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Abstract

We study the optimal control of path-dependent McKean-Vlasov equations valued in Hilbert
spaces motivated by non Markovian mean-field models driven by stochastic PDEs. We first
establish the well-posedness of the state equation, and then we prove the dynamic programming
principle (DPP) in such a general framework. The crucial law invariance property of the value
function V is rigorously obtained, which means that V can be viewed as a function on the
Wasserstein space of probability measures on the set of continuous functions valued in Hilbert
space. We then define a notion of pathwise measure derivative, which extends the Wasserstein
derivative due to Lions [62], and prove a related functional Itô formula in the spirit of Dupire
[33] and Wu and Zhang [73]. The Master Bellman equation is derived from the DPP by means
of a suitable notion of viscosity solution. We provide different formulations and simplifications
of such a Bellman equation notably in the special case when there is no dependence on the law
of the control.
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1 Introduction

Given two real separable Hilbert spaces H and K, let us consider the nonlinear stochastic differential
equation (SDE) on H in the form:

dXt = AXtdt+ bt(X,PX·∧t , αt,Pαt)dt+ σt(X,PX·∧t , αt,Pαt)dBt, (1.1)

over a finite interval [0, T ]. Here, A : D(A) ⊂ H → H is the generator of a C0-semigroup of
contractions in H, and B = (Bt)t≥0 is a K-valued cylindrical Brownian motion on a complete
probability space (Ω,F ,P) with F

B its completed natural filtration. The coefficients b and σ,
valued respectively in H and L2(K;H) (the space of Hilbert-Schmidt operators from K to H),
depend on time, on the whole path of the state process X, on an input control process α, that is
an F

B-adapted process valued in some Borel space U , and furthermore on the distribution of the
state/control process.

Equation (1.1) is referred to as controlled McKean-Vlasov SDE in Hilbert spaces, and we are
interested in the optimal control for (1.1) by minimizing, over control processes α, a functional in
the form

J(X0, α) = E

[ ∫ T

0
ft(X,PX·∧t , αt,Pαt)dt+ g(X,PX )

]
,

given running cost and terminal cost functions f and g.
When the coefficients b, σ, f, g do not depend on the law of the state process, the control of

equation (1.1) is motivated by various kinds of stochastic partial differential equations (SPDEs)
like stochastic heat equations (see e.g. [20, 48, 49, 64, 44]) stochastic reaction-diffusion equations
(see e.g.[25, 26]), stochastic porous media equations (see e.g. [7]), singular stochastic dissipative
equations (see e.g. [68]), stochastic Burgers and Navier-Stokes equations (see e.g. [28, 67, 53]), Zakai
equation in filtering (see e.g. [54]), stochastic first-order equations (see e.g. [47]), stochastic delay
equations (see e.g. [43][69], [51, 52, 55] [14]). We refer also to the lecture notes and monographs
[29], [6], [35], for an account on this topic.

The main novelty of this paper is to consider a mean-field dependence on the coefficients of the
infinite-dimensional stochastic differential equation (1.1), and to study the corresponding control
problem. Mean-field diffusion processes, also called McKean-Vlasov equations, in finite dimension
have a long history with the pioneering works [58], [65], and later on with the seminal paper
[70] in the framework of propagation of chaos. The control of such equations has attracted an
increasing interest since the emergence of mean-field game theory initiated independently in [61]
and [56], aiming at describing control of large systems or population of interacting particles, and has
generated over the last few years numerous contributions, see e.g. [66], [27], [32], and the reference
monographs [10] and [23].

In addition to the infinite-dimensional feature of the McKean-Vlasov equation (1.1), we empha-
size the path-dependency (in a nonanticipative way) of the coefficients b, σ, f, g, on the state process
as well as on its distribution. This general setting, which is motivated by various applications, see
e.g. Example 2.12, seems to be considered for the first time in the present paper. It is worth noting
that, also in the mean-field game theory, some research papers (see [24, 41]) started to look at the
cases when the state of the agents follows a delay equation. As far as we know, only cases with
explicit solution are studied up to now, and we think it would be worth to build a general theory
in such cases, on the line of what we do here for McKean-Vlasov control problems.

Our basic objective here is to extend to our infinite-dimensional path-dependent setting the
tools required in the dynamic programming approach for McKean-Vlasov control problems.
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In the finite-dimensional case, i.e. H = R
d, and in the Markovian case, i.e. without path-

dependency of the coefficients, the Wasserstein derivative in the lifted sense of Lions [62], turns out
to be a convenient notion of measure derivative when combined with Itô’s formula along the flow of
probability measures (see [18]) in order to define the Master equation in mean-field game/control.
These concepts have been recently extended to the path-dependent case in [73] with a functional
Itô formula in the McKean-Vlasov setting.

Our contributions. Our first main result is to prove the crucial law invariance property of the
value function to the control problem (see Theorem 3.6), which implies that the value function can
be considered as a function on the Wasserstein space of probability measures on C([0, T ];H). We
also state and provide a direct proof of the dynamic programming principle in this context (see
Theorem 3.4 and Corollary 3.9). Next, we introduce a notion of pathwise derivative in Wasserstein
space and a related functional Itô formula in our infinite-dimensional McKean-Vlasov context that
extend the concepts in [73]. Equipped with these tools, we can then derive from the dynamic
programming principle the associated Master HJB equation, which is a PDE where the state variable
is a probability measure on C([0, T ];H). For such PDE, we provide equivalent formulations and
simplifications, notably in the special case when there is no dependence of the coefficients on the
law of the control. We define an intrinsic notion of viscosity solution in P2(C([0, T ];H)), the space
of square-integrable probability measures on C([0, T ];H), together with the viscosity property of
the value function. Comparison principle for Master Bellman equation is postponed to further
investigation, as it is already a challenging issue in the finite-dimensional case where only partial
results exist in the literature, see [73] and [19].

We also point out that our results clarify and improve in particular some statements from
the finite-dimensional case, like the law invariance property (see Remark 3.8) and the dynamic
programming principle.

The outline of the paper is organized as follows. In Section 2, we present the notations and
formulate the McKean-Vlasov state equation valued in Hilbert space: due to the generality of the
setting basic results on well-posedness and approximation of this equation are not known and are
carefully proved. Section 3 is devoted to the formulation of the optimal control problem, the dynamic
programming principle and law invariance property of the associated value function. We introduce
in Section 4 the notion of pathwise derivative in Wasserstein space and the related functional Itô
formula. Section 5 is concerned with the derivation of the Master Bellman equation and the viscosity
property of the value function. Finally, Appendices A, B, C, D, E, F collect some technical results
used throughout the paper.

2 Controlled path-dependent McKean-Vlasov SDEs in

Hilbert spaces

2.1 Notations and assumptions

State space and functional analytic setting. We fix two real separable Hilbert spaces H
and K, with inner products 〈·, ·〉H ,〈·, ·〉K and induced norms | · |H ,| · |K , respectively, omitting the
subscripts H or K when clear from the context. We denote by L(K;H) (resp. L(H)) the space of
bounded linear operators from K to H (resp. H to H). We endow L(K;H) with the operator norm

4



‖ · ‖L(K;H) defined by

‖F‖L(K;H) = sup
k∈K, k 6=0

|Fk|H
|k|K

, F ∈ L(K;H).

Similarly, we endow L(H) with the corresponding norm ‖ · ‖L(H). We also denote by L2(K;H) the
space of Hilbert-Schmidt operators from K to H, that is the set of all F ∈ L(K;H) such that

∑

n∈N

|Fen|
2
H < +∞

for some orthonormal basis {en}n∈N of K. We endow L2(K;H) with the norm ‖ · ‖L2(K;H) defined
by

‖F‖L2(K;H) =

√∑

n∈N

|Fen|2H , F ∈ L2(K;H).

We recall that the definitions of L2(K;H) and ‖ · ‖L2(K;H) do not depend on the choice of the
orthonormal basis {en}n∈N of K.

We now fix a finite time horizon T > 0 and consider the state space of our optimal control
problem which is given by the set C([0, T ];H) of continuous H-valued functions on [0, T ]. Given
x ∈ C([0, T ];H) and t ∈ [0, T ], we denote by xt the value of x at time t and we set x·∧t :=
(xs∧t)s∈[0,T ]. Notice that xt ∈ H, while x·∧t ∈ C([0, T ];H). We endow C([0, T ];H) with the
uniform norm ‖ · ‖T defined as

‖x‖T = sup
s∈[0,T ]

|xs|H , x ∈ C([0, T ];H).

Notice that (C([0, T ];H), ‖ · ‖T ) is a Banach space. We denote by B the Borel σ-algebra of
C([0, T ];H). Finally, for every t ∈ [0, T ] we introduce the seminorm ‖ · ‖t defined as

‖x‖t = ‖x·∧t‖T , x ∈ C([0, T ];H).

Spaces of probability measures and Wasserstein distance. Given a metric space M , if M

denotes its Borel σ-algebra, we denote by P(M) the set of all probability measures on (M,M ). We
endow P(M) with the topology of weak convergence. When M is a Polish space S, with metric dS,
we also define, for q ≥ 1,

Pq(S) :=

{
µ ∈ P(S) :

∫

S
dS(x0, x)

qµ(dx) < +∞

}
,

where x0 ∈ S is arbitrary. This set is endowed with the q-Wasserstein distance defined as

Wq(µ, µ
′) := inf

{∫

S×S
dS(x, y)

q π(dx, dy) : π ∈ P(S × S)

such that π(· × S) = µ and π(S× ·) = µ′
} 1

q

, q ≥ 1,

for every µ, µ′ ∈ Pq(S). The space
(
Pq(S),Wq) turns out to be a Polish space (see for instance [71,

Theorem 6.18]).
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Probabilistic setting. We fix a complete probability space (Ω,F ,P) on which a K-valued cylin-
drical Brownian motion B = (Bt)t≥0 is defined (see e.g. [29, Section 4.1] and [35, Remark 1.89] on
the definition of cylindrical Brownian motion). We denote by F

B = (FB
t )t≥0 the P-completion of

the filtration generated by B1. Notice that F
B is also right-continuous (see [35, Lemma 1.94]), so,

in particular, it satisfies the usual conditions. We assume that there exists a sub-σ-algebra G of F
satisfying the following standing assumptions.

Standing Assumption (AG).

i) G and FB
∞ are independent;

ii) G is “rich enough” in the sense that the following property holds:

P2

(
C([0, T ];H)

)
=
{
Pξ with ξ : [0, T ]× Ω → H continuous and

B([0, T ])⊗ G-measurable process satisfying E
[
‖ξ‖2T

]
<∞

}
,

i.e. for every µ ∈ P2(C([0, T ];H)) there exists a continuous and B([0, T ]) ⊗ G-measurable
process ξ : [0, T ]× Ω → H, satisfying E‖ξ‖2T <∞, such that ξ has law equal to µ.

As stated in the following lemma (take H = G in Lemma 2.1), property (AG)-ii) holds if and only if
there exists a G-measurable random variable UG : Ω → R having uniform distribution on [0, 1] (see
also Remark 2.2).

Lemma 2.1. On the probability space (Ω,F ,P) consider a sub-σ-algebra H ⊂ F . The following
statements are equivalent.

1) There exists a H-measurable random variable UH : Ω → R having uniform distribution on [0, 1].

2) H is “rich enough” in the sense that the following property holds:

P2

(
C([0, T ];H)

)
=
{
Pξ with ξ : [0, T ] × Ω → H continuous and

B([0, T ]) ⊗H-measurable process satisfying E
[
‖ξ‖2T

]
<∞

}
.

Remark 2.2. Using the same notations as in Lemma 2.1, if the probability space (Ω,H,P) is
atomless (namely, for any E ∈ H such that P(E) > 0 there exists F ∈ H, F ⊂ E, such that
0 < P(F ) < P(E)) then property 1), or equivalently 2), of Lemma 2.1 holds (see for instance [23,
vol. I, p. 352]).

Remark 2.3. The additional randomness (other than B) coming from the σ-algebra G is used for
the initial condition ξ of the state equation (2.4) (notice that it is necessary to consider random
initial conditions in order to state and prove the dynamic programming principle, Theorem 3.4,
where for instance the initial condition at time s is given by the random variable Xt,ξ,α). However,
we remark that whenever t > 0 the σ-algebra G can be replaced by FB

t ; in other words, the initial
condition ξ can be taken only FB

t -measurable. As a matter of fact, for every t > 0, it holds that:

1Notice that it may be not obvious to define the natural filtration for cylindrical Brownian motion as, in principle,
it may depend on the choice of the reference system where such process is considered, which, in general, is not unique.
However, as noted in [35, Remark 1.89]) this will not affect the class of integrable processes and, consequently, the
filtration.
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i) FB
t and σ(Bs −Bt, s ≥ t) are independent (in item i) of (AG) we have imposed the stronger

condition that G and FB
∞ have to be independent; however, if we consider only the control

problem with initial time t, then the assumption imposed here is enough.

ii) FB
t satisfies the property of being “rich enough” or, equivalently, it satisfies property 1) of

Lemma 2.1.

Therefore, the σ-algebra G is really necessary only for the control problem with initial time t =
0. In fact, this allows to define the value function v (see (3.10)) for every pair (t, µ) in [0, T ] ×
P2(C([0, T ];H)), with µ being the law of ξ. On the other hand, if we do not use G, v is defined on
(0, T ]× P2(C([0, T ];H)) and for t = 0 is defined only at the Dirac measures.

Proof of Lemma 2.1. 1) =⇒ 2). Fix µ ∈ P2(C([0, T ];H)). Our aim is to find a process
ξ : [0, T ] × Ω → H continuous and B([0, T ]) ⊗ H-measurable with law equal to µ. To this end,
consider the probability space ([0, 1],B([0, 1]), λ), where λ denotes the Lebesgue measure on the
unit interval. Given such a µ, it follows from Theorem 3.19 in [59] that there exists a measurable
function Ξ: [0, 1] → C([0, T ];H) such that the image (or push forward) measure of λ by Ξ is equal
to µ. Now, denote

ξt(ω) := Ξ(UH(ω))t, ∀ (t, ω) ∈ [0, T ] × Ω,

where the subscript in Ξ(UH(ω))t denotes the valuation at time t of the continuous function
Ξ(UH(ω)).

Notice that ξ is a continuous process with law equal to µ. Moreover, for every fixed t ∈ [0, T ],
ξt is H-measurable. Since ξ has continuous paths, it follows that ξ is also B([0, T ])⊗H-measurable
(see for instance [30], Chapter IV, Theorem 15). This concludes the proof of the implication 1) =⇒
2).

2) =⇒ 1). The claim follows from Lemma F.1.

We denote by F = (Ft)t≥0 the filtration defined as

Ft = G ∨ FB
t , t ≥ 0.

Notice that F satisfies the usual conditions of completeness and right-continuity. We then denote by
S2(F) (resp. S2(G)) the set of H-valued continuous F-progressively measurable (resp. B([0, T ])⊗G-
measurable) processes ξ such that

‖ξ‖S2
:= E

[
‖ξ‖2T

] 1
2 <∞.

Control processes. The space of control actions, denoted by U, satisfies the following standing
assumption.

Standing Assumption (AU). U is a Borel space (see for instance Definition 7.7 in [11]),
namely a Borel subset of some Polish space E. U denotes its Borel σ-algebra.

Remark 2.4. Our Assumption (AU) is quite general. Indeed in most applications it is enough that
U is a Polish space or even a Hilbert space, as in the examples of Example 2.12.

Finally, we denote by U the space of control processes, namely the family of all F-progressively
measurable processes α : [0, T ] × Ω → U.

7



Assumptions on the coefficients of the state equation. We consider a linear, possibly un-
bounded, operator A : D(A) ⊂ H → H and two functions

b, σ : [0, T ]× C([0, T ];H) × P2

(
C([0, T ];H)

)
×U× P(U) −→ H, L2(K;H),

where we recall that P(U) is endowed with the topology of weak convergence. We impose the
following assumptions on A, b, σ.

Assumption (AA,b,σ).

(i) A generates a C0-semigroup of pseudo-contractions {etA, t ≥ 0} in H. Hence, there exists
and η ∈ R such that

‖etA‖L(H) ≤ eηt. (2.1)

(ii) The functions b and σ are measurable.

(iii) There exists a constant L such that

|bt(x, µ, u, ν) − bt(x
′, µ′, u, ν)|H ≤ L

(
‖x− x′‖t +W2(µ, µ

′)
)
,

‖σt(x, µ, u, ν)− σt(x
′, µ′, u, ν)‖L2(K;H) ≤ L

(
‖x− x′‖t +W2(µ, µ

′)
)
,

|bt(0, δ0, u, ν)|H + ‖σt(0, δ0, u, ν)‖L2(K;H) ≤ L,

for all (t, u, ν) ∈ [0, T ] × U × P(U), (x, µ), (x′, µ′) ∈ C([0, T ];H) × P2(C([0, T ];H)), with δ0
being the Dirac measure at 0, namely the probability measure on C([0, T ];H) putting mass
equal to 1 to the constant path 0.

Remark 2.5. Notice that, from the Lipschitz property of b and σ with respect to the variable
x ∈ C([0, T ];H), it follows that b and σ satisfies the following non-anticipativity property:

bt(x, µ, u, ν) = bt(x·∧t, µ, u, ν), σt(x, µ, u, ν) = σt(x·∧t, µ, u, ν),

for every (t, x, µ, u, ν) ∈ [0, T ] × C([0, T ];H)× P2(C([0, T ];H)) ×U× P(U).

Remark 2.6. The optimal control problem of McKean-Vlasov SDEs is sometimes called extended
or generalized (see [1, 27]) when the coefficients also depend on the law of the control process Pαs (as
in the present framework, see equation (2.4) below) or, more generally, on the joint law P(X·∧s,αs).
Notice however that, under the assumptions below, the latter case is only apparently more general
than our framework. As a matter of fact, consider for simplicity only the drift coefficient b and
suppose that it is replaced by a function b̄ from [0, T ]×C([0, T ];H)×U×P(C([0, T ];H)×U) to H.
Recall from (AA,b,σ) that the Lipschitz continuity of b with respect to the law of the path reads as

|bt(x, µ, u, ν) − bt(x, µ
′, u, ν)|H ≤ LW2(µ, µ

′), (2.2)

for all (t, x, u, ν) ∈ [0, T ] × C([0, T ];H) × U × P(U), µ, µ′ ∈ P2(C([0, T ];H)). In other words, the
Lipschitz continuity is imposed on the law of the state variable, not on the law of the control variable.
If we do the same for the coefficient b̄, we get the following (π(·×U) is the law of the state variable,
while π(C([0, T ];H) × ·) is the law of the control variable) :

|b̄t(x, u, π) − b̄t(x, u, π
′)|H ≤ LW2

(
π(· ×U), π′(· ×U)

)
, (2.3)
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for every (t, x, u) ∈ [0, T ]×C([0, T ];H)×U, π, π′ ∈ P(C([0, T ];H) ×U) with π(· ×U), π′(· ×U) ∈
P2(C([0, T ];H)) and π(C([0, T ];H)×·) = π′(C([0, T ];H)×·). We require that π(C([0, T ];H)×·) =
π′(C([0, T ];H) × ·) since, as in (2.2), the law of the control variable is fixed. More precisely, using
the notation of (2.2),

µ = π(· ×U), µ′ = π′(· ×U), ν = π(C([0, T ];H) × ·) = π′(C([0, T ];H) × ·).

It follows directly from assumption (2.3) that b̄t(x, u, π) = b̄t(x, u, π
′) whenever the marginals of π

and π′ coincide: π(·×U) = π′(·×U) and π(C([0, T ];H)×·) = π′(C([0, T ];H)×·). This shows that
b̄ depends on π only through its marginals.

2.2 State equation

Given an initial time t ∈ [0, T ], an initial path ξ ∈ S2(F), a control process α ∈ U , the state process
evolves according to the following controlled path-dependent McKean-Vlasov stochastic differential
equation: {

dXs = AXs + bs
(
X,PX , αs,Pαs

)
ds+ σs

(
X,PX , αs,Pαs

)
dBs s > t

Xs = ξs s ≤ t.
(2.4)

Definition 2.7. Fix t ∈ [0, T ], ξ ∈ S2(F), α ∈ U . A mild solution of (2.4) is a process X =
(Xs)s∈[0,T ] in S2(F) satisfying

Xs = e((s−t)∨0)A ξs∧t +

∫ s∨t

t
e(s−r)A br

(
X,PX·∧r , αr,Pαr

)
dr

+

∫ s∨t

t
e(s−r)A σr

(
X,PX·∧r , αr,Pαr

)
dBr ∀s ∈ [0, T ], P-a.s.

Proposition 2.8. Fix t ∈ [0, T ], ξ ∈ S2(F), α ∈ U . Under (AA,b,σ), equation (2.4) admits a unique
mild solution Xt,ξ,α ∈ S2(F). The map

[0, T ]× S2(F) → S2(F), (t, ξ) 7→ Xt,ξ,α

is jointly continuous in (t, ξ), uniformly with respect to α ∈ U , and Lipschitz continuous in ξ,
uniformly in t and α. Moreover, Xt,ξ,α = Xt,ξ·∧t,α and there exists a constant C, independent of
t, ξ, α, such that ∥∥Xt,ξ,α

∥∥
S2

≤ C
(
1 + ‖ξ·∧t‖S2

)
. (2.5)

Proof. See Appendix A.

Remark 2.9. From Proposition 2.8 we have, in particular, for r, t ∈ [0, T ], ξ ∈ S2(F),

lim
r→t

sup
α∈U

‖Xα,t,ξ
r∧· − ξt∧·‖S2 ≤ lim

r→t

(
sup
α∈U

‖Xα,t,ξ
r∧· −Xα,r,ξ

r∧· ‖S2 + ‖ξr∧· − ξt∧·‖S2

)

≤ lim
r→t

(
sup
α∈U

‖Xα,t,ξ −Xα,r,ξ‖S2 + ‖ξr∧· − ξt∧·‖S2

)
= 0,

(2.6)

where we have used the fact that Xα,r,ξ
r∧· = ξr∧·.
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Let {An}n∈N be the Yosida approximation of A, i.e. An = nA(n−A)−1, for n ∈ N, n > η, with
η as in (2.1). Denote by Sn the uniformly continuous semigroup generated by An. Notice that Sn

is a pseudo-contraction semigroup for all n ∈ N, n > η, and that, for some η̃ > 0, ‖Sn
t ‖L(H) ≤ eη̃t

uniformly for n ∈ N, t ≥ 0. In particular, we can apply Proposition 2.8 to obtain existence of a
unique mild solution Xn,t,ξ,α to the following equation:

{
dXn

s = AnX
n
s + bs

(
Xn,PXn , αs,Pαs

)
ds + σs

(
Xn,PXn , αs,Pαs

)
dBs, s > t,

Xn
s = ξs, s ≤ t.

(2.7)

Proposition 2.10. There exists a constant C > 0 such that

sup
α∈U
n∈N

t∈[0,T ]

‖Xn,t,ξ,α −Xn,t,ξ′,α‖S2 ≤ C‖ξ − ξ′‖S2 , ∀ ξ, ξ′ ∈ S2(F). (2.8)

Moreover,
lim
t→t′
n→∞

‖Xn,t,ξ,α −Xt′,ξ,α‖S2 = 0, ∀α ∈ U , ξ ∈ S2(F), t
′ ∈ [0, T ]. (2.9)

Proof. See Appendix A.

Remark 2.11. In the third inequality of Assumption (AA,b,σ)-(iv) we assume, for simplicity, the
boundedness of b and σ with respect to the controls. In many applications (e.g. in linear quadratic
control cases see Example 2.12 below) the state equation contains unbounded control terms. It is
therefore interesting to understand what happens in such cases. Assume that U is a closed subset
of a Hilbert space and that the right-hand side of the third inequality of Assumption (AA,b,σ)-(iv) is
replaced by L(1+ |u|U). In this case Proposition 2.8 still holds, assuming that α· ∈ L2([0, T ]×Ω;U),
with the estimate (2.5) replaced by

∥∥Xt,ξ,α
∥∥
S2

≤ C

[
1 + ‖ξ·∧t‖S2 +

(
E

∫ T

t
|αs|

2
Uds

)]
. (2.10)

The only difference is that the joint continuity in (t, ξ) is uniform only with respect to α belonging
to the bounded sets of L2([0, T ]×Ω;U). Consequently also the limit in (2.6) is uniform only in the
same sense. Similarly, also Proposition 2.10 still holds but with the supremum in α belonging to the
bounded sets of L2([0, T ] × Ω;U).

Example 2.12. Examples of problems where the state equation has the above structure.

(i) Lifecycle optimal portfolio problems. This family of problems introduces, together with the
standard equation for the wealth x(·) used in Merton model, another state variable y which is
the labor income of the agent. The equation for the labor income (which is one of the state
equations2 of the optimal portfolio problem) is, in the simplest case, the one of a geometric
Brownian motion (see e.g. [34]). It is however natural, for a more realistic description of
such dynamics, to introduce two extensions in the equation for y:

– first, as proposed in the concluding remarks of [34] and done (in different cases) in [14,
13, 12], to add a path-dependent term in the drift and/or in the diffusion;

2The equation for y is not controlled, however y is part of the state as it appears in the wealth dynamics, which
is controlled.
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– second, as proposed in the introduction of [31]), to add, in the drift, a mean-field term
depending on the distribution Py(t) of y itself at time t.3

Consequently, it makes sense to model the dynamics of the labor income “y” using a one-
dimensional stochastic delay ODE of McKean-Vlasov type as follows (here φ ∈ L2(−d, 0) is
a given datum providing the weight of the past income into the the current trend, and Z is a
one-dimensional Brownian motion).

dy(t) =

[
b0
(
Py(t)

)
+

∫ 0

−d
y(t+ ξ)φ(ξ) dξ

]
dt+ σ y(t) dZ(t).

Such equations can be rephrased as SDEs in the Hilbert space R×L2(−d, 0) and the resulting
dynamics falls into the class treated in the present section. In [31] the authors study only the
case where b0 is a linear function4 of the expectation E[y(t)] but, as explained there, other
choices are possible, such as “the median wage or the truncated average above a certain level,
within the company or even within the profession”.

The setting of the present paper allows to cover not only the case when b0 above is nonlinear
but also more general (and still interesting, like e.g. the average income of the last years) cases
where it depends on the law of the past of y.

Clearly, the problem becomes much more difficult than the one treated in [31] and we should
consider the results of this paper as a first step to study such types of models.

(ii) Optimal investment with vintage capital. These are typical partial equilibrium models arising
in Economics (see e.g. [8, 9, 36, 40]) where the state variable “x” is the capital stock and
the control variable is the investment “u”, both depending on time t ≥ 0 and vintage s ∈ [0, s̄]
(here s̄ > 0 is the maximum possible vintage): capital goods indexed with small s embody newer
technologies. In the above papers x, in the simplest cases, is required to satisfy a first-order
PDE of the following type:

∂x(t, s)

∂t
+
∂x(t, s)

∂s
= −δx(t, s) + u(t, s),

where δ is a depreciation rate of the capital goods, which is kept constant for simplicity. This
PDE can be easily rewritten as an ODE in the space H := L2(0, s̄). If one wants to take into
account stochastic disturbances (similarly to what is done in [42] in a case without vintage),
the state equation, written in L2(0, s̄), becomes the following infinite dimensional SDE (here
B is a cylindrical Wiener process):

dx(t) = [Ax(t)− δx(t) + Cu(t)] dt+ σ(x(t)) dB(t),

for suitable linear operators A,C, δ and σ : H → L(H). Here x(t), u(t) stand for x(t, ·) and
u(t, ·), respectively.
Given such a controlled infinite dimensional SDE, the objective to be maximized depends,

3As written at pages 2-3 of [31], “the labor income yi of an agent i is benchmarked against the labor incomes of a
population yN := (y1, y2, . . . , yN) of N agents with comparable tasks or ranks among the profession such as the level
of full professor, associate professor, actuary, trader, risk manager etc., where one usually uses some wage level b(yN)
as a reference to declare whether that agent has a superior, fair or inferior labor income compared with her peers”.

4This is needed there to get a simplified HJB equation and to find explicit solutions of it.
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beyond the control u, also on the production Q(t) provided by the capital stock. The expression
of Q(t), as given for example in [40], is

Q(t) :=

∫ s̄

0
f(t− s)v(s)x(t, s)ds,

where f takes into account the technological progress and v embodies learning and spillover
effects. As observed e.g in [46, 57], effects of this type can be modelled taking f and v depending
on the distribution of x(t) and u(t). Moreover, effects like the so-called time to build (see
e.g. [60, 4]) call for path-dependency for such coefficients (see, for a deterministic infinite
dimensional modelling of time-to-build, [4, 5, 63, 38, 39]).

(iii) Optimal consumption in spatial growth models in Economics. A way to model capital accumu-
lation in spatial growth models (see e.g. [17]) is to assume that the capital x(t, ξ) at time t ≥ 0
in the position ξ (here we take, for simplicity, ξ ∈ S1, the one dimensional sphere) satisfies a
second order PDE like

∂x(t, ξ)

∂t
=
∂2x(t, ξ)

∂ξ2
+ a(t, ξ)x(t, ξ) − c(t, ξ), ξ ∈ S1, t ≥ 0,

where a is a productivity coefficient and c the consumption. If we modify such PDE to take
into account the time delay d due to time-to-build, it takes the following form:

∂x(t, ξ)

∂t
=
∂2x(t, ξ)

∂ξ2
+ a(t, ξ)x(t− d, ξ)− c(t, ξ), ξ ∈ S1, t ≥ 0.

By considering stochastic disturbances (as done, e.g., in [16] for the case without space vari-
able and in [50] in the spatial growth framework) and of the mean-field dependence on the
productivity (as argued in the previous example) we get the following path-dependent SPDE of
McKean-Vlasov type in the space H := L2(S1)

dx(t) =
[
Ax(t) + h

(
x(t− d),Px(t)

)
− c(t)

]
dt+ σ(x(t))dB(t),

where B is a cylindrical Wiener process, A is a suitable linear second order differential op-
erator, h : H × P(H) → H and σ : H → L(H). Here x(t), c(t) stand for x(t, ·) and c(t, ·),
respectively. Again this problem falls into the class we treat in the present paper.

3 The optimal control problem

3.1 Reward functional and lifted value function

We are given two functions

f : [0, T ]× C([0, T ];H) × P2

(
C([0, T ];H)

)
×U× P(U) −→ R

g : C([0, T ];H) × P2

(
C([0, T ];H)

)
−→ R

on which we impose the following assumptions.

Assumption (Af,g).
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(i) The functions f and g are measurable.

(ii) The function f satisfies the non-anticipativity property:

ft(x, µ, u, ν) = ft(x·∧t, µ, u, ν),

for all (t, x, µ, u, ν) ∈ [0, T ]× C([0, T ];H) × P2(C([0, T ];H)) ×U× P(U).

(iii) There exists a locally bounded function h : [0,∞) → [0,∞) such that

|ft(x, µ, u, ν)| ≤ h
(
W2(µ, δ0)

)(
1 + ‖x‖2t

)
, |g(x, µ)| ≤ h

(
W2(µ, δ0)

)(
1 + ‖x‖2T

)
,

for all (t, x, µ, u, ν) ∈ [0, T ]× C([0, T ];H) × P2(C([0, T ];H)) ×U× P(U).

We will also need the following continuity assumption on f and g.

Assumption (Af,g)cont. The function f is locally uniformly continuous in (x, µ) uniformly with
respect to (t, u, ν). Similarly, g is locally uniformly continuous. More precisely, it holds that: for
every ε > 0 and n ∈ N there exists δ = δ(ε, n) > 0 such that, for every (t, u, ν) ∈ [0, T ]×U×P(U),
(x, µ), (x′, µ′) ∈ C([0, T ];H)×P2(C([0, T ];H)), with ‖x‖T +W2(µ, δ0) ≤ n and ‖x′‖T +W2(µ

′, δ0) ≤
n,

‖x− x′‖t +W2(µ, µ
′) ≤ δ

=⇒ |f(t, x, µ, u, ν)− f(t, x′, µ′, u, ν)| ≤ ε and |g(x, µ) − g(x′, µ′)| ≤ ε.

Under Assumptions (AA,b,σ) and (Af,g), from Proposition 2.8 we get that the reward functional
J , given by

J(t, ξ, α) = E

[ ∫ T

t
fs
(
Xt,ξ,α,P

Xt,ξ,α
·∧s

, αs,Pαs

)
ds+ g

(
Xt,ξ,α,PXt,ξ,α

)]
,

is well-defined for any (t, ξ, α) ∈ [0, T ] × S2(F) × U . We then consider the function V : [0, T ] ×
S2(F) −→ R, to which we refer as the lifted value function, defined as

V (t, ξ) = sup
α∈U

J(t, ξ, α) , ∀ (t, ξ) ∈ [0, T ]× S2(F) . (3.1)

Remark 3.1. Recall from Proposition 2.8 that Xt,ξ,α only involves the values of ξ up to time t,
namely it holds that Xt,ξ,α = Xt,ξ·∧t,α. As a consequence, both J and V satisfy the non-anticipativity
property:

J(t, ξ, α) = J(t, ξ·∧t, α), V (t, ξ) = V (t, ξ·∧t),

for every (t, ξ) ∈ [0, T ]× S2(F), α ∈ U .

Remark 3.2. In Remark 2.11 we looked at the case when U is a Hilbert space and the coefficients
of the state equation have linear growth in the controls. In such a case, in order to have a well-
defined reward functional J , we need some compensating term in the current reward f . A typical
assumption which guarantees that J is well-defined is that the first inequality of Assumption (Af,g)-
(iii) is replaced by

ft(x, µ, u, ν) ≤ h
(
W2(µ, δ0)

) (
1 + ‖x‖2t

)
− C|u|θU,
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for some θ > 1 and C > 0. This would include some typical linear-quadratic control cases. For
example in the case of optimal investment problems mentioned in Example 2.12-(ii) a typical form
of f would be (recall that here H = L2(0, s̄))

ft(x, µ, u, ν) = ft(x, u) = e−rt[R(Q(t))− 〈a2, u(t)〉H − 〈Mu(t), u(t)〉H ], (3.2)

where r is the interest rate, R is suitable one variable function (possibly linear or quadratic) a2 ∈
L2(0, s̄), and M is a suitable multiplication operator in L2(0, s̄) (see e.g. [36, 40]).

Proposition 3.3. Suppose that (AA,b,σ) and (Af,g) hold. The function V satisfies a quadratic
growth condition: there exists a constant C such that

|V (t, ξ)| ≤ C
(
1 + ‖ξ·∧t‖

2
S2

)
, (3.3)

for every (t, ξ) ∈ [0, T ] × S2(F). Moreover, if in addition (Af,g)cont holds, the map V : [0, T ] ×
S2(F) → R is jointly continuous.

Proof. We split the proof into two steps.

Step 1. Proof of estimate (3.3). From the definition of J , we have

|J(t, ξ, α)| ≤ E

[ ∫ T

t

∣∣fs
(
Xt,ξ,α,P

Xt,ξ,α
·∧s

, αs,Pαs

)∣∣ ds
]
+ E

[∣∣g
(
Xt,ξ,α,PXt,ξ,α

)∣∣].

By the quadratic growth of f and g, together with estimate (2.5), we see that there exists a constant
C such that

|J(t, ξ, α)| ≤ C
(
1 + ‖ξ·∧t‖

2
S2

)
, (3.4)

for every (t, ξ, α) ∈ [0, T ] × S2(F) × U . Then, estimate (3.3) follows directly from the definition of
V and the fact that (3.4) holds uniformly with respect to α ∈ U .

Step 2. Continuity of V . We begin noticing that, for every (t, ξ), (s, η) ∈ [0, T ]× S2(F),

|V (t, ξ)− V (s, η)| ≤ sup
α∈U

|J(t, ξ, α) − J(s, η, α)|.

Then, the continuity of V follows once we prove that J is continuous in (t, ξ) uniformly with respect
to α, namely that the following property holds: for every ε > 0 and every (t, ξ) ∈ [0, T ] × S2(F),
there exists δ = δ(ε, t, ξ) > 0 such that, for every (s, η, α) ∈ [0, T ]× S2(F)× U ,

|t− s| ≤ δ and ‖ξ − η‖S2 ≤ δ =⇒ |J(t, ξ, α) − J(s, η, α)| ≤ ε.

Such a property is a straightforward consequence of the last statement of Proposition 2.8 and of
assumption (Af,g)cont.

3.2 Dynamic programming principle for V

In this section we prove the dynamic programming principle for the lifted value function V defined
in (3.1).

Theorem 3.4. Suppose that (AA,b,σ) and (Af,g) hold. The lifted value function V satisfies the
dynamic programming principle: for every t, s ∈ [0, T ], with t ≤ s, and every ξ ∈ S2(F) it holds
that

V (t, ξ) = sup
α∈U

{
E

[ ∫ s

t
fr
(
Xt,ξ,α,P

Xt,ξ,α
·∧r

, αr,Pαr

)
dr

]
+ V

(
s,Xt,ξ,α

)}
.
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Proof. Set

Λ(t, ξ) := sup
α∈U

{
E

[∫ s

t
fr
(
Xt,ξ,α,P

Xt,ξ,α
·∧r

, αr,Pαr

)
dr

]
+ V

(
s,Xt,ξ,α

)}
.

Step 1. Proof of the inequality Λ(t, ξ) ≥ V (t, ξ). For every fixed α ∈ U , the lifted value function at
(s,Xt,ξ,α) is given by

V (s,Xt,ξ,α) = sup
β∈U

E

[ ∫ T

s
fr

(
Xs,Xt,ξ,α,β,P

Xs,Xt,ξ,α,β
·∧r

, βr,Pβr

)
dr + g

(
Xs,Xt,ξ,α,β,P

Xs,Xt,ξ,α,β

)]
.

Choosing β = α, we find

V (s,Xt,ξ,α) ≥ E

[∫ T

s
fr

(
Xs,Xt,ξ,α,α,P

Xs,Xt,ξ,α,α
·∧r

, αr,Pαr

)
dr + g

(
Xs,Xt,ξ,α,α,P

Xs,Xt,ξ,α,α

)]
.

By the uniqueness property for equation (2.4) stated in Proposition 2.8, we obtain the flow property

Xt,ξ,α = Xs,Xt,ξ,α,α.

Hence

V (s,Xt,ξ,α) ≥ E

[ ∫ T

s
fr
(
Xt,ξ,α,P

Xt,ξ,α
·∧r

, αr,Pαr

)
dr + g

(
Xt,ξ,α,PXt,ξ,α

)]
.

Adding to both sides the quantity E
∫ s
t fr(X

t,ξ,α,P
Xt,ξ,α

·∧r
, αr,Pαr) dr, we get

Λ(t, ξ) ≥ E

[ ∫ T

t
fr
(
Xt,ξ,α,P

Xt,ξ,α
·∧r

, αr,Pαr

)
dr + g

(
Xt,ξ,α,PXt,ξ,α

)]
.

As the latter inequality holds true for every α ∈ U , we conclude that Λ(t, ξ) ≥ V (t, ξ).

Step 2. Proof of the inequality Λ(t, ξ) ≤ V (t, ξ). For every ε > 0, let αε ∈ U be such that

Λ(t, ξ) ≤ E

[ ∫ s

t
fr
(
Xt,ξ,αε

,P
Xt,ξ,αε

·∧r
, αε

r,Pαε
r

)
dr

]
+ V (s,Xt,ξ,αε

) + ε. (3.5)

From the definition of V (s,Xt,ξ,αε
), it follows that there exists βε ∈ U such that

V (s,Xt,ξ,αε

) ≤ E

[∫ T

s
fr

(
Xs,Xt,ξ,αε

,βε

,P
Xs,Xt,ξ,αε

,βε

·∧r

, βεr ,Pβε
r

)
dr (3.6)

+ g
(
Xs,Xt,ξ,αε

,βε

,P
Xs,Xt,ξ,αε

,βε

)]
+ ε.

Set
γε = αε

1[0,s] + βε 1(s,T ].

Notice that γε ∈ U . Using again the uniqueness property for equation (2.4), we get

Xs,Xt,ξ,αε
,βε

= Xt,ξ,γε

.
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Hence, (3.6) becomes

V (s,Xt,ξ,αε

) ≤ E

[∫ T

s
fr
(
Xt,ξ,γε

,P
Xt,ξ,γε

·∧r
, γεr ,Pγε

r

)
dr + g

(
Xt,ξ,γε

,PXt,ξ,γε

)]
+ ε.

Then, by (3.5) it follows that

Λ(t, ξ) ≤ E

[ ∫ s

t
fr
(
Xt,ξ,αε

,P
Xt,ξ,αε

·∧r
, αε

r,Pαε
r

)
dr +

∫ T

s
fr
(
Xt,ξ,γε

,P
Xt,ξ,γε

·∧r
, γεr ,Pγε

r

)
dr

+ g
(
Xt,ξ,γε

,PXt,ξ,γε

)]
+ 2ε. (3.7)

From the definition of γε, we see that

Xt,ξ,αε

·∧s = Xt,ξ,γε

·∧s .

As a consequence, we can rewrite (3.7) in terms of the only process Xt,ξ,γε
as

Λ(t, ξ) ≤ E

[ ∫ T

t
fr
(
Xt,ξ,γε

,P
Xt,ξ,γε

·∧r
, γεr ,Pγε

r

)
dr + g

(
Xt,ξ,γε

,PXt,ξ,γε

)]
+ 2ε ≤ V (t, ξ) + 2ε.

The claim follows from the arbitrariness of ε.

Remark 3.5. It is worth noticing that, despite the stochastic setting, there is no issue of measura-
bility in the proof of the dynamic programming principle. This is a consequence of the fact that the
function V depends on the whole random variable ξ, so that the proof of the dynamic programming
principle can be done proceeding along the same lines as in the case of deterministic optimal control.

3.3 Law invariance property of the lifted value function V

In the present section we introduce the value function of the optimal control problem, which is a
real-valued map defined on [0, T ] × P2(C([0, T ];H)) (see (3.10)). In order to define such a value
function, it is necessary to prove that the map V satisfies the following law invariance property: for
every t ∈ [0, T ] and every ξ, η ∈ S2(F) it holds that

V (t, ξ) = V (t, η).

This is the subject of the next theorem.

Theorem 3.6. Suppose that (AA,b,σ) and (Af,g) hold. Fix t ∈ [0, T ] and ξ, η ∈ S2(F), with
Pξ = Pη. Suppose that there exist two random variables Uξ and Uη having uniform distribution on
[0, 1], being Ft-measurable and such that ξ and Uξ (resp. η and Uη) are independent. Then, it holds
that

V (t, ξ) = V (t, η).

If in addition (Af,g)cont holds, the map V satisfies the law invariance property: for every t ∈
[0, T ] and every ξ, η ∈ S2(F), with Pξ = Pη, it holds that

V (t, ξ) = V (t, η).
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Proof. We split the proof into two steps.

Step 1. Only (AA,b,σ) and (Af,g) hold. Fix t ∈ [0, T ], ξ, η ∈ S2(F), with Pξ = Pη, and let Uξ, Uη

be Ft-measurable random variables with uniform distribution on [0, 1], such that ξ and Uξ (resp. η
and Uη) are independent.

By Remark 3.1 we can assume that ξ = ξ·∧t and η = η·∧t, so, in particular, both ξ and η are
B([0, T ])⊗Ft-measurable (this is needed in order to apply Lemma B.2 of Appendix B). Now, given
α ∈ U consider the function a: [0, T ]×Ω×C([0, T ];H)× [0, 1] → U introduced in Lemma B.2. By
(B.1) we have

(
(ξs)s∈[0,T ], (as(ξ, Uξ))s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
L
=
(
(ξs)s∈[0,T ], (αs)s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
,

where
L
= stands for equality in law (between random objects defined on (Ω,F ,P)). Then, notice

that (here we use again that ξ and η are B([0, T ]) ⊗ Ft-measurable, so, in particular, they are
independent of (Bs −Bt)s∈[t,T ])

(
(ξs)s∈[0,T ], (αs)s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
L
=
(
(ηs)s∈[0,T ], (βs)s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
, (3.8)

where
β :=

(
as(η, Uη)

)
s∈[0,T ]

.

Observe that β ∈ U and, by (3.8),

(
(Xt,ξ,α

s )s∈[t,T ], (αs)s∈[t,T ]

) L
=
(
(Xt,η,β

s )s∈[t,T ], (βs)s∈[t,T ]

)
,

where the above equality in law can be deduced from (3.8) proceeding along the same lines as in
the proof of Proposition 1.137 in [35]. As a consequence, it holds that

J(t, ξ, α) = J(t, η, β).

Hence J(t, ξ, α) ≤ V (t, η). From the arbitrariness of α, we deduce that V (t, ξ) ≤ V (t, η). Changing
the roles of ξ and η we get the opposite inequality, from which we deduce that V (t, ξ) = V (t, η).

Step 2. Assumptions (AA,b,σ), (Af,g), (Af,g)cont hold. Fix t ∈ [0, T ] and ξ, η ∈ S2(F), with
Pξ = Pη. As in the previous step, we exploit Remark 3.1 and take ξ = ξ·∧t , η = η·∧t (so, in
particular, both ξ and η are B([0, T ])⊗Ft-measurable; this is needed in order to apply Lemma B.3).

Substep 2.1. The discrete case. Suppose that

Pξ =

m∑

i=1

pi δxi
,

for some {x1, . . . , xm} ⊂ C([0, T ];H), with xi 6= xj if i 6= j, where δxi
is the Dirac measure at xi and

pi > 0, with
∑m

i=1 pi = 1. Then, by Lemma B.3 there exist two Ft-measurable random variables Uξ

and Uη, with uniform distribution on [0, 1], such that ξ and Uξ (resp. η and Uη) are independent.
The claim then follows from Step 1.

Substep 2.2. The general case. In the general case, we rely on the continuity of the map ξ 7→
V (t, ξ), defined from S2(F) into R, which follows from Proposition 3.3. More precisely, we proceed
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by approximating ξ and η. For n ∈ N, let {Cn
i }i∈N be a partition of C([0, T ];H) of Borel sets such

that diam(Cn
i ) < 2−n. For each i ∈ N, choose xni ∈ Cn

i . Then, define

ξ̃n :=

∞∑

i=1

xni 1Cn
i
(ξ), η̃n :=

∞∑

i=0

xni 1Cn
i
(η).

Notice that ξ̃n, η̃n ∈ S2(F) and ξ̃n → ξ, η̃n → η uniformly with respect to ω ∈ Ω. Moreover, ξ̃n and
η̃n have the same law. By a diagonal argument, we can choose Nn ∈ N such that the sequences
{ξn}n∈N and {ηn}n∈N, defined by

ξn :=
Nn∑

i=1

xni 1Cn
i
(ξ), ηn :=

Nn∑

i=1

xni 1Cn
i
(η), (3.9)

converge respectively to ξ and η, both P-a.s. and in L2(Ω;C([0, T ];H)). From Substep 2.1 we
have

V (t, ξn) = V (t, ηn), ∀n ∈ N.

Then, using the continuity of V , we can pass to the limit as n → ∞ and conclude that V (t, ξ) =
V (t, η).

Remark 3.7. Suppose that (AA,b,σ), (Af,g), (Af,g)cont hold. Thanks to the law invariance property
stated in Theorem 3.6, in the definition of V we can consider only ξ ∈ S2(G) rather than ξ ∈ S2(F)
(recall that it was necessary to take ξ ∈ S2(F) in order to state and prove the dynamic programming
principle, Theorem 3.4, where for instance the initial condition at time s is Xt,ξ,α and Xt,ξ,α ∈ S2(F)
but, in general, Xt,ξ,α /∈ S2(G)).

Remark 3.8. In the finite-dimensional and non-path-dependent case, the law invariance property
was already addressed in [27], Proposition 3.1, under only (AA,b,σ) and (Af,g). Notice however that
the proof of such a proposition is based on the measurable selection theorem stated in [2], Corollary
18.23, which is unfortunately not true. For this reason, Theorem 3.6 is also relevant in the finite-
dimensional and non-path-dependent setting. Moreover, we emphasize that assuming only (AA,b,σ)
and (Af,g) is not enough for the validity of the law invariance property. To this regard, we give the
following example.
Example. Let T = 1, H = R

3, K = R, U = [0, 1]. We consider a non-path-dependent setting. The
coefficients

b, σ, f : [0, T ]× R
3 × P2(R

3)× [0, 1] × P([0, 1]) −→ R
3, R3, R

and g : R3 × P2(R
3) → R are given by

bt(x, µ, u, ν) :=




0
u
0


 , σt(x, µ, u, ν) :=




0
0
1


 , ft(x, µ, u, ν) := 0, g(x, µ) := 1{µ=µ0}

for every (t, x, µ, u, ν) ∈ [0, T ]×R
3×P2(R

3)× [0, 1]×P([0, 1]), where µ0 ∈ P2(R
3) is the probability

measure defined as
µ0 := Unif (0, 1) ⊗ Bern(1/2) ⊗N (0, 1),

with Unif (0, 1) being the uniform distribution on [0, 1], Bern(1/2) the Bernoulli distribution with
parameter 1/2, N (0, 1) the standard Gaussian distribution.
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We now fix the probabilistic setting. Consider the probability spaces (Ω◦,F◦,P◦) and (Ω1,F1,P1)
where Ω◦ = [0, 1], F◦ its Borel σ-algebra and P

◦ is the Lebesgue measure on the unit interval, while
Ω1 = {ω1 ∈ C([0, 1];R) : ω1

0 = 0}, F1 its Borel σ-algebra and P
1 is the Wiener measure on (Ω1,F1).

We then define Ω := Ω◦ × Ω1, F the completion of F◦ ⊗ F1 with respect to P
◦ ⊗ P

1 and by P the
extension of P◦ ⊗ P

1 to F . We also denote by G := F◦ ⊗ {∅,Ω1} the canonical extension of F◦ to
the product space Ω. Finally, we denote by B = (Bt)t∈[0,1] the canonical process Bt(ω

◦, ω1) := ω1
t ,

∀ t ∈ [0, 1]. Notice that, under the probability measure P, the process B is a real-valued Brownian
motion. Then, in the present context the lifted value function is given by

V (t, ξ) = sup
α∈U

E

[
1{

P
X

t,ξ,α
1

=µ0

}
]
, ∀ (t, ξ) ∈ [0, 1] × L2(Ω,Ft,P;R

3),

where

ξ =




ξ1

ξ2

ξ3


 and Xt,ξ,α

1 =




ξ1

ξ2 +

∫ 1

t
αs ds

ξ3 +B1 −Bt


 .

Now, let ξ : Ω → R
3 be given by

ξ(ω◦, ω1) :=




ω◦

0
0


 , ∀ (ω◦, ω1) ∈ Ω.

Notice that ξ1 has distribution Unif (0, 1). Moreover, ξ is G-measurable and generates the σ-algebra
G itself, namely G = σ(ξ). Define η : Ω → R

3 and Z : Ω → [0, 1] by

η :=




2ξ 1{ξ≤1/2} + (2ξ − 1)1{ξ>1/2}

0
0


 , Z := 1{ξ≤1/2}.

Notice that η and Z are G-measurable and independent. Moreover, the first component of η, namely
η1, has distribution Unif (0, 1), while Z has distribution Bern(1/2).

Let us prove that V (0, ξ) 6= V (0, η) and, in particular, V (0, ξ) = 0 while V (0, η) = 1. If the
initial condition at time t = 0 is η, then taking the control process α∗

s = Z, ∀ s ∈ [0, T ], we get

X0,η,α∗

1 =




η1

Z
B1


 .

Notice that P
X0,η,α∗

1
= µ0, which proves that V (0, η) = 1. On the other hand, when the initial

condition is ξ, for every α ∈ U we have

X0,ξ,α
1 (ω◦, ω1) =




ω◦

∫ 1

0
αs(ω

◦, ω1) ds

ω1
1


 , ∀ (ω◦, ω1) ∈ Ω.
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Let us prove that V (0, ξ) = 0. Suppose on the contrary that V (0, ξ) = 1. This implies that X0,ξ,α
1 has

distribution µ0, so in particular
∫ 1
0 αs ds has Bernoulli distribution with parameter 1/2. Recalling

that the control process takes values in [0, 1], there exists some set E ∈ F such that αs(ω) = 1E(ω),
∀ (s, ω) ∈ [0, 1] × Ω. Since α is progressively measurable, E ∈ G; in other words, α depends only
on ω◦. It follows that the random variable

∫ 1
0 αs ds cannot be independent of ξ (and, a fortiori, of

(ξ,B1)), unless it is a constant. This contradicts the fact that
∫ 1
0 αs ds has Bernoulli distribution of

parameter 1/2 and proves that V (0, ξ) = 0.

In conclusion, under assumptions (AA,b,σ), (Af,g), (Af,g)cont, we can define the value function
v : [0, T ]× P2(C([0, T ];H)) → R as

v(t, µ) = V (t, ξ), ∀ (t, µ) ∈ [0, T ]× P2(C([0, T ];H)), (3.10)

for any ξ ∈ S2(F) with Pξ = µ. By Theorem 3.4 we immediately deduce the dynamic programming
principle for v.

Corollary 3.9. Suppose that (AA,b,σ), (Af,g), (Af,g)cont hold. The value function v satisfies
the dynamic programming principle: for every t, s ∈ [0, T ], with t ≤ s, and every µ ∈
P2(C([0, T ];H)) it holds that

v(t, µ) = sup
α∈U

{
E

[ ∫ s

t
fr
(
Xt,ξ,α,P

Xt,ξ,α
·∧r

, αr,Pαr

)
dr

]
+ v
(
s,PXt,ξ,α

)}
,

for any ξ ∈ S2(F) with Pξ = µ.

Remark 3.10. Recall from Remark 3.1 that V is non-anticipative, namely V (t, ξ) = V (t, ξ·∧t),
for every (t, ξ) ∈ [0, T ] × S2(F). As a consequence, the value function v satisfies the following
non-anticipativity property:

v(t, µ) = v(t, µ[0,t]),

for every (t, µ) ∈ [0, T ] × C([0, T ];H), where we denote by µ[0,t] the measure µ ◦
(
(xs)s∈[0,T ] 7→

(xs∧t)s∈[0,T ]

)−1
.

4 Pathwise derivatives in the Wasserstein space and Itô’s formula

This section is devoted to the proof of Itô’s formula for a real-valued function ϕ defined on [0, T ]×
P2(C([0, T ];H)). Such a formula involves the so-called pathwise derivatives in the Wasserstein space
that we now define. In the present section we substantially follow [73, Section 2] (see also [72]),
extending their framework to our more general setting with H being a real separable Hilbert space
(not necessarily a Euclidean space as in [73]).

4.1 Notations

In order to define the pathwise derivatives, we need to extend the canonical space C([0, T ];H) to the
space of càdlàg paths D([0, T ];H), which we endow with the Skorokhod topology (in what follows,
we denote paths in D([0, T ];H) using ·̂ in order to distinguish them from paths in C([0, T ];H); we
do the same with other mathematical objects). In order to introduce the Skorohod topology, we
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follow [15] and introduce the following metric on D([0, T ];H) (which corresponds to metric d◦ in
[15, formula (12.16)]):

dSk(x̂, ŷ) := inf
λ∈Λ

{
max

(
sup
s<t

s,t∈[0,T ]

∣∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣∣, sup
t∈[0,T ]

∣∣x̂t − ŷλ(t)
∣∣
H

)}
,

where Λ denotes the set of strictly increasing and continuous maps λ : [0, T ] → [0, T ], satisfying
λ(0) = 0 and λ(T ) = T . We recall from [15, Theorem 12.2] (in [15] the case H = R is consid-
ered, however the same proof applies to the general case of a real separable Hilbert space H) that
(D([0, T ];H), dSk) is a Polish space. Moreover, dSk induces on C([0, T ];H) the topology of the uni-
form convergence (see [15], p. 124), and C([0, T ];H) is a Borel subset of

(
D([0, T ];H), dSk

)
(apply

e.g. result number (2) at p. 67 in [37], with C = X =
(
C([0, T ];H), ‖ · ‖T

)
, Y =

(
D([0, T ],H), dSk

)
,

and as f take the canononical embedding). We define the spaces

H := [0, T ] × P2

(
C([0, T ];H)

)
, Ĥ := [0, T ]× P2

(
D([0, T ];H)

)
.

For every (t, µ) ∈ H , we denote by µ[0,t] the measure µ ◦
(
(xs)s∈[0,T ] 7→ (xs∧t)s∈[0,T ]

)−1
. We define

similarly µ̂[0,t], for every (t, µ̂) ∈ Ĥ . We then equip H and Ĥ with the following pseudo-distances,
respectively:

dH

(
(t, µ), (t′, µ′)

)
:=
(
|t− t′|2 +W2

(
µ[0,t], µ

′
[0,t′]

)2) 1
2
, (t, µ), (t′, µ′) ∈ H ,

d
Ĥ

(
(t, µ̂), (t′, µ̂′)

)
:=
(
|t− t′|2 + Ŵ2

(
µ̂[0,t], µ̂

′
[0,t′]

)2) 1
2
, (t, µ̂), (t′, µ̂′) ∈ Ĥ ,

where Ŵ2 is defined as (denoting D := D([0, T ];H))

Ŵ2(µ̂, µ̂
′) := inf

{∫

D×D
dSk(x̂, ŷ)

2 π̂(dx̂, dŷ) : π̂ ∈ P(D ×D)

such that π̂(· ×D) = µ̂ and π̂(D× ·) = µ̂′
} 1

2

,

for every µ̂, µ̂′ ∈ P2(D([0, T ];H)).

Remark 4.1. Notice that a function ϕ : H → R (resp. ϕ̂ : Ĥ → R) that is measurable with respect
to dH (resp. d

Ĥ
) satisfies the non-anticipativity property:

ϕ(t, µ) = ϕ(t, µ[0,t]), ∀ (t, µ) ∈ H
(
resp. ϕ̂(t, µ̂) = ϕ̂(t, µ̂[0,t]), ∀ (t, µ̂) ∈ Ĥ

)
.

Remark 4.2. Notice that there is a natural injection

i0 : P2

(
C([0, T ];H)

)
→ P2

(
D([0, T ];H)

)
, µ 7→ i0(µ)

where i0(µ)(E) = µ(E∩C([0, T ];H)) for all E Borel subset of D([0, T ];H). This induces an injection
i = H → Ĥ given by i(t, µ) = (t, i0(µ)). We claim that the restriction of d

Ĥ
to i(H ) × i(H )

gives rise to the same topology on i(H ) induced by dH through the injection i. Indeed, this is a
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consequence of the following property. Let {µn}n∈N ⊂ P2(C([0, T ];H)) and µ ∈ P2(C([0, T ];H)).
Then, denoting C := C([0, T ];H), it holds that

W2(µn, µ) := inf

{∫

C×C
‖x− y‖2T π(dx, dy) : π ∈ P(C×C), π(· ×C) = µn, π(C× ·) = µ

} 1
2 n→∞
−→ 0

if and only if (denoting D := D([0, T ];H))

Ŵ2(i0(µn), i0(µ))

:= inf

{∫

D×D
dSk(x̂, ŷ)

2 π̂(dx̂, dŷ) : π̂ ∈ P(D ×D), π̂(· ×D) = i0(µn), π̂(D× ·) = i0(µ)

} 1
2 n→∞
−→ 0.

To prove the latter equivalence we first observe that the above probability measure π̂ with marginals
i0(µn) and i0(µ) satisfies π̂(C× C) = 1. Then, the following equality holds:

Ŵ2(i0(µn), i0(µ)) = inf

{∫

C×C
dSk(x, y)

2 π(dx, dy) : π ∈ P(C×C), π(·×C) = µn, π(C×·) = µ

} 1
2

.

Now, we recall from [71, Definition 6.8 and Theorem 6.9]) that limn→∞W2(µn, µ) = 0 if and only
if for all continuous functions ϕ : (C([0, T ];H), ‖ · ‖T ) → R with |ϕ(x)| ≤ c(1 + ‖x‖2T ), c ∈ R, one
has ∫

C
ϕ(x)µn(dx)

n→∞
−→

∫

C
ϕ(x)µ(dx). (4.1)

Similarly, since (C([0, T ];H), dSk) is a Radon separable metric space5 (see [3, Definition 5.1.4]),

from the proof of Proposition 7.1.5. in [3] we deduce that limn→∞ Ŵ2(i0(µn), i0(µ)) = 0 if and only
if for all continuous functions ϕ : (C([0, T ];H), dSk) → R with |ϕ(x)| ≤ c(1+dSk(x, 0)

2), c ∈ R, one
has ∫

C
ϕ(x)µn(dx)

n→∞
−→

∫

C
ϕ(x)µ(dx). (4.2)

Hence, recalling that the Skorohod topology relativized to C([0, T ];H) coincides with the uniform
topology, it follows that the set of real-valued continuous functions on (C([0, T ];H), ‖ · ‖T ) coincides
with the set of real-valued continuous on (C([0, T ];H), dSk). Finally, concerning the subquadratic
growth, it holds that dSk(x, 0) = ‖x‖T , which shows that the class of functions involved in (4.1) and
(4.2) are the same.

We also introduce the lifted spaces

H := [0, T ]× L2
(
Ω;C([0, T ];H)

)
, Ĥ := [0, T ]× L2

(
Ω;D([0, T ];H)

)
.

Remark 4.3. To alleviate notation, in the present Section 4 we work on the same probability
space (Ω,F ,P) adopted in the rest of the paper. Notice however that, for the definition of pathwise
derivatives, (Ω,F ,P) can be replaced by any other probability space which supports a random variable
having uniform distribution on [0, 1]. See also Remark 2.2.

Finally, we introduce the following notation.

5This comes from the fact that such a space is topologically equivalent to the Polish space
(

C([0, T ];H), ‖ · ‖T
)

.
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Notation (Ntn
P̂
). For every ξ ∈ L2(Ω;C([0, T ];H)), we denote by P̂ξ the law of ξ on D([0, T ];H),

while we recall that Pξ denotes the law of ξ on C([0, T ];H). So, in particular, P̂ξ ∈ P2(D([0, T ];H)),

while Pξ ∈ P2(C([0, T ];H)). Clearly, it holds that P̂ξ(B) = Pξ(B), for every Borel subset B of

C([0, T ];H). Notice that in [73] the probability P̂ξ is denoted simply by Pξ (see the beginning of
Section 2.4 in [73]).

4.2 Pathwise derivatives for a map ϕ̂ : Ĥ → R and Itô’s formula

We start with the definition of pathwise time derivative for a map ϕ̂ : Ĥ → R.

Definition 4.4. Let ϕ̂ : Ĥ → R be a non-anticipative function. We say that ϕ̂ is pathwise differ-
entiable in time at (t, µ̂) ∈ Ĥ , with t < T , if the following limit exists and is finite:

∂tϕ̂(t, µ̂) := lim
δ→0+

ϕ̂(t+ δ, µ̂[0,t])− ϕ̂(t, µ̂)

δ
.

At time t = T , we define
∂tϕ̂(t, µ̂) := lim

t→T−
∂tϕ̂(t, µ̂),

when the limit exists and is finite. We refer to ∂tϕ̂ as the pathwise time derivative (or horizontal

derivative) of ϕ̂ at (t, µ̂). If ∂tϕ̂ exists everywhere as a function Ĥ → R, we refer to it as the
pathwise time derivative of ϕ̂.

Remark 4.5. Notice that ∂tϕ̂ is a non-anticipative function, namely ∂tϕ̂(t, µ̂) = ∂tϕ̂(t, µ̂[0,t]), for

every (t, µ̂) ∈ Ĥ .

In order to define the pathwise measure derivative, we need to consider the lifting of ϕ̂.

Definition 4.6. Given ϕ̂ : Ĥ → R, we say that Φ̂ : Ĥ → R is a lifting of ϕ̂ if

Φ̂(t, ξ̂) = ϕ̂(t,Pξ̂), ∀ (t, ξ̂) ∈ Ĥ,

where we recall that Pξ̂ stands for the law of the random variable ξ̂ ∈ L2(Ω;D([0, T ];H)).

Definition 4.7. Let Φ̂ : Ĥ → R be a non-anticipative function, namely Φ̂(t, ξ̂) = Φ̂(t, ξ̂·∧t), for
every (t, ξ̂) ∈ Ĥ. We say that Φ̂ is pathwise differentiable in space at (t, ξ̂) ∈ Ĥ if there exists
DΦ̂(t, ξ̂) ∈ L2(Ω;H) such that

lim
Y→0

∣∣∣Φ̂(t, ξ̂ + Y 1[t,T ])− Φ̂(t, ξ̂)− E
[
〈DΦ̂(t, ξ̂), Y 〉H

]∣∣∣
|Y |L2(Ω;H)

= 0.

We refer to DΦ̂(t, ξ̂) as the pathwise space derivative (or vertical derivative) of Φ̂ at (t, ξ̂). If
DΦ̂ exists everywhere as a function Ĥ → L2(Ω;H), we refer to it as the pathwise space derivative

of ϕ̂.

Remark 4.8. Notice that, if Φ̂ is pathwise differentiable in space at (t, ξ̂), then it is pathwise
differentiable in space at (t, ξ̂′) for every ξ̂′ ∈ L2(Ω;D([0, T ];H)) such that ξ̂t∧· = ξ̂′t∧· P-a.s., and,
in such a case, DΦ̂(t, ξ̂) = DΦ̂(t, ξ̂′) P-a.s.
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We can then give, similarly to [22, Definition 5.22], the following definition.

Definition 4.9. Let ϕ̂ : Ĥ → R be a non-anticipative function and (t, µ̂) ∈ Ĥ . We say that ϕ̂ is
pathwise differentiable in measure at (t, µ̂) if its lifting Φ̂ is pathwise differentiable in space at
some (t, ξ̂) ∈ Ĥ such that Pξ̂ = µ̂.

Moreover, we say that ϕ̂ admits pathwise measure derivative at (t, µ̂) if its lifting Φ̂ is
pathwise differentiable in space at every (t, ξ̂) ∈ Ĥ such that Pξ̂ = µ̂ and if there exists a masurable

function ĝ : D([0, T ];H) → H such that, for all (t, ξ̂) ∈ Ĥ with Pξ̂ = µ̂,

DΦ̂(t, ξ̂) = ĝ(ξ̂) P-a.s. (4.3)

The map ĝ (which is µ̂-a.s. uniquely determined) is called pathwise measure derivative of ϕ̂ at

(t, µ̂)6.
Finally, if ϕ̂ admits pathwise measure derivative at every (t, µ̂) ∈ Ĥ, then the function

∂µϕ̂ : Ĥ ×D([0, T ];H) −→ H, (t, µ̂, x̂) 7−→ ∂µϕ̂(t, µ̂, x̂)

such that, for every (t, ξ̂) ∈ Ĥ, ∂µϕ̂(t,Pξ̂, ·) is measurable and DΦ̂(t, ξ̂) = ∂µϕ̂(t,Pξ̂, ξ̂) P-a.s., is

called the pathwise measure derivative of ϕ̂7.

In the following lemma we state, under general conditions, the existence of the pathwise measure
derivative. In order to do it, we proceed similarly to what is done in [73, Section 2.3] (see also [22,
Section 5.3]) in the finite-dimensional case. The proof of the lemma is postponed in Appendix C.

Lemma 4.10. Fix (t, ξ̂) ∈ Ĥ. Let ϕ̂ : Ĥ → R be such that its lifting Φ̂ admits a continuous pathwise
space derivative DΦ̂ on the set {t} × Oξ̂, where Oξ̂ is a neighborhood of ξ̂ in L2(Ω;D([0, T ];H)).

Then, there exists a measurable function ĝ : D([0, T ];H) → H and

DΦ̂(t, ξ̂) = ĝ(ξ̂), P-a.s. (4.4)

Let ξ̂′ be such that Pξ̂′ = Pξ̂. If in addition Φ̂ admits a continuous pathwise space derivative on the

set {t} ×Oξ̂′ , with Oξ̂′ being a neighborhood of ξ̂′, then (4.4) holds true with ξ̂ replaced by ξ̂′.

Hence, if the pathwise space derivative DΦ̂(t, ξ̂) at (t, ξ̂) exists for every (t, ξ̂) ∈ Ĥ and if DΦ̂ is
continuous, then there exists the pathwise measure derivative ∂µϕ̂ of ϕ̂.

If in addition the map ∂µϕ̂(t, ·, ·) : P2(D([0, T ];H)) ×D([0, T ];H) → R is continuous for every
t ∈ [0, T ], then ∂µϕ̂ is uniquely defined.

Finally,assume that the pathwise space derivative DΦ̂ exists everywhere and is uniformly con-
tinuous. Then ∂µϕ̂ is measurable.

Remark 4.11 (Non-anticipativity property of ∂µϕ̂.). Let ϕ̂ : Ĥ → R be a non-anticipative
function. Suppose that there exists the pathwise measure derivative of ϕ̂. Then, thanks to Remark
4.8 and equality (4.3), ∂µϕ̂ is a non-anticipative function in the sense that, for every (t, ξ̂) ∈ Ĥ,

∂µϕ̂(t,Pξ̂)(ξ̂) = ∂µϕ̂(t, (Pξ̂)[0,t])(ξ̂·∧t) P-a.s.

6Notice that, if a function is pathwise differentiable in measure at some point and the related pathwise space
derivative is continuous (at least in a neighborhood), then it admits the pathwise measure derivative at that point,
see e.g. [21, Theorem 6.5] or [23, Proposition 5.25] in finite dimension and our Lemma 4.10. Without the continuity
assumption of the pathwise space derivative such a result is not obvious. See also [45].

7We stress the fact that ∂µϕ̂(t,Pξ̂, ·) is a-priori uniquely determined only Pξ̂-a.s.
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or, equivalently,
∂µϕ̂(t, µ̂)(x̂) = ∂µϕ̂(t, µ̂[0,t])(x̂·∧t), µ̂-a.e.

for every (t, µ̂, x̂) ∈ Ĥ ×D([0, T ];H).

Finally, we define the pathwise derivative of second-order ∂x∂µϕ̂.

Definition 4.12. Let ϕ̂ : Ĥ → R be a non-anticipative function and (t, µ̂) ∈ Ĥ . Suppose that:

1) there exists the pathwise measure derivative ∂µϕ̂;

2) for every t ∈ [0, T ], the map ∂µϕ̂(t, ·)(·) : P2(D([0, T ];H)) × D([0, T ];H) → H is continuous
(hence, by Lemma 4.10, ∂µϕ̂ is uniquely determined).

Given x̂ ∈ D([0, T ];H), we say that ϕ̂ is pathwise differentiable in measure and space at

(t, µ̂, x̂) if there exists an operator ∂x∂µϕ̂(t, µ̂)(x̂) ∈ L(H) such that

lim
h→0

∣∣∂µϕ̂(t, µ̂)(x̂+ h1[t,T ])− ∂µϕ̂(t, µ̂)(x̂)− ∂x∂µϕ̂(t, µ̂)(x̂)h
∣∣
H

|h|H
= 0.

We refer to ∂x∂µϕ̂(t, µ̂)(x̂) as the second-order pathwise derivative in measure and space of

ϕ̂ at (t, µ̂, x̂).
If ∂x∂µϕ̂ exists everywhere as function Ĥ ×D([0, T ];H) → L(H), we refer to it as the pathwise

derivative in measure and space of ϕ̂.

Remark 4.13. Recalling Remark 4.11, we see that ∂x∂µϕ̂ is a non-anticipative function, namely

it holds that ∂x∂µϕ̂(t, µ̂)(ξ̂) = ∂x∂µϕ̂(t, µ̂[0,t])(ξ̂·∧t), P-a.s., for every (t, ξ̂) ∈ Ĥ, with Pξ̂ = µ̂, or,
equivalently,

∂x∂µϕ̂(t, µ̂)(x̂) = ∂x∂µϕ̂(t, µ̂[0,t])(x̂·∧t), µ̂-a.e.

for every (t, µ̂, x̂) ∈ Ĥ ×D([0, T ];H).

Definition 4.14. We denote by C
1,2(Ĥ ) the set of non-anticipative functions ϕ̂ : Ĥ → R such

that:

1) the lifting Φ̂ of ϕ̂ admits a continuous pathwise space derivative DΦ̂ on Ĥ (hence, by Lemma 4.10,
there exists the pathwise measure derivative ∂µϕ̂);

2) ϕ̂, ∂µϕ̂ are continuous;

3) there exist the pathwise time derivative ∂tϕ̂, the second-order pathwise derivative in measure and
space ∂x∂µϕ̂, and ∂tϕ̂, ∂x∂µϕ̂ are continuous.

Definition 4.15. We denote by C
1,2
b (Ĥ ) the set of ϕ̂ ∈ C

1,2(Ĥ ) such that ϕ̂, ∂tϕ̂, ∂µϕ̂, ∂x∂µϕ̂
are bounded.

We end this section with the Itô formula. The proof is postponed in Appendix D.
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Theorem 4.16. Fix t ∈ [0, T ] and let ξ ∈ S2(F). Let also F : [0, T ] × Ω → H, G : [0, T ] × Ω →
L2(K;H) be square-integrable and F-progressively measurable processes, so, in particular,

∫ T

0
E[|Fs|

2
H ] ds <∞,

∫ T

0
E
[
Tr(GsG

∗
s)
]
ds <∞.

Consider the process X = (Xs)s∈[0,T ] given by8

Xs = ξs∧t +

∫ s∨t

t
Fr dr +

∫ s∨t

t
Gr dBr, ∀ s ∈ [0, T ]. (4.5)

If ϕ̂ : Ĥ → R is in C
1,2
b (Ĥ ), then the following Itô formula holds:

ϕ̂(s, P̂X·∧s) = ϕ̂(t, P̂ξ·∧t
) +

∫ s

t
∂tϕ̂(r, P̂X·∧r) dr +

∫ s

t
E

[
〈Fr, ∂µϕ̂(r, P̂X·∧r)(X·∧r)〉H

]
dr

+
1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂x∂µϕ̂(r, P̂X·∧r)(X·∧r)

)]
dr, (4.6)

for every s ∈ [t, T ] (for the definition of P̂X·∧r see (Ntn
P̂
)).

Remark 4.17. Proceeding along the same lines as in the proof of Theorem 4.16, it is possible
to prove Itô’s formula for a larger class of functions than C

1,2
b (Ĥ ), for example weakening the

boundedness assumption of ∂µϕ̂ by assuming linear growth with respect to ξ̂.

Remark 4.18. Following [73], we notice that in the last term of Itô’s formula (4.6) we can re-
place ∂x∂µϕ̂(r, P̂X·∧r)(X·∧r) by its symmetrization ∂sym

x ∂µϕ̂(r, P̂X·∧r)(X·∧r), where ∂sym
x ∂µϕ̂ : Ĥ ×

D([0, T ];H) → L(H) is defined as

∂sym
x ∂µϕ̂(t, µ̂)(x̂) :=

1

2

(
∂x∂µϕ̂(t, µ̂)(x̂) +

(
∂x∂µϕ̂(t, µ̂)(x̂)

)∗)
, (4.7)

for every (t, µ̂, x̂) ∈ Ĥ ×D([0, T ];H).
In the finite-dimensional case, it is proved in [23, Remark 5.98] that ∂x∂µϕ̂ is already symmetric.
Notice however that such a proof is quite involved and it is still an open problem to show that it
remains valid in the present infinite-dimensional framework.

4.3 Pathwise derivatives for a map ϕ : H → R and Itô’s formula

In the present section we use several times the notation (Ntn
P̂
), namely we use the superscript ·̂

to denote the natural extension to D([0, T ];H) of a probability measure on C([0, T ];H).

Definition 4.19. Given ϕ : H → R and a non-anticipative map ϕ̂ : Ĥ → R, we say that ϕ̂ is
consistent with ϕ if (for the definition of P̂ξ see (Ntn

P̂
))

ϕ(t,Pξ) = ϕ̂(t, P̂ξ), (4.8)

for every (t, ξ) ∈ H, with ξ ∈ S2(F) (namely, ξ ∈ L2(Ω;C([0, T ];H)) and it is F-progressively
measurable).

8In what follows, we will always implicitly refer to Itô processes only by continuous versions.
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Remark 4.20. Notice that we can replace S2(F) with S2(G) in Definition 4.19, as a matter of fact
the sets {Pξ : ξ ∈ S2(F)} and {Pξ : ξ ∈ S2(G)} are equal and coincide with P2(C([0, T ];H)), as it
follows from property (AG)-ii). This also shows that equality (4.8) characterizes ϕ in terms of ϕ̂
for every pair (t, µ) ∈ H .

Next result is crucial in order to define pathwise derivatives for a map ϕ : H → R, as it states
a consistency property for the pathwise derivatives themselves.

Lemma 4.21. Let ϕ̂1, ϕ̂2 ∈ C
1,2
b (Ĥ ). If (for the definition of P̂ξ see (Ntn

P̂
))

ϕ̂1(t, P̂ξ) = ϕ̂2(t, P̂ξ), ∀ (t, ξ) ∈ H, with ξ ∈ S2(F),

then

∂tϕ̂1(t, P̂ξ) = ∂tϕ̂2(t, P̂ξ), (4.9)

∂µϕ̂1(t, P̂ξ)(ξ) = ∂µϕ̂2(t, P̂ξ)(ξ), P-a.s. (4.10)

∂sym
x ∂µϕ̂1(t, P̂ξ)(ξ) = ∂sym

x ∂µϕ̂2(t, P̂ξ)(ξ), P-a.s. (4.11)

for every (t, ξ) ∈ H, with ξ ∈ S2(F), where ∂sym
x ∂µϕ̂ is defined by (4.7).

Proof. See Appendix E.

Remark 4.22. We do not address here the consistency property of ∂x∂µϕ̂ (for hints on its proof we
refer to [73], see the paragraph just after Theorem 2.9), as Itô’s formula (and hence the Hamilton-
Jacobi-Bellman equation) only depends on ∂sym

x ∂µϕ̂, see Remark 4.18.

Remark 4.23. By the non-anticipativity property of the pathwise derivatives (see Remarks 4.5,
4.11, 4.13), it follows that equalities (4.9)-(4.10)-(4.11) hold if and only if

∂tϕ̂1(t, P̂ξ·∧t
) = ∂tϕ̂2(t, P̂ξ·∧t

),

∂µϕ̂1(t, P̂ξ·∧t
)(ξ·∧t) = ∂µϕ̂2(t, P̂ξ·∧t

)(ξ·∧t), P-a.s.

∂sym
x ∂µϕ̂1(t, P̂ξ·∧t

)(ξ·∧t) = ∂sym
x ∂µϕ̂2(t, P̂ξ·∧t

)(ξ·∧t), P-a.s.

for every (t, ξ) ∈ H, with ξ ∈ S2(F).

Using Lemma 4.21, we can now define the class C
1,2
b (H ).

Definition 4.24. We denote by C
1,2(H ) (respectively C

1,2
b (H )) the set of maps ϕ : H → R for

which there exists ϕ̂ : Ĥ → R such that ϕ̂ is consistent with ϕ and ϕ̂ ∈ C
1,2(Ĥ ) (respectively

C
1,2
b (Ĥ )). Then, we define (for the definition of P̂ξ see (Ntn

P̂
))

∂tϕ(t,Pξ) := ∂tϕ̂(t, P̂ξ),

∂µϕ(t,Pξ)(·) := ∂µϕ̂(t, P̂ξ)(·),

∂sym
x ∂µϕ(t,Pξ)(·) := ∂sym

x ∂µϕ̂(t, P̂ξ)(·),

for every (t, ξ) ∈ H, with ξ ∈ S2(F).

We can finally state the Itô formula.
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Theorem 4.25. Fix t ∈ [0, T ] and let ξ ∈ S2(F). Let also F : [0, T ] × Ω → H, G : [0, T ] × Ω →
L2(K;H) be square integrable and F-progressively measurable process, so, in particular,

∫ T

0
E[|Fs|

2
H ] ds <∞,

∫ T

0
E
[
Tr(GsG

∗
s)
]
ds <∞.

Consider the process X = (Xs)s∈[0,T ] given by

Xs = ξs∧t +

∫ s∨t

t
Fr dr +

∫ s∨t

t
Gr dBr, ∀ s ∈ [0, T ].

If ϕ : H → R is in C
1,2
b (H ), then the following Itô formula holds:

ϕ(s,PX·∧s) = ϕ(t,Pξ·∧t
) +

∫ s

t
∂tϕ(r,PX·∧r) dr +

∫ s

t
E [〈Fr, ∂µϕ(r,PX·∧r)(X·∧r)〉H ] dr

+
1

2

∫ s

t
E [Tr (GrG

∗
r∂x∂µϕ(r,PX·∧r)(X·∧r))] dr, (4.12)

for every s ∈ [t, T ].

Proof. By Definition 4.24 there exists ϕ̂ : Ĥ → R such that ϕ̂ is consistent with ϕ and ϕ̂ ∈
C

1,2
b (Ĥ ). As a consequence, by Theorem 4.16 we have the Itô formula

ϕ̂(s, P̂X·∧s) = ϕ̂(t, P̂ξ·∧t
) +

∫ s

t
∂tϕ̂(r, P̂X·∧r) dr +

∫ s

t
E

[
〈Fr, ∂µϕ̂(r, P̂X·∧r)(X·∧r)〉H

]
dr

+
1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂x∂µϕ̂(r, P̂X·∧r)(X·∧r)

)]
dr,

for every s ∈ [t, T ]. Using the fact that ϕ̂ is consistent with ϕ and recalling the definition of pathwise
derivatives of ϕ (see Definition 4.24), we obtain the claimed Itô formula for ϕ.

In order to apply Itô’s formula to our case we need the following variant of Theorem 4.25 (for a
similar result, see Proposition 1.165 in [35]).

Theorem 4.26. Fix t ∈ [0, T ] and let ξ ∈ S2(F) (namely, ξ ∈ L2(Ω;C([0, T ];H)) and it is F-
progressively measurable). Let A, b, σ be as in Assumption (AA,b,σ). Let X = Xt,ξ,α be the unique

mild solution of (2.4). Let ϕ : H → R belong to C
1,2
b (H ). Assume also that, for all (t, µ, x) ∈

H × C([0, T ];H), ∂µϕ(t, µ)(x) ∈ D(A∗) and that the map

H × C([0, T ];H) −→ H (t, µ, x) 7−→ A∗∂ϕµ(t, µ)(x)

is continuous and bounded 9. Then the following variant of Itô formula holds:

ϕ(s,PX·∧s) = ϕ(t,Pξ·∧t
) +

∫ s

t
∂tϕ(r,PX·∧r ) dr +

∫ s

t
E [〈Xr, A

∗∂µϕ(r,PX·∧r)(X·∧r)〉H ] dr

+

∫ s

t
E [〈br (X,PX·∧r , αr,Pαr) , ∂µϕ(r,PX·∧r)(X·∧r)〉H ] dr (4.13)

+
1

2

∫ s

t
E [Tr (σr (X,PX·∧r , αr,Pαr) σ

∗
r (X,PX·∧r , αr,Pαr) ∂x∂µϕ(r,PX·∧r)(X·∧r))] dr,

for every s ∈ [t, T ].
9Indeed, in view of (2.5) here we could ask only linear growth of ∂µϕ in x
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Proof. The proof can be done proceeding along the same lines as in the proof of Proposition 1.165
in [35]. We provide a sketch of proof.
First of all if A is a bounded operator from Theorem 4.25 we immediately get (4.13). Now take A
possibly unbounded and consider its Yosida approximations An, for n ∈ N. Call, as in (2.7), Xn

the solution of the state equation when A is replaced by An. Then, from (4.13) we get

ϕ(s,PXn
·∧s

) = ϕ(t,Pξ·∧t
) +

∫ s

t
∂tϕ(r,PXn

·∧r
) dr +

∫ s

t
E
[
〈Xn

r , A
∗
n∂µϕ(r,PXn

·∧r
)(Xn

·∧r)〉H
]
dr

+

∫ s

t
E
[
〈br
(
Xn,PXn

·∧r
, αr,Pαr

)
, ∂µϕ(r,PXn

·∧r
)(Xn

·∧r)〉H
]
dr

+
1

2

∫ s

t
E
[
Tr
(
σr
(
Xn,PXn

·∧r
, αr,Pαr

)
σ∗r
(
Xn,PXn

·∧r
, αr,Pαr

)
∂x∂µϕ(r,PXn

·∧r
)(Xn

·∧r)
)]
dr,

for every s ∈ [t, T ]. Now the convergence of all terms above follows applying, in a straightforward
way, the result of Proposition 2.10.

5 Hamilton-Jacobi-Bellman equation

5.1 Viscosity properties of the value function

For every t ∈ [0, T ], we introduce the set

Mt :=
{
a : Ω → U: a is Ft-measurable

}
.

Note that, since the filtration Ft is right-continuous, we have Mt = ∩ε>0Mt+ε. We now consider
the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = ∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H

+ sup
a∈Mt

{
E
[
ft
(
ξ, µ, a,Pa

)
+
〈
bt
(
ξ, µ, a,Pa

)
, ∂µw(t, µ)(ξ)

〉
H

]
(5.1)

+
1

2
E

[
Tr
(
σt
(
ξ, µ, a,Pa

)
σ∗t
(
ξ, µ, a,Pa

)
∂x∂µw(t, µ)(ξ)

)]}
,

for (t, µ) ∈ H , t < T , ξ ∈ S2(G) such that Pξ = µ, with terminal condition

w(T, µ) = E[g(ξ, µ)], for µ ∈ P2(C([0, T ];H)), ξ ∈ S2(G) such that Pξ = µ. (5.2)

Definition 5.1. We say that a function w : H → R belongs to the space C
1,2
b,A∗(H ) if it satisfies

the following regularity assumptions:

(i) w : H → R belongs to C
1,2
b (H );

(ii) for all (t, µ, ξ) ∈ H × S2(F), ∂µϕ(t, µ)(ξ) ∈ L
2(Ω;D(A∗)) and the map

H × S2(F) −→ L2(Ω;H), (t, µ, ξ) 7−→ A∗ϕ(t, µ)(ξ)

is continuous and bounded.
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Definition 5.2. We say that a function w : H → R is a classical solution to the HJB equation
(5.1) with terminal condition (5.2), if it belongs to the space C

1,2
b,A∗(H ) and satisfies (5.1)-(5.2).

Using Theorem 4.26 and Corollary 3.9 we are able to prove the following result.

Theorem 5.3. Let Assumptions (AA,b,σ) and (Af,g)cont hold. Assume also that b, σ, f are uni-
formly continuous in t, uniformly with respect to the other variables. Assume that the value function
v (see (3.10)) belongs to the space C

1,2
b,A∗(H ). Then v is a classical solution of (5.1)-(5.2).

Proof. From Corollary 3.9 we know that, for every (t, µ) ∈ H , for every ξ ∈ S2(F) such Pξ = µ,
for every α ∈ U , and for every h > 0 sufficiently small,

0 = sup
α∈U

{
E

[
1

h

∫ t+h

t
fr
(
X,PX·∧r , αr,Pαr

)
dr

]
+

1

h

[
v
(
t+ h,PX

)
− v(t, µ)

] }
, (5.3)

where, for simplicity, we wrote simply X in place of Xt,ξ,α. Now we use (4.13) getting

1

h

[
v
(
t+ h,PXt,ξ,α

)
− v(t, µ)

]
=

1

h

∫ t+h

t
∂tv(r,PX·∧r ) dr +

1

h

∫ t+h

t
E [〈Xr, A

∗∂µv(r,PX·∧r )(X·∧r)〉H ] dr

+
1

h

∫ t+h

t
E [〈br (X,PX·∧r , αr,Pαr) , ∂µv(r,PX·∧r )(X·∧r)〉H ] dr (5.4)

+
1

2h

∫ t+h

t
E [Tr (σr (X,PX·∧r , αr,Pαr)σ

∗
r (X,PX·∧r , αr,Pαr) ∂x∂µv(r,PX·∧r )(X·∧r))] dr,

We now show, as in the typical proof of this result, the two inequalities. First take any a ∈ Mt and
consider the control α ∈ U defined as

αs = 0, s ∈ [0, t), αs = a, s ∈ [t, T ]

Then, from (5.3) and (5.4) we get

0 ≥
1

h

∫ t+h

t
Efr

(
X,PX·∧r , a,Pa

)
dr +

1

h

∫ t+h

t
∂tv(r,PX·∧r ) dr

+
1

h

∫ t+h

t
E [〈Xr, A

∗∂µv(r,PX·∧r )(X·∧r)〉H ] dr

+
1

h

∫ t+h

t
E [〈br (X,PX·∧r , a,Pa) , ∂µv(r,PX·∧r )(X·∧r)〉H ] dr (5.5)

+
1

2h

∫ t+h

t
E [Tr (σr (X,PX·∧r , a,Pa)σ

∗
r (X,PX·∧r , a,Pa) ∂x∂µv(r,PX·∧r)(X·∧r))] dr,

Using the regularity of v and the continuity properties of b, σ, f we get, passing to the limit for
h→ 0+

0 ≥ ∂tv(t, µ) + E〈ξt, A
∗∂µv(t, µ)(ξ)〉HE

[
ft
(
ξ, µ, a,Pa

)
+
〈
bt
(
ξ, µ, a,Pa

)
, ∂µv(t, µ)(ξ)

〉
H

]

+
1

2
E

[
Tr
(
σt
(
ξ, µ, a,Pa

)
σ∗t
(
ξ, µ, a,Pa

)
∂x∂µv(t, µ)(ξ)

)]
(5.6)
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Then the inequality ≥ follows by the arbitrariness of a. We now prove the opposite inequality. For
every ε > 0 we take αε ∈ U such that, denoting by Xε the corresponding state trajectory,

− ε ≤ E

[
1

ε

∫ t+ε

t
fr
(
Xε,PXε

·∧r
, αε

r,Pαε
r

)
dr

]
+

1

ε

[
v
(
t+ ε,PXε

)
− v(t, µ)

] }
, (5.7)

Now we apply Ito’s formula (5.4) above, for h = ε, getting

− ε ≤ E

[
1

ε

∫ t+ε

t
fr
(
Xε,PXε

·∧r
, αε

r,Pαε
r

)
dr

]
+

1

ε

∫ t+ε

t
∂tv(r,PXε

·∧r
) dr

+
1

ε

∫ t+ε

t
E
[
〈Xε

r , A
∗∂µv(r,PXε

·∧r
)(Xε

·∧r)〉H
]
dr

+
1

ε

∫ t+ε

t
E
[
〈br
(
Xε,PXε

·∧r
, αr,Pαr

)
, ∂µv(r,PXε

·∧r
)(Xε

·∧r)〉H
]
dr (5.8)

+
1

2ε

∫ t+ε

t
E
[
Tr
(
σr
(
Xε,PXε

·∧r
, αr,Pαr

)
σ∗r
(
Xε,PXε

·∧r
, αr,Pαr

)
∂x∂µv(r,PXε

·∧r
)(Xε

·∧r)
)]
dr,

By Remark 2.9 we obtain that, as ε → 0, Xε
·∧r → ξ·∧t and PXε

·∧r
→ Pξ·∧t

, hence the second and
third integrals of the above right-hand side converge to

∂tv(t, µ) + E [〈ξt, A
∗∂µv(t, µ)(ξ)〉H ]

The remaining integrals of the right-hand side of (5.8) can be rewritten as

1

ε

∫ t+ε

t

(
E
[
fr
(
Xε,PXε

·∧r
, αε

r,Pαε
r

)
+ 〈br

(
Xε,PXε

·∧r
, αr,Pαr

)
, ∂µv(r,PXε

·∧r
)(Xε

·∧r)〉H
]

(5.9)

E
[
Tr
(
σr
(
Xε,PXε

·∧r
, αr,Pαr

)
σ∗r
(
Xε,PXε

·∧r
, αr,Pαr

)
∂x∂µv(r,PXε

·∧r
)(Xε

·∧r)
)])

dr

Recall now that, by our assumptions, b and σ are uniformly continuous in (t, x, µ) uniformly with
respect to the other variables and that f is locally uniformly continuous in (x, µ) uniformly with
respect to the other variables. Hence, using again Remark 2.9 we obtain that (5.9) can be rewritten
as

1

ε

∫ t+ε

t

(
E
[
ft
(
ξ, µ, αε

r,Pαε
r

)
+ 〈bt (ξ, µ, αr,Pαr) , ∂µv(t, µ)(ξ)〉H

]
(5.10)

E [Tr (σt (ξ, µ, αr,Pαr) σ
∗
r (ξ, µ, αr,Pαr) ∂x∂µv(t, µ)(ξ))]

)
dr + ρ(ε)

where ρ(ε) → 0 as ε→ 0. It follows

0 ≤ ε+ ρ(ε) + ∂tv(t, µ) + E〈ξt, A
∗∂µv(t, µ)(ξ)〉H

+ sup
a∈Mt+ε

{
E
[
ft
(
ξ, µ, a,Pa

)
+
〈
bt
(
ξ, µ, a,Pa

)
, ∂µv(t, µ)(ξ)

〉
H

]
(5.11)

+
1

2
E

[
Tr
(
σt
(
ξ, µ, a,Pa

)
σ∗t
(
ξ, µ, a,Pa

)
∂x∂µv(t, µ)(ξ)

)]}

The conclusion then follows invoking the second part of Lemma F.2.
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Now, we provide the definition of viscosity solution that we shall use.

Definition 5.4. We say that a function w : H → R is a viscosity subsolution (respectively super-
solution) to the HJB equation (5.1) with terminal condition (5.2), if:

• w(T, µ) ≤ (respectively ≥)E[g(ξ, µ)], for µ ∈ P2(C([0, T ];H)), ξ ∈ S2(G) such that Pξ = µ;

• for (t, µ) ∈ H and for every test function ϕ ∈ C
1,2
b,A∗(H ) such that w− ϕ has a maximum at

(t, µ) (with value 0), one has that (5.1)-(5.2) is satisfied with the inequality ≤ (respectively ≥)
in place of the equality and with ϕ in place of w.

Moreover, w is called a viscosity solution of (5.1)-(5.2) if it is both a viscosity subsolution and a
viscosity supersolution.

Theorem 5.5. Let Assumptions (AA,b,σ) and (Af,g)cont hold. Assume also that b, σ, f are uni-
formly continuous in t, uniformly with respect to the other variables. Then, the value function v is
a viscosity solution of (5.1)-(5.2).

Proof. The proof follows exactly the same lines as in the proof of Theorem 5.3, simply replacing v
with ϕ.

5.2 Alternative forms of the HJB equation

We derive alternative forms of the Hamilton-Jacobi-Bellman equation (5.1) relying on technical
results reported in Appendix F. We first need to introduce the following sets:

• MG is the set
MG :=

{
a : Ω → U: a is G-measurable

}
;

• M̌ is the set of Borel-measurable maps ǎ : C([0, T ];H) × [0, 1] → U;

• M is the set of Borel-measurable maps a: C([0, T ];H) → U.

The technical results reported in Appendix F provides the following key proposition.

Proposition 5.6. Suppose that (AA,b,σ) and (Af,g) hold. Let (t, µ) ∈ H , w ∈ C
1,2
b (H ), and

define F : C([0, T ];H)×U× P(U) → R by

F (x, u, ν) := ft(x, µ, u, ν) +
〈
bt(x, µ, u, ν), ∂µw(t, µ)(x)

〉
H

+
1

2
Tr
(
σt(x, µ, u, ν)σ

∗
t (x, µ, u, ν)∂x∂µw(t, µ)(x)

)
,

for every (x, u, ν) ∈ C([0, T ];H) ×U× P(U). Let also ξ ∈ S2(G) with Pξ = µ.

1) Suppose that ξ is such that there exists a G-measurable random variable Uξ having uniform
distribution on [0, 1] and being independent of ξ (by Lemma F.1 we know that for each µ there
exist at least one ξ, with Pξ = µ, satisfying this property). Then, it holds that

sup
a∈Mt

E
[
F
(
ξ, a,Pa

)]
= sup

a∈MG

E
[
F
(
ξ, a,Pa

)]
= sup

ǎ∈M̌

E
[
F
(
ξ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)]
. (5.12)
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2) Suppose that F does not depend on its last argument, namely F = F (x, u). Then, it holds that

sup
a∈Mt

E
[
F
(
ξ, a
)]

= sup
a∈M

E
[
F (ξ, a(ξ))

]
= E

[
ess sup
u∈U

F (ξ, u)
]
. (5.13)

Proof. Equalities (5.12) are a direct consequence of Lemma F.2, while (5.13) follows directly from
equalities (F.4) and (F.5) of Lemma F.3.

Remark 5.7. Notice that the requirement that F does not depend on ν in item 2) of Proposition
5.6 is necessary for the validity of the first equality in (5.13) (we do not consider the second equality
in (5.13) in this case, as it is not clear how to write the last quantity in (5.13) when F depends also
on ν). As a matter of fact, consider the following example.
Example. Take U = [0, 1], endowed with its Borel σ-algebra, and let F be given by

F (x, u, ν) = −W2(ν, λ), ∀ (x, u, ν) ∈ C([0, T ];H) × [0, 1] × P([0, 1]),

with λ being the Lebesgue measure on the unit interval. Let also ξ be constant and identically equal
to some fixed path x̄ ∈ C([0, T ];H). Moreover, denote by UG a G-measurable random variable having
distribution λ, whose existence follows from Lemma 2.1. Then, for every t ∈ [0, T ],

sup
a∈Mt

(
−W2

(
Pa, λ

))
= 0

and the supremum is attained at a∗, where a∗ := UG. On the other hand, if a ∈ M then a(ξ) is
equal to the constant a(x̄), so, in particular, Pa(ξ) = δa(x̄). This implies that

sup
a∈M

(
−W2(Pa(ξ), λ)

)
= sup

c∈[0,1]

(
−W2(δc, λ)

)
= − inf

c∈[0,1]

(∫ 1

0
|c− r|2 dr

) 1
2

= − inf
c∈[0,1]

√
c2 − c+

1

3
= −

1

12
.

Remark 5.8. Suppose that F = F (x, u) and define F ∗ : C([0, T ];H) → R ∪ {+∞} as

F ∗(x) := sup
u∈U

F (x, u), ∀x ∈ C([0, T ];H).

If F ∗ is measurable, then ess supu∈U F (ξ, u) = F ∗(ξ), P-a.s., and the essential supremum appearing
in (5.13) can be replaced with the supremum, so that we obtain

sup
a∈Mt

E
[
F (ξ, a)

]
= E

[
sup
u∈U

F (ξ, u)
]
.

Notice that, under assumptions (AA,b,σ) and (Af,g), it follows from Proposition 7.47 in [11] that
F ∗ is lower semi-analytic (see Definition 7.21 in [11] for the definition of lower semi-analytic).
However, we cannot in general say that F ∗ is measurable (see for instance the discussion at the end
of Section B.5 in [11]). Sufficient conditions ensuring the measurability of F ∗ are given for instance
in Proposition 7.32 of [11] and read as follows:

(a) If F : C([0, T ];H) × U → R is lower semi-continuous and U is compact, then F ∗ is lower
semi-continuous.
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(b) If F : C([0, T ];H) ×U → R is upper semi-continuous, then F ∗ is upper semi-continuous.

It follows from Proposition 5.6 that, under (AA,b,σ) and (Af,g), the Hamilton-Jacobi-Bellman equa-
tion (5.1) can also be written in the following two alternative forms:





∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H

+ supa∈MG

{
E
[
ft
(
ξ, µ, a,Pa

)
+
〈
bt
(
ξ, µ, a,Pa

)
, ∂µw(t, µ)(ξ)

〉
H

]

+
1

2
E

[
Tr
(
σt
(
ξ, µ, a,Pa

)
σ∗t
(
ξ, µ, a,Pa

)
∂x∂µw(t, µ)(ξ)

)]}
= 0, (t, µ) ∈ H , t < T,

w(T, µ) = E[g(ξ, µ)], µ ∈ P2(C([0, T ];H)),

(5.14)

or, alternatively,





∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H + supǎ∈M̌

{
E
[
ft
(
ξ, µ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)

+
〈
bt
(
ξ, µ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)
, ∂µw(t, µ)(ξ)

〉
H

]

+
1

2
E

[
Tr
(
σtσ

∗
t

(
ξ, µ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)
∂x∂µw(t, µ)(ξ)

)]}
= 0, (t, µ) ∈ H , t < T,

w(T, µ) = E[g(ξ, µ)], µ ∈ P2(C([0, T ];H)),

(5.15)

where, in both (5.14) and (5.15), ξ ∈ S2(G), with Pξ = µ, is such that there exists a G-measurable
random variable Uξ having uniform distribution on [0, 1] and being independent of ξ (we recall that,
by Lemma F.1, for each µ there exists at least one ξ, with Pξ = µ, satisfying this latter property).

Now, suppose that (AA,b,σ), (Af,g) hold and also that the coefficients b, σ, f do not depend on
their last argument (namely, b = bt(x, µ, u), σ = σt(x, µ, u), f = ft(x, µ, u)). Then, by Proposition
5.6 we deduce that the Hamilton-Jacobi-Bellman equation (5.1) can also be written in the following
two alternative forms:




∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H

+supa∈M

{
E
[
ft
(
ξ, µ, a(ξ)

)
+
〈
bt
(
ξ, µ, a(ξ)

)
, ∂µw(t, µ)(ξ)

〉
H

]

+
1

2
E

[
Tr
(
σt
(
ξ, µ, a(ξ)

)
σ∗t
(
ξ, µ, a(ξ)

)
∂x∂µw(t, µ)(ξ)

)]}
= 0, (t, µ) ∈ H , t < T,

w(T, µ) = E[g(ξ, µ)], µ ∈ P2(C([0, T ];H)),

(5.16)

for every ξ ∈ S2(G) with Pξ = µ, or, alternatively:





∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H

+E

[
ess supu∈U

[
ft(ξ, µ, u) +

〈
bt(ξ, µ, u), ∂µw(t, µ)(ξ)

〉
H

+
1

2
Tr
(
σt(ξ, µ, u)σ

∗
t (ξ, µ, u)∂x∂µw(t, µ)(ξ)

)]]
= 0, (t, µ) ∈ H , t < T,

w(T, µ) = E[g(ξ, µ)], µ ∈ P2(C([0, T ];H)),

(5.17)

for every ξ ∈ S2(G) with Pξ = µ.
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Remark 5.9. In the case of the optimal investment problem outlined in Example 2.12-(ii) and in
Remark 3.2, equation (3.2), the HJB equation can be written as follows (here we explicitly write that
the production Q depends on the state process ξt and on its distribution µ):





∂tw(t, µ) + E〈ξt, A
∗∂µw(t, µ)(ξ)〉H

+E

[
e−rtR(Q(t, ξt, µ) + δ(ξ, µ) 〈ξt, ∂µw(t, µ)(ξ)〉H

+ess supu∈U

[
〈Cu, ∂µw(t, µ)(ξ)〉H − e−rt(〈a1, u〉H + 〈Mu,u〉H)

]

+
1

2
σ2Tr

(
∂x∂µw(t, µ)(ξ)

)]
= 0, (t, µ) ∈ H , t < T,

w(T, µ) = E[g(ξ, µ)], µ ∈ P2(C([0, T ];H)),

(5.18)

for every ξ ∈ S2(G) with Pξ = µ. Note that in the above case the ess sup appearing in the Hamiltonian
can be explicitly computed.

A State equation: proofs

We collect in the following lemma some continuity results for contractions in Banach spaces that
we will use to obtain the needed continuity properties of the mild solution to the state equation.

Lemma A.1. Let R be a non-empty set, T be a topological space, (M,d) be a metric space, Y be
a Banach space, γ ∈ [0, 1). Let w be a modulus of continuity. Let h : R× T ×M × Y → Y be such
that:

|h(r, x,m, y) − h(r, x,m′, y′)| ≤ w(d(m,m′)) + γ|y − y′|, ∀ r ∈ R, x ∈ T , m,m′ ∈M, y, y′ ∈ Y.

Let E ⊂ 2R be a set of subsets of R. Assume that, if {xι}ι∈I ⊂ T is a net converging to x ∈ T ,
then

lim
ι

sup
r∈E

|h(r, xι,m, y)− ϕ(r, x,m, y)| = 0, ∀m ∈M, y ∈ Y, E ∈ E .

Denote by ϕ : R × T ×M → Y the fixed-point map associated with h, i.e. ϕ is the unique map
satisfying

h(r, x,m,ϕ(r, x,m)) = ϕ(r, x,m), ∀ r ∈ R, x ∈ T , m ∈M.

Then, given a net {xι}ι∈I ⊂ T converging to x, it holds that

lim
ι

sup
r∈E

|ϕ(r, xι,m)− ϕ(r, x,m′)| ≤
1

1− γ
w(d(m,m′)), ∀m,m′ ∈M, E ∈ E . (A.1)

Proof. Write

|ϕ(r, xι,m)− ϕ(r, x,m′)| = |h(r, xι,m, ϕ(r, xι,m))− h(r, x,m′, ϕ(r, x,m′))|

≤ |h(r, xι,m, ϕ(r, xι,m))− h(r, xι,m, ϕ(r, x,m
′))|

+ |h(r, xι,m, ϕ(r, x,m
′))− h(r, x,m,ϕ(r, x,m′))|

+ |h(r, x,m,ϕ(r, x,m′))− h(r, x,m′, ϕ(r, x,m′))|

≤ γ|ϕ(r, xι,m)− ϕ(r, x,m′)|

+ |h(r, xι,m, ϕ(r, x,m
′))− h(r, x,m,ϕ(r, x,m′))|+ w(d(m,m′)).
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Then

sup
r∈E

|ϕ(r, xι,m)− ϕ(r, x,m′)| ≤
1

1− γ
sup
r∈E

|h(r, xι,m, ϕ(r, x,m
′))− h(r, x,m,ϕ(r, x,m′))|

+
1

1− γ
w(d(m,m′))

and the claim follows taking the limit with respect to ι.

Proof of Proposition 2.8. The proof is based, as usual, on a contraction argument. We in-
troduce the space L2

F
(H) (resp. L2

F
(L2(K;H))) of all square-integrable F-progressively measur-

able processes on [0, T ] taking values in H (resp. L2(K;H)), normed respectively by ‖X‖L2
F
(H) :=(

E
[ ∫ T

0 |Xs|
2
Hds

])1/2
and ‖Φ‖L2

F
(H) :=

(
E
[ ∫ T

0 |Φs|
2
L2(K;H)ds

])1/2
. For the sake of brevity, in what

follows we will denote St := eAt, bαt (X,PX) := bt(X,PX , αt,Pαt), σ
α
t (X,PX) := σt(X,PX , αt,Pαt).

For t ∈ [0, T ] and α ∈ U , let us define

idSt : S2(F) → S2(F), ξ 7→ ξ·1[0,t](·) + S·−tξt1(t,T ](·)

Fbα : S2(F) → L2
F(H), X 7→ bα· (X,PX)

Fσα : S2(F) → L2
F(L2(K;H)), X 7→ σα· (X,PX)

S ⋆t #: L2
F(H) → S2(F), X 7→ 1[t,T ](·)

∫ ·

t
S·−sXsds

S
dB

⋆t #: L2
F(L2(K;H)) → S2(F), Φ 7→ 1[t,T ](·)

∫ ·

t
S·−sΦsdBs.

(A.2)

We briefly explain why the functions above are well-defined. Regarding idSt , it holds that

idSt (ξ) = ξ·∧t + 1(t,T ](·)(S·−t − I)ξt, (A.3)

which clearly shows that idSt (ξ) ∈ S2(F). Regarding Fbα , due to the measurability assumptions on
b, we have that Fbα(X) is progressively measurable. Moreover, recalling Assumption (AA,b,σ)-(iii),
we have

‖Fbα(X)‖2L2
F
(H) ≤ 3L2

E

[∫ T

0

(
1 + 2‖X‖2t

)
dt

]
<∞. (A.4)

In the same way, we obtain the measurability of Fσα(X) and

‖Fσα(X)‖2L2
F
(H) ≤ 3L2

E

[∫ T

0

(
1 + 2‖X‖2t

)
dt

]
<∞. (A.5)

Regarding S ⋆t X, for X ∈ L2
F
(H), it is not difficult to see that it is continuous, F-adapted, and

that
‖S ⋆t X‖2S2

≤ e2η(T−t)(T − t)‖X‖2L2
F
(H). (A.6)

Finally, regarding S
dB

⋆t Φ, for Φ ∈ L2
F
(L2(K;H)), by [35, Theorem 1.111] we know that the F-

adapted process
{
1[t,T ](t

′)
∫ t′

t St′−sΦsds
}
t′∈[0,T ]

admits a continuous version, that we name S
dB

⋆t Φ,

and that
‖S

dB

⋆t Φ‖S2 ≤ Cη,T ‖Φ‖L2
F
(L2(K;H)), (A.7)

36



where Cη,T is a constant depending only on η, T .
We now define the map

ψ : U × [0, T ]× S2(F)× S2(F) → S2(F)

by

ψ(α, t, ξ,X) = idSt (ξ) + S ⋆t Fbα(X) + S
dB

⋆t Fσα(X), ∀ (α, t, ξ,X) ∈ U × [0, T ]× S2(F)× S2(F).

Claim I. For fixed ξ,X ∈ S2(F), ψ(α, t, ξ,X) is continuous in t, uniformly in α ∈ U .
The continuity of t 7→ idSt (ξ) follows from Lebesgue’s dominated convergence theorem and the fact
that, for every fixed ω ∈ Ω, idSt′(ξ)(ω) converges uniformly to idSt (ξ)(ω) as t′ → t.
Moreover, for t′, t ∈ [0, T ], t′ < t, we have

S ⋆t′ Fbα(X)− S ⋆t Fbα(X) = 1[t′,t](·)

∫ ·

t′
S·−sFbα(X)sds+ 1[t,T ](·)

∫ t

t′
S·−sFbα(X)sds.

Then

‖S ⋆t′ Fbα(X)− S ⋆t Fbα(X)‖T ≤ 2eηT
∫ t

t′
|Fbα(X)s|Hds.

This implies, recalling Assumption (AA,b,σ)(iii),

sup
α∈U

lim
|t′−t|→0

‖S ⋆t′ Fbα(X)− S ⋆t Fbα(X)‖S2 = 0.

Finally, take again t′, t ∈ [0, T ], t′ < t. Then

S
dB

⋆t′ Fσα(X) − S
dB

⋆t Fσα(X) = 1[t′,t](·)

∫ ·

t′
S·−sFσα(X)sdBs + 1[t,T ](·)

∫ t

t′
S·−sFσα(X)sdBs.

By [35, Theorem 1.111], we have

‖S
dB

⋆t′ Fσα(X)− S
dB

⋆t Fσα(X)‖2S2
≤ C ′

η,T ‖1[t′,t]Fσα(X)‖2L2
F
(H)

and then, after recalling Assumption (AA,b,σ)(iii),

sup
α∈U

lim
|t′−t|→0

‖S
dB

⋆t′ Fσα(X)− S
dB

⋆t Fσα(X)‖S2 = 0.

Claim II. ψ(α, t, ξ,X) is Lipschitz continuous in ξ, uniformly in t,X, α.
For α ∈ U , t ∈ [0, T ], ξ, ξ′ ∈ S2(F), X ∈ S2(F), we have

‖ψ(α, t, ξ,X) − ψ(α, t, ξ′,X)‖2S2
= ‖idSt (ξ − ξ′)‖2S2

≤ 2(1 + eηT )‖ξ − ξ′‖2S2
.

Now, for a, b ∈ [0, T ], a < b, let us consider the restriction of ψ to the time interval [a, b] and stopped
at time b, namely

ψa,b : U × [a, b]× S2(F)× S2(F) → S2(F), (α, t, ξ,X) 7→ ψ(α, t, ξ,X)b∧·

Claim III. There exists ε > 0 such that, if b − a ≤ ε, then ψa,b(α, t, ξ,X) is a contraction in X,
uniformly in α, t, ξ, a, b, namely: for some γ ∈ [0, 1),

‖ψa,b(α, t, ξ,X)b∧· − ψa,b(α, t, ξ,X
′)b∧·‖S2 ≤ γ‖X −X ′‖S2 ,
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for all α ∈ U , t ∈ [a, b], (ξ,X,X ′) ∈ S2(F)
3 and for all a, b ∈ [0, T ], a < b, b− a ≤ ε.

Let a, b ∈ [0, T ], a < b, t ∈ [a, b], α ∈ U , ξ ∈ S2(F), X,X
′ ∈ S2(F). Notice that

ψ(α, t, ξ,X) − ψ(α, t, ξ,X ′) = S ⋆t
(
Fbα(X)− Fbα(X

′)
)
+ S

dB

⋆t
(
Fσα(X) − Fσα(X ′)

)
(A.8)

and
‖ψa,b(α, t, ξ,X) − ψa,b(α, t, ξ,X

′)‖T = ‖ψ(α, t, ξ,X) − ψ(α, t, ξ,X ′)‖b. (A.9)

Moreover, recalling Assumption (AA,b,σ)-(iii), we have

‖S ⋆t
(
Fbα(X) − Fbα(X

′)
)
‖2b ≤ e2ηT

(∫ b

a

∣∣Fbα(X)s − Fbα(X
′)s
∣∣ ds
)2

≤ 2L2e2ηT (b− a)2
(
‖X −X ′‖2T +W2

2 (PX ,PX′)
)
.

Then
E
[
‖S ⋆t

(
Fbα(X) − Fbα(X

′)
)
‖2b
]

≤ 4L2e2ηT (b− a)2‖X −X ′‖S2 . (A.10)

By [35, Theorem 1.111] there exists a constant Cη,T , depending only on η, T , such that

E

[
‖S

dB

⋆t
(
Fσα(X) − Fσα(X ′)

)
‖2b

]
≤ C2

η,TE

[∫ b

a
‖Fσα(X)s − Fσα(X ′)s‖

2
L2(K;H)ds

]

≤ 4L2C2
η,T (b− a)‖X −X ′‖2S2

,

(A.11)

where for the last inequality we have used Assumption (AA,b,σ)-(iii) again. By (A.8), (A.9), (A.10),
and (A.11), we have, if b− a < 1,

‖ψa,b(α, t, ξ,X) − ψa,b(α, t, ξ,X
′)‖S2 ≤ CL,η,T (b− a)1/2‖X −X ′‖S2 ,

where CL,η,T is a constant depending only on L, η, T . We can then choose ε ∈ (0, 1) such that
CL,η,T ε

1/2 < 1/2. Then the map ψa,b(α, t, ξ, ·) is a 1/2-contraction, uniformly in α, t, ξ and in
a, b ∈ [0, T ], whenever a < b, b− a ≤ ε.

Claim IV. For ε > 0 as in Claim III, and whenever a, b ∈ [0, T ], a < b, b − a ≤ ε, there exists a
unique mild solution10 Xt,ξ,α to equation (2.4) on the interval [a, b], for any α ∈ U , t ∈ [a, b], ξ ∈
S2(F).
Let ε be as in Claim III. Then, for any α, t, ξ, by the Banach contraction principle, there exists a
unique fixed point Xt,ξ,α to ψa,b(α, t, ξ, ·). Clearly Xt,ξ,α is a mild solution to (2.4) on the interval
[a, b].

Claim V. For ε as in Claim III, and uniformly for a, b ∈ [0, T ], a < b, b− a ≤ ε, the map

ϕa,b : U × [a, b]× S2(F) → S2(F), (α, t, ξ) 7→ Xt,ξ,α (A.12)

is continuous in (t, ξ), uniformly in α, and Lipschitz-continuous in ξ, uniformly in α, t.
Let ε be as in Claim III. We apply Lemma A.1 with R = U , T = [a, b], M = S2(F), Y = S2(F),
E = 2R. Then, by Claims I,II,III, we get

lim
t→t′
t∈[a,b]

sup
α∈U

‖ϕa,b(α, t, ξ) − ϕa,b(α, t
′, ξ′)‖S2 ≤ 4(1 + eηT )1/2‖ξ − ξ′‖S2 , ∀ t′ ∈ [a, b], ξ, ξ′ ∈ S2.

10We say that Xt,ξ,α is a mild solution on the interval [a, b] if equation (2.4) is solved in the mild sense for s ∈ [a, b].
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Claim VI. For any α ∈ U , t ∈ [0, T ], ξ ∈ S2(F), there exists a unique mild solution Xt,ξ,α to (2.4),
and the map

ϕ : U × [0, T ] × S2(F) → S2(F), (α, t, ξ) 7→ Xt,ξ,α (A.13)

is continuous in t, ξ, uniformly in α, and Lipschitz continuous in ξ, uniformly in t, α.
Pick ε > 0 as in Claim III. Choose a0 = 0 < a1 < . . . < an = T with ai+1 − ai ≤ ε. Define

ϕ̂ai : U × [ai, T ]× S2(F) → U × [ai, T ]× S2(F)

by ϕ̂ai(α, t, ξ) = (α, ai+1, ϕai,ai+1(α, t, ξ)) if t ∈ [ai, ai+1] and ϕ̂ai(α, t, ξ) = (α, t, ξai+1∧·) if t > ai+1.
If we now define ϕ(α, t, ξ) to be the second component of

ϕ̂an

(
ϕ̂an−1 (. . . ϕ̂a1 (ϕa0(α, t, ξ)) . . .)

)
,

we can easily check, thanks to Claim V, that ϕ(α, t, ξ) is the unique mild solution Xt,ξ,α to (2.4),
and the map (A.13) has the desired regularity properties.

Claim VII. Xt,ξ,α = Xt,ξt∧·,α.
This is due to the fact that, for any α ∈ U , a, b ∈ [0, T ], a < b, t ∈ [a, b], ξ ∈ S2(F),X ∈ S2(F),

ψa,b(α, t, ξ,X) = ψa,b(α, t, ξt∧·,X).

Hence, the unique fixed point of ψa,b(α, t, ξ, ·) has be the same of ψa,b(α, t, ξt∧·, ·).

Claim VIII. There exists a constant C such that

‖Xt,ξ,α‖S2 ≤ C(1 + ‖ξt∧·‖S2), ∀ t ∈ [0, T ], ξ ∈ S2, α ∈ U .

Due to Claim VI, we only need to show that

sup
α∈U ,t∈[0,T ]

‖Xt,0,α‖S2 <∞. (A.14)

We have, by using (A.4), (A.5), (A.6), (A.7), with T replaced with t′ ∈ [0, T ],

E
[
‖Xt,0,α‖2t′

]
≤ 2

(
‖S ⋆t

(
1[0,t′]Fbα(X

t,0,α)
)
‖2S2

+ ‖S
dB

⋆t
(
1[0,t′]Fσα(Xt,0,α)

)
‖2S2

)

≤ 2
(
3L2e2ηTT + 3L2C2

η,T

) ∫ t′

0
(1 + 2E

[
‖Xt,0,α‖2s

]
)ds.

An application of Gronwall’s inequality yields

E
[
‖Xt,0,α‖2t′

]
≤ C, ∀ t′ ∈ [0, T ],

for some C independent of α, t, which proves (A.14) and then (2.5), after recalling Claim VII.

Proof of Proposition 2.10. For α ∈ U , let Fbα , Fσα be as in (A.2). Then, let idS
n

t , Sn ⋆t #, S
n dB

⋆t
# be defined as in (A.2) by replacing S with Sn. Denote N = N ∪ {∞}. Let us now define

ψ̃ : U × N× [0, T ] × S2(F)× S2(F) → S2(F)

by

ψ̃(α, n, t, ξ,X) = idS
n

t (ξ) + Sn ⋆t Fbα(X) + Sn dB

⋆t Fσα(X),
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for all α ∈ U , n ∈ N, t ∈ [0, T ], ξ ∈ S2(F),X ∈ S2(F), where we set S∞ := S. Let

ψ̃a,b(α, n, t, ξ,X) = ψ̃(α, n, t, ξ,X)b∧·

whenever a, b ∈ [0, T ], a < b, t ∈ [a, b]. Due to the uniform boundedness of the Yosida approxima-
tion, and by arguing as in the proof of Claims II,III of Proposition 2.8, one can show that

ψ̃(α, n, t, ξ,X) is Lipschitz continuous in ξ, uniformly in α, n, t,X. Moreover, there
exists ε > 0 such that, if b − a < ε, then ψ̃a,b(α, n, t, ξ,X) is a contraction in X,
uniformly in α, n, t, ξ, a, b.

(A.15)

Now we show that, for α ∈ U , t′ ∈ [0, T ], ξ,X ∈ S2(F),

lim
t→t′
n→∞

‖ψ̃(α, n, t, ξ,X) − ψ̃(α,∞, t′, ξ,X)‖S2 = 0. (A.16)

First, notice that, for P-a.e. ω ∈ Ω, the range of ξ(ω) is compact. Since Sn
t x → Stx uniformly

for t ∈ [0, T ] and x ∈ K, whenever K ⊂ H is compact, an application of Lebesgue’s dominated
convergence theorem provides

lim
n→∞

‖idS
n

t′ (ξ)− idSt′(ξ)‖S2(F) = 0, ∀ t′ ∈ [0, T ], ξ ∈ S2(F).

Secondly, for α ∈ U ,X ∈ S2(F), after defining

fn(r) = sup
t∈[0,T ]

|(Sn
t − St)br(X,PX , αr,Pαr)|

2,

we have, by Lebesgue’s dominated convergence theorem,

lim
n→∞

‖Sn ⋆t′ Fbα(X)− S ⋆t′ Fbα(X)‖2S2
= lim

n→∞
E

[
sup

t∈[t′,T ]

∣∣∣∣
∫ t

t′

(
Sn
t−r − St−r

)
br(X,PX , αr,Pαr)dr

∣∣∣∣
2
]

≤ lim
n→∞

E

[∫ T

t′
fn(r)dr

]
= 0.

Thirdly, by [35, Proposition 1.112], we have

lim
n→∞

‖Sn dB

⋆t′ Fσα(X)− S
dB

⋆t′ Fσα(X)‖S2(F) = 0, ∀α ∈ U , t ∈ [0, T ], X ∈ S2(F).

Putting together the above partial results, we get

lim
n→∞

‖ψ̃(α, n, t′, ξ,X) − ψ̃(α,∞, t′, ξ,X)‖S2 = 0.

Then, to prove (A.16), it is enough to show that

lim
t→t′

sup
n∈N

‖ψ̃(α, n, t, ξ,X) − ψ̃(α, n, t′, ξ,X)‖S2 = 0.

But this can be obtained by arguing as in the proof of Claim I of Proposition 2.8, due to the uniform
boundedness ‖Sn

t ‖L(H) ≤ eη̃t, for n ∈ N, t ≥ 0.
Now, for any small ε as in (A.15), and when a, b ∈ [0, T ], a < b, b− a < ε, denote by

ϕ̃a,b : U × N× [a, b]× S2(F) → S2(F), (α, n, t, ξ) 7→ Xn,t,ξ,α
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the fixed-point map associated with ψ̃a,b (similarly as done for ψa,b, ϕa,b in the proof of Proposi-
tion 2.8). Notice that Xn,t,ξ,α is the unique mild solution of (2.7) (resp. (2.4)), when n ∈ N (resp.
n = ∞), on the interval [a, b]. Thanks to (A.15) and (A.16), we can apply Lemma A.1 with R = U ,
T = N× [a, b], M = S2(F), Y = S2(F), E = {{α}}α∈U , and obtain

sup
n∈N
t∈[a,b]

‖ϕ̃a,b(α, n, t, ξ) − ϕ̃a,b(α, n, t, ξ
′)‖S2 ≤ C‖ξ − ξ′‖S2 , ∀α ∈ U , ξ, ξ′ ∈ S2(F), (A.17)

and
lim
t→t′
t∈[a,b]
n→∞

‖ϕ̃a,b(α, n, t, ξ) − ϕ̃a,b(α,∞, t′, ξ)‖S2 = 0, ∀α ∈ U , (A.18)

for some constant C, uniformly for a, b ∈ [0, T ], a < b, b− a < ε, t′ ∈ [a, b]. To conclude the proof
it is enough to use (A.17) and (A.18) iteratively, recalling the relation between the mild solution
on the subinterval [a, b] ⊂ [0, T ] and the global mild solution on [0, T ] (arguing as in the proof of
Claim VI of Proposition 2.8, simply replacing [ai, T ] with N× [ai, T ]).

B Law invariance property of V : technical results

In the present appendix we prove three technical results that are needed in the proof of the law
invariance property (Theorem 3.6). The first technical result corresponds to Theorem 6.10 in [59].
For the convenience of the reader, we restate it here using the notation adopted in the paper and
in the form needed for the proof of Theorem 3.6.

Lemma B.1. Consider a probability space (Ω̂, F̂ , P̂), a measurable space (E,E ), a Borel space
(U,U ). Consider also two random variables Γ: Ω̂ → E and α : Ω̂ → U. Suppose that there
exists a random variable Û : Ω̂ → R, having uniform distribution on [0, 1], such that Γ and Û are
independent. Then, there exists a measurable function a: E × [0, 1] → U satisfying

(
Γ, a(Γ, Û )

) L
Ω̂=
(
Γ, α

)
,

where
L

Ω̂= stands for equality in law (between random objects defined on (Ω̂, F̂ , P̂)).

Proof. See Theorem 6.10 in [59].

Before stating next result, we introduce the following notation. For every t ∈ [0, T ], let F
B,t =

(FB,t
s )s≥0 be the P-completion of the filtration generated by (Bs∨t−Bt)s≥0. Let also Prog(FB,t) be

the σ-algebra of [0, T ]×Ω of all FB,t-progressive sets (recall that a set C ⊂ [0, T ]×Ω is called F
B,t-

progressive if the corresponding indicator function 1C is an F
B,t-progressively measurable process;

notice that the family of all FB,t-progressive sets is a σ-algebra).

Lemma B.2. Let t ∈ [0, T ], α ∈ U , ξ ∈ S2(F), with ξ being B([0, T ])⊗Ft-measurable. Suppose that
there exists an Ft-measurable random variable Uξ, having uniform distribution on [0, 1] and being
independent of ξ. Then, there exists a measurable function

a:
(
[0, T ]× Ω×C([0, T ];H) × [0, 1], P rog(FB,t)⊗ B ⊗ B([0, 1])

)
−→ (U,U )
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such that (as(ξ, Uξ))s∈[0,T ] ∈ U , as(·, ·) is constant for every s < t, moreover

(
(ξs)s∈[0,T ], (as(ξ, Uξ))s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
L
=
(
(ξs)s∈[0,T ], (αs)s∈[t,T ], (Bs −Bt)s∈[t,T ]

)
, (B.1)

where
L
= stands for equality in law (between random objects defined on (Ω,F ,P)).

Proof. Denote
Ω̂ = [0, T ] ×Ω, F̂ = B([0, T ])⊗F , P̂ = λT ⊗ P,

with λT being the uniform distribution on ([0, T ],B([0, T ])). Then, consider the canonical extension
of Uξ to Ω̂, which will be denoted by Ûξ (notice that Ûξ has uniform distribution on [0, 1] and
is independent of ξ). Let also (Ē, Ē ) be the measurable space defined as: Ē = [0, T ] × Ω and
Ē = Prog(FB,t). Then, let IB,t : Ω̂ → Ē be the identity map. Finally, define Γ = (IB,t, ξ).
Notice that Γ is a random variable taking values in the measurable space (E,E ), with E = Ē ×
C([0, T ];H) = [0, T ] × Ω × C([0, T ];H) and E = Ē ⊗ B = Prog(FB,t)⊗ B. We also observe that
Γ and Ûξ are independent. We can then apply Lemma B.1, from which it follows the existence of a
map ā : [0, T ]×Ω×C([0, T ];H)× [0, 1] → U, measurable with respect to the σ-algebra Prog(FB,t)⊗
B ⊗ B([0, 1]), such that

(
Γ, ā(Γ, Ûξ)

) L
Ω̂=
(
Γ, α

)
,

where LΩ̂ stands for equality in law between random objects defined on (Ω̂, F̂ , P̂). Then, we deduce

(
(ξs)s∈[0,T ], (ās(ξ, Uξ))s∈[0,T ], (Bs −Bt)s∈[t,T ]

)
L
=
(
(ξs)s∈[0,T ], (αs)s∈[0,T ], (Bs −Bt)s∈[t,T ]

)
,

where we recall that L stands for equality in law between random objects defined on (Ω,F ,P).
Finally, let a: [0, T ]× Ω× C([0, T ];H) × [0, 1] → U be the map given by

as(ω, x, u) = u0 1[0,t)(s) + ās(ω, x, u)1[t,T ](s), ∀ (s, ω, x, u) ∈ [0, T ]× Ω× C([0, T ];H) ×U,

where u0 ∈ U is arbitrarily chosen. We have that (as(ξ, Uξ))s∈[0,T ] is F-progressively measurable
(here we use that as(·, ·) is constant for every s < t, ξ is B([0, T ]) ⊗ Ft-measurable and Uξ is
Ft-measurable). So, in particular, (as(ξ, Uξ))s∈[0,T ] ∈ U and equality (B.1) holds.

Lemma B.3. Let t ∈ [0, T ] and ξ ∈ S2(F), with ξ being B([0, T ]) ⊗ Ft-measurable. Suppose that
there exists {x1, . . . , xm} ⊂ C([0, T ];H), with xi 6= xj if i 6= j, such that

Pξ =

m∑

i=1

pi δxi
,

where δxi
is the Dirac measure at xi and pi > 0, with

∑m
i=1 pi = 1. Then, there exists an Ft-

measurable random variable Uξ having uniform distribution on [0, 1] and being independent of the
Ft-measurable map

ξ̃ : Ω → C([0, T ];H), ω 7→ ξ(ω).

Proof. We recall from Lemma 2.1 that there exists a G-measurable (so, in particular, Ft-measurable)
random variable UG with uniform distribution on [0, 1]. If UG is independent of ξ̃, then we take
Uξ = UG , otherwise we proceed as follows. Denote

Ei :=
{
ω ∈ Ω: ξ(ω) = xi

}
, ∀ i = 1, . . . ,m.

42



Since ξ is B([0, T ])⊗Ft-measurable, it follows that each Ei belongs to Ft. Now, for each i = 1, . . . ,m,
define the function Fi : [0, 1] → [0, 1] as follows

Fi(r) := P
(
{UG ≤ r} ∩ Ei

)
, ∀ r ∈ [0, 1].

Notice that Fi satisfies the following properties:

• Fi is a non-decreasing function;

• Fi is continuous;

• Fi(0) = 0 and Fi(1) = P(Ei) = pi > 0.

For every i = 1, . . . ,m ed n ∈ N, define

ri, k
2n

:= min

{
r ∈ [0, 1] : Fi(r) =

k

2n
pi

}
, k = 1, . . . , 2n.

Then, for each n ∈ N define the random variable Xn : Ω → R as

Xn(ω) :=

m∑

i=1

2n−1∑

k=1

1{
r
i,

2k−1
2n

<UG≤r
i, 2k

2n

}
∩Ei

(ω), ∀ω ∈ Ω.

Notice that {Xn}n is a sequence of independent and identically distributed Bernoulli random vari-
ables of parameter 1/2. In addition, {Xn}n and ξ̃ are independent. Then, consider the random
variable Uξ : Ω → R given by

Uξ :=

∞∑

n=1

1

2n
Xn.

We have that Uξ and ξ̃ are independent. Finally, it follows for instance from Lemma 3.20 in [59]
that the random variable Uξ has uniform distribution on [0, 1].

C Pathwise measure derivative: law invariance property

We devote this appendix to extend a useful result (firstly proved in [21, Section 6.1] in the case of
the set R

d) to the case of the set C([0, T ];H). More precisely, our aim is to prove that DΦ̂(t, ξ̂)
only depends on the law of ξ̂. Here we substantially follow the idea of [72] and [73, Section 2.3].
However, since our setting is more general, we present the full proof.

C.1 The discrete case

We first consider the case where the random variable ξ̂ takes a countable number of values. We
assume the following.

Assumption (Aξ). Consider a sequence {x̂i}i∈N ⊂ D([0, T ];H), x̂i 6= x̂j if i 6= j. We assume that

the random variable ξ̂ has law

Pξ̂ =

N∑

i=1

piδx̂i

where N ∈ N \ {0}, δx̂i
denotes the Dirac measure at x̂i and pi > 0, with

∑N
i=1 pi = 1.
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Lemma C.1. Let (t, ξ̂) ∈ Ĥ, with ξ̂ as in Assumption (Aξ). Let ϕ̂ : Ĥ → R be such that its lifting Φ̂

is pathwise differentiable in space at (t, ξ̂). Then there exists a measurable function ĝ : D([0, T ],H) →
H such that ĝ(ξ̂) ∈ L2(Ω;H) and

DΦ̂(t, ξ̂) = ĝ(ξ̂) . (C.1)

The function ĝ can be defined by ĝ(x̂) := 0 if x̂ 6∈ {x̂i}i=1,...,N , and

〈ĝ(x̂i), h〉H := p−1
i E

[〈
DΦ̂(t, ξ̂), h1ξ̂−1(x̂i)

〉
H

]

= lim
ε→0+

1

εpi

[
ϕ̂

(
t,

∑

j=1,...,N
j 6=i

pjδx̂j
+ piδx̂i+εh1[t,T ]

)
− ϕ̂

(
t,

N∑

j=1

pjδx̂j

)]
, (C.2)

for all h ∈ H and i = 1, . . . , N .

Proof. Fix i = 1, . . . , N and h ∈ H,h 6= 0. Take any measurable set A′ ⊂ Ai := {ξ̂ = x̂i} and set
η̂ := h1A′ ∈ L2

(
Ω;H). Notice that, for any ε > 0 we have

Pξ̂+εη̂ =
∑

j 6=i

pjδx̂j
+ P(A′)δx̂i+εh1[t,T ]

+
(
pi − P(A′)

)
δx̂i

which depends only on Pξ̂ and on P(A′). We get

E

[ 〈
DΦ̂(t, ξ̂), h1A′

〉
H

]

= lim
ε→0+

ϕ̂
(
t,
∑

j 6=i

pjδx̂j
+ P(A′)δx̂i+εh1[t,T ]

+
(
pi − P(A′)

)
δx̂i

)
−ϕ̂
(
t,

N∑

j=1

pjδx̂j

)

ε
. (C.3)

Notice that the map
H × L2(Ω;R) −→ L2(Ω;H), (h, ζ) 7−→ ζh

is bilinear and continuous, hence

Λ: H × L2(Ω;R) −→ R, (h, ζ) 7−→ E[〈DΦ̂(t, ξ̂), ζh〉H ]

is a bilinear and continuous form. By the Riesz representation theorem, there exists a (unique)
linear and continuous map

T : H −→ L2(Ω;R)

representing Λ, namely

Λ(h, ζ) = E[〈DΦ̂(t, ξ̂), ζh〉H ] = E [T (h)ζ] ∀ (h, ζ) ∈ H × L2(Ω;R). (C.4)

By (C.4) and (C.3), it follows that E[〈DΦ̂(t, ξ̂), h1A′〉H ] = E [T (h)1A′ ] depends only on the law of
ξ̂ and on P(A′) for every measurable A′ ⊂ {ξ̂ = x̂i}. Recall from Lemma 2.1 that the probability
space (Ω,F ,P) supports a random variable with uniform distribution on [0, 1]. We can then apply
Lemma 2 of [72], getting that T (h) is P-a.s. constant on {ξ̂ = x̂i}. For i = 1, . . . , N , define the map
ψi : H → R by

ψi(h) :=
1

pi
E[T (h)1Ai

], ∀h ∈ H.
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Then ψi(h) = T (h), P-a.s. on Ai. Notice that, by the very definition of ψi and the linearity of Λ,
we have

N∑

i=1

ψi(h)E[ζ1Ai
] =

N∑

i=1

E[T (h)ζ1Ai
] =

N∑

i=1

Λ(h, ζ1Ai
) = Λ(h, ζ) = E[〈DΦ̂(t, ξ̂), hζ〉H ],

for all h ∈ H, ζ ∈ L2(Ω;R). The linearity and continuity of T entails ψi ∈ H ′. Therefore, it can be
identified to some φi ∈ H. Define ĝ : D([0, T ];H) → H by

ĝ(x̂) :=

N∑

i=1

φi δx̂i
(x̂) ∀ x̂ ∈ D([0, T ];H).

Notice that, P-a.s. on Ω and for all h ∈ H,

〈ĝ(ξ̂), h〉H =

〈 N∑

i=1

φi δx̂i
(ξ̂), h

〉

H

=

〈 N∑

i=1

φi 1Ai
, h

〉

H

=

N∑

i=1

ψi(h)1Ai
=

N∑

i=1

T (h)1Ai
= T (h). (C.5)

Now let Y :=
∑M

k=1 ak1Bk
be a simple function, where M ∈ N, ak ∈ H,Bk ∈ F . By (C.5) it follows

E[〈DΦ̂(t, ξ̂), Y 〉H ] =

M∑

k=1

E[〈DΦ̂(t, ξ̂), ak1Bk
〉H ] =

M∑

k=1

E [T (ak)1Bk
] (C.6)

=

M∑

k=1

E

[
〈ĝ(ξ̂), ak〉H1Bk

]
= E

[
〈ĝ(ξ̂), Y 〉H

]
.

Since (C.6) holds for any simple function Y , we conclude

DΦ̂(t, ξ̂) = ĝ(ξ̂) P-a.s.

which is (C.1). Finally, (C.2) comes from (C.1) and (C.3).

C.2 The general case

Proof of Lemma 4.10. We proceed by approximation. For n ∈ N, let {Dn
i }i∈N be a partition of

D([0, T ];H) made by Borel sets such that diamdSk
(Dn

i ) < 2−n. Such a partition exists because of
the separability of (D([0, T ];H), dSk). For i ∈ N, choose dni ∈ Dn

i . Define, for every n ∈ N,

ζ̂n :=
∑

i∈N

dni 1Dn
i
(ξ̂).

Then dSk(ξ̂(ω), ζ̂n(ω)) ≤ 2−n for all ω ∈ Ω and all n ∈ N. Therefore ζ̂n ∈ L2(Ω;D([0, T ],H)) and
ζ̂n → ξ̂ uniformly. By a diagonal argument, we can choose Nn ∈ N such that the sequence {ξ̂n}n∈N,
defined by

ξ̂n :=
Nn∑

i=1

dni 1Dn
i
(ξ̂) (C.7)
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converges to ξ̂ both P-a.s. and in L2(Ω;D([0, T ];H)). By Lemma C.1, there exists for each n a
function ĝn : D([0, T ];H) → H such that

ĝn(ξ̂n) ∈ L2(Ω;H) and DΦ̂(t, ξ̂n) = ĝn(ξ̂n). (C.8)

Define

g̃n :=

Nn∑

i=1

ĝn (d
n
i )1Dn

i
.

Notice that ĝn(ξ̂n) = g̃n(ξ̂). Then, by (C.8) and by continuity of DΦ̂(t, ·) in a neighborhood of ξ̂, we
have g̃n(ξ̂) → DΦ̂(t, ξ̂) in L2(Ω;H). Let {g̃nk

(ξ̂)}k be a subsequence converging P-a.s. to DΦ̂(t, ξ̂).
Define

S :=
{
x̂ ∈ D([0, T ];H) : {g̃nk

(x̂)}k is convergent
}
,

and ĝ : D([0, T ];H) → H by ĝ := 1S limk g̃nk
. Clearly ĝ is measurable. Notice that P(ξ̂ ∈ S) = 1,

then
lim
k→∞

g̃nk
(ξ̂) = ĝ(ξ̂) P-a.s. in D([0, T ];H) (C.9)

which provides ĝ(ξ̂) = DΦ̂(t, ξ̂).
Finally, if ξ̂′ is distributed as ξ̂, then we can perform exactly the same steps by replacing ξ̂, ξ̂n

by ξ̂′, ξ̂′n and by choosing the same Nn in (C.7) and then the same g̃n, ĝ. Moreover, P(ξ̂′ ∈ S) = 1 as
well. Then (C.9) holds with the same ĝ and with ξ̂ replaced by ξ̂′, which entails ĝ(ξ̂′) = DΦ̂(t, ξ̂′).

The remaining part of the proof goes exactly as in the proof of Corollary 2.3 of [73].

D Proof of Itô’s formula

Proof of Theorem 4.16. Let ξ, ϕ̂ be as in the statement. In what follows, we will tacitly make
use of the non-anticipative property of ϕ̂ and of its derivatives. Let t ∈ [0, T ), s ∈ (t, T ]. For n ∈ N,
let

tn−1 := t, tnk := t+
k

n
(s− t) ∀ k = 1, . . . , n

and Xn =
∑n

k=1Xtn
k−1

1[tn
k−1,t

n
k
). Clearly E [‖Xn‖T ] <∞. Observe that

Xn
tn
k
∧· = Xn

tn
k−1∧·

+ (Xn
tn
k
−Xn

tn
k−1

)1[tn
k
,T ] ∀ k = 1, . . . , n. (D.1)

By continuity of X, we clearly have

lim
n→∞

sup
r∈[0,T ]

‖Xr(ω)−Xn
r (ω)‖H = 0 ∀ω ∈ Ω. (D.2)

Denote
Xn,θ,k = Xn

tn
k−1∧·

+ θ(Xn
tn
k
−Xn

tn
k−1

) ∀θ ∈ [0, 1]. (D.3)

By continuity of X, if n → ∞ and if {kn}n∈N ⊂ N is a sequence such that kn ∈ {1, . . . , n} and
tnkn → r in [t, s], then

lim
n→∞

sup
θ∈[0,1]

‖Xr∧·(ω)−Xn,θ,kn
tkn∧·

(ω)‖T = 0 ∀ω ∈ Ω. (D.4)
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Consider the difference ϕ̂(s,Xn)− ϕ̂(t,Xn), written as

ϕ̂(s, P̂Xn)− ϕ̂(t, P̂Xn) =

n∑

k=1

(
ϕ̂(tnk , P̂Xn)− ϕ̂(tnk , P̂Xn

tn
k−1

∧·
)

)

+

n∑

k=1

(
ϕ̂(tnk , P̂Xn

tn
k−1

∧·
)− ϕ̂(tnk−1, P̂Xn)

)
.

(D.5)

Let us firt take in consideration the quantity ϕ̂(tnk , P̂Xn)− ϕ̂(tnk , P̂Xn
tn
k−1

∧·
). By (D.1) and by the the

fact that ϕ̂ ∈ C
1,2
b (Ĥ ), we have

ϕ̂(tnk , P̂Xn)− ϕ̂(tnk , P̂Xn
tn
k−1

∧·
) =Φ̂(tnk ,X

n)− Φ̂(tnk ,X
n
tn
k−1∧·

)

=

∫ 1

0
E

[
〈DΦ̂

(
tnk ,X

n,θ,k,
)
,Xn

tn
k
−Xn

tn
k−1

〉
]
dθ

=

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
,Xn

tn
k
−Xn

tn
k−1

〉
]
dθ

=(after recalling (4.5))

=

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
,

∫ tn
k

tn
k−1

Frdr〉

]
dθ

+

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

=I
n,k
F + I

n,k
B .

(D.6)

Observe that, by the boundedness assumption on ∂µϕ̂ and the integrability assumption on F , we

can commute the integral
∫ tn

k

tn
k−1

·dr first with E and then (since the map [0, T ] 7→ L1(Ω;H), r 7→ Fr

is measurable and integrable) with
∫ 1
0 ·dθ 11. By summing over k the quantity I

n,k
F , we then have

n∑

k=1

I
n,k
F =

n∑

k=1

∫ tn
k

tn
k−1

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
, Fr〉

]
dθdr

=

∫ s

t

∫ 1

0
E

[
〈

n∑

k=1

∂µϕ̂
(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
1[tn

k−1,t
n
k
)(r), Fr〉

]
dθdr.

(D.7)

By continuity of ∂µϕ̂ and by (D.4), we have

lim
n→∞

∣∣∣∣∣
n∑

k=1

∂µϕ̂
(
tnk , P̂Xn,θ,k

)(
Xn,θ,k(ω)

)
1[tn

k−1,t
n
k
)(r)− ∂µϕ̂

(
r, P̂X

)
(X(ω))

∣∣∣∣∣
H

= 0 ∀ω ∈ Ω.

(D.8)
By Lebesgue’s dominated convergence theorem and by (D.8),(D.7), we conclude

lim
n→∞

n∑

k=1

I
n,k
F =

∫ s

t
E

[
〈∂µϕ̂

(
r, P̂X

)
(X) , Fr〉

]
dr. (D.9)

11But notice that the integral in
∫ 1

0
·dθ cannot be commuted with E before showing the existence of a jointly

measurable representant (θ, ω) 7→ Z(θ, ω) of θ 7→ ∂µϕ̂(t
n
k , P̂Xn,θ,k)(Xn,θ,k)(ω).
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We now address I
n,k
B . In this case, we cannot immediately commute

∫ tn
k

tn
k−1

·dBr with E, because

Xn,θ,k is a-priori only Ftn
k
-measurable. We then add a null term and then expand the sum. Indeed,

we have
∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k−1

)
,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ =

=

∫ 1

0
E

[∫ tn
k

tn
k−1

〈∂µϕ̂
(
tnk , P̂Xn,θ,k

)(
Xn,θ,k−1

)
, GrdBr〉

]
dθ = 0.

Then, by using the continous second-order pathwise derivative in mesure and space of ϕ̂

I
n,k
B =

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

=

∫ 1

0
E

[
〈∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k

)
− ∂µϕ̂

(
tnk , P̂Xn,θ,k

)(
Xn,θ,k−1

)
,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

=

∫ 1

0
E

[
〈

∫ 1

0
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k)

(
Xn

tn
k
−Xn

tn
k−1

)
θdε,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

=

∫ 1

0
E

[
〈

∫ 1

0
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k)

(∫ tn
k

tn
k−1

Frdr

)
θdε,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

+

∫ 1

0
E

[
〈

∫ 1

0
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k)

(∫ tn
k

tn
k−1

GrdBr

)
θdε,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

=I
n,k
BF + I

n,k
BB .

(D.10)

Notice that
n∑

k=1

E

[∣∣∣∣∣〈∂x∂µϕ̂(t
n
k , P̂Xn,θ,k)(Xn,εθ,k)

(∫ tn
k

tn
k−1

Frdr

)
,

∫ tn
k

tn
k−1

GrdBr〉

∣∣∣∣∣

]
≤

≤M
n∑

k=1


E



∣∣∣∣∣

∫ tn
k

tn
k−1

Frdr

∣∣∣∣∣

2

H


E



∣∣∣∣∣

∫ tn
k

tn
k−1

GrdBr

∣∣∣∣∣

2

H






1/2

≤M

n∑

k=1

(
s− t

n
E

[∫ tn
k

tn
k−1

|Fr|
2
H dr

]
E

[∫ tn
k

tn
k−1

|Gr|
2
L2(K;H)dr

])1/2

≤M

(
s− t

n

)1/2 n∑

k=1

(
E

[∫ tn
k

tn
k−1

|Fr|
2
H dr

]
E

[∫ tn
k

tn
k−1

|Gr|
2
L2(K;H)dr

])1/2

≤M

(
s− t

n

)1/2(
E

[∫ s

t
|Fr|

2
H dr

]
E

[∫ s

t
|Gr|

2
L2(K;H)dr

])1/2

,

which goes to 0 as n→ ∞. By Lebesgue’s dominated convergence theorem, it then follows

lim
n→∞

n∑

k=1

I
n,k
BF = 0. (D.11)
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Now, in order to compute I
n,k
BB, consider first that, for m ∈ N and n ≥ m,

n∑

k=1

E

[∣∣∣∣∣〈
(
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k)− ∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

)(∫ tn
k

tn
k−1

GrdBr

)
,

∫ tn
k

tn
k−1

GrdBr〉

∣∣∣∣∣

]

≤
n∑

k=1

E



∣∣∣∂x∂µϕ̂(tnk , P̂Xn,θ,k)(Xn,εθ,k)− ∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

∣∣∣
L(H)

∣∣∣∣∣

∫ tn
k

tn
k−1

GrdBr

∣∣∣∣∣

2

H




≤ E


 sup
n∈N, n≥m,
k=1,...,n

∣∣∣∂x∂µϕ̂(tnk , P̂Xn,θ,k)(Xn,εθ,k)− ∂x∂µϕ̂(t
n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

∣∣∣
L(H)

∣∣∣∣
∫ s

t
GrdBr

∣∣∣∣
2

H


 .

By continuity of ∂x∂µϕ̂ and by (D.4) it follows

lim
m→∞

sup
n∈N, n≥m,
k=1,...,n

∣∣∣∂x∂µϕ̂(tnk , P̂Xn,θ,k)(Xn,εθ,k(ω))− ∂x∂µϕ̂(t
n
k , P̂Xn,θ,k)(Xn,εθ,k−1(ω))

∣∣∣ = 0,

for every ω ∈ Ω, and then, by Lebesgue’s dominated convergence theorem,

lim
n→∞

n∑

k=1

E

[∣∣∣∣∣〈
(
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k)− ∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

)(∫ tn
k

tn
k−1

GrdBr

)
,

∫ tn
k

tn
k−1

GrdBr〉

∣∣∣∣∣

]
= 0. (D.12)

By (D.12) and by Lebesgue’s dominated convergence theorem, we can then write

lim
n→∞

n∑

k=1

I
n,k
BB =

= lim
n→∞

n∑

k=1

∫ 1

0
E

[
〈

∫ 1

0
∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

(∫ tn
k

tn
k−1

GrdBr

)
θdε,

∫ tn
k

tn
k−1

GrdBr〉

]
dθ

= lim
n→∞

n∑

k=1

∫ 1

0

∫ 1

0
θE

[∫ tn
k

tn
k−1

Tr
(
GrG

∗
r∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

)
dr

]
dεdθ

= lim
n→∞

∫ 1

0

∫ 1

0
θE

[∫ s

t

n∑

k=1

Tr
(
GrG

∗
r∂x∂µϕ̂(t

n
k , P̂Xn,θ,k)(Xn,εθ,k−1)

)
1[tn

k−1,t
n
k
)(r)dr

]
dεdθ.

(D.13)

Moreover, by continuity of ∂x∂µϕ̂ and by (D.4), we have

lim
n→∞

∣∣∣∣∣
n∑

k=1

∂x∂µϕ̂
(
tnk , P̂Xn,θ,k

)(
Xn,εθ,k(ω)

)
1[tn

k−1,t
n
k
)(r)− ∂x∂µϕ̂

(
r, P̂X

)
(X(ω))

∣∣∣∣∣
H

= 0 ∀ω ∈ Ω.

This, together with (D.13), provides

lim
n→∞

n∑

k=1

I
n,k
BB =

1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂x∂µϕ̂(r, P̂X·∧r)(X·∧r)

)]
dr. (D.14)
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We now consider the quantity
∑n

k=1 ϕ̂(t
n
k , P̂Xn

tn
k−1

∧·
)− ϕ̂(tnk−1, P̂Xn) appearing in (D.5). By using

the continuity of the pathwise time derivative ∂tϕ̂, we can write

n∑

k=1

(
ϕ̂(tnk , P̂Xn

tn
k−1

∧·
)− ϕ̂(tnk−1, P̂Xn

tn
k−1

∧·
)

)
=

n∑

k=1

∫ tn
k

tn
k−1

∂tϕ̂(r, P̂Xn
tn
k−1

∧·
)dr

=

∫ s

t

n∑

k=1

∂tϕ̂(r, P̂Xn
tn
k−1

∧·
)1[tn

k−1,t
n
k
)(r)dr

(D.15)

By continuity of ∂tϕ̂ and by (D.4), we have

lim
n→∞

∣∣∣∣∣
n∑

k=1

∂tϕ̂(r, P̂Xn
tn
k−1

∧·
)1[tn

k−1,t
n
k
)(r)− ∂tϕ̂(r, P̂X )

∣∣∣∣∣ = 0. (D.16)

By (D.15),(D.16), and by Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

n∑

k=1

(
ϕ̂(tnk , P̂Xn

tn
k−1

∧·
)− ϕ̂(tnk−1, P̂Xn

tn
k−1

∧·
)

)
=

∫ s

t
∂tϕ̂(r, P̂X)dr. (D.17)

Putting together (D.5), (D.6), (D.9), (D.10), (D.11), (D.14), (D.17), we finally obtain, by recalling
also (D.4),

ϕ̂(s, P̂X)− ϕ̂(t, P̂X) = lim
n→∞

(
ϕ̂(s, P̂Xn)− ϕ̂(t, P̂Xn)

)

=

∫ s

t
∂tϕ̂(r, P̂X·∧r) dr +

∫ s

t
E

[
〈Fr, ∂µϕ̂(r, P̂X·∧r)(X·∧r)〉H

]
dr

+
1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂x∂µϕ̂(r, P̂X·∧r)(X·∧r)

)]
dr,

which concludes the proof.

E Consistency property of pathwise derivatives

Proof of Lemma 4.21. The consistency of pathwise time derivatives is a direct consequence of
their definition (Definition 4.4).

We now prove the consistency of the other two derivatives using Itô’s formula (Theorem 4.16).
Fix t ∈ [0, T ] and let ξ ∈ S2(F). Let also F : [0, T ]×Ω → H (resp. G : [0, T ]×Ω → L2(K;H)) be a
integrable (resp. square-integrable) and F-progressively measurable process, so, in particular,

∫ T

0
E[|Fs|H ] ds <∞,

∫ T

0
E
[
Tr(GsG

∗
s)
]
ds <∞.

Consider the process X = (Xs)s∈[0,T ] given by

Xs = ξs∧t +

∫ s∨t

t
Fr dr +

∫ s∨t

t
Gr dBr, ∀ s ∈ [0, T ].
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Then, by Theorem 4.16 and Remark 4.18 we have the Itô formulae, for every s ∈ [t, T ],

ϕ̂1(s, P̂X·∧s) = ϕ̂1(t, P̂ξ·∧t
) +

∫ s

t
∂tϕ̂1(r, P̂X·∧r) dr +

∫ s

t
E

[
〈Fr, ∂µϕ̂1(r, P̂X·∧r)(X·∧r)〉H

]
dr

+
1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂

sym
x ∂µϕ̂1(r, P̂X·∧r )(X·∧r)

)]
dr

and

ϕ̂2(s, P̂X·∧s) = ϕ̂2(t, P̂ξ·∧t
) +

∫ s

t
∂tϕ̂2(r, P̂X·∧r) dr +

∫ s

t
E

[
〈Fr, ∂µϕ̂2(r, P̂X·∧r)(X·∧r)〉H

]
dr

+
1

2

∫ s

t
E

[
Tr
(
GrG

∗
r∂

sym
x ∂µϕ̂2(r, P̂X·∧r )(X·∧r)

)]
dr.

Since ϕ̂1(r, P̂X·∧r) = ϕ̂2(r, P̂X·∧r ) and ∂tϕ̂1(r, P̂X·∧r) = ∂tϕ̂2(r, P̂X·∧r), for every r ∈ [0, T ], we find

∫ s

t
E

[〈
Fr,
(
∂µϕ̂1(r, P̂X·∧r)(X·∧r)− ∂µϕ̂2(r, P̂X·∧r)(X·∧r)

)〉
H

]
dr (E.1)

+
1

2

∫ s

t
E
[
Tr
(
GrG

∗
r

(
∂sym
x ∂µϕ̂1(r,PX·∧r)(X·∧r)− ∂sym

x ∂µϕ̂2(r,PX·∧r)(X·∧r)
))]

dr = 0,

for every s ∈ [t, T ].

Consistency of ∂µϕ̂1 and ∂µϕ̂2. Let Z : Ω → H be an Ft-measurable random variable in L2(Ω;H),
and define

Fs := Z 1[t,T ](s), Gs := 0, ∀ s ∈ [0, T ].

Then, from (E.1) we obtain

∫ s

t
E

[〈
Z,
(
∂µϕ̂1(r, P̂X·∧r)(X·∧r)− ∂µϕ̂2(r, P̂X·∧r )(X·∧r)

)〉
H

]
dr = 0, ∀ s ∈ [t, T ]. (E.2)

From the continuity of the map r 7→ ∂µϕ̂1(r, P̂X·∧r)(X·∧r)−∂µϕ̂2(r, P̂X·∧r)(X·∧r), we get in particular
that the integrand of (E.2) is equal to zero at r = t, namely

E

[〈
Z,
(
∂µϕ̂1(t, P̂ξ·∧t

)(ξ·∧t)− ∂µϕ̂2(t, P̂ξ·∧t
)(ξ·∧t)

)〉
H

]
= 0.

From the arbitrariness of the Ft-measurable random variable Z ∈ L2(Ω;H), this yields

∂µϕ̂1(t, P̂ξ·∧t
)(ξ·∧t) = ∂µϕ̂2(t, P̂ξ·∧t

)(ξ·∧t), P-a.s.

Recalling Remark 4.23, we see that this proves the consistency of ∂µϕ̂1 and ∂µϕ̂2.

Consistency of ∂sym
x ∂µϕ̂1 and ∂sym

x ∂µϕ̂2. Let Λ: Ω → L2(K;H) be an Ft-measurable random
variable in L2(Ω;L2(K;H)), and define

Fs := 0, Gs := Λ1[t,T ](s), ∀ s ∈ [0, T ].

Then, from (E.1) we obtain

∫ s

t
E

[
Tr
(
ΛΛ∗

(
∂sym
x ∂µϕ̂1(r, P̂X·∧r)(X·∧r)− ∂sym

x ∂µϕ̂2(r, P̂X·∧r)(X·∧r)
))]

dr = 0, ∀ s ∈ [t, T ].
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From the continuity of the map r 7→ ∂sym
x ∂µϕ̂1(r, P̂X·∧r )(X·∧r)− ∂sym

x ∂µϕ̂2(r, P̂X·∧r)(X·∧r), we get

E

[
Tr
(
ΛΛ∗

(
∂sym
x ∂µϕ̂1(t, P̂ξ·∧t

)(ξ·∧t)− ∂sym
x ∂µϕ̂2(t, P̂ξ·∧t

)(ξ·∧t)
))]

= 0.

From the arbitrariness of the Ft-measurable random variable Λ ∈ L2(Ω;L2(K;H)), we conclude
that

∂sym
x ∂µϕ̂1(t, P̂ξ·∧t

)(ξ·∧t) = ∂sym
x ∂µϕ̂2(t, P̂ξ·∧t

)(ξ·∧t), P-a.s.

which, together with Remark 4.23, gives the claimed consistency of ∂sym
x ∂µϕ̂1 and ∂sym

x ∂µϕ̂2.

F Hamilton-Jacobi-Bellman equation: technical results

In the present appendix we prove three technical results which are used in Section 5 to derive
alternative forms of the Hamilton-Jacobi-Bellman equation (5.1).

Lemma F.1. Given µ ∈ P2(C([0, T ];H)) there exists ξ ∈ S2(G), with Pξ = µ, and a G-measurable
random variable Uξ : Ω → R, with uniform distribution on [0, 1], such that the following holds:

• ξ and Uξ are independent.

Proof. Fix µ ∈ P2(C([0, T ];H)) and consider the probability space ([0, 1],B([0, 1]), λ), where λ
denotes the Lebesgue measure on the unit interval. Denote

Ω̄ = [0, 1] ×C([0, T ];H), F̄ = B([0, 1]) ⊗ B, P̄ = λ⊗ µ.

Fix an orthonormal basis {en}n∈N of H. Then, let J : [0, 1] × C([0, T ];H) → C([0, T ];H) be the
map defined as

J (r, x) := re1 +
∞∑

n=2

〈x, en−1〉H en, ∀ (r, x) ∈ [0, 1] × C([0, T ];H).

Let µ̃ denote the image measure (or push-forward) of P̄ = λ⊗µ by J . Notice that µ̃ ∈ P2(C([0, T ];H)).
Then, from property (AG)-ii) it follows that there exists a continuous and B([0, T ])⊗G-measurable
process ξ̃ : [0, T ]× Ω → H with law equal to µ̃.

Now, define the maps P : C([0, T ];H) → R and Q : C([0, T ];H) → C([0, T ];H) as

P (x) := 〈x0, e1〉H , Q(x) :=

∞∑

n=1

〈x, en+1〉H en, ∀x ∈ C([0, T ];H),

where we recall that x0 is the value of the path x at time t = 0. Then, denote

Uξ := P (ξ̃), ξ := Q(ξ̃).

It is then easy to see that Uξ and ξ satisfy the claimed properties.

Lemma F.2. Fix t ∈ [0, T ], ξ ∈ S2(G) and let F : C([0, T ];H)×P2(C([0, T ];H))×U×P(U) → R

be a measurable function. Suppose that E[|F (ξ,Pξ, a,Pa)|] < +∞, ∀ a ∈ Mt. Suppose also that

there exists a G-measurable random variable Uξ : Ω → R (F.1)

having uniform distribution on [0, 1] and being independent of ξ.
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Then, it holds that

sup
a∈Mt

E
[
F
(
ξ,Pξ, a,Pa

)]
= sup

a∈MG

E
[
F
(
ξ,Pξ, a,Pa

)]
= sup

ǎ∈M̌

E
[
F
(
ξ,Pξ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)]
. (F.2)

Moreover, if F is continuous in the first two variables, uniformly with respect to the last two, then
the first equality holds true without assuming (F.1).

Proof. Since ǎ(ξ, Uξ) ∈ MG and MG ⊂ Mt, we immediately get

sup
a∈Mt

E
[
F
(
ξ,Pξ, a,Pa

)]
≥ sup

a∈MG

E
[
F
(
ξ,Pξ, a,Pa

)]
≥ sup

ǎ∈M̌

E
[
F
(
ξ,Pξ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)]
.

Then, in order to get (F.2), it remains to prove the inequality

sup
ǎ∈M̌

E
[
F
(
ξ,Pξ, ǎ(ξ, Uξ),Pǎ(ξ,Uξ)

)]
≥ sup

a∈Mt

E
[
F
(
ξ,Pξ, a,Pa

)]
. (F.3)

To this end, denote

Ω̂ = [0, T ] ×Ω, F̂ = B([0, T ])⊗F , P̂ = λT ⊗ P,

with λT being the uniform distribution on ([0, T ],B([0, T ])). Given a ∈ Mt, consider the canonical
extensions of a and Uξ to Ω̂, which will be denoted respectively by â and Ûξ (notice that Ûξ has
uniform distribution on [0, 1] and is independent of ξ). We can now apply Lemma B.1, with (E,E ),
Γ, Û being respectively (C([0, T ];H),B), ξ, Ûξ. Then, it follows the existence of a measurable map
ǎ : C([0, T ];H) × [0, 1] → U such that

(
ξ, ǎ(ξ, Ûξ)

) L
Ω̂=
(
ξ, â
)
,

where LΩ̂ stands for equality in law between random objects defined on (Ω̂, F̂ , P̂). Then, we deduce

(
(ξs)s∈[0,T ], ǎ(ξ, Uξ)

)
L
=
(
(ξs)s∈[0,T ], a

)
,

where L stands for equality in law between random objects defined on (Ω,F ,P). This implies the
validity of inequality (F.3) and proves (F.2).

Finally, suppose that F is continuous in the first two variables, uniformly with respect to the last
two. Then, in order to get (F.2), it is enough to proceed as in Step 2 of the proof of Theorem 3.6.
More precisely, if ξ is discrete, then by Lemma B.3 there exists an Ft-measurable random variable
Uξ having uniform distribution on [0, 1] and being independent of ξ. In the general case, we rely on
the continuity of F and we approximate ξ by a sequence of discrete random variables.

Lemma F.3. Fix t ∈ [0, T ], ξ ∈ S2(G) and let F : C([0, T ];H) ×U → R be a measurable function.
Suppose that E[|F (ξ, a)|] < +∞, ∀ a ∈ Mt, and also that supu∈U F (x, u) < +∞, ∀x ∈ C([0, T ];H).
Then, it holds that

sup
a∈Mt

E
[
F (ξ, a)

]
= sup

a∈M
E
[
F (ξ, a(ξ))

]
(F.4)

and
sup
a∈Mt

E
[
F (ξ, a)

]
= E

[
ess sup
u∈U

F (ξ, u)
]
. (F.5)
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Remark F.4. Suppose that ξ and Uξ are as in Lemma F.1, namely ξ ∈ S2(G), Pξ = µ, and ξ is
such that there exists a G-measurable random variable Uξ having uniform distribution on [0, 1] and
being independent of ξ. Then, formula (F.4) holds without assuming that supu∈U F (x, u) < +∞,
∀x ∈ C([0, T ];H). As a matter of fact, in this case, thanks to formula (F.2), it is enough to prove
that

sup
ǎ∈M̌

E
[
F (ξ, ǎ(ξ, Uξ))

]
= sup

a∈M
E
[
F (ξ, a(ξ))

]
.

Clearly, it holds that supǎ∈M̌ E[F (ξ, ǎ(ξ, Uξ))] ≥ supa∈M E[F (ξ, a(ξ))]. On the other hand, for every
fixed ǎ ∈ M̌ we have

E
[
F (ξ, ǎ(ξ, Uξ))

]
=

∫ 1

0
E
[
F (ξ, ǎ(ξ, r))

]
dr ≤ sup

a∈M
E
[
F (ξ, a(ξ))

]
.

From the arbitrariness of ǎ we get the other inequality and we conclude that (F.4) holds.

Proof of Lemma F.3. Since a(ξ) ∈ Mt, we immediately get

sup
a∈M

E
[
F (ξ, a(ξ))

]
≤ sup

a∈Mt

E
[
F (ξ, a)

]
.

In addition, for every fixed a ∈ Mt we have

E
[
F
(
ξ, a
)]

≤ E

[
ess sup
u∈U

F (ξ, u)
]
.

From the arbitrariness of a, we find supa∈Mt
E[F (ξ, a)] ≤ E[ess supu∈U F (ξ, u)]. Then, in order to

prove the validity of both (F.4) and (F.5), it remains to prove that

E

[
ess sup
u∈U

F (ξ, u)
]
≤ sup

a∈M
E
[
F (ξ, a(ξ))

]
. (F.6)

Let µ = Pξ denote the law of ξ. Suppose for a moment that for every ε > 0 there exists aεµ ∈ M
and a µ-null set Nε ∈ B such that

F (x, u) ≤ F (x, aεµ(x)) + ε, ∀x ∈ C([0, T ];H)\Nε, ∀u ∈ U. (F.7)

Then, in particular, there exists a P-null set N̄ε ∈ F such that

F (ξ(ω), u) ≤ F (ξ(ω), aεµ(ξ(ω))) + ε, ∀ω ∈ Ω\N̄ε, ∀u ∈ U.

As a consequence, using the definition of essential supremum for the family of real-valued random
variables {F (ξ, u)}u∈U, we find

ess sup
u∈U

F (ξ, u) ≤ F (ξ, aεµ(ξ)) + ε, P-a.s.

This yields

E

[
ess sup
u∈U

F (ξ, u)
]
≤ E

[
F (ξ, aεµ(ξ))

]
+ ε ≤ sup

a∈M
E
[
F (ξ, a(ξ))

]
+ ε.

From the arbitrariness of ε we get inequality (F.6) and we conclude that (F.4) holds.
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It remains to prove (F.7). To this end, we use that U is a Borel space and we implement
Proposition 7.50 in [11] (in particular, X, Y , D, f in the statement of this latter proposition are
given respectively by C([0, T ];H), U, C([0, T ];H) × U, F ). By Proposition 7.50 in [11] it follows
that, for every ε > 0, there exists an analytically measurable function (we refer to Definition 7.20
in [11] for the definition of analytically measurable function) aε : C([0, T ];H) → U such that

F (x, aε(x)) ≥

{
supu∈U F (x, u)− ε, if supu∈U F (x, u) < +∞,

1/ε, if supu∈U F (x, u) = +∞,

for all x ∈ C([0, T ];H). Since it holds that supu∈U F (x, u) < +∞, ∀x ∈ C([0, T ];H), we can rewrite
the above inequality simply as

sup
u∈U

F (x, u) ≤ F (x, aε(x)) + ε, ∀x ∈ C([0, T ];H). (F.8)

Using Lemma 7.27 in [11] and the fact that U is Borel-isomorphic to a Borel subset of [0, 1], we
see that there exists a Borel-measurable function aεµ : C([0, T ];H) → U such that aε(x) = aεµ(x) for
µ-a.e. x ∈ C([0, T ];H). Hence, from (F.8) we obtain (F.7).
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