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Introduction

Black holes represent one of the most interesting litmus tests for the study of a complete quan-
tum theory of gravity, since they can provide a bridge between two of the major paradigms of
the last century in theoretical physics: general relativity and quantum field theory.

Black holes (BHs) appear as classical solutions in general relativity (GR). The first black hole
metric was found by Schwarzschild in 1916 as a solution to the Einstein equations and depends
on one single parameter, the mass. Many other black hole solutions have been constructed over
the years, with the possible addition of rotations, charges or cosmological constant.
An important breakthrough took place in the early seventies, when formal analogies were
discovered between the laws describing the dynamics of black holes and thermodynamics.
Among the others, it was proposed by Bekenstein [1] and Hawking [2] that the entropy of a
black hole is proportional to the area AH of its event horizon:

SBH =
AH
4GN

,

in natural units, where GN represents the Newton constant. It thus states that the entropy of a
black hole scales as the area of its event horizon, not as its volume.

As is well known, from a statistical mechanical point of view, entropy can establish a connection
between the microscopic behavior of the elementary constituents (particles) of a system and
its macroscopic thermodynamic properties, since it counts the number of possible microstates
associated with a given macrostate. More in detail, according to Boltzmann’s definition, the
entropy of a system is proportional to the logarithm of the number of the microscopic configura-
tions of the particles of the system, known as microstates, that lead to the observed macroscopic
properties: in we denote by n the number of microstates, in natural units the entropy reads

S = log n .

General relativity cannot give an interpretation of this relation, as classically there is only one
stationary solution associated with the macroscopic parameter of the configuration, i.e. the black
hole mass. To overcome this incompatibility a quantum theory of gravity is needed, to unify
classical GR and quantum mechanics. String theory represents a promising candidate to achieve
this aim.



String theory was first proposed in the late sixties to describe the strong nuclear force, but it
seemed to fall out of flavor few years later with the introduction of quantum chromodynamics
(QCD), that offered a more accurate understanding of strong nuclear interactions. Nevertheless,
due to its development it made great progress in the last decades and nowadays it represents
one of the most valuable candidates for a comprehensive unifying theory of quantum gravity.
It is based on the idea that the elementary components of the universe are one-dimensional
objects, called strings, that can vibrate with different frequencies. Each observed particle cor-
responds to a different oscillation mode of the vibrating strings. To incorporate fermionic
matter, the original bosonic string has been extended to include supersymmetry, originating
five different superstring theories. The inclusion of supersymmetry has also solved one of the
greatest issues of bosonic strings, namely the presence of tachyons in their spectrum, which are
particles with negative squared mass. Additionally, in order to be consistent, superstring theory
must be formulated in ten spacetime dimensions.
String theory as a quantum theory can be naturally studied perturbatively and the expansion
can be organized in powers of the string coupling gs. Nevertheless, starting from the eighties
non-perturbative aspects of the theory have been widely studied, leading, among the others, to
the discovery of a network of dualities connecting the five superstring theories. Furthermore, it
was shown that all of them can be obtained, in the weakly-coupled limit, from a single eleven-
dimensional theory, known as M-theory [3].
Besides the strings, superstring theory contains extended non-perturbative objects called Dp-
branes, on which fundamental open strings end. They extend in p spatial directions and we can
think of p-dimensional quantum field theories as existing on their worldvolume, arising as the
massless modes of open strings attached to them.

In the low-energy1 and weakly-coupled limit, M-theory and superstring theories can be de-
scribed in terms of classical eleven- and ten-dimensional theories known as supergravities.
Supergravity theories in lower dimensions can be obtained from the higher-dimensional ones
by means of a mechanism called dimensional reduction. One of the best-known example of this
procedure is the Kaluza–Klein reduction, which allows to construct a theory in one dimension
less by compactifying one of the original coordinates on a circle of radius r → 0. If the reduced
theory still captures the physics of the mother theory, the truncation is said to be consistent.

Within the context of string theory, black hole solutions can arise as bound states of non-
perturbative objects wrapped on compact spaces, e.g. a stack of N D-branes. The classical black
hole behavior appears when N is large. On the other hand, for finite N , supergravity in general
can no longer represent the solution and the whole string theory must be employed to give a
reliable quantum description of the brane system.

A precursor work in which the entropy of a black hole was obtained from a microstate counting
is represented by the paper of Strominger and Vafa, [4], in which they managed to reproduce
the Bekenstein–Hawking area law for a class of five-dimensional asymptotically flat extremal
black holes in string theory by enumerating the degeneracy of the associated bound states. This
constituted a first important step towards a deeper identification between the laws of black hole
dynamics and of thermodynamic, and a meaningful internal consistency check of string theory.

1Roughly speaking, in this limit strings become point-like particles.



In a parallel direction, inspired also by black hole area law, a significant breakthrough in theo-
retical physics was represented by the formulation of the holographic principle. Proposed in
the nineties by ’t Hooft and Susskind [5, 6], in its original version it suggested that to combine
gravity and quantum mechanics, our three-dimensional world has to be an image (a hologram)
of data encoded in a two-dimensional surface. Generalizing this principle, it should be possible
to extract all the information enclosed in a volume of space (often denoted as “bulk”) in quantum
gravity from the boundary of the region.

The prime realization of holography is the celebrated AdS/CFT correspondence, conjectured
by Maldacena [7], which establishes a duality between string theory on AdS5 × S5 and the
maximally supersymmetric Yang–Mills (SYM) theory in four-dimensions. It is also known as
gauge/gravity duality, since in its more general formulation connects d-dimensional conformal
field theories and gravitational theories in d + 1 dimensions with AdS vacua. This proposal
represents one of the most remarkable results of the last three decades in theoretical physics,
giving new impetus to string theory and opening the way for new research areas.
Many of the most interesting features of the AdS/CFT correspondence come from the fact that it
is a weak/strong duality, and thus connects strongly-coupled field theories to weakly-coupled
gravitational theories and vice versa. Thus, on the one hand it can provide a non-perturbative
formulation of string theory, while on the other hand it allows to investigate strongly-coupled
quantum field theories. The applications of the correspondence span a wide range of research
fields, from black hole physics to condensed matter.

The first part of this introduction is partially based on [8] and [9]. All the topics that we men-
tioned until now are exposed in more detail in the first part of this thesis.

In the present work we are mostly interested in the use of the AdS/CFT correspondence in the
context of black hole thermodynamics. From a holographic point of view, the microstates of a
black hole correspond to a set of states in the dual field theory with the same charges of the black
hole. Thus, the counting of these states allows to reproduce the entropy of the dual black hole.
Many successful results have been obtained in this direction over the years. However, the gen-
eralization to the asymptotically AdS5 black holes in [10] has been problematic and no results
have been found until very recently. The reason is that the field theory quantity that is a natural
candidate to encode the information about the dual BH entropy, the so-called superconformal
index (SCI), seemed not to account for the expected scaling of the degrees of freedom of the
gravitational system. The superconformal index corresponds to the supersymmetric partition
function on S3×S1 (coinciding with the black hole conformal horizon) and has been constructed
as a generalization of the Witten index. The mismatch between the scaling of the black hole
entropy and the one obtained from the SCI was due to the large amount of cancellations be-
tween bosonic and fermionic states, a consequence of the presence of the operator (−1)F in
the index, where F is the fermionic number. The problem was overcome in [11, 12] using two
different approaches with one common denominator: they consider complex fugacities, such
that their imaginary parts can obstruct the cancellations induced by the operator (−1)F . These
two approaches are the Cardy-like limit, in which the fugacities associated with the rotations
are considered to be very small, and the Bethe Ansatz approach, consisting of an evaluation of
the index in terms of a set of solutions to the so-called Bethe Ansatz Equations (BAEs). More



precisely, the field theory quantity that can be extracted from the superconformal index and
allows to reproduce the black hole entropy is known as entropy function. The entropy function
was first defined for the N = 4 SYM case in [13], where it was observed that its Legendre
transform, evaluated at its critical point, coincides with the expected BH entropy. These black
holes are rotating, electrically charged, supersymmetric and asymptotically AdS5, first found
in [10, 14].

In the last years this research field has been developed in many directions.

Recent frontiers

As we mentioned, in the Bethe Ansatz method the index is written as a sum over solutions to
the Bethe Ansatz Equations (BAEs). It may be natural to ask whether this sum can be identified
with the sum over the dual gravitational solutions, even though a priori there in no reason for
a matching between the individual terms in the sum. In was recently found [15] that indeed
such matching is present, at least for the index of N = 4 SYM with SU(N) gauge group, and
it holds both for the leading order-N2 contributions and for the non-perturbative order-1/N
corrections. The first ones are dual to Euclidean black holes, while the second solutions are
related to wrapped D-branes.
The Cardy-like limit of the index is computed using a saddle point approach, rewriting the
index as a sum over saddles. A mapping for these saddle, analogous to the one for the Bethe
Ansatz approach, is in general still missing, but the investigation of the relation between the
two approaches in the computation of the index is an active research field.
The leading term in the Cardy-like limit of the index is also the one with the largest power
in N and it gives rise to the entropy of the dual black hole. When considering subleading
contributions to the leading saddle, a logarithmic correction appears, due to the degeneracy
of saddles. For N = 4 SYM with SU(N) gauge group, this term is proportional to logN and
matches the one obtained from the dual supergravity one-loop computation, which represents
an important check of the quantum origin of the theory, as pointed out by Sen [16]. One may
ask how in different field theories the logarithmic term is modified and how this affects its
holographic interpretation.
These open questions motivate the second part of this thesis, in which the Cardy-like limit
of the index is studied for different field theories, and both the saddles and the subleading
contributions are analyzed.

The extremization procedure that allows to compute the BH entropy from the superconformal
index has been generalized to various different theories. Given a superconformal field theory
(SCFT), one could in principle compute the index and extract the entropy of the black of the dual
gravitational theory. Nevertheless, finding black hole solutions in supergravity is not a simple
task. Thus, it often happens that the entropy computed from the field theory side is associated
with a putative black hole in the dual theory, yet to be found as a supergravity solution.
On the other hand, extremization problems in superconformal field theories are related by
the AdS/CFT correspondence to extremization problems in supergravity that resemble the
original attractor mechanism of [17]. For example, they both provide useful tools to compute the
entropy of certain classes of black holes. However, while extremizing the large-N limit of the
superconformal index it is possible to recover the entropy of a class of rotating five-dimensional



black holes, the dual attractor mechanism is still unknown. An alternative construction has
been developed in the last few years in [13] to circumvent this lack, based on dimensional
reduction. The idea is to dimensionally reduce the five-dimensional supergravity solution to
four dimensions along the Hopf fiber of the S3 horizon of the 5d black hole. The black hole in
four dimensions has the same entropy of the original five-dimensional one, which can be then
computed using the four-dimensional attractor mechanism of [18]. This procedure will be the
core of the third part of the present work.

Further evolutions related to extremization problems can be found in the framework of com-
pactifications of SCFTs.
One can define new superconformal field theories compactifying higher-dimensional theories
on curved spaces. To preserve some supersymmetry in many cases it is necessary to turn on
suitable background fluxes for the global symmetries. Such mechanism, commonly referred
to as topological twist, has been vastly studied in many stringy and holographic setups. The
prototypical example was discussed in [19] in terms of branes wrapped on Riemann surfaces.
From the gravitational side, the mechanism is usually denoted as flow across dimensions. Then
in [20] such flows were generalized and related to the c-extremization principle of [21], where
c is the central charge of the conformal field theory. The c-extremization principle is in turn
related to a gravitational attractor mechanism.
Recently it has been observed that one can extend the notion of topological twist on manifolds
with orbifold singularities [22]. When the considered orbifold is a spindle, namely topologically
a two-sphere with deficit angles at the poles, the supersymmetry of the higher-dimensional
theory is preserved in a new way. The peculiarity of some of such constructions is that even
though it might not be possible to find the full analytic solution to the flow across dimensions,
the central charge of the theory compactified on the spindle can be obtained by solving the
supersymmetry equations only at the poles of the spindle. This allows to match with the re-
sult obtained from a field theory computation performed via c-extremization, finding another
application of the AdS/CFT correspondence. We will focus on such mechanisms in the last
part of the thesis, studying two specific examples obtained compactifying two different N = 2
five-dimensional supergravity models on the spindle. The first model is the AdS5 consistent
truncation of the conifold and contains two vector multiplets and two hypermultiplets. The
second one is given by the family of AdS5 consistent truncations associated with M5-branes
wrapped on holomorphic curves in a Calabi–Yau threefold, containing two vector multiplets
and one hypermultiplet.

Outline

This thesis is organized as follows.
We begin with a review part. In chapter 1 we present a short introduction to supersymmetry
and string theory. We start from supersymmetry, reviewing its algebra and representations and
moving to some examples of supersymmetric theories. We then introduce the main concepts
of string theory, from the bosonic string to the five different superstrings, concluding with
D-branes and a sketch of M-theory and supergravity theories. Chapter 2 is dedicated to the
AdS/CFT correspondence. Conformal field theories and AdS spacetime are introduced. The
AdS/CFT duality is presented, with a particular focus on the original conjecture of Maldacena
and a summary of the main quantities matched by the holographic dictionary between the two



theories: the “boundary” superconformal field theories and the “bulk” gravitational theories on
AdS.
In the second part we analyze the boundary side of the correspondence. Chapter 3 collects some
notions on quantum field theories, useful in the remainder of the work. We discuss toric quiver
gauge theories, that represent the main class of superconformal field theories of our interest, and
we make some comments on 4d super QCD, Seiberg duality and 3d Chern–Simons theories. In
chapter 4 we present the main character of this part, namely the superconformal index. We begin
with a review of the Witten index and then we outline the derivation of the superconformal
index, concluding with a discussion on the computation of black hole entropy from the index.
Chapter 5 is more technical and is focused on the Cardy-like limit of the superconformal index.
We first calculate the Cardy-like limit of the index of N = 4 SYM with real groups, identifying
the saddle point solutions and computing the logarithmic corrections, and of the N = 1∗ LS
fixed point, for which we also compute the entropy of the dual black hole using an extremization
procedure. We then propose a formula for the Cardy-like limit of generic N = 1 theories with
ABCD gauge algebra, including finite-order corrections, and we provide a series of example to
validate it.
In the third part we move to the bulk. In chapter 6 we recall the main aspects of N = 2 matter-
coupled supergravity in four and five dimensions. We presents the multiplets of the theories
and their moduli spaces and we outline the isometries and the possible gaugings, concluding
with the Lagrangians of the two theories. Chapter 7 is devoted to the computation of the entropy
of the Kerr–Newman black hole dual to the LS fixed point, using the attractor mechanism after
dimensional reducing the theory.
In the final part we study compactifications on curved spaces. In chapter 8 we report the original
cases studied by Maldacena and Nuñez of branes wrapped on Riemann surfaces. We then
introduce the main features of compactifications on spindles, of which we give two explicit
examples in the last two chapters. In chapter 9 we discuss the compactification on the spindle
of the N = 2 AdS5 consistent truncation of the conifold, in presence of a Betti vector multiplet.
We compute the central charge and we compare our result with the one obtained from the
analysis of the dual field theory, finding exact agreement. Finally, in chapter 10 we perform
a similar analysis on a spindle compactification of families of AdS5 consistent truncations
corresponding to M5-branes wrapped on complex curves in Calabi–Yau three-folds. These
models are holographically dual to N = 1 SCFTs obtained by gluing of TN blocks. Again we
obtain the central charges both from the gravity and from the field theory side, finding perfect
matching.
The appendices contain technical details on various topics addressed in the main body. In
appendix A we compute the partition functions for Chern–Simons theories on three-spheres
with real groups, used in the computation of the Cardy-like limit of the index. In appendix B
we perform an explicit Kaluza–Klein reduction from a five-dimensional supergravity theory
to a four dimensions, needed in chapter 7. In appendix C we present some details about the
quaternionic geometry of the supergravity model that constitutes the starting point of the
analysis in chapter 9, while in appendix D we derive the BPS equations for the same theory.
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Chapter 1

A short introduction to supersymmetry and string
theory

As is well known, string theory is one of the most promising and fascinating fields in modern
theoretical physics. It was originally formulated in the late sixties as an attempt to describe
strong nuclear interactions. Even though quantum chromodynamics (QCD), developed in the
seventies, managed to present a more successful theory describing the strong nuclear force,
the investigation on string theory was not abandoned and its evolution over the years led to a
progressive resolution of different technical issues. On top of that, thanks to the identification
of a massless spin-two particle in the string spectrum which could mediate the gravitational
interaction, string theory has turned out to be a promising candidate for a quantum theory
unifying gravity and the other fundamental forces of nature.

The constituent idea of string theory is that the fundamental building blocks of the universe
are not point-like particles but one-dimensional extended objects called strings. These strings
can vibrate at different frequencies, and specific oscillation modes (i.e. quantized excited states)
correspond to specific particles.
In order to take fermions into account, string theory needs to include supersymmetry, which is
a spacetime symmetry relating bosons and fermions. Supersymmetry also solves some incon-
sistency problems of bosonic string theory, and in the eighties the so-called “first superstring
revolution” took place, leading to the formulation of five finite and totally self-consistent super-
string theories in ten spacetime dimensions.
The fact that there are five different yet consistent superstring theories has been puzzling for
a while, until an underlying web of dualities between the various theories was discovered. In
the same years, great progress in understanding non-perturbative aspects of string theory was
achieved, leading to the introduction of D-branes. Dp-branes are objects extended in p-spatial
dimensions on which fundamental open strings end. The culminating point of the “second su-
perstring revolution”, that took place in the nineties, was the formulation of M-theory, a new type
of eleven-dimensional quantum theory emerging as the UV-completion of the ten-dimensional
superstring theories, providing thus a (supposed) unifying non-perturbative theory. The low-
energy approximation of M-theory is a classical gravitational theory called eleven-dimensional
supergravity. Analogously, ten-dimensional supergravities provide a low-energy description of
superstring theories.

This chapter is organized as follows. We begin in section 1.1 with a review of the fundaments



of supersymmetry, focusing on supersymmetry algebra, its representations and supersymmet-
ric gauge theories. In section 1.2 we summarize the basics of string theory, starting from the
bosonic string and proceeding to its supersymmetric extension and quantization. In subsec-
tion 1.2.3 an introduction on D-branes is presented, followed by some comments on M-theory in
subsection 1.2.4. Finally, in section 1.3 we briefly introduce supergravity theories.

1.1 Supersymmetry

Motivated by the discussion above, in this section we proceed to introduce supersymmetry
(SUSY). Supersymmetry is a spacetime symmetry that maps particles and fields of integer spin
(bosons) into particles and fields of half-integer spin (fermions) and vice versa.

SUSY can be thought as a way to enlarge the group of spacetime symmetries in a non-trivial way
to a bigger symmetry group, including both the Poincaré group and the group on the internal
symmetries of the theory, but such that the two subgroups do not commute. Originally this
idea seemed in contrast with the no-go theorem formulated in 1967 by Coleman and Mandula,
in which they stated that in a quantum field theory, under certain reasonable and physical
assumptions, the only possible continuous symmetries are spacetime and internal symmetries,
that can only combine in a trivial way. In other words, the most general symmetry group is
given by

ISO(3, 1)×G, (1.1)

where ISO(3, 1) is the Poincaré group in four dimensions and G is a semi-simple Lie group
times abelian factors, representing the group of the internal symmetries of the theory. The
generators of these two groups commute.
However, this theorem can be circumvented by relaxing one or more of its assumptions. One of
such assumptions is that all the generators of the algebra are bosonic, satisfying commutation
relations. Hence, if one allows for fermionic generators, whose symmetry algebra involves
anticommutators, it can be proved that the set of allowed symmetries can be enlarged. This
makes the Poincaré group becoming superPoincaré, as we will show in the next paragraphs.

In the remainder of this section we will present the supersymmetry algebra and its representa-
tions and we will give a short introduction on supersymmetric theories. The discussion in based
on the reviews [23, 24], while our choice of conventions is similar to [25].

1.1.1 Supersymmetry algebra

We now move to the construction of the supersymmetry algebra.
In the following we use the mostly plus signature, i.e. ηµν = diag(−1, 1, . . . , 1), where µ, ν =
0, . . . , d − 1 are spacetime indices. Moreover, in order to be more explicit, we work in d = 4
spacetime dimensions.



Lorentz and Poincaré groups

The Lorentz group has six generators, three associated with spatial rotations Ji and three
associated with boosts Ki, i = 1, 2, 3, obeying the following commutation relations:

[Ji, Jj ] = iϵijkJk, [Ki,Kj ] = −iϵijkJk, [Ji,Kj ] = iϵijkKk . (1.2)

It is useful to introduce the linear combinations of the above generators

J±
i =

1

2
(Ji ± iKi) , (1.3)

in terms of which the Lorentz algebra splits into the following two SU(2) algebras

[J±
i , J

±
j ] = iϵijkJ

±
k , [J±

i , J
±
i ] = 0 . (1.4)

This implies that the representation of the Lorentz group can be organized into a couple of SU(2)
representations; the importance of this isomorphism will be clear later.1

The Poincaré group is given by a semi-direct product of the Lorentz group and the group of
spacetime translations, generated by Pµ, where µ is a spacetime index. In addition to the algebra
(1.2), the Poincaré algebra includes:

[Pµ, Pν ] = 0, [Ji, Pj ] = iϵijkPk, [Ji, P0] = 0, (1.5)
[Ki, Pj ] = −iP0, [Ki, P0] = −iPj ,

where we have separated the time component P0 from the space components Pi of the translation
generators.
One can also introduce a notation for the Lorentz generators in terms of an antisymmetric tensor
Mµν = −Mνµ defined as

M0i = Ki , Mij = ϵijkJk , (1.6)

in terms of which the full Poincaré algebra becomes

[Pµ, Pν ] = 0, (1.7)
[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ ,

[Mµν , Pρ] = −iηµρPν + iηρνPµ.

Spinors

We define two-component spinors as the objects transforming in the fundamental representations
of SL(2,C). A spinor is thus a two complex component object

ψ =

(
ψ1

ψ2

)
, (1.8)

1More precisely, the universal cover of the Lorentz group is a complexified version of SU(2)× SU(2), denoted as
SL(2,C).



where ψ1 and ψ2 are complex Grassmann numbers, that transforms under a complex 2 × 2
matrix M ∈ SL(2,C) as

ψα → ψ′
α = M β

α ψβ, α, β = 1, 2. (1.9)

Notice that a representation of SL(2,C) and its complex conjugate are not equivalent, and
therefore M and M∗ give inequivalent representations. We denote as dotted spinor ψ a two-
component object transforming as

ψα̇ → ψ
′
α̇ = M∗ β̇

α̇ ψβ̇, α̇, β̇ = 1, 2, (1.10)

that we can identify with (ψα)
∗.

The two spinors can be labeled in terms of SU(2) representations as

ψα ≡
(
1

2
, 0

)
, ψα̇ ≡

(
0,

1

2

)
. (1.11)

Both representations are irreducible.

We now introduce some notations and conventions, starting from the invariant tensors of SU(2),

ϵαβ = ϵαβ =

(
0 1
−1 0

)
, ϵα̇β̇ = ϵα̇β̇ =

(
0 −1
1 0

)
, (1.12)

used to raise and lower spinorial indices as follows

ψα = ϵαβψβ, ψα = ψβϵβα, ψ
α̇
= ϵα̇β̇ψβ̇, ψα̇ = ψ

β̇
ϵβ̇α̇. (1.13)

Finally, recalling that Grassmann variables anticommute, e.g. ψ1χ2 = −χ2ψ1 as well as ψ1χ2̇ =
−χ2̇ψ1, the scalar products for spinors are defined as2

ψχ ≡ ψαχα = ϵαβψβχα = −ϵαβχαψβ = ϵβαχαψβ = χβψβ = χψ,

ψχ ≡ ψ
α̇
χα̇ = ϵα̇β̇ψβ̇χα̇ = . . . = χβ̇ψβ̇ = χψ, (1.14)

and under Hermitian conjugation holds

(ψχ)∗ = (ψαχα)
∗ = ψα∗χ∗

α = ψ
α̇
χα̇ = ψχ. (1.15)

We now introduce the four 2× 2 matrices σµ, where σ0 is the identity matrix and σi, i = 1, 2, 3,
are the three Pauli matrices. These σµ matrices have a dotted and an undotted index and they
can be written as

(σµ)αβ̇ = (I, σi)αβ̇, (σµ)β̇α = (−I, σi)β̇α. (1.16)

We close this section by introducing Dirac spinors.
Let us start considering a set of 4× 4 matrices satisfying

{γµ, γν} = 2ηµνI , (1.17)

2We use the NW-SE rule to contract spinorial indices.



known as Dirac matrices, which are the generators of the Clifford algebra. In the Weyl represen-
tation they read

γµ =

(
0 σµ

σµ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
, (1.18)

where we defined also the chiral matrix γ5. A four-component Dirac spinor is composed by a
two-component undotted and a two-component dotted spinor as

ψ =

(
ψα

χα̇

)
, (1.19)

transforming in the reducible representation (12 , 0)⊕ (0, 12) of the Lorentz group. We can observe
that (

ψα

0

)
=

1

2
(1 + γ5)ψ,

(
0
χα̇

)
=

1

2
(1− γ5)ψ (1.20)

and thus they are Weyl (chiral Dirac) spinors, with chirality ±1, respectively.

A fundamental building block when working with spinors is the Majorana spinor, defined by
the relation ψ = ψC . Here ψC = Ci(γ0)Tψ∗ is the charge conjugate spinor, where the charge
conjugation matrix C satisfies

CγµC−1 = −(γµ)T (1.21)

and in the Weyl representation reads

C =

(
ϵαβ 0

0 ϵα̇β̇

)
. (1.22)

Furthermore, it is real, CT = −C = C−1, C2 = −I and Cγ5C−1 = γT5 .
Introducing the notion of conjugate Dirac spinor ψD ≡ ψ†(iγ0) and Majorana conjugate ψM ≡
ψTC, the Majorana condition can be expressed as ψD = ψM . From this, it can be shown that a

Majorana spinor is a Dirac spinor with χ = ψ, i.e. it has the form
(
ψα

ψα̇

)
.

Finally, the Lorentz generators take the form

Σµν ≡ 1

2
γµν , γµν =

1

2
(γµγν − γνγµ), (1.23)

that can be rewritten as

γµν =
1

2

(
σµσν − σνσµ 0

0 σµσν − σνσµ

)
=

(
σµν 0
0 σµν

)
, (1.24)

where we have introduced

σµν =
1

2
(σµσν − σνσµ), σµν =

1

2
(σµσν − σνσµ), (1.25)

or in a more explicit notation

(σµν) βα =
1

2

(
σµαγ̇(σ̄

ν)γ̇β − (µ↔ ν)
)
, (1.26)

(σ̄µν)α̇
β̇
=

1

2

(
(σ̄µ)α̇γσν

γβ̇
− (µ↔ ν)

)
.



The supersymmetry algebra

As we mentioned before, our aim is to construct a group that includes:

• The Poincaré group, with generators Pµ,Mµν .

• A semi-simple Lie group G with generators Bl that are scalars under the Lorentz group,
representing the internal symmetries of the theory.

The structure of this group is ISO(3, 1)×G and its full symmetry algebra is given by

[Pµ, Pν ] = 0 ,

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ ,

[Mµν , Pρ] = −iηρµPν + iηρνPµ ,

[Bl, Bm] = if n
lmBn ,

[Pµ, Bl] = 0 ,

[Mµν , Bl] = 0

(1.27)

where f n
lm are the structure constants of the Lie algebra g of G.

To evade the Coleman–Mandula theorem, it is possible to generalize the notion of Lie algebra by
introducing a graded Lie algebra. A graded Lie algebra L of grade n is a vector space obtained as
a direct sum of other vector spaces Li,

L = ⊕n
i=0Li , (1.28)

such that the product
[ , } : L× L→ L (1.29)

enjoys the following properties:

[Li, Lj} ∈ Li+j mod n+ 1 , (1.30)

[Li, Lj} = −(−1)ij [Lj , Li} ,
[Li, [Lj , Lk}}(−1)ik + [Lj , [Lk, Li}}(−1)ij + [Lk, [Li, Lj}}(−1)jk = 0 ,

where from the first property emerges that L0 is a Lie algebra while all the other Li are not.
The supersymmetry algebra is a graded algebra of grade one,

L = L0 ⊕ L1 (1.31)

where L0 ≡ P ⊕ g, where P is the Poincaré algebra, while L1 = (QIα, Q
I
α̇), with I = 1, . . . ,N ,

where QIα and Q
I
α̇ are a set of 2N anticommuting fermionic generators that transform in the

(12 , 0) and (0, 12) representations of the Lorentz group, respectively.
Since the generators of L1 transform non-trivially under the Lorentz group, supersymmetry
is not an internal symmetry but rather it is an extension of Poincaré spacetime symmetries.
Furthermore, supersymmetry generators transform bosons into fermions and vice versa, and
thus, physically, supersymmetry mixes matter and radiation.



The supersymmetry algebra contains the commutators in (1.27), plus the following relations:

[Pµ, Q
I
α] = 0 ,

[Pµ, Q
I
α̇] = 0 ,

[Mµν , Q
I
α] = i(σµν)

β
α Q

I
β ,

[Mµν , Q
Iα̇
] = i(σµν)

α̇
β̇
Q
Iβ̇
,

{QIα, Q
J
β̇} = 2σµ

αβ̇
Pµδ

IJ ,

{QIα, QJβ} = ϵαβZ
IJ , ZIJ = −ZJI ,

{QIα̇, Q
J
β̇} = ϵα̇β̇(Z

IJ)∗ .

(1.32)

As mentioned above, QIα and QIα̇ transform as spinors under the Lorentz group and moreover
they commute with the translations. The index I = 1, . . . ,N labels the spinorial generators.
From the fifth line we can see that the commutator of two supersymmetry transformations is a
translation. Furthermore, one can notice that QI1 and (QI2)

† raise the z-component of the spin
(helicity) by half a unit, while QI2 and (QI1)

† lower it by half a unit.

In the last two relations, the ZIJ = −ZJI are central charges, meaning that they commute with
all the generators of the algebra and within themselves. Nevertheless, they are not numbers but
quantum operators, with values that may vary from state to state.
In the simplest case the algebra has N = 1, corresponding to only two supersymmetry generators
and no possibility of central charges. It is called minimal (or unextended) supersymmetry
algebra.
On the other hand, for N > 1, we have extended supersymmetry. In the case N = 2 there is
one central charge, Z ≡ Z12. There is no limit on N coming from the alegbra. However, as N
increases, the theory contains particles of increasing spin. In order to have consistent quantum
field theories we require

• N ≤ 4 for theories without gravity, corresponding to spin ≤ 1.

• N ≤ 8 for theories with gravity, corresponding to spin ≤ 2.

Thus, for four-dimensional theories, N = 8 is an upper bound.

Let us conclude with a comment on the commutators between supersymmetry generators and
internal symmetry generators. In general, the first ones carry a representation of the internal
symmetry group G and thus one expects

[QIα, Bl] = (bl)
I
JQ

J
α ,

[QIα̇, Bl] = −QJα̇(bl)JI ,
(1.33)

where the second commutator is obtained from the first under hermitian conjugation and the bl
are hermitian. Thus, from these relations3 we can see that the largest possible internal symmetry

3Recall that hermitian generators correspond to unitary groups.



group that can act non-trivially on the supersymmetry generators is U(N ) and it is called the
R-symmetry group. It can be proven that in presence of non-vanishing central charges the
R-symmetry group reduces to USp(N ).

1.1.2 Representations of the supersymmetry algebra

Let us now move to the representations of the supersymmetry group.
The Poincaré algebra is a subalgebra of the full supersymmetry algebra and thus any representa-
tion of the suspersymmetry algebra gives a representation of the Poincaré algebra, although in
general a reducible one. We begin focusing on the second one.

Representations of the Poincaré algebra

The Poincaré algebra has two Casimir operators4

P 2 = PµP
µ and W 2 =WµW

µ, (1.34)

where Wµ = 1
2ϵ
µνρσPνMρσ is the Pauli–Lubanski vector. The irreducible representations of the

Poincaré group are what one usually calls particles.

• If we consider a massive particle with mass m, we can move to the rest frame where
Pµ = (m, 0, 0, 0) and the two Casimir operators reduce to P 2 = −m2 andW 2 = m2j(j+1),
where j is the spin of the particle. Massive particles are thus distinguished by their mass
and their spin.

• If we consider a massless particle, we can allign the momentum along the z direction,
having Pµ = (E, 0, 0, E), with P 2 = W 2 = 0 and Wµ = M12P

µ. Thus, for a massless
particle, the two Casimir operators are proportional with proportionality constant M12 =
±j, which is the helicity. For these representations the spin j is fixed and the states are
distinguished by their energy E and by the sign of the helicity.

Representations of the supersymmetry algebra

An irreducible representation of the supersymmetry algebra is called superparticle and corre-
sponds to a collection of particles, related to each other by the action of the supersymmetry
generators QIα and QJβ̇ and thus having spins that differs by units of one half. These states form
a supermultiplet, as a superparticle is often called.
Furthermore, as one can see from spin-statistics theorem, the Q and Q change bosons into
fermions and vice versa.

In the following we list a few useful generic properties shared by any supermultiplet:

1. All particles belonging to an irreducible supersymmetry representation have the same
mass but different spin. This is due to the fact that P 2 is still a Casimir operator for the
supersymmetry algebra, while W 2 is not.

4A Casimir operator is constructed from the generators of the algebra and commutes with all the generators. In
each irreducible representation, the Casimir operators are proportional to the identity matrix, and the representation
is labeled by the proportionality constant.



2. In a supersymmetric theory the energy of any state is always greater than zero. The proof
relies on the positivity of the Hilbert space.

3. A supermultiplet always contains an equal number of bosonic and fermionic degrees of
freedom (i.e. physical states).

Massless supermultiplets

In order to construct massless supermultiplets, we first assume that all the central charges
ZIJ vanish (we will see below that this is the only relevant case, for massless representations,
following from the positivity of the Hilbert space). In this case, all QIα and Q

J
β̇ anticommute

among themselves. We choose the frame in which Pµ = (E, 0, 0, E) so that σµPµ =

(
0 0
0 −2E

)
and thus

{QIα, Q
J
β̇} =

(
0 0
0 −4E

)γδ̇
ϵγαϵδ̇β̇δ

IJ ⇒ {QI2, Q
J
2̇ } = 0 ∀I, J. (1.35)

On a positive definite Hilbert space this requires QI2 = Q
I
2̇ = 0, ∀I , because

0 = ⟨Φ|{QI2, Q
I
2̇}|Φ⟩ = ||QI2|Φ⟩||2 + ||QI2̇|Φ⟩||2. (1.36)

We are thus left with only QI1 and QJ1̇ , i.e. half of the initial fermionic generators. We can now
define the following creation and annihilation operators

a†I ≡
1√
4E

Q
I
1̇ , aI ≡

1√
4E

QI1 (1.37)

such that
{aI , a†J} = δIJ , {aI , aI} = {a†I , a

†
J} = 0. (1.38)

To construct a representation, one then chooses a vacuum state, which is a state annihilated by
all the aI . This state carries an irreducible representation of the Poincaré group and thus it is
characterized by m = 0 and by some helicity λ0. We denote it by |λ0⟩ and it holds

aI |λ0⟩ = 0. (1.39)

From the commutators of QI1 and QJ1̇ with the helicity operator J3 ≡M12 (in our frame), one can
see that QI1 lowers the helicity by one half, while QJ1̇ raises it by one half. The full supermultiplet
is then constructed by acting on the vacuum state with the creation operators as follows:

|λ0⟩ ,

a†I |λ0⟩ =
∣∣λ0 + 1

2

〉
I
,

a†Ia
†
J |λ0⟩ = |λ0 + 1⟩IJ ,

...

a†1a
†
2 . . . a

†
N |λ0⟩ =

∣∣λ0 + N
2

〉
.

(1.40)



Due to the antisymmetry in the indices I, J, . . ., there are
(
N
k

)
states with helicity λ = λ0 +

k
2 , k = 0, 1, . . . ,N . The state with highest helicity in the supermultiplet has helicity λ = λ0 +

N
2 .

Summing the coefficients we can see that the are 2N states in a superparticle, half of them with
integer helicity (bosons), half of them with half-integer helicity (fermions).

In general, the helicities are not distributed symmetrically around zero. Since CPT transforma-
tions flip the sign of helicity, a supermultiplet is not CPT invariant. Thus, in order to have a
CPT-invariant theory, one has to double each multiplet by adding its CPT conjugate, that has
opposite helicity and opposite quantum numbers. The only case in which this is not needed, i.e.
when the supermultiplet is self conjugate, is when λ0 = −N

4 .

Here we list the physical interesting massless N = 1 supermultiplets.

• The matter multiplet (or chiral multiplet):

λ0 = 0 :

(
0,

1

2

)
⊕

CPT

(
−1

2
, 0

)
, (1.41)

corresponding to a Weyl fermion and a complex scalar.

• The gauge multiplet (or vector multiplet):

λ0 =
1

2
:

(
1

2
, 1

)
⊕

CPT

(
−1,−1

2

)
, (1.42)

corresponding to a gauge boson (massless vector) and a Weyl fermion, both transforming
in the adjoint representation of the gauge group.

• The gravitino multiplet:

λ0 = 1 :

(
1,

3

2

)
⊕

CPT

(
−3

2
,−1

)
, (1.43)

corresponding to a gravitino (spin-3/2 fermion) and a gauge boson.

• The graviton multiplet:

λ0 =
3

2
:

(
3

2
, 2

)
⊕

CPT

(
−2,−3

2

)
, (1.44)

corresponding to the graviton (spin-2 boson) and the gravitino. The gravitino is the
supersymmetric partner of the graviton.

If we want to construct interacting local field theories we have to stop here. Furthermore, the
spin-3/2 particle is associated with local supersymmetry and hence with gravity. Thus, in a
theory with N = 1 supersymmetry, the physical gravitino must be the one belonging to the
graviton multiplet, and the gravitino multiplet cannot appear in minimal supersymmetry.

If we now consider the massless N = 2 supermultiplet, restricting again ourselves to the cases
in which the helicity does not exceed two, we have:



• The gauge multiplet (or vector multiplet):

λ0 = 0 :

(
0,

1

2
,
1

2
, 1

)
⊕

CPT

(
−1,−1

2
,−1

2
, 0

)
, (1.45)

corresponding to a vector, two Weyl fermions and a complex scalar, all transforming in
the adjoint representation of the gauge group. In N = 1 language, this is a vector and a
matter multiplet. It is worth noting that, even if in principle this representation is CPT
self-conjugate, we need to double the degrees of freedom for technical reasons.

• The hypermultiplet:

λ0 = −1

2
:

(
−1

2
, 0, 0,

1

2

)
⊕

CPT

(
−1

2
, 0, 0,

1

2

)
, (1.46)

corresponding to two Weyl fermions and two complex scalars. In terms of N = 1 repre-
sentation, it contains two chiral multiplets with opposite chirality.

• The gravitino multiplet:

λ0 = −3

2
:

(
−3

2
,−1,−1,−1

2

)
⊕

CPT

(
1

2
, 1, 1,

3

2

)
, (1.47)

corresponding to a gravitino, two vectors and a Weyl fermion.

• The graviton multiplet:

λ0 = −2 :

(
−2,−3

2
,−3

2
,−1

)
⊕

CPT

(
1,

3

2
,
3

2
, 2

)
, (1.48)

corresponding to a graviton, two gravitini and the graviphoton (vector).

Finally, in the N = 4 case, if we want to avoid gravity we have only one possible multiplet,
which is always CPT self-conjugate:

• The gauge multiplet (or vector multiplet):

λ0 = −1 :

(
−1, 4×−1

2
, 6× 0, 4× 1

2
, 1

)
, (1.49)

corresponding to a vector, four Weyl fermions and three complex scalars. In N = 1
language, it contains one vector multiplet and three matter multiplets, all transforming in
the adjoint representation of the gauge group.

Notice that in this case it is not possible to have matter in the usual sense, since there are no
fermions transforming in the fundamental representation.

Finally, theories with N > 4 supersymmetry are all supergravity theories. In N = 8 supergravity
there is only one allowed representation with helicity not greater than two. Hence, N = 8 is an
upper bound on the number of supersymmetry generators on four spacetime dimensions, if one
wants an interacting local field theory.
Using a dimension-independent language, this notion can be refrased by stating that the maxi-
mum number of supercharges of non-gravitational theories is 16, and for theories with gravity
is 32.



Massive supermultiplets

In the remainder of this work we will not deal with massive representations of the supersymme-
try algebra, and thus here we treat them very briefly. We refer the interested reader to [23, 24, 26]
for a more detailed review about the topic.

If we consider a state with massm, in its rest frame we have Pµ = (m, 0, 0, 0), from which we can
see that the anticommutator between QIα and QJβ̇ does not trivialize and all the supersymmetric
generators survive, giving rise to a set of 2N creation and 2N annihilation operators. This
implies that, in general, massive representations are longer than massless ones. Another relevant
difference is that the vacuum state is now defined by mass m and spin j, where j(j + 1) are the
eigenvalues of J2, and the vacuum itself has degeneracy.
Performing an appropriate U(N ) rotation, the matrix ZIJ of central charges can be written in
the block-diagonal form

ZIJ =


0 Z1 0 0 . . .

−Z1 0 0 0 . . .
0 0 0 Z2 . . .
0 0 −Z2 0 . . .
...

...
...

...
. . .

 (1.50)

with Zr ≥ 0, r = 1, . . . , N2 .5 If we define the creation operators arα, brα as

a1α =
1√
2

(
Q1
α + ϵαβ(Q

2
β)

†
)
,

b1α =
1√
2

(
Q1
α − ϵαβ(Q

2
β)

†
)
,

a2α =
1√
2

(
Q3
α + ϵαβ(Q

4
β)

†
)
,

b2α =
1√
2

(
Q3
α − ϵαβ(Q

4
β)

†
)
,

...

aN/2
α =

1√
2

(
QN−1 + ϵαβ(Q

N
β )†
)
,

bN/2
α =

1√
2

(
QN−1 − ϵαβ(Q

N
β )†
)
,

(1.51)

then they satisfy the following algebra of harmonic oscillators with their hermitian conjugates:

{arα, (asβ)†} = (2m+ Zr)δrsδαβ ,

{brα, (bsβ)†} = (2m− Zr)δrsδαβ ,

{arα, (bsβ)†} = {arα, asβ} = . . . = 0 .

(1.52)

5Here we assume for simplicity that N is even. Otherwise the matrix has an extra zero eigenvalue, which can be
treated trivially.



Positivity of the Hilbert space imposes the constraint

2m ≥ |Zr| , r = 1, . . . ,
N
2
. (1.53)

It immediately follows that in the massless case there cannot be central charges.
On the other hand, depending on whether this bound is saturated or not for (some of) the
central charge eigenvalues, theories with extended supersymmetry admit massive multiplets
with different lengths:

• long multiplets: when 2m > |Zr| ∀r. In this case, acting on the vacuum state λ0 annihilated
by all operators arα, brα and acting on it with the creation operators (arα)†, (brα)† one creates
22N states,

22N =
(
2N−1

)
B
+
(
2N−1

)
F
, (1.54)

where B indicates the bosonic states and F the fermionic ones.

• short multiplets: when 2m = |Zr| for k < N
2 of the Zr. In this case there are only 2N − 2k

oscillators, and the multiplets contain 22(N−k) states,

22(N−k) =
(
22(N−k)−1

)
B
+
(
22(N−k)−1

)
F
. (1.55)

• ultra-short multiplets: when 2m = |Zr| ∀r. In this case we get the shortest multiplets,
whose dimension is identical to that of massless ones, containing only 2N states,

2N =
(
2N−1

)
B
+
(
2N−1

)
F
. (1.56)

Due to the connection to Bogomolny-Prasad-Sommerfield (BPS) magnetic monopoles, the short
multiplets are also called BPS multiplets, and the inequality in (1.53) is the BPS bound, which, as
we will see, is a very important bound for supergravity solutions. Since quantum (and even
non-perturbative) corrections cannot change tha size of a multiplet, the relation (1.53) for BPS
states is an exact result.

It can be shown that supersymmetric solutions are BPS solutions.
More in general, in a supersymmetry or supergravity theory, the term “BPS” indicates a solution
that is invariant under a subalgebra of the supersymmetry algebra of the action, containing at
least one fermionic generator. This solution can be obtained by solving first-order differential
equations that come from the supersymmetry variations of the fermions of the theory.
On the other hand, for each preserved supersymmetry there is a Killing spinor and for this
reason a supergravity solution that admits Killing spinors is usually called a BPS solution, and
the first-order differential equations coming from the fermionic transformation rules of the
theory are called BPS equations.

1.1.3 Supersymmetric field theories

Let us now give an overview of supersymmetric theories.
As we mentioned before, since bosonic states are mapped by supersymmetry generators into
fermionic states and vice versa, a supersymmetric theory must contain an equal number of



bosonic and fermionic degrees of freedom.
In order to be supersymmetric, a theory must contain at least a spin-1/2 fermion

χA =

(
χα

χα̇

)
(1.57)

χA is a Dirac spinor in the (0, 1/2)⊕ (1/2, 0) representation, which is reducible. Imposing the
Majorana condition

χA = CABχB, (1.58)

where CAB is the charge conjugation matrix, the representation of the spinor becomes irreducible.
The spinor is left with two independent complex components, corresponding to four off-shell
real degrees of freedom. If χ satisfies the equations of motion, the degrees of freedom reduce to
two, and thus we have two possible ways to construct a supersymmetric field theory, by adding
two bosonic degrees of freedom:

• The free Wess–Zumino model, containing χA + 2 real scalars.
The fields of the theory and their equation of motions are given by

χA Majorana γµ∂µχ = 0,

A scalar □A = 0,

B pseudoscalar □B = 0

(1.59)

and the Lagrangian reads

L = −1

2
(∂µA)

2 − 1

2
(∂µB)2 − 1

2
χ/∂χ. (1.60)

• The supersymmetric electrodynamics, containing χA + vector Aµ.
The fields of the theory and their equation of motions are given by{

χA Majorana γµ∂µχ = 0,

Fµν vector ∂µF
µν = 0

(1.61)

and the Lagrangian reads

L = −1

4
FµνF

µν − 1

2
χ/∂χ. (1.62)

It may be now natural to ask whether it is possible to have an off-shell supersymmetric theory.
If we consider the Wess–Zumino theory, in the case when χ does not satisfy the equations of
motion we need two extra scalar fields, say F and G, to balance the counting of degrees of
freedom. To not alter the dynamics of the theory, these fields should not propagate, i.e. they
must have the following equations of motion:

F = 0, G = 0. (1.63)

Thus, the Lagrangian of the theory becomes

LWS → LWS +
1

2
F 2 +

1

2
G2. (1.64)



F and G are called auxiliary fields.
Similarly, to have a supersymmetric electrodynamics off-shell, we modify the Lagrangian

Led → Led +
1

2
D2, (1.65)

where D is a pseudoscalar auxiliary field.

Superspace formalism

We have seen two examples of simple supersymmetric theories. However, in general, to check
whether a given action in invariant under supersymmetry is rather challenging, due to the fact
that supersymmetry is not manifest in the usual formulation. In fact, Minkowski spacetime
is the natural background in which ordinary field theories are defined, where it is easy to
construct actions that respect Poincaré symmetry. Analogously, supersymmetric field theories
are naturally defined on an extension of Minkowski space, called superspace, that besides
ordinary coordinates xµ contains anticommuting spinorial coordinates ϑα and ϑα̇.
In analogy with ordinary functions defined on ordinary space, one can then define functions
of the superspace coordinates (xµ, ϑα, ϑα̇), known as superfields. Using this formalism, the
integral in superspace of any arbitrary superfield is a supersymmetric invariant quantity, i.e.∫

d4xd2ϑd2ϑ Y (x, ϑ, ϑ) (1.66)

is supersymmetric invariant if Y is a superfield.

We will not deepen the superspace formalism, and its detail are beyond the scope of this review.
We just mention that the fields contained in the supersymmetry multiplets are also contained in
the superfields, as can be seen by expanding them in the spinorial variables.

1.2 Strings and branes

In this section we present a short introduction to string theory. We start by recalling the bases
of classical bosonic string and later proceed to include supersymmetry in the theory. After
summarizing the quantization procedure, we review the classification of superstring theories.
We conclude the section with a description of D-branes and some notes on M-theory.
In writing this section we have mainly followed the books [9,27–29] and the lecture notes [30–33].
The structure is partially based on [34,35]. We also refer to [36] for a pedagogical introduction to
the topic.

1.2.1 The classical string

In the following we introduce the main aspects of classical string theory, both for the bosonic
string and for the superstring.



The bosonic string

Let us consider a D-dimensional Minkowski space RD−1,1 with signature

ηµν = diag(−1,+1,+1, . . . ,+1), (1.67)

where µ, ν = 0, . . . , D − 1 label the coordinates of the spacetime.
It is common to think of a string as an “extension” of a point particle, in order to study its
motion. A string sweeps out a worldsheet, which is (1 + 1)-dimensional surface embedded in
Minkowski spacetime (also referred to as the target space), analogous to the worldline swept
out by a particle. The worldsheet is parametrized by a timelike coordinate τ and a spacelike
coordinate σ, packaged together as σα = (τ, σ), α = 0, 1, and the embedding is realized by the
coordinates Xµ(σα).
The dynamics of the string can be described in terms of an action, first formulated by Nambu
and Goto. The Nambu–Goto action is proportional to the area of the string wordlsheet and takes
the form

SNG = −T
∫
d2σ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (1.68)

where
Ẋµ =

∂Xµ

∂τ
, Xµ′ =

∂Xµ

∂σ
(1.69)

and the scalar products on flat spacetime are defined as A ·B = ηµνA
µBν . The proportionality

constant T represents the tension of the string, i.e. the mass per unit length, and is related to the
universal Regge slope α′ as

T =
1

2πα′ . (1.70)

The Regge slope traditionally sets the fundamental dimensions of the theory, the string length ℓs
and the string mass ms, as:

ℓs =
√
α′, ms =

1√
α′
. (1.71)

The classical string motion extremizes the worldsheet area, as the orbits of classical particles are
geodesics that extremize (minimize) the length of the worldline.
The presence of the square root in (1.68) makes its quantization complicated. Hence it is more
convenient to work with an equivalent formulation of the action, called Polyakov action, that
gives rise to the same equations of motion and reads

S = − 1

4πα′

∫
d2σ

√
−hhαβ∂αXµ∂βX

νηµν (1.72)

Here hαβ = hαβ(τ, σ) denotes the metric on the worldsheet and h ≡ det(hαβ).
The equations of motion for Xµ and hαβ are given by

∂α(
√
−hhαβ∂βXµ) = 0, (1.73)

Tαβ ≡ − 2

T

1√
−h

δS

δhαβ
= 0. (1.74)

The Polyakov action for the bosonic string in Minkowski spacetime enjoys the following sym-
metries:



• Poincaré invariance: a global symmetry of the ambient spacetime under which the fields
transform as

δXµ = aµνX
µ + bµ, (1.75)

δhαβ = 0,

where aµν (with aµν = −aνµ) and bµ describe infinitesimal Lorentz transformations and
spacetime translations, respectively.

• Reparameterization invariance: a gauge symmetry on the worldsheet under which the
fields transform as

Xµ(σ) → X̃µ(σ̃) = Xµ(σ), (1.76)

hαβ(σ) → h̃αβ(σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
hγδ(σ).

These local symmetries are also called diffeomorphisms. At the infinitesimal level, making
the coordinate change σα → σ̃α = σα − ξα(σ) for small ξ, the transformations of the fields
become

δXµ = ξα∂αX
µ, (1.77)

δhαβ = ξγ∂γh
αβ − ∂γξ

αhγβ − ∂γξ
βhαγ ,

δ(
√
h) = ∂α(ξ

α
√
h).

• Weyl invariance: a gauge symmetry of the string under which the fields transform as

Xµ(σ) → Xµ(σ), (1.78)

hαβ(σ) → e2ϕ(σ)hαβ(σ).

As a consequence of this local symmetry the energy-momentum tensor is traceless.

The three local symmetries (two reparameterizations and one Weyl scaling) of the theory can
be used to choose a gauge in which the equation of motion in (1.73) simplifies. We use the two
reparameterizations to make the wordlsheet metric locally conformally flat:

hαβ = e2ϕ(σ)ηαβ. (1.79)

This choice is known as conformal gauge. Finally, we use the Weyl scaling to set ϕ = 0, such that

hαβ = ηαβ. (1.80)

We are thus left with a flat worldsheet with Minkowski metric, in which the string action
simplifies to

S =
T

2

∫
d2σ(Ẋ2 −X ′2), (1.81)

and the equation of motion (1.73) becomes

□Xµ ≡
(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0 (1.82)



that is simply the two-dimensional wave equation.

To have a well-defined variational problem, one needs to specify the boundary conditions. First
of all, a string can be either closed or open. We choose the spacelike coordinate to have the range
σ ∈ [0, π].
The stationary points of the action are those obtained requiring the invariance under the general
variation

Xµ → Xµ + δXµ. (1.83)

The variation of the action under (1.83) contains a volume term proportional to (1.82) plus a
surface term

−T
∫
dτ
[
X ′
µδX

µ
]σ=π
σ=0

. (1.84)

The possible boundary conditions under which this last term vanishes are the following:

• Closed strings with periodic boundary conditions

Xµ(τ, σ) = Xµ(τ, σ + π). (1.85)

• Open strings with Neumann (N) boundary conditions

∂σX
µ
∣∣
σ=0,π

= 0, (1.86)

i.e. the component of the momentum normal to the boundary of the worldsheet vanishes.
If this choice is made for all spacetime coordinates, D-dimensional Poincaré invariance is
preserved.

• Open strings with Dirichlet (D) boundary conditions

δXµ
∣∣
σ=0,π

= 0 ⇒ Xµ
∣∣
σ=0,π

= cµ0,π (1.87)

i.e. the positions of the two endpoints of the string are fixed.
If we impose these conditions on the coordinates µ = 1, . . . , D − p− 1, we have to impose
Neumann boundary conditions to the other p + 1 coordinates. This choice restricts the
endpoints of the open strings to move on (p + 1)-dimensional hypersurfaces, breaking
Poincaré invariance. For this reason Dirichlet boundary conditions were not considered
for many years, until it was shown that in certain cirumstances they are unavoidable, and
the hypersurfaces are now interpreted as the worldvolumes of dynamical p-dimensional
objects, called Dp-branes, on which we will focus in section 1.2.3.

The solution to the equations of motion can be found by using worldsheet light-cone coordinates

σ± ≡ τ ± σ, (1.88)

in terms of which the general solution to the wave equation (1.82) splits as

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ), (1.89)



i.e. a sum of right-movers Xµ
R and left-movers Xµ

L. Furthermore, to find an explicit solution one
has also to require the reality of Xµ(τ, σ) and to impose the constraint

(∂−XR)
2 = (∂+XL)

2 = 0. (1.90)

For closed strings, the more general solution of the wave equation that satisfies the periodic
boundary conditions can be expanded in Fourier modes as

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n̸=0

1

n
α̃µne

−inσ+
,

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n ̸=0

1

n
αµne

−inσ−
, (1.91)

where xµ and pµ are the position and momentum of the center of mass of the string, while the
exponential terms represent the string excitation modes.

For open strings, the boundary conditions in light-cone coordinates read

∂+X
µ
L = ∂−X

µ
R (N) or ∂+X

µ
L = −∂−Xµ

R (D). (1.92)

The general solution obtained by imposing these boundary conditions is given by a Fourier
expansion similar to (1.91). The main difference is that there is one single set of oscillators αµn.

The superstring

Despite having many interesting features, the bosonic string theory described in the above
section has a few issues. The two major ones concern the presence of tachyons and the absence
of fermions.
While open-string tachyons may have a physical interpretation in terms of D-branes, closed-
string ones do not. Tachyons imply an instability of the vacuum and thus they are not acceptable
in a physical theory.
On the other hand, fermions play a crucial role in the description of nature and hence they
must be incorporated in string theory. The inclusion of fermions requires supersymmetry
and the obtained string theories are called superstring theories. There are two main possible
constructions to develop a string theory that includes supersymmetry, which are equivalent, at
least for ten-dimensional Minkowski spacetime.

• The Ramond-Neveu-Schwarz (RNS) formalism, where supersymmetry is introduced at
the level of the worldsheet.

• The Green-Schwarz (GS) formalism, where supersymmetry is introduced at the level of
the target space.

Here we will only expand on the first formalism, in which one includes two-dimensional
Majorana spinors ψµ(τ, σ), which are fermionic partners of the bosonic fields Xµ(τ, σ). More in
detail, we incorporate a set of D Majorana fermions ψµ, that are two-component spinors on the



worldsheet and transform in the vector representation of the Lorentz group SO(D − 1, 1). Thus,
the on-shell action in the conformal gauge for the superstring in flat background is given by

S = −T
2

∫
d2σ

(
∂αXµ∂

αXµ − iψ̄µρα∂αψµ
)
, (1.93)

where ρα, α = 0, 1, are two-dimensional Dirac matrices obeying the algebra

{ρα, ρβ} = −2ηαβ. (1.94)

The action in (1.93) is invariant under the global supersymmetry transformations

δXµ = ¯εψµ,

δψµ = −iρα∂αXµε, (1.95)

where ε is a constant infinitesimal Majorana spinor. The equations of motion for Xµ and ψµ read

□Xµ = 0, ρα∂αψ
µ = 0. (1.96)

The bosonic solution of the equations of motion in (1.96) is again given by (1.89), and similarly the
general solution to the fermionic equation can be splitted in worldsheet light-cone coordinates
as

ψµ(τ, σ) = ψµ+(τ + σ) + ψµ−(τ − σ). (1.97)

The boundary conditions and mode expansions for the bosonic fields are the same as in bosonic
string theory.
As concerns the fermionic fields, in the case of open strings we have to impose

ψµ+ = ±ψµ− (1.98)

at each end of the string, in order to make the surface terms in the variation of the action vanish.
The overall relative sign in the above equation is a matter of convention and thus one can set

ψµ+(τ, 0) = ψµ−(τ, 0) (1.99)

without loss of generality. On the other hand, depending on the relative sign at the other end of
the string, we are left with two possible cases:

• Ramond (R) boundary conditions:

ψµ+(τ, π) = ψµ−(τ, π), (1.100)

giving rise to spacetime fermions. The mode expansion of the Dirac equation in this sector
gives

ψµ−(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ),

ψµ+(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ+σ). (1.101)



• Neveu–Schwarz (NS) boundary conditions:

ψµ+(τ, π) = −ψµ−(τ, π), (1.102)

giving rise to spacetime bosons. The mode expansion of the Dirac equation in this sector
gives

ψµ−(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ),

ψµ+(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ+σ). (1.103)

For closed strings, the surface terms vanish when the boundary conditions are periodic or
antiperiodic for each component of ψ separately, i.e.

ψ±(τ, σ) = ±ψ±(τ, σ + π), (1.104)

giving rise to left- and right-moving modes. It is possible to impose the periodicity (R) or
antiperiodicity (NS) of the right-movers

ψµ−(τ, σ) =
∑
n∈Z

dµne
−2in(τ−σ) (1.105)

or ψµ−(τ, σ) =
∑

r∈Z+ 1
2

bµr e
−2ir(τ−σ),

and of the left-movers

ψµ+(τ, σ) =
∑
n∈Z

d̃µne
−2in(τ+σ) (1.106)

or ψµ+(τ, σ) =
∑

r∈Z+ 1
2

b̃µr e
−2ir(τ+σ)

separately. Depending to the different pairing of left-moving and right-moving modes, there are
four distinct closed-string sectors: states in the R-R and NS-NS sectors are spacetime bosons,
while states in the R-NS and NS-R sectors are spacetime fermions.

1.2.2 The quantum string

Let us move to the quantization of the theory. In this section we will only outline the main steps,
starting from the bosonic string, and we will conclude reporting the classification of superstring
theories.

There are three main procedures that have been developed to quantize the bosonic string. All
the formulations are equivalent and lead to the same results and here we will only sketch the
first one.



• (Old) covariant quantization, based on a description in terms of the embedding coordinates
Xµ only, with restrictions on the physical states coming from the constraints of the Virasoro
algebra.

• Light-cone gauge quantization.

• BRST quantization, involving the introduction of Faddeev-Popov ghosts and manifestly
covariant.

The canonical quantization of string theory follows the usual procedure: the Fourier modes
αµn and α̃µn are promoted to creation and annihilation operators on a Hilbert space, analogous
to raising and lowering operators of quantum-mechanical harmonic oscillators, that allow to
define a vacuum state, |0⟩, destroyed by the annihilation operator. The Poisson brackets between
operators are promoted to commutators and by acting on the vacuum state with the creation
operators one can originate all the states of the theory. In other words, the oscillation modes of
the string correspond to particles in a quantum field theory.

From the analysis of the first mass levels of the open string we can see that at the ground state
there is a tachyon, which is a state with imaginary mass. The presence of such a state points
out a problem, which we will tackle in a while: when interactions are included, the theory may
not have a stable vacuum. The first excitation level gives rise to a massless vector boson, in the
vector representation of SO(24), while the second one gives a massive spin-2 state, transforming
in the symmetric traceless second-rank representation of SO(25).
For what concerns the closed strings, as we commented above, their modes can be constructed
as tensor products of left- and right-movers, each of them having the same structure of an
open-string mode. At the first two mass levels we have the following physical states:

• The ground state is a tachyon.

• The states at the first level transform in the 24⊗ 24 representation of SO(24), that decom-
pose into the following irreducible representations:

traceless symmetric ⊕ antisymmetric ⊕ singlet.

The three representations correspond to a massless symmetric (0, 2)-tensor (the graviton
gµν), a massless two-form (the Kalb–Ramond field Bµν) and a massless real scalar (the
dilaton Φ), respectively.

The physical importance of the Kalb–Ramond field lies in the fact that a string is a source for it,
as a charged particle is a source for an electromagnetic vector potential Aµ. In other words, the
string carries an electric charge with respect to Bµν .

Unfortunately, during the quantization procedure, some issues occur: in fact, besides tachyons,
also ghosts,6 which are states with negative Hilbert norm, appear in the spectrum, making the
theory unstable. Both ghosts and tachyons are unphysical and we need to remove them from

6These ghosts should not be confused with the Faddeev-Popov ghosts.



the theory. It can be shown that it is possible to have a spectrum free of ghosts only for certain
values of the spacetime dimension D. It turns out that for bosonic string theory when D = 26
all negative-norm states decouple and thus all physical states have positive norm. Nevertheless,
as we mentioned before, tachyons remain in the spectrum. In order to get rid of them, we need
to introduce the superstring.

The canonical quantization of the superstring follows procedures analogous to the ones of the
bosonic string and one finds out that the critical dimension to obtain a ghost-free theory is
D = 10. Nevertheless, there are still some open problems. In the NS sector the ground state is a
tachyon and there is no fermion in the spectrum with its same mass. Thus the spectrum is not
spacetime supersymmetric.
It has been found that RNS string theory can become a consistent theory by means of the
so-called GSO projection, which truncates the spectrum such that the tachyon is eliminated,
leading to a supersymmetric theory in ten-dimensional spacetime. During this procedure the
worldsheet fermion number F is introduced, which allows to separate the R and NS sectors
into R± and NS± subsectors with respect to the operator eiπF . Tachyons are contained only in
the NS− subsector, which is projected out from the theory. The ground state in the R spectrum
is a massless spinor while the ground state in the NS sector is a massless vector, both of them
belonging to the proper representation of SO(8).

If we consider open superstrings, their boundary conditions only allow a single set of bosonic
and fermionic modes, and restrict the possible supersymmetry to N = 1. There are no tachyons
and the massless sector is the ground state of the spectrum, corresponding to 16-dimensional
multiplet given by 8v ⊕ 8s.7

On the other hand, the states of closed superstrings can be constructed using two copies of the
open-string ones, as for the bosonic string, combining a left-moving sector (NS or R±) with a
right-moving sector (NS or R±).

In the following we give an outline of the classification of superstring theories.

• Type II superstring theories, which are maximally supersymmetric theories in ten dimen-
sions, meaning that they preserve 32 real supercharges and thus have N = 2 supersymme-
try. They contain only closed string sectors and according on how the chiralities of the R
sectors are combined we have two different inequivalent theories: Type IIA for opposite
chiralities and Type IIB for equal ones. The different sectors are organized in irreducible
representations of SO(8) and thus one has

Type IIA : (8v ⊕ 8s)⊗ (8v ⊕ 8c) ,

Type IIB : (8v ⊕ 8s)⊗ (8v ⊕ 8s) . (1.107)

Expanding this products, we can see how the matter content of the different sectors
emerge:

– NS-NS sector:
8v ⊗ 8s = 1⊕ 28⊕ 35 = Φ⊕Bµν ⊕ gµν , (1.108)

7v: vectorial, s: spinorial, c: spinorial conjugate t: tensorial.



corresponding to the dilaton, the Kalb–Ramond and the graviton. It is the same field
content of the bosonic string and it is common to both Type IIA and Type IIB.

– NS-R and R-NS sectors:

8v ⊗ 8c = 8s ⊕ 56c , (1.109)
8v ⊗ 8s = 8c ⊕ 56s ,

containing the spin-1/2 dilatino λ and the spin-3/2 gravitino Ψµ. In Type IIA (
NS-R± ⊕ R∓-NS) the two gravitini have opposite chiralities, while in Type IIB (
NS-R± ⊕ R±-NS) they have the same one.

– R-R sector:

Type IIA : 8s ⊗ 8c = 8v ⊕ 56t ,

Type IIB : 8s ⊗ 8s = 1⊕ 28⊕ 35+ , (1.110)

formed by bosons obtained by the tensor product of two spinors. Type IIA (R±-R∓)
contains a 1-form C

(1)
µ and a 3-form C

(3)
µνρ, whilst Type IIB (R±-R±) contains a 0-form

C(0), a 2-form C
(2)
µν and a 4-form C

(4)
µνρσ with a self-dual field strength.

.

• Type I superstring theory, which is the only string theories containing open strings. For
consistency the theory must include a closed-superstring sector with the same spacetime
supersymmetry, which can be constructed by modding out Type II theories with respect to
the Z2 parity symmetry of the worldsheet coordinates. The ground state of the spectrum
corresponds to a vector multiplet of D = 10 N = 1 spacetime supersymmetry, containing
the graviton, the dilaton and a R-R two-form, together with a gravitino and a dilatino.

• Heterotic superstring theories, obtained by combining left-movers of the closed bosonic
string with right-movers of the closed superstring. The 16 extra spacetime dimensions,
that arise from the reduction from D = 26 to D = 10 of the bosonic string, must be
compactified and they give rise to internal gauge symmetries, with gauge group SO(32) or
E8 × E8. These theories have N = 1 spacetime supersymmetry and their massless sector
contains the graviton, the dilaton, the Kalb–Ramond two-form, together with a gravitino
and a dilatino. Additionally, there are vector fields with their related spin-1/2 fermionic
partners (called gaugini) that gauge the internal symmetry group.

It can be shown that the physical constraints on the R-R sector are equivalent to the Maxwell
equation of motion and to the Bianchi identity for an antisymmetric tensor field, i.e. we can
write

F (n)
µ1...µn = ∂[µ1C

(n−1)
µ2...µn]

, (1.111)

where the n-forms F (n)
µ1...µn are called Ramond–Ramond fields, while C(n)

µ1...µn are called Ramond–
Ramond potentials. The R-R fields are also related by the isomorphism

F (n)
µ1...µn ∼ ϵ ν1...ν10−n

µ1...µn F (10−n)
ν1...ν10−n

, (1.112)



which corresponds to an electric-magnetic duality that exchanges equations of motion and
Bianchi identities and relates the fields C(n) and C(8−n). Furthermore one can see that, in
contrast with what happens in the NS-NS sector, only the R-R fields couple to strings, i.e. only
the field strengths and not the potentials. Hence, string states cannot carry any charge with
respect to the R-R potentials. It turns out that the objects coupling to them are the Dp-branes,
which we will introduce in the next section.

1.2.3 Branes

As anticipated in the introduction to this chapter, D-branes are non-perturbative objects con-
tained in superstring theory that can be defined as the loci where open strings end and that
emerge from Dirichlet boundary conditions.

If we step back to consider an open string with Neumann boundary conditions for (p + 1)
coordinates and Dirichlet for the others, at both the endpoints of the string we have

∂σX
a
∣∣
σ=0,π

= 0 for a = 0, . . . , p ,

XI
∣∣
σ=0,π

= cI0,π for I = p+ 1, . . . , D − 1 . (1.113)

This choice forces the ends of the string to move on a (p+1)-dimensional hypersurface, breaking
the Lorentz invariance of the background to

SO(D − 1, 1) → SO(p, 1)× SO(D − p− 1). (1.114)

This hypersurface is called Dp-brane. Dp-branes extend along p dimensional spatial directions
and thus they sweep a (p+ 1)-dimensional worldvolume. They can be thought as other dynami-
cal objects contained in string theory.

To better understand the physics of D-branes, it can be useful to observe the ground state of
open strings ending on them: one finds that the massless modes of open strings are associated
with the fluctuations of the D-branes. In fact, if we look at the first excited states of open strings
with Dirichlet boundary conditions we have:8

• Oscillations longitudinal to the brane, generated by (p− 1) different creation operators that
transform under the vector representation of the SO(p, 1) Lorentz group of the brane.
They can be interpreted as arising from a massless (p+ 1)-dimensional gauge field that
lives on the brane.

• Oscillations transverse to the brane, generated by (9 − p) different creation operators that
transform as scalars under the SO(p, 1) Lorentz group. They can be interpreted as arising
from (9− p) scalar fields that live on the brane and describe the fluctuations of the brane
in the transverse directions. However, althought these fields are scalars under the Lorentz
group of the brane, they transform as a vector under the SO(9− p) group transverse to
the brane, which appears as a global symmetry on the brane worldvolume.

8In the remainder of this section we stick to ten-dimensionsal spacetime.



As we commented above, Dp-branes couple to C(p+1) R-R potentials. This defines the Ramond–
Ramond charge µp of the Dp-brane with respect to the “gauge field” C(p+1). More in detail,
from the isomorphism in (1.112), we can see that Dp-branes couple electrically to C(p+1) and
magnetically to C(7−p) and thus, starting from their R-R spectrum, it is possible to derive the
D-brane content of Type II superstring theories:

• Type IIA: the branes exist for all even values of p,

D0, D2, D4, D6, D8. (1.115)

The case p = 0 is a “D-particle”, while the D8-brane couples to a R-R potential with a field
strength F (10) that admits no propagating states. The D0-brane and the D6-brane, as well
as the D2-brane and the D4-brane, are electromagnetic duals of each other.

• Type IIB: the branes exist for all odd values of p,

D(−1), D1, D3, D5, D7, D9. (1.116)

The case p = −1 describes an object localized in time, called “D-instanton”, while the
D1-brane is a “D-string”. The D9-branes are spacetime filling branes, with no coupling
to any R-R field and leading to Neumann boundary conditions in every dimension. The
D3-brane is self-dual, the D-instanton and the D7-brane, as well as the D-string and the
D5-brane, are electromagnetic duals of each other.

The dynamics of a D-brane, as well as of the fields defined on it, are closely related to the modes
of the open strings attached to it. When the energy of the brane is small compared to the energy
of the open strings, the brane dynamics is completely determined by the open-string massless
modes. If we consider a Dp-brane on a background generated by the massless NS-NS modes of
the closed string sector gµν , Bµν and Φ, its effective action is given by

SDp =− TDp

∫
dp+1σe−Φ

√
−det (gαβ +Bαβ + 2πα′Fαβ)

+ µp

∫
eB+2πα′F ∧

∑
k

C(k), (1.117)

where TDp is the brane tension and σ = (X0, . . . , Xp+1) denote the coordinates on the world-
volume. The tensor fields gαβ and Bαβ are the pullback of the background metric and of the
Kalb–Ramond field on the Dp-brane worldvolume, respectively, e.g. gαβ = gµν∂αX

µ∂βX
ν . Fαβ

is the field strength of the worldvolume abelian gauge field Aα living on the brane. The first
term is the Dirac–Born–Infeld action, which describes the interaction between the brane and the
background. The second term is the Wess–Zumino action, that represents the interaction of the
brane with the R-R potentials.
Finally, the tension of a Dp-brane is given by

TDp =
1

gs(2π)p(α′)(p+1)/2
, (1.118)

from which we can see that when gs → ∞ or α′ → ∞ the branes are light. On the countrary, in
the weakly-coupled regime gs → 0, the branes become heavy: their dynamics decouples from



the background and thus the interactions between the open and the closed strings vanish.

We conclude this section by pointing out a different characterization of the D-branes. To this
end, recall that Type II superstring theory, in absence of D-branes, has N = 2 spacetime
supersymmetry. However, the open string boundary conditions are invariant under only one of
these supersymmetries, i.e. the N = 2 supersymmetry of the Type II vacuum breaks to N = 1
supersymmetry when D-branes are included. A D-brane can be thus described as a state that
preserves half of the original spacetime supersymmetry, also known as a BPS/2 state. The reason
why they are called BPS (“Bogomolny-Prasad-Sommerfeld”) is that they saturate the BPS bound,
which, as we mentioned, characterizes massive supersymmetric configurations and establishes
a relation between their mass and their central charges. In this case, the BPS bound relates the
mass of the brane (and thus its tension) to its R-R charge. Thus, the fact that the D-branes are
charged objects is consistent with the fact that they are BPS states.

1.2.4 M-theory

Despite the many improvements in the understanding of string theory, by the end of the eighties
there were still some open problem. Among them, the existence the end of the eighties, an
open problem related to string theory was the existence of five finite and totally self-consistent
superstring theories: Type I, Type IIA/B and Heterotic with gauge group E8 × E8 or SO(32). A
hint towards the resolution of this issue came from the discovery of the first dualities between
different string theories, culminating in the mid-nineties with the work of Witten [3], in which
he took further the formulation of the network of string dualities among the five different
ten-dimensional theories. Furthermore, he showed that the strong coupling limit of Type IIA
supergravity, which is the low-energy limit of Type IIA superstring theory, is eleven-dimensional
supergravity, the only consistent supergravity theory in eleven dimensions. This led to the
idea of M-theory, a non-perturbative eleven-dimensional theory whose low-energy effective
field theory is eleven-dimensional supergravity and that reduces to the superstring theories by
Kaluza–Klein compactifications.

To give a more concrete idea, let us suppose to perform a Kaluza–Klein reduction along the
(D + 1)-th coordinate of a (D + 1)-dimensional theory, compactifying it on a circle of radius R.
This leads to the appearance of an infinite tower of massive modes, besides the massless ones,
with mass

mn =
n

R
, (1.119)

where n ∈ Z labels the n-th excited state. Thus, if we take the limit R→ 0 we are left only with
the massless modes: the compactified dimension goes to zero and we obtain a D-dimensional
theory.
We can think of a backward procedure in the context of string theory. If we consider Type IIA
string theory, the spectrum includes D0-branes, whose mass is given by

MD0 = TD0 =
1

gsℓs
. (1.120)

The mass of a stack of n D0-branes is nMD0 and, by comparison with (1.119), we can interpret
it as the n-th excited state of a KK tower coming from the reduction of an eleven-dimensional



theory compactified on an S1 of radius R10 = gsℓs. This eleven-dimensional theory is indeed
M-theory. Thus, Type IIA string theory appears as the perturbative regime of M-theory, i.e. in
the limit gs → 0, in which R10 → 0. On the countrary, in the strong-coupling regime gs → ∞ the
circular eleventh dimension is decompactified and M-theory appears. It is worth noting that
D0-branes are non-perturbative excitations, since their tension diverges as gs → 0. Therefore
this analysis provides a test of duality between M-theory and Type IIA string theory that goes
beyond the perturbative regime.
All the perturbative objects of Type IIA can be included in the M-theory formulation, as D0-
branes. On the other hand, the BPS branes of M-theory are the M2-branes and the M5-branes,
which describe the embedding of non-perturbative objects of Type IIA string theory.

As we have already pointed out, M-theory lacks a Lagrangian formulation: if we think of the
duality with Type IIA string theory, we can write the Lagrangian only at weak string coupling,
where we are in the perturbative regime and we know what the theory is.
Nevertheless, many constructions in M-theory still lead to interesting results, even in the context
of the AdS/CFT correspondence. For what concerns us, in the last part of this work, we will
deal with four-dimensional superconformal field theories that arise as low-energy effective
descriptions of configurations of M5-branes wrapped on two-dimensional curves, either negative
curved Riemann surfaces [19] or three-punctured spheres [37]. Both these SCFTs are dual to
AdS5 warped compactifications of eleven-dimensional supergravity. We will expand on these
theories later.

1.3 Supergravity

In this last section we present a brief introduction to supergravity, focusing on its relation
with string theory and on how lower-dimensional supergravities can be obtained from higher-
dimensional ones through a dimensional reduction.
The content of this section is partially based on [8, 28, 38]. We refer the interested reader to [39]
for a short review on this topic and to [40] for an introductory book.

As we mentioned in the introduction to this chapter, supergravity in ten and eleven dimensions
emerges as the low-energy limit of weakly-coupled string theory and M-theory, respectively.
The parameters involved in this limit are the following:

• The string coupling gs, a dimensionless constant proportional to the ratio ℓP /ℓs, where ℓP
is the Planck length, that controls the hierarchy of scales in string theory. For example,
gs ≪ 1 means ℓP ≪ ℓs and hence that the excitations of the string are much less massive
than the Planck scale: quantum effects are negligible and we can treat string theory as a
classical theory.
From a different point of view, gs behaves as a coupling constant in a quantum field theory.
One can describe a string perturbation theory in terms of the mathematical genus of the
string worldsheet and every loop in the string diagram introduces a factor of (gs)2. Thus,
the weak string coupling limit gs → 0 suppresses the loops and the quantum effects.

• The Regge slope α′, related to the dimensions of the string by α′ = ℓ2s = 1
m2

s
. Thus, the

low-energy limit is the α′ → 0 limit, in which the string length can be ignored and a theory



of particle is recovered.

The various effective supergravities theories come from a double perturbative expansion, both
in α′ → 0 and gs → 0, of the string theories listed in the previous section.
More in detail, as we can see from (1.118), in these limits the tension of a D-brane becomes
large and thus the brane becomes rigid: the gauge theory on the brane decouples from the
gravity theory of the background, i.e. open and closed string modes decouple. Moreover, at
low energy we have α′ ∼ 1

m2
s
→ 0 and thus the massive string modes become too heavy to be

observed, and only the massless states forming the ground states are relevant. On the one hand,
the massless modes of the open string spectrum define a supersymmetric quantum field theory
on the worldvolume of the brane. On the other hand, the background is described by classical
massless fields coming from the ground states of closed strings, which define a supergravity
theory.

1.3.1 Lower-dimensional supergravities

We conclude by giving a flavor of how higher-dimensional supergravities can be dimensional
reduced. We address to [35] for an accurate review on the topic and we refer also to [33] for a
thorough discussion

Lower-dimensional supergravity theories can be extracted from the ten- and eleven-dimensional
ones using various mechanisms based on compactifications and dimensional reductions. The idea is
to wrap some directions of the higher-dimensional background on a compact manifold. From
this procedure a new parameter arises, associated with the size of the compact manifold. In
the limit in which this parameter goes to zero, a lower-dimensional description of the theory
appears. This may have interesting consequences on the propagation of the strings, at the level
of their spectrum. Since their modes are now defined on a curved manifold with some compact
directions, in certain cases it might happen that the degrees of freedom associated with the com-
pact directions decouple, leaving a finite set of modes defined only on the lower-dimensional
background. When it happens, the dimensional reduction defines a consistent truncation, mean-
ing that the higher-dimensional physics is completely captured by a finite number of fields
that define a lower-dimensional supergravity theory whose solutions can consistently uplift to
higher dimensions.

We will not go into the details of the mechanism of dimensional reduction. We just mention
that, from a geometrical point a view, one can start by rewriting the supergravity background
manifold as

MD =Md ×XD−d (1.121)

where XD−d is a compact (D − d)-dimensional interal space. The D-dimensional background is
interpreted as an XD−d-fibration over the lower-dimensional space Md.
There are different ways to compactify a theory: the two main methods are the above-mentioned
Kaluza–Klein reduction [41, 42]9 and the twisted reductions [43]. Furthermore, there are many
geometries that can be chosen for the internal manifold XD−d, as torii or Calabi–Yau manifolds.
For what concerns the remainder of this paper, relevant examples of truncations are the ones

9We will give a concrete example of Kaluza–Klein reduction in chapter 7.



on spheres SD−d or on Sasaki–Einstein manifolds SED−d, which play an important role in the
AdS/CFT correspondence.

In the fourth part of this work we will deal with a few five-dimensional supergravity models
obtained as consistent truncation from ten- or eleven-dimensional supergravity.



Chapter 2

The AdS/CFT correspondence

The AdS/CFT establishes a duality between gravitational theories in d + 1 dimensions with
AdS vacua and non-gravitational d-dimensional conformal field theories. It represents one of
the most fertile research grounds of the last two decades, having implications that extend to
different fields, from black hole physics to condensed matter.

The first hint toward a formulation of the AdS/CFT correspondence can be found in the black
hole area law formulated by Bekenstein and Hawking in the seventies [1, 2], which states that
the entropy of a black hole SBH scales as the area AH of its event horizon, not as its volume.
More in detail:

SBH =
AH
4ℓ2P

=
AHc

3

4GNℏ
, (2.1)

where ℓP = GNℏ/c3 stands for the Planck length and GN is the Newton’s gravity constant.
The holographic principle was formulated in the nineties by ’t Hooft and Susskind [5, 6] as a
generalization of the area law and it implies that in quantum gravity all the information encoded
in a volume of space can be described in terms of the degrees of freedom of the boundary only.
In ’96 Strominger and Vafa [4] reproduced the Bekenstein–Hawking entropy with D-branes
methods, in the limit of large charges, showing that a collection of D-branes can explain the
microscopic origin of the black hole entropy. Developing this idea, Maldacena formulated the
founding example of the AdS/CFT correspondence [7], which conjectures a duality between the
maximally supersymmetric Yang–Mills theory in four dimensions and Type IIB string theory on
AdS5 × S5, as we will present in more detail in the last section of this chapter.

The correspondence has been soon showed to hold between supergravity theories on AdSd and
suitable superconformal field theories living on their (d− 1)-dimensional boundary. It has been
greatly developed over the years and generalized to less and even non-supersymmetric cases.
In this work we will mostly deal with dualities between four-dimensional field theories and
gravitational theories in AdS5, as the original one, but with less supersymmetry. Specifically, in
the majority of cases we will consider conformal field theories with N = 1 supersymmetry dual
to supergravity theories on AdS5 ×X5, where X5 is a Sasaki–Einstein manifold, as will be more
clear in a few chapters.

Many relevant and useful applications of the correspondence rely on the fact that it is a
strong/weak duality. Therefore, on the one hand it allows to use a classical gravitational



theory to investigate quantum effects in a strongly-coupled theory. On the other hand, it is
an ideal setting to study quantum properties of black holes from a fully quantum microstate
counting in the dual conformal field theory.

In this chapter we give a short review of the AdS/CFT correspondence, along the lines of the
review [44]. In section 2.1 and 2.2 we summarize the most salient aspects of (super) conformal
field theories and AdS spacetime, respectively. In section 2.3 we present the AdS/CFT duality:
we start by focusing on the original Maldacena’s conjecture, giving a flavor of its derivation
from a brane construction, and we conclude with some remarks on the holographic dictionary.
Besides the review already cited, this chapter in mainly based on [45, 46]. We will report other
helpful references throughout the chapter.

2.1 Conformal field theories

To approach conformal field theories (CFTs), one usually starts by employing the symmetries of
the theory. Thus, in this section we present dimensional conformal field theories starting from
the conformal group. We then introduce its supersymmetric extension and finally we highlight
some relevant aspects of quantum conformal field theories.
We mainly follow [44, 47].

2.1.1 Conformal group

We begin by introducing the conformal group in D dimensions.
Given a D-dimensional spacetime, transformations thereof that locally preserve the angle
between any two lines are called conformal transformations. In more mathematical terms, a
conformal transformation is a change of coordinates that rescales the line element as

xµ → x′µ ds2 → ds′2 = Ω(x)2ds2, (2.2)

where Ω(x) is an arbitrary function of the coordinates. At the infinitesimal level we can expand
it as

x′µ = xµ + vµ(x), Ω(x) = 1 +
ω(x)

2
, (2.3)

from which we can read the condition

∂µvν + ∂νvµ = ω(x)ηµν . (2.4)

The function ω(x) can be fixed by tracing the equation above with ηµν , that gives Dω = 2∂µv
µ .

Substituting this expression in the previous formula, we find the condition on the transformation
(2.3) to be conformal:

∂µvν + ∂νvµ −
2

D
(∂ρv

ρ)ηµν = 0. (2.5)



In two dimensions this equation admits infinite solutions, and thus the conformal group is
infinite-dimensional. For D ̸= 2, the general solution is given by

form generators type

δxµ = aµ Pµ translations
ωµνxν Mµν Lorentz transf.
λxµ D dilatation

bµx2 − 2xµ(b · x) Kµ special conf. transf.

(2.6)

where ωµν = −ωνµ. The finite form of the special conformal transformation is

xµ → xµ + cµx2

1 + 2c · x+ (c · x)2
. (2.7)

Altogether there are (D + 1)(D + 2)/2 generators. It can be shown that the group is isomorphic
to SO(D, 2). Furthermore, there is an extra discrete symmetry,

xµ → xµ

x2
ds2 → ds2

x4
(2.8)

that acts as a conformal transformation. Adding this last transformation we recover the full
conformal group O(D, 2).

Conformal algebra

One can check that the generators P,M,D,K close the following algebra:

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηµσMνρ + iηνρMµσ ,

[Mµν , Pρ] = −iηµρPν + iηρνPµ ,

[Mµν ,Kρ] = iηµρKν − iηνρKµ ,

[Mµν ,D] = 0 ,

[D, Pµ] = iPµ

[D,Kµ] = −iKµ ,

[Kµ, Pν ] = −2iMµν − 2iηµνD . (2.9)

All the generators can be assembled as

JMN =

 Mµν
Kµ−Pµ

2 −Kµ+Pµ

2

−Kµ−Pµ

2 0 D
Kµ+Pµ

2 −D 0

 , M,N = 1, . . . , D + 2 . (2.10)

Notice that JMN is antisymmetric and represents a rotation in a (D+2)-dimensional space, with
signature ηMN = diag(−1, 1, . . . , 1,−1), thus representing the algebra of the above-mentioned
SO(D, 2) group. We can see that D is a scalar, while Pµ and Kµ are vectors, acting as raising and
lowering operators on D, respectively.



2.1.2 The energy-momentum tensor

According to Noether’s theorem, for every continuous symmetry in a field theory there is a
conserved current Jµ, i.e. ∂µJµ = 0. We are studying theories with a conformal symmetry (2.3)
and thus we have a conserved current that can be written as

Jµ = Tµνδx
ν , (2.11)

where Tµν is the energy-momentum tensor.
Conservations of the currents corresponding to translations and Lorentz transformations are
realized if the energy-momentum tensor is conserved (∂µTµν = 0) and symmetric, respectively,
while the current associated with dilatations is conserved if the tensor is traceless.

Let us make a short digression. Classical massless fields are conformally invariant under Weyl
rescalings of the metric tensor gµν(x) → Ω2(x)gµν(x). This invariance breaks when the conformal
field theory is coupled to an external metric or when the theory is defined on a curved space,
giving rise to the so-called Weyl anomaly, which in four dimensions gives the following vacuum
expectation value to the trace of the energy-momentum tensor:

⟨T µ
µ ⟩ = c

16π2
W 2
µνρσ −

a

16π2
R̃2
µνρσ , (2.12)

where the Weyl tensor and Euler densities are

W 2
µνρσ = R2

µνρσ − 2R2
µν +

1

3
R2 ,

R̃2
µνρσ =

(
1

2
ϵ τλ
µν Rτλρσ

)2

= R2
µνρσ − 4R2

µν +R2 .

(2.13)

The coefficients a and c in (2.12) are called conformal anomalies or central charges and characterize
a four-dimensional CFT. Remarkably, they can be also expressed in terms of the superconformal
R-symmetry (that we will introduce in the next subsection) as

a =
3

32
(3TrR2 − TrR), c =

1

32
(9TrR3 − 5TrR) (2.14)

2.1.3 Superconformal group

Supersymmetry enhances the conformal group to a supergroup, which is obtained from O(D, 2)
by adding the supercharges QI , I = 1, . . . ,N , the conformal supercharges SI and the generators
of the R-symmetry that rotates them. The conformal supercharges are needed in order to close
the superconformal algebra.
In four dimensions the superconformal group is SU(2, 2|N ), describing a theory with N super-
symmetries obtained by including N supercharges QIα, N superconformal charges SαI and the
generators of a U(N ) global symmetry RIJ rotating them.

2.1.4 Conformal quantum field theories

As we have already mentioned, particles can be identified by the Casimir operators of the
Poincaré group. However, when a theory is conformal invariant, the mass operator PµPµ does



not commute anymore with other generators, such for example D, and thus it is no longer a
Casimir operator. Energy and mass may be rescaled by a conformal transformation: dilatations
can make the energy of a given state vary from zero to infinity and thus we need to introduce a
new manner of labelling states. A good candidate is given by the dilatation operator itself. If we
consider its action on a field ϕ(x)

[D, ϕ(x)] = i(∆ + xµ∂
µ)ϕ(x), (2.15)

it identifies fields of conformal dimension ∆. When we will deal with gauge theories, the
physical objects will be described by gauge invariant operators with given conformal dimension.
Fields (or operators) annihilated by the lowering operator Kµ are called primary fields (or oper-
ators), while the ones obtained from primaries by applying the raising operator Pµ are called
descendants.

In general, the quantization of a CFT breaks the conformal invariance due to the introduction of
a renormalization scale. In a theory with gauge fields, fermions and scalars, all the dimensionless
couplings g run with the energy scale, and thus the dimension ∆ of a field is given by its classical
dimension d corrected by the anomalous dimension γ:

∆ = d+ γ(g), γ =
1

2
µ
d

dµ
lnZ . (2.16)

Nevertheless, conformally invariant quantum field theories can be obtained both as fixed points
of the Renormalization Group and as finite theories.

In order to have a conformally invariant quantum theory, we are interested in unitary represen-
tations of the conformal group in which the generators P, J,D,K are implemented as hermitian
operators.
Unitarity of the theory imposes bounds on the dimensions of the primary fields. For example,
in four-dimensional theories, the dimension of a scalar field has to be greater than one, ∆ ≥ 1,
where the bound is saturated, ∆ = 1, if the operator obeys free field equations. Furthermore,
in supersymmetric theories, the bounds relate the dimension of the fields to their spin and
R-symmetry. In four-dimensional N = 1 supersymmetric theories, for example, the scalar
bound ∆ ≥ 3

2R relates the dimension to the R-charge, and it is saturated by chiral operators.

2.2 AdS spacetime

Moving to the gravitational side of the correspondence, we now introduce AdS spacetime,
which is the maximally symmetric solution of Einstein equations with negative cosmological
constant (Λ < 0).

Let us consider Rd−1,2 with coordinatesXA, A = 0, . . . , d, and metric ηAB = diag(−1, 1, . . . , 1,−1).
Anti-de Sitter spacetime AdSd in d dimensions is defined as the hypersurface

ηABX
AXB = −l2, (2.17)



where l is the radius of AdS. The isometry group is SO(d− 1, 2).1 For example, for d = 2, the
hypersurface is given by

−(X0)2 + (X1)2 − (X2)2 = −l2. (2.18)

From the Einstein–Hilbert action with cosmological constant Λ

S =
1

16πGd

∫
ddx

√
−g(R− 2Λ), (2.19)

where Gd is the d-dimensional Newton’s constant, R is the scalar curvature and g is the determi-
nant of the metric, we can derive the following Einstein equations

Rµν −
1

2
gµν(R− 2Λ) = 0, (2.20)

from which
R =

2d

d− 2
Λ, (2.21)

telling us that the solution is an Einstein space.
Notice that the cosmological constant is related to AdS radius by

Λ = −(d− 1)(d− 2)

2l2
. (2.22)

Among the solutions of (2.20), the only one which is maximally symmetric, namely

Rµνρσ =
R

d(d− 1)
(gµρgνσ − gµσgνρ) , (2.23)

is given by the anti-de Sitter space.

2.2.1 Coordinates on AdS

We now review the most common sets of coordinates used to parametrize AdSd metric.

Global coordinates

AdSd can be parametrized in global coordinates using the set of coordinates (τ, ρ, θi), with
i = 1, . . . , d− 2, as 

X0 = l cosh ρ cos τ,

Xd = l cosh ρ sin τ,

Xi = l sinh ρ yi, i = 1, . . . , d− 1,
∑d−1

i=1 yi = 1,

(2.24)

where θi are the coordinates on an n-sphere parametrized by yi. In these coordinates the line
element reads

ds2 = l2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
d−2), (2.25)

where dΩ2
n is the line element of the n-sphere with unit radius.

For ρ ∈ R+ and τ ∈ [0, 2π], these coordinates cover the hyperboloid (2.17) exactly once. Due to
the identification τ ∼ τ + 2π we have closed timelike curves; in order to avoid it, one usually
takes the universal cover where τ ∈ R.

1It would be O(d− 1, 2), but we consider the part connected to the identity.



Poincaré coordinates

Another set of coordinates can be written in terms of the parameters (t, z, xi), with i = 1, . . . , d−2,
as 

X0 = z2+l2+x⃗2−t2
2z ,

Xi = l
zx

i,

Xd−1 = − z2−l2+x⃗2−t2
2z ,

Xd = lt
z ,

(2.26)

with z ∈ R+. The metric reads

ds2 =
l2

z2
(−dt2 + dz2 + dx⃗2), (2.27)

or alternatively, changing the coordinate z = l2/r,

ds2 = −r
2

l2
dt2 +

l2

r2
dr2 +

r2

l2
dx⃗2, (2.28)

or

ds2 = l2
(
du2

u2
+ u2(−dt2 + dx⃗2)

)
(2.29)

for z = 1/u.
This metric has slices isomorphic to (d− 1)-dimensional Minkowski spacetime, foliated over u
that runs from 0 to ∞. The plane u = ∞ is a conformal boundary for AdSd,2 while u = 0 is a
Killing horizon, since the Killing vector ∂t has zero norm at u = 0. Notice that, although they
are convenient and commonly used, Poincaré coordinates cover only half of the hyperboloid: in
u = 0 there is not a singularity and the metric can be extended after the horizon, for example
using global coordinates. Global anti-de Sitter spacetime contains an infinite number of copies
of the Poincaré patch.

2.2.2 Euclidean AdS

We now consider the Euclidean continuation of the AdSd metric, that has useful applications in
AdS/CFT correspondence.
This can be obtained by performing a Wick rotation on X0 in embedding coordinates, or
equivalently by sending τ → −iτE or t→ −itE in each set of coordinates. The resulting metric
is thus

ds2 = l2(cosh2 ρdτ2E + dρ2 + sinh2 ρdΩd−2) (2.30)

= l2
(
du2

u2
+ u2(dt2E + dx⃗2)

)
.

We can notice that the boundary plane (u = ∞) Rd−2,1 of the Minkowskian spacetime is replaced
by Rd−1, whereas the u = 0 plane shrinks to a point.
Furthermore, by adding the point u = 0 to the boundary Rd−1, it is possible to compactify the

2The boundary is conformal because it can be described by different metrics related by conformal transformations.



flat (d− 1)-dimensional space to Sd−1. Euclidean AdSd is thus diffeomorphic to a d-dimensional
ball in Rd with metric

ds2 =

d∑
i=1

dy2i
(l2 − |y|2)2

,

d∑
i=1

≤ l2. (2.31)

2.3 The AdS/CFT correspondence

As we mentioned, the AdS/CFT correspondence was first conjectured as a duality between Type
IIB string theory with AdS5 × S5 background and N = 4 Super Yang–Mills in four dimensions,
which is the maximally supersymmetric four-dimensional field theory. More in detail, concrete
results were obtained in the limit in which string theory is well approximated by classical ten-
dimensional Type IIB supergravity. This duality has been later broadened and now it includes
a general correspondence between gravitational theories in (d+ 1) spacetime dimensions and
quantum field theories without gravity in d dimensions.
In contrast with the field theory that lives on its d-dimensional “boundary”, the (d + 1)-
gravitational theory is often denoted as the theory “in the bulk”.

In this section we describe the AdS/CFT duality, starting from the original formulation and
giving an intuition of its derivation from a brane engineering. We then make a digression
on four-dimensional N = 4 Super Yang–Mills with SU(N) gauge group and we conclude
presenting some interesting examples of the holographic matching between corresponding
quantities in the two dual theories. We follow again [44–46].

2.3.1 Maldacena conjecture

Here we present in more detail the duality conjectured by Maldacena, establishing a correspon-
dence between the bulk and the boundary theory.
On the bulk side of the correspondence, there is a ten-dimensional Type IIB string theory on the
product space AdS5 × S5. The Type IIB five-form flux through S5 in an integer N and AdS5 has
the same radius as S5, L, given by the relation L4 = 4πgsNα

′2.
On the boundary side, there is a four-dimensional Super Yang–Mills (SYM) theory with maximal
N = 4 supersymmetry and SU(N) gauge group. The Yang–Mills coupling gYM is such that
g2YM = gs in the conformal phase.
The AdS/CFT correspondence conjectures that these two theories are equivalent to one another,
including operators, states, correlation functions and dynamics.

In its strong form, the conjecture must hold for all values of N and of gs ∼ g2YM. Nevertheless,
due to the complexity to quantize string theory on general curved manifolds, it is convenient to
analyze limits in which the correspondence becomes more tractable.
One important example it the ’t Hooft limit, which consists in keeping the ’t Hooft coupling
λ ≡ g2YMN ∼ gsN fixed asN → ∞, on the field theory side. On the AdS side this can be achieved
by re-expressing the string coupling in terms of the ’t Hooft coupling as gs = λ/N , and thus
it corresponds to weak coupling string perturbation theory. It establishes a correspondence
between classical string theory and the large-N limit of gauge theories: using classical string



theory on AdS5 × S5 one should be able to build a classical Lagrangian formulation of the large-
N dynamics of N = 4 SYM theory. Finding an explicit realization of such a correspondence is,
however, a challenging problem.
A further limit, λ→ ∞, allows to reduce classical string theory to classical Type IIB supergravity
on AdS5 × S5, and thus to map strongly-coupled dynamics of Super Yang–Mills theory, in the
large-N limit, into classical low-energy dynamics in supergravity.

We now present the brane engineering of the two theories, showing how they emerge from two
different points of view of the same system.

Open strings living on D3-branes

Consider N parallel D3-branes very close to each other, in Type IIB string theory in ten-
dimensional Minkowski spacetime: the D3-branes are extended along the (x0, x1, x2, x3) direc-
tion. On this background, string theory contains two kinds of perturbative excitations, closed
strings and open strings. The first ones represent the excitations of empty space, while the latter
describe excitations of the D-branes, where open strings are attached to.
If we restrict to energies lower than the string scale, E ≪ 1/ℓs ∼ 1/

√
α′, only the massless string

states can be excited. The closed and open string massless states give a ten-dimensional gravity
supermultiplet and an N = 4 vector supermultiplet in (3 + 1) dimensions, respectively. The
low-energy effective Lagrangian for closed string states is Type IIB supergravity, while the one
for open string states is N = 4 SU(N) Super Yang–Mills theory.3

The complete effective action of the massless modes can be written as

S = Sbulk + Sbrane + Sint, (2.32)

where

• Sbulk is the action of ten-dimensional supergravity, plus some higher derivative corrections.

• Sbrane is the brane action, defined on the (3 + 1)-dimensional brane worldvolume. It
contains the N = 4 SYM Lagrangian plus some higher derivative corrections.

• Sint is the action that describes the interactions between the bulk modes and the brane
modes.

In order to study the low-energy limit of this action, we take ℓs → 0 (α′ → 0) while keeping
the energy and all the dimensionless parameters fixed, including gs and N . One can show that
both interaction terms and higher derivative corrections are proportional to positive powers of
κ ∼ gsα

′2, and thus they all vanish in the low energy limit. Therefore the interaction Lagrangian
vanishes and we are left with two decoupled systems: the pure N = 4 SU(N) gauge theory in
(3 + 1) dimensions and a free supergravity theory in the bulk.

3In section 2.3.2 we give a more detailed overview of non-abelian theories from D-branes and Super Yang–Mills
theory.



D3-brane solution of Type IIB supergravity

We can also analyze the same system from a different perspective. In fact, D-branes act also as a
source for various supergravity fields.

We focus on the low-energy effective action of Type IIB supergravity in ten dimensions, in which
we only need to consider a subset of the bosonic fields of the theory consisting of the metric
gMN , the five-form field strength FMNPQR and the dilaton ϕ, while the other fields consistently
decouple. The action is given by

SIIB =
1

2k210

∫
d10x

√
−g
[
e−2ϕ

g2s

(
R10 + 4(∂ϕ)2

)
− 1

4
|F5|2

]
, (2.33)

where the five-form is self-dual, F5 = F̃5 and k210 = 64π7α′4. We use xµ, µ = 0, 1, 2, 3, as
Cartesian coordinates on Minkowski space and we parametrize the flat Euclidean “transverse
space” with a radial coordinate r and five angular coordinates of a five-sphere. We are interested
in the solution describing a set of N coincident D3-branes located at r = 0, for which we can
write the line element as

ds210 =
1√
f(r)

ηµνdx
µdxν +

√
h(r)

(
dr2 + r2dΩ2

5

)
, (2.34)

where dΩ2
5 is the SO(6) invariant metric on the unit S5 and

f(r) = h(r) ≡ H(r) = 1 +
L4

r4
, L4 = 4πα′2gsN, (2.35)

eϕ = gs, A =
1

H(r)
dx0 ∧ dx1 ∧ dx2 ∧ dx3. (2.36)

Notice that gtt is non-constant and thus the energy E measured by an observer at infinity is
related to the energy Ep of an object measured by an observer at a constant position r by the
relation

E = H(r)−1/4Ep. (2.37)

We now consider two different regions of the above solution, in the low-energy limit. On the
one hand, when r → ∞ we have H(r) ≈ 1 and E ≈ Ep: the solution describes an asymptotically
flat spacetime and thus there is a free supergravity theory in the bulk.
On the other hand, when r → 0, the spacetime has a horizon and the region r ≈ 0 is a “throat”.
Near the horizon H(r) ≈ L4

r4
and the metric becomes

ds210 ≈
r2

L2
ηµνdx

µdxν +
L2dr2

r2
+ L2dΩ2

5 ≈
L2

z2
(
dz2 + ηµνdx

µdxν
)
+ L2dΩ2

5, (2.38)

where in the second line we have introduced a new radial coordinate z = L2/r, with respect to
which the boundary is at z = 0 and the horizon at z = ∞. Thus, in the near-horizon limit the
ten-dimensional spacetime is a product space M5 × S5, where M5 is the Poincaré patch of AdS5
with radius L, which is the same radius of the five-sphere S5.
Besides the symmetry SO(4, 2)× SO(6), which is the isometry group of AdS5 × S5, there are
also 32 conserved supercharges, that can be found from a Killing spinor analysis of the fermionic
supersymmetry variation of Type IIB supergravity.



Near-horizon geometry from brane construction

In conclusion, we have seen that both from the point of view of a field theory of open strings
living on branes and from the point of view of branes as sources of supergravity fields, in the
low-energy limit we obtain two decoupled systems. In both descriptions, one of the decoupled
theory is supergravity in flat Minkowski spacetime, and thus the second theories that appear in
both cases are expected to be equivalent. This leads to Maldacena conjecture in its weak form, i.e.
the duality between N = 4 Super Yang–Mills with SU(N) gauge group in (3 + 1)-dimensions
and Type IIB supergravity on AdS5 × S5.

Strong/weak duality

Let us focus more carefully on the regimes of validity of the approximations we are using.
From the field theory side, one can show from a loop diagrams expansion that the perturbative
analysis of the Yang–Mills theory is reliable as long as

g2YMN ∼ gsN ∼ L4

ℓ4s
≪ 1. (2.39)

From the AdS side, we can trust the classical gravity description when the radius of curvature L
of both AdS5 and S5 is large compared to the string length,

L4

ℓ4
∼ gsN ∼ g2YMN ≫ 1. (2.40)

We can immediately notice that these two regimes are incompatible, and this is the reason why
AdS/CFT correspondence is called a duality.
The two theories are thus conjectured to be equivalent, but when one side is weakly-coupled the
other one is strongly-coupled, making the correspondence both useful and hard to prove.

2.3.2 N = 4 Super Yang–Mills theory and D3-branes

In this section we give a short review on how non-abelian gauge theories can be engineered
from a D-brane construction and we present the main features of four-dimensional N = 4 Super
Yang–Mills theory.

Non-abelian gauge theories from D-branes

In string theory, vector multiplets arise from the quantization of open strings that end on D-
branes. If an open string has both end points attached to the same brane it can have arbitrarily
short length and must thus be massless, giving rise to a massless vector multiplet: in fact this
excitation mode induces a massless U(1) gauge theory on the worldbrane. If we consider a
configuration of N parallel separated D-branes with open strings, in which the end points of
each string are attached to the same brane, these strings can again have arbitrarily small length
and must be massless. These excitation modes induce a massless U(1)N gauge theory.
On the other hand, if in the latter configuration we have a string that connects different branes,
the length of such a string is bounded from below by the separation distance between the branes
and thus its mass cannot be arbitrarily small. One can show that there are N2 −N such possible



strings and they give rise to massive vector multiplets. Nevertheless, when the N D-branes
coincide, all string states become massless and we obtain N2 vector fields with the U(1)N gauge
symmetry enhanced to a full U(N) gauge symmetry. Notice that the U(1) = U(N)/SU(N)
factor corresponds to the position of the mass center of the branes and can be thus ignored when
considering dynamics on the branes, leaving only a SU(N) gauge symmetry.

We now focus on D3-branes. If we consider an open string ending on a single D3-brane, its
excitation mode induces a massless U(1) gauge theory on an effectively four-dimensional flat
spacetime. The brane breaks half of the total number of supersymmetries and thus this gauge
theory has N = 4 Poincaré supersymmetry and in the low-energy approximation is a free theory.
If we instead consider N parallel coincident D3-branes, in the low-energy limit they support a
four-dimensional N = 4 Super Yang–Mills theory with SU(N) gauge group.

N = 4 Super Yang–Mills

N = 4 SYM is the theory that has the maximal amount of global supersymmetry in four
dimensions. It contains only a vector multiplet,

VN=4 =
(
Aµ, λ

a
α,Φ

i
)
, (2.41)

where Aµ is a gauge field, Φi, i = 1, . . . , 6, are real scalar fields parametrizing the six directions
transverse to the branes and λaα, α = 1, 2, a = 1, . . . , 4, are left Weyl spinors.
A D3-brane has an SO(3, 1) × SO(6) global symmetry. The first factor is the Lorentz group,
the symmetry group of the D3-brane worldvolume, while the second can be interpreted as
the SU(4)R ∼= SO(6)R R-symmetry of the theory, that rotates the four supercharges Qaα and
under which Aµ is a singlet, λaα are in the fundamental representation of SU(4) and Φi are in
the fundamental of SO(6) (or equivalently they are in a rank 2 antisymmetric representation of
SU(4)).
The Lagrangian of N = 4 Super Yang–Mills is given by

L =Tr

{
− 1

2g2YM
FµνF

µν +
θI
8π2

FµνF̃
µν −

∑
a

iλ̄aσ̄µDµλa −
∑
i

DµΦ
iDµΦi

+
∑
a,b,i

gYM

(
Cabi λa[Φ

i, λb] + C̄iabλ̄
a[Φi, λ̄b]

)
+
g2YM
2

∑
i,j

[Φi,Φj ]2
}
, (2.42)

where gYM is the gauge coupling, θI is the instanton angle, Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] is
the non-abelian field strength, F̃µν = 1

2ϵµνρσF
ρσ is the Hodge dual of F and Dµ = ∂µ + i[Aµ, · ],

while the constants Cabi and C̄iab are related to the Dirac matrices for the R-symmetry group.
Classically, L is scale invariant. As we mentioned above, scale invariance and Poincaré invari-
ance combine and form the conformal group SO(4, 2) ∼= SU(2, 2), that in presence of N = 4
supersymmetry enhances to the superconformal group SU(2, 2|4).

Upon perturbative quantization, N = 4 Super Yang–Mills theory is believed to be UV finite
and thus its renormalization group β-function is identically vanishing. Therefore the theory is
exactly scale invariant at the quantum level, with quantum mechanical symmetry SU(2, 2|4).



Finally, there is an additional discrete global symmetry of the theory, at the quantum level, stated
by the Montonen–Olive or S-duality conjecture. In fact, combining the real coupling and the real
instanton angle into a single complex coupling

τ ≡ θI
2π

+
4πi

g2YM
, (2.43)

the quantum theory is invariant under τ → −1/τ , besides being invariant under τ → τ + 1. The
combination of these two symmetries gives the S-duality group SL(2,Z), generated by

τ → aτ + b

cτ + d
, with ad− bc = 1, a, b, c, d ∈ Z. (2.44)

Notice that when θI vanishes, the S-duality transformation reduces to gYM → 1/gYM, exchanging
strong and weak coupling.

2.3.3 Holographic dictionary

In this final section we summarize the main correspondences between quantities in the two
theories related by the AdS/CFT duality.
In the majority of cases we restrict ourselves to the founding example, for simplicity.

Relations between parameters

We begin by recalling the relations between the various parameters of the two theories.
The number of colors N of the SU(N) gauge group on the field theory side appears on the string
theory side as the flux of the five-form field strength through the five-sphere,∫

S5

F5 = N. (2.45)

From the physics of D-branes arises the relation between the Yang–Mills coupling and the string
coupling, given by

τ ≡ 4πi

g2YM
+
θI
2π

=
i

gs
+

χ

2π
, (2.46)

where χ is the Ramond–Ramond scalar, and thus g2YM = 4πgs. Furthermore, as we saw from
supergravity D3-brane solution,

L4

α′2 = 4πgs ⇒ λ ≡ g2YM =
L4

α′2 . (2.47)

Symmetries

For what concerns the symmetries of the two theories, the isometry group of AdS5 is SO(4, 2),
which is the symmetry of the conformal group in four dimensions. The isometry group of
the five-sphere is the compact group SO(6), whose algebra is isomorphic to SU(4), that is
also the global internal symmetry of N = 4 Super Yang–Mills. Furthermore, the latter theory
is also invariant under four Poincaré supercharges and four conformal supercharges, which
combine with the other symmetries into the superalgebra SU(2, 2|4). The near-horizon limit
of the superstring background has the same superalgebra, and thus the symmetry of the two
theories completely match. We summarize this matching in the following table:



N = 4 Super Yang–Mills Type IIB string theory on AdS5 × S5

Conformal symmetry SO(4, 2) AdS5 isometries SO(4, 2)
(global) (local)

Global internal SO(6) S5 isometries: SO(6) (local)

Global supersymmetry Same local supersymmetry

⇓ ⇓

Global symmetry Local symmetry

Notice that the SU(N) gauge symmetry of SYM theory has no counterpart in the duality, because
it describes a redundancy.

Field ↔ Operator correspondence

There is a correspondence between the Hilbert spaces in the boundary and in the bulk: both
spaces are organized in terms of the representations of SO(4, 2). Local gauge-invariant operators
in the boundary correspond to bulk fields.

For example, one may deform a quantum field theory by a marginal operator O that changes
the value of the coupling constant. As we have already noted, this corresponds to changing
the value of the string coupling in the dual theory, which is related to the expectation value of
the dilaton ϕ, set by the boundary condition for the dilaton at infinity. Thus, changing the field
theory coupling constant modifies the boundary value of the dilaton.
More explicitly, let us deform the gauge theory as

SQFT → SQFT +

∫
d4xϕ0(x⃗)O(x⃗) , (2.48)

where ϕ0(x⃗) represents the source for the operator O(x⃗). This changes the boundary condition
of the dilaton at the AdS boundary z = 0 (using the coordinate system in (2.38)) to ϕ(x⃗, z)|z=0 =
ϕ0(x⃗) and leads to a fundamental statement of AdS/CFT correspondence:

⟨e
∫
d4xϕ0(x⃗)O(x⃗)⟩CFT = Zstring

[
ϕ(x⃗, z)|z=0 = ϕ0(x⃗)

]
. (2.49)

On the left hand side we have the generating function of the correlators in the conformal field
theory. On the right hand side we have the string theory partition function, with the boundary
condition for the field ϕ on the AdS5 boundary given by ϕ0(x⃗).

The importance of formula (2.49) resides in the fact that is valid in general, for any field ϕ. It
establishes a one-to-one correspondence between each field propagating in AdS space and an
operator in the dual field theory.



Mass ↔ Conformal dimension relation

An application of the above field/operator correspondence gives a relation between the mass of
the field ϕ on the AdS side and the conformal dimension ∆ of the corresponding operator in the
dual CFT.
Let us consider the wave equation for a field of mass m in AdSd+1 spacetime, which has the
expansion

ϕ(x⃗, z) = A(x)zd−∆ +B(x)z∆ + . . . as z → 0 , (2.50)

where

∆ =
d

2
+

√
d2

4
+ L2m2. (2.51)

We can note that the first term is dominant close to AdS boundary and thus, if we want to get a
consistent version of formula (2.49) in presence of a massive field, we have to change its right
hand side to

ϕ(x⃗, ϵ) = ϵd−∆ϕ0(x⃗) (2.52)

and then eventually take the limit ϵ→ 0. Being ϕ dimensionless, ϕ0 must have dimensions of
[ length ]∆−d, and thus its associated operator O has dimension ∆, as can be read from the left
hand side of (2.49).
Similar relations between AdS fields and field theory operators exist also for fermions and
tensors on AdS space, and they can be obtained by comparing the partition functions of the two
theories. Here we report some results in four dimensions, showing the relation between masses
in AdS5 and conformal dimensions of the dual operators for fields of arbitrary spin:

scalar ϕ : m2 = L2∆(∆− 4) ,

vector Aµ : m2 = L2(∆− 1)(∆− 3) ,

symmetric gµν : m2 = L2∆(∆− 4) ,

antisymmetric Bµν : m2 = L2(∆− 2)2 ,

spin-1/2 ψ : m = L(∆− 2) ,

spin-3/2 ψµ : m = L(∆− 2) . (2.53)
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Chapter 3

Some useful remarks on quantum field theories

We have seen that the AdS/CFT correspondence allows to extract gravitational quantities, such
for example the entropy of certain anti-de Sitter black holes, from a field theory defined on
the boundary of the gravity theory. In the original duality, between Type IIB string theory in
AdS5 × S5 and N = 4 Super Yang–Mills with SU(N) gauge group, one can reproduce the
entropy of a class of supersymmetric rotating electrically charged AdS5 black holes starting
from the superconformal index of N = 4 SYM on S1 × S3 with proper chemical potentials.
In the last two decades this operation has been generalized to different dimensions and extended
to less supersymmetric theories. Specifically, most of the results of the present work have been
obtained in the framework of the holographic duality between four-dimensional superconformal
field theories and gravitational theories in AdS5 with less supersymmetry than the pioneering
case. In fact, on the gravity side, one can break part of the supersymmetry deforming the
string theory background, giving rise to supergravity theories that correspond to SCFTs which
preserve fewer supersymmetry than N = 4. We will typically deal with superconformal field
theories with N = 1.

This chapter is intended to introduce the main traits of the N = 1 superconformal field theories
that we will consider in the rest of this work.
In section 3.1 we introduce quiver gauge theories, which constitute the major class of SCFTs we
will deal with. We present the geometry of their dual gravitational counterparts, we review the
construction of quiver diagrams and brane tilings and we conclude with an explicit example. In
section 3.2 we give a short introduction of super quantum chromodynamics, which provides
another important example of N = 1 SCFT, and we summarize the so-called Seiberg duality.
Finally, in section 3.3 we discuss Chern–Simons theories. The latter can be formulated only
in odd spacetime dimensions; we will focus on three-dimensional Chern–Simons theories
and on their partition functions, since we will encounter them in section 5.2, arising from a
four-dimensional computation.

3.1 Quiver gauge theories

In this section we introduce a class of four-dimensional superconformal field theories, called
quiver gauge theories, that arise on the worldvolume of a stack of D3-branes located at the tip
of a toric Calabi–Yau cone and that have gained considerable importance in the context of
the AdS/CFT correspondence. The peculiarity of these gauge theories comes from the fact



that, under certain conditions, they are completely specified by a two-dimensional graph and
by the combinatorics of the dimer models on it. The following discussion in mainly based on [48].

As we mentioned before, the AdS/CFT correspondence can be extended to theories different
from the presented one in the original Maldacena’s conjecture, for example by replacing N = 4
Super Yang–Mills with a less supersymmetric field theory. More specifically, in this work we will
be mostly interested in superconformal field theories preserving N = 1 supersymmetry. From
the gravity side, this can be achieved following different approaches. One of them consists in
breaking supersymmetry by modifying the topology of the string theory background AdS5×S5,
for example by substituting S5 with a different five-dimensional manifold X5. If we want the
dual field theory to be a SCFT with N = 1 supersymmetry,X5 has to be a Sasaki–Einstein manifold.

A Sasaki–Einstein manifold (see e.g. [49]) is a Riemannian manifold (S, g) that is both Sasakian
and Einstein:

• A Riemannian manifold (S, g) is Sasakian if and only if its metric cone C(S) is Kähler,
where

C(S) = R>0 × S with metric ds2 = dr2 + r2ds2X5
. (3.1)

(S, g) has odd dimension 2n− 1, where n is the complex dimension of the Kähler cone.

• A metric g is Einstein if its Ricci tensor satisfies Ricg = λg for some constant λ.

Furthermore, it can be shown that a Sasakian metric g is Einstein with Ricg = 2(n − 1) if and
only if the cone metric ḡ is Ricci-flat, Ricḡ = 0, i.e. is a Calabi–Yau three-fold metric.
For example, the odd dimensional sphere S2n−1 equipped with its standard Einstein metric is a
Sasaki–Einstein manifold CY3.

To have a dual generic N = 1 superconformal field theory, the Sasaki–Einstein manifold only
needs to admit a single U(1) isometry, dual to the R-symmetry. However, we are interested in
toric Sasaki–Einstein manifolds, that are a particular class of Sasaki–Einstein manifolds for which
both X5 and its cone have U(1)3 isometries. The dual four-dimensional SCFTs are toric quiver
gauge theories that admit a U(1)R × U(1)2F global symmetry, which is an abelian subgroup of
the R-symmetry group times the flavor symmetry group.1 Furthermore, there may be other U(1)
global “baryonic” symmetries in the conformal field theory, that are gauged in the string theory
on AdS: they come from the reduction of the RR four-form on three-cycles of X5, producing a
U(1) gauge field in AdS.
Familiar examples of this class of gauge theories are abelian orbifolds S5/Γ, with Γ ≃ Zn or
Zn × Zm, and the conifold and its orbifolds.

Moving back to a brane description, given a particular toric Calabi–Yau three-fold, the gauge
theory that lives on the worldvolume of a stack of D3-branes located at the tip of the Calabi–Yau
cone is indeed of quiver type and it flows to a non-trivial superconformal fixed point in the IR.
In other words, this is equivalent to consider the near-horizon region of the D3-branes, in which
the product space R3,1 × CY3 is replaced by AdS5 × S5.

1Global symmetries may also be non-abelian, but here we only focus on their Cartan subgroups.



This construction can be thought as an extension of the case of a stack of D3-branes placed at a
non-singular point of a Calabi–Yau three-fold, that sees locally a smooth C3 geometry and this
gives rise to N = 4 SYM theory in the infrared.

As we mentioned, great interest in toric quiver gauge theories comes also from the fact that they
can be completely defined without knowing the metric of the Sasaki–Einstein manifold by using
a set of combinatorial models [50–53], as we will summarize in the following paragraphs.

3.1.1 Quiver diagrams

Quiver gauge theories contain both gauge groups and matter that transform in two-index tensor
representation and they can be depicted using directed graphs, called quivers, made by vertices
and arrows. Here we will focus on theories with N = 1 supersymmetry.
Suppose to have a theory with k SU(Na), a = 1, . . . , k, gauge groups.2 Each vertex of the graph
represents an SU(Na) gauge group plus a vector multiplet in the adjoint representation of
SU(Na). An arrow from the a-node to the b-node of the graph corresponds to an N = 1 chiral
multiplet in the fundamental representation of SU(Na) × SU(Nb), while an arrow from an
SU(Na) node to itself represents a chiral multiplet transforming in the adjoint of SU(Na).

Useful constraints on the charges of the quiver theory can be read from the exact NSVZ beta
function for its gauge couplings ga, which is given by

β(ga) =
N

1− g2aN
8π2

(
3− 1

2

∑
i∈a

(1− γi)

)
, (3.2)

where γi is the anomalous dimension of the field Xi and i runs over all chiral multiplets that
transform under the gauge group Ga. Since the anomalous dimension of a field Xi is related to
its conformal dimension ∆(Xi) and to its R-charge R(Xi) by

∆(Xi) = 1 +
1

2
γi =

3

2
R(Xi) , (3.3)

the requirement of conformal invariance, i.e. that the β-functions all vanish, implies∑
i∈a

(1− γi) = 6 ⇔
∑
i∈a

(1−R(Xi)) = 2 . (3.4)

Finally, the remaining piece of information needed to completely specify the gauge theory is
the superpotential W , not encoded in the quiver graph. The superpotential must be a function of
gauge invariant operators, that correspond to closed loops on the graph. Furthermore, in order
to preserve superconformal invariance, it must transform with R-charge 2 under the U(1)R
symmetry, and it must be invariant under the flavor symmetries of the theory.
In general these conditions are not enough to write the superpotential. Nevertheless, when
the gauge theory admit a toric U(1)3 global symmetry, the requirement of invariance under

2The original gauge groups are multiple U(N). However, one of the U(1) factors always decouples in the IR,
while the others can be addressed as U(1) baryonic symmetries. In fact, in every toric gauge theory with Ng gauge
groups there are Ng − 1 baryonic symmetries. Therefore we can consider the gauge groups as SU(N).



the symmetries of the Calabi-Yau geometry, which act as global symmetries on the D3-branes,
completely fixes W . This is indeed the case of our analysis.
This additional constraint corresponds to the fact that each field appears linearly in the super-
potential, and precisely in only two terms with opposite sign. This is the so-called toric condition.

All the information related to the superpotential can be then added to the quiver diagram by
defining another graph, called planar quiver.

Planar quivers and brane tilings

To engineer a planar quiver we use the terms of the superpotential as plaquettes constituting
boundaries of polygons. Thus, when a field appears in two terms of the superpotential, the
plaquettes are glued together along the corresponding edge. The sign of the superpotential
terms determines the orientation of the plaquettes. Since in toric quiver theories each field
appears linearly in the superpotential and in exactly two terms, the plaquette tiling obtained
from these theories is a polygonal tiling of an orientable Riemann surface without boundary,
which is the planar quiver.
Using the constraints imposed by superconformality and by the requirement that the superpo-
tential has R-charge 2, one can show that this tiling has genus 1 and is topologically a two-torus.

Starting from a planar quiver, we can construct its dual graph, called brane tiling.3 In the brane
tiling each face of the dual planar quiver is replaced by a vertex and the edges separating two
faces are replaced by dual edges, delimiting the new faces dual to the previous vertices. Also
this dual graph lives on a two-torus.
The brane tiling is a bipartite graph: each vertex is black (positive) or white (negative), depending
on the orientation of the plaquettes, and each node is only connected to nodes with opposite
sign. Finally, the polygonal faces now represent the SU(N)a gauge groups, while the arrows
represent the chiral multiplets and the vertices represent the superpotential interactions.

3.1.2 An example: the conifold T 1,1

In order to give an explicit example, we report here the quiver graph, planar quiver and brane
tiling for the conifold theory, that will also be handled in chapter 9.

With “conifold”, also denoted as Klebanov–Witten theory [54], we refer to the gauge theory
describing the low-energy dynamics of a stack of N D3-branes placed at the singular point of
the conifold geometry. The properly named conifold is a Calabi–Yau three-fold [55] defined by
the quadratic relation in C4

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 1 , (3.5)

which has an isolated singularity at ω1 = ω2 = ω3 = ω4.
The conifold can be thought as a real cone over the compact five-real dimensional manifold
called T 1,1. The manifold T 1,1 = SU(2)× SU(2)/U(1) admits a Sasaki–Einstein structure and
has the topology of S2 × S3. It can be seen as a U(1) fibration over the regular Kähler–Einstein

3The name “brane tiling” comes from the fact that the physics that can be extracted from this graph arises from
D-branes in string theory.



manifold CP1 × CP1. Remarkably, T 1,1 is toric.

We are thus studying the N = 1 superconformal field theory dual to Type IIB theory compactified
on AdS5 × T 1,1, which is the infrared limit of the theory of N coincident D3-branes located
at the conifold singularity. The quiver diagram of this field theory is depicted in figure 3.1.
As represented in the graph, the conifold field theory has the gauge group SU(N) × SU(N).

SU(N)SU(N) 1 2

A1

B1

A2

B2

Figure 3.1: The quiver diagram of the conifold field theory.

The chiral multiplets transform in the bifundamental representation of this gauge group: two
superfields, A1 and A2, transform in the (N, N̄), while the other two ones, B1 and B2, transform
in the (N̄ ,N).
The superpotential W must preserve the SU(2)× SU(2)×U(1)R symmetry of the theory and is
given by

W = A1B1A2B2 −A1B2A2B1. (3.6)

The planar quiver and the brane tiling of the conifold are represented in figure 3.2. The two

1 2
A1A2 A2

B1

B1B2

B2

(a) Planar quiver

1 2 1

2 1 2

A1

B1

A2

B2

A1

B1

B1

(b) Brane tiling

Figure 3.2: The planar quiver and the brane tiling for the conifold quiver.

SU(2)-factors of the global SU(2) × SU(2) flavor symmetry, which are associated with the
isometries of CP1 × CP1, act on the fields A1, A2 and B1, B2, respectively, that transform as
doublets. In particular, the two U(1) flavor symmetries are the Cartans of these two SU(2)s.
The U(1)R-symmetry, instead, comes from the fact that T 1,1 is a U(1)-fibration over CP1 × CP1.
The exact R-charges of this theory are all equal to 1/2, since the U(1)R does not mix with the



non-abelian flavor symmetries. Finally, the last global symmetry of the theory is a baryonic
U(1)B symmetry, associated with the non-trivial three-cycle of the geometry, due to the presence
of the S3 cycle in the topology of T 1,1.4

The charges of the various fields under the symmetries of the theory are listed in the following
table:

U(1)F1 U(1)F2 U(1)B U(1)R

A1 1 0 1 1/2
A2 −1 0 1 1/2
B1 0 1 −1 1/2
B2 0 −1 −1 1/2

. (3.7)

3.2 SQCD and Seiberg duality

We now present a very short summary of super quantum chromodynamics (SQCD) and Seiberg
duality, since we will refer to these notions in chapter 5. We address to [23, 24, 56] for a thorough
review on these topics.

Super quantum chromodynamics

SQCD is the supersymmetric version of quantum chromodynamics. It is a supersymmetric
gauge theory with non-abelian gauge group SU(N),5 F flavors and no superpotential, W = 0.
The quarksQ and Q̃ are chiral superfields represented by F×N complex matrices. There are two
independent flavor symmetries, SU(F )L and SU(F )R, associated withQ and Q̃ respectively. It is
useful to split the matter indices as (i, a) to make the different symmetries manifest: i = 1, . . . , F
is an index in the (anti)fundamental representation of the flavor group F , while a = 1, . . . , N is
a index in the (anti)fundamental representation of the gauge group SU(N). The theory has an
SU(F )L×SU(F )R×U(1)B ×U(1)R global symmetry. The charges of the chiral supermultiplets
under the symmetries of the theory are summarized in the following table:

SU(N) SU(F )L SU(F )R U(1)B U(1)R

Qia N F 1 1 F−N
F

Q̃bj N̄ 1 F̄ −1 F−N
F

. (3.8)

The convention for gauge indices is that lower indices are for objects transforming in the funda-
mental representation while upper indices for the anti-fundamental. The convention for flavor
indices is the opposite.
The SU(F )L × SU(F )R global symmetry is analogous to the SU(3)L × SU(3)R chiral symmetry
of the non-supersymmetric QCD with three flavors, while the U(1)B is analogous to the baryon
number. With respect to QCD there is an extra U(1)R, due to the presence of the gaugino in the

4As we mentioned above, we can see the U(1) baryonic charge as coming from the IR decoupling of one of the
U(N) gauge group, which in fact reduces to SU(N).

5It is also possible to formulate SQCD with a different non-abelian gauge group. Here we consider SU(N) for
definiteness.



supersymmetric theory.

If F < N , the only gauge invariant single trace operators that can be constructed are the mesons,
given by

M i
j = QiaQ̃

a
j , (3.9)

where the contraction is taken over the N gauge indices. On the other hand, if F ≥ N , besides
the mesons there are other gauge invariant single trace operators, the baryons, made out of N
fields Q and N fields Q̃ with fully anti-symmetrized indices. For example, in the case F = N
there are two baryons, defined as

B = ϵa1a2...aNQ1
a1Q

2
a2 . . . Q

N
aN
,

B̃ = ϵa1a2...aN Q̃
a1
1 Q̃

a2
2 . . . Q̃aNN . (3.10)

Conformal window and Seiberg duality

An interesting trait of SQCD is that when the number of flavors is in the range 3
2N < F < 3N

the theory flows to an interacting fixed point in the infrared. This means that even if the theory
is UV-free and thus the gauge coupling g increases towards the IR, at low energies g reaches a
constant value g∗. The above range is called conformal window. Outside this range, for F < 3

2N
the theory is in a different phase, while for F ≥ 3N SQCD is no longer asymptotically free.

Seiberg duality, proposed by Seiberg [57] in mid nineties, is an IR equivalence establishing a
sort of electromagnetic duality. It states that the IR physics of SQCD, for F > N + 1, can be
equivalently described by means of another supersymmetric gauge theory, called the magnetic
dual theory. It is worth stressing that the two theories are not identical, but they flow to the
same IR fixed point under an RG-flow. For this reason it is called an IR duality.
More precisely, the electric theory is given by SQCD with SU(N) gauge group and F > N + 1,
while the magnetic theory is a SQCD-like theory with SU(Ñ), Ñ = F −N, gauge group and F
flavor, with an extra chiral superfield Φ and a non-zero superpotentialW . The quark-like fields q
and q̃ of the magnetic theory transform in the fundamental and anti-fundamental representation
of SU(Ñ), respectively. The baryons of the electric theory have a dual description in terms of
these fields as

Bi1i2...iÑ ∼ ϵa1a2...aÑ q
a1
i1
qa2i2 . . . q

aÑ
iÑ

(3.11)

and similarly B̃. The superfield Φ is a gauge singlet and transforms in the fundamental repre-
sentation of SU(F )L and in the anti-fundamental of SU(F )R. It interacts with q and q̃ through
the cubic superpotential

W = hqiΦ
i
j q̃
j . (3.12)

3.3 Chern–Simons theories

We conclude this chapter introducing Chern–Simons (CS) theories, which are gauge theories
that can be formulated in any odd-dimensional spacetime.



To be more concrete, we restrict to three dimensions. The Lagrangian for a 3d Chern–Simons
theory is given by

LCS =
k

4π
ϵµνρTr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
, (3.13)

where k is the Chern–Simons coupling constant (also called level of the CS term) and the gauge
field Aµ takes values in some semi-simple Lie algebra g. If g = u(1), i.e. if the Chern–Simons
theory is abelian, the cubic term in the Lagrangian vanishes.

Under the non-abelian gauge transformation

Aµ → g−1Aµg + g−1∂µg , (3.14)

where g ∈ G and G is the gauge group, the Lagrangian transforms as

LCS → LCS −
k

4π
ϵµνρ∂µTr

[
(∂νg)g

−1Aρ
]
− k

12π
Tr
[
(g−1∂µg)(g

−1∂νg)(g
−1∂ρg)

]
, (3.15)

where the first term is a boundary term that can be integrated out, while the second term is
related to the winding density number

ω(g) ≡ ϵµνρ

24π2
Tr
[
(g−1∂µg)(g

−1∂νg)(g
−1∂ρg)

]
. (3.16)

The integral of ω(g) is an integer number n. We can thus rewrite (3.15) as

SCS → SCS − 2πkn (3.17)

and we immediately see that the action is no longer gauge invariant. Nevertheless, if we consider
the term appearing in the partition function, we have

eiSCS → eiSCSe−i2πkn = eiSCS (3.18)

if require k to be integer.
Therefore, Chern–Simons action is classically not gauge invariant, but it can be made gauge
invariant at the quantum level for an integer-valued k.

3.3.1 Chern–Simons partition functions

We now focus on the partition functions of three-dimensional pure Chern–Simons theories, that
we will employ in a few chapters.
Chern–Simons partition function can be written in terms of matrix integrals [58], for example by
using localization techniques [59] (see also [60] for a review on localization).

The partition function of a Chern–Simons theory is given by the path integral

Z =

∫
DAeiS . (3.19)

Localization enables to compute the path integral of certain supersymmetric theories defined
on curved spaces exactly. In fact, using supersymmetry it is possible to prove that the path



integral receives contributions only from the so-called localization locus, which is the locus of
fixed points of supersymmetry.
More in detail, localization allows to lower the dimensionality of integrals: for example, using lo-
calization formulae, one can reduce the path integral of a quantum field theory onD-dimensional
fields to a path integral on lower d-dimensional fields. Remarkably, if the localization locus
consists of configurations of constant field only, and thus d = 0, we are left with the path
integral of a zero-dimensional field theory, which is a finite-dimensional integral that can often
be evaluated exactly. This is the case of Chern–Simons theories.

Let us start from the supersymmetric Chern–Simons term in flat Euclidean space

S =

∫
d3xTr

(
k

4π
ϵµνρ

(
Aµ∂νAρ +

2i

3
AµAνAρ

)
−λ†λ+ 2Dσ

)
, (3.20)

where we have included also the auxiliary fermion λ and the auxiliary scalars σ and D.
To perform the localization, we work on a compact manifold rather than in flat space, in order
to have a well-defined partition function. Being the action conformal, it can be moved to the
unit three-sphere S3 by simply multiplying the Lagrangian for an overall measure factor

√
g.

Therefore, the partition function on S3 for a supersymmetric Chern–Simons theory with gauge
group G localizes to the following matrix integral, presented in [59],

Z =
1

|W|

∫
da exp

(
−πikTr(a2)

)
detAd2 sinh(πa) , (3.21)

where |W| is the order of the Weyl group of G, a runs over the Cartan of the Lie algebra of G
and we have used the notation

detAdf(a) ≡
∏
α

f(α(a)), (3.22)

where Ad is the adjoint representation of G and the product runs over the roots α of the algebra.

Moving to a concrete example, the three-sphere partition function of supersymmetric SU(N)
Chern–Simons theory with level k is given by

ZCS
SU(N)k

=
1

N !

∫ +∞

−∞

N−1∏
µ=1

dλµ · exp

−πik N∑
j=1

λ2j +
∑
j ̸=k

log
(
2 sinhπ(λj − λk)

) (3.23)

with the constraint
∑N

j=1 λj = 0, where the N ! factor is due to the SN Weyl group of SU(N) and
we have taken the Cartan as the set of diagonal matrices, a = diag(λ1, . . . , λN ).6

The partition functions for supersymmetric Chern–Simons theories with real gauge groups, that
we will use in section 5.2, have similar expressions. We report them in appendix A.

6Notice that in our formula the sum runs from 1 to N − 1, due to SU(N) extra constraint.



Chapter 4

The superconformal index

The four-dimensional superconformal index (SCI), originally defined in [61, 62], is a generaliza-
tion of the Witten index obtained by radially quantizing a superconformal field theory (SCFT).
It counts a set of protected short multiplets that do not recombine into long ones. The index can
equivalently be obtained by localization on S3 × S1, except for an overall factor. The index is an
excellent tool for the study of four-dimensional SCFTs, because it is a topological invariant, fully
quantum, and protected quantity. For instance, it has been used to check dualities, propose new
ones, study (super)symmetry enhancements, and analyze the conformal manifold. We refer e.g.
to [63–65] for recent accounts on the subject.
The original motivation behind the introduction of the SCI of N = 4 SU(N) Super Yang–Mills
was counting the 1/16-BPS states that should reproduce the entropy of the dual charged and
rotating black hole in AdS5 × S5. Even if this expectation was not realized at the beginning, a
refining in the computation of the index has finally allowed to recover the expected BH entropy,
leading to a renewed interest in the field.

The structure of this chapter is the following. In section 4.1 we present a short review of the
Witten index. Section 4.2 is devoted to the computation of the four-dimensional superconformal
index. We mostly focus on its derivation as a trace and we conclude by mentioning its connection
with the supersymmetric partition function on S3 × S1. In section 4.3 we introduce the integral
form of the SCI for a gauge theory containing flavor symmetry, while in section 4.4 we write a
couple of explicit examples. Finally, in section 4.5 we discuss how the black hole entropy can be
derived starting from the superconformal index. We present the class of supersymmetric black
holes we will mostly deal with in this work and we summarize the extremization procedure
needed to compute their entropy from a field theory approach.

4.1 The Witten index: a review

The Witten index was introduced by Edward Witten in [66] as an instrument to investigate
whether the supersymmetry of a theory is spontaneously broken or not. It is defined as

IW = Tr(−1)F , (4.1)

where the trace is over the Hilbert space of the theory and F represents the fermionic number.
For the computation of the index it is convenient to consider supersymmetric field theories
formulated in a finite spatial volume. On the one hand, this choice makes the spectrum of the



Hamiltonian discrete, allowing for a well-defined counting. On the other hand, if we furthermore
impose periodic boundary conditions, it is a sufficient set-up for the study of supersymmetry
breaking. In fact, as it is well known, supersymmetry is not broken if the energy of the vacuum is
zero, in contrast with the internal symmetries, whose spontaneous symmetry breaking depends
on the behavior of the theory in the infinite volume limit. However, since translations are part of
the supersymmetry algebra, we have to adopt periodic boundary conditions (the same ones both
for bosons and for fermions) in order to preserve supersymmetry. This request is equivalent to
take the spatial manifold to be a three-dimensional torus, T3.

Given a supersymmetric theory, the energy E is greater than or equal to the magnitude of the
momentum |P| for any state. Since we are interested in zero-energy states, we stick ourselves
to the analysis of the |P| = 0 subspace of the total Hilbert space, in which the supersymmetry
algebra simplifies. We assume that Qi, i = 1, . . . ,K (with K = 4 for d = 4, N = 1) is a basis of
normalized charges for this subspace. For our purpose, it is sufficient to work with any of the
Qi, which we denote as Q. Let Q† be its Hermitian conjugate. The algebra is

{Q,Q†} = 2δ,

{Q,Q} = {Q†,Q†} = 0.
(4.2)

Supersymmetry maps bosonic states into fermionic states and vice versa. A bosonic state |b⟩
satisfies e2πiJz |b⟩ = |b⟩, while a fermionic state |f⟩ satisfies e2πiJz |f⟩ = −|f⟩, where Jz is the third
component of the angular momentum in our basis.
Thus, the index is the trace of the operator

(−1)F = e2πiJz (4.3)

that distinguishes bosons from fermions.
Notice that states of non-zero energy are paired in two-dimensional supermultiplets by the
action of Q, while any bosonic or fermionic state of zero energy forms a trivial one-dimensional
supermultiplet. In fact, if |b⟩ is a normalized bosonic state of non-zero energy E, we can define a
fermionic state |f⟩ = (1/

√
E)Q|b⟩. The action of Q on the states is thus

Q|b⟩ =
√
E|f⟩, Q|f⟩ =

√
E|b⟩, (4.4)

where the second equality satisfies Q2 = δ.
Conversely, with Q2 = δ and Q Hermitian, each state annihilated by δ is also annihilated by Q,
i.e. any state of zero energy satisfies Q|b⟩ = 0 or Q|f⟩ = 0. Therefore there may be a number nE=0

B

of zero-energy bosonic states and a (a priori different) number nE=0
F of zero-energy fermionic

states. The crucial fact is that as we vary the parameters of the theory (the volume, the mass
and the coupling constants), the states of non zero-energy change their energy, but they do it in
Bose-Fermi pairs. Therefore, the difference

nE=0
B − nE=0

F (4.5)

remains constant. The quantity (4.5) has two useful properties. First, being independent of all
parameters, there is generally a convenient limit in which it can be computed. Second, if it is
non-zero it means that supersymmetry is not spontaneously broken, because there are some



states with zero energy.
Notice that, on the contrary, if the difference in (4.5) is zero, we cannot tell whether both the
number of states are zero, and thus supersymmetry is broken, or whether they are equal but
non-zero, and thus supersymmetry is preserved.

The quantity (4.5) can be obtained as the trace of the operator in (4.3). In fact, states of non-zero
energy do not contribute to the trace, since every bosonic state contributes with +1, while every
fermionic state contributes with −1, and so they cancel. Thus (4.1) can be evaluated considering
the zero-energy states only and can be written as

IW = Tr(−1)F = nE=0
B − nE=0

F . (4.6)

Finally, one can regularize the index by considering

IW = Tr(−1)F e−βδ (4.7)

for arbitrary positive β. In fact, this quantity is actually independent of β, since the states of
non-zero energy, and thus δ ̸= 0, do not contribute to the index. This regularized index reduces
to the original one in the limit β → 0.

The superconformal index is defined as the Witten index of a four-dimensional superconformal
field theory computed on S3 as spatial manifold instead of T3, in radial quantization, refined by
chemical potentials to take into account the relevant quantum numbers of the theory.

4.2 Computing the superconformal index

In the following we give a short overview of the four-dimensional superconformal index, mainly
based on [64, 65, 67].
The index can equivalently be obtained using two different approaches. For theories that admit
a Lagrangian description, it can be computed by enumerating, with signs, local gauge invariant
operators made from elementary fields of the theory. This technique corresponds to perform a
weighted trace over the states of the theory, quantized on S3×Rt. For more general theories, the
four-dimensional counting problem can be reformulated in terms of a matrix integral, that can be
equivalently constructed applying supersymmetric localization on the S3×S1 partition function.
As we will see, these two definitions differ by an overall contribution, dubbed supersymmetric
Casimir energy in [68, 69].

4.2.1 Index as a trace

The four-dimensional superconformal index is defined for SCFTs with arbitrary amount of
supersymmetry on S3 × Rt and it is schematically given by [61, 62]

I = Tr
[
(−1)F e−β δe−µiqi

]
, (4.8)

where the trace is taken over the Hilbert space of the theory on S3. We denote by Q one of the
Poincaré supercharges and by S = Q† its superconformal partner. Again, δ ≡ 1

2{Q,Q
†}, while qi

are charges that commute with Q and µi the associated chemical potentials. As we noted before,



the index is independent of β, since only zero-energy states contribute. Nevertheless, there is
an infinite number of states with δ = 0, even for a single short irreducible representation of the
superconformal algebra. The chemical potentials µi are hence introduced both as regulators to
avoid the divergence and to refine the counting.

We will now focus on N = 1 supersymmetry. Recalling that the isometry group of S3 is
SU(2)1×SU(2)2, the supercharges are {Qα,Sα ≡ Qα†, Q̃α̇, S̃ α̇ ≡ Q̃α̇†}, where α = ± and α̇ = ±̇
are SU(2)1 and SU(2)2 indices, respectively. The relevant anticommutators are given by

{Qα,Qβ†} = ∆+ 2M β
α +

3

2
R,

{Q̃α̇, Q̃β̇†} = ∆+ 2M̃ β̇
α̇ − 3

2
R,

(4.9)

where ∆ is the conformal dimension, M β
α and M̃ β̇

α̇ are the SU(2)1 and SU(2)2 generators and
R is the generator of the U(1)R R-symmetry. In these conventions Qα and Q̃α̇ have respectively
R = −1 and R = +1.
If we choose the supercharge Q ≡ Q̃−̇ , we have δ = ∆ − 2j2 − 3

2R, where j1,2 are the Cartan
generators of SU(2)1,2. We then choose the charges qi that refine the index to be 1

3(∆+ j2)± j1.1

Therefore, the index (4.8) can be rewritten as

I(p, q) = Tr
[
(−1)F p

1
3
(∆+j2)+j1q

1
3
(∆+j2)−j1

]
= Tr

[
(−1)F pj1+j2+

1
2
Rqj2−j1+

1
2
R
]
, (4.10)

where p, q are the fugacities associated with the SU(2)1,2 generators, such that |p|, |q| < 1. In the
second equality we have taken advantage of the fact that only states with δ = 0 contribute to the
index, and thus ∆ = 2j2 +

3
2R.

Since we are dealing with conformal theories, we can use the state/operator map to interpret
the states as local operators. Thus, to compute the index, one has to list all the possible operators
that can be built from modes of the fields, projecting out gauge non-invariant ones. The
different modes of the fields are called “letters” and are used to construct the operators as
“words”. Moreover, to include the gauge and flavor quantum numbers, we introduce characters:
we denote by R the representation of the (gauge group) × (flavor group) under which the
chiral multiplets transform and by χR(U, V ), χR̄(U, V ) the characters of R and of its conjugate
representation, with gauge group matrix U and flavor group matrix V .
The letters and their contributions to the index have been tabulated in literature (see e.g. Table 1
and 2 of [65]). From there, one can easily compute the single-letter index for a chiral multiplet Φ

iΦ(p, q, U, V ) =
(pq)

1
2
RχR(U, V )− (pq)

2−R
2 χR̄(U, V )

(1− p)(1− q)
(4.11)

and the one for a vector multiplet v

iv(p, q, U) =
2pq − p− q

(1− p)(1− q)
χadj(U), (4.12)

1In principle one can choose an arbitrary basis of charges in this space as qi. Our choice is in agreement with the
existing literature.



where χadj(U) is the character of the adjoint representation of the gauge group.

The key point that makes the superconformal index easy to compute is the fact that it is invariant
under variations of the gauge coupling. Therefore, the index of strongly-coupled theories can be
computed by setting the gauge coupling to zero and, as we mentioned before, enumerating only
the words that can be constructed using letters with δ = 0. The partition function over such
words is obtained by plethystic exponentiation of the single-letter index, that takes account of all
the supersymmetric local operators that can be constructed in four dimensions. The plethystic
exponential

PE[ik(p, q, U, V )] ≡ exp

{ ∞∑
m=1

1

m
ik (p

m, qm, V m)χRk
(Um, V m)

}
, (4.13)

is used to implement the combinatorics of symmetrization of the single letters, where ik repre-
sents the single-letter index of the k-th multiplet.
Since we are dealing with gauge theories, we only want to construct operators that are invariant
under gauge transformations. To construct the index we thus enumerate and project onto gauge
singlets, i.e. operators that transform under the trivial representation of the gauge group. This
can be achieved integrating over the Haar measure of the gauge group. Schematically, the index
takes the form

I(p, q, V ) =

∫
[dU ]

∏
k

PE[ik(p, q, U, V )] . (4.14)

This functional integral can then be reduced to an integral over the maximal torus by gauge fixing
the integral over the gauge group. This gives rise to an extra factor, that is the Vandermonde
determinant.
The plethystic exponential of a single-letter index that gives the multi-letter contribution to the
index of a chiral multiplet can be written as a product of elliptic Gamma functions. For example,
for a chiral superfield in the representation R of the gauge group G with R-charge R, it holds

PE[ir(p, q,G)] ≡
∏
ρ

Γe
(
(pq)

R
2 zρ; p, q

)
, with Γe(z; p, q) ≡

∞∏
k,m=0

1− pk+1qm+1/z

1− pkqmz
, (4.15)

where ρ runs over the weight vectors of the representation R of the gauge group, z indicates the
fugacities for the gauge symmetries and we are using the notation zρ =

∏rkG
i=1 z

ρi

i .
Analogously, combining the multi-letter contribution of a vector multiplet in the adjoint repre-
sentation of the gauge group G with the Haar measure of G, one obtains the building block

κrkG

|Weyl(G)|

∮
TrkG

rkG∏
i=1

dz

2πizi

∏
α

1

Γ(zα; p, q)
. . . . (4.16)

where the integral is taken over the maximal torus of G, α parametrizes the simple roots of the
gauge algebra and |Weyl(G)| is the cardinality of the Weyl group. The integration contour is the
product of rkG unit circles |zi| = 1, i = 1, . . . , rkG, and κ ≡ (p; p)∞(q; q)∞, where

(a; b)∞ ≡
∞∏
k=0

(1− abk) (4.17)

are q-Pochhammer symbols.



4.2.2 Index as a partition function

An alternative way to introduce the superconformal index is as the supersymmetric partition
function on S3 × S1

τ [70, 71], where τ is the radius of S1. Evaluating this partition function with
localization techniques, one arrives to a result that is almost equivalent to the one obtained
computing the index as a counting problem, with a difference due to the vacuum normalization.

In particular, in the large radius limit τ → ∞, the index computed using the trace formula
receives contributions only from the vacua. Therefore, if one assumes that there is a unique
vacuum that preserves certain global symmetries, the index in this limit is 1, due to the normal-
ization of the vacuum.
On the other hand, in the same limit, the index calculated as a partition function receives a
contribution from the Casimir energy of the theory,

lim
τ→∞

ZS3×S1
τ
∼ e−τECasimir . (4.18)

Thus, the two formulations of the index differ only by a multiplicative factor related to the
Casimir energy.

4.3 Adding flavor symmetry

We will now present the integral form of the index for a gauge theory with flavor symmetry.

First of all, if we add flavor symmetries to (4.10), we can write the index as

I = Tr(−1)F pJ1+
R
2 qJ2+

R
2

rkF∏
b=1

vqbb , (4.19)

where J1,2 are the angular momenta on the three-sphere written in a different basis (J1 = j1 +
j2, J2 = j2 − j1), qb are the conserved charges commuting with the supercharges, where the
index b runs over the Cartan subgroup of the flavor symmetry group F , b = 1, . . . , rkF , and vb
are the fugacities associated with qb.

Combining (4.15) and (4.16), with the addition of flavor symmetry, we can write the supercon-
formal index for a generic N = 1 theory with gauge group G, flavor symmetry group F and
U(1)R R-symmetry. We consider a theory with matter content consisting of nχ chiral multiplets
ΦI with weights ρI in representations RI of G and flavor weights ωI in some representations
FI of F , and having superconformal R-charges RI . Furthermore, we turn on flavor fugacities
vα, with α = 1, . . . , rkF , that parametrize the maximal torus of F . The index for such a theory is
given by:

I =
(p; p)rkG∞ (q; q)rkG∞

|Weyl(G)|

∮
TrkG

rkG∏
i=1

dzi
2πizi

∏nχ

I=1

∏
ρI
Γe
(
(pq)

RI
2 zρIvωI

)∏
α Γe

(
zα
) . (4.20)



4.4 A few examples

To give some explicit examples, in this section we report the superconformal indices for two
of the theories we have introduced so far: N = 4 Super Yang–Mills theory with SU(N) gauge
group and the conifold.

The superconformal index of N = 4 Super Yang–Mills

We start with the index of N = 4 SYM theory with SU(N) gauge group, following the conven-
tions of [64]. In N = 1 notation, the theory contains one vector multiplet and three adjoint chiral
fields, each with R-charge 2/3, rotated by an SU(3)t global symmetry. The superconformal
index reads:

ISYM =
κN−1

N !

∮ N−1∏
j=1

dzj
2πizj

∏
j ̸=k

Γe((pq)
1
3 t1zj/zk)Γe((pq)

1
3 t2zj/zk)Γe((pq)

1
3

1
t1t2

zj/zk)

Γe(zj/zk)
. (4.21)

The superconformal index of the conifold

To give another example, here we present the superconformal index for the conifold theory,
introduced in subsection 3.1.2:

IT 1,1 =
2∏

k=1

[
κN−1

N !

∮ N−1∏
i=1

dz
(k)
i

2πiz
(k)
i

∏
i ̸=j

1

Γe
(
z
(k)
i /z

(k)
j

)] (4.22)

×
N∏

i,j=1

Γe

(
(pq)

1
4 t1b

z
(1)
i

z
(2)
j

)
· Γe
(
(pq)

1
4
b

t1

z
(1)
i

z
(2)
j

)
· Γe
(
(pq)

1
4
t2
b

z
(2)
i

z
(1)
j

)
· Γe
(
(pq)

1
4
1

t2b

z
(2)
i

z
(1)
j

)
.

4.5 Black hole entropy from the superconformal index

As we mentioned in the introduction, great interest in the superconformal index comes from the
fact that it can be used as a powerful tool to extract the entropy of the (putative) black hole of
the dual gravitational theory.
In this section we present an outline of this procedure, mostly based on [63], starting by the
characterization of the class of black holes on which our analysis is focused.

The key ingredient of our study are supersymmetric black holes asymptotic to AdS vacua that
can be embedded in string theory or M-theory, with a known field theory dual. Many of them
can be embedded in maximally supersymmetric backgrounds, such as AdS5 × S5 in Type IIB
string theory, or AdS4 × S7 and AdS7 × S4 in M-theory.
Supersymmetric black holes have zero temperature and are extremal. Moreover, they satisfy a
BPS condition that imposes a relation between their mass and the other conserved charges. The
relevant black holes from a holographic point of view, in dimensions d ≥ 4, can be divided in
two classes depending on whether magnetic charges are present or not. Magnetically charged
black holes arise as solutions in which supersymmetry is preserved by a topological twist. It is
important to notice that supersymmetric non-magnetic black holes must be rotating, in order to
avoid singularities.



4.5.1 Five-dimensional Kerr–Newman black holes

In this work we will mainly focus on supersymmetric electrically charged rotating black holes,
known as Kerr–Newman black holes, asymptotic to an AdS5 vacuum. The original examples
were the ones embedded in Type IIB supergravity with AdS5 × S5 background, originally found
by Gutowski and Reall [10] and later generalized in [14, 72–74]. They are characterized by two
angular momenta, corresponding to the Cartan isometries of AdS5

(j1, j2) : U(1)2 ⊂ SO(4) ⊂ SO(4, 2) , (4.23)

and three electric charges coming from the Cartan isometries of S5

(q1, q2, q3) : U(1)3 ⊂ SO(6) , (4.24)

that parametrize the rotation of the five-sphere, representing the internal space. Furthermore,
there is an extra constraint between the conserved charges,

f(j1, j2, q1, q2, q3) = 0, (4.25)

coming from supersymmetry, that reduces the number of independent parameters. Since these
black holes preserves two real supercharges out of the thirty-two of Type IIB supergravity, they
are called 1/16-BPS. They are five-dimensional black holes, asymptotically AdS5, with S3 × Rt
conformal boundary.

We have seen that Type IIB string theory on AdS5 × S5 is dual to N = 4 Super Yang–Mills
in four dimensions. Hence there must be an ensemble of states of N = 4 SYM on S3 × Rt
that are holographically dual to the black holes above. These states must preserve the same
supersymmetries and have the same angular momenta and electric charges of the black holes.
We expect that from the counting of these states one should be able to reproduce the entropy of
the black holes.
We know that the entropy of this class of black holes can be written as [75]

S(qa, ji) = 2π

√
q1q2 + q1q3 + q2q3 −

π

4G
(5)
N g3

(j1 + j2) . (4.26)

The holographic dictionary relates the gravitational quantities to the number of colors N of the
dual four-dimensional field theory through

N2 =
π

2G
(5)
N g3

, (4.27)

from which we can see that black holes with charges and angular momenta that scale as O(N2)
have an entropy of order O(N2). It is worth pointing out that this entropy can be obtained as
the Legendre transform of the following quantity, as noted in [13]:

SE = πiN2∆1∆2∆3

ω1ω2
(4.28)



with the constraint among the chemical potentials dual to qa and ji

∆1 +∆2 +∆3 − ω1 − ω2 = ±1 , (4.29)

arising from regularity conditions on the Killing spinors. Thus, the entropy takes the form

S(qa, ji) = πiN2∆1∆2∆3

ω1ω2
+ 2πi

(
3∑

a=1

∆aqa +

2∑
i=1

ωiji

)∣∣∣∣
∆̄a,ωi

, (4.30)

which is extremized for complex values of the chemical potentials. Nevertheless, the on-shell
value of (4.30) becomes real if we impose the constraint among the charges given in (4.25),
required by supersymmetry. The quantity SE in (4.28) is known as entropy function and can be
obtained from the partition function of the dual field theory, as we will show in a few paragraphs.

We conclude this subsection by observing that, besides black holes that can be embedded in
maximally supersymmetric backgrounds, similar supersymmetric black holes in more general
Type IIB or M-theory are expected to exist, even though few examples are known in literature.
For example, N = 1 four-dimensional quiver gauge theories that we have introduced in the
previous chapter should be dual to Type IIB rotating black holes in AdS5 × X5, with X5 a
five-dimensional Sasaki–Einstein manifold, charged under the isometries of X5.

4.5.2 Computation of the entropy

Field theory BPS states can be enumerated by the grand canonical partition function

Z(∆a, ωi) = Tr
∣∣∣
Q=0

ei(∆aQa+ωiJi) =
∑
qa,ji

c(qa, ji)e
i(∆aqa+ωiji), (4.31)

where Qa and Ji are the charge operators associated with the global symmetries and angular
momenta of the field theory and ∆a and ωi are the chemical potential conjugated to them. The
trace is taken over the Hilbert states on the three-sphere2 that preserve the same supersymmetries
of the black holes; supersymmetric states are in fact annihilated by the supercharges Q. The
coefficient c(qa, ji) corresponds to the number of supersymmetric states with electric charge qa
and angular momentum ji.
This partition function should also count the BPS states in the dual gravitational theory. Not
all of these states are black holes microstates. Nevertheless, for large charges the dominant
contribution to the density of supersymmetric states is given by macroscopic black holes, and
thus we can write the black hole entropy as

S(qa, ji) = log c(qa, ji) . (4.32)

More in detail, in terms of the field theory data, the entropy of AdS5 black holes scales as O(N2),
where N represents the number of colors of the gauge group of the dual field theory.

2This procedure can be also applied to the other supersymmetric AdSd black holes that we have introduced, by
counting the corresponding states in the dual field theory on R×Md−2, that represents the conformal boundary of
AdSd. In this language, the trace has to be taken over the states on Md−2.



Looking at (4.32), in principle, the entropy can be extracted as a Fourier coefficient from the
grand canonical partition function, i.e.

eS(qa,ji) = c(qa, ji) =

∫
d∆a

2π

dωi
2π

Z(∆a, ωi)e
−i(∆aqa+ωiji) (4.33)

using a proper integration contour. In the limit of large charges, this integral can be computed
using a saddle point approximation

S(qa, ji) = logZ(∆a, ωi)− i(∆aqa + ωiji)
∣∣∣
∆̄a,ωi

, (4.34)

evaluated at the saddles ∆̄a and ωi, obtained from the extremization of the functional

F(∆a, ωi) = logZ(∆a, ωi)− i(∆aqa + ωiji) , (4.35)

with respect to ∆a and ωi. In other words, we can see that the black hole entropy is given by the
Legendre transform of the logarithm of the partition function of the dual field theory.

The problem with this procedure lies in the knowledge of the grand canonical partition function
itself, which is in general too involved to compute. Nevertheless, as we mentioned above, it has
been shown that this issue can be overcome by means of the superconformal index.
The four-dimensional superconformal index is the perfect candidate to reproduce the entropy
of the class of black holes that we are considering since, as we saw, it can be identified with
the supersymmetric partition function on S3 × S1. For example, the superconformal index
of N = 4 Super Yang–Mills with SU(N) gauge group counts the 1/16-BPS states dual to the
microstates of the charged and rotating black hole in AdS5 × S5. However, this expectation has
been puzzling for more than a decade, because the large-N index was found to be an order-one
quantity, instead of order-N2, as expected from the holographic dictionary. This is due to the
large cancellation between fermionic and bosonic states counted by the (−1)F operator in the
index. A solution to this problem was obtained only recently by noticing that allowing for
complex fugacities an obstruction to such cancellation appears and the dual black hole entropy
can indeed be extracted from the index. Two main approaches to compute the entropy from the
index have been developed, implemented in the two following limits:

• The Cardy-like limit [11, 76–79], in which the fugacities associated with rotations are taken
to be very small, corresponding to ωi ≪ 1 at fixed complex values of ∆a, and thus to large
black holes with charges scaling as

ω1 ∼ ω2 ∼ ω, qa ∼
1

ω2
, ji ∼

1

ω3
. (4.36)

A crucial point is that the chemical potentials are complex; their imaginary parts introduce
phases that obstruct the cancellations between fermionic and bosonic states, allowing to
reproduce the expected black hole entropy. We will focus on this limit in the next chapter.

• Large-N and equal angular momenta [12, 80], in which the index is written in terms of a
set of solutions to the so-called Bethe Ansatz Equations (BAE).



Many generalizations of these results have since then appeared [81–90], showing that the four-
dimensional superconformal index can indeed be used to enumerate the microstates of the dual
AdS5 black hole. More in detail, the logarithm of the leading term of the index, in the large-N
limit, gives exactly the entropy function associated with the dual black hole.

In this work we will only focus on the four-dimensional superconformal index. Nevertheless,
similar indices have also been studied in different dimensions. For example, to reproduce
the entropy of supersymmetric magnetically charged black holes in AdS4, which are dual to
topologically twisted superconformal field theories in three dimensions, the three-dimensional
topologically twisted index was introduced [91–95].



Chapter 5

Subleading corrections to the Cardy-like limit of the
superconformal index

In the Cardy-like limit, the chemical potentials associated with the angular momenta are taken
to be very small. It can be thought as a generalization of the Cardy-limit [96], proposed for two-
dimensional conformal field theories, in which the temperature in sent to infinity, corresponding
to β → 0.
As me mentioned at the end of the previous chapter, the Cardy-like limit of the superconformal
index has played a crucial role in the understanding of how to extract the black hole entropy
starting from the superconformal index. Indeed, in [11] the authors managed to reproduce the
expected large-N behavior of the index, using an approach that relies on an appropriate analytic
continuation of the fugacities to complex values, such as to obstruct the cancellations induced
by the operator (−1)F .

Many other examples and generalizations have since been worked out. It was observed that
taking a Cardy-like limit of the index one could reproduce the entropy function expected from
supergravity in various classes of models with a known holographic dual description. Further-
more, it was showed that this limit is controlled by universal combinations of the coefficients
of the Weyl and Euler densities, i.e. by TrR and TrR3, calculated in terms of an opportunely
defined set of charges, that generalize the R-charges (of the matter fields) to the curved back-
ground. These results have been extended in [76–79, 82–90, 97–109].
An interesting recent direction regards the calculation of subleading effects that correct the
index. Such corrections have been studied in large detail in [106] for N = 4 SU(Nc) SYM and
for the generalization to N = 1 gauge theories representing a stack of D3-branes probing a toric
Calabi–Yau three-fold singularity. The calculation has been carried out both in the Cardy-like
limit, using a saddle point approximation to the matrix integral, and in the BAE approach,
finding agreement between the two descriptions at large Nc. It has been observed that the
leading saddle contributing to the index for an N = 1 SU(Nc) theory is corrected by a logNc

term (see [106, Eq. (3.53)]), an appealing result that should be recovered in a supergravity
calculation. The presence of a logNc correction is related to the ZNc center symmetry of SU(Nc),
as discussed in [101].
An analogous calculation in USp(2Nc)/SO(2Nc + 1) and SO(2Nc) gauge theories should then
yield a log 2 and log 4 correction respectively.1 In fact these are the dimensions of the centers of
the universal covering groups USp(2Nc) and Spin(Nc) (2 or 4 for the latter, for odd and even

1See [110, 111] for similar results in 3d, where the center symmetry determines the logarithmic correction.



Nc respectively.) In all models considered in this paper we only have matter fields in the adjoint
representation of the gauge group, and these do not break the center symmetry. (Moreover only
the gauge algebra is captured by the SCI.2) In fact, as we will comment later, for models with
other matter representations charged under the center the logarithmic correction corresponds to
the order of the character lattice of the gauge algebra modulo the action of the Weyl symmetry.
An analogous result has been discussed in [112] in terms of a spontaneously broken one-form
symmetry.

Motivated by this expectation in the first part of this chapter we study the logarithmic cor-
rections to the leading saddle contribution to the SCI of 4d N = 4 SYM with symplectic and
orthogonal gauge group. We find the expected log 2 and log 4 corrections to the (logarithm
of the) SCI. As already noted in [106], we find that expanding the index in the Cardy-like
limit one recovers a matrix integral that coincides with the three-sphere partition function of
a 3d pure Chern–Simons (CS) theory. In the cases at hand the CS theories have gauge group
USp(2Nc)±(Nc+1), SO(2Nc + 1)±(2Nc−1), and SO(2Nc)±2(Nc−1) (the subscript representing the
CS level) and this integral can be evaluated exactly. The sign choice is related to a constraint (first
discussed in [13, 113]) satisfied by the chemical potentials appearing in the SCI. Furthermore, in
the USp(2Nc) case we analyze in more detail the solutions of the saddle point equations, finding
other subleading saddles. We analyze the Cardy-like limit for these solutions as well. All the
models that we will study are examples of 4d non-toric gauge theories. Another interesting
non-toric theory that we focus on is the Leigh–Strassler (LS) N = 1∗ SU(Nc) fixed point [114], for
which we extract the contribution of the leading saddle to the index in the Cardy-like limit. We
find that the entropy function, yielding the entropy of the holographic dual BH after a Legendre
transform, is consistent with the result expected from the literature [11–13, 76–79, 82, 85, 98, 105],
i.e. is formally obtained from the 4d central charge a. Furthermore, we extract the logNc cor-
rection, consistently with the one obtained for the parent N = 4 SU(Nc) SYM. This part of the
chapter is based on [115].

In the second part of this chapter we further extend our results and the ones of [106] to generic
N = 1 gauge theories with ABCD gauge algebra, focusing again on the case where the two
fugacities associated with rotations are identified. Once again we find that the index in the
Cardy-like limit is controlled by the traces TrR3 and TrR, weighted by two factors that are
universal in terms of the fugacity associated with the rotation parameter. Furthermore we find
that there is a logarithmic correction related to the charges of the matter fields under the center
of the gauge symmetry. (We will elaborate further on this point in section 5.4.) The main result is
formula (5.80). This result is valid both for (non-toric) theories with TrR = O(1), i.e. for models
that allow a weakly-coupled gravitational dual description, and for models with TrR = O(N2

c ),
with Nc the rank of the gauge algebra. The second part of the chapter is based on [116].

This chapter is structured as follows. In section 5.1 we give a lighting review of the Cardy-like
limit of the SCI for N = 1 gauge theories. In section 5.2 we calculate the Cardy-like limit of the
N = 4 SCI for all classical gauge groups except SU(Nc). In subsection 5.2.1 we focus on the
USp(2Nc) case, computing dominant contribution and subleading correction for the leading

2Keeping this in mind, in the rest of the paper we will be referring to the SCI of SO(Nc) instead of that of
Spin(Nc).



(and other subleading) saddle(s). In subsection 5.2.2 we focus on the SO(2Nc + 1) odd case,
while in subsection 5.2.2 on the SO(2Nc) even case. In section 5.3 we compute the Cardy-like
limit of the SCI of the N = 1∗ SU(Nc) LS fixed point. Appendix A contains technical details
on the calculation of three-dimensional pure Chern–Simons partition functions. In section 5.4
we propose and give a formal argument supporting our main formula (5.80) for the Cardy-like
limit of generic N = 1 theories with ABCD gauge algebra, including finite-order corrections,
generalizing preexisting results. In later sections we test and validate this formula in a series
of examples: holographic N = 1 SCFTs (section 5.5), N = 1 SCFTs without a weakly-coupled
gravity dual (section 5.6), N = 2 SCFTs (section 5.7).

5.1 Expanding on the Cardy-like limit

Following the strategy of [106], we start by rewriting the integral formula (4.20) in terms of
modified elliptic Gamma functions Γ̃. This is done by expressing the holonomies and various
fugacities as

p = e2πiσ, q = e2πiτ , vb = e2πiξb , zi = e2πiui , (5.1)

with ui ∈ (0, 1] and 0 ∼ 1. The R-symmetry chemical potential is given by the relation

vR =
1

2
(τ + σ) . (5.2)

The modified elliptic Gamma functions are then

Γ̃(u; τ, σ) = Γ̃(u) ≡ Γe(e
2πiu; e2πiτ , e2πiσ) , (5.3)

such that the index (4.20) becomes

I(τ, σ,∆) =
(p; p)rkG∞ (q; q)rkG∞

|Weyl(G)|

∫
C

rkG∏
i=1

dui

∏nχ

I=1

∏
ρI
Γ̃(ρI(u⃗) + ∆I)∏

α Γ̃(α(u⃗))
(5.4)

where C =
⋃rkG
i=1(0, 1] and

∆I ≡ ωI(ξ⃗ ) +RIvR. (5.5)

There is one chemical potential ∆I for each field in the theory, and they must satisfy the relations
imposed by global symmetries, i.e. each superpotential term is uncharged under the flavor
symmetry and it has R-charge two.

Next we restrict to the case τ = σ and expand the index in the Cardy-like limit |τ | → 0 at fixed
arg τ ∈ (0, π). In order to evaluate the index in this limit it is convenient to rewrite it as a matrix
model by introducing the effective action Seff through

Isc(τ,∆) ≡ 1

|Weyl(G)|

∫ rkG∏
i=1

dui e
Seff(u⃗;τ,∆) . (5.6)



For a model with nG gauge groups Ga and a set of nχ matter fields ΦI , the effective action takes
the form

Seff(u⃗; τ,∆) =

nχ∑
I=1

∑
ρI

log Γ̃
(
ρI(u⃗) + ∆I

)
+

nG∑
a=1

∑
αa

log θ0
(
αa(u⃗); τ

)
+

nG∑
a=1

2 rkGa log(q; q)∞ . (5.7)

Observe that
∑

ρI
ρI(u⃗) is a formal expression that repackages the sum over the weights of the

representation RI . More explicitly let us consider a function f and a field ΦI in the representation
RI of the gauge group: expressing the weights as wj(u⃗), where j = 1, . . . ,dimRI , we will write

f(ρI(u⃗)) ≡
dim RI∑
j=1

f(wj(u⃗)) . (5.8)

The notation
∑

αa
αa(u⃗) then refers to the (sum of the) roots of the gauge group Ga, i.e. the

weights of the adjoint representation. Moreover in (5.7) we introduced the elliptic theta function

θ0(u; τ) ≡
∞∏
k=0

(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)) , (5.9)

which satisfies log θ0(u; τ) = − log Γ̃(u).3

Let us now define the τ -modded value of a complex C ∋ u ≡ ũ+ τ ǔ (with ũ, ǔ ∈ R):

{u}τ ≡ u− ⌊Re(u)− cot(arg τ) Im(u)⌋ , (5.10)

where ⌊·⌋ is the floor function (of a real number). It satisfies

{u}τ = {ũ}τ + τ ǔ , {−u}τ =

{
1− {u}τ ũ /∈ Z
−{u}τ ũ ∈ Z

, (5.11)

and for a real number ũ it reduces to the usual modded value {ũ} ≡ ũ− ⌊ũ⌋. At small |τ | and
fixed arg τ ∈ (0, π) we have the following asymptotic formulae (see e.g. [106, App. A]):

log (q; q)∞ =− iπ

12

(
τ +

1

τ

)
− 1

2
log(−iτ) +O

(
e
− 2π sin(arg τ)

|τ |

)
; (5.12)

log θ0(u; τ) =
πi

τ
{u}τ (1− {u}τ ) + πi{u}τ −

πi

6τ
(1 + 3τ + τ2)

+ log
((

1− e−
2πi
τ

(1−{u}τ )
)(

1− e−
2πi
τ

({u}τ )
))

+O
(
e
− 2π sin(arg τ)

|τ |

)
; (5.13)

log Γ̃(u) = 2πiQ({u}τ ; τ) +O
(
|τ |−1e

− 2π sin(arg τ)
|τ | min({ũ},1−{ũ})

)
, (5.14)

3To prove this identity, one can follow the steps explained below [106, Eq. (3.2)].



provided ũ↛ Z. We will also need the quantity

Q(u; τ) ≡ −B3(u)

6τ2
+
B2(u)

2τ
− 5

12
B1(u) +

τ

12
, (5.15)

defined in terms of the Bernoulli polynomials4

B3(u) = u3 − 3

2
u2 +

1

2
u , B2(u) = u2 − u+

1

6
, B1(u) = u− 1

2
. (5.17)

Using the above asymptotics we can expand the effective action (5.7) in τ for small |τ |, and
compute its saddle point equations at leading order:

0 =
∂Seff(u⃗; τ,∆)

∂uia
= − iπ

τ2

nχ∑
I=1

∑
ρI

∂ρI(u⃗)

∂uia
B2({ρI(u⃗) + ∆I}τ ) , (5.18)

where uia represents the i-th holonomy in the a-th gauge group, with ia = 1, . . . , rkGa and
a = 1, . . . , nG. This is a set of

∑nG
a=1 rkGa equations. We then look for solutions u⃗, namely the

saddle points of the matrix model, which contain a constant part and a linear term in τ , i.e. we
make an ansatz for the solutions of the form

u⃗ =
{
uia = u∗ia + ūia ≡ u∗ia + viaτ

∣∣ via ∼ O(|τ |0)
}
. (5.19)

We do this to capture the terms at finite order in τ in the expansion. In fact, when we plug
this ansatz back into (5.7), we obtain leading and subleading contributions in τ , logarithmic
corrections as well as finite terms.

5.2 N = 4 Super Yang–Mills with real gauge groups

Motivated by this expectation presented above, in this section we study the logarithmic cor-
rections to the leading saddle contribution to the SCI of 4d N = 4 SYM with symplectic and
orthogonal gauge group. We find the expected log 2 and log 4 corrections to the (logarithm
of the) SCI.5 As already noted in [106], we find that expanding the index in the Cardy-like
limit one recovers a matrix integral that coincides with the three-sphere partition function of
a 3d pure Chern–Simons (CS) theory. In the cases at hand the CS theories have gauge group
USp(2Nc)±(Nc+1), SO(2Nc + 1)±(2Nc−1), and SO(2Nc)±2(Nc−1) (the subscript representing the
CS level) and this integral can be evaluated exactly. The sign choice is related to a constraint
(first discussed in [13, 113]) satisfied by the chemical potentials appearing in the SCI.
Furthermore in the USp(2Nc) case we analyze in more detail the solutions of the saddle point
equations finding other subleading saddles. We analyze the Cardy-like limit for these solutions

4In general, an explicit formula for the Bernoulli polynomials is given by

Bm(x) =

m∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(x+ k)m. (5.16)

5The leading saddle is the one that dominates the index in the regime of charges that reproduces the entropy of
the holographic dual black hole, corresponding to the M-wing in the terminology of [77]. See also [117] for an explicit
matching of the saddles in the W-wing of the S-dual SO/USp N = 4 theories.



as well. All the models studied in this section are examples of 4d non-toric gauge theories.
Another interesting non-toric theory that we focus on is the Leigh–Strassler (LS) N = 1∗ SU(Nc)
fixed point [114], for which we extract the contribution of the leading saddle to the index
in the Cardy-like limit. We find that the entropy function, yielding the entropy of the holo-
graphic dual BH after a Legendre transform, is consistent with the result expected from the
literature [11–13, 76–79, 82, 85, 98, 105], i.e. is formally obtained from the 4d central charge a.
Furthermore, we extract the logNc correction, consistently with the one obtained for the parent
N = 4 SU(Nc) SYM.
The SCI expressed in terms of modified elliptic Gamma functions in these cases reads:

• G = USp(2Nc):

IUSp(2Nc) =
(p; p)Nc

∞ (q; q)Nc
∞

2NcNc!

3∏
a=1

Γ̃Nc(∆a) (5.20)

×
∫ Nc∏

i=1

dui

∏3
a=1

∏Nc
i<j Γ̃(±ui ± uj +∆a)∏Nc
i<j Γ̃(±ui ± uj)

·
∏3
a=1

∏Nc
i=1 Γ̃(±2ui +∆a)∏Nc
i=1 Γ̃(±2ui)

,

where we used the shorthand f(a± b) ≡ f(a+ b)f(a− b) (and likewise for f(±a± b)).

• G = SO(2Nc + 1):

ISO(2Nc+1) =
(p; p)Nc

∞ (q; q)Nc
∞

2NcNc!

3∏
a=1

Γ̃Nc(∆a) (5.21)

×
∫ Nc∏

i=1

dui

∏3
a=1

∏Nc
i<j Γ̃(±ui ± uj +∆a)∏Nc
i<j Γ̃(±ui ± uj)

∏3
a=1

∏Nc
i=1 Γ̃(±ui +∆a)∏Nc
i=1 Γ̃(±ui)

.

• G = SO(2Nc):

ISO(2Nc) =
(p; p)Nc

∞ (q; q)Nc
∞

2Nc−1Nc!

3∏
a=1

Γ̃Nc(∆a) (5.22)

×
∫ Nc∏

i=1

dui

∏3
a=1

∏Nc
i<j Γ̃(±ui ± uj +∆a)∏Nc
i<j Γ̃(±ui ± uj)

.

Using (5.7), we can write the effective action for each case as:

• G = USp(2Nc) :

S
USp(2Nc)
eff =

∑
i ̸=j

(( 3∑
a=1

log Γ̃(u
(±)
ij +∆a)

)
+ log θ0(u

(±)
ij ; τ)

)

+

Nc∑
i=1

(( 3∑
a=1

log Γ̃(±2ui +∆a)
)
+ log θ0(±2ui; τ)

)
+Nc

3∑
a=1

log Γ̃(∆a) + 2Nc log(q; q)∞ . (5.23)



• G = SO(2Nc + 1) :

S
SO(2Nc+1)
eff =

∑
i ̸=j

(( 3∑
a=1

log Γ̃(u
(±)
ij +∆a)

)
+ log θ0(u

(±)
ij ; τ)

)

+

Nc∑
i=1

(( 3∑
a=1

log Γ̃(±ui +∆a)
)
+log θ0(±ui; τ)

)
+Nc

3∑
a=1

log Γ̃(∆a) + 2Nc log(q; q)∞ . (5.24)

• G = SO(2Nc) :

S
SO(2Nc)
eff =

∑
i ̸=j

(( 3∑
a=1

log Γ̃(u
(±)
ij +∆a)

)
+ log θ0(u

(±)
ij ; τ)

)

+Nc

3∑
a=1

log Γ̃(∆a) + 2Nc log(q; q)∞ . (5.25)

In the above expressions we have defined the shorthands

Γ̃(u
(±)
ij +∆a) ≡ Γ̃(ui + uj +∆a)Γ̃(ui − uj +∆a) , (5.26)

θ0(u
(±)
ij ; τ) ≡ θ0(u

(+)
ij ; τ) θ0(u

(−)
ij ; τ) . (5.27)

5.2.1 Symplectic gauge group

Let us start our analysis with the USp(2Nc) case. The effective action in this case is (5.23). In this
subsection we study the solutions to the saddle point equations ∂

∂ui
Seff = 0 for the USp(2Nc)

case. These equations read:6

3∑
a=1

Nc∑
j=1

(
B2({u(±)

ij +∆a}τ )−B2({−u(±)
ij +∆a}τ ) +

+B2({2ui +∆a}τ )−B2({−2ui +∆a}τ

)
= 0 , (5.28)

for i = 1, . . . , Nc. We have found three sets of solutions.7

6Given (5.26), we have:

log Γ̃(u
(±)
ij ) = log Γ̃(u

(+)
ij ) + log Γ̃(u

(−)
ij ) ∼ Q(u

(+)
ij ; τ) +Q(u

(−)
ij ; τ) ∼ B3(u

(+)
ij ) +B3(u

(−)
ij ) + . . . .

Then in the following equation by B2({u(±)
ij +∆a}τ ) we mean B2({ui + uj +∆a}τ ) +B2({ui − uj +∆a}τ ), and so

on.
7Observe that we are not claiming that these are the only solutions; other isolated or continuous (sets of) solutions

are possible for nongeneric values of ∆a, compatibly with the constraint
∑

a ∆a = 2. At any rate we will not
investigate such sporadic possibilities.



i) The first set consists of L holonomies at u = 0 and the remaining K ≡ Nc − L at u = 1
2 .

When studying the τ -expansion of the index for these solutions we will distinguish two
cases. The first one consists of considering either all the holonomies at 0 or at 1

2 . We will
see that they give the dominating contribution to the superconformal index, capturing the
entropy function of the dual rotating black hole under the holographic correspondence.
The other saddles correspond to subleading effects in this regime and their contributions
are paired, i.e. the contribution of the saddle given by L holonomies at 0 andK holonomies
at 1

2 is equivalent to the contribution of K holonomies at 0 and L holonomies at 1
2 . In the

case of Nc even there is also a single solution with L = K.

ii) The second set of solutions corresponds to placing L holonomies at u = 1
4 and the remain-

ing K = Nc − L at u = 3
4 . By a symmetry argument we can actually send ui → −ui, and

this is equivalent to considering all the holonomies at u = 1
4 .

iii) The last possibility consists of considering P holonomies at u = 0, P holonomies at u = 1
2 ,

and the remaining Q ≡ Nc − 2P at u = 1
4 . Observe that if Q = 0 (which is possible only

for even Nc) this case is equivalent to the first with L = K.

In the following we expand the effective action Seff around these saddles.

Leading saddle: Nc coincident holonomies at ui = 0 or ui = 1
2

The ansatz for the saddle point in this case is

u⃗ =
{
u
(m)
j =

m

2
+ uj ≡

m

2
+ vjτ

}
with m = 0, 1 , (5.29)

i.e. we have two possible sets of saddle point holonomies, consistently with the fact that the
center of USp(2Nc) is Z2. Expanding around the saddle point, the effective action becomes

Seff|u⃗={0}Nc or { 1
2
}Nc

= −
(2iπη(Nc + 1))

∑Nc
i=1 u

2
i

τ2

+
∑
j ̸=k

log

(
2 sin

(
πujk

(±)

τ

))
+ 2

Nc∑
i=1

log

(
2 sin

(
2πui
τ

))

+
iπ(6− 5η)

(
2N2

c +Nc

)
12

− iπN2
c

− iπNc(2Nc + 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
−Nc log(τ) . (5.30)

Making the change of variables −iσj ≡ vjτ , the SCI becomes

IUSp(2Nc) = 2τNce−iπ
Nc(2Nc+1)

2 IUSp(2Nc)
0 Z

USp(2Nc)−η(Nc+1)

S3 , (5.31)



where the last contribution corresponds to the three-sphere partition function of a 3d USp(2Nc)
pure Chern–Simons theory at level −η(Nc + 1).8 We also defined

IUSp(2Nc)
0 ≡ exp

[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
+

+
1

12
iπ(6− 5η)

(
2N2

c +Nc

)
− iπN2

c −Nc log(τ)

]
. (5.32)

We can evaluate Z
USp(2Nc)−η(Nc+1)

S3 exactly, as we show in formula (A.8). Adding the latter to
(5.32) we obtain

e
iπNc(2Nc+1)

2 , (5.33)

that cancels an analogous contribution in (5.31). All in all we are left with

IUSp(2Nc) =2 exp

[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
{∆a}τ −

1 + η

2

)
+O

(
e
− 1

|τ |
)
+ . . .

]
(5.34)

where the ellipsis represents the contributions from other saddles we ignored. In the following
we will evaluate the contributions of these saddles, i.e. cases ii) and iii) described at the beginning
of this section.
We see the appearance of the expected log 2 correction to log IUSp(2Nc), which is due to the
degeneracies of the saddles (5.29) counted by m.

L holonomies at ui = 0 and L−Nc at ui = 1
2

The next saddle point that we discuss corresponds to an ansatz with L holonomies at u = 0 and
K ≡ Nc − L holonomies at u = 1

2 . Expanding around this ansatz we have

u⃗ =

{
vi ≡ viτ, i = 1, . . . , L

wr +
1
2 ≡ wrτ +

1
2 , r = 1, . . . ,K

. (5.35)

The effective action in the limit |τ | → 0 can be rearranged as

Seff|u⃗={{0}L,{ 1
2
}K} = −2iπ

τ2
(η1(L−K + 1) + η2K)

L∑
i=1

v2i (5.36)

− 2iπ

τ2
(η1(K − L+ 1) + η2L)

K∑
r=1

w2
r +

∑
i<j

log

(
2 sin

(
±
πv

(±)
ij

τ

))

+
∑
r<s

log

(
2 sin

(
±πw

(±)
rs

τ

))
+ 2

L∑
i=1

log

(
2 sin

(
2πvi
τ

))
8Where, as usual, the CS contribution to the partition function for the USp(2Nc) case has an extra factor of 2

w.r.t. SU(Nc) due to the normalization of the generators [118].



+ 2
K∑
r=1

log

(
2 sin

(
2πwr
τ

))
− iπLK

τ2

3∏
a=1

(
{2∆a} −

1 + η2
2

)

− iπ(2(L−K)2 +Nc)

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)
+ iπ

(
iπ(6− 5η1)(2(K − L)2 +Nc)

12
+

(12− 5η2)KL

3
−N2

c

)
−Nc log τ,

where we used the relations

3∑
a=1

{∆a}τ = 2τ +
3 + ξ0

2
,

3∑
a=1

{
1

2
+ ∆a

}
τ

= 2τ +
3 + ξ1

2
(5.37)

and ξ0 = ±1, ξ1 = ±1. We then defined η1 = ξ0, while for η2 we used the relation

3∑
a=1

{∆a}τ +
{
1

2
+ ∆a

}
τ

=

3∑
a=1

(
{2∆a}τ +

1

2

)
(5.38)

such that

3∑
a=1

{2∆a}τ = 4τ +
3 + ξ1 + ξ0

2
≡ 4τ +

3 + η2
2

, (5.39)

providing a definition for η2.

Again, changing variables as −iσj ≡ vjτ and −iρr ≡ wrτ , there appears a contribution in the
index from the three-sphere partition function of a USp(2L)× USp(2K) pure Chern–Simons
theory. The two symplectic groups have CS levels kUSp(2L) = −η1(L − K + 1) − η2K and
kUSp(2K) = −η1(K − L+ 1)− η2L. These Chern–Simons integrals can be evaluated using the
results presented in appendix A, but the result is not particularly illuminating and we do not
report it here.

Nc coincident holonomies at ui = 1
4

The ansatz for the saddle point in this case is

u⃗ =

{
uj =

1

4
+ uj =

1

4
+ vjτ

}
. (5.40)

Plugging this into the effective action and expanding for |τ | → 0, the leading contribution
becomes

Seff|u⃗={ 1
4
}Nc

= − iπ
τ2

[(
ξ0Nc + ξ1(Nc + 2)

) Nc∑
i=1

u2i − (ξ0 − ξ1)

(
Nc∑
i=1

ui

)2 ]
(5.41)

+
∑
i<j

log

(
2 sin

(
±πuij

τ

))
+
iπNc

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)



− iπ(N2
c +Nc)

4τ2

3∏
a=1

(
{2∆a} −

1 + η2
2

)
+

5iπNc

12

(
η1 − (Nc + 1)η2

)
+
iπNc

2
−Nc log τ ,

where ξ0 and ξ1 are defined as in 5.2.1.

Once again, upon changing variables as −iσj ≡ vjτ we see the emergence of the contribution of
the three-sphere partition function of a U(Nc) vector multiplet. There is also a Chern–Simons
term, where the SU(Nc) and U(1) factors give different contributions. Indeed, using the results
of [119, App. A], we can read off the CS terms from (5.41). While the SU(Nc) factor has level
kSU(Nc) = −Ncη2 +2(η1 − η2), the U(1) term has Chern–Simons level kU(1) = 2(η1 − η2)(Nc+1).
Also in this case the evaluation of the CS integrals does not lead to an illuminating expression
and we do not report it here.

P holonomies at ui = 0, P at ui = 1
2 , and Nc − 2P at ui = 1

4

The last case that we discuss corresponds to the ansatz with P holonomies at u = 0, P
holonomies at u = 1

2 , and the remaining Q ≡ Nc − 2P at u = 1
4 :

u⃗ =


vi ≡ viτ , i = 1, . . . , P

wr +
1
2 ≡ wrτ +

1
2 , r = 1, . . . , P

zm + 1
4 ≡ zmτ +

1
4 , m = 1, . . . , Q

. (5.42)

Expanding around this ansatz, the effective action in the limit |τ | → 0 can be rearranged as

Seff|u⃗={{0}P ,{ 1
2
}P ,{ 1

4
}Q} =

− iπ

τ2

[
(2(P + 1)ξ0 + 2Pξ2 +Q(ξ1 + ξ3))

(
P∑
i=1

v2i +
P∑
r=1

w2
i

)

+ (Q(ξ0 + ξ2) + 2ξ2 + 2P (ξ1 + ξ3))

Q∑
m=1

z2m − (ξ0 − ξ2)

(
Q∑

m=1

zm

)2]

+
∑
i<j

log

(
2 sin

(
±
πv

(±)
ij

τ

))
+
∑
r<s

log

(
2 sin

(
±πw

(±)
rs

τ

))

+ 2
P∑
i=1

log

(
2 sin

(
2πvi
τ

))
+ 2

P∑
r=1

log

(
2 sin

(
2πwr
τ

))

+
∑
m<n

log

(
2 sin

(
±πzmn

τ

))
− iπ(2P −Q)

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)

− iπ((2P −Q)2 +Q)

4τ2

3∏
a=1

(
{2∆a} −

1 + η2
2

)

− iπPQ

4τ2

3∏
a=1

(
{4∆a} −

1 + η4
2

)
− iπ

(
Q2 + 4P 2

)



+
1

12
iπ (6− 5η1) (2P −Q) +

1

12
iπ (12− 5η2)

(
(2P −Q)2 +Q

)
+

1

3
iπ (12− 5η4)QP −Nc log τ , (5.43)

where ξ0,1,2,3 = ±1 are defined by the relations

3∑
a=1

{
J

4
+ ∆a

}
τ

= 2τ +
3 + ξJ

2
, J = 0, . . . , 3 . (5.44)

Furthermore we called η1 ≡ ξ0, η2 ≡ ξ0 + ξ2, and η4 ≡ ξ0 + ξ1 + ξ2 + ξ3.

Changing variables as −iσj ≡ vjτ , −iρr ≡ wrτ and −iλm ≡ zmτ we recognize in the expansion
of the index a contribution from the three-sphere partition function of a USp(2P )× USp(2P )×
U(Q) pure CS theory. The two symplectic groups have the same Chern–Simons level kUSp(2P ) =

−1
2(2(P + 1)ξ0 + 2Pξ2 + Q(ξ1 + ξ3)), while the SU(Q) and the U(1) subgroups of U(Q) have

different CS levels, −(Q(ξ0 + ξ2) + 2ξ2 + 2P (ξ1 + ξ3) and −2(ξ2 +Qξ2 + P (−ξ0 + ξ1 + ξ2 + ξ3))
respectively.
Again the evaluation of the Chern–Simons integrals does not lead to an illuminating expression
and we do not report it here.

5.2.2 Orthogonal gauge group

In order to study the orthogonal cases for generic rank we first discuss the SCI of SO(Nc)
with Nc = 3, . . . , 6. In fact for these values of Nc the index can be extracted by leveraging the
accidental isomorphisms of some classical Lie algebras.

• SO(3): In this case, denoting y the holonomy of USp(2) and u the holonomy of SO(3) we
can make the change of variables u = 2y and show, by direct inspection, that ISO(3) = IUSp(2).

• SO(4): In this case, denoting y1,2 the holonomies of SU(2)× SU(2) and u1,2 the holonomies
of SO(4) we can make the change of variables

u1 = y1 + y2 , u2 = y1 − y2 , (5.45)

and show that ISO(4) = ISU(2)ISU(2), where the right hand side corresponds to the index of two
decoupled N = 4 SU(2) models.

• SO(5): In this case, denoting y1,2 the holonomies of USp(4) and u1,2 the holonomies of SO(5)
we can make the change of variables

u1 = y1 + y2 , u2 = y1 − y2 (5.46)

and show that ISO(5) = IUSp(4).



• SO(6): In this case we can consider the holonomies of SU(4) and enforce the SU constraint
explicitly on their definition:

±(xi − xj) , i < j ; ±(xi + xj + 2xk) , i ̸= j ̸= k , (5.47)

with i, j = 1, 2, 3. The holonomies of SO(6), denoted ui with i = 1, 2, 3, can be mapped to the
SU(4) ones by the change of variables

u1 = x2 + x3 , u2 = x3 + x1 , u3 = x1 + x2 , (5.48)

thus showing that ISO(6) = ISU(4).

For all SU and USp cases (computed in [106] and here respectively) we see that the leading
contribution always has a logarithmic correction compatible with the formula log |center(G)|,
where by center(G) we mean the center of the gauge group G, i.e. ZNc and Z2 respectively. As
discussed in the introduction this correction is generically smaller if there are fields charged
under the center symmetry (which is not the case for SYM).

Motivated by the above discussion, in this subsection we study the leading contribution to the
Cardy-like limit of the SCI for both the SO(2Nc + 1) and the SO(2Nc) case. In the SO(2Nc + 1)
case we find the same result obtained for the leading contribution of the symplectic case, as
predicted by S-duality. Nevertheless the matching is nontrivial because we have a different
number of solutions to the saddle point equations. Only after a careful evaluation of the three-
dimensional Chern–Simons partition function we will have a proper matching of the two indices
including the finite logarithmic corrections.

The SO(2Nc + 1) case

We start by studying SO(2Nc+1). In this case the matrix integral is given by formula (5.21). We
can then study the saddle point equations:

3∑
a=1

Nc∑
j=1

(
B2({u(±)

ij +∆a}τ )−B2({−u(±)
ij +∆a}τ ) +

+B2({ui +∆a}τ )−B2({−ui +∆a}τ )
)

= 0 , (5.49)

for i = 1, . . . , Nc. Here we focus only on the solutions that have been studied in [76] in the
Cardy-like limit. In this case the leading saddle corresponds to solution at u∗j = 0. We expand
the holonomies around this solution as in (5.19), i.e. uj = 0 + uj ≡ vjτ . Expanding the effective
action around this saddle point we find

Seff|u⃗={0}Nc
= −

(iπη(2Nc − 1))
∑Nc

i=1 u
2
i

τ2
+
∑
j ̸=k

log

(
2 sin

(
πu

(±)
jk

τ

))

+

Nc∑
j=1

log

(
2 sin

(
±πuj
τ

))
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
+

1

12
iπ(6− 5η)

(
2N2

c +Nc

)
− iπN2

c −Nc log(τ) . (5.50)



Upon changing variables as −iσj ≡ vjτ , the superconformal index becomes

ISO(2Nc+1) = τNce−iπ
Nc(2Nc+1)

2 ISO(2Nc+1)
0 Z

SO(2Nc+1)−η(2Nc−1)

S3 (5.51)

where the last contribution corresponds to the three-sphere partition function of a 3d SO(2Nc+1)
pure Chern–Simons theory at level −η(2Nc − 1). We also defined

ISO(2Nc+1)
0 ≡ exp

[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)

+
1

12
iπ(6− 5η)

(
2N2

c +Nc

)
− iπN2

c −Nc log(τ)

]
. (5.52)

We can evaluate Z
SO(2Nc+1)−η(2Nc−1)

S3 exactly as done in formula (A.18). We finally arrive at

ISO(2Nc+1) = 2 exp

[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
+O

(
e
− 1

|τ |
)
+ . . .

]
, (5.53)

where the ellipsis represents the contributions from other saddles ignored here.
We observe the appearance of the expected log 2 correction to log ISO(2Nc+1), which is not due to
the degeneracy of the saddles as in the USp(2Nc) case but rather to the extra factor of 2 in the
evaluation of the partition function for the pure Chern–Simons theory; see again (A.18).

The SO(2Nc) case

We now turn to SO(2Nc). In this case the matrix integral is given by formula (5.22). We can then
study the saddle point equations. We have:

3∑
a=1

Nc∑
j=1

B2({u(±)
ij +∆a}τ )−B2({−u(±)

ij +∆a}τ ) = 0 , (5.54)

for i = 1, . . . , Nc. Again, we focus only on the solutions that have been studied in [76] in the
Cardy-like limit. They are given by the ansatz

u⃗ =
{
u
(m)
j =

m

2
+ uj ≡

m

2
+ vjτ

}
with m = 0, 1 . (5.55)

Expanding the effective action around the saddle point (5.55) we find

Seff|u⃗={m
2
}Nc

= −
(2iπη(Nc − 1))

∑Nc
i=1 u

2
i

τ2
+
∑
j ̸=k

log

(
2 sin

(
πujk

(±)

τ

))
(5.56)

− iπNc(2Nc − 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
+

1

12
iπ(6− 5η)Nc (2Nc − 1)− iπNc(Nc − 1)−Nc log(τ) .

Upon changing variables as −iσj ≡ vjτ , the SCI becomes

ISO(2Nc) = 2τNce−iπ
Nc(2Nc−1)

2 ISO(2Nc)
0 Z

SO(2Nc)−2η(Nc−1)

S3 , (5.57)



where the last contribution corresponds to the three-sphere partition function of a 3d SO(2Nc)
pure CS theory at level −2η(Nc − 1). We also defined

ISO(2Nc)
0 ≡ exp

[
− iπNc(2Nc − 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)

+
1

12
iπ(6− 5η)Nc (2Nc − 1)− iπNc(Nc − 1)−Nc log(τ)

]
. (5.58)

Evaluating Z
SO(2Nc)−2η(Nc−1)

S3 exactly as done in formula (A.21) and multiplying it by (5.58) we
obtain

ISO(2Nc) = 4 exp

[
− iπNc(2Nc − 1)

τ2

3∏
a=1

(
∆a −

η + 1

2

)
+O

(
e
− 1

|τ |
)
+ . . .

]
(5.59)

where the ellipsis represents the contributions from other saddles ignored here.
We observe the appearance of the expected log 4 correction to log ISO(2Nc), which is partly due
to the degeneracy of the saddles (5.55) counted by m and partly due to the extra factor of 2 in
the evaluation of the partition function of the pure Chern–Simons theory. The final result is
consistent with the fact that the center is either Z4 or Z2 × Z2 depending on the parity of Nc.

5.3 A non-toric example: the Leigh–Strassler fixed point

In this section we study the SCI of the so-called N = 1∗ theory of [114], i.e. the theory obtained
by turning on a complex mass for one of the N = 1 adjoint chirals in N = 4 SU(Nc) Super
Yang-Mills, and flowing to the fixed point. We integrate out the massive field Φ3 after deforming
the superpotential of N = 4 accordingly:

Wmass
N=4 ∼ TrΦ3[Φ1,Φ2] + TrΦ2

3 −→ WN=1∗ ∼ Tr[Φ1,Φ2]
2 . (5.60)

It is interesting to study this case because this N = 1 theory is non-toric, and so far such models
have not been discussed in the literature.9

5.3.1 Cardy-like limit of the index

The Nc − 1 saddle point equations read

Nc∑
j=1

B2({uij +∆a}τ )−B2({uNj +∆a}τ )−B2({uij +∆a}τ ) +B2({−uNj +∆a}τ ) = 0, (5.61)

9In effect, [106] deals only with toric N = 1 SU(Nc) quivers and gives leading contribution and logarithmic
correction of the SCI in the Cardy-like limit; [79] gives only the leading contribution for a general (i.e. not necessarily
toric) N = 1 gauge theory with gauge group G in terms of its central charges a, c (and flavor central charges if
present). Partial progress for general theories has also been made in [78, 104]. We are grateful to D. Cassani for
comments on this point.



and they have the same solutions as those discussed in [106], that we report here:

ui =
m

Nc
+
I − C−1

2

C
+ viτ with

Nc∑
i=1

vi = 0 , (5.62)

where I = ⌊ i−1
Nc/C

⌋, with i = 1, . . . , Nc and m = 0, . . . , Nc
C − 1, with C an integer divisor of Nc.

This corresponds to the K-gon solution of [78], and it can be visualized as C sets each containing
Nc/C holonomies, uniformly distributed along the unit interval.

Leading saddle: C = 1

The leading saddle corresponds to the ansatz with C = 1. In the following we discuss this
case explicitly. The fugacities associated with the adjoints Φ1 and Φ2 are denoted ∆1 and ∆2

respectively, and the superpotential WN=1∗ in (5.60) imposes the constraint ∆1 + ∆2 = 1. It
follows that in this case the constraint on the quantities {∆a}τ is given by

{∆1}τ + {∆2}τ = τ + 1 +
η

2
(5.63)

where η = ±1. By expanding the index at small |τ | (and fixed arg τ ∈ (0, 1)) we obtain:

SLS
eff = − iπη

τ2
Nc

 Nc∑
i=1

ui −
1

Nc

Nc∑
j=1

uj

2

+
∑
i ̸=j

log

(
2 sin

πuij
τ

)

−
iπ(N2

c − 1)
(
∆1 − 1+η

2

)(
∆2 − 1+η

2

)
(∆1 +∆2 − (1 + η))

τ2

+
iπ

12
(6− 5η)(N2

c − 1)− iπ

2
(N2

c −Nc)− (Nc − 1) log τ , (5.64)

where we defined ui ≡ viτ . Once again, upon the change of variables iσj ≡ m
N + vjτ , we

recognize a 3d pure CS partition function. By evaluating the latter on the different Nc saddles
the final result is

ILS
sc = Nc e

−πi(N2
c−1)

τ2
(∆1− 1+η

2 )(∆2− 1+η
2 )(∆1+∆2−(1+η))+O(e−1/|τ |) + ... (5.65)

where the ellipsis refers to the contribution of other saddles we ignored. Notice that the index
has the functional structure of the 4d central charge a, that in this case is given by

aLS =
27

32
∆1∆2 (∆1 +∆2) . (5.66)

Furthermore we observe the appearance of the expected logNc correction to log ILS, which is
inherited from the parent N = 4 SU(Nc) Super Yang–Mills.

Subleading saddles: C-center solutions

A similar analysis can be carried out for the C-center solutions introduced in [101, 106]. Here we
redefine (5.62) as

ui =
m

Nc
+
I − C−1

2

C
+ uI,i−(Nc/C)I , (5.67)



by introducing the quantity uI,i−(Nc/C)I . The action for the C-center solution is given by

SLS,C
eff =

2∑
a=1

C−1∑
I,J=0

Nc/C∑
i,j=1

2πiQ

({
I − J

C
+∆a

}
τ

+ uI,i − uJ,j ; τ

)
(5.68)

+
C∑

I,J=0

Nc/C∑
i,j=0

log

(
θ0

(
I − J

C
+ uI,i − uJ,j ; τ

))
+ 2(Nc − 1) log(q; q)∞ .

Using the relations{
J

C
+∆1

}
τ

+

{
J

C
+∆2

}
τ

= τ + 1 +
ξJ
2
, {C∆1}τ + {C∆2}τ = Cτ + 1 +

ηC
2
, (5.69)

with ξ0 = η1 and ηC =
∑C−1

J=0 ξJ , we can expand the action for |τ | → 0 (and fixed arg τ ) obtaining
for the leading terms

SLS,C
eff = − πi

2τ2
N2
c

C2

C−1∑
I,J=0

ξI−J

Nc/C∑
i=1

uI,i −
Nc/C∑
j=1

uJ,j

2

+
C−1∑
I=0

(
− πiηcNc

Cτ2

Nc/C∑
i=1

uI,i − C

Nc

Nc/C∑
j=1

uI,j

2

+

Nc/C∑
i ̸=j

log

(
(2 sin

π(uI,i − uI,j)

τ

))

− πiN2
c

C3τ2

(
{C∆1}τ −

1 + ηc
2

)(
{C∆2}τ −

1 + ηc
2

)
· ({C∆1}τ + {C∆2}τ − (1 + ηc))

+
πi

τ2

(
{∆1}τ −

1 + η1
2

)(
{∆2}τ −

1 + η1
2

)
({∆1}τ + {∆2}τ − (1 + η1))

− 5πiηCN
2
c

12C
+
πiNc

2
− πi(6− 5η1)

12
− (Nc − 1) log τ . (5.70)

The calculation of the Chern–Simons integrals is identical to the one performed in [106] for the
C-center solution of N = 4 SU(Nc) SYM.
The final result is:

ILS,C =
Nc

C
e−

πiN2
c

C3τ2
({C∆1}τ− 1+ηc

2 )({C∆2}τ− 1+ηc
2 )({C∆1}τ+{C∆2}τ−(1+ηc)) (5.71)

· e
πi
τ2

(
{∆1}τ− 1+η1

2

)(
{∆2}τ− 1+η1

2

)
({∆1}τ+{∆2}τ−(1+η1))+

5πi(η1−CηC )

12 · ZU(1)
S3 + . . . ,

where ZU(1)
S3 denotes the CS partition function of the abelian factors as in [106].

5.3.2 Entropy function and dual black hole entropy

We conclude the analysis of the LS fixed point by studying the entropy function SE that repre-
sents the log of the number of states and corresponds to the Legendre transform of the index.
In the holographic dictionary the Legendre transform of SE gives the entropy of the dual black
hole. The entropy function can be read off of the logarithm of the SCI, and is thus given by

SE = −κ
iπ
(
∆1 − η+1

2

)(
∆2 − η+1

2

)
(∆1 +∆2 − (η + 1))

τ2
(5.72)



with the constraint ∆1 +∆2 − τ − 1− η
2 = 0 (which is derived from (5.63)). The overall constant

κ is fixed as κ = 1
8 (see the discussion in [105]).

The entropy is computed in terms of the charges Q1,2 and angular momentum J of the dual
black hole. (Observe that since we are identifying σ and τ , we only have one angular momentum
J1 = J2 ≡ J .) The Legendre transform of the entropy function SE is given by the formula

S = SE + 2πi(Q1∆1 +Q2∆2 + Jτ) + 2πiΛ
(
∆1 +∆2 − τ − 1− η

2

)
, (5.73)

where Λ is a Lagrange multiplier that enforces the above constraint between the chemical
potentials. The entropy function satisfies the simple equation

SE = ∆1
∂SE
∂∆1

+∆2
∂SE
∂∆2

+ τ
∂SE
∂τ

, (5.74)

implying that the entropy can be extracted from the Lagrange multiplier Λ as S = −2πiΛ. In
order to find an expression for Λ we first write down the equations ∂∆1,2S = 0 and ∂τS = 0.
These three equations allow to express the quantities Λ +Q1,2 and Λ− J in terms of ∆1,2 and τ .
They read

Λ +Q1

κ
= −

(
∆2 − η+1

2

) (
2∆1 +∆2 − 3

2(η + 1)
)

2τ2
,

Λ +Q2

κ
= −

(
∆1 − η+1

2

) (
∆1 + 2∆2 − 3

2(η + 1)
)

2τ2
, (5.75)

Λ− J

κ
=

(
∆1 − η+1

2

)(
∆2 − η+1

2

)
(∆1 +∆2 − η − 1)

τ3
.

Using these relations we can find an identity involving Λ, Q1,2, and J . In the case of N = 4 SYM
this is a cubic equation in Λ; here instead we found a fifth-order equation in Λ, which to the best
of our knowledge appears for the first time in such a calculation. It reads:

1

2
(Λ− J)2(Λ + 2Q1 −Q2)(2Λ +Q1 +Q2)(Λ−Q1 + 2Q2)

+
27

32
κ(Λ− J)4 − 2(Q1 −Q2)

2(Λ +Q1)
2(Λ +Q2)

2

κ
= 0 . (5.76)

Solving this equation in Λ yields the entropy S as a function of the charges as explained above.
In order to obtain a sensible result we should also impose that Λ is purely imaginary. In general
a fifth order equation with two imaginary solutions can be written as

Λ5 + c2Λ
4 + (c1 + c3)Λ

3 + (c1c2 + c4)Λ
2 + c1c3Λ + c1c4 = 0 , (5.77)

with solutions Λ = ±i√c1. The coefficients ci can be expressed in terms Q1,2 and J . (This is a
reality condition on the entropy, which also imposes a constraint among the charges.) The black
hole entropy is then given by the following relation:

S = −2πiΛ = 2π
√
c1 = 2π

√
α−

√
α2 + 32κβ

16κ
, (5.78)



with

α ≡ κJ(27κ− 8J) + 8(Q1 +Q2)(3κJ + 4(Q1 −Q2)
2) (5.79)

+ 12κ(Q2
1 − 4Q2Q1 +Q2

2) ,

β ≡ 27κ2J3 + 12κJ2(Q2
1 − 4Q2Q1 +Q2

2)

+ 8(Q1 +Q2)(κJ(Q2 − 2Q1)(Q1 − 2Q2) + 4Q1Q2(Q1 −Q2)
2) .

5.4 Expansion of the index: the general formula

In this section we give a formula capturing all the contributions for generic N = 1 SCFTs, which
only depends on the central charges a and c, gauge algebra, and matter representations.
In the holographic case, that is for theories with a dual, the Cardy-like limit of the SCI intro-
duced above reproduces the Legendre transform of the entropy of the dual rotating BH. Here we
propose a general formula for the index in this limit at finite order both in rkG and τ , regardless
of the existence of a gravity dual.

Our main result is that the index takes the form

log I(τ,∆) =
|τ |→0

4πi(η − 6τ + 12ητ2 + . . . )(3c− 2a)

27τ2

+
8πi(2− 5ητ + . . . )(c− a)

6τ
+ log ΓZ , (5.80)

where we use the same functions a and c that, when evaluated on the R-charges, reproduce TrR
and TrR3 via TrR = 16(a− c) and TrR3 = 16

9 (5a− 3c) [120]. Here we evaluate these functions
on a new set of charges ∆̂I (for the matter fields) defined as

∆̂I ≡
2

2τ − η
{∆I}τ , (5.81)

with ∆I defined in (5.5), the τ -modded value {·}τ given in (5.10), and η = ±1. This latter choice
has been used before to study the Cardy-like limit of the SCI [78, 79] and match it against the
dual black hole entropy when available (see also the discussion in [13, Sec. 5]).
We stress, to avoid any confusion on the interpretation of formula (5.80), that it has to be read
as follows: the central charges a and c are computed as in a generic SCFT by considering the
charges of the fermions in the matter multiplets and in the vector multiplet. While for the former
we use the new charges ∆̂I defined above (instead of the R-charges), for the latter the redefinition
does not apply (and we use their R-charge).

Our aim is to support the validity of (5.80) for 4d N = 1 SCFTs with a generic amount of gauge
groups, each with algebra of type ABCD, without specifying the ranks. Before proceeding we
still need to define the positive integer ΓZ in (5.80).
Let us begin by observing that the superconformal index cannot capture the global aspects of
the gauge group. This implies that, once the representations of the matter fields charged under
the gauge group are specified, the index of the theory with gauge group G is equivalent to the
index of the theory with gauge group G/H , where H is a discrete subgroup of the center Z(G).



Here we observe, in all the examples under investigation, that the logarithmic correction to the
index in the Cardy-like limit is given by log ΓZ , where ΓZ is the minimal charge of the matter
fields under the center Z(G) of the gauge group. Alternatively, as noted in [112], ΓZ can be
interpreted as the order of the one-form symmetry of the theory.
For example for N = 4 theories the matter fields are all in the adjoint representation, i.e. they
have the same charge as the dimension of the center, and in this case indeed ΓZ = dimZ(G)
(see [106] and section 5.2). On the other hand if we consider SU(Nc) SQCD, the matter fields
in the fundamental representation have charge one under the gauge group, and in this case
indeed we find ΓZ = 1 (see sections 5.6.1 and 5.6.2). Whenever we consider models with a center
symmetry given by the product

∏nG
a=1 Zka , we will refer to the sum of the charges under each

single Zka factor as “charge”. With this convention in mind we can see that our definition of ΓZ is
also consistent with what was found for toric quivers in [106], where the center symmetry is ZnG

Nc

and each field Φij is in the fundamental representation of SU(Nc)i and in the anti-fundamental
representation of SU(Nc)j , and thus has total charge Nc. In this case it was indeed found that
ΓZ = Nc.

5.4.1 Derivation

We are now ready to proceed with a derivation of (5.80). We start our analysis by focusing on
the contribution to the index of the matter fields. For a generic field Φ we have to consider the
contribution 2πiQ({ρΦ(u⃗) + ∆Φ}τ ; τ). The function Q(u; τ) was defined in (5.15).

Vanishing holonomies. Let us first focus on the contribution of the field Φ at vanishing
holonomies. In this work we are only interested in a set of charges ∆̂Φ for the matter fields Φ
that satisfy the constraint ∑

Φ∈W
∆̂Φ = 2 ⇒

∑
Φ∈W

{∆Φ}τ = 2τ − η , (5.82)

where the notation Φ ∈ W means that we sum over the fields in each superpotential term, i.e.
(5.82) represent a set of nW (redundant) equations, where nW corresponds to the number of
superpotential terms.
A field Φ then contributes to the index as

2πiQ({∆Φ}τ ; τ) = 2πiQ

(
2τ − η

2
∆̂Φ +

1 + η

2
; τ

)
= 4πi

(η − 6τ + 12ητ2 + . . . )

27τ2
(3c(∆̂Φ)− 2a(∆̂Φ))

+
8πi

6τ
(2− 5ητ + . . . )(c(∆̂Φ)− a(∆̂Φ)) ≡ J(∆̂Φ) , (5.83)

consistently with (5.80).

Non-vanishing holonomies. Next, we focus on the contribution at non-vanishing holonomies.
To do that, we make the following observation. As discussed in various papers (see e.g. [78, 79]),
the index evaluated at zero holonomies reproduces the leading contribution to the Legendre
transform of the entropy of the dual black hole. Furthermore there are other saddle point



solutions of (5.18) corresponding to packages of coincident holonomies placed homogeneously
along the unitary circle, that reproduce the BH entropy as well. We have checked in many
concrete examples that the number of these inequivalent solutions corresponds to the integer
ΓZ defined above. (For instance, for an SU(Nc) theory with adjoint matter fields there are Nc

solutions as in [78, 106], while in presence of fundamental matter only the solution with all
the holonomies at the origin is allowed. There are Nc solutions also for toric quivers [78, 106]
because the bifundamental matter fields imply that the gauge group is

∏nG
a=1 SU(Nc)a/Z

diag
Nc

.)
A crucial observation is that in each example considered here ρΦ(u⃗∗) ∈ Z, with u⃗∗ defined in
(5.19). In this way we can simplify the expansion of 2πiQ({ρΦ(u⃗) + ∆Φ}τ ; τ) using that, on the
saddles (5.19), we have {ρΦ(u⃗) + ∆Φ}τ = {τρΦ(v⃗) + ∆Φ}τ . Even if we do not have an analytic
proof we expect that this result holds in general for any N = 1 SCFT. Thanks to this, we can
expand the Bernoulli polynomials in terms of the holonomies as follows:

B3({vτ +∆Φ}τ ) =
|τ |→0

B3({∆Φ}τ ) + 3B2({∆Φ}τ )vτ + 3B1({∆Φ}τ )v2τ2 ,

B2({vτ +∆Φ}τ ) =
|τ |→0

B2({∆Φ}τ ) + 2B1({∆Φ}τ )vτ ,

B1({vτ +∆Φ}τ ) =
|τ |→0

B1({∆Φ}τ ) . (5.84)

It follows that, in the expansion of 2πiQ({ρΦ(u⃗) + ∆Φ}τ ; τ):

• the linear term in the holonomies vanishes for all ABCD cases;

• the quadratic term in the holonomies corresponds to the partition function of three-
dimensional pure Chern–Simons theory at level −ηT (G), where T (R) is the Dynkin index
of the representation R, and T (G) refers to the adjoint representation. (See e.g. appendix
A for the relevant notation.)
This calculation is done as follows. We first plug the explicit form of the Bernoulli polyno-
mials into 2πiQ({ρΦ(u⃗) + ∆Φ}τ ; τ) and expand them around the saddle points as in (5.84).
In this way we obtain the quadratic contributions in the variables v⃗, altogether amounting
to

πi

2

nχ∑
I=1

ρ2I(v⃗)(2τ − η − {∆I}τ ) , (5.85)

which is valid for both η = ±1. The quantity ρ2I(v⃗) represents the sum of the squares of the
weights of each field ΦI in the representation RI parameterized by the holonomies v⃗, as
explained in (5.8). This can then be expressed in terms of the Dynkin index T (RI). Using
this observation and the relation between {∆Φ}τ and ∆̂Φ given in (5.81) we finally find

πi

2

nχ∑
I=1

ρ2I(v⃗)(2τ − η − {∆I}τ ) =
πi(2τ − η)

2

nχ∑
I=1

ρ2I(v⃗)(1− ∆̂I)

=
πi(2τ − η)

2

nG∑
a=1

rkGa∑
ia=1

v2ia

(∑
Φ∈Ga

T (RΦ)(1− ∆̂Φ)

)
. (5.86)



Here the notation Φ ∈ Ga means that we consider the sum over all fields Φ that are charged
under the a-th gauge group Ga. The leading order in τ thus reads:

ηπ

2

nG∑
a=1

rkGa∑
ia=1

λ2ia

(∑
Φ∈Ga

T (RΦ)(1− ∆̂Φ)

)
, (5.87)

where we also defined λia ≡ ivia for future convenience.
In the toric case the constraint

∑
Φ∈W ∆̂Φ = 2 automatically ensures that

T (G) +
∑
Φ∈Ga

T (RΦ)(∆̂Φ − 1) = 0 , (5.88)

reflecting the fact that the anomaly freedom of the R-symmetry coincides with the re-
quirement R(W) = 2. However the relation between the constraints imposed by the
superpotential and by the requirement of a non-anomalous R-symmetry does not hold
in general, and we will assume that the Cardy-like limit has to be taken by imposing the
anomaly cancellation for the ∆̂I variables as well, namely condition (5.88) above.

Evaluating the CS integral,10 i.e. the partition function of a pure 3d Chern–Simons theory with
gauge group G and CS level −ηT (G), and summing this result to the contribution from the
vector multiplets, coming from the terms in θ0(αa(u⃗); τ) and (q; q)∞ in (5.7), we arrive at the
result

4πi
(η − 6τ + 12ητ2 + . . . )

27τ2
(3c(2)− 2a(2))

+
8πi

6τ
(2− 5ητ + . . . )(c(2)− a(2)) = −πi(2− 5ητ + . . . )

12τ
(5.89)

for each vector multiplet.
In addition there is a contribution log ΓZ coming for the degeneration of the saddle points, as
discussed above.

5.4.2 The examples

In this analysis we have made an educated guess regarding the solutions of the saddle point
equations for generic matter content and gauge group, and this cannot be regarded as a rigorous
proof of the formula (5.80). For this reason and for the sake of clarity in the next section we will
study some explicit examples, supporting the result claimed in this section. We have chosen
examples that do not belong to the vast family of toric quiver gauge theories, that have been
thoroughly investigated in this context e.g. in [76, 78, 82, 85, 98, 105, 106].

10By inspection we found that the integral is given by the formula

Z
G−ηT (G)

S3 = exp

(
iπ

(|G| − rkG)

2
− 1

12
iπ(6− 5η)|G|

)
,

where |G| is the dimension of the gauge group G ≡ Lie(g), with g of ABCD type. It would be interesting to check
the validity of such a general formula for the exceptional Lie algebras as well. See [121–124] for some results in this
direction.



We kick off our analysis with an exception though, namely by studying a toric quiver gauge
theory engineered by a stack of Nc D3-branes probing the C3/Z2 × Z2 singularity. The reason is
that in this case we can perform a Seiberg duality that lands us on a so-called non-toric phase.
We show that matching the Cardy-like limit of the superconformal index across the dual phases
requires some care in the correct identification of the matter charges under the duality map.
We then move to a fully non-toric example, namely the quiver gauge theory corresponding to a
stack of Nc D3-branes probing the cone over the dP4 singularity. We choose the phase of the
theory with all but one equal ranks [125]. We show that formula (5.80) is valid in this case as
well. Another non-toric example that we tackle is Laufer’s theory, introduced in [126–129].
All of these examples admit a large-Nc limit with TrR = O(1), and they are conjectured to have
a weakly-coupled gravity dual. However our formula (5.80) goes beyond this requirement,
providing a result that should be valid also for theories without a large-Nc limit dual to classical
gravity. We test this conjecture by studying the case of SU(Nc) SQCD and adjoint SU(Nc) SQCD.
In the latter theory we discuss the modification of our formalism in presence of accidental sym-
metries as well. We conclude with the case of USp(2Nc) SQCD and the Intriligator–Pouliot
duality it enjoys.
We then move to cases with N = 2 supersymmetry. As a first example we study a family of
N = 1 Lagrangians that enhance in the infrared (IR) to the (A1, A2n−1) Argyres–Douglas (AD)
fixed points [130–134]. We conclude our analysis with a fully Lagrangian N = 2 SCFT with
matter fields in tensor representations: the gauge group is SU(Nc) and we have a symmetric
and an antisymmetric hypermultiplet. This theory is interesting both because it has a known su-
pergravity dual description and because the matter fields force different logarithmic corrections
for the even Nc and odd Nc case, in perfect agreement with the logic we explained below (5.80).

5.5 N = 1 examples with TrR = O(1)

First we study examples of quivers with different ranks for the various gauge groups. Namely
we study the toric/non-toric Seiberg duality for the quiver associated with the C3/Z2 × Z2

singularity; the dP4 quiver theory; Laufer’s theory [126–129, 135].

5.5.1 C3/Z2 × Z2: a toric/non-toric duality

We will start our analysis with C3/Z2 × Z2. This model has a toric holographic dual description,
i.e. it is obtained from a stack of Nc D3-branes probing a Calabi–Yau threefold cone over a
Sasaki–Einstein five-manifolds with U(1)3 isometry. This corresponds to a toric SCFT, described
by a quiver gauge theory with four SU(Nc) gauge nodes, and pairs of bifundamental and
anti-bifundamental fields connecting each pair of nodes. There are many equivalent ways to
translate the toric condition of the metric on the dual quiver. For instance a possibility consists
of planarizing the quiver on a torus. We refer the reader to [48] for further details. Even if the
Cardy-like limit of toric quiver gauge theories has been thoroughly analyzed in the literature,
we still find it useful to consider this model because by applying the rules of Seiberg duality
one obtains a dual SCFT without an explicit toric description (i.e. it is not possible to represent
the Seiberg-dual quiver on a two-torus). Furthermore the non-toric dual phase is instructive
because the ranks of the dual gauge groups are not all equal to Nc. This will be a generic feature
for some other models holographically dual to non-toric manifolds that we will consider below.
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Figure 5.1: Quiver for the toric phase of C3/Z2 × Z2.

The toric phase is a quiver gauge theory with four gauge groups SU(Nc) (see figure 5.1), with
all matter fields in the bifundamental representation of SU(Nc)× SU(Nc). The superpotential
reads

W = X12X23X31 −X12X24X41 +X13X34X41 −X13X32X21

+X14X42X21 −X14X43X31 +X24X43X32 −X23X34X42 . (5.90)

The SCI of this theory11 is given by

Isc(τ,∆) =
(q; q)8Nc

∞
(Nc!)4

∫ 4∏
a=1

Nc∏
ia=1

duia

∏4
a̸=b

∏Nc
i,j=1 Γ̃(u

ab
ij +∆ab)∏4

a=1

∏Nc
i ̸=j Γ̃(u

a
ij)

, (5.91)

where uabij ≡ uia − ujb and uaij ≡ uia − uja . The effective action Seff (5.7) in this case becomes:

Seff(u⃗; τ,∆) =
4∑
a̸=b

Nc∑
i,j=1

log Γ̃
(
uabij +∆ab

)
+

4∑
a=1

Nc∑
i ̸=j

log θ0
(
uaij ; τ

)
+ 8(Nc − 1) log(q; q)∞ . (5.92)

The charges {∆ab}τ are related by constraints that can be read off of the superpotential (5.90), i.e.∑
Φ∈W{∆Φ}τ = 2τ − η. These constraints are equivalent to those that can be derived using the

11The SCI for the C3/Zk × Zl orbifold theory has been computed in certain limits (albeit different from the
Cardy-like one) in [136].



anomaly cancellation for the variables ∆̂ab ≡ 2
2τ−η{∆ab}τ . The gauge anomaly constraints on

the variable ∆̂ab imply the constraints∑
Φ∈Ga

{∆Φ}τ = 4τ − 2η , a = 1, . . . , 4 (5.93)

on the variables {∆ab}τ . It is straightforward to prove that, in general, in the toric case the
constraints (5.93) are implied by the superpotential constraints. Taking the Cardy-like limit, it
can be expanded as:

N2
c Seff(u⃗; τ,∆) = − πi

3τ2

4∑
a̸=b=1

[ Nc∑
ia,jb=1

B3

(
{uabiajb +∆ab}τ

))]

+
πi

τ

4∑
a̸=b=1

[ Nc∑
ia,jb=1

B2

(
{uabiajb +∆ab}τ

))]
+
πi

τ

4∑
a=1

Nc∑
ia ̸=ja=1

{uaiaja}τ (1− {uaiaja}τ )

−5πi

6

4∑
a̸=b=1

[ Nc∑
ia,jb=1

B1

(
{uabiajb +∆ab}τ

)]
+ πi

4∑
a=1

Nc∑
ia ̸=ja=1

{uaiaja}τ

+πiN2
c

4τ2 − 6τ − 2

3τ
+ 4πiNc + πi

2τ2 − 6τ + 2

3τ
− 4(Nc − 1) log τ

+

4∑
a=1

Nc∑
ia ̸=ja=1

log
(
1− e−

2πi
τ

(
1−{uaiaja

}τ
))(

1− e−
2πi
τ

{uaiaja
}τ
)
+O(...)

(5.94)

In order to apply the saddle point approach, we need to solve the saddle point equations
∂

∂uia
Seff(u⃗; τ,∆) = 0 at leading order, which for the theory at hand take the form

−πi
τ2

4∑
a̸=b

Nc∑
j=1

(
B2

(
{uabij +∆ab}τ

)
−B2

(
{uabNcj +∆ab}τ

))
= 0 , (5.95)

keeping a = 1, . . . , 4 and ia = 1, . . . , Nc fixed.
Here we consider only the solution that reproduces the BH entropy of the holographic dual
description. This solution has already been discussed in the literature [78, 106]. Other possible
solutions, subleading in the regime of charges that we focus on, have been discussed in [101,106].
The solution to (5.95) is given by

u⃗a =

{
u
(m)
ja

=
m

Nc
+ ūja ≡ m

Nc
+ vjaτ

∣∣∣ vja ∼ O(|τ |0) ,
Nc∑
ja=1

vja = 0

}
, (5.96)

with m = 0, . . . , Nc − 1 and a = 1, . . . , 4. We can now evaluate the effective action around its
saddle points by analyzing individually the three terms in (5.92): the first is due to the matter
fields, the second due to the gauge fields, and the last coming from the q-Pochhammer symbol.

Matter fields. The contribution to the index of the matter fields is given by the Bernoulli
polynomials in (5.17), plus a term proportional to τ , that is negligible in our expansion. The



Bernoulli polynomials can be simplified using the relations (5.84).
We notice that the terms proportional to 3B2({∆}τ )ū and 2B1({∆}τ )ū cancel, due to the SU(Nc)

constraint on the holonomies,
∑Nc

ia=1 ūia = 0 mod Z. The term proportional to 3B1({∆}τ )ū2
gives instead

− πi

τ2

4∑
a̸=b

Nc∑
i,j=1

B1({∆ab}τ )(ūabij )2 (5.97)

= −πi
τ2

4∑
a̸=b=1

Nc∑
ia,jb=1

B1({∆ab}τ )(ū2ia + ū2jb − 2ūia ūjb)

= −πi
τ2
Nc

4∑
a=1

Nc∑
ia=1

ū2ia

4∑
b ̸=a=1

(
{∆ab}τ + {∆ba}τ − 3η

)
= −πi

τ2
Nc

4∑
a=1

Nc∑
ia=1

ū2ia(2τ + η) = −πi
τ2
ηNc

4∑
a=1

Nc∑
ia=1

ū2ia +O(|τ |),

where we used both the SU constraint and the constraints from the superpotential. Finally, the
parts without holonomies give the contribution

− πi

τ2
N2
c

4∑
a̸=b

[
1

3
B3

(
{∆ab}τ

)
− τB2

(
{∆ab}τ +

5

6
τ2B1

(
{∆ab}τ

)]
+O(|τ |)

= N2
c

4∑
a̸=b

J(∆̂ab) +O(|τ |) , (5.98)

where J(∆̂Φ) was defined in (5.83).

Gauge fields & q-Pochhammer. The contribution of the gauge fields is

4∑
a=1

Nc∑
i ̸=j

log θ0
(
uaij ; τ

)
(5.99)

=
4∑

a=1

Nc∑
i ̸=j

log
(
2 sin

πūaij
τ

)
− 2πiNc(Nc − 1)

3τ
+O(|τ |)

while the q-Pochhammer symbol gives the contribution

8(Nc − 1) log(q; q)∞ (5.100)

= −4(Nc − 1) log τ − 2πi(Nc − 1)

3τ
+ 2πi(Nc − 1) +O(|τ |) .



Effective action & index. Therefore, the Cardy-like limit of the effective action evaluated at
the saddle points can be written as:

Seff(u⃗; τ,∆) = −πiη
τ2

Nc

4∑
a=1

Nc∑
ia=1

ū2ia +

4∑
a=1

Nc∑
i ̸=j

log
(
2 sin

πūaij
τ

)
(5.101)

+N2
c

4∑
a̸=b

J(∆̂ab)−
2πi(N2

c − 1)

3τ
+ 2πi(Nc − 1)− 4(Nc − 1) log τ ,

with J(∆̂Φ) defined in (5.83). The SCI is thus

I(τ,∆) =
|τ |→0

Nc−1∑
m=0

A
(Nc!)4

(5.102)

·
∫ 4∏

a=1

Nc∏
ia=1

duia e
−πiη

τ2
Nc

∑Nc
ia=1(ū

a
ia
)2+

∑Nc
i ̸=j log

(
2 sin

πūaij
τ

)
,

where the prefactor A is given by

A = e
N2

c

∑4
a̸=b J(∆̂ab)−

2πi(N2
c−1)

3τ
+2πi(Nc−1)−4(Nc−1) log τ

. (5.103)

The change of variables

ūj = −iλjτ ,
Nc∑
j=1

λj = 0 , (5.104)

modifies both the measure of the integral in (5.102) and the contribution in sin
πūaij
τ . In these new

variables, the index becomes:

I(τ,∆) =
|τ |→0

Nc e
−2πi(N2

c−1)τ4(Nc−1) (5.105)

· A
(Nc!)4

∫ 4∏
a=1

Nc∏
ia=1

dλia e
πiηNc

∑Nc
ja=1 λ

2
ja

+
∑Nc

j ̸=k log(2 sinh(πλajk)) .

Recall that the three-sphere partition function of 3d supersymmetric SU(Nc)κ Chern–Simons
theory is given by

ZCS
SU(Nc)κ

=
1

Nc!

∫ Nc∏
i=1

dλi e
−πiκ

∑Nc
j=1 λ

2
j+

∑Nc
j ̸=k log(2 sinh(πλjk)) , (5.106)

with the constraint
∑Nc

j=1 λj = 0. For κ = −ηNc we have

ZCS
SU(Nc)−ηNc

= e
5
12
iπη(N2

c−1)+ 1
2
iπ(Nc−1)Nc (5.107)

and thus
nG∏
a=1

ZCS
SU(Nc)−ηNc

= enG( 5
12
iπη(N2

c−1)+ 1
2
iπ(Nc−1)Nc) . (5.108)



Using (5.108), the index (5.105) can be rewritten as

log I(τ,∆) =
|τ |→0

log

(
NcA e−2πi(N2

c−1)τ4(Nc−1)eπi
N2
c−6Nc+5

3

)
. (5.109)

The Nc contribution is due to the saddle point degeneracy in (5.96), counted by m. By inspection
we see that (5.109) coincides with the result proposed in formula (5.80).

Non-toric phase

4

2

1

3

X14, X41

X24, X42 X34, X43

Φ1

Φ2 Φ3

Nc

Nc Nc

2Nc

Figure 5.2: Quiver for the non-toric phase of C3/Z2 × Z2. Observe that the fields Φ1,2,3 in the figure are
associated with bifundamental reducible representations.

The non-toric phase of C3/Z2×Z2 that we are considering (figure 5.2) is obtained by performing
Seiberg duality at node 4 of the original toric quiver (figure 5.1). The superpotential of the dual
theory is

W = X41Φ1X14 +X41Φ2X24 +X43Φ3X34

+X41X14[X42X24, X43X34] , (5.110)

where all the fields are in the bifundamental representation.
Seiberg duality implies also a mapping between the charges ∆Φ of the electric theory (the toric
phase discussed above) and the charges δΦ of the magnetic theory (the non-toric phase discussed



here). The explicit map is given by the following identifications:

δ1 = ∆14 +∆41 , δ2 = ∆24 +∆42 , δ3 = ∆34 +∆43 , (5.111)

δ14 = −∆41

2
+

∆42

2
+

∆43

2
, δ41 = −∆14

2
+

∆24

2
+

∆34

2
,

δ24 = +
∆41

2
− ∆42

2
+

∆43

2
, δ42 = +

∆14

2
− ∆24

2
+

∆34

2
,

δ34 = +
∆41

2
+

∆42

2
− ∆43

2
, δ43 = +

∆14

2
+

∆24

2
− ∆34

2
.

The constraints imposed by the superpotential and the anomalies on the charges ∆Φ automati-
cally imply the correct constraints in the dual theory on the charges δΦ. The SCI of the theory is
given by:

I(τ, δ) = (q; q)10Nc
∞

(Nc!)3(2Nc)!

∫ 3∏
a=1

Nc∏
ia=1

2Nc∏
r=1

dviadwr

3∏
a=1

(∏Nc
i,j=1 Γ̃

(
vaij + δa

)∏Nc
i ̸=j Γ̃

(
vaij
) )

·
∏3
a=1

∏Nc
ia=1

∏2Nc
r=1 Γ̃

(
via − wr + δa4

)
Γ̃
(
wr − via + δ4a

)∏2Nc
r ̸=s Γ̃

(
wrs
) , (5.112)

where vaij ≡ via − vja . Notice that the index ia = 1, . . . , Nc runs over the gauge groups with
rank Nc, while the index r = 1, . . . , 2Nc runs over the gauge group with rank 2Nc (see figure
5.1). Using the relation (5.7), the index can be expressed in terms of the effective action, which is
given by:

Seff(u⃗; τ, δ) =
3∑

a=1

Nc∑
ia=1

2Nc∑
r=1

(
log Γ̃

(
via − wr + δa4

)
+ log Γ̃

(
wr − via + δ4a

))

+
3∑

a=1

Nc∑
i ̸=j

log Γ̃
(
vaij + δa

)
+

3∑
a=1

Nc∑
i ̸=j

log θ0
(
vaij ; τ

)
+

2Nc∑
r ̸=s

log θ0
(
wrs; τ

)
+ 6(Nc − 1) log(q; q)∞ + 2(2Nc − 1) log(q; q)∞ . (5.113)

The constraints among the chemical potentials can be read off of the superpotential (5.110), with
the usual relation

∑
Φ∈W δ̂Φ = 2 that implies

∑
Φ∈W{δΦ}τ = 2τ − η. Equivalently, they can

be derived using the anomaly cancellation equation for the variables δ̂Φ. For example, for the
central node of the quiver we obtain:

2Nc +
1

2
Nc

3∑
I=1

(δ̂I4 + δ̂4I − 2) = 0 , (5.114)

and thus
3∑
I=1

(δ̂I4 + δ̂4I) = 2 ⇒
3∑
I=1

({δI4}τ + {δ4I}τ ) = 2τ − η . (5.115)

Similar relations hold for the other gauge nodes:

{δ41}τ + {δ1}τ + {δ14}τ = 2τ − η,

{δ42}τ + {δ2}τ + {δ24}τ = 2τ − η,

{δ43}τ + {δ3}τ + {δ34}τ = 2τ − η.

(5.116)



Given the effective action (5.113), the saddle point equations read:

−πi
τ2

[ 2Nc∑
r=1

(
B2

(
{via − wr + δa4}τ

)
−B2

(
{wr − via + δ4a}τ

)
−B2

(
{v(Nc)a − wr + δa4}τ

)
+B2

(
{wr − v(Nc)a + δ4a}τ

))
+

Nc∑
ja=1

(
B2

(
{vaij + δa}τ

)
−B2

(
{−vaij + δa}τ

)
−B2

(
{vaNcj + δa}τ

)
+B2

(
{−vaNcj + δa}τ

))]
= 0 , (5.117)

for a = 1, . . . , 3, ia = 1, . . . , Nc − 1, and

− πi

τ2

3∑
a=1

Nc∑
ia=1

(
−B2

(
{via − wr + δa4}τ

)
+B2

(
{wr − via + δ4a}τ

)
+B2

(
{via − w2Nc + δa4}τ

)
−B2

(
{w2Nc − via + δ4a}τ

))
= 0 , (5.118)

for r = 1, . . . , 2Nc − 1. The leading solutions to these equations are given by

v⃗a =

{
v
(m)
ja

=
m

Nc
+ v̄ja ≡ m

Nc
+ σjaτ

∣∣∣ σja ∼ O(|τ |0),
Nc∑
ja=1

σja = 0

}
, (5.119)

with a = 1, . . . , 3 and m = 0, . . . , Nc − 1, and

w⃗ =

{
w(m)
r =

m

Nc
+ w̄r ≡

m

Nc
+ σrτ

∣∣∣ σr ∼ O(|τ |0),
2Nc∑
r=1

σr = 0

}
, (5.120)

with m = 0, . . . , Nc − 1. In fact, in (5.120) we find w
(n)
r = n

2Nc
+ w̄r, with n = 2m, and thus we

can rewrite these solutions as w(m)
r = m

Nc
. As in the toric case, in order to evaluate the effective

action around these saddles, we can separate the contributions coming from matter fields, gauge
fields, and q-Pochhammer symbol.

Matter fields. The relevant contribution to the index of the matter fields is given by the
first three terms in (5.113). As in the toric case, the terms with a linear dependence from the
holonomies vanish due to the SU(Nc) constraint. The terms with a quadratic dependence from
the holonomies become

−πi
τ2

3∑
a=1

[ Nc∑
ia=1

2N∑
r=1

(
B1({δa4}τ )(v̄ia − w̄r)

2 +B1({δ4a}τ )(w̄r − v̄ia)
2
)

+

Nc∑
ia,ja=1

B1({δa}τ )(v̄ia − v̄ja)
2

]
, (5.121)



which is equal to

−2πiηNc

τ2

2Nc∑
r=1

w̄2
r −

πiηNc

τ2

3∑
a=1

Nc∑
ia=1

(v̄ia)
2 +O(|τ |) , (5.122)

where we have exploited the relations among the chemical potentials coming from the superpo-
tential and the SU(Nc) condition on the holonomies. The term without holonomies becomes:

−πiN
2
c

τ2

3∑
a=1

[
1

3

(
2B3

(
{δa4}τ

)
+ 2B3

(
{δ4a}τ

)
+B3

(
{δa}τ

))
(5.123)

+ τ
(
2B2

(
{δa4}τ

)
+ 2B2

(
{δ4a}τ

)
+B2

(
{δa}τ

))
+

5

6
τ2
(
2B2

(
{δa4}τ

)
+ 2B2

(
{δ4a}τ

)
+B2

(
{δa}τ

))]
+O(|τ |)

equal to

N2
c

3∑
a=1

(
2J(δ̂a4) + 2J(δ̂4a) + J(δ̂a)

)
+O(|τ |) , (5.124)

with the definition of J(∆̂Φ) given in (5.83).

Gauge fields & q-Pochhammer. The gauge fields contribute to the index as:

3∑
a=1

Nc∑
i ̸=j

log θ0
(
vaij ; τ

)
+

2Nc∑
r ̸=s

log θ0
(
wrs; τ

)
(5.125)

=
3∑

a=1

Nc∑
i ̸=j

log
(
2 sin

πv̄aij
τ

)
+

2Nc∑
r ̸=s

log
(
2 sin

πw̄rs
τ

)
− πi(7N2

c − 5Nc)

6τ
+O(|τ |) ,

while the contribution from the q-Pochhammer symbol is

10(Nc − 1) log(q; q)∞ = −(5Nc − 4) log τ − πi(5Nc − 4)

6τ
+
πi(5Nc − 4)

2
. (5.126)

Effective action & index. Therefore, the Cardy-like limit of the effective action evaluated at
the saddle points can be written as:

Seff(u⃗; τ, δ) = −πiηNc

τ2

3∑
a=1

Nc∑
ia=1

v̄2ia−
2πiηNc

τ2

2Nc∑
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w̄2
r +
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Nc∑
i ̸=j
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(
2 sin

πv̄aij
τ

)

+

2Nc∑
r ̸=s

log
(
2 sin

πw̄rs
τ

)
N2
c

3∑
a=1

(
2J(δ̂a4) + 2J(δ̂4a) + J(δ̂a)

)
− 7πiN2

c

6τ
+

5

2
πiNc + πi

(
2

3τ
− 2

)
− (5Nc − 4) log τ . (5.127)



We can write the SCI of the theory expanded in the Cardy like limit as

I(τ, δ) =
|τ |→0

Nc−1∑
m=0

A
(2Nc!)(Nc!)3

(5.128)

·
∫ 3∏

a=1

Nc∏
ia=1

dv̄ia e
−πiηNc

τ2

∑Nc
ia=1(v̄ia )

2+
∑Nc

i ̸=j log
(
2 sin

πv̄aij
τ

)

·
2Nc∏
r=1

dw̄r e
− 2πiηNc

τ2

∑2Nc
r=1 w̄

2
r+

∑2Nc
r ̸=s log

(
2 sin πw̄rs

τ

)
,

where
∑2Nc

r=0wr = 0 and
∑Nc

ia=0 via = 0 for a = 1, 2, 3. The prefactor A is given by

A = eN
2
c

∑3
a=1(2J(δ̂a4)+2J(δ̂4a)+J(δ̂a))+ 5

2
πiNc+πi( 2

3τ
−2)−(5Nc−4) log τ . (5.129)

Using the change of variables in (5.104) and the definition of the CS partition function in (5.106),
we obtain

log I(τ, δ) =
|τ |→0

log

[
Nc e

− 3πi
2

(N2
c−1)e−

πi
2
(4N2

c−1)τ5Nc−4A (5.130)

·
( 3∏
a=1

ZCS
SU(Nc)−ηNc

)
ZCS
SU(2Nc)−2ηNc

]
.

Performing the integral ZCS
SU(Nc)κ

as in (5.107) and using the duality map in (5.111) (generalizing
it to the hatted charges) we checked that the index in (5.130) coincides with the one computed in
(5.109). This is a non-trivial check of the validity of our calculation in the dual non-toric phase,
where the ranks of the gauge groups are not coincident.

5.5.2 Cone over dP4

In this section we study the Cardy-like limit of a fully non-toric quiver gauge theory, engineered
by a stack of D3-branes probing a cone over the dP4 singularity. In this case the theory has one
exact R-symmetry and four non-anomalous baryonic symmetries, while there are no other flavor
symmetries, reflecting the non-toricity of the model. The quiver is reported in figure 5.3 and the
superpotential is [125]:

W = a3,1x1,4x4,3 + c3,1x1,4x4,3 + a1,2a3,1x2,4x4,3 + a1,2c3,1x2,4x4,3

+ b1,2c3,1x2,4x4,3 + x2,4x3,2x4,3 + c3,1x1,5x5,3 − a3,1b1,2x2,5x5,3

− a1,2b3,1x2,5x5,3 − b1,2c3,1x2,5x5,3 + x2,5x3,2x5,3 −
1

2
a3,1x1,6x6,3

− 1

2
b3,1x1,6x6,3 −

1

2
c3,1x1,6x6,3 −

1

2
a1,2a3,1x2,6x6,3 −

1

2
a1,2b3,1x2,6x6,3

− 1

2
a1,2c3,1x2,6x6,3 + x2,6x3,2x6,3 −

1

2
b3,1x1,7x7,3 −

1

2
c3,1x1,7x7,3

− 1

2
a1,2b3,1x2,7x7,3 +

1

2
a1,2c3,1x2,7x7,3 + x2,7x3,2x7,3 . (5.131)
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Figure 5.3: Quiver for cone over dP4.

The table of non-anomalous global charges is reported in table 5.1. Let us call qi are the charges
under the four non-anomalous baryonic symmetries U(1)Bi appearing in the table. At the
superconformal fixed point the central charges are a = 27

20N
2
c − 21

16 and c = 27
20N

2
c − 7

8 .
We can now study the Cardy-like limit of the SCI, though in less detail w.r.t. the example in
section 5.5.1. Imposing the anomaly cancellation and superpotential constraints on the charges
∆̂Φ, we can read the charges {∆Φ}τ from (5.1):

{∆Φ}τ =
2τ − η

2

( 4∑
i=1

qiΦB̂i +RΦv̂R

)
, (5.132)

where the superpotential constraints imply v̂R = 1. (This is because the model does not have
any further flavor symmetry that can mix with the R-symmetry.)
We label the holonomies as uia where ia = 1, . . . , Nc for all a = 1, . . . , 7 but 3, and i3 = 1, . . . , 2Nc.
These holonomies are constrained as

∑Nc
ia=1 uia = 0 mod Z for all a’s but 3, and

∑2Nc
i3=1 ui3 = 0

mod Z. We then study the saddle point equations, finding the solutions

u⃗ =

{
u
(m)
ja

=
m

Nc
+ ūja ≡ m

Nc
+ vjaτ

∣∣∣ vja ∼ O(|τ |0) ,
Nc∑
ja=1

vja = 0

}
(5.133)

for all a’s but 3, and

u⃗ =

{
u
(m)
j3

=
m

Nc
+ ūj3 ≡ m

Nc
+ vj3τ

∣∣∣ vj3 ∼ O(|τ |0) ,
2Nc∑
j3=1

vj3 = 0

}
. (5.134)



U(1)R U(1)B1 U(1)B2 U(1)B3 U(1)B4

a1,2 4/5 0 0 0 4
b1,2 4/4 0 0 0 4
a3,1 3/5 0 0 0 −2
b3,1 3/5 0 0 0 −2
c3,1 3/5 0 0 0 −2
x3,2 7/5 0 0 0 2
x1,4 6/5 0 0 1 1
x1,5 6/5 0 1 −1 1
x1,6 6/5 1 −1 0 1
x1,7 6/5 −1 0 0 1
x2,4 2/5 0 0 1 −3
x2,5 2/5 0 1 −1 −3
x2,6 2/5 1 −1 0 −3
x2,7 2/5 −1 0 0 −3
x4,3 1/5 0 0 −1 1
x5,3 1/5 0 −1 1 1
x6,3 1/5 −1 1 0 1
x7,3 1/5 1 0 0 1

Table 5.1: Non anomalous global charges of dP4.

In both cases m = 0, . . . , Nc − 1.
We then expand the effective action up to finite order in τ . In order to compute the finite-order
terms we need to perform seven integrals, corresponding to the three-sphere partition function
of pure CS theory SU(2Nc)−2ηNc × SU(Nc)

6
−ηNc

. Evaluating these integrals we end up with the
expected result (5.80). The final result is

logIdP4(τ,B) (5.135)

=
|τ |→0

logNc +
iπ

5

(
B2η

2τ2
+

18B2 + 35

6τ
+
η(82B2 + 175)

12

)
where B2 ≡ N2

c (5(B̂
2
1 − B̂2B̂1 + B̂2

2 + B̂2
3 − B̂2B̂3 +10B̂2

4)− 2). Observe that the Nc contribution
to I is due to the degeneration of the solutions (5.134) of the saddle point equations.

5.5.3 Laufer’s theory

This model is a quiver gauge theory with product gauge group SU(Nc)× SU(2Nc) and matter
content

SU(2Nc) SU(Nc) U(1)R U(1)B
X Adj 1 1/2 0
Y Adj 1 3/4 0

a 2Nc Nc 1/2 1

b 2Nc Nc 1/2 −1

(5.136)

The superpotential is
W = X4 +X2Y +Xab+ (ab)2 . (5.137)



The central charges are a = 567
512N

2
c − 831

2048 and c = 567
512N

2
c − 671

2048 . It follows that TrR = O(1). For
this reason a weakly-coupled holographic dual is possible. The metric is anyway unknown and
a comparison with the gravitational result in this case is not possible at the moment. For an
expanded discussion about this theory see [128, 129].
The Cardy-like limit of the SCI in this case can be studied by solving the saddle point equations
for the holonomies ui1 (i1 = 1, . . . , Nc) for the SU(Nc) gauge factor, and ui2 (i1 = 1, . . . , 2Nc) for
the SU(2Nc) gauge factor, with the constraints

Nc∑
i1=1

ui1 =

2Nc∑
i2=1

ui2 = 0 mod Z . (5.138)

We find that the leading contribution in the region that we are interested in, which corresponds
to imposing the constraint ∑

Φ∈W
∆̂Φ = 2 , (5.139)

is given by

u⃗ =

{
u
(m)
ja

=
m

Nc
+ ūja ≡ m

Nc
+ vjaτ

∣∣∣ vja ∼ O(|τ |0) ,
aNc∑
ja=1

vja = 0

}
(5.140)

with a = 1, 2 and m = 0, . . . , Nc − 1. Imposing the constraints (5.139) and (5.88) on the charges
∆̂Φ we have {∆Φ}τ = 2τ−η

2 (qΦB̂ +RΦv̂R), or more explicitly:

{∆X}τ =
2τ − η

4
v̂R , {∆a}τ =

2τ − η

2

(
v̂R
2

+ B̂

)
,

{∆Y }τ =
3(2τ − η)

8
v̂R , {∆b}τ =

2τ − η

2

(
v̂R
2

− B̂

)
. (5.141)

where again the superpotential constraints imply v̂R = 1. Using these constraints we expand
the effective action up to finite order in τ .
In order to compute the finite-order terms we need to perform two integrals, corresponding to
the three-sphere partition function of pure CS theory SU(2Nc)−2ηNc × SU(Nc)−ηNc . Evaluating
these integrals we end up with

log ILaufer(τ,B) =
|τ |→0

1

128
iπ

(
4(32B̂2 − 21)ηN2

c + 13η

4τ2
+

36(32B̂2 − 21)N2
c + 277

6τ

+
4

3
Nc((288B̂

2 + 11)ηNc + 144)− η − 128

)
+ logNc , (5.142)

which matches with the expected result in (5.80). Once again, the logNc contribution is recovered
because of the degeneration of the solutions (5.140) to the saddle point equations.

We conclude this analysis with an observation about the solutions of the saddle point equations.
In this case the constraint v̂R = 1 allows for another solution of the type

u⃗ =

{
u
(ma)
ja

=
ma

aNc
+ ūja ≡ ma

aNc
+ vjaτ

∣∣∣ vja ∼ O(|τ |0) ,
aNc∑
ja=1

vja = 0

}
(5.143)



with 2m1 −m2 = ±Nc. This solution can be visualized on the unitary circle as follows. On
the SU(Nc) gauge group the solution corresponds to placing Nc holonomies at the same point
m1
Nc

with m1 = 0, . . . , Nc − 1, i.e. it is the same solution studied above. On the other hand each
value of m1 fixes m2 = 2m1 ± Nc, where the sign is chosen such that 0 < m2 < 2Nc − 1. We
have checked that the index expanded around this saddle is subleading with respect to the one
evaluated around (5.140).

5.6 N = 1 examples with TrR = O(Nc)

In this section we go beyond the set of theories studied so far: we analyze SCFTs with TrR =
O(Nc). For this reason they are not expected to have a weakly-coupled gravity dual and in this
sense we refer to their Cardy-like limit as a generalization of the one studied above, without any
reference to the dual rotating black hole.

5.6.1 SU(Nc) SQCD

The simplest SCFT that we study is SU(Nc) SQCD in the conformal window, with Nf pairs of
fundamental and antifundamental flavors denotedQ and Q̃ respectively, with 3

2Nf ≤ Nc ≤ 3Nf .
The effective action in this case is given by the formula

SSQCD
eff (u⃗; τ,∆) = Nf

Nc∑
i=1

(
log Γ̃(ui +∆Q) + log Γ̃(−ui +∆Q̃)

)
+
∑
i ̸=j

log θ0(uij ; τ) + 2Nc log(q; q)∞ . (5.144)

There are Nc − 1 saddle point equations,

B2({uj +∆Q}τ )−B2({uNc +∆Q}τ ) (5.145)
−B2({−uj +∆Q̃}τ ) +B2({−uNc +∆Q̃}τ ) = 0 ,

labeled by the index j = 1, . . . , Nc − 1. In order to solve these equations we impose only the
relation (5.88) on the charges ∆̂Q and ∆̂Q̃, obtaining

{∆Q}τ =
2τ − η

2

(
1− Nc

Nf
+
B̂

Nc

)
, (5.146)

{∆Q̃}τ =
2τ − η

2

(
1− Nc

Nf
− B̂

Nc

)
.

There are no further constraints to impose because the superpotential vanishes.
The leading solution of the saddle point equations (5.145) for the holonomies is ui = 0 for
i = 1, . . . , Nc. Indeed in this case we cannot package the holonomies on the unit circle as in the
cases discussed above. As expected it reflects into the fact that the fields are charged under the
ZNc center of the gauge group with charge 1. We then expand the effective action evaluated



around this saddle point up to finite order in τ , under the constraints (5.146) with η = ±1.

SSQCD
eff (u⃗; τ,∆) = −πiηNc

τ2

Nc∑
i=1

v̄2i +

Nc∑
i ̸=j

log

(
2 sin

(
πv̄ij
τ

))
+NfNc(J(∆̂Q) + 2J(∆̂Q̃))

−
iπ
(
τ2 + 1

)
N2
c

6τ
+

1

2
iπNc +

iπ
(
τ2 − 3τ + 1

)
6τ

− 2(Nc − 1) log τ . (5.147)

In order to compute the finite-order terms we need to perform the matrix integral corresponding
to the three-sphere partition function of pure 3d Chern–Simons theory SU(Nc)−ηNc . Evaluating
the integral we find

SSQCD
eff (u⃗; τ,∆) =

iπ

6

(
η(N2

f (N
2
c − 3B̂2)−N4

c )

2τ2N2
f

+
9B̂2N2

f − 2N2
cN

2
f + 3N4

c +N2
f

τN2
f

+ 18B̂2η −Nc

(
ηNc

(
1− 6N2

c

N2
f

)
+ 3

)
− 3

)
. (5.148)

Observe the absence of corrections of the form logNc to log ISQCD(τ,∆) in this case: this is
because we only have a single solution (the one with vanishing holonomies) to the saddle point
equations. Also in this case it is possible to check that the expression (5.148) matches with the
general one in (5.80) in terms of the central charges a and c evaluated on the charges ∆̂Q and ∆̂Q̃ .

We can study the Seiberg dual phase as well. The model is SU(Nf −Nc) gauge theory with Nf

pairs of dual fundamentals and anti-fundamentals denoted q and q̃ respectively, as well as N2
f

singlets M , identified with the QQ̃ mesons of the electric theory. There is also a superpotential
W =Mqq̃. Imposing the constraint from the superpotential and from the anomaly cancellation
on the charges ∆̂Φ we have

{∆q}τ =
2τ − η

2

(
Nf

Nc
+

B̂

Nf −Nc

)
,

{∆q̃}τ =
2τ − η

2

(
Nf

Nc
− B̂

Nf −Nc

)
, (5.149)

{∆M}τ = (2τ − η)

(
1−

Nf

Nc

)
.

Using these relations, that can be regarded as the duality map, it is straightforward to match the
magnetic index in the Cardy-like limit with the one obtained in the electric phase.

5.6.2 SU(Nc) adjoint SQCD and accidental symmetries

In this section we study another SCFT with TrR = O(N2
c ), namely adjoint SQCD with a power-

law superpotential for the adjoint field. The model consists of an N = 2 SU(Nc) gauge theory
with Nf pairs of fundamental Q and anti-fundamentals Q̃ chiral multiplets and an adjoint chiral
multiplet X . The superpotential is

W = TrXk+1 (5.150)



with k ∈ N and k < Nc. The constraints on the charges ∆̂Φ imply

{∆X}τ =
2τ − η

k + 1
,

{∆Q}τ =
2τ − η

2

(
1− 2Nc

(k + 1)Nf
+
B̂

Nc

)
, (5.151)

{∆Q̃}τ =
2τ − η

2

(
1− 2Nc

(k + 1)Nf
− B̂

Nc

)
.

As in the case of SQCD the saddle point equations are solved by ui = 0 for i = 1, . . . , Nc.
Performing the expansion of the effective action around this solution we obtain

S
SQCDadj

eff =
iπ

3(k + 1)3N2
f

(
η(N2

f ((2k
2 + k + 1)N2

c − 3B̂2(k + 1)2 + (1− k)k)− 4N4
c )

2τ2

+
N2
f (9B̂

2(k + 1)2 − (5k2 + k + 2)N2
c + 4k2 − k + 1) + 12N4

c

τ

−
η(N2

f (36B̂
2(k + 1)2 − (k(19k + 2) + 7)N2

c + 17k2 − 2k + 5) + 48N4
c )

2

)
. (5.152)

Again there is no logNc correction and it is possible to check that the expression (5.152) matches
with the general one in (5.80) in terms of the central charges a and c evaluated on the charges ∆̂Φ.

Also in this case we can study the Seiberg-dual theory, derived in [137]. This is a SU(kNf −Nc)
gauge theory with Nf pairs of fundamental q and anti-fundamental q̃ chiral multiplets, an
adjoint chiral multiplet Y and kN2

f singlets Mj ≡ QXjQ̃ with superpotential

W = TrY k+1 +
k−1∑
j=0

MjqY
k−1−j q̃ . (5.153)

In this case the constraints imposed on the charges ∆̂Φ by the anomaly cancellations and by the
superpotential translate into the following constraints on the {∆Φ}τ variables:

{∆Y }τ =
2τ − η

k + 1
,

{∆q}τ =
2τ − η

2

(
2Nc − (k − 1)Nf

(k + 1)Nf
− B̂

kNf −Nc

)
,

{∆q̃}τ =
2τ − η

2

(
2Nc − (k − 1)Nf

(k + 1)Nf
+

B̂

kNf −Nc

)
, (5.154)

{∆M}τ = (2τ − η)

((
1− 2Nc

(k + 1)Nf

)
+

j

k + 1

)
.

Using such constraints and the fact that the saddle point equations are solved only by ui = 0
for i = 1, . . . , kNf −Nc, we can match the dual magnetic index in the Cardy-like limit at finite



order in τ .

We conclude the analysis of this model by discussing the modification of the above formulae in
presence of accidental symmetries associated with gauge-invariant operators Oi in the chiral
ring that violate the unitarity bound, i.e. ROi <

2
3 in 4d. In this case one has to modify a and c

accordingly [138], by adding the contribution of a singlet and subtracting the contribution of the
operator that violates the bound. In terms of the charge ∆̂O, the variations ∆ underwent by the
central charges are:

∆a(∆̂O) = a

(
2

3

)
− a(∆̂O) , ∆c(∆̂O) = c

(
2

3

)
− c(∆̂O) . (5.155)

This translates into the modification of formula (5.80) by a term

4πi(η − 6τ + 12ητ2 + . . . )(3∆c(∆̂O)− 2∆a(∆̂O))

27τ2

+
8πi(2− 5ητ + . . . )(∆c(∆̂O))−∆a(∆̂O))

6τ
. (5.156)

We should now modify the calculation of the SCI, according to the discussion in [139], by adding
the contribution

∆Q(O; τ) =
iπ(3ητ2 + 4η − 6τ)

324τ2
−Q({∆O}τ ; τ) , (5.157)

with ∆̂O = 2
2τ−η{∆O}τ (and Q(u; τ) defined in (5.15)). It is straightforward to prove that (5.156)

and (5.157) coincide at leading order in τ for η = ±1.
These formulae can be applied to the case of adjoint SQCD, where the mesons Mj hit the bound
of unitarity if we vary the values of k, Nc and Nf . For example the meson M0 hits the bound
if Nf

Nc
< 6

k+1 . In such a case we must modify the central charges and the index as above in
order to correctly reproduce its behavior in the Cardy-like limit. On the field theory side the
presence of the meson hitting the unitarity bound corresponds to adding a superpotential
term TrN(M0 + QQ̃) in the electric theory, where N is a gauge singlet. The first term in this
superpotential is irrelevant and its coupling flows to zero in the IR while the second term
becomes exactly marginal at the fixed point. We are then left with a free singlet of R-charge 2

3
and an interacting one with R-charge 2−RQ −RQ̃. This procedure, that modifies the central
charge as in formula (5.155), clarifies also the behavior of the dual theory, where the coupling
M0qY

k−1q̃ becomes irrelevant and one is left with a free singlet M0. This analysis can be applied
to match the Cardy-like limit of the electric index with the one of the dual phase if the meson
M0 hits the unitarity bound. The discussion can then be generalized to other singlets, in this
case the other mesons Mj>0.

5.6.3 USp(2Nc) SQCD and Intriligator–Pouliot duality

We wish to conclude our analysis with the case of an N = 1 duality involving a real gauge group.
We focus on one of the simplest cases, i.e. the generalization of Seiberg duality to USp(2Nc)
SQCD, originally derived in [140].
In this case the USp(2Nc) electric SQCD has 2Nf fundamentals Q and vanishing superpotential



and it is dual to USp(2Ñc ≡ 2(Nf−Nc−2)) with 2Nf dual fundamentals q and an antisymmetric
meson M = Q ·Q with superpotential W =M · q · q, where · represents the symplectic product.
In this case we find that only the solution at vanishing holonomies is allowed in both the electric
and magnetic theory. The charges {∆Φ}τ are given by

{∆Q}τ =
2τ − η

2

Nf −Nc − 1

Nf
, (5.158)

{∆q}τ =
2τ − η

2
− {∆Q}τ ,

{∆M}τ = 2{∆Q}τ .

By performing the calculation we find that, both in the electric and magnetic theory, the effective
action is given by

S
USp(2Nc)
eff (u⃗; τ,∆) = − iπ

6N2
f

(
η(Nc + 1)Nc((Nc + 1)2 −N2

f )

τ2
(5.159)

−
Nc(6(Nc + 1)3 − (4Nc + 3)N2

f )

τ
+
ηNc(24(Nc + 1)3 − (14Nc + 9)N2

f )

2

)
,

and it can be checked that log IUSp(2Nc)(τ,∆) extracted from this action coincides with the
general result in (5.80).

5.7 N = 2 examples

5.7.1 The (A1, A2n−1) Argyres–Douglas N = 1 Lagrangians

In this section we study a family of N = 1 Lagrangian field theories that enhance in the IR to
the N = 2 (A1, A2n−1) AD fixed points. The models consist of an N = 1 SU(n) gauge theory
with a fundamental q, an anti-fundamental q̃, and an adjoint ϕ with superpotential

W =
n−2∑
i=0

αiTr qϕ
iq̃ +

n∑
j=2

βj Trϕ
j , (5.160)

whereαi and βj are gauge singlets. The table of charges is obtained by performing a-maximization
after imposing the constraints from the anomalies and from the superpotential:

U(1)R U(1)T U(1)B
q n+3

3(n+1)
2

3(n+1) 1

q̃ n+3
3(n+1)

2
3(n+1) −1

ϕ 2
3(n+1)

2
3(n+1) 0

αi
4n−2i
3(n+1)

4n−2i
3(n+1) 0

βj 2− 2j
3(n+1) − 2j

3(n+1) 0

(5.161)

with U(1)T,B two flavor symmetries. The central charges are

a =
1

2
(n+ 1) +

1

2 (n+ 1)
− 29

24
, c =

1

2
(n+ 1) +

1

2 (n+ 1)
− 7

6
. (5.162)



The Cardy-like limit is studied in terms of charges that satisfy the following constraints

∆̂q =
n+ 3

3n+ 3
+

2T̂

3 (n+ 1)
+ B̂ ,

∆̂q̃ =
n+ 3

3n+ 3
+

2T̂

3 (n+ 1)
− B̂ ,

∆̂ϕ =
2

3 (n+ 1)
+

2T̂

3 (n+ 1)
, (5.163)

∆̂αi =
4n− 2i

3 (n+ 1)
+

2T̂ (2n− i)

3 (n+ 1)
,

∆̂βj = 2− 2j

3 (n+ 1)
− 2jT̂

3 (n+ 1)
.

The saddle point equations are solved by ui = 0, consistently with what has been found in [79].
Expanding the effective action around this vacuum and using the constraints (5.163) we obtain
the following result:

SAD
eff = − iπη

162τ2(n+ 1)3

[
T̂ 3(n(10− n(n+ 1)(7n− 3)) + 2)

−3T̂ 2(n+ 1)(n((n− 6)n+ 2) + 1)

−3T̂ (n(n((n− 6)n+ 6) + 6− 9B̂2(n+ 1)2) + 1)

+(n+ 1)2(n(3(9B̂2 − 4)n+ 2) + 2)
]

+
iπ

27τ(n+ 1)3

[
T̂ 3(n(10− n(n+ 1)(7n− 3)) + 2)

−3T̂ 2(n+ 1)(n((n− 6)n+ 2) + 1)

−3T̂ n((n− 1)2(3n+ 1)− 9B̂2(n+ 1)2)

+(n+ 1)2(n(3(9B̂2 − 4)n+ 5) + 5)
]

− iπη

54(n+ 1)3

[
4T̂ 3(n(10− n(n+ 1)(7n− 3)) + 2)

−12T̂ 2(n+ 1)(n((n− 6)n+ 2) + 1)

+3T̂ (n(36B̂2(n+ 1)2 + (19− 14n)n2 + n+ 1) + 1)

+(n+ 1)2(n(12(9B̂2 − 4)n+ 23) + 23)
]
, (5.164)

and the associated log IAD(τ,∆) coincides with what is expected from the general formula
(5.80).

5.7.2 An N = 2 orbi-orientifold and its dual black hole entropy

The last model that we study is an N = 2 SCFT with gauge group SU(Nc), plus a symmetric
and an antisymmetric hypermultiplet. This model has been studied in [141] (model A5 there)
and can be engineered by Nc D3-branes in the background of an O7 where a further orbifold



acts on the internal spacetime [142, Sec. 3.5].
In N = 1 language we have an adjoint chiralX , a symmetric chiral multiplet S with its conjugate
S̃, and an antisymmetric chiral multiplet A with its conjugate Ã. The N = 1 superpotential is

W = AXÃ+ SXS̃ . (5.165)

The table of charges is:

U(1)R SU(2)R U(1)ℓ U(1)ℓ̃
X 2 0 0 0
A 0 1 1 1

Ã 0 1 −1 −1
S 0 1 1 −1

S̃ 0 1 −1 1

(5.166)

where U(1)R and SU(2)R are the N = 2 R-symmetries (with generators TN=2 and J3 respec-
tively), and we have used the notation of [142] to identify the two non-R global symmetries. The
N = 1 U(1)R R-symmetry is given by TN=1 =

1
3TN=2 +

4
3J3. We refer the reader to [142] for a

more complete discussion of this model and for the holographic dual construction.
Let us make the following redefinitions: δ1 ≡ ∆A, δ2 ≡ ∆S , δ3 ≡ ∆

Ã
, δ4 ≡ ∆

S̃
. The SCI for this

model reads:

IN=2(τ,∆) =
(q; q)

2(Nc−1)
∞ Γ̃(∆X)

Nc−1

Nc!

∫ Nc∏
i=1

dui

∏2
a=1

∏Nc
i<j Γ̃(u

+
ij + δa)∏Nc

i ̸=j Γ̃(u
−
ij)

·
4∏
b=3

Nc∏
i<j

Γ̃(−u+ij + δb)

Nc∏
i=1

Γ̃(2ui + δ2)Γ̃(−2ui + δ4)

Nc∏
i ̸=j

Γ̃(u−ij +∆X) , (5.167)

where u±ij ≡ ui ± uj . Using the definition (5.6), we can write down the effective action at leading
order in |τ |:

SN=2
eff (u⃗; τ,∆) =− iπ

3τ2

(
2∑

a=1

Nc∑
i<j

B3({u+ij+δa}τ )+
4∑

a=3

Nc∑
i<j

B3({−u+ij+δa}τ )

+

Nc∑
i=1

B3({2ui+δ2}τ )+B3({−2ui+δ4}τ )+
Nc∑
i ̸=j

B3({u−ij+∆X}τ )

)
. (5.168)

We now compute ∂
∂uk

SN=2
eff = 0 for k = 1, . . . , Nc − 1 upon imposing the SU(Nc) constraint∑Nc

i=1 ui = 0 mod Z on the holonomies in (5.168). We obtain:

2∑
a=1

 Nc∑
i ̸=k

B2({u+ik + δa}τ )−
Nc−1∑
i=1

B2({u+iNc
+ δa}τ )


−

4∑
a=3

 Nc∑
i ̸=k

B2({−u+ik + δa}τ )−
Nc−1∑
i=1

B2({−u+iNc
+ δa}τ )





+ 2
(
B2({2uk + δ2}τ )−B2({−2uk + δ4}τ )

−B2({2uNc + δ2}τ ) +B2({−2uNc + δ4}τ )
)

+

Nc∑
i=1

(
B2({u−ki +∆X}τ )−B2({−u−ki +∆X}τ )

−B2({u−Nci
+∆X}τ ) +B2({−u−Nci

+∆X}τ )
)
= 0 . (5.169)

Given the fact that the holonomies live on a torus with modular parameter τ , i.e. ui ∼ ui + 1,
we immediately see that for even Nc we can solve the above equations identically by taking all
holonomies equal to ui = 0 or ui = 1

2 (indeed uNc = −
∑Nc−1

i=1 ui = 0 or 1
2(Nc − 1) = 1

2 mod 1
respectively); for odd Nc we only have the ui = 0 solution (with uNc = 0). These saddle points
are again consistent with the fact that in the odd case only the gauge group SU(Nc) is allowed
by the matter content (i.e. it is charged under the full ZNc center) while in the even case we
could also have SU(Nc)/Z2 gauge group (i.e. the matter is uncharged under a Z2 subgroup of
the center). We will see that this reflects into the log ΓZ correction in (5.80) specialized to the
current gauge group and matter content.
In order to study the Cardy-like limit of the SCI we impose the superpotential and anomaly
constraints on the charges ∆̂Φ.12 These translate into the following relations on the charges
{∆Φ}τ :

{∆Φ}τ =
2τ − η

2

(
R1∆̂1 +R2∆̂2 + qℓ∆̂ℓ + qℓ̃∆̂ℓ̃

)
, (5.170)

where ∆̂1,2,ℓ,ℓ̃ are the (hatted) chemical potentials of the symmetries in table (5.166), and R1,2,
qℓ,ℓ̃ the matter field charges under the latter. More explicitly:

{∆X}τ =
2τ − η

2
∆̂1 ,

{∆A}τ =
2τ − η

4
(∆̂2 + ∆̂ℓ + ∆̂ℓ̃) ,

{∆
Ã
}τ =

2τ − η

4
(∆̂2 − ∆̂ℓ − ∆̂ℓ̃) , (5.171)

{∆S}τ =
2τ − η

4
(∆̂2 + ∆̂ℓ − ∆̂ℓ̃) ,

{∆
S̃
}τ =

2τ − η

4
(∆̂2 − ∆̂ℓ + ∆̂ℓ̃) ,

where the superpotential and the anomaly cancellation impose the same constraint, namely
∆̂1 + ∆̂2 = 2. We thus find: We thus find:

SN=2
eff (u⃗; τ,∆) = − iπ(12ητ

2 − 6τ + η)

32τ2

(
∆̂1(∆̂

2
2 − ∆̂2

ℓ − ∆̂2
ℓ̃
)N2

c

− 2∆̂1∆̂ℓ∆̂ℓ̃Nc +
4

9
∆̂1(3∆̂1(∆̂2 + 1)− 8)

)
+
iπη(∆̂1 − ∆̂2 + 2)(1− 3τ2)

72τ2
+ log

3 + (−1)Nc

2
. (5.172)

12We also found other saddle point solutions to (5.169), which are however subleading in the BH region specified
by these constraints on the charges ∆̂Φ, and for this reason are not discussed here.



Again we find that log IN=2(τ,∆) in the Cardy-like limit is given by (5.80) where the logarithmic
correction is log 2 in the even Nc case and it vanishes in the odd Nc one.

We conclude by observing that formula (5.172) reproduces the universal result of [90] at leading
order in Nc for ∆̂ℓ = ∆̂ℓ̃ = 0 and up to finite order terms in σ = τ :

SN=2
eff (u⃗; τ,∆) = − iπN

2
c (12ητ

2 − 6τ + η)∆̂1∆̂
2
2

32τ2
+O(|τ |) . (5.173)

We can also compute the entropy of the dual Kerr–Newman black hole that is expected from the
holographic duality, by considering only the leading contribution in N2

c and distinguishing the
two fugacities τ and σ for the rotations:

SN=2
BH = 2π

√
Q2

2 −Q2
ℓ −Q2

ℓ̃
+ 2Q1(Q2 −Qℓ −Qℓ̃)−

a

4
(J1 + J2) , (5.174)

where a = 1
4N

2
c is the central charge of the 4d theory and the other quantities are the electric

charges Q1,2,ℓ,ℓ̃ and the angular momenta J1,2 of the dual black hole. By turning off Qℓ and Qℓ̃
this reduces to the result of [90], as expected.
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Chapter 6

Matter-coupled N = 2 gauged supergravity in d = 4, 5

In this chapter we present a review of the main features of supergravity theories with N = 2
supersymmetry in four and five dimensions, coupled to matter fields, in which some of the
global symmetries are gauged.
As well known, lower-dimensional supergravities arise in a natural way when supersymmetry
is made local. Nevertheless, part of the interest in these theories comes from the fact that
some of them can be obtained also from consistent truncations of ten- or eleven-dimensional
supergravities. Hence, they allow to study simpler models that can be eventually uplifted in
higher dimensions, leading to important applications even in the framework of the AdS/CFT
correspondence.

The simplest supergravity theory that one can consider has N = 1 supersymmetry and does
not contain matter. When N ≥ 2 we talk about extended supergravity in contrast with minimal
supergravity. In the rest of this work we will always consider N = 2. On the other hand,
when the supergravity theory contains also other multiplets besides the supergravity one is
called matter-coupled supergravity. When matter is not included the theory is often called pure
supergravity.
An important property on which we will expand later is that matter-coupled supergravity enjoys
a series of global symmetries closely connected to the scalar fields of the theory. Some of these
symmetries can be made local, or in other words can be gauged, enriching the structure of the
starting system. As we will see, many different gaugings are possible, giving rise to a plethora
of different theories, called gauged supergravities.

The main references we have followed for writing this chapter are the books [28, 38, 143] and the
papers [144–148], while the structure is largely inspired by [34, 35]. Further references are given
in each section.
The content is organized as follows. In section 6.1 we list the gravity and matter multiplets,
both in four and five dimensions, while in section 6.2 we describe the moduli spaces of the
two theories. In section 6.3 we present a short review on the isometries and their possible
gaugings, and finally in section 6.4 we write the Lagragians for both the theories and we report
the supersymmetry variations for the five-dimensional case.



6.1 Gravity and matter multiplets

As in any supersymmetric theory, the supergravity fields are organized in supermultiplets. Here
we restrict ourselves to supergravity theories with N = 2 supersymmetry coupled to nV vector
multiplets and nH hypermultiplets, in four and five dimensions. It is common to denote vector
multiplets and hypermultiplets collectively as matter multiplets.

6.1.1 d = 4 multiplets

The supermultiplets of the four-dimensional theory are the following.

• Supergravity multiplet:
{eaµ, ψiµ, Aµ} , (6.1)

containing the vierbein eaµ (the graviton), an SU(2)R-doublet of spin-3/2 fermions ψiµ (two
gravitinos) and a vector field Aµ (the graviphoton). The index µ = 0, . . . , 4 parametrizes
local spacetime, a = 0, . . . , 4 is the tangent space index and i = 1, 2 is the SU(2) index,
coming from U(2)R ∼= U(1)R × SU(2)R.

• Vector multiplets:
{Aαµ, λα i, zα} , (6.2)

where α = 1, . . . , nV labels the nV vector multiplets, each of them containing a vector field
Aαµ , an SU(2) doublet of Majorana spinors λα i (two gauginos) and a complex scalar zα.

• Hypermultiplets:
{qX , ζA} , (6.3)

where X = 1, . . . , 4nH and A = 1, . . . , 2nH . Each of the nH hypermultiplets contains four
scalars qX (hyperscalars) and two spin-1/2 fermions (two hyperinos). Notice that hyperinos
do not carry SU(2) indices.

It is convenient to group all the vector fields of the theory together as AΛ
µ = (A0

µ, A
x
µ), with

Λ = 0, 1, . . . , nV , where A0
µ denotes the graviphoton.

6.1.2 d = 5 multiplets

The supermultiplets of the five-dimensional theory are the following.

• Supergravity multiplet:
{eaµ, ψiµ, Aµ} , (6.4)

containing the fünfbein eaµ (the graviton), an SU(2)R-doublet of spin-3/2 fermions ψiµ (two
gravitinos) and a vector field Aµ (the graviphoton). The index µ = 0, . . . , 4 parametrizes
local spacetime, a = 0, . . . , 4 is the tangent space index and i = 1, 2 is the SU(2)R index.

• Vector multiplets:
{Axµ, λx i, ϕx} , (6.5)

where x = 1, . . . , nV labels the nV vector multiplets, each of them containing a vector field
Axµ, an SU(2)R-doublet of symplectic Majorana spinors λx i (two gauginos) and a real scalar
ϕx.



• Hypermultiplets:
{qX , ζA} , (6.6)

where X = 1, . . . , 4nH and A = 1, . . . , 2nH . Each of the nH hypermultiplets contains
four reals scalars qX (hyperscalars) and two spin-1/2 fermions (two hyperinos). Notice that
hyperinos do not carry SU(2) indices.

It is convenient to group all the vector fields of the theory together as AIµ = (A0
µ, A

x
µ), with

I = 0, 1, . . . , nV , where A0
µ denotes the graviphoton.

6.2 Moduli spaces

The matter multiplets parametrize a manifold M, called moduli space, which is given by the
direct product

M = S ⊗Q, (6.7)

where S and Q specify the manifolds parametrized by the scalars that belong to the vector
multiplets and to the hypermultiplets, respectively.
In particular:

• the manifold S is

– a special Kähler manifold in d = 4,

– a very special real manifold in d = 5,

• the manifold Q is a quaternionic-Kähler manifold, both in d = 4 and in d = 5.

In the following we give a short review of the main features of these spaces.

6.2.1 Special Kähler manifold

The complex scalar zα of the vector multiplets in d = 4 N = 2 gauged supergravity parametrize
a target space called special Kähler manifold [144, 149–154]. An nV -dimensional special Kähler
manifold is a Kähler–Hodge manifold M with holomorphic coordinates zα that satisfy the two
following properties:

• There exists a holomorphic Sp(2nV +2,R)-bundle H over M and a holomorphic section v(z)
of L ⊗H such that the Kähler potential is

K = − log (i⟨v, v̄⟩) . (6.8)

where ⟨V,W ⟩ = VΛW
Λ − V ΛWΛ is the symplectic-invariant antisymmetric form and L

denotes a line bundle (a holomorphic vector bundle of rank 1) over M such that its first
Chern class equals the cohomology class of the Kähler potential.

• The section v(z) satisfies
⟨v, ∂αv⟩ = 0 . (6.9)



Special Kähler manifolds are a class of Kähler manifolds and thus they are completely char-
acterized by a real function K called Kähler potential, that defines the metric of the manifold
as

Gαβ̄ = ∂α∂β̄K(z, z̄) . (6.10)

The line bundle L can be associated with the Kähler transformation

K → K + f(z) + f̄(z̄) , (6.11)

that can be thought as a U(1) gauge transformation with connection

Aµ = − i

2
(∂αK ∂µz

α − ∂ᾱK ∂µz̄
ᾱ) . (6.12)

An alternative definition of a special Kähler manifold can be obtained by constructing a flat
(2nV + 2)-dimensional symplectic bundle over the Kähler-Hodge manifold whose symplectic
sections

V =

(
LΛ

MΛ

)
, Λ = 0, . . . , nV , (6.13)

are covariantly holomorphic
DᾱV = 0 (6.14)

and obey the further constraints

i⟨V, V̄⟩ ≡ i
(
MΛL̄

Λ − LΛM̄Λ

)
= 1 (6.15)

and
⟨V, DαV⟩ = 0 . (6.16)

The operators used in equations (6.15) and (6.16) are the Kähler-covariant derivatives, defined
as

DαV ≡ ∂αV − 1

2

(
∂αK

)
V , DᾱV ≡ ∂ᾱV − 1

2

(
∂ᾱK

)
V . (6.17)

The above holomorphic sections v can be related to the symplectic sections V as

v = e−K/2V = e−K/2
(
LΛ

MΛ

)
≡
(
XΛ

FΛ

)
(6.18)

and thus from (6.8) we can rewrite the Kähler potential as

K = − log
[
i
(
X̄ΛFΛ −XΛF̄Λ

)]
. (6.19)

The upper and lower components of V are in principle independent. However, up to sym-
plectic transformations, there always exists a frame in which it is possible to express the lower
components as functions of the upper ones

FΛ = FΛ(X) (6.20)

and then the constraint (6.16) implies the integrability condition

∂FΣ

∂XΛ
− ∂FΛ

∂XΣ
= 0 . (6.21)



Therefore, the sections FΛ are the derivatives of a holomorphic homogeneous function F (X) of
degree 2 called prepotential, i.e.:

FΛ =
∂F (X)

∂XΛ
. (6.22)

In this frame the geometry is completely specified by the prepotential and the XΛ are called
homogeneous coordinates. The physical scalars can be expressed as

zα ≡ Xα

X0
, α = 1, . . . , nV , (6.23)

known as special coordinates.

The coupling between the scalars zα and the vector fields is determined by the period matrix N ,
defined via the relations

MΛ = NΛΣL
Σ, DᾱM̄Λ = NΛΣDᾱL̄

Σ. (6.24)

When a prepotential exists, the period matrix is obtained from

NΛΣ = F̄ΛΣ + 2i
(ImFΛΓ)X

Γ(ImFΣ∆)X
∆

XΨ(ImFΨΩ)XΩ
, (6.25)

where FΛΣ = ∂Λ∂ΣF .

6.2.2 Very special real manifold

The scalars ϕx of the vector multiplets in d = 5 N = 2 gauged supergravity parametrize a
moduli space that is a very special real manifold, as originally described in [155, 156]. We also refer
to [146, 157], besides the books we cited at the beginning of this chapter.
A very special real manifold S is an nV -dimensional hypersurface that can be defined introduc-
ing an (nV + 1)-dimensional embedding manifold spanned by the homogeneous coordinates
hI(ϕx), I = 0, . . . , nV ; the hypersurface is identified by the cubic polynomial

V(h) ≡
{
CIJKh

I(ϕ)hJ(ϕ)hK(ϕ) = 1
}
⊂ RnV +1, (6.26)

specified by the constant real totally symmetric tensor CIJK . Thus, the nV real scalars ϕx are
coordinates that live in a hypersurface that is embedded in an (nV +1)-dimensional Riemannian
space defined by the constraint (6.26). From the tensor CIJK and the sections hI(ϕx) it is possible
to derive all the quantities needed to describe the kinetic and interaction terms.
In fact, on the very special manifold we can introduce a metric gxy as the pull-back of the metric
aIJ on the ambient space,

gxy =
3

2
∂xh

I∂yh
JaIJ with aIJ = −1

3

∂

∂hI
∂

∂hJ
logV(h)

∣∣∣
V=1

. (6.27)

The coupling between scalars ϕx and vectors AIµ is realized through the metric aIJ , which can
be alternatively defined as

aIJ = −2CIJKh
K + 3hIhJ , (6.28)

where hI ≡ aIJh
J = CIJKh

JhK .



We also report the standard definition

hIx ≡ −
√

3

2
∂xh

I(ϕ) ⇒ hIx ≡ aIJh
J
x(ϕ) =

√
3

2
∂xhI(ϕ) (6.29)

and some useful relations

hIhI = 1 , hIxhI = hIxh
I = 0 ,

aIJ = hIhJ + hxIh
x
J . (6.30)

It is interesting noting that it is possible to dimensionally reduce a very special real manifold to
four dimensions, giving rise to a theory with special Kähler manifold. The map between these
two theories is called the r-map [157]. More specifically, the r-map leads to a subclass of special
Kähler manifolds, known as very special Kähler manifolds, in which the prepotential can be
expressed as a function of the totally symmetric tensor CIJK . We give an explicit realization of
the r-map in appendix B.

6.2.3 Quaternionic-Kähler manifold

The real scalars in the hypermultiplets span the quaternionic-Kähler manifold, common both to
four- and to five-dimensional theories. Good references are [144, 158] and again [28, 38].
A quaternionic-Kähler manifold Q can be defined as a 4nH -dimensional Riemannian manifold
with coordinates qX and metric gXY endowed with a locally defined triplet J⃗ Y

X of almost
complex structures satisfying the relations:

(Jr) Z
X (Js) Y

Z = −δrsδYX + ϵrst(J t) Y
X ,

(J (r)) Z
X (J (r)) W

Y gZW = gXY ,

∇̃Z J⃗
Y

X = ∇Z J⃗
Y

X + 2 ω⃗Z × J⃗ Y
X = 0 ,

(6.31)

where {r, s, t} = 1, 2, 3 are indices of the vectorial representation of SU(2)1. The first expression
in (6.31) is the defining relation of a quaternionic structure, thus making J⃗ Y

X an almost hyper-
complex structure. The second one implies that the metric gXY is Hermitian with respect to
each of the three complex structures (notice that there is no sum over r). Thus, for each of the
complex structures, we can define a Kähler two-form

K⃗ :=
1

2
J⃗XY dq

X ∧ dqY with J⃗XY := gY Z J⃗
Z

X . (6.33)

The triplet of Kähler forms is known as the hyper-Kähler two-form.
Finally, the last equation in (6.31) indicates that J⃗ is covariantly constant w.r.t. the connection
ω⃗ = ω⃗X(q)dq

X associated with an SU(2)-bundle defined over the quaternionic manifold. The

1In this work we use also the doublet notation instead of the vector (or triplet) one,

J Y j
X i ≡ i J⃗ Y

X · σ⃗ j
i , (6.32)

where σ⃗ j
i are the three Pauli matrices. Of course, this transition between triplet and doublet notation holds also for

other quantities in the adjoint representation of SU(2).



corresponding SU(2)-curvature R⃗ has to be proportional to the hyper-Kähler two-form as it
follows

R⃗ = dω⃗ + 2 ω⃗ ∧ ω⃗ =
1

2
νK⃗ with ν ≡ 1

4nH(nH + 2)
R, (6.34)

where R denotes the curvature scalar of the manifold.

From the above structure it follows that the holonomy of the Levi-Civita connection of quaternionic-
Kähler spaces is SU(2) × USp(2nH). Thus, it is useful to split the tangent indices into a pair
of flat indices: one fundamental SU(2) index i = 1, 2 and one USp(2nH) index A = 1, . . . , 2nH .
Using these indices, one can find a vielbein one-form for this space

f iA = f iAX(q)dq
X (6.35)

such that
gXY = f iAX εij CABf

jB
Y , (6.36)

where εij = −εji and CAB = −CBA are the invariant symplectic metrics in USp(2) ∼ SU(2) and
USp(2nH). Other useful relations defining the inverse vielbein are given by

f iAXf
Y
iA = δYX , f iAXf

X
jB = δijδ

A
B . (6.37)

The vielbein f iA is covariantly constant with respect to the full connection

∇̃Y f
iA
X = ∂Y f

iA
X + f iBXω

A
Y B + f jAXω

i
Y j − ΓZXY f

iA
Z = 0, (6.38)

where ΓZXY is the Levi-Civita connection, ω j
Xi is the SU(2)-connection and ω B

XA is theUSp(2nH)-
connection. Finally, it is possible to express each almost complex structure in terms of the
vielbeins as

(Jr) Y
X = −i f iAXfYjA(σr)

j
i , (6.39)

from which follows
i J⃗ Y

X · σ⃗ j
i = 2f jAXf

Y
iA − δji δ

Y
X . (6.40)

6.3 Isometries and gauging

As we mentioned in the introduction of this chapter, the structure of N = 2 pure supergravities
that we have described so far can be modified by gauging some of the global symmetries of the
theories.

The ungauged supergravity theory determines the kinetic terms for the scalars, that define the
metric. The isometries of the metric are global symmetries for the theory.
Gauged supergravities can be obtained by gauging a subgroup of either these global symmetries
or the R-symmetry, as we will recap later in this section. We start by introducing the possible
isometries of the various target spaces and then we proceed with the gaugings.



6.3.1 Isometries

A useful tool to describe the isometries of the special and quaternionic-Kähler manifolds is given
by the so-called momentum map. The momentum map is a geometric construction that can be
used on any manifold with a symplectic structure, such as Kähler manifolds.
Let us consider a Kähler manifold MK with metric gij∗ . If gij∗ has a non trivial group G of
continuous isometries generated by the Killing vectors kiΛ, Λ = 1, . . . ,dimG, then G is a group
of global spacetime symmetries for the kinetic Lagrangian Lkin, i.e. Lkin under the infinitesimal
variation

zi → zi + δzi ≡ zi + ϵΛkiΛ(z), (6.41)

where ϵΛ are constant infinitesimal parameters. The Killing vectors generate the Lie algebra
associated with symmetry group G:

[kΛ, kΣ] = f Γ
ΛΣ kΓ , (6.42)

where f Γ
ΛΣ are the structure constants of the algebra.

If all the scalar fields appear only through the metric, the curvature, the period matrix and the
Christoffel symbol in the covariant derivative, then the isometry of gij∗ extends to a symmetry
of the whole Lagrangian.
The generic Killing equation

∇µkν +∇νkµ = 0 (6.43)

can be written using holomorphic indices as

∇ikj +∇jki = 0 , ∇i∗kj +∇jki∗ = 0 , (6.44)

with kj = gji∗k
i∗ .

The Killing vectors kiΛ are generators of infinitesimal holomorphic coordinate transformations
that leave the metric invariant. In a Kähler manifold, in the same way as the metric is the
derivative of the Kähler potential, the Killing vectors are the derivatives of suitable prepotentials,
called Killing prepotentials or momentum maps. In fact, if we consider holomorphic vectors, the
first equation in (6.44) is automatically satisfied, while the second equation can be written as

kiΛ = i gij
∗
∂j∗PΛ, P ∗

Λ = PΛ , (6.45)

where PΛ indicates the momentum map.

In order to preserve the Kähler structure, we have to require the Kähler potential to be invariant
under the action of a Killing vector, up to a Kähler transformation:

(kiΛ∂i + kı̄Λ∂ı̄)K = fΛ(z) + f̄Λ(z̄) . (6.46)

This provides an expression for the momentum maps as functions of the Killing vectors,

PΛ = (kiΛAi + kı̄ΛAı̄) +
i

2

[
fΛ(z)− f̄Λ(z̄)

]
, (6.47)

where A is the U(1) Kähler connection, from which we can see that the momentum maps are
defined up to a real constant.



Special Kähler manifold Since special Kähler manifolds form a subclass of Kähler manifolds,
all the properties presented in the previous part must hold also in this case. The additional
presence of a symplectic structure has to be taken into account as well. This requirement imposes
extra conditions on the Killing vectors and prepotentials. However, in this work we will not
gauge the isometries of the special Kähler target manifold and thus we will not go deeper into
this topic. We refer the interested reader to [28, 144] for a detailed analysis.

Quaternionic-Kähler manifold Here we move to the study of the target manifold generated by
the hypermultiplets, expanding the discussion presented in the general case of Kähler manifolds.
The symmetries in this sector of the theory must be isometries of the metric gXY that preserve the
quaternionic-Kähler structure and the hyper-Kähler structure Kr. The hyper-Kähler structure
has to be invariant under the variation

δϵq
X = ϵΛkXΛ (q) , (6.48)

where kXΛ are isometries of gXY only up to q-dependent SU(2) transformations characterized
by certain parameters λrΛ. These SU(2) parameters are related to the Killing vectors, the SU(2)-
connection ω⃗X and the triholomorphic momentum maps P⃗Λ through the equation

λrΛ ≡ kXΛ ω
r
X − P rΛ. (6.49)

The triholomorphic maps play the same role in the gauging of the symmetries of the quaternionic-
Kähler manifold that the holomorphic momentum maps do for the special Kähler manifold and
they perform the same geometrical roles. Furthermore, in both cases the Killing vectors can be
obtained as derivatives of the momentum maps, using (6.45) and

J⃗XY k
Y
Λ = ∇̃X P⃗Λ ≡ ∂X P⃗Λ + 2 ω⃗X × P⃗Λ , (6.50)

respectively.
Other useful relations between Killing vectors and prepotentials are given by

2nHνP⃗Λ = J⃗ Y
X ∇Y k

X
Λ , (6.51)

kXΛ K⃗XY k
Y
Σ = f Γ

ΛΣ P⃗Γ + νP⃗Λ × P⃗Σ , (6.52)

where f Γ
ΛΣ are the structure constants introduced in (6.42).

There is one last particular situation that we have to mention. Even in the absence of hypermul-
tiplets, and hence when there is no quaternionic-Kähler manifold, there are two possible cases
in which the momentum map P rΛ can still be defined:

• The gauge group contains an SU(2) and

P rΛ = e rΛξ , (6.53)

where ξ is an arbitrary constant and the e rΛ are constants satisfying

ϵrste sΛe
t
Σ = f Ω

ΛΣe
r
Ω (6.54)

and being non-zero for Λ corresponding to the SU(2) factor.



• The gauge group contains a U(1) factor and

e rΛ = erξΛ , (6.55)

where ξΛ is an arbitrary constant that is non-zero when Λ is the U(1) factor, while e rΛ is an
arbitrary su(2) vector.

In these cases the momentum maps are equivalent to a set of constant Fayet–Iliopoulos terms.

Very special manifold In this case the target manifold is real, and thus we cannot apply the
momentum map construction. As in the previous situations, the gauging procedure relies on
the set of Killing vectors kxI (ϕ) generating the isometries of the manifold. Preserving the very
special structure imposes constraints on the Killing vectors, on the same line as it happened in
the previous cases due to the presence of a complex structure. We do not expand further since
we will not deal with this gauging procedure and we refer again to [28] for more details.

6.3.2 Gauging of global symmetries

Once we have identified the global symmetries of the theories, we can proceed to present the
possible gaugings in four and five dimensions.
The gauging of matter-coupled N = 2 supergravity theories is obtained by identifying the gauge
group G as a subgroup, at most of dimension nV + 1 (corresponding to the number of gauge
fields), of the isometries of the space M. We refer to [28,144–146] for accurate discussions on the
topic.

Gauging of the 4d theory

We first focus on the four-dimensional theory. The global symmetry group G can be split as a
direct product as

G = Gbos × SU(2)R × U(1)R , (6.56)

where Gbos acts on the bosonic fields, while the R-symmetry group acts only on fermions. All
the symmetries in Gbos act on scalars and we can split the group as Gbos = Gv ×Gh depending
on which scalars the symmetries of the subgroup act on: we denote by Gv the symmetries acting
on the complex scalar fields, while we denote by Gh the ones acting the hyperscalars. However,
notice that the vector fields must transform under the adjoint representation of the symmetries
that we are going to gauge. Therefore, if we gauge a subgroup of the R-symmetry group or
symmetries of hypermultiplet sector, the same symmetries must be in the vector multiplet,
acting in the adjoint representation.

There are two main possibilities of gauging the bosonic group. On the one hand, if a non-abelian
subgroup Gna ⊂ Gv is gauged, Gna has to be also a subgroup of Gh, since as we mentioned
Gv and Gh are gauged by the same vectors. On the other hand, if an abelian subgroup of Gh,
is gauged, such for example U(1)nV +1, the isometries of Gv are not gauged. This latter is the
gauging we will focus on in the remainder of this work.

For what concerns the fermions, as we introduced above, the gauging of the R-symmetry can be
considered as a special case of the gauging of the isometries of the quaternionic-Kähler manifold



and it is referred to as Fayet–Iliopoulos gauging. It can be abelian or non-abelian, depending
whether we are gauging the U(1) ⊂ SU(2) or the SU(2) factor. In the latter case, a subgroup of
Gv with the same SU(2) factor must be gauged as well.

The gauging of the isometries requires the modification of some elements of the theory. First
of all, the standard derivatives and the vector field strengths must be replaced by their gauge
covariant versions. For the bosonic fields we have

Dµz
α = ∂µz

α + g AΛ
µk

α
Λ ,

Dµq
X = ∂µq

X + g AΛ
µk

X
Λ ,

FΛ
µν = 2∂[µA

Λ
ν] + g f Λ

ΣΩA
Σ
[µA

Ω
ν] . (6.57)

Furthermore, while it does not affect the supersymmetry variations for the bosonic fields, it
modifies the ones for the bosonic fields, since they now have to include fermion shifts. We report
these fermionic supersymmetry transformation rules in the next section. To make the action
invariant under the new supersymmetry variations, a scalar potential must be added, having
the form

V = −P rΛP rΣ
((

ImN
)−1|ΛΣ

+ 8 eKXΛX̄Σ
)
+ 4 eKgXY k

X
Λ k

Y
ΣX

ΛX̄Σ. (6.58)

Gauging of the 5d theory

The discussion on the gauging of the five-dimensional theory is very similar to the one in four
dimensions. The global symmetry group G can be decomposed in the same way, except for the
absence of the U(1)R factor.

The covariant derivatives of the scalars and vector field strengths are given by

Dµϕ
x = ∂µϕ

x + g AIµk
x
I ,

Dµq
X = ∂µq

X + g AIµk
X
I ,

F Iµν = 2∂[µA
I
ν] + g f I

JKA
J
[µA

K
ν] , (6.59)

while the scalar potential reads

V (ϕ, q) = P rI P
r
J

(
4hIhJ − 3gxy∂xh

I∂yh
J
)
− 3

4
gXY k

X
I k

Y
J h

IhJ . (6.60)

6.4 Bosonic four- and five-dimensional Lagrangians

We conclude this chapter by presenting the bosonic Lagrangians of N = 2 matter-coupled
gauged supergravity theories in four and five dimensions.



The four-dimensional theory

The bosonic part of the four-dimensional Lagrangian is given by

e−1L =
R

2
−Gαβ̄(z, z̄)∂µz

α∂µzβ̄ − 1

2
gXY (q)Dµq

XDµqY (6.61)

+
1

8
ImNΛΣF

Λ
µνF

Σµν − e−1

16
ReNΛΣ(z, z̄)F

Λ
µνF

Σ
ρσϵ

µνρσ − g2V (z, z̄, q) ,

where the covariant derivatives are written in (6.57).

The five-dimensional theory

The bosonic five-dimensional Lagrangian reads

e−1L =
1

2
R− 1

2
gxy(ϕ)Dµϕ

xDµϕy − 1

2
gXY (q)Dµq

XDµqY (6.62)

− 1

4
aIJ(ϕ)F

I
µνF

J µν +
e−1

12

√
2

3
CIJKϵ

µνρστF IµνF
J
ρσA

K
τ − g2V (ϕ, q),

where the covariant derivatives are reported in (6.59).

Finally, we report the N = 2 supersymmetry variations using the conventions of [148, 159, 160],
which we will use in the last chapter of the work. Given a N = 2 Killing spinor ϵi, the fermionic
variations have the following form

δψiµ =
[
Dµ+

i

4
√
6
hI(γ

νρ
µ −4δνµγ

ρ)F Iνρ
]
ϵi− i√

6
g γµh

I(PI)
ijϵj , (6.63)

δλx i =
(
− i

2
γµ∂µϕ

x +
1

4
γµνF Iµνh

x
I

)
ϵi − g P x ijϵj , (6.64)

δζA =
i

2
γµDµq

Xf iAX ϵi −
√
6 g

4
hI kXI f

iA
X ϵi, (6.65)

where we have introduced the supercovariant derivative

Dµϵ
i = ∂µϵ

i +
1

4
ωabµ γabϵ

i − ∂µq
XωijXϵj − gAIµP

ij
I ϵj , (6.66)

acting on the supersymmetry parameter ϵi.



Chapter 7

Kerr–Newman black holes from Leigh–Strassler

To show an example of one of the many applications of the AdS/CFT correspondence, in this
chapter we compute the entropy of the (putative) black hole solution of the supergravity theory
dual to the SCFT that we have presented in section 5.3. Whilst in the latter we performed the
computation from a field theory analysis, starting from the superconformal index, here we
arrive to the same result through a computation in supergravity, based on the so-called attractor
mechanism.
Due to the attractor mechanism [17], the entropy of an extremal four-dimensional black hole
and the values of the scalar fields at the event horizon depend only on its electric and magnetic
charges, and not on the asymptotic values of the scalars. The scalars on the horizon are con-
strained by supersymmetry and they can be obtained as the values that extremize an effective
potential. The black hole entropy is given by the value of this potential at its extremum. The
attractor mechanism has been extended over the years to different classes of black holes in
various dimensions. However a formulation for rotating black holes in five-dimensional gauged
supergravity is still absent.

Attractor mechanisms in supergravity are related through the AdS/CFT correspondence to
extremization problems in the dual superconformal field theories. Many explicit cases have
been worked out in the recent past.
An early attempt was provided in [161] where it was shown that the maximization of the
conformal anomaly a4d [162] corresponded to the minimization of the scalar potential in the
AdS5 supergravity dual. In this case the R-charges were related to the scalar fields in the vector
multiplets, and the role of the hypermultiplets was discussed as well (see [163] for an explicit
example). In a related paper [164] it was shown that a similar relation holds between the attractor
mechanism and the coefficient of the two-point function for the R-current τRR (see [165] for an
explicit derivation of τRR-minimization).
The latter result is interesting because it can be extended to other dimensions. For example
the extremization of τRR in 2d, corresponding to the central charge, led to the principle of
c-extremization [21]. The supergravity dual mechanism was discussed in [20, 166–169]. It has
been shown that c-extremization can be reformulated in terms of an attractor mechanism in
AdS3. Furthermore in three dimensions τRR coincides with the free energy on S3 for holographic
theories [170], and this allows to relate the attractor mechanism to localization [171, 172] (see
also [173] for a discussion on τRR minimization in AdS4 gauged supergravity).
By generalizing this idea in [174–176] it was shown that the extremization of the topologically
twisted index [94] can be associated at large N to the entropy of AdS4 BPS black holes. This



mechanism has been then generalized to other dimensions and associated with the attractor
mechanism [81, 177–185].

A more recent extremization problem on the field theory side regards the extremization of
the entropy function and its relation with the entropy of 5d rotating black holes. It has been
shown in [13] that the Legendre transform of such function, for the case of N = 4 Super
Yang–Mills, gives rise to the entropy of the electrically charged rotating BPS black holes in
AdS5 × S5 [10, 14, 72–74]. On the gravitational side this quantity has been shown to originate
from the on-shell action of the Euclidean black hole [113], while on the field theory side the
entropy function has then been shown to originate from the superconformal index [11, 12].
However, the dual attractor mechanism for rotating five-dimensional black holes in gauged
supergravity is unknown and to obtain the gravitational function a more sophisticated con-
struction has been necessary [13], based on the general reduction of BPS attractors in gauged
supergravity performed in [186]. In this case, after fixing the two angular momenta to be equal,
it is possible to dimensionally reduce the five-dimensional solution down to four dimensions
along the U(1) Hopf fiber of the enhanced SU(2)×U(1) isometry of the black hole metric on the
squashed sphere. In this framework the dual extremization problem was formulated in terms of
the four-dimensional BPS black hole attractor mechanism [18].
More recently this result has been extended to the case of truncations with hypermultiplets, and
checked for the case of T 1,1 studied in [105] and of M5-branes in [90]. Observe that in these last
cases the results are obtained by conjecturing the existence of a BPS Kerr–Newman black hole,
that has nevertheless never been directly studied from a 5d analysis, differently from the case of
S5. By using this assumption on the existence of the five-dimensional black hole the final results
on its entropy, obtained from the AdS2 × S2 attractor, have been matched with the expectations
form the superconformal index.

From the discussion above a general framework emerges. With the current techniques, few
five-dimensional supersymmetric rotating black holes can and have been obtained, and all of
them require the absence of hypermultiplets. Only vector multiplets are allowed and the only
holographic dual example that fits in this class corresponds to N = 4 SYM. On the other hand,
the recent results obtained from the evaluation of the Bekenstein–Hawking entropy from the
dual field theory approach have enlarged the class of models for which a dual black hole is
expected. For example, for toric quiver gauge theories, the entropy function can be worked
out in full generality in terms of the 10d geometry of type IIB supergravity on AdS5× SE5. The
general expectation is then that there is a dual mechanism that reproduces the entropy function
from some consistent truncation and the case of T 1,1 discussed above is of this type. The results
following from the field theoretical analysis further predict the possibility of finding similar
black holes for truncations that do not correspond to SE5 manifolds.

Motivated by the above discussion, in this chapter we study the relation between the supercon-
formal index of the N = 4 theory with superpotential W = ϵijkΦiΦjΦk perturbed by the N = 1
Leigh–Strassler (LS) deformation, ∆W = mΦ2

3, and the entropy of the holographic dual BPS
Kerr–Newman rotating black hole.
We consider the truncation of [187] corresponding to a model with one vector multiplet and
one hypermultiplet, and a U(1)× U(1) gauging of the isometries of the scalar manifold. This



truncation is less rich that the one studied in [105], because only the R-symmetry current is
captured, but it has other interesting properties that require a detailed analysis. The first non
trivial aspect is that we have to apply a local rotation that aligns the Killing prepotentials. This
allows us to use the approach of [13, 105] in the framework of general matter coupled to N = 2
gauged supergravity. A second aspect is related to the different conventions in the original
truncations of [187] with respect to the ones used in [13,105]. This amounts to a slightly different
choice of the Kaluza–Klein (KK) ansatz in our case. Motivated by this difference, we perform a
general analysis of the KK ansatz.
In this setup we then reduce the 5d gauged supergravity to 4d and study the AdS2 attractor of
the conjectured black hole solution. This gives rise to an extremization problem that corresponds
to the one found in section 5.3 from the saddle point analysis of the superconformal index, once
restricted to the fugacities visible in the truncation of [187].

The chapter is based on [188] and it is organized as follows. In section 7.1 we review the basic
aspects of the 5d truncation dual to the LS fixed point discussed in [187]. In section 7.2 we
review the 5d/4d reduction along the lines of [13, 105] and we apply the construction to the
truncation of the LS fixed point. We further find the extremization problem that originates from
the AdS2 attractor. This problem is then matched with the field theory expectations in section
7.3. As anticipated we also give a detailed analysis of the KK ansatz used in the bulk of the
chapter in appendix B.

7.1 A consistent truncation dual to the LS fixed point

In this section we review the relevant aspects of the AdS5 gauged supergravity dual of the 4d
SCFT LS fixed point.
The flow to such an IR fixed point was first reproduced from the holographic perspective in [189]
within N = 8 supergravity. It was then shown that it could be obtained in N = 2 gauged super-
gravity in [187]. The starting point in the analysis of [187] is a model with one vector multiplet
and one hypermultiplet, and a U(1) × U(1) gauging of the isometries of the scalar manifold
M = SM×QM, where SM is a very special real manifold and QM is a quaternionic-Kähler
manifold. The UV and the IR fixed points are connected by an R-symmetric flow along the
quaternionic-Kähler manifold QM. The IR fixed point corresponds to the LS fixed point and it
is the starting point of our analysis.

In the following we briefly review the relevant aspects of such IR fixed point. We also discuss an
useful manipulation of the results of [187], corresponding to an USp(2) rotation1 of the Killing
prepotentials, that becomes relevant in the study of the 5d/4d reduction performed below.

1This Sp(1) is the one appearing in the USp(2nH)× USp(2) holonomy group of QM. It is often referred to as an
SU(2)R symmetry.



The model

The model considered in [187] to reproduce the FGPW flow consists of 5d N = 2 gauged
supergravity with one vector (nV = 1) and one hypermultiplet (nH = 1), and scalar manifold

M = O(1, 1)× SU(2, 1)

SU(2)× U(1)
. (7.1)

The scalar manifold of the very special geometry is specified by the totally symmetric tensor
CIJK as

SM =
{
V(h) ≡ CIJKh

IhJhK = 1
}
, (7.2)

where hI (I = 1, 2)2 are coordinates on R2 and hI(ϕ) represent the sections of the special
geometry. In this truncation we have

C122 = 3
√
3, (7.3)

and thus
V(h) = 9

√
3h1(h2)2. (7.4)

The quaternionic-Kähler manifold QM is parametrized by four real scalars qu = {V, σ, θ, τ},
with V > 0. The metric is given by

ds2 =
dV 2

2V 2
+

1

2V 2

(
dσ − 2τ dθ + 2θ dτ

)2
+

2

V
(dθ2 + dτ2). (7.5)

The gauging

The Killing vectors are given by a linear combination of the generators of the SU(2) and U(1)
subgroups of the SU(2, 1) isometry group of the metric (7.5), denoted as T3 and T8 in [187]. The
U(1)× U(1) gauging corresponds to consider the two Killing vectors

K1 =
3√
2

(
T3 +

√
3T8

)
, K2 =

√
3
(√

3T3 − T8

)
, (7.6)

where

T3 =
1

4
(k1 + k6 − 3k4), T8 =

√
3

4
(k4 + k1 + k6) (7.7)

are the Abelian generators of SU(2) × U(1), constructed from the eight Killing vectors of the
SU(2, 1) isometry group of the metric (7.5). Explicitly, the relevant generators in (7.7) are

k⃗1 =


0
1
0
0

 , k⃗4 =


0
0
−τ
0

 , k⃗6 =


2V σ

σ2 − (V + θ2 + τ2)2

σθ − τ(V + θ2 + τ2)
στ + θ(V + θ2 + τ2)

 . (7.8)

The Killing prepotentials associated with (7.6) are given by

P⃗1 =


−3(−V θ+θ3+στ+θτ2)√

2V
3(V τ−θ2τ+θσ−τ3)√

2V

−3(1+V 2+σ2−6V (θ2+τ2)+(θ2+τ2)2)

4
√
2V

 , P⃗2 =


3θ√
V

3τ√
V

3(−V+θ2+τ2)
2V

 . (7.9)

2For reasons related to the 5d/4d analysis here we shift the index I = 0, . . . , 1 by one unit, i.e. I = 1, . . . , nV + 1.



The FGPW flow

By choosing the parametrization

σ = 0, V = 1− θ2 − τ2 ≡ 1− ζ2 ≡ 1− tanh2 χ (7.10)

with 0 < V ≤ 1, −1 < ζ < 1 and −∞ < χ < ∞ one can reproduce the FGPW flow from
the truncation discussed so far. The fields θ and τ can be parameterized as θ = ζ cosϕ and
τ = ζ sinϕ.
The UV vacuum corresponds, without loss of generality, to

σ = ζ2 = 0, V = 1, ρ = 1, (7.11)

where ρ is the vector modulus. This is the starting point of the flow, holographically dual to
N = 4 SYM. In this UV fixed point the U(1) symmetry gauged by the graviphoton is generated
by the Killing vector 1√

3
(K1+K2). The other massless vector gauges theU(1) isometry associated

with 1√
3
(K1 −K2). The first U(1) is associated with the U(1)R ⊂ SU(4)R R-symmetry group of

N = 4 assigning charges R = 2
3 to the three chiral adjoints in the field theory dual. The other

U(1) corresponds to one of the two Abelian flavor symmetries in the Cartan of SU(4)R.
The IR vacuum corresponds, without loss of generality, to

σ = 0, ζ2 =
1

4
, V =

3

4
, ρ = 21/6. (7.12)

The flat direction associated with ϕ is a marginal deformation from the SCFT dual. In this IR
fixed point the U(1) symmetry gauged by the graviphoton is generated by the Killing vector
22/3√

6
(
√
2K1 +K2). The other vector in this case is massive, and the broken isometry associated is

generated by 22/3√
6
( 1√

2
K2 − 2K1).

Summarizing, the spectrum of vector fields and Killing vectors they couple to, around IR fixed
point, is given by

ARµ ≡ 21/3√
6

(
A1
µ√
2
+ 2A2

µ

)
: m2 = 0, KR =

22/3√
6

(√
2K1 +K2

)
, (7.13)

AWµ ≡ 21/3√
6

(√
2A2

µ −A1
µ

)
: m2 = 6 · 24/3g2, KW =

22/3√
6

(
K2√
2
− 2K1

)
.

The vector AWµ acquires a mass eating the Stückelberg scalar χ. The mass eigenstates are

BIJAJµ, where B =
21/3√

6

(
1√
2

2

−1
√
2

)
(7.14)

is the matrix that diagonalizes them.



Rotating the Killing prepotentials

The Killing prepotentials P rI in (7.9) are aligned along r = 3 at the UV vacuum, while they
are misaligned in the IR. In order to simplify the analysis below here we consider an USp(2)
rotation of these Killing prepotentials such that they are aligned around the IR fixed point.
Following [190], the SU(2) matrix

U(ζ, ϕ) = exp

(
− i

2
σ1f(ζ)

)
· exp

(
− i

2
σ3g(ϕ)

)
,

with f(ζ) = arctan

(
2ζ
√
1− ζ2

2ζ2 − 1

)
, g(ϕ) = −ϕ+

π

2
,

(7.15)

rotates the moment maps (7.9) into a form such that the prepotentials become

P⃗1 =

 − 3√
2
σ sinhχ

3
2
√
2
σ2 sinhχ

3
4
√
2

(
σ2 + 2

) (
2− cosh2 χ

)
 , P⃗2 =

 0
0

3
2 cosh

2 χ

 (7.16)

where we used (7.10) and parameterized θ = tanhχ cosϕ and τ = tanhχ sinϕ.
The absence of a ϕ dependence in the P⃗I signals the fact that there this field is related to a
marginal direction, both at the UV fixed point and at the IR one. Furthermore observe that
around the IR vacuum, where σ = 0 both P⃗1 and P⃗2 are in the form P rI = δ3rP

3
I . This last

observation is valid also if we keep the χ dependence explicit. As observed in similar AdS5 and
AdS4 context indeed the field χ can be interpreted as a Lagrange multiplier in the superpotential,
enforcing the constraints from the massive vectors on the special geometry. We will see its
explicit role also in our case studied in detail below.

7.2 5d/4d reduction and attractor mechanism

Here we briefly illustrate the procedure introduced in [13]. This amounts of studying a putative
5d black hole by relating the near horizon region through a Kaluza–Klein dimensional reduction
along the Hopf fiber of the S3 horizon. By considering the limit with equal angular momenta the
problem can be reformulated as the study of a 4d static black hole, and the entropy is obtained
through the attractor mechanism.
In the original construction of [13] only vector multiplets where considered. Afterwards hyper-
multiplets have been added to the analysis in [105].

The first step consists in reducing the 5d theory on a circle corresponding to the Hopf fiber of S3.
This can be achieved by employing the KK reduction ansatz [13, 105, 191, 192]

ds2(5) = e2ϕ̃ds2(4) + e−4ϕ̃(dy −A0
(4))

2,

hI = −
√

2

3
e2ϕ̃ Im zI (I = 1, . . . , nV + 1),

(7.17)

where y is the direction of the circular fiber and A0
(4) is the KK vector. Using the constraint on

SM in (7.2), the field ϕ̃ can be eliminated with e−6ϕ̃ = − 4
3
√
6
V(Im zI).



Notice that our ansatz differs from the one in [105] by a factor
√

2
3 in the reduction of the

coordinates hI . This is because the 5d Lagrangian of [187] we start with (see (6.62)) is written
with different conventions with respect to the ones used in [13, 105]. Such difference requires a
modification of the KK ansatz in order to produce a 4d Lagrangian suitable for the analysis of
the AdS2 attractor of [18]. The detailed computation is quite long and is very similar to the one
performed in [105]. For this reason we report it in appendix B.

The coordinate y is compactified on a circle of length 4π/g where g is the gauge coupling. In this
way the relation between the gravity coupling constants assumes the standard form

1

G
(4)
N

=
4π

gG
(5)
N

. (7.18)

In addition to the usual KK ansatz, a Scherk–Schwarz twist [193,194] for the gravitino in needed
in order to satisfy the BPS conditions in 4d, as noted in [13, 105]. Thus, to complete the ansatz,
we turn on flat gauge connections ξI along y:

AI(5) = AI(4) + Re zI(dy −A0
(4)) + ξIdy. (7.19)

This twist will bring the extra Killing vector in the 4d reduced theory.

Once the reduction is performed one is left with a 4d gauged supergravity with the following
salient features. The special Kähler manifold is specified by the prepotential

F (X) =
4

3
√
6
CIJK

X̌IX̌JX̌K

X0
with X̌I = XI + ξIX0 (7.20)

and the scalars fields are identified with the special coordinates zI = XI/X0. The quaternionic-
Kähler manifold QM remains the same as in 5d.
In the 4d theory there are three Killing vectors: two of them are inherited from the 5d theory,
while the additional one is given by

Ku
0 = ξIKu

I , (7.21)

which is gauged by the KK vector field A0
(4) in (7.19). Similarly, the third Killing prepotential of

the theory is given by P⃗0 = ξI P⃗I .
The 4d electric and magnetic charges are

p0 = 1, q0 = 4G
(4)
N g2J +

2

9
CIJKξ

IξJξK ,

pI = 0, qT = 4G
(4)
N g2QT +

1

3
CTJKξ

JξK ,

(7.22)

where the index T runs only over the massless vectors BT
JA

J
µ in (7.14). The corresponding

conserved charges are QT ≡ QJ(B−1)JT.
Electric and magnetic charges form a symplectic vector:

Q = (pΛ, qΛ), Λ = 0, 1, . . . , nV + 1. (7.23)



Other useful definitions are
P⃗ = (0, P⃗Λ), Q⃗ = ⟨P⃗,Q⟩, (7.24)

where ⟨V,W ⟩ = VΛW
Λ − V ΛWΛ is the symplectic-invariant antisymmetric form and the vector

are triplets.
Following [105], we impose the ansatz Q⃗ · Q⃗ = 1 and choose a gauge in which

Q1 = Q2 = 0 and Q3 = −1. (7.25)

Maxwell’s equations at the horizon give the condition

KXgXY ⟨KY ,Q⟩ = 0, (7.26)

where KX = (0,KX
Λ ) because we work in a purely electric duality frame.

To make the hyperino variation vanish we have to impose

⟨Ku,V⟩ = 0, (7.27)

where V(z, z̄) = eK/2(XΛ, FΛ) (see (6.13) and (6.18)) and FΛ = ∂F
∂XΛ .

The attractor equations for the near-horizon limit of 4d BPS static black hole solution are [18]

∂

∂zI

(
Z
L

)
= 0 with

Z
L

= 2ig2L2
S , Z = ⟨Q,V⟩, L = ⟨P3,V⟩. (7.28)

Notice that only P3 contributes to the superpotential L after an opportune SU(2) rotation is
performed on the prepotentials.
The attractor equations are equivalent to

∂Λ

[
e−K/2

(
Z(X)− 2ig2L2

SL(X)

)]
= 0, (7.29)

which is the key formula to reproduce the holographic dual extremization problem that allows
to extract the black hole entropy from the superconformal index.

7.2.1 5d/4d reduction for the LS fixed point

We now focus on the model reviewed in section 7.1. Rewriting the symplectic vector of electric
and magnetic charges as

Q⃗ = ⟨P⃗,Q⟩ = P⃗ΛQΛ − P⃗ΛQΛ = P⃗Λ p
Λ, (7.30)

from (7.25) we obtain the conditions

P 3
0 = P 3

Λ p
Λ = −1, P 1

0 = P 2
0 = 0, (7.31)

while Maxwell’s equations in (7.26) give

pΛKX
Λ = 0 ⇒ KX

0 = 0. (7.32)



Solving (7.31) and (7.32) (using the rotated prepotentials in (7.16)3) we obtain the following
conditions on the fields and the gauge connections:

σ = 0, V = 1− θ2 − τ2 = 1− tanh2 χ, ξ2 =
ξ1√
2
, ξ1 = − 1

3
√
2
. (7.33)

Finally, from the hyperino variation in (7.27), we have

⟨KX ,V⟩ = KX
Λ VΛ − LXΛVΛ = eK/2KX

Λ XΛ = 0 ⇒
√
2X2 −X1 = 0. (7.34)

that corresponds to the condition imposed on the sections XI appearing in the massive vector
AWµ in (7.13).
Using (7.3), the prepotential (7.20) of our 4d theory becomes

F (X) =
√
2
X̌1(X̌2)2

X0
, where X̌I = XI + ξIX0. (7.35)

Furthermore

e−K/2Z(X) = qΛX
Λ − F0 = q̂ΛX

Λ +
√
2
X1(X2)2

(X0)2
(7.36)

e−K/2L(X) = P 3
ΛX

Λ = −X0 +
3√
2
(2− cosh2 χ)X1 + 3 cosh2 χX2,

where

q̂I = qI −
1

3
CIJKξ

JξK ,

q̂0 = q0 −
2

9
CIJKξ

IξJξK
(7.37)

and in the last line we have introduced the new coordinate χ defined in (7.10). Thus, from (7.29)
we obtain the following set of equations:

∂Λ

[
√
2
X1(X2)2

(X0)2
+ q̂ΛX

Λ−2ig2L2
s

(
3
√
2X1−X0−3 cosh2 χ

(X1

√
2
−X2

)
−α
)]

=0, (7.38)

∂

∂L2
s

[
√
2
X1(X2)2

(X0)2
+ q̂ΛX

Λ − 2ig2L2
s

(
3
√
2X1 −X0 − 3 cosh2 χ

(X1

√
2
−X2

)
− α

)]
= 0.

In the first line we rewrote (7.29), adding the constant α that does not modify the equations,
while the second line fixes the gauge L = α.
The variation in (7.38) with respect to X2 gives the equation

2
√
2
X1X2

(X0)2
+ q̂2 − 6ig2L2

s cosh
2 χ = 0, (7.39)

3During the computation we are actually using P r
Λ → P̃ r

Λ = 2P r
Λ (see (B.46) and the related notes).



that determines χ and q2 in terms of the sections and of Ls.
We can now use the hyperino condition (7.34) to eliminate X2 from the equations in (7.38). The
remaining equations are equivalent to the conditions of extremization of the function

S = β

[√
2

2

(X1)3

(X0)2
+ q̂0X

0 −
√
3q̂RX

1 − 2ig2L2
s

(
3
√
2X1 −X0 − α

)]
(7.40)

w.r.t. the variables X0, X1 and Ls. Here β is a constant that will be useful later and q̂R is the
charge with respect to the massless vector AR in (7.14):

q̂R =
1√
6

(√
2q̂1 + q̂2

)
= 4g2G

(4)
N QR. (7.41)

Notice that we have divided by 22/3 the coefficients of KR, in order to have a proper normaliza-
tion of the AdS scale. In fact, the relation between L and the coupling constant g can be red from
the value of the scalar potential at the IR critical point V |IR = −6 · 24/3, from which

L =
1

22/3g
. (7.42)

S is an homogeneous function of degree 1 in XΛ, except for the term involving α. Therefore

S
∣∣
crit = 2iαβg2L2

s (7.43)

at the critical point and choosing
αβ =

π

2iG
(4)
N g2

, (7.44)

we obtain that S
∣∣
crit corresponds to the black hole entropy. Using (7.22) and (7.37), the extrem-

ization problem (7.40) becomes

S =
1

α

[
π

2ig2G
(4)
N

√
2

2

(X1)3

(X0)2
− 2πi

(
JX0 +

√
3QRX

1

)
− 2πiΛ

(
3
√
2X1 −X0 − α

)]
, (7.45)

where we have redefined the Lagrange multiplier L2
s = 2iG

(4)
N Λ.

7.3 Holographic matching

The last step consists in pointing out the AdS/CFT dictionary between the charges in gravity
and field theory and check the agreement between the results in subsection 7.2.1 and the ones in
section 5.3. First, the number of colors Nc of the gauge group in field theory is related to the
Newton constant G(5)

N . In fact

G
(5)
N =

L3Vol(Y5)
2π2N2

c

, with Vol(Y5) =
π3N2

c

4a
, (7.46)

where L is the AdS5 length scale. For the 4d SCFT LS fixed point

a =
27

128
N2
c . (7.47)



Using (7.42) and (7.47) we obtain

G
(5)
N =

4π

27g3N2
c

(7.48)

and, using (7.18), we can relate the Newton constant in 4d to Nc:

G
(4)
N =

1

27g2N2
c

. (7.49)

The angular momentum J on the gravity side corresponds to the one on the field theory side,
while the electric charge r is related to QR by

r =
QR
γ
. (7.50)

The coefficient γ can be inferred by comparing the ’t Hooft anomalies for global currents in the
boundary field theory with the Chern–Simons couplings for gauge fields in the bulk 5d gravity:

g3

24π2
Tr(QIQJQK) =

1

8πG
(5)
N

2

3
√
6
· 1
3
CIJK . (7.51)

Inserting CRRR = 6, we obtain γ =
√
6. Finally, after the change of coordinates X0 → 2αω and

X1 → 2
√
2

3 αXr, our entropy exactly matches the one obtained from the large Nc limit of the
superconformal index of the dual theory given in formula (5.73).

We conclude this section with an observation on formula (7.51). While here we are focusing on
a specific truncation, the relation between the 5d Chern–Simons and the 4d anomalies holds
true in general. For the SE5 case the CIJK Chern–Simons are constructed starting from the self
dual five form flux F5 and the three forms of the SE5 that appear by considering the fluctuations
of F5. Beyond the toric case, even if the interpretation of (7.51) remains the same, the details
of the truncation are necessary to give a 10d (or 11d) interpretation. Anyway, large classes of
5d rotating black holes have been constructed [74] (in absence of hypermultiplets) where the
coefficients CIJK parametrize a symmetric space. Here we stress that among the SE5 models
only the coefficients CIJK of S5 respect the condition of symmetric space.
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Chapter 8

Compactification on curved spaces

The compactification of superconformal field theories on curved spaces provides a way of
defining new interacting fixed points in lower dimensions. When such compactification pre-
serves some supersymmetry there is a high control on the lower-dimensional physics, because
some observables can be traced through anomaly inflow and/or localization. For example,
in the case of even-dimensional field theories compactified on complex manifolds one can
integrate the anomaly polynomial over the compact sub-space to obtain the anomalies of the
lower-dimensional field theory, as we will show later in this chapter. In other dimensions similar
results have been proven, with the help of supersymmetric localization. This provides a strong
tool to claim the existence of a lower-dimensional interacting fixed point.
In many cases the lower-dimensional complex manifold does not preserve any supersymmetry
and it is necessary to turn on opportune background fluxes to restore the cancellations of the spin
connection in the fermionic variations. This idea, generically referred to as (partial) topological
twist [195–197], allows for the analysis of large classes of models. Furthermore, the constructions
discussed above have an interesting dual counterpart in the AdS/CFT correspondence. The
original case was discussed in [19] for branes wrapped on Riemann surfaces. This mechanism,
denoted as flow across dimensions, was further studied in [20] and associated with the dual
c-extremization principle formulated in [21].
The parallel treatment of the topological twist and of the flow across dimensions has been
checked in many examples, and it provides a further check of the existence of the new supercon-
formal fixed point in the lower-dimensional theory.
Recently a new type of compactification has been considered [22]. The starting point consists of
considering the compact space as an orbifold, instead of a manifold. If this orbifold is a spindle
Σ, topologically a two sphere with deficit angles at the poles, it is possible to show that some
supersymmetry of the higher-dimensional theory is preserved in a new way, as we will see in
the second part of this chapter.

In the following we present the most salient aspects of compactifications of superconformal
field theories on curved spaces, both on manifolds and on spindles. In section 8.1 we review
the original construction by Maldacena and Nuñez, in which new classes of SCFTs are obtained
wrapping D3- and M5-branes on a Riemann surface of constant curvature. In section 8.2 we
introduce compactifications on spindles, focusing on the way supersymmetry is preserved
and describing the procedure that allows to extract the central charge and the superconformal
R-symmetry of the lower-dimensional SCFT from the higher-dimensional one.



8.1 Compactification on curved manifolds

New classes of superconformal field theories can be engineered in string theory and M-theory
by wrapping branes on a compact space Ω and taking the decoupling limit, i.e. flowing to the IR.
The first supergravity solutions corresponding to branes wrapping a Riemann surface Σg were
found in the seminal work of Maldacena and Nuñez [19], which we briefly recap in the following.

Let us consider a supersymmetric field theory in flat space having a Killing spinor ϵ such that
∂µϵ = 0. Typically, putting the theory on a curved manifold Ω breaks supersymmetry because
the Killing spinor equation is modified by the appearance of a spin connection ωµ thus becoming
(∂µ + ωµ)ϵ, which is in general non-zero. However, if the field theory has a global R-symmetry,
we can introduce an external gauge field that couples to the R-symmetry current such that it
“compensates” the presence of the spin connection, i.e. if we choose Aµ = ωµ then we recover
(∂µ + ωµ −Aµ)ϵ = ∂µϵ = 0. We thus obtain a constant Killing spinor and the resulting theory is
called a twisted theory, due to the coupling to the external field that effectively changes the spins
of the fields of the theory. This idea is usually referred to as topological twist.
The above mechanism is analogous to the one with which branes wrapped on non-trivial cycles
in compactifications of string theory or M-theory can preserve some supersymmetry. In these
latter cases, Ω is the worldvolume geometry of the cycle and the external field Aµ is the connec-
tion on the non-trivial bundle normal to the cycle. In order to preserve supersymmetry, the spin
connection must be equal to the gauge connection. If we then take the decoupling limit ℓs → 0
while keeping the volume of the cycle fixed, we get a field theory on the brane that is twisted,
due to the non-trivial embedding of the cycle in the ambient space.

More concretely, we can start from (d+ 2)-dimensional field theories living on Rd × Σg, where
Σg is a Riemann surface of genus g. At small energies in comparison with the inverse size of
Σg, these theories reduce to d-dimensional field theories and one can study the supergravity
solutions that describe the flow between them. In the cases considered in [19], they start from
SCFTs in d+ 2 dimensions that have the maximum amount of supersymmetry, which give rise
to d-dimensional theories preserving 1/2 or 1/4 of the original SUSY, depending on how the
Riemann surface is embedded in the higher-dimensional manifold. In fact, different embed-
dings correspond to different normal bundles, which affect the external gauge fields that can be
coupled to the R-symmetry current. Moreover, in the cases where the resulting d-dimensional
field theories in the IR are conformal, one can also find a dual AdSd+1 geometry and the mech-
anism can be viewed as a compactification of a (d + 3)-dimensional gauged supergravity on
AdSd+1 × Σg with magnetic fluxes on Σg. From the gravitational side, this is usually referred to
as flow across dimensions.

The examples presented in [19] regard N D3- and M5-branes wrapping Riemann surfaces Σg
with constant curvature and genus g, in the large-N limit. As we said, the field theories on the
branes are twisted theories [197], i.e. there is a coupling to an external SO(n) gauge field, where
n is the number of transverse directions to the branes. From the dual gravitational point of
view, this coupling corresponds to boundary conditions at the boundary of AdSd+1, for both
the metric and the SO(n) gauge fields. In these examples, only Riemann surfaces with constant
curvature are considered and the spin connection is embedded into the SO(n) connection.



In the first case, on the worldvolume of a stack of N D3-branes wrapped on R2 × Σg lives a
N = 4 Super Yang–Mills theory in 3+1 dimensions. There are different possible twisting of this
field theory, as considered in [198], that depend on the way in which the spin connection is
embedded in the SU(4) ∼= SO(6) R-symmetry group. Two embeddings are presented. Break-
ing SO(6) → SO(2) × SO(4), the first one corresponds to picking a U(1) ⊂ SO(2) factor in
SO(6). This twisting gives rise to a two-dimensional field theory with (4, 4) supersymmetry.
The second embedding consists in taking the gauge connection in U(1) ⊂ SU(2) ⊂ SO(4)
from the splitting of SO(6) considered above, which leads to an IR two-dimensional theory
preserving (2, 2) supersymmetry. The holographic dual of this mechanism is represented by a
supergravity solution interpolating between a compactification of Type IIB supergravity to AdS5
and a compactification of the same theory to AdS3 × Σg, with different asymptotic boundary
conditions reflecting the different couplings.
On the other hand, in the second case, if we consider N M5-branes wrapped on R4 × Σg and
we send ℓs → 0 while keeping the size of Riemann surface fixed, we obtain a six-dimensional
superconformal field theory on R×Σg with (0, 2) supersymmetry. Depending on the embedding
of the spin connection in the SO(5) R-symmetry group, this theory gives rise to new N = 2 or
N = 1 superconformal field theories in four dimensions, for g > 1, i.e. when the Riemann surface
has negative curvature. From the gravity side, this corresponds to a solution that interpolates
between AdS7 and AdS5 × Σg>1, both coming from compactifications of eleven-dimensional
supergravity.

The flows presented above are some examples of application of the topological twist. Recently,
it has been observed that one can extend the notion of the topological twist on manifolds
with orbifold singularities [22], such for example the spindles. The compactification of higher
dimensional theories on spindles will be the main topic of the remainder of this work.

8.2 Compactification on spindles

As we mentioned at the beginning of this chapter, when the compactification is performed on
a spindle, it is possible to show that some supersymmetry of the higher-dimensional theory
is preserved in an unusual way. The Killing spinors are indeed not constant on the spindle
and have definite chirality at the poles. It has been shown that there are two possible ways to
preserve supersymmetry by turning on background fluxes for the R-symmetry on the spindle.
These two ways have been denoted as the twist and the anti-twist [199].

More in detail, a spindle is a weighted projective space WCP1
[nN ,nS ]

with conical deficit angles at
the north and the south pole. The geometry is specified by the two co-prime integers nN and nS ,
associated with the deficit angles 2π

(
1− 1

nN,S

)
at the poles.

Several AdSd−2 × Σ supersymmetric solutions of gauged supergravity theories in various di-
mensions have been constructed, showing very non-trivial holographic matchings, and allowing
to conjecture the existence of vast new families of SCFTs [199–221]. In the following chapters we
will focus on solutions in d = 5, associated with D3- and M5-branes wrapping spindles.
As we mentioned above, superconformal field theories can be realized as fixed points of the
RG flows arising from compactifications of higher-dimensional field theories on curved spaces,



whose gravitational dual counterpart is given, under proper conditions, by a generalized flow
across dimensions in supergravity. Thus, the existence of both an AdS5 and an AdS3×Σ solution
to the same gravitational model suggests that one can compactify the four-dimensional super-
conformal field theory on the spindle, and the compactified theory flows to a two-dimensional
SCFT in the IR, with less supersymmetry.

More in detail, in the examples involving D3-branes, after uplifting the AdS3 × Σ solutions on
specific five-dimensional Sasaki–Einstein manifolds, one obtains AdS3 × Y7 solutions of Type
IIB supergravity that are completely smooth. The dual 2d SCFT has N = (0, 2) supersymmetry
and it comes from the compactification on Σ of a 4d N = 1 SCFT, which is dual to a specific
AdS5× SE5 solution of Type IIB supergravity.
On the other hand, in the examples involving M5-branes, after the uplift one obtains solutions
of d = 11 supergravity that are still singular. Nevertheless, strong evidence has been provided
[199, 203] that they holographically describe M5-branes wrapping spindles.

8.2.1 Twist and anti-twist

The twist and the anti-twist are determined by the R-symmetry flux through the spindle [199] :

1

2π

∫
Σ
FR = ± nN + nS

nNnS
twist , (8.1)

± nS − nN
nNnS

anti-twist . (8.2)

In the case of the twist the integrated R-symmetry flux on the spindle corresponds to the Euler
characteristic of the spindle. This is the reason for using the name twist for such a case, being
this property shared with the usual partial topological twist as well. Furthermore there is a
second possibility, denoted as the anti-twist, that does not have any counterpart in the standard
partial topological twist.

As we mentioned above, there are some crucial differences between how supersymmetry is
preserved in the usual topological twist for Riemann surfaces or in the twist/anti-twist for
spindles. The preserved Killing spinors in the latter cases depend on (some of) the coordinates
on the spindle, while in the first case they are constant on the Riemann surfaces. Indeed, in the
twist/anti-twist the spinors are sections of non-trivial bundles over the spindles, whereas in the
topological twist the spinors are sections of trivial bundles over the Riemann surface, and thus
constant.

8.2.2 Results from field theory

From the field theory side of the duality, the central charge and the superconformal R-symmetry
of the lower-dimensional theory can be extracted from the higher-dimensional one integrating
the anomaly polynomial.

In general, the anomaly polynomial of a 2n-dimensional theory is a formal (2n + 2)-form



characteristic class 1 constructed from a fiber bundle and the tangent bundle, that contains the
anomalies of the theory (see, for example, appendix A of [20] for a more exhaustive review).
In the cases of our interest the fiber bundle corresponds to the global symmetry group. More
explicitly, if S is the set of all chiral fields ψi of the theory, the total anomaly polynomial is
defined as [222]

I total
2n+2 =

∑
ψi∈S

c(ψi)

Pn+1 =
∑
ψi∈S

I
(i)
2n+2 , (8.3)

where c(ψi) are coefficient depending on the chiral field content of the theory and Pn+1 is
the characteristic class in the case where P is a gauge invariant polynomial of F and we are
considering

Pm(F ) = TrFm ≡ TrF ∧ · · · ∧ F︸ ︷︷ ︸
m times

. (8.4)

Furthermore, since Pm(F ) are closed 2m-forms, they must be locally exact, i.e. there must exist
suitable (2m− 1)-forms Q2m−1(A(i), F(i)), with F(i) =dA(i), such that

Pm(F ) = dQ2m−1(A(i), F(i)) locally on each Ui . (8.5)

Q2m−1(A,F ) is called the Chern–Simons (2m− 1)-form. Thus, characteristic classes and Chern–
Simons classes are related through descent equations.

To give a concrete example, in four-dimensional N = 1 SCFTs the anomaly polynomial, related
to the anomalous divergence of the R-current by the descent procedure, is given by [223]

I6 =
TrR3

6
c1(R4d)

3 − TrR

24
c1(R4d) p1(T4) , (8.6)

where TrR and TrR3 are the linear and cubic ’t Hooft anomalies of the superconformal R-
symmetry, respectively, c1(R4d) denotes the first Chern class of the 4d superconformal U(1)R
symmetry bundle and p1(T4) is the first Pontryagin class of the bundle tangent to the 4d space-
time manifold on which the theory is defined.

From a more physical point of view, the anomaly polynomial of a theory is a quantity that
describes how the phase of the partition function of the theory changes under gauge transforma-
tions of the background metric and/or gauge fields (see, e.g. [224]).
If the theory that we are considering comes from a dimensional reduction on a compactified
manifold Md of a D-dimensional theory for which the anomaly polynomial ID+2 is known, one
can compute the anomaly polynomial ID−d+2 of the resulting (D − d)-dimensional theory by
integrating ID+2 over Md.

Integration of the anomaly polynomial

Following [224], we start by reviewing the case in which we neglect the isometry of Md. We
will mention how the presence of the isometry group of Md modifies the current analysis at

1A characteristic class P is a local form on a compact manifold that is constructed from the curvature or field
strength F and such that its integral over the manifold is sensitive to non-trivial topology [222]. The latter property
follows from the fact that P is closed but not exact.



the end of this section. The lower-dimensional anomaly polynomial ID−d+2 is related to the
higher-dimensional one ID+2 by

ID−d+2 =

∫
Md

ID+2 . (8.7)

To see how this relation is derived, let XD be the spacetime on which the theory lives and let
YD+1 = XD × S1 . We introduce the background metric and the background gauge fields on
YD+1, such that YD+1 is obtained starting from XD × [0, 1] and gluing the two boundaries XD|0
and XD|1 by the aforementioned diffeomorphism and gauge transformation that modify the
phase of the partition function of the theory. Such phase is given by∫

YD+1

CSD+1, where dCSD+1 = ID+2 . (8.8)

Compactifying on Md means taking XD = XD−d ×Md , that implies YD+1 = YD−d+1 ×Md .
Thus: ∫

YD+1

CSD+1 =

∫
YD−d+1

CSD−d+1 , where CSD−d+1 =

∫
Md

CSD+1 . (8.9)

If we take a manifold ZD−d+2 such that ∂ZD−d+2 = YD−d+1 and set ZD+2 = ZD−d+2×Md, then
the relation (8.9) implies∫

ZD+2

ID+2 =

∫
ZD−d+2

ID−d+2 , which means ID−d+2 =

∫
Md

ID+2 . (8.10)

From this analysis we can observe that, in order to include the background gauge field for the
isometry group G of Md, we need to take ZD+2 to be a non-trivial Md bundle over ZD−d+2 with
a non-trivial G connection, i.e.:

Md ↪→ ZD+2 → ZD−d+2 . (8.11)



Chapter 9

T 1,1 truncation on the spindle

In the previous chapter we gave a flavor of how compactifications on spindles work. In order
to illustrate a more concrete example, in this chapter we present a supersymmetric AdS3 × Σ
solution asymptotic to the AdS5 N = 2 truncation of the conifold with a Betti vector multiplet
found in [225]; the model consists of gauged supergravity with two vector multiplets and two
hypermultiplets. The vector fields gauge a subgroup of the quaternionic manifold and one
gauge field becomes massive via Higgs mechanism. In the low energy spectrum there are then
two massless fields, the graviphoton and the Betti vector. One is associated with the R-symmetry
and the other one to the baryonic symmetry of the dual Klebanov-Witten field theory [54]. When
this model is compactified on the spindle many of the scalars in the hypermultiplet can be
further truncated. A crucial aspect of this compactification is that we need to include some of
the scalars from the hypermultiplet in the analysis.

The motivation beyond our choice is related to the fact that in the last few years compactifica-
tions on spindles have been studied in many setups, in various dimensions, showing very non
trivial holographic matchings, and allowing to conjecture the existence of vast new families of
SCFTs [199–221]. In four-dimensional SCFTs many predictions have been further made by the
field theory analysis corresponding to the integration of the anomaly polynomial. Many of these
predictions have been holographically checked, both from a 10 or 11d perspective, from the
analysis of consistent truncations in gauged supergravity. In this last case for example it has
been possible to check the behaviour of the universal twist and anti-twist and in general the
study of the U(1)3 STU gauged supergravity has allowed to match the expected result for the
case of N = 4 SYM. In this case the anti-twist was studied in [201, 202], while a general analysis
of all possible twists was given in [199].
Very recently a truncation with hypermultiplets has been considered as well. It corresponds
to the Leigh–Strassler N = 1∗ fixed point and it has been shown that also in this case the
expected dual results can be reproduced from the supergravity dual description. The case of the
topological twist in this case was studied from the supergravity perspective in [226]. One of the
most remarkable results of [227] was that the central charge of the theory compactified on the
spindle can be obtained without the knowledge of the full solution of the BPS equation. It has
been shown indeed that the correct central charge can be obtained by solving these equations
only at the poles of the spindle, i.e. by specifying the boundary conditions on the fields and the
conserved magnetic charges in terms of the data at the poles of the spindle. This analysis at the
poles is also a necessary step for constructing the numerical solution when the magnetic charge
for the flavor symmetry is turned on, because it fixes most of the boundary conditions when



solving the BPS equation.

Therefore, motivated by the results of [227], in this chapter we study another five-dimensional
N = 2 consistent truncation with two vector multiplets and two hypermultiplets originally
found in [159, 225]. This truncation is associated with the Klebanov Witten theory [54] and, due
to the Higgs mechanism triggered by a scalar in a hypermultiplet, one vector field becomes
massive. The two remaining massless vector fields are the graviphoton and the so called Betti
vector. This structure of massless vector fields allows non-trivial comparisons with the field the-
ory results in terms of the magnetic fluxes for the R-symmetry and the baryonic symmetry. The
role of baryonic symmetries in the case of the topological twist was then exploited in [168, 169].
Here we study the compactification of this model on the spindle, along the lines of the analysis
of [227]. We find that also in this case the central charge can be extracted simply from the pole
data and then we solve numerically the BPS equation in order to construct the full AdS3 solution.
As a consistency check we also show that our results are in agreement with the ones expected
from the dual field theory for the anti-twist class.

This chapter, based on [228], is organized as follows. In section 9.1 we review the 5d setup
corresponding to the 5d N = 2 Betti vector truncation found in [225] for the conifold. In
section 9.2 we study the BPS equations and the Maxwell equations for the AdS3 ansatz on the
spindle, turning on suitable magnetic fluxes for the gauge fields. Then in section 9.3 we solve
these equations at the poles of the spindle. This analysis fixes the boundary conditions for many
of the scalars and it imposes the necessary constraints on the fluxes. Then we show that these
solutions are enough to compute the central charge from the Brown–Henneaux formula. In
section 9.4 we provide a complete solution of the BPS equations. First we turn off the magnetic
charge for the baryonic symmetry reducing to minimal supergravity. In this case we recover the
analytic results of [200] for the universal anti-twist and we match it with the result obtained in
section 9.3 from the analysis of the BPS equations at the poles of the spindle. Then we provide
the numerical solution of the BPS equations in presence of non-vanishing baryonic magnetic
charge, again finding an agreement with the result obtained from the pole data. In section 9.5 we
then compare our findings with the calculation of the central charge for the conifold obtained
from the dual field theory analysis. In this case we match the result by turning off the magnetic
charges associated with the mesonic symmetries of the dual field theories, that are indeed
invisible in the 5d truncation considered here. Finally, in appendix C we discuss further details
of the quaternionic geometry of the specific 5d supergravity model we consider in this chapter.

9.1 The supergravity set-up

In this section we introduce the N = 2 supergravity set-up in five dimensions. We provide a
short summary on N = 2 consistent truncations of Type IIB supergravity on squashed Sasaki-
Einstein manifolds and we then focus on compactifications defined by the conifold as the internal
manifold. In this regards, we introduce the N = 2 5d gauged supergravity model associated to
this truncation and we study its scalar manifold with particular focus on the gauging. Finally
we discuss a further truncation of fields in 5d restricting to those moduli which capture the
physics of AdS3 × Σ backgrounds.



9.1.1 Type IIB on the conifold and N = 2 supergravity

We start with a (very) brief summary on N = 2 consistent truncations of Type IIB supergravity
over the (squashed) conifold

T 1,1 =
SU(2)× SU(2)

U(1)
. (9.1)

Such compactifications belong to a general class of consistent truncations on 5d squashed
Sasaki-Einstein manifolds, which have been extensively studied in the literature (see for in-
stance [159, 225, 229–235]). More specifically in [230, 231] reductions over squashed Sasaki-
Einstein manifolds to the N = 4 5d universal sector were constructed, then in [225, 234] this
class of truncations was extended to the non-trivial second cohomology forms on T 1,1. The
resulting lower-dimensional theory is a N = 4 5d gauged supergravity coupled to two vector
multiplets, coming from the universal sector, plus a third vector multiplet. The latter is called
the Betti multiplet and it is associated with left-invariant modes acting on the conifold.

The bosonic field content of this N = 4 supergravity includes the 5d gravitational field, the
graviphoton A0

µ, 8 vectors and 16 real scalar fields. We need now to impose a further trunca-
tion to select the N = 2 sector. As it was showed in [225], truncating to the N = 2 sector is
not trivial since it requires the truncation either of the N = 2 Betti-vector multiplet or of the
Betti-hypermultiplet. In this way one obtains two inequivalent theories.

We will focus on the N = 2 5d supergravity retaining in its spectrum the Betti vector .1 Such a
theory is described by the coupling to two vector multiplets and two hypermultiplets whose
scalar geometry is encoded in the following manifold [225],

M = SO(1, 1)2 × SO(4, 2)

SO(4)× SO(2)
. (9.2)

Let us thus explore with more detail the supergravity model defined by the scalar manifold (9.2).
To this aim we will follow the notation of [160]. The N = 2 matter multiplets include 10 scalar
fields and 3 vector fields

{u1, u2, u3, k, a, ϕ, bi, b̄i} with i = 1, 2 (9.3)

and AIµ with I = 0, 1, 2 .

Apart from the graviphoton A0
µ, the above fields are organized into two vector multiplets, de-

fined by the real scalars {u2, u3} and the two vectors Axµ with x = 1, 2, and two hypermultiplets,
parametrized by the scalars {u1, k, a, ϕ, bi, b̄i} where b1, b2 are written in complex notation.

We first analyze the vector multiplet sector. The two real scalars parametrize the very special
real manifold SO(1, 1)2. We can organize the moduli fields following the general analysis of
chapter 6,

ϕx = (u2, u3) and gxy =

(
4 0
0 12

)
, (9.4)

1The “twin” N = 2 theory is defined by truncating away the Betti-vector [225]. The matter content of this
theory is featured by one vector multiplets and three hypermultiplets. In this case the coset manifold is given by
M = SO(1, 1)× SO(4,3)

SO(4)×SO(3)
.



where gxy is metric on the manifold SO(1, 1)2. As explained in chapter 6, a very special real
manifold can be defined through the embedding relation CIJKh

IhJhK = 1, where hI(ϕ) are
homogeneous coordinates. For our model these are given by

h0 = e4u3 , h1 = e2u2−u3 , h2 = e−2u2−2u3 , (9.5)

while the symmetric tensor CIJK has a unique non-vanishing component given by C012 = 1/6.
Through the general relation written in (6.28) we can thus derive the metric aIJ on the embedding
manifold. Such quantity defines the coupling in the action of vector-scalars with gauge fields,

aIJ =

1
3e

−8u3 0 0
0 1

3e
−4u2+4u3 0

0 0 1
3e

4u2+4u3

 . (9.6)

Let us consider now the hypermultiplet sector. This is defined by the quaternionic manifold
SO(4,2)

SO(4)×SO(2) which is spanned by the fields {u1, k, a, ϕ, b1, b̄1, b2, b̄2}. We point out that the scalars
a and ϕ can be also written in complex notation as τ = a+ ie−ϕ, where the complex modulus τ
results directly from the reduction of the axio-dilaton of Type IIB supergravity. As discussed in
chapter 6, the scalars parametrizing a quaternionic manifold are organized in quadruples qX .
Following the notation of [159, 160] we can write for our model

qX = (u1, k, a, ϕ, b
1, b̄1, b2, b̄2) . (9.7)

Then the line element takes the following form

gXY dq
XdqY =− 2e−4u1Mij

(
bidb̄j + b̄idbj

)
− 4du21 −

1

4
dϕ2 − 1

4
e2ϕda2

− 1

4
e−8u1

[
dk + 2εij

(
bidb̄j + b̄idbj

)]2
, (9.8)

where

Mij = eϕ
(
a2 + e−2ϕ −a

−a 1

)
. (9.9)

We point out that the matrix Mij is covariant under SL(2,R) symmetry inherited from Type IIB
supergravity. This scalar geometry was already studied in [159, 160, 236]. We refer to appendix
C for the derivation of quaternionic structures J⃗ and the SU(2) spin connections ω⃗.

On the quaternionic manifold we have gauged symmetries defined by the following set of
abelian Killing vectors kI = kXI ∂X ,

k0 = −3ib1∂b1 − 3ib2∂b2 + 3ib̄1∂b̄1 + 3ib̄2∂b̄2 −Q∂k,

k1 = 2∂k,

k2 = 2∂k,

(9.10)

where Q is a constant. Given the Killing vectors on the quaternionic manifold we can also



introduce the associated Killing prepotentials P rI ,

P r0 =

3
2e

−2u1−ϕ
2

(
b1 − iaeϕ(b1 − b̄1) + ieϕ(b2 − b̄2) + b̄1

)
3
2e

−2u1−ϕ
2

(
ib1 + aeϕ(b1 + b̄1)− eϕ(b2 + b̄2)− ib̄1

)
−3

2 + e−4u1
(Q
4 − 3i(b1b̄2 − b2b̄1)

)
 ,

P r1 =

 0
0

−1
2e

−4u1

 , P r2 =

 0
0

−1
2e

−4u1

 .

(9.11)

The full bosonic Lagrangian of this model is given in [159, 160]. Specifically, the scalar potential
can be obtained by specifying the general expression (6.60) with the data on the scalar geometry
given in this section. We point out that the Killing vectors (9.10) satisfy abelian commutation
relations and generate the gauge group U(1)2 × R. After such a gauging the scalars turn out to
be charged under the subgroup U(1)× R through the gauge vectors A0

µ and QA0
µ − 2A1

µ − 2A2
µ

[159, 160].

9.1.2 The model

In this section we specify us to a further truncation of the 5d supergravity model introduced
in 9.1.1. Our aim is to retain the minimum set of fields needed to capture the oscillations of
Type IIB supergravity described by a warped product of an AdS3 factor with the spindle. In this
regards we may firstly truncate the fields

a = 0 and ϕ = 0 . (9.12)

This condition is equivalent to restrict to Type IIB systems with trivial axio-dilaton profile. Then
we can also impose that

b1 = b̄1 = b2 = b̄2 = 0 , (9.13)

which is equivalent to exclude those scalar fields associated with three-form fluxes in Type IIB,
namely 5-brane contributions. It follows that with this truncation we focus only on 3-brane
systems. Summarizing we look at those solutions featured only by the hyperscalar u1, the vector
multiplet-scalars u2, u3 and the three vectors AIµ. The remaining scalar k is a flat direction of the
potential.

Given the above truncation, the Killing vectors (9.10) boil down to k0 = −Q∂k, k1 = 2∂k, k2 =
2∂k. From this expression one can observe that the scalar k gets charged under the vector
QA0

µ − 2A1
µ − 2A2

µ, which in turns becomes massive. As far as the moment maps (9.11) are
concerned, only the r = 3 SU(2)-components survive, leading to

P ′3
0 = −3

2
+
Q

4
e−4u1 , P 3

1 = P 3
2 = −1

2
e−4u1 . (9.14)

For such supergravity model we can introduce a superpotential as it follows,

W =

√
2

3
hIP 3

I (9.15)

=

√
2

3

(
1

4
e−4u1−2u3

(
Qe6u3 − 4 cosh(2u2)

)
− 3

2
e4u3

)
.



The scalar potential can be thus derived by the general formula V = 2gΛΣ∂ΛW∂ΣW − 4
3 W

2 [159]
where Λ,Σ include vector multiplet and hypermultiplet fields. This truncation contains the
following AdS5 vacuum for u1,2,3,

u1 = −1

4
log

4

Q
, u2 = 0, u3 =

1

6
log

4

Q
(9.16)

with all the other scalars in the hypermultiplets have been set to zero.

9.2 AdS3 × Σ geometry and BPS equations

In this section we introduce the AdS3×Σ ansatz and we present the corresponding BPS equations
(for details on the derivation of BPS equations see appendix D). For the space Σ we will take
a compact spindle with conical singularities at the poles. Once presented the Ansatz and BPS
equations, we will also derive Maxwell equations for vector fields and study the corresponding
conserved charge. In what follows we will adapt to the case of the conifold the analysis presented
in [227] on AdS3 × Σ geometries dual to Leigh–Strassler SCFT compactified on a spindle.

9.2.1 The ansatz and Maxwell equations

Let’s start with the following AdS3 × Σ geometry [227]

ds2 = e2V (y)ds2AdS3 + f(y)2dy2 + h(y)2dz2 (9.17)

together with the gauge fields
A(I) = a(I)(y)dz , (9.18)

where ds2AdS3 is the metric of AdS3 with unit radius. We suppose that the scalars u1, u2, u3
are functions of y, while we take the hyperscalar k linear along the z-direction, i.e. k = kz.
This prescription, originally given in [227], follows from Maxwell equations which imply that
k = k(z). Then in order to reproduce a set of Maxwell equations which are ODE along the
y-direction (avoid terms as ∂zk) we need k to be linear.

The space Σ in (9.17) is a compact spindle, with azimuthal symmetry parameterized by ∂z ,
where the coordinate z is periodic with period ∆z = 2π. The coordinate y is compact, bounded
by yN and yS (with yN < yS), i.e. finite values at the north and the south pole of the spindle. The
general analysis of [199] allows to conclude that the function h(y) vanishes at the poles and a
crucial problem consists of finding the boundary conditions for the other fields at the poles of
the spindle. In the analysis below we will mostly work in the conformal gauge.2

2Observe that as discussed in [227] this choice differs from the one of [199]

f = eV (9.19)

As we will see below the boundary conditions for f will be fixed from the ones of V . These last will follow from the
pole analysis.



In order to study the Killing spinor equations and the equations of motion of the gauge fields, it
will be useful to work in the orthonormal frame

ea = eV ea, e3 = fdy, e4 = hdz, (9.20)

where ea is an orthonormal frame for AdS3. In this basis the field strengths takes the following
form

fhF
(I)
34 = ∂ya

(I). (9.21)

We can thus derive Maxwell equations specified to our Ansatz (9.17) and (9.18). We noticed
that imposing that the scalars u1, u2, u3 are functions of y and k = k̄z, Maxwell equations can be
easily integrated. Thus we can write them in the orthonormal frame as

1

3
e3V+4u3

(
e−4u2F

(1)
34 − e4u2F

(2)
34

)
= E1, (9.22)

1

3
e3V
(
e−8u3F

(0)
34 +

Q

4
e4u3

(
e−4u2F

(1)
34 + e4u2F

(2)
34

))
= E2, (9.23)

∂y

(1
3
e3V−4u2+4u3F

(0)
34

)
= −e3V−8u1fh−1gDzk, (9.24)

where E1 and E2 are constants of motion and we defined Dzk = k̄ − gQa(0) + 2ga(1) + 2ga(2).
From the last equations we immediately notice that the scalar k is charged under the vector
QA0

z − 2A1
z − 2A2

z , as we mentioned in previous section.

9.2.2 The BPS equations

In order to derive the BPS equations for the AdS3 × Σ geometry described in previous section
we need to give a prescription on Killing spinors. We start by factorizing the spinor as it
follows [227],

ϵ = ψ ⊗ χ, (9.25)

where χ is a two-component spinor on the spindle and ψ is a two-component spinor on AdS3

satisfying
∇mψ = −κ

2
Γmψ, (9.26)

where κ = ±1 specifies the two chiral cases with N = (2, 0) or N = (0, 2) supersymmetry. We
outline the derivation of BPS equations in appendix D. The Killing spinor analysis starts with
the decomposition of the 5d gamma matrices that we choose as it follows

γm = Γm ⊗ σ3, γ3 = I2 ⊗ σ1, γ4 = I2 ⊗ σ2, (9.27)

with Γm =
(
−iσ2, σ3, σ1

)
. From gravitino SUSY variations it turns out that the Killing spinor ϵ

is defined in terms of a function ξ(y) and it has the following form

ϵ =

[
cos

(
ξ

2

)
I− sin

(
ξ

2

)
γ4
]
η with η = eV/2 eisz η0 , (9.28)

where s is a constant and η0 is a constant spinor. The above structure of the Killing spinor
characterizes the spindle geometry, for instance it was already obtained in [227] for AdS3 × Σ



geometries in Leigh-Strassler compactification.3

We can thus write the BPS equations obtained by specifying the N = 2 SUSY variations of
fermionic fields (6.63), (6.64) and (6.65) to the AdS3 ansatz (9.17) and (9.18) with a spinor ϵ of
the form (9.28),

ξ′ = 3g f W cos ξ + 2κ f e−V ,

V ′ = g f W sin ξ ,

h′ = h f sin−1 ξ
(
2κe−V cos ξ + gW (1 + 2 cos2 ξ)

)
,

u′1 = −3

8
g f ∂u1W sin−1 ξ ,

u′2 = −3

4
g f ∂u2W sin ξ ,

u′3 = −1

4
g f ∂u3W sin ξ , (9.29)

where W is the superpotential defined in (9.15). In addition to the first-order equations the
analysis of SUSY variations leads to two algebraic constraints

(s−Qz) = − h′

2f
cos ξ +

h√
6
H34 sin ξ, (9.30)

3g

2
∂u1W cos ξ = h−1∂u1Qz sin ξ. (9.31)

where Qµdxµ = Qz dz is the connection associated with the supercovariant derivative Dµϵ =
(∇µ − iQµ)ϵ appearing in the gravitino variation (D.5). The tensor Hµν ≡ hIF

I
µν is introduced in

(D.5) and its non-zero components (in the flat basis (9.20)) are given by

H34 =
1

3

(
e−4u3F

(0)
34 + e2u3

(
e−2u2F

(1)
34 + e2u2F

(2)
34

))
(9.32)

= −
√
6
(
κ e−V + gW cos ξ

)
.

Finally from the variations of gauginos and hyperinos (D.17), (D.19) and (D.22) we can obtain
the non-zero components of the field strengths F I34,

e−4u3F
(0)
34 = −

√
3

2
g cos ξ (2W + ∂u3W )−

√
6κe−V , (9.33)

e−2u2+2u3F
(1)
34 = −g

2

√
3

2
cos ξ (4W − ∂u3W + 3∂u2W )−

√
6κe−V ,

e2u2+2u3F
(2)
34 = −g

2

√
3

2
cos ξ (4W − ∂u3W − 3∂u2W )−

√
6κe−V .

As it is discussed in [227], the analysis of BPS equation is simplified observing that we can
integrate one out the first three differential equations in (9.29) obtaining

h = ℓ eV sin ξ (9.34)
3Observe that the general form of Killing spinors on spindles was studied in [199].



where ℓ is a constant that has to be determined. The BPS equation for ξ′ can be further simplified
by plugging in (9.34) and we obtain

f−1ξ′ = −2ℓ−1(s−Qz)e
−V . (9.35)

Similarly the constraint (9.30) can be simplified to

(s−Qz) = −3

2
gℓeVW cos ξ − κℓ. (9.36)

Finally we can use the field strengths (9.33) to get a fully explicit form of the conserved charges
E1,2 obtained after having integrated out Maxwell equations in (9.22) and (9.23),

E1 = 3ge3V cos ξ − 1√
6
κe2V−4u3

(
Qe6u3 cosh (2u2) + 2

)
,

E2 = 2

√
2

3
κe2(u3+V ) sinh (2u2) , (9.37)

where we used the superpotential W written in (9.15).

We observe that with the redefinitions

g → g

3
, u2 → β , u3 → α , u1 → 2

√
2φ (9.38)

our equations take the form of (3.10) in [227]. This relation between the BPS equations obtained
here and the ones of [227] is dictated by the similarity between the special geometries and
by the fact that only one hyperscalar (u1 in our notations and φ in the notations of [227]) can
be consistently considered. Despite this fact, the Type IIB interpretation of our 5d fields is
completely different from that one of [227]. Indeed the analysis of the equations requires a
proper quantization of the magnetic charges, as we will discuss later in this chapter.

9.3 Central charge from the pole data

In this section we compute the central charge of the dual field theory obtained by the twist and
the anti-twist of the truncation of T 1,1 without solving the BPS equations.
The relevant result is indeed that this value can be predicted by specifying the boundary
conditions at the poles of the spindle solution. This does not guarantee the existence of the
solutions, that requires to solve the BPS equation from the north to the south pole of the spindle
and that will be the subject of the analysis in section 9.4. Nevertheless, it is a notable result,
already noticed in [227] for the Leigh–Strassler truncation.

9.3.1 Simplifications at the poles

At the poles ℓ sin ξ → 0, then if ℓ ̸= 0 it follows that cos ξN,S = (−1)tN,S where tN,S = 0 or
tN,S = 1. The poles are identified with yN,S , where without loss of generality we can choose
yN ≤ y ≤ yS . We have to impose also that

|h′|N,S = |ℓ sin′ ξ|N,S =
1

nN,S
. (9.39)



This follows from the metric and from the assumption that the deficit angles at the poles are
2π
(
1− 1

nN,S

)
, where nN,S > 1.

From the BPS equations, we observe that the Z2 symmetry acts on {h, a(i), Qz, s, ℓ} by inverting
their sign. This transformation leaves the frame invariant and it can be used to restrict the
analysis to the region h ≥ 0 and then, since V ∈ R, also ℓ sin ξ ≥ 0.
The combination ℓ sin ξ is thus positive and it vanishes at the two poles, with yN < yS . Its
derivative is then positive at yN and negative at yS . This can be formalized by introducing two
further constants, lN = 0 and lS = 1 and requiring

ℓ sin′ ξ|N,S =
(−1)lN,S

nN,S
. (9.40)

As we mentioned before, the twist and the anti-twist are determined by the R-symmetry flux
through the spindle [199] and they are distinguished by the relation between the chiralities
of the preserved spinors at the two poles, coincident and opposite respectively. Then, among
the four choices of (tN , tS), the cases (0, 0) and (1, 1) correspond to the twist and the other two
options (1, 0) and (0, 1) correspond to the anti-twist. Then the complete set of pole data that we
have to specify correspond to {lN,S , nN,S , tN,S}. The simplification occurred in (9.36) allows to
express the quantity (s−Qz) at the poles in term of these data as

s−QZ |N,S =
1

2nN,S
(−1)tN,S+lN,S+1. (9.41)

As noted in (2.36), (2.37) of [199] and revisited in (3.25) of [227], this relation is also obtained by
requiring regularity of the spinor at the poles.
By looking at the BPS equation obtained in formula (D.22), we observe that it is necessary
that ∂u1W |N,S = 0 at the poles, otherwise u1 does not stay finite. Another consequence of
this constraint, combined with (9.36), is that also ∂u1Qz|N,S = 0. Furthermore, the two reals
scalars in the special geometry are constrained at the poles as Qe6u3 − 4 cosh(2u2)|N,S = 0. A
further assumption (a posteriori motivated by the numerical analysis in sub-section 9.4.2) is that
u1|N,S ̸= 0. It has been shown in [218] that this assumption implies Dzk|N,S = 0.
It is then useful to use these relations to re-consider the expressions obtained above for the
conserved charges E1,2, using some of the simplifications occurred at the poles. By defining

M(1) = ge4u3+V , M(2) = −κ+ 3

√
3

2
M(1) cos(ξ) (9.42)

the charges can be written as

E1 =
M2

(1)

g2

(√
2

3
M(2)e

−12u3 − κQ2

4
√
6

)
(9.43)

+
κQ

4
√
6
e2(u3+V )

(
Qe6u3 − 4 cosh (2u2)

)
,

E2
2 =

M4
(1)

6g4
(
Q2 − 16e−12u3

)
(9.44)

+
M4

(1)

6g4
(
16e−12u3 cosh2 (2u2)−Q2

)



and hence last terms in (9.43) and (9.44) vanish at the poles. From (9.36) and W |N,S =

−
√

3
2e

4u3N,S we also have

M(1)|N,S =

√
6

9

(
2κ(−1)−tN,S − (−1)lN,S

ℓ nN,S

)
, (9.45)

M(2)|N,S = κ− (−1)lN,S−tN,S

ℓ nN,S
.

From the definition of M(1) in (9.42), we see that requiring u3, V ∈ R and g > 0 imposes that this
M(1) is positive. This reflects into the constraints M(1)|N,S > 0.
The fact that E1,2 are constant, and then equal at the poles, implies the two following equations
for u3 at the poles:[

− 16
Q2M

4
(1)|N 16

Q2M
4
(1)|S

M2
(1)|NM(2)|N −M2

(1)|SM(2)|S

][
e−12u3N

e−12u3S

]
=

[
M4

(1)|S −M4
(1)|N

κQ2

8

(
M2

(1)|N −M2
(1)|S

) ].
9.3.2 Magnetic fluxes

Here we express the magnetic fluxes in terms of the pole data and of the fields evaluated at such
poles. This will allow us to express the constant ℓ in terms of the spindle data, without solving
the BPS equations. We start observing that

F (I)
yz = (a(I))′ = (I(I))′ (9.46)

with 4

I(I) =

√
3

2
ℓ eV hI cos ξ. (9.47)

This relation can be worked out by looking at the BPS equations studied above. A similar
formula has been found in [218]. It has been further observed in [218] that (9.47) can be obtained
by combining the BPS equations of the hyperscalars. It would be interesting to check if a similar
relation holds in our case as well.

It follows that the (still not quantized!) fluxes can be expressed in terms of the pole data as

pI
nNnS

=
1

2π

∫
Σ
gF (I) = gI(I)

∣∣S
N

(9.48)

with

I(0)|N,S =

√
3

2

ℓ

g
M(1)|N,S(−1)tN,S ,

I(2)|N,S − I(1)|N,S = ±
√

3

2

ℓ(−1)tN,SM(1)|N,S
2g

√
Q2 − 16e−12u3N,S

4We hope that the notation hI for the sections does not generate confusion with respect to the scalar function h(y)
in (9.17).



where ± depends on the sign of u3. Observe that we are not claiming yet that the fluxes p0,1,2
are correctly quantized and we will come back to this problem in a few, reading the correct
normalization from the AdS/CFT correspondence.

In order to work with properly quantized charges we now fix Q = 4 and consider the following
(quantized) charges

pR ≡ 1

2
(p0 + p1 + p2) =

1

2

(
nS(−1)tN + nN (−1)tS

)
,

pF ≡ 3

4
(p2 − p1) =

sign(u3)g nNnS
2

(I(3)|SN − I(2)|SN ),

pM ∝ 2 p0 − p1 − p2 = 0 (9.49)

where the coefficient of pF is chosen to match with the one of the baryonic symmetry in the
holographic dual description. This coefficient can be extracted from the ’t Hooft anomaly TrRB2

along the lines of the procedure discussed in [105]. Requiring the quantization of this charge
then imposes a constraint on the constant ℓ and no further constraints on the spindle data.
The charge pR is quantized if nN (−1)tS + nS(−1)tN ∈ 2Z. The quantization of pF is obtained as
follows. First we use the fact that 2p0 = p1 + p2 that gives the relation 2pF = 3p2 − 2pR. This is a
crucial relation to determine the quantization of pF . We indeed have that pR = 3

4(p1 + p2) ∈ Z
and we must also impose that pF = 3

4(p1 − p2) ∈ Z. As anticipated above, the proportionality
coefficient in this last relation comes from anomaly matching and it contains the information
on how the 5d solution is uplifted on T 1,1 to give a Type IIB solution, thanks to the AdS/CFT
correspondence. Indeed as explained in [105] the comparison with the field theory to fix the
factor of 3/4 is equivalent to the quantization of the five-form flux of Type IIB supergravity in
the uplifted solution.
Then the relations pR + pF = 3

2p2 ∈ Z and pR − pF = 3
2p1 ∈ Z imply 3

2p1,2 ∈ Z. This tells us the
correct normalization to impose in (9.48), i.e. the definition of the fluxes p0,1,2 should be modified
by multiplying it by the factor 3/2, in order to have integer fluxes, say p̂0,1,2 ≡ 3

2p0,1,2 ∈ Z.
Furthermore pR ± pF ∈ Z tell us that pR,F must have the same parity.

Then from (9.44) we have

|E2| =
4M2

(1)|N,S√
6g2

√
1− e−12u3|N,S (9.50)

→ I(2)|N,S − I(1)|N,S =
3

2

gℓ

M(1)|N,S
|E2|(−1)tN,S .

From this relation we have to require e−12u3|N,S ∈ (0, 1]. This constraint becomes a restriction on
the allowed values of the constant ℓ that will be computed below. Then using the fact that E2 is
constant and equal at the poles we can write

I(2)
∣∣S
N
− I(1)

∣∣S
N

=
3

2
gℓ|E2|

(
(−1)tS

M(1)|S
− (−1)tN

M(1)|N

)
. (9.51)

We can simplify this expression using the relation

(−1)tSM(1)|N−(−1)tNM(1)|S=(−1)tS+tN+1

√
2

3

nS(−1)tN + nN (−1)tS

3 ℓ nN nS



where we used the fact that the possible values taken by tS and tN are all the possible combina-
tions of 0 and 1. Then we arrive at

pF
gnSnN

=
3

4

(
I(2)

∣∣S
N
−I(1)

∣∣S
N

)
(9.52)

=
3

4
√
6

g|E2|(−1)tS+tN+1

M(1)|SM(1)|N
nS(−1)tN +nN (−1)tS

nNnS

while

pR
gnSnN

=
1

2

(
I(0)

∣∣S
N
+ I(1)

∣∣S
N
+ I(2)

∣∣S
N

)
(9.53)

=
1

2g

(
nS(−1)tN + nN (−1)tS

nNnS

)
.

Comparing these last two expressions we have

p2F
p2R

=
3g4E2

2

8M2
(1)|SM

2
(1)|N

. (9.54)

This equation allows to determine the constant ℓ in terms of the integers nN,S , tN,S , lN,S and pF .
Solving (9.54) for ℓ we obtain

ℓ = (−1)tN+1 n
4
N + nNn

3
S + n3NnS + n4S − 4p2FnNnS

κnNnS(nN − nS)(3(nN + nS)2 + 4p2F )
, (9.55)

for (tN , tS) = (0, 0) or (1, 1)

corresponding to the case of the twist, and

ℓ = (−1)tN
n4N − nNn

3
S − n3NnS + n4S + 4p2FnNnS

κnNnS(nN + nS)(3(nS − nN )2 + 4p2F )
, (9.56)

for (tN , tS) = (1, 0) or (0, 1)

corresponding to the case of the anti-twist.

9.3.3 Central charge from the pole data

We are now ready to compute the central charge from the pole data. These last correspond to
the integers {lN,S , nN,S , tN,S} and in addition to the constant pF . The central charge is obtained
from the Brown-Henneaux formula,

c2d =
3RAdS3
2G3

(9.57)

where the ratio between RAdS3 and the three dimensional Newton constant is

RAdS3
G3

=
1

G5
∆z

∫ yS

yN

eV (y)|f(y)h(y)|dy . (9.58)



The five dimensional Newton constant for the conifold truncation and the RAdS5 radius are

G5 =
8π

27N2
c (gW )3

, RAdS5 = gW . (9.59)

This can be verified by computing the 4d central charge, related to G5 through the holographic
relation

aT 1,1 =
πRAdS35
8G5

=
27N2

c

64
(9.60)

where the last equality holds by plugging (9.59) in (9.60), and it corresponds to the central charge
for the dual T 1,1 SCFT. Then we must compute the integral in (9.57). In this case we observe that

eV (y)f(y)h(y) = − ℓ

2κ
(e3V (y) cos ξ(y))′ (9.61)

and this justifies the fact that the central charge can be obtained only from the knowledge of the
fields at the poles.
Furthermore in the conformal gauge (9.19) the integral in the central charge becomes eV (y)|h(y)|
and the absolute value can be removed observing as above that we can restrict to the region
h ≥ 0. We arrive at the expression

c2d =
243g3ℓN2

c

32κ

√
3

2
(e3V (yS) cos ξ(yS)− e3V (yN ) cos ξ(yN )). (9.62)

Plugging the values of the fields evaluated at the poles of the spindle in terms of the pole data
the central charge becomes

c2d = (−1)tN
3N2

c (nN + nS)((nN + nS)
2 − 4p2F )(3(nN + nS)

2 + 4p2F )

16κnNnS((n4
N + nNn3

S + n3
NnS + n4

S)− 4p2FnNnS)
(9.63)

for the twist, and

c2d = (−1)tN+1 3N
2
c (nS − nN )((nS − nN )2 − 4p2F )(3(nS − nN )2 + 4p2F )

16κnNnS((n4
S − nNn3

S − n3
NnS + n4

N )− 4p2FnNnS)
(9.64)

for the anti-twist.
The case of the twist is completely ruled out by this analysis because c2d > 0 is not compatible
with the requirements M1|N,S > 0 and e−12u3|N,S ∈ (0, 1]. On the other hand, the solution in
the case of the anti-twist exists in the following cases:

for tN = 0 & κ > 0 or tN = 1 & κ < 0 if nN − nS > 2|pF | > 0 ,

for tN = 0 & κ < 0 or tN = 1 & κ > 0 if nS − nN > 2|pF | > 0 .

9.4 Solving the BPS equations

In this section we present the solutions to the BPS equations. We have solved them analytically
when pF = 0 and numerically when pF ̸= 0.



9.4.1 Analytic solution for the R-symmetry anti-twist

Here we study the solutions of the BPS equations for the case of the anti-twist by turning off
the charge for the baryonic symmetry pF . From the supergravity sid,e this implies a further
truncation to the massless graviton sector. Such a truncation always exists for a five-dimensional
Sasaki–Einstein manifold [237, 238].
The truncation requires to fix the field u1 to its AdS5 vacuum, i.e. u1 = 0 when fixing Q = 4 (see
(9.16)). Furthermore the analysis at the poles shows that in this case the other two scalars u2,3 are
both set to zero, compatibly with (9.16) for Q = 4. Observe also that this is in contrast with the
assumption that the scalar u1 is non vanishing in order to have a solution of the BPS equations,
but it is the case only for the analytic solution that corresponds to the universal one, i.e. a further
truncation to minimal gauged supergravity. We will see that the other BPS equations can be
then analytically solved in the case of the anti-twist by also fixing pF = 0, corresponding to the
universal R-symmetry anti-twist.

The metric and the gauge fields are (see [22] for the original derivation of this solution)

ds2 =
1

g2W 2

(
4y

9
ds2AdS3 +

y

q(y)
dy2 +

c20q(y)

36y2
dz2
)
,

A(0) = A(1) = A(2) = − 1

12

(
c0κ

4g

(
1− a

y

)
+
s

g

)
dz (9.65)

and the function ξ(y) can be expressed in terms of q(y) by the relations

sin ξ = −
√
q(y)

2y3/2
, cos ξ =

κ(3y − a)

2y3/2
(9.66)

where q(y) is

q(y) = 4y3 − 9y2 + 6ay − a2. (9.67)

The constants a and c0 can be read from the analysis of the BPS equations from the pole data
discussed above and they are

a =
(2nN + nS)

2
(
nNnS + n2N − 2n2S

)
2

4
(
nNnS + n2N + n2S

)
3

,

c0 =
2
(
nNnS + n2N + n2S

)
3nNnS (nN + nS)

. (9.68)

Then taking nS > nN the poles yN and yS are

yN =
(nS − nN )

2(2nN + nS)
2

4(n2N + nNnS + n2S)
2

, (9.69)

yS =
(nS − nN )

2(nN + 2nS)
2

4(n2N + nNnS + n2S)
2

(9.70)

and they correspond to the two lowest roots of the polynomial q(y).
Armed with these results we can compute the central charge by evaluating the integral (9.58)
between the two poles yN,S , reproducing the central charge (9.64) obtained from the pole data
as in (9.65) and by setting pF = 0.



9.4.2 Numerical solution

The solution found by turning off pF for the anti-twist is a consistency check of the analysis,
because in this case we are truncating to minimal gauged supergravity, where a solution is
expected [22]. The analysis of the BPS equations from the pole data in the conformal gauge (9.19)
suggested the existence of a more general solution for non vanishing pF . Indeed the central
charge (9.64) is positive for suitable choices of the fluxes in the anti-twist class. Here we want to
find this solution numerically for various numbers of nS , nN and pF in the case of the anti-twist
in the conformal gauge (9.19).

The solution is constructed by solving the BPS equations by fixing the initial conditions at one
pole, for example at y = yN , for u2,3 and V . Such conditions can be read from the analysis at
the pole data, that also sets the value of ℓ necessary to find the profile for the h(y) function. At
this pole we further have sin ξ = 0 by assumption. On the other hand, the initial value of u1 is
unfixed and indeed finding its initial value at y = yN is the task of the analysis.
By ranging over various choices of u1(yN ) indeed the numerical solutions must interpolate the
values of the other fields from yN to yS . Finding the correct and unique value of u1(yN ), up to a
numerical approximation, leads then to the finite value of y = yS for which sin ξ = 0, recovering
the compact geometry of the spindle.

In the following we list a series of values of nS , nN and pF for which we have obtained a solution.
In each case we have extracted the boundary values of the hyperscalar u1. Furthermore, from
the numerical analysis, we have extracted also the location of the pole yS , by fixing yN = 0.

nS nN pF u1(yN ) u1(yS) yS − yN
7 1 1 0.0134835 0.00528031 2.3878

9 1 2 0.0289877 0.012056 2.56658

11 1 1 0.00569605 0.00144584 2.73857

11 1 3 0.0398161 0.0179648 2.72743

9 3 1 0.0105465 0.00768971 1.85913

11 5 1 0.00973604 0.0084572 1.72323

13 1 2 0.0153541 0.00410856 2.87009

13 1 4 0.0471909 0.0229531 2.87991

13 3 1 0.00441848 0.00230355 2.07173

13 3 3 0.0335495 0.023278 2.04402

(9.71)

Observe that nS − nN is even as discussed above and we required also that pF and 1
2(nS − nN )

have the same parity and that 2pF < nS − nN . The explicit numerical solutions for the functions
u1,2,3, eV (y) and h(y) = ℓeV (y) sin ξ(y) for such values are given in figure 9.1 and 9.2. In these
figures we have depicted the solutions from the north pole yN of the spindle to the south pole
yS and then we have continued the integration until y = 2(yS − yN ). In this way we have
shown explicitly a consistency check of these solutions, indeed once the south pole is reached
the equations reach the boundary condition that allows us to find the solutions from yS to yN .
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9.5 Comparison with the field theory results

In this section we compare the results found above for the central charge in the anti-twist class
for the conifold truncation with respect to the calculation performed in the dual field theory.
As we introduced above, such a dual field theory, also referred as the Klebanov–Witten the-
ory, corresponds to a stack of N D3 branes probing the tip of the Calabi–Yau threefold with a
five dimensional Sasaki–Einstein base, that, in this case, corresponds to the conifold singular-
ity [54]. The model can be represented in terms of two unitary SU(N)1,2 gauge groups with
bifundamentals a1,2 and anti-bifundamentals b1,2 interacting through a quartic superpotential
W = a1b1a2b2−a1b2a2b1. The global symmetry group is U(1)R×SU(2)2×U(1)B . The massless
vectors in the truncation that we have used here are associated only with the R-symmetry U(1)R
and with the baryonic symmetry U(1)B .

The calculation of the central charge for the conifold on the spindle, from the field theory side,
has been performed originally in [201] by integrating the anomaly polynomial over the geometry
of the spindle,5 by considering magnetic charges for the whole the global symmetry. Here we
will survey the results of [201] and then we will restrict to the magnetic charges of U(1)R×U(1)B
in order to compare with the supergravity results obtained above.
The integration of the anomaly polynomial has been pursued thanks to the observation that it
can be written as a gluing formula in terms of the four-dimensional conformal anomaly, formally
expressed in terms of the R-charges, the deficit angles and the flavor fluxes. By c-extremization
the final expression, in terms of the pole data and of the quantized fluxes, is [218]

c2d =
3(m− + σm+)

2
∑

a<b,c̸=a,b papbp
2
c ·
∑

a<b<c papbpc

(m2
− − σm−m+ +m2

+)
∏

a<b(pa + pb)− σm+m−ΘKW
N2 (9.72)

with
ΘKW =

∑
a<b,c̸=a,b

papbp
4
c − 2

∑
a<b

papb
∏
c

pc. (9.73)

The comparison with the gravitational calculation requires a further restriction on the val-
ues of the fluxes. The fluxes p1,2,3,4 are associated with the Cartan of the global U(1)r ×
SU(2)L × SU(2)R × U(1)B of the conifold. They are constrained by the relation p1 + p2 +
p3 + p4 = −m−+σm+

m−m+
ensuring the correct quantization for the magnetic flux associated with

the R-symmetry for the twist σ = 1 and the anti-twist σ = −1. The baryonic flux is instead
associated with the combination p1−p2+p3−p4. The other global symmetries associated with
the flavor symmetries are set to zero in the 5d supergravity model, that is indeed realized by
truncating over the Reeb vector. It follows that the actual comparison requires to fix the fluxes as

p1 = p3 = −m− + σm+

4m−m+
+

pb
2m−m+

(9.74)

and
p2 = p4 = −m− + σm+

4m−m+
− pb

2m−m+
. (9.75)

Furthermore we choose σ = −1 because we have to consider the anti-twist. Eventually we fix
the pole data in the notation of [218] and the ones here by identifying m+ = nN and m− = nS .

5The original understanding of how to integrate anomaly polynomials on a spindle, suitably accounting for the
mixing of the global symmetries and the U(1) isometry of the spindle, was provided in [22].



The central charge in formula (9.72) then becomes

c2d =
3N2

c (nN − nS)(3(nS − nN )
2 + p2b)((nS − nN )

2 − p2b)

16nNnS(n4N − nNn3S − n3NnS + n4S − p2bnNnS)
. (9.76)

This expression matches (9.64) upon the identification pF = pb.

Let us conclude this section with an observation related to the relation between our results and
the general discussion that appeared in [218] regarding the geometries of Type IIB constructed
from a 5d SE and a spindle. It has been observed that such geometries are constructed by fixing
only the fluxes associated with the flavor symmetries, i.e. one can always turn off the baryonic
symmetry to obtain the internal Gauntlett–Kim 7d geometry [239]. We expect that the solutions
found here, when uplifted to 10d are in the class of [239], with just five-form flux turned on.
Furthermore we expect that, working with properly quantized fluxes, the 10d uplifted solutions
will be regular, similarly to the cases discussed in [22, 200] for D3- and M2-branes. This is
consistent with the discussion on [227] as well.



Chapter 10

BBBW on the spindle

To present another interesting example of reductions on spindle of a gravitational theory contain-
ing hypermultiplets, in this chapter we focus on the case of M5-branes wrapped on a complex
curve Σg in a Calabi–Yau three-fold X , constructed by Bah, Beem, Bobev and Wecht (BBBW)
in [223, 240]. These models are a generalization of the ones obtained in [19], where M5-branes
wrapped on a Riemann surface were considered. The construction of [223, 240] generates an
infinite family of 4d SCFTs obtained by gluing TN theories [37]. The setup is specified by two
integers that depend on the local geometry of X , corresponding to a decomposable C2 bundle
over Σg. The (non-negative) integers, denoted as p and q, are the Chern numbers of the line
bundles L1,2 that specify L1 ⊕ L2 → Cg. For p = q the N = 1 case studied in [19] is recovered,
while p = 0 (or q = 0) corresponds to the N = 2 case of [19]. For other choices of p and q the 4d
SCFT corresponds to a different N = 1 SCFT.

While M5-branes and the theories of [19] have been already studied on the spindle in various
setups [202, 203, 211, 213], a general analysis for the models introduced in [223, 240] has not
been pursued so far. Here we are interested in generic choices of p and q from the supergravity
perspective. Our starting point are the 5d consistent truncations obtained in full generality
by [241] (see also [163, 242–244] for earlier results in this direction). Such truncations have the
advantage to hold for any choice of p and q, but the price to pay in this case is the presence of
hypermultiplets. Anyway, by exploiting the general recipe of [227], we can analyze the reduction
on the spindle of the consistent truncations of [241] even in presence of hypermultiplets. The
reason is that in this case one hyperscalar triggers an Higgs mechanism that gives a mass to
one of the vector multiplets. The Higgsing simplifies the analysis of the BPS equations and of
the fluxes at the poles of the spindle, allowing to find the boundary conditions that most of the
scalars have to satisfy at the poles in order to compute the central charges in the twist and in the
anti-twist class. While this analysis makes the calculation of the central charges possible, it does
not guarantee the existence of a solution. Furthermore, it does not fix the boundary condition
for the hyperscalar.
However, by restricting to the graviton sector, the universal analytic solution of the type dis-
cussed in [22, 200] is found. In this case the scalars are fixed to their AdS5 value. Observe that
the universal twist is consistent only if the 4d superconformal R-charge is rational, and this
limits the amount of accessible truncations. For more general twists, beyond the universal one,
we solved numerically the BPS equations for various values of the hyperscalar at one of the
poles of the spindle. When the (unique) value of the hyperscalar that solves the BPS equation, at
such pole of the spindle, is found, the existence of the solution is guaranteed. The procedure



fixes also the boundary condition for the hyperscalar at the other pole and the finite distance
between the poles.
In the following we will exploit such procedure for the consistent truncations of [241] and we
will compare our results with the one found on the field theory side by integrating the anomaly
polynomial.

This chapter is based on [245] and it is organized as follows. In section 10.1 we study the spindle
compactification of the four-dimensional non-Lagrangian theories obtained in [223]. First, in
subsection 10.1.1, we review the relevant aspects of the construction of [223] focusing on the
’t Hooft anomalies and on the distinction between the trial R-symmetry emerging from the
higher dimensional picture and the exact one due to a-maximization. This distinction indeed
plays a crucial role in the analysis. Then in subsection 10.1.2 we study the compactification
on the spindle and we compute the central charge of the emerging two dimensional theory.
In the computation of the exact two-dimensional R-symmetry we observe that the result can
be formulated (when the conditions of integerness on the fluxes are satisfied) in terms of the
four-dimensional trial R-symmetry or in terms of the four-dimensional exact one. As a bonus
we also study in subsection 10.1.3 the case of the spindle compactification of four-dimensional
models associated with negative degree bundles, corresponding to the models obtained in [246].
The in section 10.2 we review the supergravity truncation of [241] in order to fix the notations
and the conventions that we use in subsequent sections of the paper. In section 10.3 we study
the compactification of the spindle of these five-dimensional N = 2 gauged supergravities,
obtaining the relevant BPS and Maxwell equations. In section 10.4 we focus on the calculation
of the conserved charges and of the integer fluxes. In this way we can fix most of the scalars at
their boundary values on the spindle and from these results we extract the exact central charges
form the gravitational perspective. We eventually observe that these results agree with the
ones obtained from the field theoretical analysis. In section 10.5 we complete our analysis by
studying the gravitational solution. First, in subsection 10.5.1 we look for an analytical solution,
finding that it exists for the universal twist, for choices of p and q that correspond to a rational 4d
R-symmetry. Then in subsection 10.5.2 we look for numerical solutions for more generic values
of p and q, by turning on also the magnetic charge associated with the flavor symmetry. We
find numerical solutions only in the case of the anti-twist class for Riemann surfaces of positive
curvature.

10.1 The 4d SCFT on the spindle

In subsection 10.1.1 we are going to review the M-theory construction of N = 1 SCFTs in 4d
of [223], which is going to be the starting point for our effective 2d theories compactified on
the spindle. These models turn out to be dual to N = 1 SCFT built by opportunely gluing TN
blocks [37]. Then in subsection 10.1.2 we construct the theory compactified on the spindle Σ,
closely following [22, 227] mutatis mutandis. In subsection 10.1.3 we study the case of negative
degree bundles, obtained in [246], on the spindle.



10.1.1 The 4d model

The worldvolume theory of stack of N M5-branes is well known to be a 6dN = (2, 0) SCFT. One
can construct effective 4d theories by wrapping the branes on some specific geometry. In this
particular case, we are interested in effective 4d theories obtained by wrapping the M5-branes on
a complex Riemann curve of genus g Cg in a Calabi-Yau three-fold. This geometric construction
gives rise to an infinite family of 4d effective theories which are parametrized by two integers
depending on the local geometry of the Calabi–Yau three-fold X , which in the case of interest is
just a holomorphic C2 bundle over Cg

C2 ↪→ X
π−→ Cg. (10.1)

Crucially, when X is decomposable it will take the simpler form X = L1 ⊕ L2. This structure
has a manifest U(1)2 isometry, one factor for each fiber in the line bundle. The two isometries
give rise to two abelian symmetries, one being the R-symmetry U(1)R and the other being an
additional flavor symmetry U(1)F .
The integers describing the families of IR N = 1 SCFTs are just the Chern numbers labelling the
possible bundle decomposition

c1(L1) = p, c1(L2) = q, (10.2)

subject to the condition p+ q = 2(g− 1). Depending on the choices of these two integers, the
fields in the M5-brane theory transform in different representations of the U(1)F symmetry,
leading to different IR fixed points. A solution to the constraint of the Chern numbers is given
by the following parametrization

p = (1 + z)(g− 1), q = (1− z)(g− 1) (10.3)

where z(g− 1) ∈ Z.
From the class-S point of view, these theories can be built from opportune gluing of 2(g− 1) TN
building blocks to create a Riemann surface with no punctures.
In this setup the key observables are the central charges c and a, determined by the following
combinations of R-symmetry anomalies

c =
1

32

(
9TrR3 − 5TrR

)
,

a =
3

32

(
3TrR3 − TrR

)
. (10.4)

Note that in the large N limit, for holographic SCFTs a = c. The central charges can be recovered
from the known anomaly polynomial of the M5-brane theory integrated over Cg, assuming that
no accidental symmetries are generated along the flow. Since the abelian symmetries U(1)R and
U(1)F mix together, the exact superconformal R-symmetry is found by a-maximization [162].
One finds that the ’t Hooft anomalies of the trial R-charge, for theories of type G = AN , DN , EN ,
are given by

TrR3 = (g− 1)[(rG + dGhG)(1 + zϵ3)− dGhG(ϵ
2 + zϵ)] ,

TrR = (g− 1)rG(1 + zϵ) , (10.5)



where rG, dG and hG are the rank, dimension and Coxeter number of G respectively, while ϵ is
the mixing parameter.
We are interested in the AN−1 case. The mixed ’t Hooft anomalies between the trial R-symmetry
R and the flavor symmetry F can be computed from (10.5) and they read

kRRR = (g− 1)N3, kRRF = −1

3
(g− 1)zN3,

kRFF = −1

3
(g− 1)N3, kFFF = (g− 1)zN3. (10.6)

On the other hand, by considering R∗ = R+ ϵ∗F , a-maximization yields

ϵ∗ =
1 + k

√
1 + 3z2

3z
, (10.7)

where k is the curvature of Cg. Choosing k = −1 for later purposes, the ’t Hooft anomalies for
the superconformal R-symmetry R∗ read

kR∗R∗R∗ =
2(g− 1)

27z2

[
9z2 − 1 + (3z2 + 1)3/2

]
N3, kR∗R∗F =

(g− 1)

9
zN,

kR∗FF = −(g− 1)

3

√
3z2 + 1N3, kFFF = (g− 1)zN3. (10.8)

10.1.2 BBBW on the spindle

Consider the 4d SCFT reviewed above, whose anomaly polynomial in the large N limit reads

I6 =
1

6

∑
i,j,k=R,F

kijk c1(Fi)c1(Fj)c1(Fk)
(10.9)

where the coefficients kijk are given by the mixed ’t Hooft anomalies (10.6) and the c1(FR,F ) are
the first Chern-classes for the U(1)-bundles over the total space X4 with gauge curvature R and
F .
We proceed to compactify further the 4d theory over the spindle Σ ≡ WCP1

[nN ,nS ]
, where nN , nS

label the deficit angles at the north and south pole of the orbifold respectively, with background
magnetic fluxes for the two abelian U(1)R and U(1)F symmetries of the 4d theory. In order
to do that, we need to take into account the azimuthal U(1)J isometry of the spindle which is
generated by rotations about the axis passing through the poles. Geometrically, this is given
by considering the total space X4 as a X2 orbibundle fibered over Σ. In the field theory, this
can be achieved by turning on a connection AJ for the U(1)J isometry, so that we can write the
following gauge connections

A(I) = ρI(y)(dz +AJ) I = R,F (10.10)

where ρI(y) are the background fluxes for the abelian symmetries, and (y, z) are respectively
the longitudinal and azimuthal coordinates over Σ, with y ∈ [yN , yS ] and z ∼ z + 2π. The
curvatures for the fields (10.10) are given by

F (I) = ρ′I(y)dy ∧ (dz +AJ) + ρI(y)FJ I = R,F (10.11)



where FJ = dAJ . These fields are consistent with the flux condition

1

2π

∫
Σ
F (I) = [ρI ]

yS
yN

=
pI

nSnN
. (10.12)

The curvature forms F (I) define a U(1)-line bundle LI over X4, and the associated first Chern
classes are1

c1(LI) ≡

[
F (I)

2π

]
∈ H2(X4,R), c1(J) ≡

[
FJ
2π

]
∈ H2(X2,R). (10.13)

To obtain the 2d anomaly polynomial, we make the following substitution

c1(R) → c1(R) +
1

2
c1(LR), c1(F ) → c1(F ) + c1(LF ) (10.14)

where c1(R) and c1(F ) are the pull-back of the U(1)R and U(1)F bundles over X2 respectively.
The choice of normalization is such that the R-symmetry generators give charge 1 to the super-
charges. Thus, we shift the curvatures in equation (10.11) accordingly, compute the anomaly
polynomial in (10.9) and integrate it over Σ. The result is a combination of the four non-zero
mixed ’t Hooft anomalies given in sec. 10.1.1. In the following, as a working example we show
only the computation for the terms proportional to kRRR∫

Σ

(
c1(R) +

1

2
c1(LR)

)3

=

∫
Σ

(
3

2
c1(R)

2c1(LR) +
3

4
c1(R)c1(LR)2 +

1

8
c1(LR)

3

)
, (10.15)

where the product of forms is understood. Notice that the c1(R) does not depend on the spindle,
so they can be factorized out of the integral. Let us consider the first term in (10.15)∫

Σ

3

2
c1(R)

2c1(LR) =
3

2
c1(R)

2

∫
Σ

F (R)

2π
=

3

2
c1(R)

2[ρR]
yS
yN
. (10.16)

The second term reads∫
Σ

3

4
c1(R)c1(LR)2 =

3

4
c1(R)

∫
Σ

1

4π2
F (R) ∧ F (R)

=
3

4
c1(R)

∫
Σ

2

4π2
ρR(y)ρ

′
R(y)dy ∧ (dz +AJ) ∧ FJ

=
3

4
c1(R)

∫
Σ

1

4π2
dρ2R ∧ (dz ∧ FJ +AJ ∧ FJ)

=
3

4
c1(R)c1(J)

∫
Σ

1

2π
dρ2R ∧ dz

=
3

4
c1(R)c1(J)[ρ

2
R]
yS
yN

(10.17)

where we used the fact that AJ ∧FJ is just a total derivative and that FJ does not depend on the
spindle as stated in (10.13). In the second to last step we went back from forms to cohomology
classes. The last term in (10.15) evaluates to

1

8

∫
Σ
c1(LR)3 =

1

8

∫
Σ

1

(2π)3
F (R) ∧ F (R) ∧ F (R) =

1

8
c1(J)

2[ρ3R]
yS
yN
. (10.18)

1Note that the gauge curvature of J is only defined on X2. It’s Chern class will not contribute in the integral.



The complete anomaly four-form of the 2d theory reads

I4 =

(
3

2
kRRR[ρR]

yS
yN

+ kRRF [ρF ]
yS
yN

)
c1(R)

2 +

(
1

2
kRFF [ρR]

yS
yN

+ 3 kFFF [ρF ]
yS
yN

)
c1(F )

2

+

(
1

8
kRRR[ρ

3
R]
yS
yN

+ kFFF [ρ
3
F ]
yS
yN

+
1

4
kRRF [ρFρ

2
R]
yS
yN

+
1

2
kRFF [ρRρ

2
F ]
yS
yN

)
c1(J)

2

+
(
kRRF [ρR]

yS
yN

+ 2 kRFF [ρF ]
yS
yN

)
c1(F )c1(R)

+

(
3

4
kRRR[ρ

2
R]
yS
yN

+ kRRF [ρRρF ]
yS
yN

+ kRFF [ρ
2
F ]
yS
yN

)
c1(J)c1(R)

+

(
3 kFFF [ρ

2
F ]
yS
yN

+
1

4
kRRF [ρ

2
R]
yS
yN

+ kRFF [ρRρF ]
yS
yN

)
c1(J)c1(F ) (10.19)

To compute the exact central charge we allow a mixing between the various U(1) factors
c1(J) = ϵc1(R) and c1(F ) = xc1(R), extremizing the function

c2dtrial(ϵ, x) =
6I4

c1(R)2
. (10.20)

The background magnetic fluxes are fixed to be∫
F (R)

2π
=

pR
nSnN

,

∫
F (F )

2π
=

pF
nSnN

(10.21)

where pR, pF ∈ Z. For the R-symmetry, we have two possible choices of fluxes consistent with
supersymmetry

ρR(yN ) =
(−1)tN

nN
, ρR(yS) =

(−1)tS+1

nS
(10.22)

where tN = 0, 1, while tS is fixed by the twisting procedure, namely tS = tN for the twist, while
tS = tN + 1 for the anti-twist. For the flavor symmetry, the flux can be fixed to

ρF (yN ) = z0, ρF (yS) =
pF

nSnN
+ z0 (10.23)

where z0 is an arbitrary constant.
Let us consider the following parametrization of the on-shell central charge

c2d =
f(nS , nN , pF ; z)

g(nS , nN , pF ; z)
a4d (10.24)



where a4d = (g− 1)N3. In the case of the twist we have

f(nS , nN , pF ; z) =
(
4p2F − (nN + nS)

2
) (

2zpF + (−1)tN (nN + nS)
)

×
(
(−1)tN (nN + nS)

(
16zpF +

(
z2 + 3

)
(−1)tN (nN + nS)

)
+ 4

(
3z2 + 1

)
p2F

)
,

g(nS , nN , pF ; z) = 2nNnS

(
8p2F

(
−2nNnS + 3z2n2S + 3z2n2N

)
− 32zp3F (−1)tN (nN + nS)

+ 8zpF (−1)tN (nN + nS)
(
3n2N − 2nNnS + 3n2S

)
− 48z2p4F + (nN + nS)

2 (− 2
(
z2 + 2

)
nNnS +

(
z2 + 4

)
n2S

+
(
z2 + 4

)
n2N
))
. (10.25)

The central charge is extremized by the mixing ϵ∗, x∗ for which we give the exact, albeit quite
cumbersome, result

ϵ∗ =
ε(nS , nN , pF ; z)

d(nS , nN , pF ; z)
, x∗ =

χ(nS , nN , pF ; z)

d(nS , nN , pF ; z)
− z0ϵ

∗ (10.26)

where

ε(nS , nN , pF ; z) = 4nNnS(−1)tN (nN − nS)(2nN (−1)tN (8zpF + (z2 + 3)nS(−1)tN )

+ 16zpFnS(−1)tN + 4(3z2 + 1)p2F + (z2 + 3)n2S + (z2 + 3)n2N )

χ(nS , nN , pF ; z) = −2n2S
(
2
(
z2 − 3

)
pFnN (−1)tN − 20zp2F + 3zn2N

)
− 4n3S(−1)tN

(
znN (−1)tN − 2pF

)
− 4znS(−1)tN

(
n2N − 4p2F

) (
2zpF + nN (−1)tN

)
− 16

(
z2 + 1

)
p3FnN (−1)tN − 4

(
z2 + 1

)
pFn

3
N (−1)tN

− 24zp2Fn
2
N − 16zp4F − zn4S − zn4N

d(nS , nN , pF ; z) = 24z2p2Fn
2
S + 4n3N (−1)tN

(
6zpF + (−1)tNnS

)
+ 2zn2N

(
4pFnS(−1)tN + 12zp2F − zn2S

)
+ 4nN (−1)tN

(
n2S − 4p2F

) (
2zpF + nS(−1)tN

)
+ 24zpFn

3
S(−1)tN − 32zp3FnS(−1)tN

− 48z2p4F +
(
z2 + 4

)
n4S +

(
z2 + 4

)
n4N (10.27)

Notice that there is no explicit z0 dependence in the central charge.
We can check the validity of the result, by considering the S2 limiting case, where nS = nN = 1
and comparing with the result of [20]. As expected, the two results match2.

2From the result of [20], one fixes η1 = 2(g− 1), η2 = 2, κ1 = −1, κ2 = 1, z1 = z2 = z to find the matching.



Instead, for the anti-twist case the on-shell central charge is given by

f(nS , nN , pF ; z) =
(
(nS − nN )

2 − 4p2F

) (
2zpF + (−1)tN (nN − nS)

)
×
(
(−1)tN (nN − nS)

(
16zpF +

(
z2 + 3

)
(−1)tN (nN − nS)

)
+ 4

(
3z2 + 1

)
p2F

)
g(nS , nN , pF ; z) = 2nNnS

(
8p2F

(
2nNnS + 3z2n2S + 3z2n2N

)
+ 32zp3F (−1)tN (nS − nN )

− 8zpF (−1)tN (nS − nN )
(
3n2N + 2nNnS + 3n2S

)
− 48z2p4F + (nS − nN )

2 (2 (z2 + 2
)
nNnS +

(
z2 + 4

)
n2S

+
(
z2 + 4

)
n2N
))

(10.28)

where the extremum, using the same parametrization as in (10.26), is reached for the following
mixing

ε(nS , nN , pF ; z) = −4nNnS(−1)tN (nN + nS)
(
2nN (−1)tN

(
8zpF − (−1)tN

(
z2 + 3

)
nS
)

− 16zpFnS(−1)tN + 4
(
3z2 + 1

)
p2F +

(
z2 + 3

)
(n2S + n2N )

)
χ(nS , nN , pF ; z) = −2n2S

(
2(−1)tN

(
z2 − 3

)
pFnN − 20zp2F + 3zn2N

)
+ 4(−1)tNn3S

(
(−1)tNznN − 2pF

)
+ 4(−1)tNznS

(
n2N − 4p2F

) (
2zpF + (−1)tNnN

)
− 16(−1)tN

(
z2 + 1

)
p3FnN − 4(−1)tN

(
z2 + 1

)
pFn

3
N

− 24zp2Fn
2
N − 16zp4F − z(n4S + n4N )

d(nS , nN , pF ; z) = 24z2p2Fn
2
S + 4(−1)tNn3N

(
6zpF − (−1)tNnS

)
+ 2zn2N

(
−4(−1)tNpFnS + 12zp2F − zn2S

)
+ 4(−1)tNnN

(
n2S − 4p2F

) (
2zpF − (−1)tNnS

)
− 24(−1)tNzpFn

3
S + 32(−1)tNzp3FnS

− 48z2p4F +
(
z2 + 4

)
(n4S + n4N ) (10.29)

Once again, the on-shell central charge does not depend on z0 as expected.
The central charge calculated from the R∗, F anomalies (10.8) instead of R, can be computed in
the same manner as just described. The two exact central charges will then match as follows

c∗2d

(
ε∗1, x

∗
1;R,F, nS(−1)tN + nN (−1)tS , pF

)
= c∗2d

(
ε∗2, x

∗
2;R

∗, F, nS(−1)tN + nN (−1)tS , pF + ϵ∗
nS(−1)tN + nN (−1)tS

2

) (10.30)

where ϵ∗ is the 4d mixing parameter found in (10.7) with k = −1 and we specified which
symmetries we are considering as well as their fluxes. Namely, the former is obtained from the
anomaly polynomial considering the ’t Hooft anomalies (10.6) and their fluxes, while the latter



is obtained considering the anomalies (10.8), while their fluxes are related to the first ones by a
shift.
Observe that the universal twist is consistent only if the exact 4d R-symmetry is rational.
From the second line in (10.30) it follows that this choice requires to set the combination
pF + ϵ∗ nS(−1)tN+nN (−1)tS

2 to zero. The integerness conditions on pF , nS and nN then restrict the
allowed values of p and q admitting the universal twist.

10.1.3 Negative degree bundles

Here we further generalize the construction of [223, 240] by gluing 2(g− 1) together copies of
T
(m)
N theories [247]. This construction reproduces the model of [223, 240] when m = 0 [246] and

generalizes it for generic m. The construction of [223,240] in fact allows only for positive p, q ≥ 0,
while in the construction of [246], one can allow also for negative degree bundles. Although
these theories have no known supergravity description at this time, we give the field theory
calculation for completeness.
The cubic anomalies of the model of [223, 240] can be recovered from the ones of the T (m)

N blocks
by linear combination of the U(1)i isometries of the line bundles. Namely R = (J+ + J−)/2 and
F = (J− − J+)/2, following the naming convention of [246]. Therefore, in the large-N limit

kRRR =
N3

2
, kRRF = −1

6
(1 + 2m)N3,

kRFF = −N
3

6
, kFFF =

1

2
(1 + 2m)N3

(10.31)

where the integer m parametrizes the degree of the line bundles p = m+ 1 and q = −m.
Following the same arguments as before, we can compactify these theories on the spindle
and find the central charge of a family of theories parametrized by m. By taking the anomaly
polynomial constructed from the anomalies (10.31), we find the following central charge in the
case of the twist

f(nS , nN , pF ;m) = 2
(
(nN + nS)

2 − 4p2F

) (
2(2m+ 1)pF + (−1)tN (nS + nN )

)
×
(
(−1)tN (nN + nS)

(
4(2m+ 1)pF +

(
m2 +m+ 1

)
(−1)tN (nN + nS)

)
+ 4(3m(m+ 1) + 1)p2F

)
(10.32)

g(nS , nN , pF ;m) = nNnS

(
(−1)tN

(
4n3S

(
6(2m+ 1)pF + (−1)tNnN

)
+ 2(−1)tN (2m+ 1)n2S

(
12(2m+ 1)p2F

− (−1)tNnN
(
(−1)tN (2m+ 1)nN − 4pF

) )
+ 4nS

(
n2N − 4p2F

) (
2(2m+ 1)pF + (−1)tNnN

)
+ nN

(
(−1)tNnN

(
(−1)tNnN

(
24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

)
+ 24(2m+ 1)2p2F

)
− 32(2m+ 1)p3F

)
+ (−1)tN (4m(m+ 1) + 5)n4S

)
− 48(2m+ 1)2p4F

)
(10.33)



where we used the parametrization (10.24). The mixing is given by

ε(nS , nN , pF ;m) = 16nNnS(−1)tN
(
4(−1)tN (2m+ 1)pF

(
n2N − n2S

)
+ 4(3m(m+ 1) + 1)p2F (nN − nS)

+
(
m2 +m+ 1

)
(nN − nS) (nN + nS)

2
)

χ(nS , nN , pF ;m) = −4n3N (−1)tN
(
2
(
2m2 + 2m+ 1

)
pF + (−1)tN (2m+ 1)nS

)
− 4nN (−1)tN

(
2
(
2m2 + 2m− 1

)
pFn

2
S + 8

(
2m2 + 2m+ 1

)
p3F

− 4(−1)tN (2m+ 1)p2FnS + (−1)tN (2m+ 1)n3S

)
− 2(2m+ 1)n2N

(
4(−1)tN (2m+ 1)pFnS + 12p2F + 3n2S

)
+ 32(−1)tN (2m+ 1)2p3FnS + 40(2m+ 1)p2Fn

2
S

− 16(2m+ 1)p4F + 8(−1)tNpFn
3
S − (2m+ 1)n4S − (2m+ 1)n4N

d(nS , nN , pF ;m) = −32(−1)tN (2m+ 1)p3F (nN + nS)

+ 8p2F
(
3(2m+ 1)2n2N + 3(2m+ 1)2n2S − 2nNnS

)
+ 8(−1)tN (2m+ 1)pF (nN + nS)

(
−2nNnS + 3n2N + 3n2S

)
− 48(2m+ 1)2p4F + (nN + nS)

2
(
− 2(4m(m+ 1) + 3)nNnS

+ (4m(m+ 1) + 5)(n2N + n2S)
)

(10.34)

For the anti-twist case we get

f(nS , nN , pF ;m) = 2
(
(nN − nS)

2 − 4p2F

) (
2(2m+ 1)pF + (−1)tN (nS + nN )

)
×
(
(−1)tN (nN − nS)

(
4(2m+ 1)pF +

(
m2 +m+ 1

)
(−1)tN (nN − nS)

)
+ 4(3m(m+ 1) + 1)p2F

)
(10.35)

g(nS , nN , pF ;m) = −nNnS
(
(−1)tN

(
− 4n3S

(
6(2m+ 1)pF + (−1)tNnN

)
+ 2(−1)tN (2m+ 1)n2S

(
12(2m+ 1)p2F

− (−1)tNnN
(
(−1)tN (2m+ 1)nN − 4pF

) )
− 4nS

(
n2N − 4p2F

) (
2(2m+ 1)pF + (−1)tNnN

)
+ nN

(
(−1)tNnN

(
(−1)tNnN

(
24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

)
+ 24(2m+ 1)2p2F

)
− 32(2m+ 1)p3F

)
+ (−1)tN (4m(m+ 1) + 5)n4S

)
− 48(2m+ 1)2p4F

)
(10.36)



where we used the parametrization (10.24). The mixing is given by

ε(nS , nN , pF ;m) = −16nNnS(−1)tN
(
4(−1)tN (2m+ 1)pF

(
n2N − n2S

)
+ 4(3m(m+ 1) + 1)p2F (nN + nS)

+
(
m2 +m+ 1

)
(nN + nS) (nN − nS)

2
)

χ(nS , nN , pF ;m) = −4n3N (−1)tN
(
2
(
2m2 + 2m+ 1

)
pF − (−1)tN (2m+ 1)nS

)
− 4nN (−1)tN

(
2
(
2m2 + 2m− 1

)
pFn

2
S + 8

(
2m2 + 2m+ 1

)
p3F

+ 4(−1)tN (2m+ 1)p2FnS − (−1)tN (2m+ 1)n3S

)
− 2(2m+ 1)n2N

(
−4(−1)tN (2m+ 1)pFnS + 12p2F + 3n2S

)
− 32(−1)tN (2m+ 1)2p3FnS + 40(2m+ 1)p2Fn

2
S

− 16(2m+ 1)p4F − 8(−1)tNpFn
3
S − (2m+ 1)n4S − (2m+ 1)n4N

d(nS , nN , pF ;m) = −32(−1)tN (2m+ 1)p3F (nN − nS)

+ 8p2F
(
3(2m+ 1)2n2N + 3(2m+ 1)2n2S + 2nNnS

)
+ 8(−1)tN (2m+ 1)pF (nN − nS)

(
2nNnS + 3n2N + 3n2S

)
− 48(2m+ 1)2p4F + (nN − nS)

2
(
2(4m(m+ 1) + 3)nNnS

+ (4m(m+ 1) + 5)(n2N + n2S)
)

(10.37)

In in the limit of m→ 0 one recovers the same result of the compactified model of [223, 240], as
expected.

10.2 The 5d supergravity truncation

The five-dimensional supergravity model we are working with is a consistent truncation from
eleven-dimensional supergravity studied in [241]. It contains two vector multiplets and one
hypermultiplet and it has gauge group U(1)× R.
As we mentioned before, this truncation generalizes the structure associated with the solutions
of [223, 240] and it completes the consistent truncation of seven-dimensional N = 4 SO(5)
gauged supergravity reduced on a Riemann surface Cg analyzed in [163]. There, the 5d model
was obtained truncating the 7d supergravity to the U(1)2 sector, corresponding to the Cartan
of SO(5). Besides enclosing the two U(1) gauge fields and the two scalars belonging to the
vector multiplets, the bosonic sector of the construction made in [241] also includes all the scalar
fields in the hypermultiplet, and furthermore it gives a direct derivation of the gauging. In the
following we outline the construction made in [241]. The eleven-dimensional metric is

ds211 = e2∆ds2AdS5 + ds26, (10.38)

which corresponds to a warped product AdS5 ×w M with warp factor e2∆ℓ2 = e2f0∆̄1/3, where
ℓ is the AdS radius and ∆̄ and f0 are constants. M6 is a six-dimensional manifold given by a



fibration of a squashed-sphere M4 over the Riemann surface Cg and has metric

ds26 = ∆̄1/3e2g0ds2Cg +
1

4
∆̄−2/3ds24, (10.39)

where g0 is a constant. The Riemann surface has Ricci scalar curvature k as discussed after
formula (10.7) and the metric on M4 is

ds24 = X−1
0 dµ20 +

∑
i=1,2

X−1
i

(
dµ2i + µ2i (dφi +A(i))2

)
, (10.40)

with
µ0 = cos ζ, µ1 = sin ζ cos

θ

2
, µ2 = sin ζ sin

θ

2
. (10.41)

The angles φ1, φ2 are in [0, 2π], while ζ, θ are in [0, π]. A(1) and A(2) gauge two U(1) isometries
of the squashed S4. Furthermore

∆̄ =
2∑
I=0

XIµ
2
I , ef0 = X−1

0 , e2g0 = −1

8
kX1X2

[
(1− z)X1 + (1 + z)X2

]
, (10.42)

where z, that can be read from (10.3) as

z =
p− q

p+ q
, (10.43)

is a discrete parameter related to the Chern numbers p and q and

X0 = (X1X2)
−2,

X1X
−1
2 =

1 + z

2z− k
√
1 + 3z2

,

X5
1 =

1 + 7z+ 7z2 + 33z3 + k(1 + 4z+ 19z2)
√
1 + 3z2

4z(1− z)2
.

(10.44)

There is also a four-form flux but we address the interested reader to [241] for its explicit form.

Notice that the N = 1 and N = 2 twistings studied in [19] can be recovered as special cases from
this model: the first one arises from setting p = q (corresponding to z = 0), while the second one
from p = 0 or q = 0 (z = ±1 ).

10.2.1 N = 2 supergravity structure

The reduction described above gives rise to an infinite family of N = 2 gauged supergravity
theories in five dimensions. Here we summarize the most salient features of the model3.

3The Lagrangian in (B.10) of [241] that we are using here can be obtained from the one used here by rescaling the
gauge fields and the coupling constant as

AI
there = −

√
3

2
AI

here, gthere = −
√

2

3
ghere. (10.45)



Focusing on the vector multiplet sector, the two real scalars Σ and ϕ parametrize the Very Special
Real Manifold

MV = R+ × SU(1, 1) (10.46)

that has metric

gxy =

(
3
Σ2 0
0 1

)
. (10.47)

The homogeneous coordinates hI(Σ, ϕ) (from now on we will omit the explicit dependence of
the sections from the two real scalars Σ and ϕ) are given by

h0 =
1

Σ2
, h1 = −ΣH1, h2 = −ΣH2, (10.48)

where
H1 = sinhϕ, H2 = coshϕ (10.49)

parametrize the unit hyperboloid SO(1, 1), while Σ parametrizes R+. The non-zero components
of the totally symmetric tensor CIJK are

C0ĪJ̄ = CĪ0J̄ = CĪJ̄0 =
1

3
ηĪJ̄ , for Ī , J̄ = 1, 2, (10.50)

with η = diag(−1, 1).
Moving to the hypermultiplet sector, the quaternionic manifold

MH =
SU(2, 1)

SU(2)×U(1)
(10.51)

is spanned by the scalars qX = {φ,Ξ, θ1, θ2} with line element4

gXY dq
XdqY = −dφ2 − 1

2
e2φ(dθ21 + dθ22)−

1

4
e4φ(dΞ− θ1dθ2 + θ2dθ1)

2. (10.52)

Only the hypermultiplet sector is gauged and the corresponding Killing vectors kI = kXI ∂X read

k0 = ∂Ξ,

k1 = zk∂Ξ,

k2 = −k∂Ξ + 2(θ2∂θ1 − θ1∂θ2),

(10.53)

with associated Killing prepotentials

P r0 = {0, 0, 1
4
e2φ},

P r1 = {0, 0, zk
4
e2φ},

P r2 = {
√
2eφθ1,

√
2eφθ2,−1 +

1

4
e2φ(2θ21 + 2θ22 − k)}.

(10.54)

4We are using a different normalization w.r.t. [241]. This allows us to obtain a simplified version of the hyperino
variation, as it was pointed out in the previous chapter.



10.2.2 The model

In the remainder of this paper we will work with a further truncation of the 5d supergravity
model introduced above, which is obtained by setting

θ1 = θ2 = 0, (10.55)

consistently with the AdS5 vacuum of the model we started from. In this truncation, the Killing
vectors (10.53) simplify to

k0 = ∂Ξ, k1 = zk∂Ξ, k2 = −k∂Ξ. (10.56)

Notice that from (10.56) we can see that the field Ξ gets charged under the vector A(0)
µ +zkA

(1)
µ −

kA
(2)
µ , that becomes massive. Furthermore, only the third SU(2)-components of the Killing

prepotentials (10.54) survive and they reduce to

P 3
0 =

1

4
e2φ, P 3

1 =
zk

4
e2φ, P 3

2 = −1− k

4
e2φ. (10.57)

We can thus introduce a superpotential as

W = hIP 3
I =

Σ3
((
ke2φ + 4

)
coshϕ− zke2φ sinhϕ

)
+ e2φ

4Σ2
. (10.58)

Furthermore, the following AdS5 vacuum is also a vev for the scalars Σ, ϕ, φ in this truncation:

φ =
1

2
log

(
4√

3z2 + 1− 2k

)
,

ϕ = arctanh

(
1 + k

√
1 + 3z2

3z

)
,

Σ3 =

√
2
(
3z2 − 1− k

√
1 + 3z2

)
z
(√

1 + 3z2 − 2k
) .

(10.59)

10.3 The 5d truncation on the spindle

In this section we briefly review the geometric construction used to split the five-dimensional
background as the warped product AdS3 × Σ, where the space Σ is a compact spindle with
azimuthal symmetry and conical singularities at the poles. As in the previous chapter, once
introduced the ansatz on the geometry and on the gauge fields, we present the corresponding
BPS equations and Maxwell equations of motion.

10.3.1 The ansatz and Maxwell equations

We begin by considering the AdS3 × Σ ansatz made in [227]5:

ds2 = e2V (y)ds2AdS3 + f(y)2dy2 + h(y)2dz2,

A(I) = a(y)(I)dz,
(10.60)

5We are using the mostly plus signature.



where ds2AdS3 is the metric on unitary AdS3, while (y, z) are the coordinates on Σ, which is a
compact spindle with an azimuthal symmetry generated by ∂z . The azimuthal coordinate z has
periodicity ∆z = 2π. The longitudinal coordinate y is compact, bounded by yN and yS (with
yN < yS), implying that the function h(y) vanishes at the poles of the spindle.

We assume that the scalars Σ, ϕ, φ depend on the y coordinate only, while the hyperscalar Ξ is
linear in z, i.e. Ξ = Ξz (with Ξ a constant).
Following [227], we will use an orthonormal frame to simplify the analysis of the Killing spinor
equations and of the equations of motion of the gauge fields:

ea = eV ēa, e3 = f dy, e4 = h dz, (10.61)

where ēa is an orthonormal frame for AdS3. In this basis, the field strengths read

f hF
(I)
34 = ∂ya

(I). (10.62)

Given that Σ, ϕ, φ are functions of y only and Ξ = Ξz, two out of the three gauge equations
of motion specified to our ansatz can be easily integrated, and they can be written in the
orthonormal frame as

2e3V

3Σ2

[
(cosh 2ϕ− z sinh 2ϕ)F

(1)
34 + (z cosh 2ϕ− sinh 2ϕ)F

(2)
34

]
= E1, (10.63)

2e3V

3Σ2

[
zkΣ6F

(0)
34 −(cosh 2ϕ+z sinh 2ϕ)F

(1)
34 +(z cosh 2ϕ+sinh 2ϕ)F

(2)
34

]
= E2, (10.64)

∂y

(1
3
e3V Σ4F

(0)
34

)
=

1

4
e4ψ+3V g f h−1DzΞ, (10.65)

where E1 and E2 are constants and we defined DzΞ ≡ Ξ + g(a(0) + zka(1) − ka(2)).

10.3.2 The BPS equations

To derive the BPS equations for the geometry introduced above, we need to factorize the Killing
spinor [227]:

ϵ = ψ ⊗ χ, (10.66)

where χ is a two-component spinor on the spindle and ϕ is a two-component spinor on AdS3

such that
∇mψ = −κ

2
Γmψ, (10.67)

with κ = ±1 depending on the N = (2, 0) or N = (0, 2) supersymmetry chirality of the dual 2d
SCFT.
We then decompose the 5d gamma matrices as

γm = Γm ⊗ σ3, γ3 = I2 ⊗ σ1, γ4 = I2 ⊗ σ2. (10.68)

with Γm = (−iσ2, σ3, σ1).
The analysis of the BPS equations is similar to the one in appendix D (or to the original of [227]).
Here again the spinor χ can be written as

χ = eV/2eisz

(
sin ξ

2

cos ξ2

)
, (10.69)



with s a constant. Notice that, as expected, the spinor is not constant on the spindle.
In the following we summarize the differential relations coming from the BPS equations

ξ′ − 2f(gW cos ξ + κe−V ) = 0

V ′ − 2

3
fgW sin ξ = 0

Σ′ +
2

3
fgΣ2 sin ξ ∂ΣW = 0

ϕ′ + 2fg sin ξ ∂ϕW = 0

φ′ +
fg

sin ξ
∂φW = 0

h′ − 2fh

3 sin ξ
(gW (1 + 2 cos2 ξ) + 3κe−V cot ξ) = 0,

(10.70)

where W is the superpotential defined in (10.58). Besides the first-order equations, there are also
two algebraic constraints that can be derived from the supersymmetry variations

sin ξ(s−Qz) = −h(gW cos ξ + κe−V )

gh∂φW cos ξ = ∂φQz sin ξ,
(10.71)

where Qz can be read from the supercovariant derivative Dµϵ = ∇µϵ− iQµϵ that appears in the
gravitino variation and for our model takes the form

Qz =
e2φ

4
DzΞ− ga(2). (10.72)

We can also reduce the differential system by observing that

h = keV sin(ξ) (10.73)

where k is an arbitrary constant that needs to be determined. Finally, we can take advantage of
the BPS equations to express the field strengths in terms of the scalar fields as

F
(0)
34 =

6κe−V + 4gW cos ξ − 4gΣ ∂ΣW cos ξ

3Σ2
,

F
(1)
34 =−2Σ

3

[
sinhϕ

(
g cos ξ

(
2W+Σ ∂ΣW

)
+ 3κe−V

)
+ 3g∂ϕW cos ξ coshϕ

]
,

F
(2)
34 =−2Σ

3

[
coshϕ

(
g cos ξ

(
2W+Σ ∂ΣW

)
+ 3κe−V

)
+ 3g∂ϕW cos ξ sinhϕ

]
.

(10.74)

10.4 Analysis at the poles

In this section we study the solutions of the BPS equations derived above and we show how to
obtain the 2d central charge from the pole analysis. The procedure follows the one originally
described in [227] and then applied in our previous chapter and in [221] for the case of the
conifold. We start by summarizing the BPS equations, the constraints and the Maxwell equations.
Then we derive the explicit expressions of the conserved charges and the magnetic fluxes. The



charge conservation imposes the constraints that allow us to fix the boundary conditions at the
poles for the scalars that enter in the calculation of the central charge. We then compute the
central charge from the Brown-Henneaux formula and discuss its relation with the calculation
done on the field theory side.
Before starting our analysis let us stress that, differently from the previous discussions, we
have not found from the pole analysis immediate reasons to exclude the possibility of having
solutions in the twist class. We will further comment on this issue in the next section where we
provide numeric and analytical solutions of the BPS equations.

10.4.1 Conserved charges and restriction to the poles

From the expressions of the fields strengths in (10.74) we can study the Maxwell equations using
the two conserved charges E1,2 in (10.63) and (10.64). In order to keep the hyperscalar φ(y) finite
we require that ∂φW |N,S = 0. This constraint gives rise to

kΣ|3N,S +
1

coshϕ|N,S − z sinhϕ|N,S
= 0 . (10.75)

Using (10.75) and the fact that E1 and E2 are conserved we found simpler expressions by working
with the following linear combinations

Q1|N,S = E1|N,S =
4

3
e2V |N,S

(
κ(sinh(ϕ|N,S)− z cosh(ϕ|N,S))

Σ|N,S
− zgeV |N,S cos(ξ|N,S)

)
,

Q2|N,S = E1|N,S − E2|N,S =
4κe2V |N,S

3Σ|N,S
(
2 sinh(ϕ|N,S)− zkΣ|3N,S

)
. (10.76)

At the north and at the south poles we have k sin ξ → 0. For non vanishing k this gives
cos ξN,S = (−1)tN,S with tN,S = 0 or tN,S = 1. Denoting the poles as yN,S we can work with
yN ≤ y ≤ yS . Furthermore

|h′|N,S = |k sin′ ξ|N,S =
1

nN,S
. (10.77)

This relation is due to the metric and to the deficit angles at the poles 2π
(
1− 1

nN,S

)
where

nN,S > 1. From the Z2 symmetry of the BPS equations acting on h, a(I), s,Qz and k we can
restrict to h ≥ 0 and k sin ξ ≥ 0. We have then k sin ξ ≥ 0 and this quantity is vanishing at the
poles, with a positive derivative at yN and a negative one at yS . Formally we introduce two
constants, lN = 0 and lS = 1 such that

k sin′ ξ|N,S =
(−1)lN,S

nN,S
. (10.78)

Then the cases (tN , tS) = (0, 0) and (1, 1) correspond to the twist while (tN , tS) = (1, 0) and
(0, 1) correspond to the anti-twist. The quantity (s−Qz) at the poles becomes

s−QZ |N,S =
1

2nN,S
(−1)tN,S+lN,S+1. (10.79)

Furthermore, the relation ∂φW |N,S = 0 imposes from the second relation in (10.71) that
∂φQz|N,S = 0. Another assumption (justified a posteriori by the numerical results) is that
is that ψ|N,S ̸= 0. Such assumption implies also that DzΞ|N,S = 0.



10.4.2 Fluxes

Here we introduce the magnetic fluxes for the reduction of this truncation on the spindle. This
will be necessary in order to find the constant k introduced in (10.73) in terms of the data of the
spindle. First we observe that

F (I)
yz = (a(I))′ =

(
I(I)

)′
with I(I) ≡ −keV cos ξ hI . (10.80)

At this point we need to define the fluxes starting from (10.80). Let us start by defining the
integer fluxes pI from the relations

pI
nNnS

=
1

2π

∫
Σ
gF (I) = gI(I)

∣∣S
N
. (10.81)

The magnetic charge associated with the R-symmetry is

−gnNnSI(2)|SN =
1

2

(
nS(−1)tN + nN (−1)tS

)
. (10.82)

This expression is quantized if nS(−1)tN + nN (−1)tS is even. Observe also that

I(0) + zkI(1) − kI(2) = 0 (10.83)

that implies also that the combination p0+zkp1−kp2 does not give rise to a conserved magnetic
flux. The last flux that we need to discuss is the one associated with the flavor symmetry. The
integer flavor flux is given by

pF = gnNnSI(1)|SN . (10.84)

It is important to observe that the relation p0 = k(zpF + p2) ∈ Z requires that for z ∈ Q \ Z we
have the further constraint zpF ∈ Z. Furthermore, we also found useful to use the substitution

tanh(ϕ) ≡ 1− δ

z
(10.85)

such that the charges evaluated at the poles simplify to

Q1N,S =
kδN,S((−1)lN,S − 2κknN,S(−1)tN,S )2

6zg2k3n3N,S
(10.86)

× (2κknN,S(δN,S − 1)δN,S − (−1)lN,S−tN,S ((δN,S − 1)2 − z2)),

Q2N,S =
kκ((−1)lN,S − 2κknN,S(−1)tN,S )2

3zg2k2n2N,S
(z2 − 1 + δN,S(4− 3δN,S)). (10.87)

It follows that we have three equations: the first one is (10.84), that after the substitution (10.85)
becomes

pF =
(δN − 1)nS(−1)−tN + nN (−1)−tS (δS − 1)− 2κknNnS(δN − δS)

2z
(10.88)



while the other two equations correspond to Q1|N = Q1|S , i.e.

(1 + 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
·
δSn

3
N

δNn3S
· 2κknS(−1)tS (δS − 1)δS + (δS − 1)2 − z2

2κknN (−1)tN (δN − 1)δN − (δN − 1)2 + z2
= (−1)tS+tN

and Q2|N = Q2|S , i.e.

n2N
n2S

· z2 − 1 + δS(4− 3δS)

z2 − 1 + δN (4− 3δN )
· (1 + 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
= 1 (10.89)

for the three variables, k, δS and δN . By solving these three equations we obtain then the
boundary conditions to impose for the scalars V, h, ϕ,Σ in terms of the integers nS , nN and pF
of the spindle for generic values of the parameters z ∈ Q and k = ±1 in both the twist and the
anti-twist class. The requirement of reality for these fields imposes further constraints on the
allowed values of the integers nS,N and pF . The only field that is not involved in this analysis is
the hyperscalar φ, that we are assuming as non vanishing at the poles.

10.4.3 Central charge from the pole data

Once the boundary data for δN,S and the constant k are specified we can read the central charge
of the putative 2d CFT from the pole analysis. The central charge is obtained from the formula

c2d =
3RAdS3

2G3
=

3

2G5
∆z

∫ yS

yN

eV (y)|f(y)h(y)|dy. (10.90)

The relation
eV (y)f(y)h(y) = − k

2κ
(e3V (y) cos ξ(y))′ (10.91)

implies that the central charge can be computed from the value of the fields at the poles that we
have computed above, without specifying the value of the hyperscalar. The consistency of this
analysis represents just a necessary condition for the existence of a solution. Nevertheless, when
a solution exists, the central charge computed here is the correct one.
In the conformal gauge the integrand in (10.90) is eV (y)|h(y)|, where we remove the absolute
value here and consider h(y) > 0 thanks to the symmetries of the BPS equations as discussed
above. The central charge becomes c2d = cS − cN where

cN,S =
3πkδN,S

2z2g3G5κk2

(
κk − (−1)lN,S−tN,S

2nN,S

)3

((δN,S − 1)2 − z2). (10.92)

The central charge in the case of the anti-twist is given by

cA.T.2d =
3πkκ((4p2F−n2

−)(2zpF (−1)tN+n−))(n−(16zpF (−1)tN+(z2+3)n−)+4(3z2+1)p2F
4g3G5n∗(8zpF (−1)tN n−(3n2++2n∗−4p2F )+16p2Fn∗+4n−n3−+z2(24p2Fn2+−48p4F+n2

2−))
.

where we have defined the auxiliary variables nSnN ≡ n∗, nS ± nN ≡ n±,
n2s ± n2N ≡ n2±, n

3
s ± n3N ≡ n3±. The central charge in the case of the twist is given by

cT.2d =
3πkκ(4p2F−n2

−)(2zpF (−1)tN+n−)(n+(16zpF (−1)tN+(z2+3)n+)+4(3z2+1)p2F )

4g3G5n∗(8zpF (−1)tN n+(3n3+−2n∗−4p2F )−16p2Fn∗+4n+n3++z2(24p2Fn2+−48p4F+n2
2−))

.



The five dimensional Newton constant can be read from the holographic dictionary. Indeed

from the general relation a4d =
πR3

AdS5
8G5

and from the explicit values of the central charge and of
the AdS5 radius, given by

a4d =
(g − 1)

(
(1− 9z2)k+

(
3z2 + 1

)3/2)
48kz2

, (10.93)

R3
AdS5

=
(1− 9z2)k+

(
3z2 + 1

)3/2
4z2

we can extract G5 = 3πk
2(g−1) . Substituting this expression in the 2d central charge computed

above we can then recover the result obtained from the field theory calculation in section 10.1.2.

Some comments are in order. First we have checked in many cases if the various constraints,
imposed by the quantization of the fluxes, by the reality condition on the scalars and by the
positivity of the central charge, are enough to exclude the existence of some solutions. While
in many cases the answer is affirmative, we have not been able to exclude whole families of
solutions. In general there are four main families of possible solutions, identified by the value
of k = ±1 and by the fact that they can be in the twist or in the anti-twist class. Anyway,
anticipating the results of next section, we have found solutions only in the anti-twist class for
k = −1.

10.5 The solution

In this section we obtain the AdS3 × Σ solution for the model discussed above. We separate
the analysis in two parts. In the first part we discuss the analytic solution for the universal
truncation. This corresponds to a further truncation of the model to the graviton sector. In this
case we found the explicit solution corresponding to the general one found in [22,200]. Similarly
to the cases discussed above and in [221, 227] in presence of hypermultiplets, here we found an
analytic solution only in the anti-twist class. Furthermore, we have found such solution only for
k = −1. We have also checked that the 2d central charge matches the general expectation

c2d =
4

3

a4d(nS − nN )
3

nNnS(n2N + nNnS + n2S)
. (10.94)

In the second part of this section we study the solution turning on a generic flux pF . In this case
we have obtained the solution numerically. Again we found solutions only in the anti-twist class
for k = −1 and for generic values of z.

10.5.1 Analytic solution for the graviton sector

Here we study the AdS3 × Σ solution by restricting to the graviton sector. This requires to fix
A(1) + ϵ∗A(2) = 0 (with ϵ∗ defined in (10.7)) and to identify A(R) = −A(2). This further fixes
2pF = ϵ∗(nS − nN ). We have found a solution in this case for the anti-twist class and k = −1
by fixing the scalars Σ(y), ϕ(y) and φ(y) at their AdS5 value (10.59). Observe that ϕN,S = ϕAdS5

and ΣN,S = ΣAdS5 when pF = ϵ∗(nS − nN )/2.



Before continuing the discussion a comment is in order. The choice of pF that allows to study
the universal twist is, for generic values of z, in contrast with the requirement that zpF is an
integer. The only cases that are allowed correspond to the ones that give rise to a rational exact
R-symmetry. In these cases a solution exists when (the even quantity) nS − nN gives rise to an
integer zpF . This analysis restricts the possible truncations to the graviton sector that can be
placed on the spindle. This is the counterpart of the field theory argument that we made after
formula (10.30). The discussion fits with similar ones appeared in the literature of the spindle
(see for example footnote 20 of [201] for an analogous behavior in the case of toric SE5). Having
this caveat in mind, the scalar functions V (y), f(y) and h(y) in (10.60) are

eV (y) =

√
y

W
, f(y) =

3

2W

√
y

q(y)
, h(y) =

c0
√
q(y)

4Wy
(10.95)

while the gauge field is

A(R) =

(
c0κ(a− y)

4y
− s

)
dz . (10.96)

We also found that

sin ξ(y) =

√
q(y)

2y3/2
, cos ξ(y) =

κ(3y − a)

2y3/2
(10.97)

with

q(y) = 4y3 − 9y2 + 6ay − a2 . (10.98)

The constants a and c0 are obtained from the solutions of the BPS equations at the poles. We
found

c0 =
2
(
n2N + nNnS + n2S

)
3nNnS (nN + nS)

(10.99)

while the constant a is

a =
(nN − nS)

2 (2nN + nS)
2 (nN + 2nS)

2

4
(
nNnS + n2N + n2S

)
3

. (10.100)

From here it follows that

yN =

(
−2n2N + nNnS + n2S

)2
4
(
n2N + nNnS + n2S

)2 , yS =
(nN − nS)

2 (nN + 2nS)
2

4
(
n2N + nNnS + n2S

)2 . (10.101)

The central charge becomes

c2d =
9π (nS − nN )

3

16G5W 3
critnNnS

(
n2N + nNnS + n2S

) . (10.102)

Using then a4d =
πR3

AdS5
8G5

and RAdS5 = 3
2Wcrit

we arrive at the expected universal result (10.94).



10.5.2 Numerical solution for generic pF

Here we look for more generic solutions of the BPS equations interpolating among the poles of
the spindle. From the analysis above we have observed that the only possible analytic solutions
(i.e. with pF = ϵ∗

2 (nS−nN )) are in the anti-twist class with k = −1. Here we search for numerical
solutions for a generic integer zpF . We have scanned over large regions of parameters and again
we have only found solutions with k = −1 in the anti-twist class.

The solutions are found along the lines of the analysis of [221, 227] and of our previous chapter.
First we specify the values of z, nS , nN and pF . Then we fix the initial conditions imposed by
the analysis at the poles. In this way we are left with one unknown initial condition for the
hyperscalar φ. Finding the initial condition of φ corresponds to find the solution for the BPS
equations on the spindle. There is just (up to the numerical approximation) a single value φS
(here we are fixing the south pole at yS = 0) that allows to integrate the BPS equation giving rise
to a finite spindle in the y direction. Once this value is found a good sanity check consists of
running the numerics until 2∆y, that corresponds to solve the BPS equations from the north to
the south pole as well. We have scanned over various values of the parameters and here we
present some of the solutions that we found.

nS nN pF z φS φN ∆y

1 3 0 2 −0.285076 −0.274493 1.83241

1 7 −1 2 −0.172372 −0.170589 2.39707

1 3 0 3 −0.555814 −0.542721 1.82303

1 5 −1 3 −0.300428 −0.300346 2.16012

1 9 3 1
3 0.463989 0.363277 2.57446

1 5 0 1
3 0.126802 0.124497 2.16392

1 7 2 1
2 0.484886 0.347516 2.3322

3 7 0 1
2 0.104192 0.103447 1.74866

(10.103)

In each case we have fixed k = −1 and chosen κ = 1 (corresponding to the choice nN > nS).
The explicit solutions are plot in figure 10.1. Observe that the solutions for the cases at pF = 0
do not correspond to the universal twist (at least for z ̸= 0).

The cases at pF = 0 correspond to a twist along a trial R-symmetry, obtained from a linear
combination (with irrational coefficients) of the (irrational) exact R-symmetry and the flavor
symmetry.
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Conclusions

This thesis collects the results on holographic black objects obtained during the three years of
doctoral studies. It is focused on recent frontiers in the framework of the AdS/CFT correspon-
dence, investigating both sides of the duality.

A first example is the analysis of the saddle-point expansion in the Cardy-like limit of the index
of different superconformal field theories presented in the second part. This can be a tool for
shedding some light on the dual gravitational interpretation of the expansion, in terms both of
black hole solutions and of quantum corrections to the entropy.
The remainder of the work has been devoted to the study of extremization problems in hologra-
phy. An important case is represented by the extremization procedure performed on the field
theory side that allows to extract the entropy of the dual black hole from the superconformal
index, which has a counterpart in the attractor mechanism in supergravity. Other interesting
instances come from the compactification of superconformal field theories on curved spaces,
which allows to define new interacting fixed points in lower dimensions. The c-extremization
procedure performed in field theory to derive the central charge of the lower-dimensional theory
has a gravitational counterpart in the flow across dimensions. When the original theory is
compactified on an orbifold, e.g. a spindle, instead of a manifold, this mechanism exhibits new
peculiar features.

We conclude by presenting a recapitulation of the various topics covered in the thesis and
addressing some possible further directions of research.

In the first part of chapter 5 we have studied the superconformal index of 4d N = 4 USp(2Nc)
and SO(Nc) SYM from a matrix model perspective. We have focused on the Cardy-like limit
of the index. Both in the symplectic and orthogonal case we have found that the index is
dominated by a saddle point solution which we identify, reducing the calculation to a matrix
integral of a pure Chern–Simons theory on the three-sphere. We have further computed the
subleading logarithmic corrections, which are of the order of the center of the gauge group. In
the USp(2Nc) case we have also studied other subleading saddles of the matrix integral. Finally,
we have discussed the case of the Leigh–Strassler fixed point with SU(Nc) gauge group, and we
have computed the entropy of the dual black hole from the Legendre transform of the entropy
function.
There are some open questions that should be further explored. First, the analysis for the
orthogonal gauge group has been carried on in [117], where the relation with the USp(2Nc)



case is also discussed. Moreover, it should be possible to apply the analysis of [101] to classify
the saddle-point solutions of the USp(2Nc) case via its center symmetry, and to relate them to
the massive and Coulomb vacua of N = 1∗ USp(2Nc) SYM on R3 × S1 [248–253]. This can be
helpful also for the analysis of the SCI for both orthogonal and symplectic gauge group from the
BAE approach of [12, 80]. This analysis should provide a useful check of our results. Another
open question regards the identification of the holographic dual to the finite-order logarithmic
corrections we found. It would be very interesting to obtain this result from the supergravity
side. The problem is very similar to the 3d one recently discussed in [111].

For what concerns the second part of chapter 5, we have studied the Cardy-like limit of the
superconformal index of generic N = 1 SCFTs with ABCD gauge algebra, providing strong
evidence for a universal formula that captures the behavior of the index at finite order in the rank
and in the fugacities associated with angular momenta, anticipating the results of [112] from
the second sheet. The formula extends previous results valid at lowest order, and generalizes
them to generic SCFTs. We have corroborated the validity of our proposal by studying several
examples, beyond the well-understood toric class. We have computed the index also for models
without a weakly-coupled gravity dual, whose gravitational anomaly is not of order one.
We have left open some questions that may deserve a further analysis. First, the validity of
our formula (5.80) has been claimed (and checked) only for non-exceptional gauge algebras, i.e.
the ABCD cases. In the exceptional EFG cases we did not make any claim because we are not
aware of an exact evaluation of the three-sphere partition function for the associated 3d pure
CS theory at level −ηT (G). (For some results in this direction see [121–124].) Once this integral
is performed we expect our result (5.80) to hold in general for all semi-simple gauge algebras.
Another obvious extension of the result consists in finding the generalization of (5.80) to the
case where σ ̸= τ , so as to fully extend the result of [78] to finite order in both angular momenta.
Further investigations should be performed to obtain a general analysis of the saddle point
equations as well. Here we have observed through a case-by-case analysis that the number of
solutions (leading to the dominant contribution to the index at η = ±1) is equal to the logarithm
of the minimal value among the sums of the charges of each matter field under the centers of
the factors of the product gauge group (or, more formally, to the order of the character lattice of
the gauge algebra modulo the action of the Weyl symmetry). It would be desirable to have a
proof of such a statement. (For recent progress in this direction see [104].) Furthermore we did
not investigate other subleading solutions, such as the C-center ones discussed in [106], and a
general analysis of the subleading structure of the index would be certainly an interesting subject.

In chapter 7 we have studied the entropy function for a conjectured BPS Kerr-Newman black
hole originating from the 5d truncation of the LS fixed point proposed in [187]. After an oppor-
tune local rotation on the Killing prepotential and a generalization of the KK ansatz we have
obtained the entropy function and we have matched such results from the one expected on the
field theory side. It should be interesting to apply the procedure of [105] to other consistent
truncation with a dual interpretation in order to validate the results obtained from the field
theory side. For example the truncation of the LS fixed point discussed in [226] is very inter-
esting because it involves two massless vectors, i.e. the full global symmetry is visible in such
a truncation. Such truncation has however a non abelian gauging and a further truncation is
needed to get an abelian gauging in order to study it in the formalism of [105]. It should be



interesting to recast such a truncation in the language of [146] and then apply the procedure
discussed here in order to obtain an entropy function from supergravity matching the one with
the global symmetry turned on. It would be also interesting to investigate on the possible
interpretation of the flow relating the UV and the IR fixed points studied in [187] after the KK
reduction (see also related ideas in [254], where a field theoretical interpretation of the flow
across dimensions has been proposed). Another interesting open question regards the analysis
of higher derivatives corrections, in order to reproduce similar corrections depending on the
gravitational anomaly, obtained from the field theory side (see [255, 256]). A last comment
regards the difficulties of finding truncations where the conjecture, motivated by the index
calculation, on the existence of 5d rotating black holes can be tested from the gravity side. The
role played by the 5d Chern–Simons in the entropy function suggests that a universal behavior is
possible. It would be worth to deeply explore such universality directly from the 10d perspective.

In chapter 9 we studied a supersymmetric AdS3 × Σ asymptotic to the AdS5 N = 2 truncation
of the conifold with a Betti vector multiplet found in [225]. The model consists of gauged super-
gravity with two vector multiplets and two hypermultiplets. The vector fields gauge a subgroup
of the quaternionic manifold and one gauge field becomes massive via Higgs mechanism. In the
low energy spectrum there are then two massless fields, the graviphoton and the Betti vector.
One is associated with the R-symmetry and the other one with the baryonic symmetry of the
dual Klebanov-Witten field theory. When this model is compactified on the spindle many of the
scalars in the hypermultiplet can be further truncated. A crucial aspect of this compactification
is that we need to include some of the scalars from the hypermultiplet in the analysis. After a
suitable ansatz on the dependence of the spindle coordinates from the scalar fields, we have
computed the BPS and the gauge fields equations. This has helped us in discussing the properly
quantized fluxes through the spindle. We have shown that the analysis of the fluxes can be
performed by studying the BPS equations at the poles of the spindle and that this analysis, in the
conformal gauge (9.19), fixes the proper boundary conditions for all the scalars except the ones
in the hypermultiplet. Furthermore thanks to this analysis it has been possible to compute the
central charge of the would be AdS3 solution from the Brown–Henneaux formula. By inspection
we have observed that only the anti-twist class is consistent with the unitarity bound requiring
a positive central charge. This analysis is however not enough to claim the existence of the AdS3
solution and for this reason it is necessary to solve the BPS equations explicitly from the north to
the south pole of the spindle. By turning off the baryonic magnetic charge we have observed
that the universal solution of [22] is recovered. Furthermore we have provided a numerical
analysis for the case with the magnetic baryonic charge turned on. In the numerical analysis we
have first imposed the boundary conditions obtained from the analysis of the BPS equations at
the north pole. Then we have scanned the boundary value of the scalar in the hypermultiplet
that we cannot turn off. Solving the BPS equations for various initial data we have looked for the
unique solution corresponding to the existence of a compact spindle. Once this value has been
found we have checked that indeed the other fields take the value expected from the analysis of
the pole data at the south pole, where this last value has been extracted numerically. We have
eventually compared our general expression of central charge for the anti-twist with the one
obtained in [201, 218] from the dual field theory, restricted to the baryonic anti-twist, and we
have found an exact agreement.
Many interesting directions in the study of supergravity truncations on the spindle deserve



further investigation. For example one can study other consistent 5d N = 2 truncations with
vector multiplets and hypermultiplets where an holographic dual field theory is available.
Another interesting aspect discussed in [227] consists of reformulating the BPS equations in a
d = 4 Janus form in order to interpret the conserved charges from a different perspective. We
expect that similar results can be provided for our model as well. A more complicated question
regards the interpretation of the solutions found here from a flow across dimensions along the
radial direction. This requires a modification of the ansatz (9.17) and requires to solve the BPS
equations also for the radial profiles of the scalars. Finding such solutions is a necessary step to
obtain a supergravity attractor mechanism dual to c-extremization on the spindle.

In chapter 10 we studied the reduction of the consistent truncations found in [241] on the spindle.
These truncations are associated with M5-branes wrapping holomorphic curves in a CY3 and
the dual field theories have been obtained in [223, 240]. Using these results we matched the 2d
central charge obtained from the field theoretical analysis with the one predicted in gauged
supergravity from the analysis at the poles of the spindle. We have also studied the full solution,
showing its existence for consistent choices of the parameters, analytically for the universal
anti-twist and numerically after including the magnetic charge of the flavor symmetry.
There are many interesting aspects that we did not investigate. A first open question regards
the uplift of our solutions to 7d and 11d supergravity. An interesting limit corresponds to set
z = ±1 and consider pF = 2z

(
q − 1

4(nS − nN )
)
. In this case we reproduce the results obtained

in [202] for the N = 2 Maldacena-Nuñez theory. Observe that the matching works when pF and
(nS − nN )/2 have the same parity. Another open question regards the existence of solutions
for k = 1 and |z| > 1 in both the twist and the anti-twist class and for k = −1 in the twist class.
Even if we have not been able to exclude these possibilities (for generic values of z) we have not
found any solution of this type neither in the analytical nor in the numerical analysis carried out
in section 10.5. Nevertheless we observe that by choosing z = 0 we can simplify the problem
(for k = −1) and we obtain results similar to the one studied in the previous chapter. This limit
corresponds to the N = 1 Maldacena-Nuñez theory and in this case the pole analysis completely
excludes the existence of solutions in the twist class. The reason is that in this case we can impose
further reality constraints on the conserved charges against the existence of such solutions. Our
analysis has been performed at leading order in N , i.e. the central charge here is scales with
N3. There is a subleading contribution of order N , proportional to the gravitational anomaly
of the SCFT, that we have computed from the field theoretical side. It would be interesting
to match this contribution from the holographic analysis. A similar calculation was carried
out for the case of the topological twist in [257]. It would also be interesting to consider M5
branes wrapping other geometries. For example by considering a disc, an holographic dual
of an N = 2 SCFT of AD type was proposed in [258–260] (see also [212]). As then observed
in [261, 262] indeed the disc and spindle geometries are different global completions of the same
local solution. Finally, it would be possible to study the models discussed here from the 11d
perspective along the lines of the recent discussions of [263–266] from the theory of equivariant
localization.
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Appendix A

Pure Chern–Simons three-sphere partition function

Here we collect some results on the calculation of three-sphere partition functions for the pure
Chern-Simons theories encountered in the main text.

A.1 USp(2Nc)

Pick two complexes ω1, ω2 in the upper half-plane and define ω ≡ 1
2(ω1 + ω2). When localizing

on the squashed three-sphere S3
b with one squashing parameter b (to preserve N = 2 supersym-

metry in three dimensions), we set ω1 = ib, ω2 =
i
b ; therefore ω1ω2 = −1 and ω = i

2(b+
1
b ). For

the round three-sphere, which we will focus on hereafter, ω1 = ω2 = ω = i. The localization
procedure produces hyperbolic Gamma functions

Γh(z;ω1, ω2) ≡
∞∏

m,n=1

(n+ 1)ω1 + (m+ 1)ω2 − z

nω1 +mω2
(A.1)

from the one-loop determinants for the vector (and matter) multiplets. Then the partition
function of pure CS theory (i.e. without matter) with gauge group USp(2Nc)k and CS level
k = t

2 is given by a matrix integral JNc,0,t which has been studied in the mathematical literature.
The exact evaluation is given by [267, Prop. 5.3.18]:

JNc,0,t ≡
1

2NcNc!

∫ ∏Nc
j=1 dσi c(2t

∑Nc
j=1 σ

2
j )∏

1≤i<j≤Nc
Γh(±σi ± σj)

∏Nc
j=1 Γh(±σj)

(A.2)

=
e
(
− (2+sign(t))Nc

8

)
(t sign(t))

Nc
2

c

(
−Nc(Nc + 1)(2Nc + 1)(ω2

1 + ω2
2)

3t

)

·
∏

1≤i<j≤Nc

4 sin

(
π(i± j)

t

) Nc∏
j=1

2 sin

(
2πj

t

)
, (A.3)

where
c(z) ≡ e

πiz
2ω1ω2 , e(z) ≡ e2πiz . (A.4)

From (5.31) we see that in our case 2k = t = 2η(Nc + 1) with η = ±1; thus

∏
1≤i<j≤Nc

4 sin

(
π(i± j)

2η(Nc + 1)

) Nc∏
j=1

2 sin

(
2πj

2η(Nc + 1)

)
(A.5)



evaluates to
e−

iπ
2
(N2

c−Nc)(2(Nc + 1))
Nc
2 (sign(η))N

2
c . (A.6)

Notice that this evaluation is nontrivial, so it is interesting to observe that for the nongeneric
value of 2k = t extracted from the 4d calculation it can be carried out explicitly. For other values
of t one may use the (large-Nc) topological string techniques of [268] to evaluate ZUSp(2Nc)k

S3 .
Alternatively, one can work with standard trigonometric functions by exploiting the relation [269,
Eq. (A.18)]

1

Γh(±x)
= −4 sin

(
πx

ω1

)
sin

(
πx

ω2

)
= −4 sinh(±πx) . (A.7)

Substituting it back into the integrand of (A.2) we gain a factor of eiπN
2
c . When the dust settles

we are left with:

Z
USp(2Nc)η(Nc+1)

S3 ≡ eiπN
2
c

2NcNc!

∫ Nc∏
j=1

dσje
−2ηπi(Nc+1)σ2

j (4 sinh(±πσj))

·
∏

1≤i<j≤Nc

4 sinh(π(±σi ± σj))

= eiπN
2
c− 5

12
iπηNc(2Nc+1) . (A.8)

A.2 SO(Nc)

Here we evaluate the (round) three-sphere partition function of pure CS theory with gauge
group SO(Nc)k.
The partition function ZSO(2Nc+1)k

S3
b

of the SO(2Nc + 1)k pure CS theory on the squashed sphere
is given by the integral

Z
SO(2Nc+1)k
S3
b

≡ 1

2NcNc!

∫ ∏Nc
j=1 dσi e

iπkσ2
j

ω1ω2∏Nc
i<j Γh(±σi ± σj)

∏Nc
i=1 Γh(±σi)

. (A.9)

In the even ZSO(2Nc)k
S3
b

case, the integral reads instead:

Z
SO(2Nc)k
S3
b

≡ 1

2Nc−1Nc!

∫ ∏Nc
j=1 dσi e

iπkσ2
j

ω1ω2∏Nc
i<j Γh(±σi ± σj)

. (A.10)

(In both cases, the dependence on b is through ω1, ω2.)

We start our analysis by computing the integral (A.9) with k > 0. The key formula in order to
compute such integral is the generalization of the Weyl character formula for the BNc algebra,



that is

det

{
2 sin

(
π(2j − 1)σℓ

z

)}
1≤j,ℓ≤Nc

(A.11)

=
∏

1≤j<ℓ≤Nc

4 sin

(
π(σj ± σℓ)

z

) Nc∏
j=1

2 sin
(πσj
z

)
.

Upon using the first relation in (A.7), the integrand of (A.9) becomes

∏Nc
j=1 e

iπkσ2
j

ω1ω2∏
1≤j<ℓ≤Nc

Γh(±σj ± σℓ)
∏Nc
j=1 Γh(±σj)

(A.12)

=

2∏
a=1

det

{
π(2j − 1)σℓ

ωa

}
1≤j,ℓ≤Nc

e
−

iπk
∑Nc

j=1
σ2
j

ω1ω2 .

We further simplify the integral using the relation [267, Eq. (5.3.20)], i.e.

∫
det{fj(σℓ)}1≤j,ℓ≤Nc det{gj(σℓ)}1≤j,ℓ≤Nc

Nc∏
ℓ=1

h(σℓ)dσℓ =

Nc! det

{∫
fj(σ)gℓ(σ)h(σ)dσ

}
1≤j,ℓ≤Nc

. (A.13)

The last integral in (A.13) can be explicitly computed:∫
sin

(
π(2j − 1)σ

ω1

)
sin

(
π(2ℓ− 1)σ

ω2

)
e

iπkσ2

ω1ω2 = (A.14)

2

√
ω1ω2

ik
e
− iπ((2j−1)2ω2

1+(2ℓ−1)2ω2
2)

2kω1ω2 sin

(
π(2j − 1)(2ℓ− 1)

2k

)
.

By further using the relation

det

{
2 sin

(
π(2j − 1)ℓ

2k

)}
1≤j<ℓ≤Nc

(A.15)

=
∏

1≤j<ℓ≤Nc

4 sin

(
π(j ± ℓ)

2k

) Nc∏
j=1

2 sin

(
πj

2k

)

we can compute (A.9), which gives

Z
SO(2Nc+1)k>0

S3
b

=
e
− iπNc(4N

2
c−1)(ω2

1+ω2
2)

12kω1ω2
− 3iπNc

4

kNc/2
(A.16)

·
∏

1≤j<ℓ≤Nc

4 sin

(
π(j + ℓ− 1)

k

)
sin

(
π(j − ℓ)

k

) Nc∏
j=1

2 sin

(
π(2j − 1)

2k

)
.



An analogous computation can be performed in the case of k < 0, obtaining

Z
SO(2Nc+1)k<0

S3
b

=
e
− iπNc(4N

2
c−1)(ω2

1+ω2
2)

12kω1ω2
− iπNc

4

(−k)Nc/2
(A.17)

·
∏

1≤j<ℓ≤Nc

4 sin

(
π(j + ℓ− 1)

k

)
sin

(
π(j − ℓ)

k

) Nc∏
j=1

2 sin

(
π(2j − 1)

2k

)
.

Fixing k = −η(2Nc − 1) and ω1 = ω2 = i, and substituting (A.7) into the integrand of (A.9), the
partition function evaluates to

Z
SO(2Nc+1)−η(2Nc−1)

S3 = 2 e
5iπηNc

12
(2Nc+1)+iπN2

c . (A.18)

An analogous computation can be performed for SO(2Nc)k. In this case the generalized Weyl
character formula for the DNc algebra is

1

2
det

{
2 cos

π(2j − 1)σℓ
z

}
1≤j,ℓ≤Nc

(A.19)

=
∏

1≤j<ℓ≤Nc

4 sin

(
π(σj ± σℓ)

z

)
.

By following the steps discussed above the computation is straightforward, and we obtain

Z
SO(2Nc)k
S3
b

=
e−

iπNc
4

(2−sign(k))

|k|Nc/2
c

(
−Nc(Nc − 1)(2Nc − 1)(ω2

1 + ω2
2)

3k

)
·

∏
1≤j<ℓ<Nc

4 sin

(
π(j + ℓ− 2

|k|

)
sin

(
π(j − ℓ)

|k|

)
. (A.20)

In this case for k = −2η(Nc− 1), ω1 = ω2 = i, and substituting (A.7) into the integrand of (A.10),
we have:

Z
SO(2Nc)−2η(Nc−1)

S3 = 2 e
5iπηNc

12
(2Nc−1)+iπ(N2

c−Nc) . (A.21)



Appendix B

Revisiting Kaluza–Klein reduction

In this appendix we revisit the Kaluza–Klein reduction from the 5d Lagrangian (6.62) to the
4d one (6.61). Our analysis generalizes the one performed in the appendix D of [105], giving
a recipe that allows to construct a 4d Lagrangian in the formalism of [13, 105] starting from a
5d Lagrangian written in generic conventions. As remarked in chapter 7, such an analysis has
been necessary in our case in order to obtain a 4d Lagrangian suitable for the computation of
the AdS2 attractor in the formalism of [18].

We start from a 5d theory with nV vector multiplets and nH hypermultiplets and we indicate
with an hat the fields that live in five dimensions. We use indices

I, J = 1, . . . , nV + 1, Λ,Σ = 0, . . . , nV + 1, u, v = 1, . . . , 4nH , (B.1)
µ, ν = 1, . . . , 4, M,N = 0, . . . , 4. (B.2)

and we put hats on the five-dimensional quantities. We indicate the 5d vector fields as ÂIM .
We reduce the five-dimensional theory on a circle, using the following KK ansatz [192]:

dŝ2 = e2αϕ̃ds2 + e2βϕ̃(dy −A0)2,

hI = −k e2αϕ̃zI2 ,
ÂIM =

(
AIµ − c zI1A

0
µ, c z

I
1 + ξI

)
,

(B.3)

where α, β, c and k are constants, y is the direction of the circular fiber with range 4π/g, A0 is
the KK vector and ξI are flat gauge connections. All the fields are independent of y. We are
using the notation

zI1 ≡ Re zI , zI2 ≡ Im zI . (B.4)

Notice that in the last line of (B.3) we are also performing a Scherk–Schwarz twist [13, 105, 193,
194]. This is necessary to satisfy the 4d BPS equations and it will bring the extra Killing vector in
the 4d theory.

Because of the constraint V(h) = 1 in (6.26), the field ϕ̃ is redundant:

e−6αϕ̃ = −k3CIJKzI2zJ2 zK2 . (B.5)

We will use this relation during the computation.



We can fix the first constant by requiring that the dimensionally-reduced Lagrangian is of the
Einstein–Hilbert form L = −1

2eR+ . . . In fact, the five-dimensional Ricci scalar reduces to

R̂ = e−2αϕ̃
(
R− 6α2∂µϕ̃ ∂

µϕ̃− 1

4
e−6αϕ̃F 0

µνF
0µν
)
+ total derivatives (B.6)

and the determinant of the metric gives

ê = e(β+4α)ϕ̃ e. (B.7)

Therefore, we have to impose β = −2α.
We can thus rewrite the 5d metric and its inverse as

ĝMN =

(
e2αϕ̃gµν + e−4αϕ̃A0

µA
0
ν −e−4αϕ̃A0

µ

−e−4αϕ̃A0
ν e−4αϕ̃

)
,

ĝMN =

(
e−2αϕ̃gµν e−2αϕ̃A0µ

e−2αϕ̃A0ν e4αϕ̃ + e−2αϕ̃A0
ρA

0ρ

)
,

ê = e2αϕ̃e. (B.8)

The reduction of the Einstein term follows from (B.6) and (B.7):

L̂1 =
êR̂

2
= e

(
R

2
− 3α2∂µϕ̃ ∂

µϕ̃− e−6αϕ̃

8
F 0
µνF

0µν

)
+ total derivatives. (B.9)

The reduction of the kinetic term of the scalars in the vector multiplet gives

L̂2 = −ê 1
2
gxy ∂Mϕ

x ∂Mϕy = −3

4
e aIJ ĝ

MN∂Mh
I∂Nh

J (B.10)

= −3k2

4
e aIJ g

µν∂µ
(
e2αϕ̃zI2

)
∂ν
(
e2αϕ̃zJ2

)
= e

[
−3k2

4
e4αϕ̃aIJ ∂µz

I
2 ∂

µzJ2 + 3α2 ∂µϕ̃∂
µϕ̃
]
,

where in the first line we used the relations (6.27) and (6.29), and the simplifications in the last
line occur due to (6.30), which implies

hI ∂µ
[
hI(ϕ)

]
= hI ∂xh

I∂µϕ
x = 0, (B.11)

giving the condition on the 4d scalars

2α∂µϕ̃ z
I
2 + ∂µz

I
2 = 0. (B.12)

Notice that the last term in L̂2 exactly cancels the second term in L̂1. For simplicity we fix
α = 1.
The reduction of the kinetic term of the scalars in the hypermultiplet gives

L̂3 = −ê 1
2
gXY ĝ

MN D̂Mq
X D̂Nq

Y (B.13)

= e
[
−1

2
gXYDµq

XDµqY − 1

2
e6ϕ̃g2(kX0 + c zI1k

X
I )gXY (k

Y
0 + c zJ1 k

Y
J )
]
,



where D̂Mq
X is the 4d covariant derivative defined in (6.57), while

Dµq
X = ∂µq

X + g AIµk
X
I + g A0

µξ
IkXI = ∂µq

X + g AΛ
µk

X
Λ (B.14)

is the 4d covariant derivative, which contains the extra Killing vector defined as

kX0 := ξIkXI . (B.15)

The reduction of the gauge kinetic term gives

L̂4 = −e 1
4
aIJ F̂

I
MN F̂

J MN (B.16)

= e
[
−1
4
e−2ϕ̃aIJ(F

I
µν−c zI1F 0

µν)(F
Jµν−c zJ1 F 0µν)− c2

2
e4ϕ̃aIJ ∂µz

I
1 ∂

µzJ1

]
,

where F̂MN and Fµν are the 5d and 4d field strengths. The first one can be obtained from the 5d
vector fields in (B.3), i.e.

ÂI = AI − c zI1A
0 + (c zI1 + ξI)dy. (B.17)

Thus
F̂ I = dÂI = F I − c dzI1 ∧A0 − c zI1F

0 + c dzI1 ∧ dy, (B.18)

from which we can read off the components

F̂ Iµ4 = −F̂ I4µ = c ∂µz
I
1 , (B.19)

F̂ Iµν = F Iµν − c zI1F
0
µν + cA0

µ∂νz
I
1 − cA0

ν∂µz
I
1 .

To perform the reduction of the Chern–Simons term it is convenient to extend the geometry
(B.3) to a 6d bulk having the original 5d space as boundary. This can be obtained by extending
the circle parametrized by the y coordinate to a unit disk with radius ρ ∈ [0, 1] and the 5d
connections ÂI in (B.3) to the following 6d ones:

ÃI = AI + ξIA0 + ρ2(zI1 + ξI)(dy −A0). (B.20)

We can thus rewrite the Chern–Simons action term as∫
5d

L̂5 =

∫
5d

2

3
√
6
CIJK F̂

I ∧ F̂ J ∧ ÂK =

∫
6d

2

3
√
6
CIJK F̃

I ∧ F̃ J ∧ F̃K , (B.21)

with F̃ I = dÃI . Integrating over dρ2 ∧ (dy −A0) we can extract the 4d Lagrangian:

L̂5 =
1

2
√
6
CIJKϵ

µνρσ
[
(c zI1 + ξI)F JµνF

K
ρσ − (c2 zI1z

J
1 − ξIξJ)FKµνF

0
ρσ

+
c3 zI1z

J
1 z

K
1 + ξIξJξK

3
F 0
µνF

0
ρσ

]
. (B.22)

Finally, the reduction of the scalar potential gives

L̂6 = −ê g2
[
P rI P

r
J

(
3gxy∂xh

I∂yh
J − 4hIhJ

)
+

3

4
gXY k

X
I k

Y
J h

IhJ
]

(B.23)

= −e2ϕ̃ e g2
[
P rI P

r
J

(
3gxy∂xh

I∂yh
J−4k2 e4ϕ̃zI2z

J
2

)
+
3k2

4
e4ϕ̃gXY k

X
I k

Y
J z

I
2z
J
2

]
.



We now rearrange the various pieces of the reduced Lagrangian to reproduce the general form
of 4d N = 2 gauged supergravity with nV + 1 vector multiplets and nH hypermultiplets in
(6.61).
The Einstein term descends from L̂1:

L1 =
eR

2
. (B.24)

The kinetic term of the scalars in the vector multiplet receives contributions from L̂2 and L̂4:

L2 = −e e4ϕ̃aIJ
(
−3k2

4
∂µz

I
2 ∂

µzJ2 +
c2

2
∂µz

I
1 ∂

µzJ1

)
= −eGIJ̄ ∂µzI ∂µz̄J̄ , (B.25)

where we defined the Hermitian metric

GIJ̄ :=
3k2

4
e4ϕ̃aIJ̄ . (B.26)

Notice that this recasting imposes a constraint between the parameters of the KK ansatz in (B.3),
which we can fix as

c =

√
3

2
k. (B.27)

The kinetic term of the scalars in the hypermultiplet is contained in L̂3,

L3 = −e
2
gXYDµq

X DµqY , (B.28)

where the covariant derivative Dµq
u is defined in (B.14) and (B.15).

The scalar potential receives contributions from L̂3 and L̂6:

L6 = e−2ϕ̃ g2
[
P rI P

r
J

(
3e2ϕ̃gxy∂xh

I∂yh
J − 4k2e6ϕ̃zI2z

J
2

)
(B.29)

+ e6ϕ̃gXY
(3k2

4
kXI k

Y
J z

I
2z
J
2 +

1

2
(kX0 + c zI1k

X
I )(kY0 + c zJ1 k

Y
J )
)]
.

If we impose the constraint (B.27) and we fix

k =

√
2

3
, (B.30)

the second line of (B.29) can be rewritten as

1

2
e6ϕ̃gXY k

X
Λ k

Y
ΣX

ΛX̄Σ, (B.31)

in which we are using special coordinates zI = XI/X0 in the Kähler frame |X0|2 = 1. (Recall
that the indices Λ,Σ run over 0 and then the values of I, J .) We will rearrange the first part of
the scalar potential in a few lines.
Instead, we now focus on the gauge kinetic term, that gets contributions from L̂1 and L̂4:

L4 = −e e
−6ϕ̃

8

[
F oµνF

0µν + 4GIJ
(
F Iµν − zI1F

0
µν

)(
F J µν − zJ1 F

0µν
)]

=
e

8
ImNΛΣ F

Λ
µνF

Σµν . (B.32)



In the last line we recast the field-dependent pieces in the matrix

ImNΛΣ = −e−6ϕ̃

(
1 + 4GMNz

M
1 zN1 −4GMJz

M
1

−4GIMz
M
1 4GIJ

)
, (B.33)

which we will show later to be actually the imaginary part of the period matrix that descends
from a proper prepotential.
Finally, we can rewrite L̂5 as

L5 = L̂5 =
1

12
√
6

ReNΛΣϵ
µνρσFΛ

µνF
Σ
ρσ, (B.34)

where

ReNΛΣ =
4

3
√
6

(
2CKLM

(
zK1 z

L
1 z

M
1 + ξKξLξM

)
−3CJKL

(
zK1 z

L
1 − ξKξL

)
−3CIKL

(
zK1 z

L
1 − ξKξL

)
6CIJK

(
zK1 + ξK

) )
. (B.35)

We now show that GIJ̄ and NΛΣ come from the following prepotential:

F (X) =
4

3
√
6
CIJK

X̌IX̌JX̌K

X0
with X̌I ≡ XI + ξIX0 (B.36)

=
4

3
√
6
CIJK

(
XIXJXK

X0
+3 ξIXJXK+3 ξIξJXKX0+2 ξIξJξK(X0)2

)
.

Using special coordinates zI = XI/X0, in the Kähler frame |X0|2 = 1, the Kähler potential (6.19)
becomes

K = − log

(
− 32

3
√
6
CIJKz

I
2z
J
2 z

K
2

)
= − log

(
8e−6ϕ̃

)
. (B.37)

from which one can derive the Kähler metric (6.10)

Giȷ̄ =

√
2

3
e6ϕ̃
(
CIJKz

K
2 +

√
2

3
e6ϕ̃CIKLCJMNz

K
2 z

L
2 z

M
2 zN2

)
= 8

√
2

3
eK
(
CIJKz

K
2 + 8

√
2

3
eKCIKLCJMNz

K
2 z

L
2 z

M
2 zN2

)
,

(B.38)

that corresponds to (B.26) with (B.30).
On the other hand, from the prepotential (B.36) we obtain

FΛΣ =
4

3
√
6

(
2CKLM

(
zKzLzM + ξKξLξM

)
−3CJKL

(
zKzL − ξKξL

)
−3CIKL

(
zKzL − ξKξL

)
6CIJK

(
zK + ξK

) )
, (B.39)

from which we can derive the period matrix (6.25), whose real and imaginary parts are in
agreement with (B.35) and (B.33). In the computation of the period matrix we used the following
relations:

(X0)−2XΛ(ImFΛΣ)X
Σ =

8

3
√
6
CIJK

(
Im(zIzJzK)− 3zI Im(zJzK) + 3zIzJ Im(zK)

)
= − 32

3
√
6
CIJKz

I
2z
J
2 z

K
2 = 8e−6ϕ̃ = e−K, (B.40)



(X0)−1(ImFIΣ)X
Σ =

8i√
6
CIKLz

K
2 z

L
2 , (B.41)

(X0)−1(ImF0Σ)X
Σ = 2e−6ϕ̃ − 8i√

6
CIJKz

I
1z
J
2 z

K
2 , (B.42)

CIKLCJMNz
K
2 z

L
2 z

M
2 zN2 =

√
3

2
e−6ϕ̃

(√3

2
e−6ϕ̃GIJ − CIJKz

K
2

)
. (B.43)

Finally, we return to the 4d scalar potential in (B.29). To manipulate its first line, we notice that

(
ImN

)−1|ΛΣ
= −2eK

(
4 4 zK1

4 zJ1 4 zJ1 z
K
1 +GJK

)
, (B.44)

and thus (
ImN

)−1|ΛΣ
+ 8 eKX(ΛX̄Σ) = −2 eK

(
0 0
0 GIJ − 4 zI2z

J
2

)
. (B.45)

Using this last relation, the scalar potential becomes

L6=−eg2
[
−P̃ rΛP̃ rΣ

((
ImN

)−1|ΛΣ
+8 eKXΛX̄Σ

)
+4 eKhuvk

u
Λk

v
ΣX

ΛX̄Σ
]
, (B.46)

where P̃ rΛ = 2P rΛ
1.

Notice that we cannot extract P⃗0 directly from the potential, because it is multiplied by the null
components of the matrix in (B.45). Nevertheless, being related to the Killing vector, it can be
read from (B.15) and it is determined as P⃗0 = ξI P⃗I .

The 4d Lagrangian that we have obtained performing this KK reduction exactly reproduces
(6.61).

1The extra factor 2 is due to the difference of conventions between [105] and [187].



Appendix C

Details on the quaternionic geometry

In this appendix we derive the quaternionic structures J⃗ and the SU(2) spin connections ω⃗ for
the quaternionic manifold

SO(4, 2)

SO(4)× SO(2)
. (C.1)

This scalar geometry was already studied in detail in [159,160,236] and it is described by nH = 2
hypermultiplets, whose real scalars can be organized as qX , X = 1, . . . , 8.
Following [159, 160] we use the coordinates qX = {u1, k, a, ϕ, b1, b̄1, b2, b̄2}, with line element
given by

gXY dq
XdqY =− 2e−4u1Mij

(
bidb̄j + b̄idbj

)
− 4du21 −

1

4
dϕ2 − 1

4
e2ϕda2

− 1

4
e−8u1

[
dk + 2εij

(
bidb̄j + b̄idbj

)]2
, (C.2)

where

Mij = eϕ
(
a2 + e−2ϕ −a

−a 1

)
. (C.3)

We have chosen the normalization of the metric in order to have the curvature scalar R = 64
and thus R⃗ = J⃗ (see (6.34)). This last equality is necessary to obtain the simplified version of the
hyperino variation in (D.21).
To display the quaternionic structure of the coset, we follow the explicit construction made
in Appendix E of [270],1 adapting it to our coordinates, and we introduce the quaternionic
vielbeins

f1 =
i

2
dϕ , f2 = 2i du1 , f3 =

i

2
eϕda ,

f4 = ie−4u1

(
1

2
dk − b̄2db1 + b̄1db2 − b2db̄1 + b1db̄2

)
,

f5 =
i√
2
e−2u1−ϕ

2
(
db1 + db̄1

)
, f6 =

1√
2
e−2u1−ϕ

2
(
db1 − db̄1

)
,

f7 =
i√
2
e−2u1+

ϕ
2
(
−a db1 + db2 − a db̄1 + db̄2

)
,

f8 = − 1√
2
e−2u1+

ϕ
2
(
a db1 − db2 + a db̄1 − db̄2

)
. (C.4)

1See also [236] for a similar analysis.



We can thus obtain the triplet of almost complex structures J⃗ as

J1 =
1√
2

(
f15 + f18 + f25 − f28 − f36 + f37 − f46 − f47

)
,

J2 =
1√
2

(
f16 − f17 + f26 + f27 + f35 + f38 + f45 − f48

)
,

J3 = −
(
f13 + f24 + f56 + f78

)
, (C.5)

where f ij ≡ f i∧f j and Jr = 1
2J

r
XY dq

X ∧dqY for r = 1, 2, 3. One can check that these structures
satisfy the quaternionic relations in (6.31). In this setting, the SU(2) connections take the form

ω1 =
1

2
e−2u1−ϕ

2 (db1 + db̄1)− i

2
e−2u1+

ϕ
2
[
a(db1 − db̄1)− (db2 − db̄2)

]
,

ω2 = − i

2
e−2u1−ϕ

2 (db1 − db̄1)− 1

2
e−2u1+

ϕ
2
[
a(db1 + db̄1)− (db2 + db̄2)

]
,

ω3 =
1

4
eϕda− 1

2
e−4u1

(
1

2
dk − b̄2db1 + b̄1db2 − b2db̄1 + b1db̄2

)
. (C.6)



Appendix D

Derivation of the BPS equations

Following the analysis made in [227], in order to construct AdS3 × Σ solutions to the BPS
equations, we first decompose the Clifford algebra via

γm = Γm ⊗ σ3, γ3 = I2 ⊗ σ1, γ4 = I2 ⊗ σ2, (D.1)

where Γm =
(
−iσ2, σ3, σ1

)1 are the gamma matrices in d = 3 and σi, i = 1, 2, 3, are the Pauli
matrices. We can thus write the Killing spinor as

ϵ = ψ ⊗ χ, (D.2)

where χ is a two-component spinor on the spindle and ψ is a two-component spinor on AdS3

satisfying
∇mψ = −κ

2
Γmψ , (D.3)

where κ = ±1 specifies the chirality of the supersymmetry of the dual 2d SCFT. In this section
we will analyze the BPS equations in order to determine the structure of the spinor χ, that is
given by

χ = eV/2eisz
(
sin ξ

2

cos ξ2

)
(D.4)

as we will see in more detail in a few.

D.1 Gravitino variation

The supersymmetry variation for the gravitino in (6.63) splits into two decoupled equations if
we impose the projection condition on the symplectic-Majorana ϵi.2 This decoupling is due to
the fact that in our model only the r = 3 SU(2)-components of the moment maps survive (see
(9.14)), which are related to the doublet notation through the third Pauli matrix via (6.32).
Thus, one of the two BPS equations obtained from the gravitino variation can be written as

δψµ =
[
∇µ − iQµ +

i

4
√
6
Hνρ

(
γνργµ + 2γνδρµ

)
+

1

2
gWγµ

]
ϵ = 0 , (D.5)

1We are using the mostly plus signature, while in [227] they use the mostly minus one.
2See appendix A.2.1 of [257] for a more general overview on the projections of SU(2) symplectic-Majorana

fermions.



where ϵ is now a Dirac spinor, ∇µϵ = ∂µϵ +
1
4ωµabγ

ab and Qµ ≡ ∂µq
Xω3

X + gAIµP
3
I . We also

introduced the superpotential W ≡
√

2
3h

IP 3
I and Hµν ≡ hIF

I
µν .

The components of (D.5) that are tangent to the directions along AdS3 give:[
−
(
κe−V +

1√
6
H34

)
γ34 + i V ′f−1γ3

]
ϵ = −igWϵ . (D.6)

In order to have non-trivial solutions to this equation, we have to impose that the two coefficients
on the left hand side live on a circle, i.e.[

cos ξγ34 + i sin ξγ3
]
ϵ = −iϵ . (D.7)

This projection condition is solved by

ϵ = e−i
ξ
2
γ4η , γ3η = iγ4η (D.8)

and it allows us to split (D.6) in

−κe−V − 1√
6
H34 = gW cos ξ , V ′f−1 = gW sin ξ . (D.9)

If we now focus on the component of the gravitino variation in the longitudinal direction of the
spindle, i.e. µ = y, we can rewrite it as

[
∂y −

1

2
V ′ − i

2

(
∂yξ +

√
3

2
fH34 + κfe−V

)
γ4
]
η = 0 . (D.10)

One can notice that this expression is in the form (a1+a2γ
4)η = 0, which implies that a21+a

2
2 = 0.

Therefore, from the first part of (D.10) we can infer that η has the structure

η = eV/2eiszη0 , (D.11)

where s is a constant and η0 is independent from y and z. From the second part of (D.10) we
obtain

∂yξ +

√
3

2
fH34 + κfe−V = 0 . (D.12)

Similarly, the component along the azimuthal direction of the spindle (µ = z) gives[
∂z − iQz +

i

2
f−1h′ cos ξ − i√

6
H34h sin ξ (D.13)

+
(
−1

2
f−1h′ sin ξ +

1

2
gWh− 1√

6
H34h cos ξ

)
γ4
]
η = 0 ,

from which

(s−Qz) +
1

2
f−1h′ cos ξ − 1√

6
H34h sin ξ = 0 , (D.14)

− 1

2
f−1h′ sin ξ +

gWh

2
− 1√

6
H34h cos ξ = 0 . (D.15)



D.2 Gaugino variation

Using some relations of the Very Special Real geometry and the definition of the superpotential,
the variation of the gaugino (6.64) gives

δλx=
[
− i

2
γµ∂µϕ

x+
1

4

√
3

2
gxy∂yhIγ

µνF Iµν+i

√
3

2
g gxy∂yW

]
ϵ=0. (D.16)

From the first component (x = 1), imposing again the projection condition in (D.7), we obtain

f−1u′2 +
3g

4
∂u2W sin ξ = 0 , (D.17)

3g ∂u2W cos ξ +

√
2

3
e2u3

(
e−2u2F

(1)
34 − e2u2F

(2)
34

)
= 0 , (D.18)

where we have used the explicit expressions for the sections hI and for the field strengths.
Similarly, from the component x = 2, we have

f−1u′3 +
g

4
∂u3W sin ξ = 0 , (D.19)

3g ∂u3W cos ξ (D.20)

+

√
2

3

(
2e−4u3F

(0)
34 − e−2u2+2u3F

(1)
34 − e2u2+2u3F

(2)
34

)
= 0 .

D.3 Hyperino variation

In order to simplify the BPS equation coming from the hyperino variation in (6.65), we can
multiply its expression for fjAY . Using (6.40), after some calculations we obtain the relation(

−iγµ∂µu1 +
3

8
ig∂u1W +

1

4
∂u1Qµγ

µ
)
ϵ = 0 . (D.21)

Notice that to single out the vector Qµ, introduced in (D.5), it is necessary to make a precise
choice of the normalization of the metric of the quaternionic manifold, as we have pointed out
in appendix C.
Finally, imposing the projection condition (D.7), this last equation gives

f−1u′1 = −3g

8

∂u1W

sin ξ
, (D.22)

3g

2
∂u1W cos ξ = h−1∂u1Qz sin ξ . (D.23)



Publications

The content of this thesis is based on the following (mostly published) works:

[1] A. Amariti, S. Mancani, D. Morgante, N. Petri and A. Segati, BBBW on the spindle, 2309.11362.

[2] A. Amariti, N. Petri, A. Segati, T 1,1 truncation on the spindle, JHEP 07 (2023) 087 [2304.03663].

[3] A. Amariti and A. Segati, Kerr-Newman black holes from N = 1∗, JHEP 06 (2023) 216
[2210.03013].

[4] A. Amariti, M. Fazzi and A. Segati, Expanding on the Cardy-like limit of the SCI of 4dN = 1
ABCD SCFTs, JHEP 07 (2021) 141 [2103.15853].

[5] A. Amariti, M. Fazzi and A. Segati, The SCI of N = 4 USp(2Nc) and SO(Nc) SYM as a matrix
integral, JHEP 06 (2021) 132 [2021.15208].

Other publications to which the author has contributed:

[1] A. Amariti, J. Nian, L.A. Pando Zayas and A. Segati, Universal Cardy-Like Behavior od 3D
A-Twisted Partition Functions, 2306.05462.

[2] A. Amariti, M. Fazzi, S. Rota and A. Segati, Conformal S-dualities from O-planes, JHEP 01
(2022) 116 [2108.05397].

https://arxiv.org/pdf/2309.11362.pdf
https://link.springer.com/article/10.1007/JHEP07(2023)087
https://arxiv.org/abs/2304.03663
https://link.springer.com/article/10.1007/JHEP06(2023)216
https://arxiv.org/abs/2210.03015
https://doi.org/10.1007/JHEP07(2021)141
https://arxiv.org/abs/2103.15853
https://doi.org/10.1007/JHEP06(2021)132
https://arxiv.org/abs/2012.15208
https://arxiv.org/abs/2306.05462
https://doi.org/10.1007/JHEP01(2022)116
https://doi.org/10.1007/JHEP01(2022)116
https://arxiv.org/abs/2108.05397


Bibliography

[1] J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737.

[2] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199.

[3] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85
[hep-th/9503124].

[4] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.
B 379 (1996) 99 [hep-th/9601029].

[5] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284
[gr-qc/9310026].

[6] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089].

[7] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor.
Math. Phys. 2 (1998) 231 [hep-th/9711200].

[8] I. Bena, S. El-Showk and B. Vercnocke, Black Holes in String Theory, Springer Proc. Phys. 144
(2013) 59.

[9] K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction,
Cambridge University Press (12, 2006), 10.1017/CBO9780511816086.

[10] J.B. Gutowski and H.S. Reall, Supersymmetric AdS(5) black holes, JHEP 02 (2004) 006
[hep-th/0401042].

[11] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, 1810.12067.

[12] F. Benini and P. Milan, Black Holes in 4D N=4 Super-Yang-Mills Field Theory, Phys. Rev. X 10
(2020) 021037 [1812.09613].

[13] S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of
rotating BPS black holes in AdS5, JHEP 07 (2017) 106 [1705.05383].

[14] J.B. Gutowski and H.S. Reall, General supersymmetric AdS(5) black holes, JHEP 04 (2004) 048
[hep-th/0401129].

https://doi.org/10.1007/BF02757029
https://doi.org/10.1007/BF02345020
https://doi.org/10.1016/0550-3213(95)00158-O
https://arxiv.org/abs/hep-th/9503124
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
https://arxiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://arxiv.org/abs/hep-th/9409089
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1007/978-3-319-00215-6_2
https://doi.org/10.1007/978-3-319-00215-6_2
https://doi.org/10.1017/CBO9780511816086
https://doi.org/10.1088/1126-6708/2004/02/006
https://arxiv.org/abs/hep-th/0401042
https://arxiv.org/abs/1810.12067
https://doi.org/10.1103/PhysRevX.10.021037
https://doi.org/10.1103/PhysRevX.10.021037
https://arxiv.org/abs/1812.09613
https://doi.org/10.1007/JHEP07(2017)106
https://arxiv.org/abs/1705.05383
https://doi.org/10.1088/1126-6708/2004/04/048
https://arxiv.org/abs/hep-th/0401129


[15] O. Aharony, F. Benini, O. Mamroud and E. Milan, A gravity interpretation for the Bethe
Ansatz expansion of the N = 4 SYM index, Phys. Rev. D 104 (2021) 086026 [2104.13932].

[16] A. Sen, Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the
Microstates, Gen. Rel. Grav. 44 (2012) 1207 [1108.3842].

[17] S. Ferrara, R. Kallosh and A. Strominger, N=2 extremal black holes, Phys. Rev. D 52 (1995)
R5412 [hep-th/9508072].

[18] G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1)
gauged supergravity, JHEP 03 (2011) 037 [1012.3756].

[19] J.M. Maldacena and C. Nunez, Supergravity description of field theories on curved manifolds
and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018].

[20] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,
JHEP 06 (2013) 005 [1302.4451].

[21] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and
c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [1211.4030].
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[166] P. Karndumri and E.O. Colgáin, 3D Supergravity from wrapped D3-branes, JHEP 10 (2013)
094 [1307.2086].

[167] P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013)
101902 [1302.6532].

[168] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07
(2016) 020 [1511.09462].

[169] A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP
07 (2017) 040 [1610.08858].

https://doi.org/10.1016/S0550-3213(97)00408-2
https://doi.org/10.1016/S0550-3213(97)00408-2
https://arxiv.org/abs/hep-th/9703082
https://doi.org/10.1007/s002200050604
https://arxiv.org/abs/hep-th/9712042
https://doi.org/10.1016/0550-3213(84)90142-1
https://doi.org/10.1016/0550-3213(85)90547-4
https://doi.org/10.1007/BF02097627
https://arxiv.org/abs/hep-th/9112027
https://doi.org/10.1007/s00220-005-1475-6
https://arxiv.org/abs/hep-th/0411209
https://doi.org/10.1007/JHEP07(2012)098
https://doi.org/10.1007/JHEP07(2012)098
https://arxiv.org/abs/1111.6567
https://doi.org/10.1007/JHEP06(2017)035
https://arxiv.org/abs/1611.02982
https://doi.org/10.1016/j.nuclphysb.2005.11.010
https://doi.org/10.1016/j.nuclphysb.2005.11.010
https://arxiv.org/abs/hep-th/0507057
https://doi.org/10.1016/S0550-3213(03)00459-0
https://doi.org/10.1016/S0550-3213(03)00459-0
https://arxiv.org/abs/hep-th/0304128
https://doi.org/10.1007/JHEP12(2012)018
https://arxiv.org/abs/1209.3025
https://doi.org/10.1016/j.nuclphysb.2005.10.013
https://arxiv.org/abs/hep-th/0507146
https://doi.org/10.1016/j.nuclphysb.2005.10.003
https://arxiv.org/abs/hep-th/0507137
https://doi.org/10.1007/JHEP10(2013)094
https://doi.org/10.1007/JHEP10(2013)094
https://arxiv.org/abs/1307.2086
https://doi.org/10.1103/PhysRevD.87.101902
https://doi.org/10.1103/PhysRevD.87.101902
https://arxiv.org/abs/1302.6532
https://doi.org/10.1007/JHEP07(2016)020
https://doi.org/10.1007/JHEP07(2016)020
https://arxiv.org/abs/1511.09462
https://doi.org/10.1007/JHEP07(2017)040
https://doi.org/10.1007/JHEP07(2017)040
https://arxiv.org/abs/1610.08858


[170] C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms,
Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012)
053 [1205.4142].

[171] D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135
[1302.7310].

[172] N. Bobev, V.S. Min, K. Pilch and F. Rosso, Mass Deformations of the ABJM Theory: The
Holographic Free Energy, JHEP 03 (2019) 130 [1812.01026].

[173] A. Amariti and A. Gnecchi, 3D τRR-minimization in AdS4 gauged supergravity, JHEP 07
(2016) 006 [1511.08214].

[174] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric
localization, JHEP 05 (2016) 054 [1511.04085].

[175] S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d N = 2 theories: twisted index,
free energy and black holes, JHEP 08 (2016) 064 [1604.03122].

[176] S.M. Hosseini and N. Mekareeya, Large N topologically twisted index: necklace quivers,
dualities, and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [1604.03397].

[177] F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in
AdS4, Phys. Lett. B 771 (2017) 462 [1608.07294].

[178] S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index
and black strings in AdS5, JHEP 04 (2017) 014 [1611.09374].

[179] N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP
12 (2017) 065 [1708.05052].

[180] F. Benini, H. Khachatryan and E. Milan, Black hole entropy in massive Type IIA, Class. Quant.
Grav. 35 (2018) 035004 [1707.06886].

[181] S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS4 black
holes in massive IIA supergravity, JHEP 10 (2017) 190 [1707.06884].

[182] A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy
functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [1712.01849].

[183] N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS4, JHEP 03
(2018) 050 [1801.03135].

[184] S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions and
holography, JHEP 11 (2018) 119 [1808.06626].

[185] S.M. Hosseini, K. Hristov, A. Passias and A. Zaffaroni, 6D attractors and black hole
microstates, JHEP 12 (2018) 001 [1809.10685].

[186] K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP 12
(2014) 066 [1409.8504].

https://doi.org/10.1007/JHEP10(2012)053
https://doi.org/10.1007/JHEP10(2012)053
https://arxiv.org/abs/1205.4142
https://doi.org/10.1007/JHEP03(2014)135
https://arxiv.org/abs/1302.7310
https://doi.org/10.1007/JHEP03(2019)130
https://arxiv.org/abs/1812.01026
https://doi.org/10.1007/JHEP07(2016)006
https://doi.org/10.1007/JHEP07(2016)006
https://arxiv.org/abs/1511.08214
https://doi.org/10.1007/JHEP05(2016)054
https://arxiv.org/abs/1511.04085
https://doi.org/10.1007/JHEP08(2016)064
https://arxiv.org/abs/1604.03122
https://doi.org/10.1007/JHEP08(2016)089
https://arxiv.org/abs/1604.03397
https://doi.org/10.1016/j.physletb.2017.05.076
https://arxiv.org/abs/1608.07294
https://doi.org/10.1007/JHEP04(2017)014
https://arxiv.org/abs/1611.09374
https://doi.org/10.1007/JHEP12(2017)065
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://doi.org/10.1088/1361-6382/aa9f5b
https://doi.org/10.1088/1361-6382/aa9f5b
https://arxiv.org/abs/1707.06886
https://doi.org/10.1007/JHEP10(2017)190
https://arxiv.org/abs/1707.06884
https://doi.org/10.1007/JHEP05(2018)155
https://arxiv.org/abs/1712.01849
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://arxiv.org/abs/1801.03135
https://doi.org/10.1007/JHEP11(2018)119
https://arxiv.org/abs/1808.06626
https://doi.org/10.1007/JHEP12(2018)001
https://arxiv.org/abs/1809.10685
https://doi.org/10.1007/JHEP12(2014)066
https://doi.org/10.1007/JHEP12(2014)066
https://arxiv.org/abs/1409.8504


[187] A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, Hypermultiplets, domain walls
and supersymmetric attractors, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056].

[188] A. Amariti and A. Segati, Kerr-Newman black holes from N = 1∗, JHEP 06 (2023) 216
[2210.03015].

[189] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from
holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363
[hep-th/9904017].

[190] A. Amariti and A. Gnecchi, τRR minimization in presence of hypermultiplets, JHEP 03 (2022)
166 [2107.01195].

[191] D. Klemm, N. Petri and M. Rabbiosi, Black string first order flow in N = 2, d = 5 abelian
gauged supergravity, JHEP 01 (2017) 106 [1610.07367].

[192] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986)
1.

[193] K. Hristov and A. Rota, 6d-5d-4d reduction of BPS attractors in flat gauged supergravities,
Nucl. Phys. B 897 (2015) 213 [1410.5386].

[194] H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz
reductions, JHEP 12 (2010) 016 [1008.4286].

[195] E. Witten, Topological Sigma Models, Commun. Math. Phys. 118 (1988) 411.

[196] M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4-d SYM to 2-d
sigma models, Nucl. Phys. B 448 (1995) 166 [hep-th/9501096].

[197] M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B
463 (1996) 420 [hep-th/9511222].

[198] C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3
[hep-th/9408074].

[199] P. Ferrero, J.P. Gauntlett and J. Sparks, Supersymmetric spindles, JHEP 01 (2022) 102
[2112.01543].

[200] P. Ferrero, J.P. Gauntlett, J.M.P. Ipiña, D. Martelli and J. Sparks, Accelerating black holes and
spinning spindles, Phys. Rev. D 104 (2021) 046007 [2012.08530].

[201] S.M. Hosseini, K. Hristov and A. Zaffaroni, Rotating multi-charge spindles and their
microstates, JHEP 07 (2021) 182 [2104.11249].

[202] A. Boido, J.M.P. Ipiña and J. Sparks, Twisted D3-brane and M5-brane compactifications from
multi-charge spindles, JHEP 07 (2021) 222 [2104.13287].

[203] P. Ferrero, J.P. Gauntlett, D. Martelli and J. Sparks, M5-branes wrapped on a spindle, JHEP 11
(2021) 002 [2105.13344].

https://doi.org/10.1103/PhysRevD.64.104006
https://arxiv.org/abs/hep-th/0104056
https://doi.org/10.1007/JHEP06(2023)216
https://arxiv.org/abs/2210.03015
https://doi.org/10.4310/ATMP.1999.v3.n2.a7
https://arxiv.org/abs/hep-th/9904017
https://doi.org/10.1007/JHEP03(2022)166
https://doi.org/10.1007/JHEP03(2022)166
https://arxiv.org/abs/2107.01195
https://doi.org/10.1007/JHEP01(2017)106
https://arxiv.org/abs/1610.07367
https://doi.org/10.1016/0370-1573(86)90163-8
https://doi.org/10.1016/0370-1573(86)90163-8
https://doi.org/10.1016/j.nuclphysb.2015.05.023
https://arxiv.org/abs/1410.5386
https://doi.org/10.1007/JHEP12(2010)016
https://arxiv.org/abs/1008.4286
https://doi.org/10.1007/BF01466725
https://doi.org/10.1016/0550-3213(95)00242-K
https://arxiv.org/abs/hep-th/9501096
https://doi.org/10.1016/0550-3213(96)00026-0
https://doi.org/10.1016/0550-3213(96)00026-0
https://arxiv.org/abs/hep-th/9511222
https://doi.org/10.1016/0550-3213(94)90097-3
https://arxiv.org/abs/hep-th/9408074
https://doi.org/10.1007/JHEP01(2022)102
https://arxiv.org/abs/2112.01543
https://doi.org/10.1103/PhysRevD.104.046007
https://arxiv.org/abs/2012.08530
https://doi.org/10.1007/JHEP07(2021)182
https://arxiv.org/abs/2104.11249
https://doi.org/10.1007/JHEP07(2021)222
https://arxiv.org/abs/2104.13287
https://doi.org/10.1007/JHEP11(2021)002
https://doi.org/10.1007/JHEP11(2021)002
https://arxiv.org/abs/2105.13344


[204] P. Ferrero, M. Inglese, D. Martelli and J. Sparks, Multicharge accelerating black holes and
spinning spindles, Phys. Rev. D 105 (2022) 126001 [2109.14625].

[205] C. Couzens, K. Stemerdink and D. van de Heisteeg, M2-branes on discs and multi-charged
spindles, JHEP 04 (2022) 107 [2110.00571].

[206] F. Faedo and D. Martelli, D4-branes wrapped on a spindle, JHEP 02 (2022) 101
[2111.13660].

[207] S. Giri, Black holes with spindles at the horizon, JHEP 06 (2022) 145 [2112.04431].

[208] C. Couzens, A tale of (M)2 twists, JHEP 03 (2022) 078 [2112.04462].

[209] P. Karndumri and P. Nuchino, Five-branes wrapped on topological disks from 7D N=2 gauged
supergravity, Phys. Rev. D 105 (2022) 066010 [2201.05037].

[210] K.C.M. Cheung and R. Leung, Type IIA embeddings of D = 5 minimal gauged supergravity via
non-Abelian T-duality, JHEP 06 (2022) 051 [2203.15114].

[211] K.C.M. Cheung, J.H.T. Fry, J.P. Gauntlett and J. Sparks, M5-branes wrapped on
four-dimensional orbifolds, JHEP 08 (2022) 082 [2204.02990].

[212] C. Couzens, H. Kim, N. Kim and Y. Lee, Holographic duals of M5-branes on an irregularly
punctured sphere, JHEP 07 (2022) 102 [2204.13537].

[213] M. Suh, M5-branes and D4-branes wrapped on a direct product of spindle and Riemann surface,
2207.00034.

[214] C. Couzens and K. Stemerdink, Universal spindles: D2’s on Σ and M5’s on Σ×H3,
2207.06449.

[215] C. Couzens, N.T. Macpherson and A. Passias, A plethora of Type IIA embeddings for d = 5
minimal supergravity, JHEP 01 (2023) 047 [2209.15540].

[216] C. Couzens, H. Kim, N. Kim, Y. Lee and M. Suh, D4-branes wrapped on four-dimensional
orbifolds through consistent truncation, JHEP 02 (2023) 025 [2210.15695].

[217] F. Faedo, A. Fontanarossa and D. Martelli, Branes wrapped on orbifolds and their gravitational
blocks, Lett. Math. Phys. 113 (2023) 51 [2210.16128].

[218] A. Boido, J.P. Gauntlett, D. Martelli and J. Sparks, Gravitational Blocks, Spindles and GK
Geometry, 2211.02662.

[219] M. Suh, Spindle black holes from mass-deformed ABJM, 2211.11782.

[220] M. Inglese, D. Martelli and A. Pittelli, The Spindle Index from Localization, 2303.14199.

[221] M. Suh, Baryonic spindles from conifolds, 2304.03308.

[222] A. Bilal, Lectures on Anomalies, 0802.0634.

https://doi.org/10.1103/PhysRevD.105.126001
https://arxiv.org/abs/2109.14625
https://doi.org/10.1007/JHEP04(2022)107
https://arxiv.org/abs/2110.00571
https://doi.org/10.1007/JHEP02(2022)101
https://arxiv.org/abs/2111.13660
https://doi.org/10.1007/JHEP06(2022)145
https://arxiv.org/abs/2112.04431
https://doi.org/10.1007/JHEP03(2022)078
https://arxiv.org/abs/2112.04462
https://doi.org/10.1103/PhysRevD.105.066010
https://arxiv.org/abs/2201.05037
https://doi.org/10.1007/JHEP06(2022)051
https://arxiv.org/abs/2203.15114
https://doi.org/10.1007/JHEP08(2022)082
https://arxiv.org/abs/2204.02990
https://doi.org/10.1007/JHEP07(2022)102
https://arxiv.org/abs/2204.13537
https://arxiv.org/abs/2207.00034
https://arxiv.org/abs/2207.06449
https://doi.org/10.1007/JHEP01(2023)047
https://arxiv.org/abs/2209.15540
https://doi.org/10.1007/JHEP02(2023)025
https://arxiv.org/abs/2210.15695
https://doi.org/10.1007/s11005-023-01671-1
https://arxiv.org/abs/2210.16128
https://arxiv.org/abs/2211.02662
https://arxiv.org/abs/2211.11782
https://arxiv.org/abs/2303.14199
https://arxiv.org/abs/2304.03308
https://arxiv.org/abs/0802.0634


[223] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06
(2012) 005 [1203.0303].

[224] S.M. Hosseini, K. Hristov, Y. Tachikawa and A. Zaffaroni, Anomalies, Black strings and the
charged Cardy formula, JHEP 09 (2020) 167 [2006.08629].

[225] D. Cassani and A.F. Faedo, A Supersymmetric consistent truncation for conifold solutions,
Nucl. Phys. B 843 (2011) 455 [1008.0883].

[226] N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP 06
(2014) 094 [1403.7131].

[227] I. Arav, J.P. Gauntlett, M.M. Roberts and C. Rosen, Leigh-Strassler compactified on a spindle,
JHEP 10 (2022) 067 [2207.06427].

[228] A. Amariti, N. Petri and A. Segati, T1,1 truncation on the spindle, JHEP 07 (2023) 087
[2304.03663].

[229] B.S. Acharya, J.M. Figueroa-O’Farrill, C.M. Hull and B.J. Spence, Branes at conical
singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014].

[230] J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N=4 supergravity
in five dimensions, JHEP 06 (2010) 081 [1003.5642].

[231] D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein
manifolds, JHEP 05 (2010) 094 [1003.4283].

[232] J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on
Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [1003.5374].

[233] K. Skenderis, M. Taylor and D. Tsimpis, A Consistent truncation of IIB supergravity on
manifolds admitting a Sasaki-Einstein structure, JHEP 06 (2010) 025 [1003.5657].

[234] I. Bena, G. Giecold, M. Grana, N. Halmagyi and F. Orsi, Supersymmetric Consistent
Truncations of IIB on T 1,1, JHEP 04 (2011) 021 [1008.0983].

[235] J.T. Liu and P. Szepietowski, Supersymmetry of consistent massive truncations of IIB
supergravity, Phys. Rev. D 85 (2012) 126010 [1103.0029].

[236] G. Dall’Agata, M. Emelin, F. Farakos and M. Morittu, The unbearable lightness of charged
gravitini, JHEP 10 (2021) 076 [2108.04254].

[237] A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Y**p,q manifolds,
Nucl. Phys. B 771 (2007) 93 [hep-th/0608002].

[238] J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric
AdS solutions, Phys. Rev. D 76 (2007) 126007 [0707.2315].

[239] J.P. Gauntlett and N. Kim, Geometries with Killing Spinors and Supersymmetric AdS Solutions,
Commun. Math. Phys. 284 (2008) 897 [0710.2590].

https://doi.org/10.1007/JHEP06(2012)005
https://doi.org/10.1007/JHEP06(2012)005
https://arxiv.org/abs/1203.0303
https://doi.org/10.1007/JHEP09(2020)167
https://arxiv.org/abs/2006.08629
https://doi.org/10.1016/j.nuclphysb.2010.10.010
https://arxiv.org/abs/1008.0883
https://doi.org/10.1007/JHEP06(2014)094
https://doi.org/10.1007/JHEP06(2014)094
https://arxiv.org/abs/1403.7131
https://doi.org/10.1007/JHEP10(2022)067
https://arxiv.org/abs/2207.06427
https://doi.org/10.1007/JHEP07(2023)087
https://arxiv.org/abs/2304.03663
https://doi.org/10.4310/ATMP.1998.v2.n6.a2
https://arxiv.org/abs/hep-th/9808014
https://doi.org/10.1007/JHEP06(2010)081
https://arxiv.org/abs/1003.5642
https://doi.org/10.1007/JHEP05(2010)094
https://arxiv.org/abs/1003.4283
https://doi.org/10.1103/PhysRevD.81.124028
https://arxiv.org/abs/1003.5374
https://doi.org/10.1007/JHEP06(2010)025
https://arxiv.org/abs/1003.5657
https://doi.org/10.1007/JHEP04(2011)021
https://arxiv.org/abs/1008.0983
https://doi.org/10.1103/PhysRevD.85.126010
https://arxiv.org/abs/1103.0029
https://doi.org/10.1007/JHEP10(2021)076
https://arxiv.org/abs/2108.04254
https://doi.org/10.1016/j.nuclphysb.2007.03.001
https://arxiv.org/abs/hep-th/0608002
https://doi.org/10.1103/PhysRevD.76.126007
https://arxiv.org/abs/0707.2315
https://doi.org/10.1007/s00220-008-0575-5
https://arxiv.org/abs/0710.2590


[240] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann
Surfaces, Phys. Rev. D 85 (2012) 121901 [1112.5487].

[241] D. Cassani, G. Josse, M. Petrini and D. Waldram, N = 2 consistent truncations from wrapped
M5-branes, JHEP 02 (2021) 232 [2011.04775].

[242] A.F. Faedo, C. Nunez and C. Rosen, Consistent truncations of supergravity and 1
2 -BPS RG

flows in 4d SCFTs, JHEP 03 (2020) 080 [1912.13516].

[243] D. Cassani, G. Josse, M. Petrini and D. Waldram, Systematics of consistent truncations from
generalised geometry, JHEP 11 (2019) 017 [1907.06730].

[244] K.C. Matthew Cheung, J.P. Gauntlett and C. Rosen, Consistent KK truncations for M5-branes
wrapped on Riemann surfaces, Class. Quant. Grav. 36 (2019) 225003 [1906.08900].

[245] A. Amariti, S. Mancani, D. Morgante, N. Petri and A. Segati, BBBW on the spindle,
2309.11362.

[246] E. Nardoni, 4d SCFTs from negative-degree line bundles, JHEP 08 (2018) 199 [1611.01229].

[247] P. Agarwal, K. Intriligator and J. Song, Infinitely many N = 1 dualities from m + 1 − m = 1,
JHEP 10 (2015) 035 [1505.00255].

[248] E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006
[hep-th/9712028].

[249] N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino
condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011].

[250] E. Poppitz and M. Unsal, Index theorem for topological excitations on R**3 x S**1 and
Chern-Simons theory, JHEP 03 (2009) 027 [0812.2085].

[251] M.M. Anber, E. Poppitz and B. Teeple, Deconfinement and continuity between thermal and
(super) Yang-Mills theory for all gauge groups, JHEP 09 (2014) 040 [1406.1199].

[252] A. Bourget and J. Troost, Counting the Massive Vacua of N=1* Super Yang-Mills Theory, JHEP
08 (2015) 106 [1506.03222].

[253] A. Bourget and J. Troost, The Arithmetic of Supersymmetric Vacua, JHEP 07 (2016) 036
[1606.01022].
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