the specific
approach and a second one in which the approach was exploited to solve a common task:
to make a computer play tic-tac-toe. An extensive description of how the paradigms were
introduced to students and how the problem of tic-tac-toe was addressed is the object of
Section 6.

The third phase of the module concerns the so-called “bridge” activities. They are cru-
cial activities in the module since they need to connect scientific, conceptual, and epis-
temological knowledge and practice (which characterize the first two phases of the mod-
ule) with the concepts of complexity that are necessary to address the issue of opacity,

https://iseeproject.eu/i-see-module-on-artificial-intelligence/
https://iseeproject.eu/i-see-module-on-artificial-intelligence/

	 E. Barelli et al.

1 3

uncertainty, and emergence from an epistemological and scientifically-grounded point
of view. In the first activity of this phase, the distinctive traits of the three programming
approaches to AI that are presented to the students in the second phase are compared in
terms of the role that the programmer has in each of them, the strategy of problem-solving,
and the meaning of algorithm, learning, and predictability. The second activity, instead, is
connected with the second introductory lecture and connects the revolution of ML with the
paradigm shift of complex systems: The features of complex systems are exemplified using
simulations of Schelling’s model of racial segregation (for emergent properties and non-
linearity), the predator-prey Lotka-Volterra model (for non-linearity, feedback, and causal
circularity), and Lorenz’s model for meteorological predictions (non-linearity and deter-
ministic chaos). During the lesson, it is pointed out that this new non-deterministic way of
thinking about the future has also inspired branches of social sciences.

6 � The Tic‑Tac‑Toe: Analysis in Imperative Procedural, Declarative Logic
and ML Neural Network Paradigms

In this section, we analyze how the tic-tac-toe was exploited in the module as a way to
switch on an epistemological reflection on the disciplinary and conceptual contents through
epistemic insights. Hence, we focus on the second phase of the module, which is aimed
at addressing and deepening the conceptual and epistemological knowledge introduced in
the first part. Three main programming paradigms are introduced: imperative procedural,
declarative logic, and deep learning. To do this, the problem of coding a tic-tac-toe player
is addressed with each paradigm. Each paradigm was exploited in a programming language
(Python, Prolog, or Matlab) to give the sense of how the reasoning is turned into a code. A
special attention was paid to compare the high-level description of procedural reasoning,
exploited in Python, against the structure of logical reasoning explored in Prolog.

To analyze the activity, we split each subsection into three paragraphs: the first is
devoted to introducing the basic ideas at the basis of the specific programming paradigm,
the second presents the implementation of the game of tic-tac-toe within that paradigm,
and the third highlights the epistemic insights that the specific paradigm allows to stress.
In both the first and second paragraphs, we make use of some footnotes to specify some
details in a more formal way: however, they are not essential for reading and fully under-
standing the paper.

6.1 � Imperative Procedural Paradigm

6.1.1 � Programs as Implementations of Step‑by‑Step Algorithms

In the module, the students were led to get acquainted that, given an algorithm, meant as a
finite sequence of unambiguous steps to solve a problem, it is possible to translate it into a
program (written in an imperative procedural programming language) that will eventually
(through layers of translation/interpretation) be executed on an electronic computer. In the
imperative procedural paradigm, the machine is clearly told what actions—often organized
in procedures—to execute. A program can be seen as the modification of the machine’s
internal state (i.e., the association between modifiable variable names and the associated
value) during the execution.

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Different high-level languages, like the most famous C, Java, and Python, were men-
tioned as examples of languages that could be used for imperative programming. In these
kinds of languages, the execution steps can be precisely traced, and the memory state of the
machine can be explored at each step (see Fig. 1).

6.1.2 � A “Brute Force” Algorithm to Perfectly Play Tic‑Tac‑Toe

Tic-tac-toe is a simple game in terms of possible combinations: there are only 765 legal
positions (by taking into account symmetries—rotations and reflections) on the board.
Hence, it is very easy to find an algorithm that leads a player to play the perfect game, by
always performing the moves that lead to the best possible outcome.

For example, Newell and Simon (1972) described eight simple rules the player should
follow, by picking the first that is allowed by the current configuration, when determining
the next move. We report them as summarized in (“Tic-tac-toe”, 2023):

1.	 Win: If the player has two in a row, they can place a third to get three in a row
2.	 Block: If the opponent has two in a row, the player must play the third themselves to

block the opponent
3.	 Fork: Cause a scenario where the player has two ways to win (two non-blocked lines

of 2)
4.	 Blocking an opponent’s fork: If there is only one possible fork for the opponent, the

player should block it. Otherwise, the player should block all forks in any way that
simultaneously allows them to make two in a row. Otherwise, the player should make a
two in a row to force the opponent into defending, as long as it does not result in them
producing a fork. For example, if “X” has two opposite corners and “O” has the center,

Fig. 1   A portion of a Python program that determines the next move in tic-tac-toe, together with a simpli-
fied representation of the state of the memory of the machine at a precise step of execution

	 E. Barelli et al.

1 3

“O” must not play a corner move to win. (Playing a corner move in this scenario pro-
duces a fork for “X” to win)

5.	 Center: A player marks the center. (If it is the first move of the game, playing a corner
move gives the second player more opportunities to make a mistake and may therefore
be the better choice; however, it makes no difference between perfect players)

6.	 Opposite corner: If the opponent is in the corner, the player plays the opposite corner
7.	 Empty corner: The player plays in a corner square
8.	 Empty side: The player plays in a middle square on any of the four sides

While these rules are expressed in a human-understandable form, talking about “cor-
ners” or “forks,” they are directly derived from analyzing all the possible games (see
Fig. 2). Therefore, this can be called a brute-force algorithm: for each step, one simply
considers all the possible evolutions (in other words, the game tree in Fig. 3) of the game,
considering both player’s and opponent’s possible future moves, and executes the move
with the best possible outcome. From an AI perspective, it is far from being an “intel-
ligent” strategy. Indeed, the brute-force strategy is applicable because of the few possible
states and games that tic-tac-toe presents. With games like Chess or Go, where the possible
states are in the order of 1047 and 10170, respectively, a brute-force approach would take an
amount of time way larger than the age of the universe, making it infeasible.

We implemented the tic-tac-toe rules in a straightforward Python program that, given
the current configuration of a tic-tac-toe board, perfectly1 determines the next move. We
report it in Annex 1.

Fig. 2   In red, the optimal strategies for player X (left) and player O (right). In the right picture, for example,
the big red Os are the ideal moves that the O player, which starts second, should do relative to what the X
player has done as its first move (the big black Xs). The smaller pictures analogously indicate the strategy
for the following moves. The figures are by nneonneo - Own works, CC BY-SA 3.0, https://​commo​ns.​wikim​
edia.​org/w/​index.​php?​curid=​12305​931 and https://​commo​ns.​wikim​edia.​org/w/​index.​php?​curid=​12305​920

1  Due to time and space limitations, the actual program given to students is only “almost” perfect, but our
simplification does not hinder the objectives of the activity.

https://commons.wikimedia.org/w/index.php?curid=12305931
https://commons.wikimedia.org/w/index.php?curid=12305931
https://commons.wikimedia.org/w/index.php?curid=12305920

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

6.1.3 � Epistemic Insights of the Tic‑Tac‑Toe Within the Procedural Paradigm

In this approach, top-down knowledge, in the form of an explicit play algorithm and a rep-
resentation of the problem’s data, is given to the machine for it to follow and play, i.e., to
know the specific actions to perform (emergence: top-down flow of knowledge). Therefore,
the programmer needs a deep understanding of the problem at stake, to choose an adequate
representation for the data (for example, a list/matrix of 9 elements that are “X,” “O,” or
“blank”), to devise an ideally optimal strategy to solve the problem for every possible situ-
ation, e.g., by analyzing what happens in different configurations of the game (see Fig. 2),
to describe it as an algorithm and implement it in a program (emergence: instructions as
input).

Since explicit, procedural knowledge on what to do is given to the machine, it is
always possible for a human to read (opacity: symbolic approach), at a chosen level of
abstraction (high-level program, machine code, and even the logic gates or the transis-
tors), and associate a meaning to each step performed by the machine (opacity: interpret-
able method).

This gives programmers total control over the results: the output is deterministic (same
input and same output), and, when tested and debugged, or even formally verified, the cor-
rectness of the solution is guaranteed (uncertainty: deterministic output).

The machine’s predictability, together with the fact that it executes what it is instructed
to do and in a specific order, does not allow it to show any form of creativity, at least if you
are aware that it is following a known, pre-determined sequence of steps (emergence: imi-
tation of knowledge). Of course, the creative process already occurred in the programmer’s
work, when he devised and implemented the algorithm.

Fig. 3   Part of the game tree for tic-tac-toe, i.e., the tree that follows all possible moves of the game

	 E. Barelli et al.

1 3

6.2 � Declarative Logic Paradigm

6.2.1 � Computation as a Logical Deduction

The declarative logic paradigm is based on logical reasoning2. The programmer specifies
a set of true facts and rules (logical implications) as the knowledge base3 of the program.
The user of a logic program can ask for a goal (a conclusion they are trying to prove true),
and an inference engine (a unique algorithm, common to all logic programs, that imple-
ments an inference procedure, based on modus ponens4) tries to apply facts and rules to
derive the goal. We can think at the inference engine exploring a search tree that represents
all possible choices5 for facts and rules to apply in order to prove the goal, backtracking,
and trying different choices when finding a “dead end.” The necessary ability of the pro-
grammer is, in this case, to formulate the problem in terms of true propositions and logical
inferences based on the truth of propositions and material implications.

We provide a simple example of a problem that can be formulated in a logical way. We
start from a set of facts (“Giovanni is Anna’s father,” “Carlo is Antonio’s father,” “Andrea
is Carlo’s father,” “Andrea is Giovanni’s father”) and rules (material implications that are
considered to be true, e.g. “If it is true that X is the father of Y and Y is the father of Z,
then X is the grandfather of Z”). At this point, we can create a logic program that logically
deduces if a proposition (“Andrea is Anna’s grandfather”) is true or not. To implement
this example in a programming language, we choose Prolog, the most widely used one. In
Prolog, it is expressed with the following program (you can read “:-” as logical implication
“←”, i.e., to be read from right to left; you can read the comma as a logical “and”):

Hence, to answer the question:

2  Formally, it is based on first-order predicate calculus.
3  Using the so called closed world assumption, it describes everything that is true.
4  More formally, it uses the SLD resolution (Robinson, 1965) inference rule and a unification algorithm to
assign values to free variables.
5  Note that, in principle, the paradigm maintains a form of non-determinism: the result of a computation is
a set of computed answers, deriving from all possible choices that lead to success. Of course, when imple-
menting this paradigm in an actual programming language, that runs on a deterministic machine, a choice
should be made. For example, various implementations of Prolog choose to use the textual order in which
the facts and rules appear in the program, giving the opportunity to the programmer to ask for more solu-
tions if they will. For a more formal, CS-oriented discussion on the logic paradigm, see (Gabbrielli & Mar-
tini, 2010, ch. 12).

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

The program generates (implicitly) the search tree in Fig. 4, also called proof tree, to
arrive at the proof of the statement.

6.2.2 � Tic‑Tac‑Toe in Prolog

To program a tic-tac-toe player in Prolog, the knowledge about the game and the strategy
has to be turned into a set of facts and rules and the moves can be obtained by exploring
a search tree with a logical deductive approach. In particular, the students were guided to
recognize that, in the case of tic-tac-toe, the knowledge base includes facts like winning
combinations, rules like inferential statements about what it means to win, or to avoid the
other player winning, and to create or to avoid a configuration where it is sure that one wins
in the next move (a fork), and derived true statements are moves. We report an example of
knowledge base representation, adapted from Scott (2009, p. 563) that was shown to the
students to visualize how the reasoning is turned into a code. A possible winning configu-
ration corresponds to having the same symbol (e.g., “x” in the last line (starting labeling
the cells from 1, from left to right, and from top to down, corresponding to having “x” in
positions 7, 8, and 9). In the code, it can be expressed by the fact:

To consider all the equivalent configurations and say they are winning ones (“tic-tac-
toe”), it is necessary to include:

Fig. 4   Search tree for the goal “?- grandfather(’Andrea’, ’Anna’)”. A possible execution flow is depicted
with the gray line and the colored labels

	 E. Barelli et al.

1 3

Here are two examples of rules expressed in the form of material implications, where
the symbol % indicates comments, ignored by the Prolog machine:

By asking the Prolog program for the goal:

The user can expect it to produce an assignment of a number from 1 to 9 to the variable
A that corresponds to the computer putting an “o” in that cell.

We remark, by looking at the full code reported in Annex 2, that the programmer has
exploited the fact that Prolog considers facts and rules in textual order (and therefore the
execution results are deterministic and predictable) to enforce a strategy, by putting the pre-
ferred rules (like win(A) :- …) first.

6.2.3 � Epistemic Insights of the Tic‑Tac‑Toe Within the Declarative Logic Paradigm

In the declarative logic approach, the machine’s “brain” does not have any instruction in
advance of the moves to perform step by step to play the game. However, knowledge about
the rules of the game and the inferential mechanism that produce information about the
next move starting from the previous ones are incorporated from the very beginning in the
code. Its capacity to make a move on the basis of a configuration of the board is obtained
top-down, starting from the facts (true premises) and rules that are provided (emergence:
top-down flow of knowledge). The declarative logic program used to play tic-tac-toe allows
focusing on the type of data to put as an input and the kind of knowledge produced as
an output. Winning rules and information about the moves expressed in the form of true

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

premises have to be formulated so that the machine performs a deductive modus ponens
reasoning, producing new necessarily true statements (new moves to perform) derived
from true statements included as inputs. The knowledge infused in the machine is not only
possible moves but also rules, through which the machine can produce new ones (emer-
gence: rules as input).

An implication of the top-down character based on rules of the declarative logic
approach is that the programmer clearly expresses the rules of the game and the tree of
possible moves is implicit in its decisions, and the results of its elaboration of premises
through rules can be visualized and checked. There can be human errors in the writing of
rules or in the premises, thus deriving as true propositions that we other humans can con-
sider false, but the choices and all the possible conclusions are explicit and can be checked
and modified. A human can make sense of the code and change it to obtain different and
predictable outcomes (moves), because a symbolic relationship exists between the knowl-
edge in input and output, thus between the state of the process and the decision obtained by
the machine (in our case the next move in the match) (opacity: symbolic approach). This
allows the users to actually decide the strategy of the machine in solving the problem since
the rules are explicit and the relationship input-output is human-readable (opacity: inter-
pretable method).

Once set up the starting knowledge and the rules, the solution tree is unique. This
reveals an epistemic characteristic of the knowledge produced by Prolog: new knowledge is
produced, but it is totally predictable. No creativity is possible for the machine (emergence:
imitation of knowledge). Another epistemic insight that we can highlight through the tic-
tac-toe is that the Prolog machine produces completely accurate and predictable solutions;
thus, its behavior is in the domain of certainty and can be determined a priori (uncertainty:
deterministic output).

6.3 � Neural Network Paradigm

To analyze how the epistemic insights were integrated into the discussion of the tic-tac-toe
problem through an ML approach, a brief conceptual introduction is needed on the specific
family of algorithms we used in the module, i.e., deep learning with feed-forward artificial
neural networks.

6.3.1 � Neural Networks 101

To describe what a neural network is, we have to consider that this family of algorithms
has been developed with the aim of imitating the functioning of neurons and neuronal net-
works. A neuron can be modeled as a functional unit that (i) receives via the dendrites
(input wires) signals that come from other neurons or from the external world, (ii) pro-
cesses the signals, and (iii) sends the signals processed to another neuron via the axon (out-
put wire). Starting from the biological model of a neuron, in 1958, Rosenblatt modeled the
first, simplest artificial neural network with a single neuron as a computational unit that (i)
receives a certain number of inputs, (ii) carries out calculations, and (iii) returns the results
of the calculations (Rosenblatt, 1958).

A neural network consists of many single neurons organized in layers, according
to a variety of possible arrangements and resulting architectures. In the following, we
focus on the feed-forward neural network, characterized by the fact that the connections

	 E. Barelli et al.

1 3

between the nodes cannot form a cycle and that information only flows from the input to
the output. A graphical example is reported in Fig. 5. In this network:

–	 Each connection from an element of one layer to one element of the next has a
weight �(k)

ij
 , where i is the index of the neuron in the destination layer, j is the fea-

ture’s index in the starting layer, and k is the index of the starting layer
–	 Each neuron computes its activation function a by applying the sigmoid function g

on the scalar product between the values of the inputs and the corresponding
weights. For example, the activation function computed by the first neuron in the
second layer is a(2)

1
= g

(

�
(1)

11
x
1
+ �

(1)

12
x
2
+ �

(1)

13
x
3

)

–	 The last neuron provides the final computation of the hypothesis function, calculat-
ing the sigmoid on the scalar product between the results of the activation and the
corresponding weights: h

�
(x) = g

(

�
(2)

11
a
(2)

1
+ �

(2)

12
a
(2)

2
+ �

(2)

13
a
(2)

3

)

The neural network is named feed-forward because the process starts with the inputs
that pass to the activations of the hidden layer which forward propagate the results to
compute the activations of the output layer. Moreover, we can notice the complexity of
the resulting hypothesis function: what is fed into the final formula are not the features
x that describe the input data, but the values a(j)

i
 which are in turn the results of the

computations performed by the hidden layer which are learned as functions of the input.
Therefore, hθ(x) results a complex function, strongly non-linear.

Once described the mathematical form of the functions, the issue is to choose the
values of the weights which characterize the connections between the nodes of the net-
work. To assess the appropriate values of the weights, the network is trained through a
process named error back-propagation which follows a few steps:

1)	 In the initial iteration, the weights are initialized randomly
2)	 The process goes on by utilizing the features x of the first example within the training

dataset. These features are employed to drive forward propagation through activation
functions in the hidden layer, followed by computation of the hypothesis function of the
final layer

Fig. 5   Schema of a feed-forward neural network with three features as inputs and three neurons in the hid-
den layer

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

3)	 The error is computed by comparing the known label associated with the training example6
to the prediction obtained from the hypothesis function

4)	 This error is then “back-propagated” from the output layer to the hidden layer, which
involves adjusting the weights to minimize the cost function when recalculated with
these updated weights

Steps 2, 3, and 4 are repeated for all the examples in the training dataset.
After the training phase, the neural network is tested on new examples to evaluate the

accuracy of the model, which is computed as the fraction of the test examples for which the
prediction corresponds to the label with respect to the total number of tests. This accuracy
becomes a measure of the network’s reliability to generalize the classification to new data.

6.3.2 � Neural Networks for Tic‑Tac‑Toe

To play tic-tac-toe with an ML approach, and in particular with a neural network, we imag-
ine a robot named Lucy who has to learn how to play this game effectively and the issue
for the programmers consists in “building a brain” that makes her capable of performing
the task. The steps to build her brain are (i) to build a database from which she can learn,
(ii) to choose the type and the structure of the network, (iii) to train the network, and (iv)
to test Lucy’s ability in playing tic-tac-toe. The result of this process will be the network’s
decision of which move to do (output) when provided with a specific situation of the grid
(input). These steps were the same that the instructor presented to the students, interacting
with the Matlab interface to create the games for training and to test the networks’ ability
to play. The Matlab code behind the interface was not inspected nor shown to the students,
because the focus was never on making students understand how to code a neural network
but to grasp the overall meaning of training and testing a ML algorithm.

Construction of the Database  To build the database, the 3 × 3 grid of the tic-tac-toe is
mapped into a 9-component vector as in Fig. 6.

Then, we need to develop a sense of how matches and moves can become a database.
Before the first moves, the grid is empty and the vector has all its components set to 0.
Then, player 1 draws “1” in a cell and the corresponding component of the vector takes 1
as a value. Then, player 2 does the same, and so on, until the game ends. Nine moves of
one match are represented in Fig. 7.

The database is constructed by generating a number of matches, by making play:

–	 An imperative algorithm (which operates with the strategy described in Section 6.1.2)
against a random player (which selects a random cell among the free ones), or

–	 Two random players against each other, or
–	 Two imperative players.

In Fig. 8, we report the Matlab interface through which the students were guided to
construct the moves database. The Matlab code to produce this output was not inspected

6  In the case of supervised learning, the database is such that to each example the true label is associated;
for example in the case of a neural network built to distinguish dogs from wolves, in the database each
image is flanked by the true label of “dog” or “wolf.”

	 E. Barelli et al.

1 3

with the students since, for the scope of the course, we stressed the high-level structure of
problem’s setting.

In each match, the vectors of winner’s moves (in the case of Fig. 7, the winner is player
1) are defined as the target moves given the example of the loser’s moves. Considering the
example of the game depicted in Fig. 7, the corresponding database is reported in Fig. 9.

Choice of the Network’s Architecture  The neural network to solve this problem is cho-
sen with a feed-forward architecture. To define the number of inputs and the number of
outputs, we must consider the characteristics of the specific problem: given any board (a
9-component vector), the task of the network is to choose the next move (another 9-compo-
nent vector). Hence, the number of input elements must equal that of output elements, and
both must equal 9. Regarding the other parameters of the network, it is chosen with a single
hidden layer. The choice of the number of neurons in the hidden layer and the portion of
the database to train the network is set through the interface in Fig. 10.

Fig. 6   Mapping of the tic-tac-toe grid into a vector

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Network’s Training and Test  To teach the network how to play tic-tac-toe, part of the data-
base is selected to train it. After the training phase, which includes the error back-propaga-
tion algorithm, the capacity of the network to win other matches is computed. To do that,
the instructor guides the students to experiment in a virtual arena in which, through the
Matlab interface as exemplified in Fig. 11, it is possible to select the players of the game
(e.g., human, imperative, random, or neural network—and in this latter case which neural
network) and monitor the number of games won by the players. Doing this, we can observe
that the success rate of the network increases with the number of matches on which it is
trained; even when trained only with a database made by the moves of two random players,
the network succeeds in winning in most cases. On the opposite, when trained only with
the matches played by two imperative algorithms, the network fails in case of a random
player’s moves.

6.3.3 � Epistemic Insights of the Tic‑Tac‑Toe Within the Neural Network Paradigm

As a neural network, Lucy’s brain did not have any top-down knowledge in advance of the
most efficient strategy to play the game. On the opposite, its capacity to make a move on
the basis of a configuration of the board is obtained bottom-up, starting from the exam-
ples that are provided (emergence: bottom-up flow of knowledge). The supervised learning
algorithm used to play tic-tac-toe also allows focusing on the type of data that feeds the
network: matches have to be created and moves have to be labeled as winning or losing so
that the machine learns. Indeed, the knowledge infused in the machine is not only data but
also a true label, through which the network can learn (emergence: examples as input).

A consequence of the bottom-up character of the artificial neural network is that, even if
we say that it “learnt” to play tic-tac-toe, actually this learning consists in having assigned
numbers to connections between neurons (i.e., the weights) through the complex process
of error back-propagation. To a human, those numbers are meaningless because no sym-
bolic relationship exists between the values of the parameters and the decision obtained by

Fig. 7   Moves in a match between players 1 and 2, with both grid and vector representations

	 E. Barelli et al.

1 3

the machine (in our case the next move in the match) (opacity: sub-symbolic approach).
This prevents the users from actually interpreting the strategy of the network in solving the
problem: it is indeed a black box that obtains implicit knowledge through examples, with-
out making explicit and human-readable why these results are obtained (opacity: opaque
method).

Fig. 8   Matlab interface to build the database by making an imperative algorithm (player 1) play against a
random one (player 2) 100 times

Fig. 9   Portion of target and
example database related to the
game depicted in Fig. 7. The
target database is the collection
of the vectors representing the
moves of the winner. The exam-
ple database is the collection
of the vectors representing the
moves of the loser

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Moreover, the different ways of training the neural network lead to unexpected behav-
iors like success when learning from random players and failure when learning from per-
fect imperative players. This reveals an important epistemic characteristic of the knowledge
produced by the neural network: since it is not a priori infused in the form of an algorithm,
we obtain something that resembles creativity, i.e., the original solution of a problem with-
out a previously determined path to follow (emergence: generation of knowledge). One fur-
ther epistemic insight that the tic-tac-toe allows to stress is that the network never comes
alone: it is always flanked by its accuracy, determined in the testing phase. Differently than
in the cases in which the strategy is given to the machine, the way in which the neural
network works can only lead to a probability of success in performing the task, not in a
certainly accurate solution (uncertainty: probabilistic output).

7 � Discussion and Conclusions

In writing this paper, we were guided by this research question: Which epistemic insights
should and can be introduced to upper secondary-school students to make them aware
of the AI and ML revolution? In presenting the solution to the problem of tic-tac-toe

Fig. 10   Matlab interface to construct a 1-layer network with 30 neurons in the hidden layer. In the same
window, the user can choose the portion of the database to use for training (default: 50%)

Fig. 11   Matlab interface to make a random player play 100 times against a neural network (in this specific
case, the neural network chosen is trained on the matches played by two imperative algorithms) and results
of the matches

	 E. Barelli et al.

1 3

through the imperative procedural, the declarative logic, and the ML neural networks
approaches, we have pointed out that different epistemic insights can be fostered. In par-
ticular, the epistemic insights have here the role of articulating the difference between
the three approaches, hence highlighting the novelty of ML with respect to traditional
approaches to programming. In Table 2, we summarize the difference in the approaches
across the epistemic insights.

Regarding the issue of opacity, we have argued that imperative procedural and declar-
ative logic paradigms are interpretable and symbolic, while the ML neural network one
is opaque and sub-symbolic. With the first two approaches, the steps the machine fol-
lows are intelligible and can be meaningfully connected to “symbols” related, at a cer-
tain level of abstraction, to the issue at stake. In the case of the imperative procedural
approach, every instruction and output of the procedure implemented can be checked in
the code directly (each instruction written in the code corresponds to one of the sym-
bolic steps for the solution of the problem). In the declarative logic approach, instead,
what is expressed in a symbolic, visible, and evaluable way in the code are the logical
rules and the true facts, and the relationship between input (knowledge base) and output
(deduced knowledge) can be analyzed entirely checking the search tree explored by the
inferential engine. The ML neural network paradigm is very different. The distributed
structure of the neural network in many individual agents (the neurons) and the non-
linear character of interactions among them create an opaqueness of the network. At the
end of the process of training, validation, and testing, the knowledge obtained by the
machine that it uses to produce a result or a decision does not consist of human-readable
information but only in a wide matrix of connections’ weights expressed as numbers.

The difference between the imperative procedural and declarative logic paradigms,
on one side, and the ML neural networks on the other, was made explicit in the analy-
sis of the tic-tac-toe. With the first two approaches, we are able to associate at every
stage of the computation a meaning to the actions performed by the machine and, as a
consequence, is rather easy to explain the results obtained, whether they be correct or
incorrect. This is not the case of the neural network where its structure cannot be inter-
preted as any logical decision or procedure, without explicit and symbolic correspond-
ence with the issue at stake.

Second, regarding the issue of uncertainty, we have shown that imperative procedural
and declarative logic approaches are deterministic, while the ML neural network one is
probabilistic. Within the first two approaches, given a particular input, the same output is
always obtained, with the underlying machine always passing through the same sequence
of states. This gives programmers total control over the results: being the output determin-
istic after programs are tested and debugged (or even formally verified), its correctness is
guaranteed. On the opposite, the ML neural network paradigm is intrinsically probabilistic:
to train the network, the weights are randomly initialized, and the nonlinearity of the func-
tions leads to results that strongly depend on initial conditions, on the network’s structure,
and on the examples provided. At the end of the training, the neural network produces
the same outcome if the same input is submitted; however, considering how the neural
network is trained, from a statistical point of view, we can only talk about the efficiency
of the network and the accuracy of the results. These epistemological aspects were shown
through the example of the tic-tac-toe, making students reflect on the fact that in the first
two approaches, it could have been easily verified that given each possible configuration
in input, the output of the Python or Prolog program would have been the perfect move.
On the contrary, for the chosen neural network, results were given in terms of the percent-
age of wins, losses, and draws. Moreover, training the network with different datasets had

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Ta
bl

e 
2  

S
um

m
ar

y
of

 th
e

ep
ist

em
ic

 in
si

gh
ts

 d
ec

lin
ed

 in
to

 th
e

th
re

e
ap

pr
oa

ch
es

 to
 A

I i
nt

ro
du

ce
d

in
 th

e
m

od
ul

e

Pr
oc

ed
ur

al
 im

pe
ra

tiv
e

D
ec

la
ra

tiv
e

lo
gi

c
D

ee
p

le
ar

ni
ng

O
pa

ci
ty

Is
 th

e
m

et
ho

d
in

te
rp

re
ta

bl
e

or
 in

he
r-

en
tly

 o
pa

qu
e?

Si
nc

e
ex

pl
ic

it,
 p

ro
ce

du
ra

l k
no

w
l-

ed
ge

 o
f w

ha
t t

o
do

 is
 g

iv
en

 to
 th

e
m

ac
hi

ne
, i

t i
s a

lw
ay

s p
os

si
bl

e
fo

r
a

hu
m

an
 to

 re
ad

 a
nd

 in
te

rp
re

t t
he

m

ea
ni

ng
 o

f e
ac

h
ste

p
pe

rfo
rm

ed
 b

y
th

e
m

ac
hi

ne
.

U
se

rs
 c

an
 d

ec
id

e
th

e
str

at
eg

y
of

 th
e

m
ac

hi
ne

 in
 so

lv
in

g
th

e
pr

ob
le

m

si
nc

e
th

e
ru

le
s a

re
 e

xp
lic

it
an

d
th

e
in

pu
t-o

ut
pu

t r
el

at
io

ns
hi

p
is

 in
te

r-
pr

et
ab

le
.

Th
e

ne
ur

al
 n

et
w

or
k

is
 a

n
op

aq
ue

 b
la

ck

bo
x

th
at

 g
en

er
at

es
 im

pl
ic

it
kn

ow
le

dg
e

th
ro

ug
h

ex
am

pl
es

, w
ith

ou
t m

ak
in

g
ex

pl
ic

it
an

d
hu

m
an

-r
ea

da
bl

e
w

hy

th
es

e
re

su
lts

 a
re

 o
bt

ai
ne

d.

Is
 th

e
ap

pr
oa

ch
 sy

m
bo

lic
 o

r s
ub

-
sy

m
bo

lic
?

Ea
ch

 st
ep

 p
er

fo
rm

ed
 b

y
th

e
m

ac
hi

ne

ca
n

be
 in

te
rp

re
te

d
in

 a
 sy

m
bo

lic

w
ay

 (a
t a

 c
ho

se
n

le
ve

l o
f a

bs
tra

c-
tio

n:
 h

ig
h-

le
ve

l p
ro

gr
am

, m
ac

hi
ne

co

de
, e

ve
n

th
e

lo
gi

c
ga

te
s o

r t
ra

ns
is

-
to

rs
).

A
 h

um
an

 c
an

 m
ak

e
se

ns
e

of
 th

e
co

de

an
d

ch
an

ge
 it

 to
 o

bt
ai

n
di

ffe
re

nt

an
d

pr
ed

ic
ta

bl
e

ou
tc

om
es

, b
ec

au
se

a

sy
m

bo
lic

 re
la

tio
ns

hi
p

ex
ist

s
be

tw
ee

n
th

e
kn

ow
le

dg
e

in
 in

pu
t a

nd

ou
tp

ut
, t

hu
s b

et
w

ee
n

th
e

st
at

e
of

 th
e

pr
oc

es
s a

nd
 th

e
de

ci
si

on
 o

bt
ai

ne
d

by
 th

e
m

ac
hi

ne
.

Le
ar

ni
ng

 c
on

si
sts

 o
f t

he
 m

ac
hi

ne
 h

av
-

in
g

as
si

gn
ed

 n
um

be
rs

 to
 c

on
ne

ct
io

ns

be
tw

ee
n

ne
ur

on
s.

To
 a

 h
um

an
, t

ho
se

nu

m
be

rs
 a

re
 m

ea
ni

ng
le

ss
 b

ec
au

se
 n

o
sy

m
bo

lic
 re

la
tio

ns
hi

p
ex

ist
s b

et
w

ee
n

th
e

va
lu

es
 o

f t
he

 p
ar

am
et

er
s a

nd
 th

e
de

ci
si

on
 o

bt
ai

ne
d

by
 th

e
m

ac
hi

ne
.

U
nc

er
ta

in
ty

H
as

 th
e

ou
tp

ut
 o

f t
he

 m
et

ho
d

de
te

r-
m

in
is

tic
 o

r p
ro

ba
bi

lis
tic

 c
ha

ra
ct

er
?

Th
e

ou
tp

ut
 is

 d
et

er
m

in
ist

ic
 a

nd
,

w
he

n
te

ste
d

an
d

de
bu

gg
ed

, t
he

 c
or

-
re

ct
ne

ss
 o

f t
he

 so
lu

tio
n

is
 g

ua
ra

n-
te

ed
.

C
om

pl
et

el
y

ac
cu

ra
te

 a
nd

 p
re

di
ct

ab
le

so

lu
tio

ns
 a

re
 p

ro
du

ce
d:

 th
e

be
ha

vi
or

is

 d
et

er
m

in
ist

ic
.

Th
e

w
ay

 in
 w

hi
ch

 th
e

ne
ur

al
 n

et
w

or
k

w
or

ks
 c

an
 o

nl
y

le
ad

 to
 a

 p
ro

ba
bi

lit
y

of
 su

cc
es

s i
n

pe
rfo

rm
in

g
th

e
ta

sk
, n

ot

in
 a

 c
er

ta
in

ly
 a

cc
ur

at
e

so
lu

tio
n.

	 E. Barelli et al.

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

Pr
oc

ed
ur

al
 im

pe
ra

tiv
e

D
ec

la
ra

tiv
e

lo
gi

c
D

ee
p

le
ar

ni
ng

Em
er

ge
nc

e
In

 th
e

ap
pr

oa
ch

, d
oe

s k
no

w
le

dg
e

flo
w

to

p-
do

w
n

or
 b

ot
to

m
-u

p?
To

p-
do

w
n

kn
ow

le
dg

e,
 in

 th
e

fo
rm

of

 a
n

ex
pl

ic
it

pl
ay

 a
lg

or
ith

m
 a

nd

a
re

pr
es

en
ta

tio
n

of
 th

e
pr

ob
le

m
’s

da

ta
, i

s g
iv

en
 to

 th
e

m
ac

hi
ne

 fo
r i

t t
o

fo
llo

w
 a

nd
 p

la
y.

K
no

w
le

dg
e

ab
ou

t t
he

 ru
le

s a
nd

 th
e

in
fe

re
nt

ia
l m

ec
ha

ni
sm

 th
at

 p
ro

du
ce

s
in

fo
rm

at
io

n
is

 in
co

rp
or

at
ed

 fr
om

th

e
ve

ry
 b

eg
in

ni
ng

 in
 th

e
co

de
. T

he

m
ac

hi
ne

’s
 c

ap
ac

ity
 o

f p
er

fo
rm

in
g

th
e

ta
sk

 is
 o

bt
ai

ne
d

to
p-

do
w

n,

st
ar

tin
g

fro
m

 fa
ct

s (
tru

e
pr

em
is

es
)

an
d

ru
le

s.

Th
e

ne
ur

al
 n

et
w

or
k

do
es

 n
ot

 h
av

e
an

y
to

p-
do

w
n

kn
ow

le
dg

e
in

 a
dv

an
ce

 o
f

th
e

m
os

t e
ffi

ci
en

t s
tra

te
gy

 to
 so

lv
e

th
e

ta
sk

. T
hi

s c
ap

ac
ity

 is
 o

bt
ai

ne
d

bo
tto

m
-u

p,
 st

ar
tin

g
fro

m
 th

e
ex

am
-

pl
es

 th
at

 a
re

 p
ro

vi
de

d.

A
re

 in
st

ru
ct

io
ns

, r
ul

es
, o

r e
xa

m
pl

es

gi
ve

n
as

 in
pu

ts
 to

 th
e

m
et

ho
d?

Th
e

str
at

eg
y

to
 so

lv
e

th
e

pr
ob

le
m

 fo
r

ev
er

y
po

ss
ib

le
 si

tu
at

io
n

ha
s t

o
be

gi

ve
n

as
 in

pu
t i

n
th

e
fo

rm
 o

f a
 se

t o
f

in
st

ru
ct

io
ns

.

Th
e

in
pu

t g
iv

en
 to

 th
e

m
ac

hi
ne

co

ns
ist

s o
f t

ru
e

pr
em

ise
s a

nd
 r

ul
es

th

at
 h

av
e

to
 b

e
fo

rm
ul

at
ed

 so
 th

at

th
e

m
ac

hi
ne

 p
er

fo
rm

s a
 d

ed
uc

tiv
e

m
od

us
 p

on
en

s r
ea

so
ni

ng
.

Th
e

in
pu

t f
ro

m
 w

hi
ch

 th
e

ne
ur

al
 n

et
-

w
or

k
le

ar
ns

 is
 m

ad
e

by
 e

xa
m

pl
es

 in

th
e

fo
rm

 o
f d

at
a

an
d

th
ei

r l
ab

el
s.

D
oe

s t
he

 m
et

ho
d

im
ita

te
 o

r g
en

er
at

e
kn

ow
le

dg
e?

Th
e

m
ac

hi
ne

’s
 p

re
di

ct
ab

ili
ty

, t
og

et
he

r
w

ith
 th

e
fa

ct
 th

at
 it

 e
xe

cu
te

s w
ha

t i
t

is
 in

str
uc

te
d

to
 d

o
an

d
in

 a
 sp

ec
ifi

c
or

de
r,

do
es

 n
ot

 a
llo

w
 it

 to
 sh

ow
 a

ny

fo
rm

 o
f c

re
at

iv
ity

 (a
t l

ea
st

if
yo

u
kn

ow
 th

at
 it

 is
 fo

llo
w

in
g

a
kn

ow
n,

pr

e-
de

te
rm

in
ed

 se
qu

en
ce

 o
f s

te
ps

).

O
nc

e
se

t u
p

th
e

st
ar

tin
g

kn
ow

le
dg

e
an

d
th

e
ru

le
s,

th
e

so
lu

tio
n

tre
e

is

un
iq

ue
. T

hi
s r

ev
ea

ls
 a

n
ep

ist
em

ic

ch
ar

ac
te

ris
tic

 o
f t

he
 k

no
w

le
dg

e
pr

od
uc

ed
: n

ew
 k

no
w

le
dg

e
is

pr

od
uc

ed
 b

ut
 it

 is
 to

ta
lly

 p
re

di
ct

-
ab

le
. N

o
cr

ea
tiv

ity
 is

 p
os

si
bl

e
fo

r
th

e
m

ac
hi

ne
.

K
no

w
le

dg
e

is
 g

en
er

at
ed

 b
y

th
e

ne
ur

al

ne
tw

or
k

an
d,

 si
nc

e
it

is
 n

ot
 a

 p
ri

or
i

in
fu

se
d

in
 th

e
fo

rm
 o

f a
n

al
go

rit
hm

,
w

e
of

te
n

ob
ta

in
 so

m
et

hi
ng

 th
at

re

se
m

bl
es

 c
re

at
iv

ity
, i

.e
. t

he
 o

rig
in

al

so
lu

tio
n

of
 a

 p
ro

bl
em

 w
ith

ou
t a

 p
re

vi
-

ou
sly

 d
et

er
m

in
ed

 p
at

h
to

 fo
llo

w.

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

different results: for example, giving it only examples of perfect matches gives much worse
results than giving it examples of matches between a perfect and a random player.

Finally, regarding the issue of emergence, we have argued that imperative procedural
and declarative logic paradigms are top-down approaches, while the ML neural network
one is bottom-up. With the first two approaches to computing, knowledge of the problem
is owned by the programmers who formulate the algorithms and impose their strategies
on the machine that has only to apply them in the established way. The main difference
between the two approaches consists in the fact that in the imperative procedural approach,
knowledge is expressed in terms of step-by-step instructions and all of them must be known
and written by the programmer, while in the declarative logic paradigm, the machine pro-
duces knowledge by implementing the given rules through the inference engine. With the
connectionist approach, we move a step forward: knowledge emerges bottom-up from the
examples with which the network is fed, without any a priori expert knowledge about the
task. Differently than the case of the declarative logic paradigm, no rule is given to the
machine but all knowledge and “learning” obtained by it emerges from input data.

The application of the lens of epistemic insights to the case of tic-tac-toe shows the dif-
ference between top-down and bottom-up approaches in a clear manner. Using the neural
network, the programmers do not write any procedure for the machine to act the moves
(as in the imperative procedural paradigm) nor a problem-specific set of formal rules and
constraints to satisfy (as in the logical declarative one): it is the machine that trains itself
“observing” winning and losing matches and, from here, learns its strategy. The strategy
learned by the network can be very different from the optimal one because it is highly
sensitive to the training dataset, and this can result in “creative” strategies. Moreover,
the tic-tac-toe allows us to clarify a distinction between the two top-down approaches.
In the imperative procedural case, the programmer needs to specify every possible move
and describe them in an algorithm. With the declarative logic approach, the programmer
does not put all the knowledge about every move in the code, because the inference engine
allows the machine to elaborate information and produce new ones (deduct) in terms of
concrete moves to make in a configuration: the machine is not creative in terms of strate-
gies but is somehow autonomous in deciding how to act at every single step respecting the
rules. As a consequence, we can say that the knowledge obtained as output in the three par-
adigms is respectively executed knowledge (imperative procedural), deduced knowledge
(declarative logic), and generated knowledge (ML neural networks).

A final comment is needed on the way in which the epistemic insights were addressed in
the module and introduced to students to compare the approaches. The concepts of opac-
ity as opposed to transparency, uncertainty as opposed to determinism, and emergence as
opposed to reductionism were explicitly mentioned to the students. However, the focus was
never on epistemology per se. According to Design Principle #6, the epistemic insights
that we have discussed in this paper were anchored to an operational vocabulary made of
terms chosen to be, at the same time, closer to students’ experience in school disciplines
and that had the potential to trigger a reflection on the epistemic insights. In the following,
we explore three terms of this operational vocabulary on which the comparison between
the approaches was established.

The first is the concept of algorithm. This had been encountered by students, when
learning computer science at school, as a step-by-step method to solve a problem:
like a recipe, a sequence of steps, to obtain a result. In the module, it was stressed
that this idea of conceiving the algorithm for the solution of a problem pertains to the
imperative procedural paradigm only. Indeed, in a neural network, it is impossible to
establish a correspondence between the actual steps of the underlying algorithm and

	 E. Barelli et al.

1 3

the symbolic meaning of the procedures to solve a task. Even in the declarative logic
approach, the algorithm is different than in the imperative procedural: in this approach,
the algorithm is the inference engine, and it is common to all logic programs, indepen-
dently of the specific problem to be solved. Treated in this way, the term “algorithm”
became leverage to introduce a reflection on the epistemic insights connected to sym-
bolism and interpretability.

The second operational expression is the role of the programmer. Indeed, each
approach allowed to highlight a different level and kind of knowledge that has to be
owned by those who implement an AI algorithm. In the imperative procedural, the
programmer needs a deep understanding of the problem at stake, to choose an ade-
quate representation of the data, and to devise a strategy to solve the problem for every
possible situation. In the declarative logic paradigm, programmers know in advance
the variables of the problem, their constraints, and how to express what it means to
have solved the problem: they only need to turn possible winning moves into facts
expressed in the form of true premises (i.e., propositions in first-order logic with no
free variables, choosing only the necessary information) and to transform the rules of
the game in declarative statements of the kind “A implies B” where propositions are
parts of the facts, in the suitable programming language. Finally, in the ML neural
network approach, a programmer does not need to know in advance how the prob-
lem can be solved, but they need to model the problem in a way that can be fed to
the neural network, to decide the architecture of the neural network itself, and to pro-
vide the adequate database of examples. Grounding the discussion on the role of the
(expert) human in setting up the AI algorithm, it was possible to introduce the epis-
temic insights connected to emergence, especially to the relationship between inputs
and outputs.

The final concept that we chose to analyze here and that was deeply addressed in the
module, also in the light of Design Principle #3 (“To stimulate reflections on learning
and creativity based on the ways machines learn”) is that of learning. The imperative
procedural paradigm conveys an idea of learning as a linear, deterministic process in
which passing through a set of steps it is possible to achieve a result. In the declarative
logic one, learning is instead the result of a process of proof that, from true premises
and through the inference engine, allows to arrive at a conclusion; in the way that the
declarative logic paradigm was introduced in the module (i.e., with the PROLOG lan-
guage), the result of the application of the inference engine on the same facts and prem-
ises is deterministic, as in the previous approach. In the ML neural network paradigm,
instead, learning does not include any execution or proof: knowledge emerges from
examples and trials and errors and is intrinsically probabilistic. In this way, reflecting on
learning was the way through which the epistemic insights connected to uncertainty and
emergence were introduced.

Further analysis needs to be conducted on the relationship between the operational
vocabulary and the STEM disciplines at stake, on one side, and the epistemic insights,
on the other (Ravaioli, 2020). Indeed, the algorithm, the role of the programmer, and
learning were examples of the construction of a structure on which it was possible to
articulate the comparison of the three approaches we chose. Considering the metaphor
of the process of weaving, these vocabularies are the warp, whose meaning is declined
in the imperative procedural, declarative logic, and ML neural network approaches
which in turn constitute the weft of the structure. From the combination of warp and
weft, the epistemic insights emerge as overarching themes that allow disciplinary and
experience-grounded knowledge to reach an epistemological depth.

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Appendix 1

Annex 1. Code to program a machine playing Tic‑Tac‑Toe in Python

Note that, both due to time limitations of the teaching activities and of length limita-
tions of the PythonTutor visualization tool, this program implements an “almost-per-
fect” strategy, as detailed in the comments of the code.

	 E. Barelli et al.

1 3

Annex 2. Code to program a machine playing Tic‑Tac‑Toe in Prolog

We report the relevant part of the code we wrote in Prolog language, inspired by that
formulated by Scott (2009, p. 564).

Knowledge base and definition of “equal” and “different”:

Instruction to fill a cell and definition of “empty cell”:

Rules and strategies:

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Acknowledgements  The authors thank all the partners of the I SEE project and, in particular, the teachers
and researchers who have participated in the design and implementation of the module on Artificial Intel-
ligence: Paola Fantini, Michela Clementi, Fabio Filippi, and Giovanni Ravaioli.

Funding  Open access funding provided by Alma Mater Studiorum - Università di Bologna within the
CRUI-CARE Agreement. Open access funding provided by Alma Mater Studiorum - Università di Bologna
within the CRUI-CARE Agreement. The article reports a study carried out within the I SEE Project and re-
implemented within the FEDORA project. I SEE has been funded with the support of the European Union
and the Italian National Agency within the framework of the Erasmus+ Programme (Grant Agreement no.
2016-1-IT02-KA201-024373). FEDORA has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement no. 872841. M. Lodi’s work has been sup-
ported by the Spoke 1 “FutureHPC & BigData” of the Italian Research Center on High-Performance Com-
puting, Big Data and Quantum Computing (ICSC) funded by MUR Missione 4 Componente 2 Investimento
1.4: Potenziamento strutture di ricerca e creazione di “campioni nazionali di R&S (M4C2-19)” - Next Gen-
eration EU (NGEU).

Data Availability  The data that support the findings of this study are openly available at https://​iseep​roject.​
eu/i-​see-​module-​on-​artif​icial-​intel​ligen​ce/.

Declarations 

Competing Interests  The authors declare no competing interests.

Disclaimer  The European Commission’s support for the production of this publication does not constitute
an endorsement of the contents, which reflect the views only of the authors; the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alaa, A. M., & van der Schaar, M. (2019). Demystifying black-box models with symbolic metamodels.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, & R. Gar-
nett (Eds.), Advances in neural information processing systems (Vol. 32). Retrieved from https://​
proce​edings.​neuri​ps.​cc/​paper_​files/​paper/​2019/​file/​567b8​f5f42​3af15​818a0​68235​807ed​c0-​Paper.​pdf

Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. WIRED.
Retrieved February 6, 2024, from http://​www.​wired.​com/​scien​ce/​disco​veries/​magaz​ine/​16-​07/​pb_​
theory

Anegawa, S., Ho, I., Ly, K., Rounthwaite, J., & Migler, T. (2023). Learned monkeys: Emergent proper-
ties of deep reinforcement learning generated networks. In Springer proceedings in complexity (pp.
50–61). Springer International Publishing. https://​doi.​org/​10.​1007/​978-3-​031-​28276-8_5

Barelli, E. (2022). Complex systems simulations to develop agency and citizenship skills through science
education. Dissertation thesis, Alma Mater Studiorum Università di Bologna. Dottorato di ricerca
in Data science and computation, 33 Ciclo. Retrieved from https://​doi.​org/​10.​48676/​unibo/​amsdo​
ttora​to/​10146

Berry, D. M. (2011). The computational turn: Thinking about the digital humanities. Culture Machine,
12, 1–22. Retrieved February 6, 2024, from https://​cultu​remac​hine.​net/​wp-​conte​nt/​uploa​ds/​2019/​
01/​10-​Compu​tatio​nal-​Turn-​440-​893-1-​PB.​pdf

Billingsley, B. (2017). Teaching and learning about epistemic insight. School Science Review, 365, 59–64.

https://iseeproject.eu/i-see-module-on-artificial-intelligence/
https://iseeproject.eu/i-see-module-on-artificial-intelligence/
http://creativecommons.org/licenses/by/4.0/
https://proceedings.neurips.cc/paper_files/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/567b8f5f423af15818a068235807edc0-Paper.pdf
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
https://doi.org/10.1007/978-3-031-28276-8_5
https://doi.org/10.48676/unibo/amsdottorato/10146
https://doi.org/10.48676/unibo/amsdottorato/10146
https://culturemachine.net/wp-content/uploads/2019/01/10-Computational-Turn-440-893-1-PB.pdf
https://culturemachine.net/wp-content/uploads/2019/01/10-Computational-Turn-440-893-1-PB.pdf

	 E. Barelli et al.

1 3

Billingsley, B., & Ramos Arias, A. (2017). Epistemic insight and classrooms with permeable walls. School Sci-
ence Review, 99(367), 44–53.

Billingsley, B., Nassaji, M., Fraser, S., & Lawson, F. (2018). A framework for teaching epistemic insight in
schools. Research in Science Education, 48(6), 1115–1131. https://​doi.​org/​10.​1007/​s11165-​018-​9788-6

Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication and Society,
15(5), 662–679. https://​doi.​org/​10.​1080/​13691​18x.​2012.​678878

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data
& Society, 3(1), 205395171562251. https://​doi.​org/​10.​1177/​20539​51715​622512

Carabantes, M. (2020). Black-box artificial intelligence: An epistemological and critical analysis. AI & Society,
35(2), 309–317. https://​doi.​org/​10.​1007/​s00146-​019-​00888-w

Cilliers, P. (1998). Complexity and postmodernism: Understanding complex systems. Routledge.
Desai, J., Watson, D. I., Wang, V., Taddeo, M., & Floridi, L. (2022). The epistemological foundations of data

science: A critical review. Synthese, 200(6). https://​doi.​org/​10.​1007/​s11229-​022-​03933-2
Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational

reconstruction – A framework for improving teaching and learning science. In SensePublishers eBooks
(pp. 13–37). SensePublishers. https://​doi.​org/​10.​1007/​978-​94-​6091-​900-8_2

Durán, J. M., & Jongsma, K. R. (2021). Who is afraid of black box algorithms? On the epistemological and
ethical basis of trust in medical AI. Journal of Medical Ethics, 106820. https://​doi.​org/​10.​1136/​medet​
hics-​2020-​106820

Gabbrielli, M., & Martini, S. (2010). Programming languages: Principles and paradigms. Undergraduate Topics
in Computer Science. https://​doi.​org/​10.​1007/​978-1-​84882-​914-5

Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S., Kieseberg, P., & Holzinger, A.
(2018). Explainable AI: The new 42? In Lecture Notes in Computer Science (pp. 295–303). Springer
Science+Business Media. https://​doi.​org/​10.​1007/​978-3-​319-​99740-7_​21

Gould, S. J. (1981). The mismeasure of man. W.W. Norton & Company.
Gunning, D., & Aha, D. W. (2019). DARPA’s explainable artificial intelligence (XAI) program. Ai Magazine,

40(2), 44–58. https://​doi.​org/​10.​1609/​aimag.​v40i2.​2850
Halevy, A., Norvig, P., & Pereira, F. L. (2009). The unreasonable effectiveness of data. IEEE Intelligent Sys-

tems, 24(2), 8–12. https://​doi.​org/​10.​1109/​mis.​2009.​36
Hammoudeh, A., Tedmori, S., & Obeid, N. (2021). A reflection on learning from data: Epistemology issues and

limitations. arXiv preprint arXiv. https://​doi.​org/​10.​48550/​arXiv.​2107.​13270
Harman, G., & Kulkarni, S. (2007). Reliable reasoning: Induction and statistical learning theory. The MIT Press.
Hey, T., Tansley, S., & Tolle, K. (2009). The fourth paradigm: Data-intensive scientific discovery. Microsoft

Research.
Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An

introduction to concepts and methods. Machine Learning, 110(3), 457–506. https://​doi.​org/​10.​1007/​
s10994-​021-​05946-3

Ilkou, E., & Koutraki, M. (2020). Symbolic vs sub-symbolic AI methods: Friends or enemies? Proceedings
of the CIKM 2020 Workshops, October 19-20, Galway, Ireland. Retrieved from https://​ceur-​ws.​org/​Vol-​
2699/​paper​06.​pdf

Kitchin, R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data & Society, 1(1),
205395171452848. https://​doi.​org/​10.​1177/​20539​51714​528481

Kläs, M., & Vollmer, A. M. (2018). Uncertainty in machine learning applications: A practice-driven classifi-
cation of uncertainty. In Lecture Notes in Computer Science (pp. 431–438). Springer Science+Business
Media. https://​doi.​org/​10.​1007/​978-3-​319-​99229-7_​36

Leiter, C., Zhang, R., Chen, Y., Belouadi, J., Larionov, D., Fresen, V., & Eger, S. (2023). ChatGPT: A meta-
analysis after 2.5 months. arXiv (Cornell University). https://​doi.​org/​10.​48550/​arXiv.​2302.​13795

Leonelli, S. (2012). Introduction: Making sense of data-driven research in the biological and biomedical sci-
ences. Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 1–3.

Lodi, Michael, & Martini, Simone. (2021). Computational Thinking, Between Papert and Wing. Science &
Education, 30(4), 883–908. https://​doi.​org/​10.​1007/​s11191-​021-​00202-5

MacKenzie, D. (2001). Mechanizing proof: Computing risk and trust. MIT Press.
Monett, D., & Lewis, C. W. P. (2017). Getting clarity by defining artificial intelligence—A survey. In Studies

in applied philosophy, epistemology and rational ethics (pp. 212–214). Springer. https://​doi.​org/​10.​1007/​
978-3-​319-​96448-5_​21

Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall.
Nilsson, N. J. (2010). The quest for artificial intelligence. Cambridge University Press.
O’Neil, C. (2016). Weapons of math destruction, how big data increases inequality and threatens democracy.

Broadway Books.

https://doi.org/10.1007/s11165-018-9788-6
https://doi.org/10.1080/1369118x.2012.678878
https://doi.org/10.1177/2053951715622512
https://doi.org/10.1007/s00146-019-00888-w
https://doi.org/10.1007/s11229-022-03933-2
https://doi.org/10.1007/978-94-6091-900-8_2
https://doi.org/10.1136/medethics-2020-106820
https://doi.org/10.1136/medethics-2020-106820
https://doi.org/10.1007/978-1-84882-914-5
https://doi.org/10.1007/978-3-319-99740-7_21
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1109/mis.2009.36
https://doi.org/10.48550/arXiv.2107.13270
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://ceur-ws.org/Vol-2699/paper06.pdf
https://ceur-ws.org/Vol-2699/paper06.pdf
https://doi.org/10.1177/2053951714528481
https://doi.org/10.1007/978-3-319-99229-7_36
https://doi.org/10.48550/arXiv.2302.13795
https://doi.org/10.1007/s11191-021-00202-5
https://doi.org/10.1007/978-3-319-96448-5_21
https://doi.org/10.1007/978-3-319-96448-5_21

Epistemic Insights as Design Principles for a Teaching‑Learning…

1 3

Porway, J. (2014). You can’t just hack your way to social change. Harvard Business Review. Retrieved February
6, 2024, from http://​blogs.​hbr.​org/​cs/​2013/​03/​you_​cant_​just_​hack_​your_​way_​to.​html

Prensky, M. (2009). H. sapiens digital: From digital immigrants and digital natives to digital wisdom. Inno-
vate: Journal of Online Education, 5(3). Retrieved February 6, 2024, from https://​www.​learn​techl​ib.​org/p/​
104264/

Ravaioli, G. (2020). Epistemological activators and students’ epistemologies in learning modern STEM topics.
Doctoral dissertation. Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica, 32
Ciclo. Retrieved from https://​doi.​org/​10.​6092/​unibo/​amsdo​ttora​to/​9482

Ribes, D., & Jackson, S. J. (2013). Data bite man: The work of sustaining long-term study. In L. Gitelman (Ed.),
‘Raw Data’ is an Oxymoron (pp. 147–166). MIT Press.

Robinson, J. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1),
23–41. https://​doi.​org/​10.​1145/​321250.​321253

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65(6), 386–408. https://​doi.​org/​10.​1037/​h0042​519

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://​doi.​org/​10.​1038/​
s42256-​019-​0048-x

Rudin, C., & Wagstaff, K. L. (2014). Machine learning for science and society. Machine Learning, 95(1), 1–9.
https://​doi.​org/​10.​1007/​s10994-​013-​5425-9

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth ed.). Pearson Education
Limited.

Sætra, H. S. (2018). Science as a vocation in the era of big data: The philosophy of science behind big data and
humanity’s continued part in science. Integrative Psychological and Behavioral Science, 52(4), 508–522.
https://​doi.​org/​10.​1007/​s12124-​018-​9447-5

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research
and Development, 3(3), 210–229.

Sanusi, I. T., Oyelere, S. S., Vartiainen, H., Suhonen, J., & Tukiainen, M. (2022). A systematic review of teach-
ing and learning machine learning in K-12 education. Education and Information Technologies, 28(5),
5967–5997. https://​doi.​org/​10.​1007/​s10639-​022-​11416-7

Scott, M. L. (2009). Programming language pragmatics (3rd ed.). Elsevier/Morgan Kaufmann Pub.
Shapiro, R. B., Fiebrink, R., & Norvig, P. (2018). How machine learning impacts the undergraduate computing

curriculum. Communications of the ACM, 61(11), 27–29. https://​doi.​org/​10.​1145/​32775​67
Tedre, M., Toivonen, T., Kahila, J., Vartiainen, H., Valtonen, T., Jormanainen, I., & Pears, A. (2021). Teaching

machine learning in K–12 classroom: Pedagogical and technological trajectories for artificial intelligence
education. IEEE Access, 9, 110558–110572. https://​doi.​org/​10.​1109/​access.​2021.​30979​62

Touretzky, D. S., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What
should every child know about AI? Proceedings of the AAAI Conference on Artificial Intelligence, 33(01),
9795–9799. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33019​795

Tsamados, A., Aggarwal, N., Cowls, J., Morley, J., Roberts, H., Taddeo, M., & Floridi, L. (2021). The eth-
ics of algorithms: Key problems and solutions. AI & Society, 37(1), 215–230. https://​doi.​org/​10.​1007/​
s00146-​021-​01154-8

Valiant, L. (2013). Probably approximately correct: Nature’s algorithms for learning and prospering in a com-
plex world. Basic Books.

Van Zuylen, H. (2012). Difference between artificial intelligence and traditional methods. Artificial Intelligence
Applications to Critical Transportation Issues, E-C168, 3–5.

Ventayen, R. J. M. (2023). OpenAI ChatGPT generated results: Similarity index of artificial intelligence-based
contents. Social Science Research Network. https://​doi.​org/​10.​2139/​ssrn.​43326​64

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1–37.
https://​doi.​org/​10.​2478/​jagi-​2019-​0002

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://​doi.​org/​10.​
1145/​11181​78.​11182​15

Wing, J. M. (2011). Research notebook: Computational thinking—what and why. In The Link Magazine. Carn-
egie Mellon University -- School of Computer Science. Retrieved February 6, 2024, from https://​www.​cs.​
cmu.​edu/​link/​resea​rch-​noteb​ook-​compu​tatio​nal-​think​ing-​what-​and-​why

Zednik, C. (2021). Solving the black box problem: A normative framework for explainable artificial intel-
ligence. Philosophy & Technology, 34(2), 265–288. https://​doi.​org/​10.​1007/​s13347-​019-​00382-7

Zednik, C., & Boelsen, H. (2021). Preface: Overcoming opacity in machine learning. In C. Zednik & H.
Boelsen (Eds.), AISB 2021 Symposium Proceedings: Overcoming Opacity in Machine Learning.
Retrieved February 6, 2024, from http://​www.​expla​natio​ns.​ai/​sympo​sium/​AISB21_​Opaci​ty_​Proce​
edings.​pdf

http://blogs.hbr.org/cs/2013/03/you_cant_just_hack_your_way_to.html
https://www.learntechlib.org/p/104264/
https://www.learntechlib.org/p/104264/
https://doi.org/10.6092/unibo/amsdottorato/9482
https://doi.org/10.1145/321250.321253
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/s10994-013-5425-9
https://doi.org/10.1007/s12124-018-9447-5
https://doi.org/10.1007/s10639-022-11416-7
https://doi.org/10.1145/3277567
https://doi.org/10.1109/access.2021.3097962
https://doi.org/10.1609/aaai.v33i01.33019795
https://doi.org/10.1007/s00146-021-01154-8
https://doi.org/10.1007/s00146-021-01154-8
https://doi.org/10.2139/ssrn.4332664
https://doi.org/10.2478/jagi-2019-0002
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://doi.org/10.1007/s13347-019-00382-7
http://www.explanations.ai/symposium/AISB21_Opacity_Proceedings.pdf
http://www.explanations.ai/symposium/AISB21_Opacity_Proceedings.pdf

	 E. Barelli et al.

1 3

Zeng, D. (2013). From computational thinking to AI thinking [A letter from the editor]. IEEE Intelligent
Systems, 28(6), 2–4. https://​doi.​org/​10.​1109/​mis.​2013.​141

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/mis.2013.141

	Epistemic Insights as Design Principles for a Teaching-Learning Module on Artificial Intelligence
	Abstract
	1 Introduction
	2 Literature Review: State of the Art of Education to AI
	3 Literature Review: Epistemological Issues Related to AI
	4 Design Principles of the Module
	4.1 Design Principle #1: To Show the Connections Between AI and Society
	4.2 Design Principle #2: To Introduce a Variety of Approaches to AI and Programming Paradigms
	4.3 Design Principle #3: To Stimulate Reflections on Learning and Creativity Based on the Ways Machines Learn
	4.4 Design Principle #4: To Keep the Technicality Level as Little as Possible
	4.5 Design Principle #5: To Exploit Epistemic Insights as a Way to Compare Different Approaches to AI
	4.6 Design Principle #6: To Connect Epistemic Insights to Operational Vocabulary

	5 Overview of the Module
	6 The Tic-Tac-Toe: Analysis in Imperative Procedural, Declarative Logic and ML Neural Network Paradigms
	6.1 Imperative Procedural Paradigm
	6.1.1 Programs as Implementations of Step-by-Step Algorithms
	6.1.2 A “Brute Force” Algorithm to Perfectly Play Tic-Tac-Toe
	6.1.3 Epistemic Insights of the Tic-Tac-Toe Within the Procedural Paradigm

	6.2 Declarative Logic Paradigm
	6.2.1 Computation as a Logical Deduction
	6.2.2 Tic-Tac-Toe in Prolog
	6.2.3 Epistemic Insights of the Tic-Tac-Toe Within the Declarative Logic Paradigm

	6.3 Neural Network Paradigm
	6.3.1 Neural Networks 101
	6.3.2 Neural Networks for Tic-Tac-Toe
	6.3.3 Epistemic Insights of the Tic-Tac-Toe Within the Neural Network Paradigm

	7 Discussion and Conclusions
	Appendix 1
	Annex 1. Code to program a machine playing Tic-Tac-Toe in Python
	Annex 2. Code to program a machine playing Tic-Tac-Toe in Prolog

	Acknowledgements
	References

