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Abstract

We consider a class of optimization problems having the following com-
mon feature: user demands appear as a term, whose values depend on the
discrete choice made by each individual in a certain population. This type
of problems arise frequently, for instance in revenue management applica-
tions of transportation systems. In the literature, discrete choice models
and mathematical programming are known to be effective, respectively in
describing users behaviour, and formulating optimization problems. Their
integration, to account for user choices which depend on optimization de-
cisions, is however an issue.

We introduce an algorithmic methodology to perform such an inte-
gration. Its main idea is to perform local approximations of the choice
probabilities in terms of simplified functions, to formulate them as terms
of a mixed integer program representing the optimization problem, and
to exploit the solutions obtained by the optimization process to refine the
local approximation.

We evaluate its applicability and effectiveness through experiments
on a revenue maximization problem from the literature, and a few of its
variants, exploiting two real world discrete choice models.

Our experiments show our approach to outperform recent ones from
the literature by orders of magnitude in terms of computing time, improv-
ing solutions accuracy as well.

1 Introduction

Correctly estimating demand values is often an issue in optimization models for
decision support. Common practices rely on forecasting, perform parametric

∗Corresponding Author: ddissegna@gmail.com
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analyses or recur to probabilistic settings. Most of the time, these methods
makes too simplistic and sometimes unrealistic assumptions. Therefore, we need
to move to more appropriate representations that consider the individuals as the
ultimate decision makers, whose heterogeneous behavior has a direct impact on
the system and on the decisions to be taken. In this paper we therefore consider
the following broad class of optimization problems: a system is given, in which
a set of services is proposed to users. There is a single decision maker, willing to
take decisions on some system parameters, maximizing an objective function.
Users are individuals: according to the system parameter settings, the preference
of each of them changes, ultimately affecting the demand of each service.

Several practical problems fall into this setting. For instance, the class of
Revenue Management problems [Ryz05], the class of Facility Location problems
[LNS19], the road tolling [LMS98] and railway timetabling problems [CR11].

The main issue is often the following: demand depends on users, who ex-
press their preferences individually, based on the perceived relative utility of
various alternatives. This is the fundamental principle of Discrete Choice Mod-
els (DCM): based on the random utility principle they provide a disaggregated
demand representation and are able to capture in high detail the heterogeneity
of individual preferences [Tra09].

The descriptive modeling advantage provided by DCMs, however, cannot
unfold without a proper way of embedding them in a prescriptive model. Such
an integration, however, is far from simple. The reasons are clear when con-
sidering mathematical programming as a reference framework for optimization.
Intuitively, the optimization problem can be modeled as a Mixed Integer Pro-
gram (MIP), containing some terms representing demand values which affect
the optimization process. In turn, the demand values are determined by a
DCM, having among its attributes some of the decision variables of the MIP. A
straightforward embedding of the DCM in the MIP yields non-linear, in general
non-convex, MIPs which therefore become quickly intractable.

In order to come up with tractable and more efficient solutions, different
embeddings, making different assumptions on the given problem, have been
developed. Nevertheless, as stressed in [Pan+21], these assumptions are usually
custom and problem dependent.

An effective solution for the integration of generic DCMs in generic MIPs
has been recently proposed in [Pan+21]. The authors in fact consider the set
of variables of the decision problem, and split them in hexogenous ones (those
actually encoding decisions that are part of both the MIP and the DCM) and
endogenous ones (those which are involved in one of the two models, but not
both). Then, they generate scenarii from the utility functions of the DCM, by
means of simulation runs, to approximate the demand with the Sample Aver-
age Approximation Method [KSH02] in terms of the utility functions. Then,
they embed this representation in the MIP formulation. This framework proves
effective in a Revenue Maximization (RM) case study taken from [Ibe+14]. It
is related to the choice of price for two out of three parking alternatives in a
city. The operator aims to find the optimal prices of the parking options in
order to maximize its revenue. The population of interest is composed of a set
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of N individuals, whose behavior is describ ed by a DCM. The overall revenue
is defined as the sum of products of the price of each parking option by the
number of users who choose it.

The approach of [Pan+21] has however one fundamental drawback: the size
of the MIP grows in the number of scenarii, which in turn grows in the number
of individuals of the DCM. This yields quickly very large MIPs.

In this paper we propose a more effective integration and algorithmic frame-
work for achieving the results of [Pan+21], concerning the integration of MIPs
and DCMs.

Our contributions are the following. First, we introduce a new integration
methodology for DCMs in MIPs, whose complexity does not depend on the
number of individuals composing the DCM, thereby overcoming the weaknesses
of [Pan+21]. It therefore improves the state of the art in terms of accuracy
and computing effort. Second, we analyze its effectiveness in the Revenue Max-
imization case, providing an experimental analysis using two DCMs from the
literature obtained by fitting real data.

2 Models and algorithms

In the following we introduce notation and background. Then we introduce our
framework, and we compare it to the literature from a structural point of view.

2.1 Discrete Choice Model Notation

Let a DCM be given. In details, let us define a set of individuals N , indexed
by n, and a set of alternatives J (choice set), indexed by j. Let us define also a
set A of attributes of the DCM, explaining the choice of the individuals. Each
attribute may be individual specific, alternative specific, or depend on both.
For instance, in the application of [Ibe+14], an individual specific attribute is
whether the individual is a resident or not and an alternative specific attribute
is the parking fee. We split the set of attributes in two parts: D, including those
which do not depend on the choices made by the system decision maker, e.g.
individual’s residence, and E, including those determined according to different
choices of the decision maker, e.g. the parking fee. Let xd be a vector, containing
the specific values for the attributes in D (i.e they are obtained directly from the
available dataset), and xe be a vector of decision variables of the optimization
process for the attributes in E. The specification of D and E is fully general.
Nevertheless, we remark that, in practical settings, one expects the decision
maker to act on either alternative specific or individual and alternative specific
attributes, and not on individual specific attributes (i.e it can decide the price
of the parking lot but not the residence of an individual).

In a DCM the preference of individuals is represented by a utility function,
which for each individual n ∈ N associates a utility value to each alternative
j ∈ J :

3
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Unj(x
e
nj ; ϵnj) = Vnj(x

e
nj) + ϵnj . (1)

In (1), Vnj : R|E| −→ R is the so called representative utility, that includes
everything that can be modelled by the researcher, and ϵnj is a random term,
that captures everything that has not been included explicitly in the DCM and
is independent of the attributes values xe

nj and xd
nj associated with individual n

and alternative j. Since the random term ϵnj is modelled as a random variable,
Unj(x

e
nj ; ϵnj) is also a random variable.

The representative utility Vnj takes the following form:

Vnj(x
e
nj) = hnj(x

e
nj ;βnj) + gnj(x

d
nj) (2)

The term gnj(x
d
nj) captures the contribution to utility which depends only on

the attributes in D and therefore can be preprocessed, becoming simple data.
The term h(xe

nj ;βnj), instead, is a function which depends on the attributes
encoding decision variables in E, and on some parameters βnj of the DCM,
which are data. The parameters βnj come from DCM modeling, that is from
either domain knowledge, or by fitting historical data; the values xe

nj are instead
assumed to be output of an optimization process.

The behavioral assumption is that individual n chooses alternative j if the
corresponding utility is the largest within the choice set J [Man77]. We assume
that each individual chooses precisely one alternative. The choice probability of
individual n for alternative j is

Pnj(x
e) = Pr[Unj(x

e
nj ; ϵnj) ≥ Unk(x

e
nk; ϵnk)∀k ∈ J ] (3)

Different DCMs are obtained by assuming different distributions on the ran-
dom term ϵnj . For instance, the logit model is obtained by assuming that ϵnj are
independent and identically distributed (i.i.d.) across both n and j, following a
standard Gumbel distribution.

It can be shown [Tra09] that the choice probability (3) of the logit model
can be written as

Pnj(x
e) =

eVnj(x
e
nj)∑

k∈J eVnk(xe
nk)

(4)

The logit model exhibits the independence from irrelevant alternatives prop-
erty, which implies proportional substitution across alternatives. This property
implies that for two alternatives, the ratio of the choice probabilities is the same
no matter what other alternatives are available or what the attributes of the
other alternatives are. Since this may be unrealistic in real contexts, several
methods have been proposed to relax this property. The mixed logit model
is often a convenient choice, as it is highly flexible in the sense that it can
approximate any random utility model [MT00].

In the mixed logit model, instead, the function hnj(x
e
nj) of (2) is assumed

to be linear on xe
nj , that is

Vnj(x
e
nj ;βn) = βn · xe

nj + gnj (5)
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where each βn is a vector of |E| elements, each assumed to be randomly
distributed across the population. The vector of coefficients βn is therefore
a random vector with probability density function f(β|θ), where the vector θ
contains the parameters of the distribution βn. The choice probability is the
integral of the standard logit formula (4) over the density f(β|θ)

Pnj(x
e) =

∫
eVnj(x

e
nj ;βn)∑

k∈J eVnk(xe;βn)
f(β|θ)dβ (6)

In most of the cases, the expression associated with the choice probability
(6) has no closed form. So in order to estimate the model it is common to
approximate the choice probability exploiting a Monte Carlo method. This is
done by generating R scenarios, that are a set of values βn1 . . . βnR drawn from
the distribution of β.

The choice probability (6) can be approximated as

Pnj(x
e) ≈ 1

R

R∑
r=1

eVnj(x
e
nj ;βnr)∑

k∈J eVnk(xe
nk;βnr)

(7)

the higher the value of R, the better the approximation.
An expected demand Dj for alternative j is then given by

Dj =
∑
n∈N

Pnj(x
e) (8)

Notice that, for both the logit and the mixed logit model, since the expres-
sions of the choice probability (4) and (7) are non-linear in the variables xe, so
is the expression associated with the expected demand (8).

2.2 Optimization Model Notation

Let us now consider the optimization point of view. In particular, we define the
following family of optimization models:

OM) maximize f(xe;xo;Dj) (9)

s.t. Dj =
∑
n∈N

Pnj(x
e) ∀j ∈ J (10)

(xe;xo;Dj) ∈ X (11)

where xo is a set of additional generic decision variables (not included in
the DCM). For instance, considering the DCM in [Ibe+14], we can formulate
the following Uncapacitated Revenue Maximization problem (from now URM).
xe = y is a vector of continuous variables of dimension |J |, each representing the
price of a parking option j, Dj is the number of individuals choosing parking
option j and the objective is to maximize the sum of revenues yj ·Dj for each
alternative, that is

5
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URM) maximize
∑
j∈J

yj ·Dj (12)

s.t. Dj =
∑
n∈N

Pnj(y) ∀j ∈ J (13)

lj ≤ yj ≤ mj ∀j ∈ J (14)

where constraints (14) impose upper and lower bounds to prices, although
the coefficients in the vectors l and m can be arbitrary.

2.3 A Local Iterative Linear Approximation algorithm

For illustrative purposes, we consider the case of the mixed logit model, which
we recall is known to be able to approximate any DCM.

Recall that, for the mixed logit model, the expected demand of an alternative
is given by (7) and (8). Since (7) is non-convex in the decision variables xe, its
direct insertion into a MIP quickly yields intractable problems.

We in fact propose a further step, in the form of a Local Iterative Local
Approximation framework (LILA). The idea behind LILA is the following. We
replace the expression of Pnj(x

e) using simpler functions. In particular, we
propose to restrict to first order Taylor approximations.

We remark that this is in contrast to the approach of [Pan+21], in which the
expected demand is approximated as a MIP by computing and averaging values
in expression (3) by means of simulation runs. A full discussion on structural
advantages and applicability limitations of our method is reported in Section
2.4. It can however be readily noticed that it allows for the integration of any
type of DCM for which there exist a differentiable either closed form or an
analytical approximation of the choice probabilities.

Given a point z ∈ R|E|, the choice probability can be approximated as

Pnj(x
e) ≈ Pnj(z) +∇Pnj(z) · ((xe)− z) (15)

where∇Pnj(z) is the gradient of Pnj(x
e) evaluated in z. Now, we can rewrite

the expression of the expected demand (8) as

Dj =

N∑
n

(Pnj(z) +∇Pnj(z) · (xe − z))

=

N∑
n

Pnj(z) +

N∑
n

∇Pnj(z) · xe −
N∑
n

∇Pnj(z) · z

(16)

That is, such an approximation of the expected demand Dj is linear. We
have

Dj = αj(z) · xe + qj(z)

6
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where, when z is fixed,

qj(z) =

N∑
n

Pnj(z)−
N∑
n

∇Pnj(z) · z

is a costant and

αj(z) =

N∑
n

∇Pnj(z)

is a costant vector of dimension |E|.

Integration. The integration of the DCM into the optimization formulation
is then obtained by simple linear constraints. In our general optimization model,
it yields the following MIP:

TOM(z) maximize f(xe;xo;Dj) (17)

s.t. Dj = αj(z) · xe + qj(z) ∀j ∈ J (18)

(xe;xo;Dj) ∈ X. (19)

For instance, in the case of URM, since xe = y, simplifies as follows:

TURM(z) maximize
∑
j∈J

yj ·Dj (20)

s.t. Dj = αj(z) · y + qj(z) ∀j ∈ J (21)

Dj ≥ 0 ∀j ∈ J (22)

lj ≤ yj ≤ mj ∀j ∈ J (23)

and further simplifies by using (21) to project out variablesDj . The resulting
TRM(z) formulation is therefore a (continuous) quadratic optimization problem
(QP) on the decision variables yj .

Resolution algorithm. The pseudocode of our LILA algorithm is provided
in Alg.1 It works as follows

1. we start by a tentative zinit value as a starting point to get an initial
approximation (together with possibly lower and upper bounds of xe and
an accuracy threshold thr)

2. we solve the optimization model with terms αj(c) and qj(c) evaluated
on zinit, thus obtaining optimal values xm xo and Dm for the decision
variables xe xo and for the demand D;

3. we calculate the demand Dr by performing a computation of the DCM
via (7), using the values of the solution xm obtained at step 2. That
is, while Dm is a local estimate of demands, Dr is a refined evaluation
provided by the DCM usage. Then, we calculate the objective function
value corresponding to xm and this refined demand Dr;

7
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Algorithm 1 LILA resolution algorithm

Require: zinit, thr
Dr, Dm, z = 0, +∞, zinit

while dist(Dr, Dm) ≥ thr do
xm, xo, Dm = solve TOM(z)
Dr = compute DCM(xm)
val = f(xm, xo, Dr)
z = xm

end while
return val

4. we calculate a difference (e.g. the Euclidean distance) between the demand
values Dr, produced by the DCM computation, and Dm, obtained by the
optimization model; if it is less than thr, then convergence is reached and
we STOP, otherwise we fix z = xm and go to step 2

Therefore, the algorithm stops when the demand estimate is robust, in the
sense that it is coherent with respect to both the DCM model and the opti-
mization one. This means in turn that the optimization model has found a
solution that does not differ much from the one found at the previous iteration,
as the approximation point c of the current iteration corresponds to the solution
found at the previous iteration. This allows the algorithm to converge to a lo-
cal optimum. We must note that, during computation, the algorithm may find
solutions xm, xo that are not feasible w.r.t. Dr. This is due to the fact that
the model optimize w.r.t an approximation of the demand and, as such, Dm

may be feasible but not its refined estimate Dr. Nevertheless, the last solution
found will be feasible since Dm will be robust w.r.t to Dr.

Improving the precision of the approximation. Since the framework is
a based on a local approximation, the model approximates the demand less
precisely as we move away from the point c.

This problem can be mitigated by tightening the lower and upper bound of
the demand so to restrict the feasible region without loosing too much precision
in the approximation. In this way, it is possible to regulate the search between
exploration and intensification: by increasing the exploration we admit solutions
with a potentially poor approximation of the demand; by intensifying, we focus
the search on solutions with a good approximation of the demand.

This can be easily integrated into the model by inserting parametric con-
straints on the demand, which allow to adjust how much it can vary w.r.t. the
value associated with the point of the approximation z (which is the solution
obtained in the previous iteration). For instance, we can add the following
parametric constraints on µ

(1− µ)Dz
j ≤ Dj ≤ (1 + µ)Dz

j ∀j (24)

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4194374

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Where µ ∈ [0, 1] and Dz
j is the value of the demand (Dr) associated to the

approximation point z.
For instance, the following policy can be adopted to ensure initial exploration

and gradual intensification: initialize the value of µ to 1 and halve its value every
t iterations (i.e. t = 10).

2.4 Structural comparison to the literature

Our framework gives a new method to solve the problem resulting from the
integration of a disaggregate demand representation given by a DCM into an
optimization problem. It differs in particular from [Pan+21], in which MIP
expressions representing the demand are generated, inserted into the OM and
solved only once. Our approach resembles more a local search algorithm in
which we iteratively generate a local approximation of the demand in the form
of a linear function, insert into the OM and solve until convergence.

Both [Pan+21] and our method rely on the formulation of the optimization
problem as a MIP. However, the approach of [Pan+21] make the size of the
MIP to grow with the number of individuals of the DCM and the number of
scenarios generated. In our formulation, instead, its size does not depend on the
number of individuals and does not rely on scenario generation. Being linear
expressions, our demand approximations can be efficiently integrated into the
MIP. This allows us to potentially integrate large scale DCMs with no change
in the computational effort.

On the other hand, our approach can be applied under the condition that
the choice probabilities are differentiable functions in the decision variables xe.
Some model rewriting is of course possible. For instance, the decision variables
xe must be continuous, but xo integer decision variables may appear in the
optimization model, affecting xe values indirectly (as long as they do not appear
directly as terms of the DCM). Furthermore, while [Pan+21] requires a single
MIP to be solved, our approach requires a sequence of MIP to be iteratively
solved.

In Section 3 we indeed show such a drawback to be marginal.

3 Experimental evaluation

The objective of this section is twofold. First, we deal with the integration
of two different real world DCMs within the Uncapacited Revenue Maximiza-
tion Problem (Section 2.2) using both our LILA approach and the approach of
[Pan+21] (PBGA in the reminder) and conduct an analysis of the performance
of each framework in terms of solutions quality and computing times. Second,
we deal with the integration of a DCM in different kinds of RMs (Capacitated
Case, Population Segmentation, Capacity Allocation) and proving the flexibility
of our approach.
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3.1 Discrete Choice Models

For evaluating the integration in the context of URM, we rely on two DCMs,
discussed hereafter.

Parking model The first DCM (from now on Parking model) is developed
and tested in [Ibe+14]. We had direct access to the original data, which were
kindly provided us by the authors of [Ibe+14].

The model is motivated by the economic viability of an underground parking
in the city of Santoña (Spain), which aims to represent the user parking choice
(demand) in a disaggregated way. A park and ride situation is assumed where
users leave their vehicles in parking lots for the whole day and then travel to
their final destination by public transport.

The choice set is defined by three services: free on-street parking (FSP), paid
on-street parking (PSP) and paid parking in an underground car park (PUP).

The attributes of individuals are:

• OriginFSP ∈ {0, 1}, 1 if the origin of the trip is within the city, 0 otherwise

• LowInc ∈ {0, 1}, 1 if the user’s salary is less than 1200 euros/month, 0
otherwise

• Resident ∈ {0, 1}, 1 if the individual is a resident of the city, 0 otherwise

• AgeV eh ≤ 3 ∈ {0, 1}, 1 if the vehicle’s age is less than or equal to 3, 0
otherwise

The attributes of the alternatives are:

• AT , access time to the parking space after arriving in the parking lot

• TD, access time from the parking lot to the final destination

• FEE, parking fee

The DCM is defined as a mixed logit model. The coefficients of the attributes
AT and FEE are modelled as correlated normal variables. The FEE attribute
of the alternatives PSP and PUP is treated as decision variable and therefore
corresponds to the price decision variable yj when the DCM is integrated into
URM. The alternative FSP has no FEE and therefore its price decision variable
is set to 0 (it is the opt-out alternative). For a complete specification of the
parameters, see table 6 of Appendix A. The original dataset yielding the model
is composed by N = 197 individuals.

ModeCanada model The second DCM has been obtained by a dataset taken
from the R package mlogit [Cro]. It provides a sample of 3880 travellers for the
Montreal-Toronto corridor. The corresponding DCM was developed by us and
is defined as follows.

The choice set is defined by three transportation modes: train (TRAIN),
airplane (AIR) and the individual’s car (CAR).

The only attribute of the individual is:

10
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• INC, income of the individual

The attributes that vary over both individuals and alternatives are:

• IV T , in-vehicle time

• OV T , out-vehicle time

• COST , monetary cost

• FREQ, frequency

The DCM is defined as a mixed logit model. The coefficient of the attribute
IV T is modelled as a normal variable and thus varies over individuals. For a
complete specification of the parameters, see table 7 of Appendix A.

The integration within the RM is performed by treating the price decision
variables yj as a surplus on the COST attribute of the alternative j. This
corresponds to an equal increase or decrease in the cost of the transportation
mode j for all individuals. The value of the objective function then becomes
the surplus revenue that we can make by performing an increase or decrease in
the cost of the services for all individuals. The opt-out alternative is CAR and
has surplus yCAR = 0. The dataset of the model is composed by N = 2779
individuals.

3.2 Experimental Evaluation

We performed the integration of the two DCMs in URM with both LILA and
PBGA.

The integration of a general DCM in URM with LILA has already been illus-
trated in Section 2.3. For the integration with PBGA, it is needed to specify two
parameters: the number R of scenarios which are generated and incorporated
into the optimization model and the cardinality S of the sample of individuals
from the population N used in this scenario generation. For the resulting MIP
formulation, we refer to the original paper [Pan+21].

All experiments have been performed by code implementations in Python
3.8 using the DOcplex Python Modeling API library to embed the IBM CPLEX
solver version 20.1. Tests were run on a machine with an AMD Ryzen 1950x
3.4GHz 16 core CPU and 32GB RAM.

Key Performance Indicators. Summarizing, a solution of the URM with
a DCM representation of the demand is composed by the following attributes:

• price yj of each alternative j ∈ J , found by the optimization model

• approximated demand Dm
j estimated by the optimization model, corre-

sponding to prices yj

• approximated revenue gm estimated by the optimization model, which is
obtained as gm =

∑
j∈J yj ·Dm

j

11
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To evaluate the robustness of a solution obtained from a given framework,
we evaluated the corresponding DCM via simulation with R = 104 scenarios by
using the entire population N and the prices of the alternatives set to p. In
this way we calculate a refined demand estimate Dr using the DCM, and the
corresponding DCM revenue gr =

∑
j∈J yj ·Dm

j of the solution.
Given these, we defined 4 Key Performance Indicator :

• revenue: DCM revenue gr; measures the quality of the solution and there-
fore the effectiveness of the framework according to DCM simulation

• ∆ revenue: relative difference between the approximated revenue gm

found by the optimization model and the refined DCM revenue gr; mea-
sures the robustness of the solution in terms of quality

• ∆ demand : sum of the squared differences between the approximated
demand Dm and the refined DCM demand Dr, normalized w.r.t. the
norm of the DCM demand Dr

||Dr −Dm||2/||Dr||2

it measures the robustness of the solution in terms of convergence

• CPU : CPU time needed to obtain to complete the iterative process and
obtain the final solution prices

Performing the integration of a DCM in URM gives rise to an instance. We
refer as Parking instance the instance generated from the integration of the
Parking model into RM and as ModeCanada instance the one generated from
the integration of ModeCanada model. For both instances, we set a lower and an
upper bound on the prices in an experimental way so that the optimal solution
do not turn out to be at the lower or upper limits, thus being able to falsify the
analysis of the performance of the frameworks. The bounds on the prices are
the following: yPSP ∈ [0.5, 0.9] and yPUP ∈ [0.7, 1] for the Parking instance;
yTRAIN ∈ [0, 100] and yAIR ∈ [0, 100] for the ModeCanada instance.

DCM and URM integration results. For the integration with LILA, since
the resulting formulation does not depend on the number of individuals, during
the integration of both DCMs we considered the entire population (197 individ-
uals for the Parking instance, 2779 individuals for the ModeCanada instance).
The initial approximation of the choice probabilities was set to the lower and
upper bound of the prices for both instances, and also to a solution in the mid-
dle for the ModeCanada instance. The threshold of the termination criteria has
been set to 0.0005. For the Parking instance, the average CPU (per iteration)
was 0.050s, while for the ModeCanada instance was 0.291s. As we expected,
the CPU does not depend on the number of considered individuals.

For the integration with PBGA we have experimented on many parameter
settings. In the following we present the most representative ones. Full results
are reported in Appendix B).
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In charts 1, we report the values of the prices found by LILA iteration by
iteration. For both instances, LILA converges to the same local optimum, no
matter the initial approximation. This let us conjecture that it may also be the
global one. A more refined analysis on the shape of the objective function is
provided in Appendix D.1.

In charts 2 we report respectively the value of the revenue and ∆ revenue
KPIs iteration by iteration when solving the ModeCanada instance with LILA,
with initialization at lower, middle and upper bound of the prices (the behavior
on the Parking instance was the same).

Tables 1 and 2 collect results on the Parking instance and ModeCanada
instance, respectively. In the upper table we report the KPIs (as indicated in the
leading row) of the best solutions found by LILA with different initializations
(as indicated in the leading column). In the lower table we report the same
KPIs for the execution of PBGA, for different settings of the scenario generation
parameters S and R (as indicated in the leading column). The results for PBGA
have been obtained as average ones over 15 runs for each setting of S and R
(except for the S = 2000 R = 25 case in the ModeCanada instance, for which 3
runs where performed).

Our analysis of the results yields the following observations.

• In LILA, both solutions quality and robustness improve monotonically
iteration by iteration.

• From Figure 2, we can observe how LILA finds better solutions in terms
of revenue as the number of iterations increases, up to convergence.

• From Figures 1 and 2, we can see that the higher the difference between
solutions in two subsequent iterations, the lower the robustness of the
solution (high ∆ revenue); this is consistent with our expectations, being
the previous solution the center of the approximation. ∆ revenue becomes
0 as the algorithm converges.

• LILA clearly outperforms PBGA in both DCMs, being always able to find
better solutions in less CPU time. In details, from the tables 1 and 2, we
can see that, for both instances, LILA was able to find a better solution
in term of revenue w.r.t. all solutions obtained with PBGA; furthermore,
the time to find such a solution is very low (1.187s on average) compared
to PBGA (17658.984 and 352137.393 for the best solutions).
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Figure 1: Behavior of the value of the prices found by LILA for the Parking
instance (left side) and ModeCanada instance (right side) with the different
initializations

LILA
init. approx. revenue ∆ revenue ∆ demand CPU (sec)

(0, 0) 33496.958 0.002% 0.000% 0.453 (4 iter.)
(50, 50) 33496.986 0.001% 0.000% 1.500 (6 iter.)

(100, 100) 33497.144 0.000% 0.000% 3.281 (8 iter.)

PBGA
S R avg. revenue avg. ∆ revenue avg. ∆ demand CPU (sec)
250 2 33018.658 10.440% 0.288% 7.962
500 2 33079.797 7.706% 0.129% 17.706
1000 2 33269.098 4.000% 0.043% 78.231
50 5 32707.356 18.796% 0.781% 4.337
250 5 33100.090 6.856% 0.100% 33.173
50 10 33163.248 17.212% 0.599% 7.138
250 10 33375.047 3.835% 0.057% 115.550
50 25 33148.652 12.227% 0.378% 38.072
2000 25 33488.722 0.637% 0.002% 352137.393

Table 2: KPI of the best solution found for the ModeCanada instance with
LILA and some solutions found with PBGA

4 Case study

Finally, we assess the flexibility of our framework in embedding further modeling
features. Inspired by the experiments of [Pan+21], we perform the integration
of the ParkingModel DCM in more realistic kinds of RM optimization prob-
lems. We consider three different cases: Capacitated RM (CRM), in which
a fixed capacity is assumed for each parking option; Population Segmentation
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Figure 2: Behavior of the revenue (left side) and ∆ revenue (right side) when
solving the ModeCanada instance with initialization at lower, middle and upper
bound of the prices

RM (PSRM), in which a different price is offered to different market segments
(i.e. Resident and Non-Resident people); Capacity Allocation RM (CARM),
where capacities and availability of services are considered as decision variables
(with both variable and fixed costs in the objective function of the optimization
problem).

In these experiments no change is made to the framework: only the MIP
concerning the optimization problem changes.

CRM In Capacitated RM models, services have already been allocated. That
is, PSP and PUP have fixed capacity. The objective is still to maximize the
revenue. We model the capacity restrictions by adding one constraint in the OM
for each alternative, limiting its demand. The optimization model is therefore
the following.

TCRM(z) maximize
∑
j∈J

yj ·Dj (25)

s.t. Dj = αj(z) · p+ qj(z) ∀j ∈ J (26)

0 ≤ Dj ≤ cj ∀j ∈ J (27)

lj ≤ yj ≤ mj ∀j ∈ J (28)

We have tested two levels of capacity: c = (197, 60, 90) and c = (197, 100, 60).
The bounds on the prices were set to yPSP ∈ [0.5, 0.9] and yPUP ∈ [0.7, 1]. Two
initializations of the choice probability were performed: z ∈ {(0.5, 0.7), (0.9, 1)}.
The threshold of the termination criteria were set to thr = 0.00005. Since the
same solution was found with both inizializations, we report only the solution
and average the CPU time of the two runs. The solutions found are reported is
Table 3. The results of the uncapacitated case are also reported for comparison.

In the case c = (60, 90), the capacity of PSP makes it infeasible the demand
of an optimal uncapacitated solution. The PSP price can be increased so that a
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LILA
init. approx. revenue ∆ revenue ∆ demand CPU (sec)
(0.5, 0.7) 114.233 0.000% 0.000% 0.328 (5 iter.)
(0.9, 1) 114.233 0.000% 0.000% 0.375 (9 iter.)

PBGA
S R avg. revenue avg. ∆ revenue avg. ∆ demand CPU (sec)
50 2 111.361 7.182% 1.856% 4.883
100 2 113.143 4.673% 0.868% 15.193
197 2 113.515 3.786% 0.768% 53.594
50 5 113.050 5.440% 1.232% 21.567
100 5 113.383 3.437% 0.748% 62.798
197 25 114.173 0.706% 0.035% 17658.984

Table 1: KPI of the best solution found for the Parking instance with LILA and
some solutions found with PBGA

higher revenue from the individuals accessing the service is obtained. The price
of PUP is lower, and its demand is in fact higher than in the uncapacitated
case. However, the total demand of PSP and PUP is lower. That means that
not all individuals leaving PSP are willing to opt for PUP , even if its price
is decreased from 0.85 to 0.83. Simmetrically, in the case c = (100, 60), the
capacity of PUP makes it infeasible the demand of an optimal uncapacitated
solution. However, in this case, almost all individuals leaving PUP opt for PSP .
Concerning prices, that of PUP can be increased still reaching the demand limit;
that of PSP needs to be kept to 0.66, otherwise the demand decrease would
not balance the additional revenue.

The efficiency of our framework allowed also for a more refined plot of the
objective function, which is reported in Appendix D.2. That shows that LILA
is indeed robust to price initialization also in this case.

Capacities Prices Demand Revenue CPU (sec)
PSP PUP PSP PUP FSP PSP PUP
197 197 0.66 0.85 44.9 78.3 73.8 114.233 0.375
60 90 0.67 0.83 48.3 60.0 88.7 113.860 0.078
100 60 0.66 0.89 45.0 92.0 60.0 114.016 0.109

Table 3: Results of the best solution found by solving CRM with LILA. The
first row reports the solution of the uncapacitated case.

PSRM The Population Segmentation RM models the real situation in which
the population is divided in more segments according to some attributes, still
keeping they heterogeneous behavior. In our case, the population was segmented
in Resident (R) and Non-Resident (NR) people. Then, a discounted price was
offered to Residents based on a rate parameter d ∈ {0.9, 0.8, 0.75, 0.7, 0.6, 0.5}
indicating the fraction of the original price that is offered: the higher d, the
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lower the discount. Two situations were considered: the difference between the
actual price is paid by the municipality and contributes to the revenue of the
operator (PSRM1), or the difference is paid by the operator (PSRM2). Situation
(PSRM2) is clearly more realistic, since in (PSRM1) the operator is allowed to
change prices after a discount agreement with municipality. The segmentation
was modeled by evaluating the DCM two times (one on each segment) giving rise
to two demand representation (DR and DNR). Capacities on the alternatives
have also been considered as an optional modeling feature. The corresponding
optimization model is the following:

PSRM1(z) maximize
∑
j∈J

yj ·DR
j + yj ·DNR

j (29)

PSRM2(z) maximize
∑
j∈J

dyj ·DR
j + yj ·DNR

j (30)

s.t. DR
j = αR

j (dz) · dy + qRj (dz) ∀j ∈ J (31)

DNR
j = αNR

j (z) · y + qNR
j (z) ∀j ∈ J (32)

DR
j +DNR

j ≤ cj ∀j ∈ J (33)

DR
j , D

NR
j ≥ 0 ∀j ∈ J (34)

lj ≤ yj ≤ mj ∀j ∈ J (35)

In our experiment the capacities were set to c = (60, 90). The bounds on the
prices were set to yPSP ∈ [0.5, 0.2] and yPUP ∈ [0.5, 2]. The threshold of the
termination criteria were set to thr = 0.00005. Two initializations of the choice
probability were performed: z ∈ {(0.5, 0.5), (2, 2)}. As before, since the same
solution was always found with both initializations, we report only the solution
and average the CPU time of the two runs.

Full results for (PSRM1) are reported in Appendix C. In short, our models
reflect intuition: the higher the discount, the higher the offered prices, and thus
the lower the Non-Residents demand of PSP and PUP , and the higher the
number of Non-Residents deciding to opt-out. Certainly, the Resident demand
experiences the opposite: as the discount increases, the offered price is lower
than the original one, and therefore more individuals choose PSP and PUP .

The results for (PSRM2) are reported in Table 4. The no discount case
d = 1.0 is also reported for reference. These results are even more insightful. As
for (PSRM1) the larger the discount, the higher the demand of PSP and PUP
from residents, the lower that of non residents. Additionally, the discount rate
provides the operator a further option to increase the overall revenue, which
in our experiment is maximum for d = 0.8. That is, our models are able to
capture another phenomenon which is expected in practice: by fixing different
prices for different segments of the population, more demand can be captured,
thus allowing higher revenues to the operator.
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d Prices Demand R Demand NR Revenue CPU(s)
PSP PUP FSP PSP PUP FSP PSP PUP

1.0 0.67 0.83 113.860 0.078
0.9 0.72 0.88 27.3 31.8 45.9 21.3 28.2 42.5 114.935 1.672
0.8 0.77 0.95 23.1 33.8 48.1 26.0 26.2 39.9 115.297 1.156
0.75 0.8 0.98 20.8 35.0 49.2 28.5 25.0 38.4 115.100 0.844
0.7 0.83 1.02 18.6 36.1 50.3 31.4 23.9 36.8 114.593 1.391
0.6 0.9 1.11 13.7 38.6 52.7 37.4 21.4 33.2 112.422 1.016
0.5 0.99 1.24 9.0 41.2 54.8 44.6 18.8 28.5 108.275 1.078

Table 4: Solving (PSRM2) with LILA.

CARM Finally, we consider a challenging Capacity Allocation RM model,
in which (1) the capacities cj are integer decision variables, yielding a variable
operating cost in the objective (in this case, a cost per parking spot) and (2)
offering each parking option or not is also a decision variable, yielding a fixed
cost in the objective (in this case, a cost for opening the whole parking place). A
fixed cost fj represents the cost for enabling parking option j, while the variable
cost vj is the cost per unit of capacity of option j. Availability of a parking
spot (i.e allocating the parking place) is modeled by inserting a binary variable
aj ∈ {0, 1} ∀j ∈ J and the set of constraints Dj ≤ aj |N | ∀j ∈ J imposing the
demand of parking j to be 0 when j is not selected (aj = 0). The optimization
model is therefore the following:

CARM(z) maximize
∑
j∈J

yj ·Dj − vjcj − fjaj (36)

s.t. Dj = αj(z) · y + qj(z) ∀j ∈ J (37)

0 ≤ Dj ≤ cj ∀j ∈ J (38)

Dj ≤ aj |N | ∀j ∈ J (39)

lj ≤ yj ≤ mj ∀j ∈ J (40)

aj ∈ {0, 1} ∀j ∈ J (41)

cj ∈ {0, . . . , |N |} ∀j ∈ J (42)

In our experiment the bounds on the prices were set to yPSP ∈ [0.5, 6] and
yPUP ∈ [0.5, 6]. The fixed and variable cost were set to fPSP = 6, fPUP = 12,
vPSP = 0.35 and vPUP = 0.5. The initializations of the choice probability
were performed for each combination of yPSP ∈ {0.5, 1.5, 2.5} and yPUP ∈
{0.5, 1.5, 2.5}. The threshold of the termination criteria were set to thr =
0.00005. Indeed, when aj = 0 the optimization model finds it profitable to
set also a very high price to alternative j. This yields the demand of alternative
j to approach 0 also during the DCM evaluation. We report that these high
prices led to a positive coefficient for the FEE attribute in some scenarios when
calculating 7, being able to falsify the choice probability for high values of the
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Init. Approx. Capacities Prices Demand Revenue CPU(s)
PSP PUP PSP PUP PSP PUP FSP PSP PUP

0.5 0.5 63 39 0.88 1.31 95.0 63.0 39.0 47.179 2.844
0.5 1.5 65 37 0.88 1.33 95.0 65.0 37.0 47.178 3.094
0.5 2.5 101 - 0.89 6.0 96.0 101.0 0.0 48.241 0.141
1.5 0.5 - 74 6.0 1.26 123.0 0.0 74.0 44.305 0.078
1.5 1.5 - 73 6.0 1.27 124.0 0.0 73.0 44.300 0.219
1.5 2.5 65 37 0.88 1.33 95.0 65.0 37.0 47.178 2.156
2.5 0.5 - 74 6.0 1.26 123.0 0.0 74.0 44.305 0.172
2.5 1.5 - 73 6.0 1.27 124.0 0.0 73.0 44.300 0.156
2.5 2.5 - 74 6.0 1.26 123.0 0.0 74.0 44.305 0.422

Table 5: Solving CARM with LILA.

prices. Therefore, to avoid numerical issues, the std. dev. of βFEE was changed
from 14.2 to 5 in this experiment.

Our results are shown in Table 5. We also report that, differently from
previous experiments, the initialization of prices matters: different initialization
points lead to different local optima. In Appendix D.3 we report more details
on the objective function for the specific CARM case, with the behaviour of
each run.

LILA converged to 3 different solutions in terms of capacity: (63,39) with a
revenue of 47.179 in which both alternatives have been allocated, (101,0) with
revenue 48.241 in which only PSP has been allocated and (0,74) with revenue
44.305 in which only PUP has been allocated. With such fixed and variable
costs, a decision maker can state that it is not convenient to allocate PUP .

5 Conclusions

The LILA framework we have introduced tackles the problem of integrating
DCMs and optimization models with a different perspective than previous at-
tempts from the literature such as [Pan+21]. In fact, our technique allows to
keep the size of optimization models independent from the number of individu-
als in the DCM. It also removes the need of scenario generation and embedding.
This comes at the price of making the method iterative rather than producing
a single MIP to be optimized.

To assess the computational effectiveness of our LILA framework we have
therefore run experiments on a Revenue Maximization (RM) problem, using
data from two real world DCMs. In terms of computing time, in all our tests,
our framework outperforms the state-of-the-art method of [Pan+21] by orders
of magnitude. Since LILA does not rely on random sampling steps, also the
numerical accuracy of the solutions produced is improved.

We have also verified that LILA keeps offering full modeling flexibility: on
the RM, it is enough to change the optimization MIP to embed different model-
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ing features, including those discussed in [Pan+21]. In all these variants neither
the computational effectiveness nor the solutions quality was affected. The
method proved to be also robust in terms of parameter settings.

The additional computational effectiveness of our method, and its indepen-
dence from the size of the DCM data, make it therefore an appealing tool in
decision making. For instance, in our analysis on the RM, higher revenues can
be obtained by choosing different prices for different population segments.

Our experiments indicate that the presence of binary decision variables in
the optimization models, affecting users’ choices either directly or indirectly (as
in the CARM), represent a further challenge. Multistart methods seem to be
beneficial in this case. As future research steps, we plan to better understand
this phenomenon.
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A Details of the DCMs used in the experiments

Tables 6 and 7 report the details of the DCMs used in our experimental evalu-
ation.

Value FSP PSP PUP
CPSP 32 0 1 0
CPUP 34 0 0 1
βAT ∼N(−0.788, 1.06) ATFSP ATPSP ATPUP

βTD -0.612 TDFSP TDPSP TDPUP

βOriginFSP
-5.76 OriginFSP 0 0

βFEE ∼N(−32.3, 14.2) 0 FEEPSP FEEPUP

βFEEPSP (LowInc)
-11 0 FEEPSPLowInc 0

βFEEPSP (Resident)
-11.4 0 FEEPSPResident 0

βFEEPUP (LowInc)
-13.7 0 0 FEEPUPLowInc

βFEEPUP (Resident)
-10.7 0 0 FEEPUPResident

βAgeV eh≤3 4.04 0 0 AgeV eh ≤ 3
cov(βAT , βFEE) -12.8 0 0 0

Table 6: Specification of parameters for the Parking model in [Ibe+14]

Value TRAIN AIR CAR
CTRAIN 2.679 1 0 0
CAIR 1.928 0 1 0
βCOST -0.069 1 1 1
βIV T ∼N(−0.014, 0.0128) 1 1 1
βOV T -0.054 1 1 1
βFREQ 0.160 1 1 1
βINC -0.011 1 1 0

Table 7: Specification of parameters for the ModeCanada model

B Integration with PBGA

The analysis of the performance has been made with respect to the number of
generated scenarios and the size of the sample of individuals. More specifically:
(Parking model) R ∈ {2, 5, 10, 25, 50} and S ∈ {50, 100, 197}; (ModeCanada
model) R ∈ {2, 5, 10, 25} and S ∈ {50, 150, 500, 1000, 2000}. For each subcase,
T = 15 experiments have been performed, which correspond to independent
extractions of the R scenarios and independent extractions of the sample S (for
the subcase R = 25, S = 2000 we performed only 3 experiments; it took about
98hrs cpu time to solve one experiment).

The aggregated results are shown in tables 8 and 9.
Analysis of the results:
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• the robustness of the solution (∆ revenue and ∆ demand) improves both
as the number of generated scenarios increases and the size of the sample
increases (excepting for the outlier S = 500, R = 25;S = 1000, R = 25,
this may be due to the randomness of the sample and the small number
of repetitions T = 15)

• the quality of the solution (revenue) strictly improves both as the number
of scenarios increases and the number of individuals increases (excepting
for the outliers S = 1000, R = 5;S = 1500, R = 5 and S = 250, R =
10;S = 500, R = 10)

• the CPU increases exponentially both as the number of scenarios increases
and the number of individuals increases (from about 389s with R = 2 and
S = 2000 to more than 352137s for R = 25 and S = 2000 and from 38s
with R = 25 and S = 50 to more than 352137s for R = 25 and S = 2000)

S R avg. revenue avg. ∆ revenue avg. ∆ demand CPU (sec)
50 2 111.361 7.182% 1.856% 4.883
100 2 113.143 4.673% 0.868% 15.193
197 2 113.515 3.786% 0.768% 53.594
50 5 113.050 5.440% 1.232% 21.567
100 5 113.383 3.437% 0.748% 62.798
197 5 113.815 1.541% 0.183% 502.459
50 10 113.706 3.086% 0.595% 93.259
100 10 113.829 2.168% 0.371% 519.468
197 10 114.013 1.389% 0.098% 2050.942
50 25 113.844 2.513% 0.415% 867.300
100 25 114.056 1.679% 0.176% 3318.354
197 25 114.173 0.706% 0.035% 17658.984
50 50 113.937 1.513% 0.213% 2887.983
100 50 114.044 1.287% 0.161% 21840.202
197 50 114.143 0.574% 0.031% 135476.953

Table 8: KPI for the integration of the Parking Model with PBGA
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S R avg. revenue avg. ∆ revenue avg. ∆ demand CPU (sec)
50 2 31947.526 20.778% 0.656% 2.243
250 2 33018.658 10.440% 0.288% 7.962
500 2 33079.797 7.706% 0.129% 17.706
1000 2 33269.098 4.000% 0.043% 78.231
1500 2 33334.369 3.572% 0.035% 214.625
2000 2 33342.937 2.832% 0.022% 389.125
50 5 32707.356 18.796% 0.781% 4.337
250 5 33100.090 6.856% 0.100% 33.173
500 5 33111.166 6.606% 0.088% 126.337
1000 5 33393.258 2.676% 0.020% 493.978
1500 5 33339.252 2.019% 0.012% 2547.449
2000 5 33433.638 1.643% 0.008% 10781.924
50 10 33163.248 17.212% 0.599% 7.138
250 10 33375.047 3.835% 0.057% 115.550
500 10 33334.233 3.752% 0.041% 519.328
1000 10 33405.735 2.726% 0.018% 13879.282
1500 10 33434.568 1.434% 0.008% 16836.819
2000 10 33453.838 1.204% 0.005% 29002.600
50 25 33148.652 12.227% 0.378% 38.072
250 25 33392.999 6.478% 0.100% 1076.866
500 25 33412.667 3.081% 0.020% 9243.808
1000 25 33457.851 3.326% 0.025% 53418.374
1500 25 33469.849 1.591% 0.007% 147084.186
2000 25 33488.722 0.637% 0.002% 352137.393

Table 9: KPI for the integration of the ModeCanada model with PBGA

C Case study detailed results

In Table 10 we report the detailed results of experiment (PSRM1).

d Prices Demand R Demand NR Revenue CPU (sec)
PSP PUP FSP PSP PUP FSP PSP PUP

0.9 0.72 0.88 27.1 31.8 46.2 21.1 28.2 42.7 121.28 1.75
0.8 0.77 0.95 23.1 33.8 48.1 26.0 26.2 39.9 129.625 2.234
0.75 0.8 0.99 21.2 35.0 48.8 28.9 25.0 38.1 134.195 1.406
0.7 0.84 1.04 19.4 36.2 49.3 32.2 23.8 36.0 139.086 2.156
0.6 0.94 1.17 16.2 39.1 49.7 40.4 20.9 30.7 150.112 1.375
0.5 1.08 1.37 13.6 42.7 48.7 50.9 17.3 23.8 163.840 1.719

Table 10: Solving (PSRM1) with LILA.
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D Analysis on the objective functions

D.1 URM

In Figure 3 we plot the objective function of the Parking URM (blue grid). The
steps performed by two runs of LILA, using very different price initialization,
are depicted in blue and red: they indeed converge to the same global optimal
solution.

Figure 3: Objective function of the Parking URM with behaviour of LILA
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D.2 CRM

Figure 4 and 5 show an analysis of the objective function for the two levels of
capacity (60,90) and (100,60). Green points represent feasible points, that is,
prices for which the demand is feasible w.r.t the capacity. We can observe that
LILA, during the execution, finds unfeasible solutions but ultimately converges
to the feasible and optimal one in both cases.

Figure 4: Objective function of the Parking CRM with capacities (60,90) and
behaviour of LILA
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Figure 5: Objective function of the Parking CRM with capacities (100,60) and
behaviour of LILA

D.3 CARM

Figure 6 shows the objective function of CARM with different LILA runs. We
can observe that the shape of the objective is more complicated than before and
has more than one local optimum. Nevertheless, LILA is still able to converge
and, by using a multi-start approach, it was able to find the global one, that is,
c = (101, 0) and p = (0.89, 6).
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Figure 6: Objective function of the Parking URM with behaviour of LILA
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