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Abstract: Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy
combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome
this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold
as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and
mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs)
were analyzed. Two different fibro-chondrogenic media, M1 and M2, were tested, and qualitative
and quantitative analyses were performed. Significant increases in glycosaminoglycans (GAGs)
production and in fibro-cartilaginous marker expression were observed in MSCs in the presence of
M1 medium. In addition, both ASCs and BMSCs cultured in M1 medium were used in association
with the collagen hydrogel (MSCs-SCF) for the development of an in vitro meniscal-like tissue.
Significant up-regulation in GAGs production and in the expression of aggrecan, collagen type I,
and collagen type II was observed in BMSCs-SCF. This study improves knowledge of the potential
of combining undifferentiated MSCs with a collagen gel as a new tissue engineering strategy for
meniscus repair.

Keywords: mesenchymal stem cells; dermal fibroblasts; growth factors; collagen scaffold; gel scaffold;
meniscal replacement; meniscal tissue engineering

1. Introduction

In the orthopedic field, the meniscus plays a crucial role in knee function and biome-
chanics, particularly due to its anatomy and biological components. Fibrochondrocytes
represent the cellular component of the meniscus and can secrete the fibrocartilaginous
matrix [1]. This matrix is mainly composed of type I collagen and, in a minor amount of
collagens (types II–VI), aggrecans, and glycosaminoglycans (GAGs), which contribute to
meniscus resistance, functional structure, and biomechanics [2]. Given the important role of
this tissue, lesions or diseases that alter its structure can significantly impact the quality of
life. Lesions of the meniscus are frequently observed in orthopedic practice occurring both
in younger and elderly patients either caused by minimal twisting or stress or by chronic
degenerative processes [3]. Many treatments for an injured meniscus have been described,
including enhancement of surgical repair by fibrin clots or meniscus grafting after meniscec-
tomy using allografts or tendons [4,5]. Therefore, there has been increasing scientific and
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clinical interest in meniscus tissue engineering aimed at minimizing the risk of developing
knee osteoarthritis and offering a solution for patients suffering from persistent symptoms
post-meniscectomy [6]. In recent decades, tissue engineering approaches have taken center
stage in biomedical research to improve the reparative processes of joint tissues throughout
the development of a tissue-engineered construct. The possibility of entirely reproducing
the meniscus structure and function is highly attractive and relies on the fine-tuning of
biological and biophysical cues of selected cells seeded on a biomimetic scaffold [7,8]. Since
pioneers first started, numerous biomaterials have been used to produce such a substitute,
from autologous tissue to synthetic materials [9–12]. The use of scaffolds in meniscal tissue
engineering is pivotal for achieving successful regeneration of meniscal tissues, particularly
due to their interaction with various cell sources [4]. Understanding this interaction en-
hances the design of scaffolds and optimizes their application in regenerative medicine, as
already reviewed by Suamte et al. [13]. Avitene™ UltraFoam™ sponge is a gelatin-based
hemostatic agent with a microfibrillar collagen structure, proven to accelerate clot formation
due to its active absorbable collagen hemostat [14]. The ultrastructure appears porous, indi-
cating that the sponge might be an ideal scaffold for cartilage/meniscus tissue engineering.
Another important element in tissue engineering approaches is identifying the most suitable
cell source. Several cell populations have been tested for meniscus repair and regeneration,
such as articular chondrocytes [15] and fibrochondrocytes [16,17], and histological evidence
highlighted the ability of these cell populations to generate fibrocartilaginous tissue resem-
bling the meniscus. However, due to the difficulty of harvesting a sufficient number of cells,
autologous fibrochondrocytes or chondrocytes do not represent optimal cell sources in tissue
engineering approaches. These problems have driven scientists to search for alternative cell
populations capable of acquiring a fibrochondrocyte-like phenotype after treatment with
specific growth factors [18,19]. Mesenchymal stem cells (MSCs) are considered promising
candidates in tissue engineering applications, due to their high therapeutic potential: they
are easily isolated from several adult tissues, such as bone marrow and adipose tissue; they
possess a good proliferative potential; and they can differentiate into several cell lineages
including osteoblasts, chondrocytes, and adipocytes [20–23].

Moreover, the recruitment of MSCs in tissue repair, their ability to home toward an
in vivo injured site, and their low immunogenicity position them as key players in the
transplantation field [24]. In addition, dermal fibroblasts (DFs) represent another eligible
cell source for meniscus engineering. Previous research has demonstrated that dermal
fibroblasts possess chondrogenic differentiation potential when properly stimulated [25] or
in 3D co-culture with chondrocytes [26]. In this study, we compared the fibro-chondrogenic
differentiation potential of MSCs isolated from both bone marrow (BMSCs) and adipose
tissue (ASCs), as well as dermal fibroblasts (DFs). Specifically, we tested these three
cell populations under two different culture conditions, selected from the literature with
minor modifications, concerning their proliferation and differentiation capacity using both
micro-mass pellet and 3D collagen scaffold models.

2. Results and Discussion
2.1. Cell Isolation and Characterization

In culture, in standard conditions, the three cell populations showed a fusiform shape,
also known as fibroblast-like morphology (Figure 1A). After one week of culture, MSCs,
and DFs, rapidly started to proliferate (Figure 1B,C): in detail, both ASCs and DFs showed
a similar trend, with an average doubling time (DT) of about 51.2 ± 6.1 h and 48.4 ± 4.9 h,
respectively (Figure 1B), allowing the culture to reach, 4.3 × 108 ± 1.8 × 108 ASCs and
5.5 × 108 ± 3.7 × 108 DFs after one month, starting from 5 × 104cells (Figure 1C). In
contrast, BMSCs showed a lower DT compared to ASCs (104.0 ± 5.3 h) (Figure 1B) and,
after 30 days of culture, they presented a cellular yield of 1.6 × 108 ± 1.5 × 108 (Figure 1C).
The cells also demonstrated good clonogenic ability, which was maintained from the 1st to
4thpassage: specifically, about 7.9 ± 0.9, 6.0 ± 1.7 and 9.8 ± 3.8, for ASCs, BMSCs and DFs,
respectively, produced CFU-F (Figure 1D).
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Figure 1. (A): Microscopic images showing the fusiform morphology of the three cell populations
(MSCs, ASCs, and DFs) cultured under standard conditions. (B): Graph illustrating the doubling
time (DT) of the three cell populations in culture, showing that ASCs and DFs have a lower DT
compared to BMSCs. (C): Graph representing the total number of cells obtained after one month
of culture for each cell population. ASCs and DFs show higher proliferation compared to BMSCs.
(D): Graph showing the clonogenic capacity (CFU-F) of the three cell populations. Each cell population
maintained good clonogenic capacity. Scalebar: 20 µm.

2.2. Cells Differentiation Assessment

Adipo-induced MSCs produced lipid vacuoles when treated for 14 days in the presence of
insulin: significant increases of 230.8 (p < 0.001) and 81.1% (p < 0.01) were observed for ASCs
and BMSCs, respectively (Figure 2A), whereas no induction was observed for DFs (p > 0.05).

In the presence of specific osteo-stimuli, both MSCs and DFs were able to differentiate
towards osteogenic lineage: a significant increase of about 324.3% (p < 0.001) and 420.8%
(p < 0.001) in alkaline phosphatase (ALP) activity was present in osteo-ASCs and BMSCs,
while a lesser increase was observed in DFs (+94.0%, p > 0.05) (Figure 2B, upper panel).
Further confirmation of their differentiation capacity was obtained by collagen quantifi-
cation (+327.3% for ASCs, +282.1% for BMSCs, and +229.0% for DFs) (Figure 2B, middle
panel) and calcium content quantification (+420.7, +197.3 e +500.8% for ASCs, BMSCs and
DFs, respectively) (Figure 2B, lower panel), compared to CTRL cells.

MSCs and DFs were also induced for 21 days to differentiate towards fibro-chondrogenic
lineage in pellet culture conditions using two inductive media. All the cell populations were
able to aggregate forming micromasses. As reported in Table 1, MSCs, and, in particular,
BMSCs, grew in the presence of chondro M1 medium, and showed larger dimensions,
suggesting a higher extracellular matrix deposition. These results were confirmed by
both biochemical and histological analysis. Significant increases in GAGs production
were observed in MSCs in the presence of M1 medium (+130.9% for ASCs and +105.5%
for BMSCs), and less using M2 medium (+77.1% and +41.2%, respectively) (Figure 3A).
These data were also confirmed by histological evaluation: in fibro-chondro M1 BMSCs,
an extracellular matrix depot was highlighted by the positive staining for Safranin O,
indicating the presence of GAGs (Figure 3B) and the acquisition of chondrogenic phenotype
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for the differentiated cells. In addition, gene expression analysis showed a significant up-
regulation of three important markers of meniscal tissue: Aggrecan, Collagen type I, and
Collagen type II, in both fibro-chondro M1 ASCs and BMSCs (Figure 4A–C), compared to
the same cells maintained in undifferentiated conditions. No induction towards a meniscal
phenotype was observed in DFs (Figure 4).
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Figure 2. (A): Graph showing the induction of lipid vacuoles in MSCs after 14 days of insulin
treatment. ASCs and BMSCs showed a significant increase in lipid production, while DFs showed
no induction. (B) (Upper Panel): Graph representing alkaline phosphatase (ALP) activity in MSCs
and DFs induced toward the osteogenic lineage. A significant increase in ALP activity was observed
in ASCs and BMSCs compared to DFs. (B) (Middle Panel): Graph showing collagen production
in osteo-induced cells, with significant increases in all cell populations. (B) (Lower Panel): Graph
representing calcium deposition in osteo-induced cells, showing a significant increase for ASCs,
BMSCs, and DFs compared to controls. **: p < 0.01; ***: p < 0.001.
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Table 1. Micromasses size used for the fibro-chondrogenic differentiation analysis. ***: p < 0.001.

Population Micromasses Size (µm)

ASCs SFM 933.35 ± 28.83 × 878.18 ± 59.05

ASCs M1 963.25 ± 28.15 × 998.88 ± 50.13

ASCs M2 723.34 ± 27.46 × 780.43 ± 41.21

BMSCs SFM 625.49 ± 63.92 × 539.54 ± 162.93

BMSCs M1 1265.87 ± 90.45 × 1258.26 ± 120.52 ***

BMSCs M2 675.03 ± 37.39 × 621.66 ± 205.33

DFs SFM 678.87 ± 38.38 × 605.54 ± 15.83

DFs M1 571.20 ± 21.88 × 586.74 ± 40.09

DFs M2 670.98 ± 26.54 × 610.03 ± 26.62
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Figure 3. (A): Graph showing GAG production in MSCs and DFs cultured in pellet and treated with
M1 and M2 media. A significant increase in GAGs is observed in the presence of M1 medium for
ASCs and BMSCs. (B): Histological image showing Safranin O staining in ASCs, BMSCs, and DFs
pellets treated with SFM, M1, and M2 medium. Scalebar: 200 µm. **: p < 0.01; ***: p < 0.001.

Starting from these results, the next experiments were performed using MSCs (ASCs
and BMSCs) stimulated with fibro-chondro medium M1.
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2.3. Cells-Scaffold Interaction

The viability of MSCs isolated from both adipose tissue and bone marrow and main-
tained until 14 days in the presence of the scaffold, was not influenced (data not shown): a
similar proliferation rate was observed for both cells cultured in monolayer (MONO) or
grown in the presence of collagen (SCAFFOLD), suggesting the biocompatibility of the
scaffold used.

A differentiative kinetic was performed: the constructs MSCs + SCF were maintained
for 7, 14, and 21 days in the absence (SFM) or in the presence of fibro-chondrogenic
inductive stimuli (M1 GAG production in differentiated BMSCs-SCF increased significantly
by about 95.5%, 175.3%, and 248.6% after 7, 14, and 21 days, respectively, compared to SFM-
biocontrols) (Figure 5A, right panel). No statistically significant increases were observed in
differentiated ASCs-SCF (+1.2, +31.7, and +6.1%, respectively, during 7, 14, and 21 days of
culture) (Figure 5A, left panel). Moreover, these data were also supported by histological
evaluation using Safranin-O: in Figure 5B, a significant extracellular matrix accumulation
was detected for the construct generated using BMSCs. Interestingly, in both ASCs and
BMSCs, during fibro-chondrogenic differentiation, the constructs became more compact
and well-organized compared to those maintained in SFM, where ECM was not present,
and the cells were lost (Figure 5B). In fibro-chondro MSCs-SCF, and, in particular, when
BMSCs were tested, the staining for GAGs, and so the accumulation of ECM, increased
significantly during the time of culture (Figure 5B, black arrow), indicating the acquisition
of fibro-chondrogenic differentiation in these cells. In addition, the differentiation potential
of MSCs was confirmed by the evaluation of gene expression profile: a significant up-
regulation of Aggrecan in the presence of M1 medium was observed in both ASCs and
BMSCs, with levels increasing over time (Figure 6A). Similar trends were also observed
in BMSCs for Collagen type I and type II expression (Figure 6B,C, right panel), whereas
in ASCs we observed no induction for Collagen type I, and a different trend for Collagen
type II expression (Figure 6B,C, left panel). Finally, in undifferentiated bioconstructs
(SFM ASCs- and BMSCs-SCF), a significant effect of the collagen sponge used as a scaffold
was observed: all the markers used to evaluate fibro-chondrogenic differentiation showed
significant increases in SFM bio-constructs maintained for 7, 14, and 21 days compared to
day 0 (Figure 7), suggesting the fibro-chondroinductive potential of collagen sponge on
MSC populations.
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2.4. Discussion

Surgical approaches for meniscal injuries are associated with a high risk of devel-
oping early osteoarthritis [27]. For this reason, over the last decades, tissue engineering
approaches have gained popularity, thanks to the progress in cell biology, biomaterial
development, and bioengineering. For the treatment of injured or damaged menisci, the
use of fibro-chondrogenic cells in association with a suitable biomaterial is considered a
promising alternative to the current standard of care. In this work, we have compared
three cell sources in association with a collagen type I gel scaffold. The application of a
collagen type I gel for meniscus tissue engineering has already been tested with promising
results [28]. Moreover, a sponge scaffold was used for cartilage engineering in a rabbit
model of chondral defect: authors found that after eight weeks post-implantation, newly
formed cartilage appeared as typical mature cartilaginous tissue [29]. In our study, the
microfibrillar structure increased the surface area for cell adhesion, thus providing a favor-
able environment for new cartilage formation in all the cell sources used. Mesenchymal
stem cells are easily available with non-invasive procedures and can be extensively ex-
panded in vitro to obtain a high number of cells to use in tissue engineering approaches.
Because of their dual potential to act both as trophic mediators, capable of releasing anti-
inflammatory and regenerative molecules, and to directly participate in tissue regeneration,
MSCs are ideal candidates for tissue engineering approaches [30,31]. Bone marrow is the
main cell source for adult MSCs along with adipose tissue which has been proposed as
an alternative MSC source. Pre-clinical and clinical studies in which BMSCs were intra-
articular injected [32,33] or used in association with scaffold [34,35] have been performed
for the regeneration of the meniscus, suggesting a potential of these cells to delay the
osteoarthritis progression and to support meniscus regeneration. On the other hand, a
few studies demonstrated that ASCs could affect the healing rate of meniscal lesions in
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animal models [36,37]. At the same time, dermal fibroblasts represent another eligible
cell source for meniscus engineering due to the simple procedure for their isolation and
their high proliferation potential, which are important characteristics in tissue engineering
approaches. Additionally, the literature has reported that they can upregulate collagen
type II and proteoglycan when stimulated using scaffolds [38,39] or in 3D co-culture with
chondrocytes [40]. Other studies, however, failed to demonstrate the chondrogenic dif-
ferentiation of DFs even when cultured in a chondrogenic inductive medium [41,42]. In
contrast, MSCs showed a good fibro-chondro-inductive potential when stimulated. The
most promising growth factors from the TGF-β superfamily for cartilage tissue engineering,
which we have also used in our experiments, are TGF-β1, TGF-β3, BMP-2, and BMP-7 [43].
TGF-β1 stimulates the synthetic activity of chondrocytes and acts with many regulatory
activities on a large number of cells [44]. Experimental studies on MSCs have shown
a down-regulation of collagen type I gene expression and an up-regulation of collagen
type II and aggrecan gene expression [45,46]. TGF-β3 also induces cartilaginous ECM
production, and the treatment of this cytokine on MSCs enhanced glycosaminoglycans
synthesis [47]. Rui et al. also demonstrated that this process was significantly ameliorated
by supplementation of BMP-2 (Bone Morphogenetic Proteins-2) [48], inducing an increase
in cartilaginous ECM production correlated with a decrease in collagen type II expression.
BMP-7 (also known as osteogenic protein-1, OP-1) plays an important role in cartilage
regeneration, and on MSCs, it acts to decrease cell proliferation activity and stimulate the
expression of cartilaginous ECM. An et al. demonstrated that the synergic effect of BMP-7
with TGF-β1 and IGF-1 (insulin-like growth factor-1) enhanced cell chondrogenesis [49]. In
our study, we have demonstrated that both ASCs and BMSCs are sensitive to the treatment
with members of the TGF-β superfamily. In particular, treatment with TGF-β3 and BMP-2
(M1 medium) induced the acquisition of fibro-chondrocyte-like cells, identifying them as
adequate cell populations in meniscal tissue engineering approaches. Starting from these
results, MSCs were used in association with collagen type I gel scaffold [50]. These gel
scaffolds were also used in several studies and applications associated with different cell
types, such as chondrocytes [51], bone marrow cells [52], oral keratinocytes [53], fibrob-
lasts [54], and osteoblastic cells [55]. With the aim of identifying the best cell population to
use in meniscus tissue engineering protocols, the behavior of ASCs and BMSCs and their
differentiation potential toward a meniscal lineage in the presence of collagen type I gel
were studied. Although either ASCs and BMSCs showed, in terms of viability and adhesion,
good interaction with the scaffold, BMSCs presented a more linear differentiation trend,
compared to cells derived from adipose tissue, with a constant and significant increase in
all the analyzed marker characteristics of meniscal tissue (GAGs, aggrecan, collagen type I
and type II). The positive effect obtained from the scaffold on undifferentiated MSCs (ASCs
and BMSCs) is also notable: these cell populations demonstrate a great ability to respond
both to chemical stimuli (cytokines and growth factors) and to physical stimuli supply of
collagen sponge, confirming collagen as adequate support to promote cells viability and
differentiation. Whitehouse et al. found similar results: the same collagen sponge seeded with
autologous MSC was useful in a preliminary ovine study and later in a human study to repair
torn avascular meniscus [56]. Other authors also observed an osteoinductive performance of
the collagen sponge seeded using hMSCs derived from human adipose tissue [57].

In the future, an attractive objective could be to evaluate whether mechanical stimuli,
provided by the use of an adequate bioreactor, will be able to standardize and enhance
the differentiative performance toward a fibro-chondrogenic lineage of BMSCs and ASCs.
Furthermore, calcium deposition and bone formation markers should be analyzed, considering
the high bone differentiation potential of BMSCs. The easy availability, high cellular yield
after isolation, and more pronounced proliferative capacity of ASCs compared to BMSCs,
combined with their high propensity to respond to physical stimuli (scaffold and bioreactor),
could make them the best cell source for meniscal tissue engineering approaches.
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3. Conclusions

In conclusion, the present study demonstrated that mesenchymal stem cells (BMSCs
and ASCs) and dermal fibroblasts (DFs) exhibit different potentials for meniscal tissue
engineering. BMSCs showed the highest differentiation capacity, producing key meniscal
markers when stimulated with TGF-β3 and BMP-2, while ASCs represent a valid alter-
native, mainly due to their easy accessibility and their less age-dependency [58,59]. Type
I collagen scaffolds effectively supported cell adhesion and differentiation, particularly
for BMSCs. The combination of mechanical and chemical stimuli through bioreactors
could further enhance these regenerative approaches. In summary, choosing the right
combination of cells and scaffolds is crucial for developing effective treatments for meniscal
injuries and delaying the progression of osteoarthritis.

4. Materials and Methods
4.1. Cell Isolation and Characterization

Isolation and culture. Adipose-derived stromal cells (ASCs, n = 4), bone marrow
stromal cells (BMSCs, n = 4), and dermal fibroblasts (DFs, n = 2) were isolated from the
respective waste tissues deriving from healthy donors under informed consent and Insti-
tutional Review Board (IBR) authorization from Galeazzi Orthopaedic Institute, Milan,
Italy. ASCs were isolated as previously described [60]. Briefly, tissues were enzymatically
digested with 0.075% type I collagenase (225 U/mg; Worthington, Lakewood, NJ, USA)
in a thermostatic chamber at 37 ◦C for 30 min. The stromal vascular fraction (SVF) was
centrifuged, and 105 cells/cm2 were plated in α-MEM medium (Table 2). BMSCs were iso-
lated as reported by Torreggiani et al. [61]: cells were purified from aliquots of heparinized
bone marrow aspirates and a Ficoll-Hypaque gradient (1.077 g/mL) (Sigma-Aldrich, Milan,
Italy) was used. Nucleated cells were collected at the interface, washed twice, suspended
in α-MEM medium, counted, and plated at a concentration of 104 cells/cm2. For DFs, the
tissue was mechanically minced, and the fragments were digested with 0.1% collagenase
type I for 6 h at 37 ◦C. The digestion was filtered, centrifuged, and the pellet plated in CTRL
medium (Table 2). All the cell populations were maintained at 37 ◦C in an incubator with
5% CO2. When cells reached 70–80% confluence, they were detached with 0.5% trypsin/0.2%
EDTA (Sigma-Aldrich) and plated at a density of 5 × 103 cells/cm2 for further expansions
and experiments.

Table 2. Specific media used either for cell expansion and maintenance (α-MEM, CTRL, and SFM) and
for cell differentiation (ADIPO, OSTEO, M1, and M2). * Life Technologies (Milan, Italy); § R&D (Milan,
Italy); £ Sigma-Aldrich (Milan, Italy); ◦ CLS Behring (King of Prussia, PA, USA).

Medium Composition Growth Factors

Expansion Medium (α-MEM)

α-MEM *
10% FBS *
100 U/mL Penicillin *
100 µg/mL Streptomycin *
2 mM L-Glutamine *
100 mM HEPES buffer *
1 mM Sodium Pyruvate *

5 ng/mL FGF-2 §

Control Medium (CTRL)

DMEM *
10% FBS
100 U/mL Penicillin
100 µg/mL Streptomycin
2 mM L-Glutamine
100 mM HEPES buffer
1 mM Sodium Pyruvate

Adipogenic Medium (ADIPO) CTRL medium

1 µMDexamethasone £

200 µM Indometacin £

500 µM IBMX £

10 µg/mL Insulin £
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Table 2. Cont.

Medium Composition Growth Factors

Osteogenic Medium (OSTEO) CTRL medium

0.01 µMDexamethasone
0.15 mM Ascorbic acid 2-phosphate £

10 nM Cholecalciferol £

10 mM β-glycero-phosphate £

Serum Free Medium (SFM)

DMEM
100 U/mL Penicillin
100 µg/mL Streptomycin
2 mM L-Glutamine
100 mM HEPES buffer
1 mM Sodium Pyruvate
1× ITS (10 µg/mL insulin, 5.5 µg/mL
transferrin, 5 ng/mL selenium) *
1.25 mg/mL Human Serum Albumine (HSA) ◦

Fibro-Chondrogenic Medium (M1) SFM medium

0.1 µM Dexamethasone
0.1 M mM Ascorbic acid 2-phosphate
10 ng/mL TGF-β3 §

10 ng/mL BMP-2 §

Fibro-Chondrogenic Medium (M2) SFM medium

0.1 µM Dexamethasone
0.1 M mM Ascorbic acid 2-phosphate
10 ng/mL TGF-β1 §

10 ng/mL BMP-7 §

200 ng/mL IGF-1 £

Proliferation. Cells were maintained in culture for several passages and counted every
week. The proliferation rate was expressed either as a number of cells counted at each
passage or as doubling time (DT) calculated as follows: t × ln(2)/ln(N/N0), where t is the
time in culture (in hours), N is the number of harvested cells, and N0 is the number of
seeded ones.

Clonogenic ability. Cells were plated in DMEM supplemented with 20% FBS, 100 U/mL
penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine, in 6-well plates by serial
dilution starting from 1000 cells/well. The frequency of the CFU-F was established after
10 days of culture (% CFU-F: number of colonies/number of plated cells × 100).

4.2. Cells Differentiation Assessment

Adipogenic differentiation. The density of 104 MSCs/well and 5 × 103 DFs/well
was induced to differentiate into the adipogenic lineage using ADIPO medium (Table 2).
After 14 days, samples were stained with Oil Red O solution (2% w/v Oil Red O in 60%
isopropanol), and lipid vacuole production was quantified [60]. Absorbance was read
at 490 nm.

Osteogenic differentiation. Cells were maintained either in control (CTRL) or os-
teogenic (OSTEO) medium (Table 2) at the density of 104 MSCs/well and 5 × 103 DFs/well.
At 14 days, alkaline phosphatase (ALP) activity, collagen production, and calcium deposi-
tion were determined as previously reported [62]. Briefly, to evaluate alkaline phosphatase
(ALP) enzymatic activity, both undifferentiated and differentiated cells were lysed in 0.1%
Triton X-100 and incubated at 37 ◦C with 10 mM p-nitrophenylphosphate dissolved in
100 mM diethanolamine and 0.5 mM MgCl2, pH 10.5. Samples were read at 405 nm and
ALP activity was calculated with respect to the protein concentration of each sample de-
termined by BCA Protein Assay (Pierce Biotechnology, Rockford, IL, USA). To determine
collagen production, cells were stained with 0.1% (w/v) Sirius Red F3BA in saturated picric
acid (Sigma-Aldrich) for 1 h at room temperature, and then the stained samples were
extracted with 0.1 M NaOH for 5 min. Absorbance was read at 550 nm, as previously
described. A standard curve of known concentration of calf skin type I collagen (Sigma-
Aldrich) was used to determine the concentration of secreted collagen. Extracellular matrix
(ECM) calcification was determined on fixed cells stained by 40 mM Alizarin Red-S (AR-S,
pH 4.1; Fluka). The mineral deposition was quantified by incubating the stained sample
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with 10% w/v cetylpyridinium chloride (CPC; Sigma-Aldrich) in 0.1 M phosphate buffer
(pH 7.0) for 15 min to extract AR-S. Absorbance was read at 550 nm.

Fibro-chondrogenic differentiation. Two different fibro-chondro-inductive media
(M1 and M2), with minor modifications from the literature [62,63], were used to per-
form the analysis (Table 2). The differentiation was obtained in pellet culture conditions:
5 × 105 cells were centrifuged in a 1.5 mL centrifuge tube, the pellets were resuspended in
serum-free medium (SFM, Table 2) or using M1 and M2 media, and then re-centrifuged;
media were changed twice a week. After 21 days, pellets were analyzed by glycosamino-
glycans (GAGs) production, histological analyses, and chondrogenic gene expression.
Glycosaminoglycans (GAGs) production was assessed either by a qualitative analysis
using Alcian Blue staining [64] or dimethyl methylene blue (DMMB) quantitative assay as
previously described [65]. Briefly, for Alcian blue staining, micromasses were fixed with
methanol 100% at −20 ◦C for 30 min and incubated with a 0.5% Alcian Blue Solution in 1M
HCl overnight at room temperature. The staining was extracted using 6 M guanidine HCl
in Milli-Q water for 6 h at room temperature. Absorbance was measured at 630 nm. For the
quantitative assay, micromasses were digested at 56 ◦C overnight by 50 µg/mL proteinase
K in 100 mM K2HPO4 (pH 8.0). After the inactivation of the enzyme for 10 min at 90 ◦C,
the samples were spun at 14,000xg for 10 min, and each supernatant was collected for
GAGs and DNA quantification. The samples were then incubated in 40 mM glycine/NaCl
(pH = 3) with 16 mg/mL DMMB, and the absorbance was read at 500 nm. The amount
of produced GAGs was determined with respect to a curve of known concentrations of
chondroitin sulfate (Sigma-Aldrich) and normalized on total DNA content determined
using the CyQUANT Cell Proliferation Assay Kit (Invitrogen, Milan, Italy), following the
manufacturer’s instruction.

Histology. The samples were fixed in 4% buffered formalin for 24 h at room tem-
perature, rinsed for 10 min in running tap water, and processed for paraffin embedding
through a graded ethanol series; 4 µm-thick sections were obtained and then stained with
Safranin-O following a standard protocol [66], for the evaluation of the structural details
and GAG deposition.

Histometry. Scaffold and micromasses diameter length was estimated. The obser-
vations were made using an Olympus BX51 light microscope (Olympus; Milan, Italy),
equipped with a digital camera.

Real-Time PCR. Total RNA was isolated from undifferentiated and differentiated cells
using Trizol (Invitrogen) in accordance with the manufacturer’s instruction, and the isolated
RNA was quantified spectrophotometrically (Nanodrop, Thermo Scientific, Rockford,
IL, USA); 1 µg of RNA was reverse-transcripted to cDNA employing the iScriptcDNA
Synthesis Kit (Bio-Rad Laboratories, Benicia, CA, USA), and 10 ng of cDNA was used as a
template for real-time PCR (StepOne Plus system, Applied Biosystems, Foster City, CA,
USA). TaqMan Universal PCR Master Mix and Assays-On-Demand kit for human Aggrecan
(Hs00153936_m1), Collagen type I (Hs01076777_m1), and Collagen type II (Hs01060345_m1)
were used. The mRNA levels of target genes were corrected for β-Actin mRNA levels
(endogenous control). All PCR reactions were performed in duplicate for each sample.

4.3. Cells-Scaffold Interaction

Scaffold. ASCs and BMSCs were cultured with type I collagen Avitene™ Ultrafoam™
Collagen Sponge (Becton Dickinson Rowa, Milan, Italy;) and maintained until 3 weeks.
Collagen-based Avitene Ultrafoam is primarily made from highly purified collagen derived
from bovine sources. Moreover, the sponge-like structure provides a porous environment
that can retain moisture and support cell infiltration.

Cell viability assay. 104 cells were seeded in 96-well plates and cultured in the absence
(MONO) or in the presence of the scaffold (SCAFFOLD, 0.2 cm Ø × 0.4 cm H) and moni-
tored at days 1, 5, 9, and 14. An amount of 0.5 mg/mL of MTT (3-[4,5 dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide, Sigma-Aldrich) was added, and cells were maintained
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for 4 additional hours at 37 ◦C. Formazan precipitates were solubilized by 100% DMSO
(Sigma-Aldrich) and absorbance was read at 570 nm.

Cell adhesion. The adhesion of 2.5 × 105 cells on the scaffold (0.4 cm Ø × 0.4 cm H)
was evaluated by DNA assessment at different time points (1–5–9 and 14 days). A pellet of
2.5 × 105 cells was used as a control. Scaffolds with cells were digested overnight at 56 ◦C
by proteinase K (50 µg/mL in 100 mM K2HPO4, pH 8.0; Sigma-Aldrich), and DNA was
measured by CyQUANT Cell Proliferation Assay Kit, as previously described.

Differentiation analysis. In total, 5 × 105 cells were seeded on collagen scaffolds
(0.6 cm Ø × 0.4 cm H) and maintained for 7–14 and 21 days either in SFM or in M1 medium.
At each time point the content of GAGs, histological analysis, and chondrogenic gene
expression were evaluated as previously described.

4.4. Statistical Analysis

Data were analyzed using two-way analysis of variance (ANOVA) of the SAS (version 8.1,
Cary Inc., North Carolina, USA), where culture medium and cellular type were the main
factors (cell differentiation vs. adipogenic, chondrogenic and osteogenic lineages, and
micro mass diameters). A two-way design was expanded to a three-way design with time
as the third factor (scaffold chondrogenic differentiation and diameters). Values from each
experimental sample were considered as the experimental unit of all response variables.
The data are presented as least squared means ± SE. Differences between means were
considered significant at p < 0.05.
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