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Abstract

We introduce a new scalar coefficient to measure linear correlation between random vectors which preserves all

the relevant properties of Pearson’s correlation in arbitrarily large dimensions. The new measure and its bounds

are derived from a mass transportation approach in which the expected inner product of two random vectors

is taken as a measure of their covariance and then standardized by the maximal attainable value given their

marginal covariance matrices. The new correlation is maximized when the average squared Euclidean distance

between the random vectors is minimal and attains value one when, additionally, it is possible to establish an

affine relationship between the vectors. In several simulative studies we show the limiting distribution of the

empirical estimator of the newly defined index and of the corresponding rank correlation.

A comparative study based on financial data shows that our proposed correlation, though derived from a

novel approach, behaves similarly to some of the multivariate dependence notions recently introduced in the

literature. Throughout the paper, we also give some auxiliary results of independent interest in matrix analysis

and mass transportation theory, including an improvement to the Cauchy-Schwarz inequality for positive definite

covariance matrices.

MSC: 62H20 (primary), 90B06, 62H30.
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1 Introduction and motivation

To measure linear correlation between non degenerate, square integrable random variables X and Y , the most

widely known and used measure is probably Pearson’s correlation coefficient

ρ(X,Y ) =
cov(X,Y )√

var(X)var(Y )
. (1.1)

For two random variables X and Y with distributions functions F and G having finite positive variance, Pearson’s

correlation satisfies the following remarkable properties (see for instance McNeil et al., 2015, Sect. 7.2.2):

P1. ρ(X,Y ) = ρ(Y,X).

P2. ρ(α1X + β1, α2Y + β2) = α1α2

|α1α2|ρ(X,Y ), for α1, α2 6= 0, β1, β2 ∈ R.

P3. ρ(X,Y ) ∈ [ρmin, ρmax] ⊂ [−1, 1], where

ρmin = inf{ρ(X,Y );X ∼ F, Y ∼ G}, ρmax = sup{ρ(X,Y );X ∼ F, Y ∼ G}.

In particular:

(a) ρmin < 0 < ρmax;
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(b) ρ(X,Y ) = ρmax if and only if the pair (X,Y ) is comonotonic;

(c) ρ(X,Y ) = ρmin if and only if the pair (X,Y ) is countermonotonic;

(d) ρmax = 1 if and only if Y
d
= aX + b, a > 0;

(e) ρmin = −1 if and only if Y
d
= aX + b, a < 0;.

P4. If X is independent of Y , then ρ(X,Y ) = 0 (the converse does not hold).

The goal of this paper is to define a measure of linear correlation ρ(X,Y ) between two non degenerate, square

integrable Rd-valued random vectors X and Y, so that the above listed properties of Pearson’s correlation are

maintained for d > 1, when the notions of co(unter)monotonicity and equality in type (Y
d
= aX + b) are replaced

by suitable multivariate analogues. For two random vectors X and Y having invertible correlation matrices ΣX
and ΣY , and cross-covariance matrix ΣXY , our novel measure of correlation will be defined as

ρ(X,Y ) =
tr(ΣXY )

tr
(
(ΣXΣY )1/2

) .
As we will illustrate in the remainder of the paper, the main idea behind the new coefficient is to measure the

covariance between the random vectors X and Y in terms of tr(ΣXY ) and then standardize it by its maximum

attainable value given solely the knowledge of their covariance matrices ΣX and ΣY .

The newly introduced correlation ρ(X,Y ) measures the similarity between X and Y in terms of a single number

in [−1, 1]. The maximal value of correlation is attained in the case that the average squared Euclidean distance

between X and Y is the minimum possible given their marginal distributions. This maximal value is equal to the

upper bound 1 if, additionally, it is possible to express Y as an affine function of X. Conversely, the minimal value

of ρ(X,Y ) indicates maximal dissimilarity between X and Y . Notice that this interpretation of ρ holds in arbitrary

dimensions d, including d = 1 (hence it holds similarly for Pearson’s correlation) and is consistent with the original

idea of correlation, as a measure of similarity (distance).

Existing association measures

To measure the linear correlation between X and Y , one could simply use ΣXY . However, in many statistical

applications where the similarity between vectors is of special interest, a scalar measure of association might be

useful.

Apart from the early Canonical Correlation measure of Hotelling (1936) and the RV coefficient defined in Robert

and Escoufier (1976), the question of measuring multivariate dependence in terms of a single number has raised a

limited interest in the literature. Most coefficients surveyed in Josse and Holmes (2016) concern tests of independence

between random vectors (or multivariate samples) rather than actually measuring the linear correlation between

them. This is also the spirit of Zhu et al. (2017) and Jin and Matteson (2018). Distance correlation as introduced

in Székely et al. (2007) belongs to the interval [0, 1] with the lower bound 0 representing independence. However,

in applications one often needs to distinguish between positive and negative dependence, possibly indicated by

positive and negative values. Moreover, a dependence measure should also provide a margin-free measurement of

association between vectors, i.e. should be invariant with respect to increasing transformation of the margins.

In general, it seems natural to establish the properties that a dependence measure ρ(X,Y ) should satisfy. This

is the direction taken by Grothe et al. (2014), where under an axiomatic framework several marginal-invariant

measures of association have been introduced as multivariate generalization of Spearman’s rho and Kendall’s tau

rank correlation measures. Recently, Hofert et al. (2019) followed and extended this axiomatic set-up defining

so-called collapsed measures of association. In Section 3.3, we will see that our newly defined coefficient, though

inspired by a different philosophy, behaves similarly to some of these recently introduced notions. Finally, a new

non-parametric measure of association between an arbitrary number of random vectors has been also proposed

in Medovikov and Prokhorov (2017) and ordinal pattern dependence as a measure of multivariate dependence has

been introduced in Schnurr (2014) and further analyzed in Betken et al. (2021). A concise overview of all approaches

used to extend rank correlation coefficients to multivariate spaces is given in Han (2021).
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A mass transportation approach

Our motivation for defining a novel correlation coefficient is driven by an optimization approach, and finds its

roots in the theory of mass transportation (Rüschendorf and Rachev, 1990; Rüschendorf, 2013). By writing

cov(X,Y ) = E[XY ]− E[X]E[Y ],

one immediately sees that, over the class of all possible pairs (X,Y ) of random variables with given marginal

distributions, Pearson’s correlation is maximized when the mean of the product between X and Y is maximized.

This occurs when X and Y are comonotonic.

Definition 1.1. The set Γ ⊂ R×R is said to be comonotonic if it is totally ordered, i.e. for any (x1, y1), (x2, y2) ∈ Γ

one has

(x2 − x1)(y2 − y1) ≥ 0. (1.2)

Any pair of random variables (X,Y ) with a comonotonic support is called comonotonic. Similarly, (X,Y ) is called

countermonotonic if the inequality (1.2) holds reversed for its support or, equivalently, if (X,−Y ) is comonotonic.

The notions of comonotonicity and countermonotonicity represent two benchmarks in statistical modeling and

copula theory, as they represent perfect positive, respectively negative, dependence; see for instance Puccetti and

Wang (2015) for an historical survey on the matter or Nelsen (2006), Durante and Sempi (2016) for textbook

treatments.

It is well known that X and Y are comonotonic if and only if (X,Y )
d
= (f1(U), f2(U)), for some (common)

random variable U and increasing measurable functions f1 and f2; see for instance Dhaene et al. (2002) or Puccetti

and Scarsini (2010) and references therein. For comonotonic random variables, the expectation of the product

E[XY ] is maximized and Pearson’s correlation attains its maximal value ρmax (property P3b). When the increasing

functions f1 and f2 can be chosen to be linear then Pearson’s attains value 1, i.e. cov(X,Y ) =
√

var(X)var(Y ). In

this case, we have that Y
d
= aX+ b, a > 0 and X and Y are called of the same type (property P3d); see for instance

Definition A.1 in McNeil et al. (2015).

Definition 1.2. The two random variables X and Y are said to be of the same type if Y
d
= aX + b for some a > 0.

Analogously, when X and Y are countermonotonic (P3c) (i.e X is an increasing, resp. Y a decreasing function

of some common random variable U), Pearson’s correlation attains its minimum value ρmin, which is −1 if and only

if X is of the same type of −Y (P3e).

Following this optimization viewpoint, it appears natural to require for a measure of linear correlation between

two vectors to be maximized (minimized) when the expectation of their inner product 〈· , ·〉 is maximized (mini-

mized), and this over all possible pairs of vectors having the same multivariate marginal distributions. Using the

formula

||x− y||2 = ||x||2 − 2〈x, y〉+ ||y||2,

it follows that the maximization of the expected inner product of two vectors is equivalent to the minimization of the

average squared Euclidean distance between their distributions; see Puccetti (2017). As a consequence, the inner

product can be interpreted as a measure of similarity between d-variate vectors, coherently with the original scope

of Pearson’s correlation as pursued for instance in the early studies of Hoeffding (1940) and Fréchet (1951). Based

on these considerations, in the following we will measure the covariance between two random vectors X and Y by

the expectation of their inner product, and we will standardize it properly to obtain a new measure of correlation.

Borrowing the taxonomy introduced in Puccetti and Scarsini (2010), to which we refer for a review of the results

illustrated below, pair of vectors maximizing (minimizing) their inner product will be named c-co(unter)monotonic.

Definition 1.3. The set Γ ⊂ Rd × Rd is said to be c-comonotonic if for any finite number m > 1 of points

(xi, yi) ∈ Γ, i = 1, . . . ,m, and any possible permutation σ of {1, . . . ,m}, we have

m∑
i=1

〈xi, yi〉 ≥
m∑
i=1

〈xi, yσ(i)〉. (1.3)
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Any pair of random vectors (X,Y ) with a c-comonotonic support is called c-comonotonic. Similarly, the pair of

vectors (X,Y ) is called c-countermonotonic if the inequality (1.3) holds reversed for its support or, equivalently, if

(X,−Y ) is c-comonotonic.

C-countermonotonicity is a generalization of the notion of comonotonicity for random variables and as such

denotes a property of a set Γ. The term c-comonotonicity stands for cyclic-comonotonicity as a c-comonotonic set

is in fact a cyclically monotone set as defined in Rockafellar (1970).

When d = 1, c-co(unter)monotonicity reduces to the standard notion of co(unter)monotonicity between random

variables. It is well known that a c-comonotonic pair (X,Y ) always exists for any choice of multivariate marginal

distributions and that it maximizes the expected inner product 〈X,Y 〉 of its components.

It is quite intuitive that condition (1.3) leads to maximal inner product of X and Y . It requires that one cannot

increase the average inner product between the points in the support of X and those in the support of Y by selecting

a different coupling (transportation plan). As a consequence, our novel correlation coefficient will be maximized by

c-comonotonic pairs of vectors and, similarly, minimized by c-countermonotonic ones.

As in the univariate case, there exists a useful characterization of c-comonotonicity. A pair of vector (X,Y ) is

c-comonotonic if and only if Y almost surely belongs to the subdifferential of a lower semicontinuos convex function

f of X; see Gangbo and McCann (1996) or Rüschendorf (1996).

Under mild assumptions (e.g. continuity of X), such convex f can be made almost everywhere differentiable and

a c-comonotonic pair of vectors can be represented as (X,∇f(X)). The relation Y
a.s.
= ∇f(X) can be interpreted as

the generalization of the notion of increasingness. Suppose that X is continuous. For d = 1, the random variables

X and Y are comonotonic iff Y is a.s. an increasing function of X (see for instance McNeil et al., 2015, Cor. 7.19).

In higher dimensions d > 1, the pair (X,Y ) is c-comonotonic iff Y is the gradient of a convex differentiable function

of X; and the gradient of a convex function is exactly an increasing function on the line.

We will see that our novel correlation measure will attain its maximal value ρmax for c-comonotonic pairs of

vectors (X,Y ). Similarly to the univariate case, when it is additionally possible to establish an affine relationship

between X and Y , we will also have ρmax = 1. Theorem 2.1 will justify the following (novel) multivariate definition

of equality in type.

Definition 1.4. Two Rd-valued random vectors X and Y are said to be of the same type if there exists a positive

definite d× d matrix A and b ∈ Rd such that Y
d
= AX + b.

For d = 1, Definition 1.4 returns the univariate notion of random variables of the same type in Definition 1.2.

For d > 1, notice that if Xi is of the same type of Yi, for all i = 1, . . . , d, then the two vectors X and Y are of the

same type. However, the above definition is more general as one can immediately see by taking X = (X1, X2)′ with

X1 ∼ N(0, 1) independent of X2 ∼ U(0, 1), and Y
a.s.
=

(
2 1

1 2

)
X. In this case, X and Y are of the same type but

not Xi and Yi.

Summary and some caveats

A brief summary of the paper follows. In Section 2, we show that the newly proposed correlation coefficient

satisfies all the above listed properties P1-P4 stated in a multi-dimensional setting; in Section 3, we provide some

simulative studies showing the limiting distribution of its sample estimator and corresponding rank correlation

coefficient. We also give a comparative study, based on financial data, with respect to some of the measures

of associations existing in the literature. Section 4 concludes the paper with some final remarks and examples.

Throughout the paper, we will also give some auxiliary results of independent interest in matrix analysis and mass

transportation theory.

Other scalar measures of dependence/association are present in the literature, and in the following they are to

be compared with our proposed coefficient. For all such measures, including the one introduced here, one must be

aware that a single number cannot generally and univocally determine the dependence of (X,Y ), even when X and

Y are random variables.

Having said that, there is not a universally acknowledged way of measuring association between random vectors

and each measure has its merit and drawbacks. This paper proposes a novel, natural, intuitive, and appealingly
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simple generalization of Pearson’s linear correlation coefficient to measure linear association between random vectors

and, in that respect, the proposed coefficient satisfies all relevant properties of Pearson’s in arbitrary dimensions

and is based on a solid mass transportation approach.

Being based on the minimization of the squared Euclidean distance, the new correlation can only be used for

random vectors of the same dimension and is not invariant with respect to permutation of the coordinates within

one vector. As such, it is especially suited for three-way (also big) data structures. These limitations are discussed

in Section 4 where possible solutions and further extensions/applications are also proposed.

Finally, we note that this paper studies association between random vectors, but there is a whole literature

concerned about association within a random vector. On this latter different topic, we refer the reader to the

survey Schmid et al. (2010) and the references therein.

Optimization problems in mass transportation related to this paper have recently gathered a considerable interest

with applications in multidimensional risk theory; see for instance Ekeland et al. (2012), Rüschendorf (2012), Carlier

et al. (2016), Puccetti (2017), and the more recent Böttcher et al. (2019), and Mordant and Segers (2022). The

style of this paper and the applications to follow are taking inspiration from this latter field.

Notation and preliminaries

Throughout this paper, d and n are positive integers: d always refers to the dimension of random vectors while

n indicates (from Section 3 on) the sample size of (simulated) data. For k ∈ N, we denote by Lk(Rd) the set of non

degenerate Rd-valued random vectors X = (X1, . . . , Xd)
′, defined on a common probability space (Ω,F ,P), and

such that E[||X||k] < ∞. Let Pk(Rd) denote the set of the corresponding Borel probability measures on Rd. We

write X ∼ F to mean that F is the probability distribution of the random vector X and X
d
= Y to mean that X

and Y have the same law.

We denote by Md the set of real-valued square matrices of order d. We use the term positive matrix for a

(symmetric) positive semidefinite matrix or strictly positive for a (symmetric) positive definite matrix. For all the

matrix analysis results stated in this section, we refer the reader to the standard references Bhatia (2007) and Horn

and Johnson (2013).

For a matrix A ∈ Md, we denote by A1/2 the principal square root of A, that is any matrix B satisfying the

equation B2 = A, and whose eigenvalues have positive real part. Such a matrix exists and is unique if A has no

nonpositive real eigenvalues. In particular, if A is (strictly) positive then A1/2 is unique and (strictly) positive.

There exist several methods to compute the principal square root of a matrix; see for instance Higham (1997). In

our applications to follow we use the R package expm maintained by Martin Mächler or the MATLAB function

sqrtm. For 2× 2 matrices, an explicit formula is also available.

The geometric mean of two strictly positive matrices A and B is the strictly positive matrix defined as

A#B = A1/2
(
A−1/2BA−1/2

)1/2

A1/2. (1.4)

One can prove that A#B is the unique strictly positive solution of the equation XA−1X = B and that

A#B = B#A = A(A−1B)1/2 = (BA−1)1/2A. (1.5)

When A and B commute (i.e. AB = BA), one has A#B = A1/2B1/2 = B1/2A1/2 = (AB)1/2.

For X,Y ∈ L2(Rd), let ΣXY ∈Md be the cross-covariance matrix of X and Y , defined as

(ΣXY )i,j = cov(Xi, Yj), for i, j = 1, . . . , d.

We also denote by ΣX = ΣXX and ΣY = ΣY Y the covariance matrices of X and Y . ΣX and ΣY are in general

positive but, under the framework of Section 2, they will be required to be invertible, i.e. strictly positive. The

following auxiliary result will be used in what follows.
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Lemma 1.1. For A = (aij) ∈Md, and X,Y ∈ L2(Rd), we have

tr
(
ΣX(AY )

)
=

d∑
i=1

cov
(
Xi,

d∑
j=1

aijYj

)
=

d∑
i=1

d∑
j=1

aij cov(Xi, Yj)

=

d∑
i=1

d∑
j=1

(A ◦ ΣXY )ij = tr (AΣ′XY ) .

2 Linear correlation between random vectors

Let X and Y in L2(Rd) have invertible correlation matrices ΣX and, respectively, ΣY . Relaxations of this

invertibility assumption will be treated in Section 4. We now introduce a new linear correlation coefficient between

random vectors and prove that it satisfies properties P1-P4 where the notions of co(unter)monotonicity and equality

in type are replaced by their multivariate analogous as given in Definitions 1.3–1.4.

Definition 2.1. For two random vectors X,Y ∈ L2(Rd) having invertible correlation matrices ΣX and ΣY , we

define the correlation coefficient

ρ(X,Y ) =
tr(ΣXY )

tr
(
(ΣXΣY )1/2

) . (2.1)

It is straightforward to check that, for d = 1, ρ(X,Y ) as defined in (2.1) gives Pearson’s correlation coeffi-

cient (1.1). We also notice that ρ(X,X) = 1 and ρ(X,−X) = −1. In the following remark, we show that the

definition of ρ(X,Y ) is well posed in any dimension d.

Remark 2.1. For the two strictly positive matrices ΣX ,ΣY , we have that Σ−1
X #ΣY is unique and strictly positive

and, using (1.5), one can write

ΣXΣ−1
X #ΣY = ΣXΣ−1

X (ΣXΣY )1/2 = (ΣXΣY )1/2.

Hence the denominator in (2.1) is unique and well-defined. Similarly,

Σ−1
X #ΣY ΣX = (ΣY ΣX)1/2Σ−1

X ΣX = (ΣY ΣX)1/2.

As tr
(
Σ−1
X #ΣY ΣX

)
= tr

(
ΣXΣ−1

X #ΣY
)
, from the previous equations one also obtains

tr
(

(ΣXΣY )1/2
)

= tr
(

(ΣY ΣX)1/2
)
. (2.2)

If ΣX and ΣY commute (e.g. if they are equi-correlation, hence circulant, matrices), we have that (Σ−1
X #ΣY ) =

Σ
−1/2
X Σ

1/2
Y and one immediately computes

tr (ΣXΣY )
1/2

= tr
(

Σ
1/2
X Σ

1/2
Y

)
.

Theorem 2.1. For a pair of random vectors X,Y ∈ L2(Rd) with invertible correlation matrices ΣX and ΣY and

distribution functions X ∼ F and Y ∼ G, the correlation coefficient ρ(X,Y ) defined in (2.1) satisfies the following

properties:

P1. ρ(X,Y ) = ρ(Y,X).

P2. ρ(α1X + β1, α2Y + β2) = α1α2

|α1α2|ρ(X,Y ), for α1, α2 6= 0, β1, β2 ∈ Rd.

P3. ρ(X,Y ) ∈ [ρmin, ρmax] ⊂ [−1, 1], where

ρmin = inf{ρ(X,Y );X ∼ F, Y ∼ G}, ρmax = sup{ρ(X,Y );X ∼ F, Y ∼ G}.

In particular:
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(a) ρmin < 0 < ρmax;

(b) ρ(X,Y ) = ρmax if and only if the pair (X,Y ) is c-comonotonic;

(c) ρ(X,Y ) = ρmin if and only if the pair (X,Y ) is c-countermonotonic;

(d) ρmax = 1 if and only if X and Y are of the same type.

(e) ρmin = −1 if and only if X and −Y are of the same type.

P4. If X is independent of Y , then ρ(X,Y ) = 0 (the converse does not hold).

Proof. Property P1 follows from (2.2) and tr(ΣXY ) = tr(ΣY X). For arbitrary α1, α2 6= 0, β1, β2 ∈ Rd, with

X ′ = α1X + β1, Y ′ = α2Y + β2, one directly checks P2:

ρ(α1X + β1, α2Y + β2) =
tr(ΣX′Y ′)

tr
(
(ΣX′ΣY ′)1/2

) =
α1α2 tr(ΣXY )

tr
(
(α2

1 α
2
2 ΣX ΣY )1/2

)
=

α1α2 tr(ΣXY )

|α1α2| tr
(
(ΣXΣY )1/2

) =
α1α2

|α1α2|
ρ(X,Y ).

In view of this property, in the reminder of the proof we assume without loss of generality that X and Y have null

mean vectors.

Given two probability distributions F,G ∈ P2(Rd) with null mean, now define

m(F,G) = inf {tr(ΣXY );X ∼ F, Y ∼ G} , (2.3a)

M(F,G) = sup {tr(ΣXY );X ∼ F, Y ∼ G} . (2.3b)

A standard continuity/compactness argument in mass transportation theory (see e.g. Rüschendorf (1991)) shows

that each value u ∈ [m(F,G),M(F,G)] is attained by some pair of vectors (Xu, Yu) with Xu ∼ F and Yu ∼ G. Since

M(F,G) is bounded (see for instance (2.5) below), by Theorem 2.2 and Corollary 2.4 in Gangbo and McCann (1996),

tr(ΣXY ) = M(F,G) holds true if and only if the pair (X,Y ) with marginals F and G is c-comonotonic according to

Definition 1.3. Analogously, one immediately sees from Lemma 2.1 in Rüschendorf (1996) that tr(ΣXY ) = m(F,G)

holds if and only if (X,−Y ) is c-comonotonic. This shows property P3b-c.

Denoted by ΣX and ΣY the two correlation matrices of any X ∼ F and, respectively, Y ∼ G, the inequalities

− tr
(

(ΣXΣY )1/2
)
≤ m(F,G) ≤M(F,G) ≤ tr

(
(ΣXΣY )1/2

)
(2.4)

can be derived, applying the formula ||x−y||2 = ||x||2−2〈x, y〉+ ||y||2, from the main results of Dowson and Landau

(1982) and Olkin and Pukelsheim (1982). When ΣX and ΣY are invertible, Theorem 4 in Olkin and Pukelsheim

(1982) implies that M(F,G) = tr
(
(ΣXΣY )1/2

)
if and only if X and Y are of the same type according to Defini-

tion 1.4 (property P3d). Notice that M(F,G) = tr
(
(ΣXΣY )1/2

)
is attained by the c-comonotonic pair (X,Y ), with

Y
a.s.
= TX and T = Σ−1

X #ΣY (see Example 2.1). In this latter case ρ(X,Y ) = 1. By switching the sign of T , one

obtains P3e.

From Property P4 (immediate), ρ(X,Y ) = 0 in case of independence and hence ρmax ≥ 0. If ρmax = 0 then the

independent pair (X,Y ) is optimal, hence c-comonotonic. However, this is not possible as the corresponding law

does not belong to the subdifferential of a convex function unless X is degenerate. Hence ρmax > 0 and, similarly,

ρmin < 0 (P3a).

We conclude the proof by noting that the converse of P4 does not hold. As an example, take X
a.s.
= (U, V )′,

Y
a.s.
= (U,−V )′, where U and V are two independent copies of U(0, 1). We have ρ(X,Y ) = 0 without X and Y

being stochastically independent. �
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The main idea behind Definition 2.1 is to measure the covariance between the random vectors X and Y in terms

of tr(ΣXY ) and then standardize it by its maximum attainable value given solely the knowledge of their covariance

matrices ΣX and ΣY . An alternative standardization is discussed in Remark 2.3 below.

Remark 2.2. For tr(ΣXY ) = tr
(
(ΣXΣY )1/2

)
to hold, it is necessary that Y

d
= AX + b with A strictly positive

(property P3d). If, for instance, one takes Y
a.s.
= AX with A assumed to be only symmetric, the second equality in

tr
(

(ΣXΣY )1/2
)

= tr
(

(ΣXAΣXA)1/2
)

= tr(ΣXA) = tr(AΣX) = tr(ΣX(AX)) = tr(ΣXY )

might be wrong as the matrix ΣXA might not be the principal square root of (ΣXAΣXA). As an example consider

ΣX =

(
1 0

0 1

)
,ΣY =

(
5 4

4 5

)
.

One can check that the four matrices A1,2 = ±
(

1 2

2 1

)
, A3,4 = ±

(
2 1

1 2

)
are all square roots of ΣY . Our

framework requires the use of the principal square root, that is the one whose eigenvalues have positive real part.

Hence

Σ
1/2
Y =

(
2 1

1 2

)
,

the latter being a strictly positive matrix, hence delivering an higher trace (covariance).

Remark 2.3. Cauchy-Schwarz inequality for random variables gives the trivial bound

|tr(ΣXY )| ≤
d∑
i=1

√
var(Xi)var(Yi). (2.5)

In view of (2.5), it would have been more intuitive to define a coefficient ρ′(X,Y ) measuring correlation between

vectors as

ρ′(X,Y ) :=
tr(ΣXY )∑d

i=1

√
var(Xi)var(Yi)

.

One immediately sees that ρ′(X,Y ) still belongs to a closed interval [ρmin, ρmax] ⊂ [−1, 1]. However, ρ′(X,Y )

attains the extremal value 1 (−1) if and only if each Xi is of the same type of Yi (−Yi). This latter case is

considered here too restrictive as it implies, for instance, that the pair (X,Y ) is π-co(unter)monotonic (in general,

not c-co(unter)monotonic) and X and Y necessarily have the same dependence structure (copula); see Puccetti and

Scarsini (2010) for a definition and more details on π-comonotonicity.

The coefficient ρ(X,Y ) defined in (2.1) allows the extremal values |ρ(X,Y )| = 1 to be attained for a broader

class of marginal distributions. In fact, one can immediately see that in the particular case that Yi
d
= aiXi + bi, for

some ai > 0, bi ∈ R, we have that ΣY = DΣXD, where D = diag(a1, . . . , ad), and ρ(X,Y ) = ρ′(X,Y ).

In the following corollary, we collect some direct consequences of properties P1-P4. In particular, P3 implies (2.6)

below, an improvement of the Cauchy-Schwarz inequality for cross-covariance matrices which, to our knowledge,

has not been given attention in multivariate statistics or matrix theory.

Corollary 2.2 (Improvement of the Cauchy-Schwarz inequality). The following statements hold true.

1. For X,Y ∈ L2(Rd) having invertible covariance matrices ΣX and, respectively, ΣY , we have that

∣∣∣tr(ΣXY )
∣∣∣ ≤ tr

(
(ΣXΣY )1/2

)
≤

d∑
i=1

√
var(Xi)var(Yi). (2.6)

2. For any strictly positive matrices ΣX ,ΣY , one has that (ΣXΣY )1/2 is uniquely defined and

tr
(

(ΣXΣY )1/2
)

= tr
(

(ΣY ΣX)1/2
)
.
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The newly introduced correlation measures the similarity between X and Y in terms of a single number ρ(X,Y ) ∈
[−1, 1]. The value ρ(X,Y ) = 1 corresponds to the case when Y

a.s.
= AX + b, with A being a positive definite matrix

and b ∈ Rd. The linear relationship A can be extracted by the formula A = Σ−1
X #ΣY , that is A is equal to the

geometric mean of Σ−1
X and ΣY ; see (1.4).

In general, the extremal values 1 and −1 for the correlation coefficient (2.1) can only be attained when X and

Y are of the same type according to Definition 1.4. We illustrate these properties in the following pedagogical

example.

Example 2.1. Assume X and Y have bivariate Gaussian distributions X ∼ N (µX ,ΣX) and Y ∼ N (µY ,ΣY ),

with null mean vectors µX = µY = (0, 0)′ and covariance matrices

ΣX =

(
1 0

0 1

)
, ΣY =

(
1 2

5
2
5 1

)
.

From Corollary 3.2.13 in Rachev and Rüschendorf (1998), one has that A = Σ−1
X #ΣY is the only strictly positive

matrix such that AΣXA
′ = ΣY . Define Ŷ

a.s.
= AX

d
= Y , where

A = Σ−1
X #ΣY =

(
a b

b a

)
, a =

√
35 +

√
15

10
, b =

√
35−

√
15

10
. (2.7)

Being positive definite, A provides a linear optimal transport between the laws of X and Y , hence the squared

distance E||X − Ŷ ||2 is the minimal possible given the two distributions of X and Y . Equivalently stated, X and

Ŷ are c-comonotonic and ρ(X, Ŷ ) attains its maximal value ρmax. Since Y is also of the same type of X, we also

have that ρ(X, Ŷ ) = ρmax = 1.

Similarly, due to −AX d
= Y , it also follows that ρmin = −1. In this example, notice that the second inequality

in (2.6) is strict, that is

tr
(

(ΣXΣY )1/2
)
' 1.9578 < 2 =

2∑
i=1

√
var(Xi)var(Yi),

because X and Y are not π-comonotonic (see Remark 2.3).

Let now define a different linear transformation of X, namely Y ′
a.s.
= BX with

B =

( √
3/2 1/2

c 4/5−
√

3c

)
, c =

√
3

10
(2 +

√
7). (2.8)

After checking that BΣXB
′ = ΣY and hence Ŷ

d
= Y ′

d
= Y , one applies Lemma 1.1 to compute

ρ(X,Y ′) = ρ(X,BX) =
tr(B)

tr
(
(ΣXΣY )1/2

) =

√
3/2 + 4/5−

√
3c

1.9578
' 0.1391. (2.9)

Despite the linear relationship between X and Y
a.s.
= BX, in this latter case we have that

1 = ρ(X,X) 6= ρ(X,BX) ' 0.1391.

This occurs because B does not possess the optimality property in (4.3).

This example shows that, in contrast to Pearson’s correlation in dimension d = 1, the measure is not (and,

of course, cannot be) invariant with respect to general multivariate linear transformations of the vectors, i.e., in

general ρ(X,Y ) is different from ρ(X,BY ). This is a direct consequence of our transportation approach. As already

remarked in the Introduction, under the squared Euclidean distance optimal transportation plans are subdifferentials

(gradients) of convex functions. If an optimal plan is also linear, it must necessarily come in the form of a symmetric

positive definite matrix, while the above defined matrix B is not even symmetric.
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3 Sample and rank correlation

In this section we present some simulation studies to show how the newly proposed correlation coefficient can

be estimated from finite samples. We also introduce the corresponding rank correlation coefficient and show similar

limiting properties. Finally, we provide a comparative example with respect to the multivariate dependence notions

existing in the literature.

3.1 Sample Correlation

We represent n independent realizations of the random vectors X,Y ∈ L2(Rd) by the n×d matrices X̂, Ŷ , which

(to simplify notation) we assume to be column-centered. We define ρ̂(X̂, Ŷ ), the empirical estimator of ρ(X,Y ), as

ρ̂(X̂, Ŷ ) =
tr(Σ̂XY )

tr
(

(Σ̂XΣ̂Y )1/2
) , (3.1)

where Σ̂X = 1
n−1X̂

′X̂, Σ̂Y = 1
n−1 Ŷ

′Ŷ and Σ̂XY = 1
n−1X̂

′Ŷ are the empirical non-biased estimators of respectively

ΣX ,ΣY and ΣXY = Σ′Y X . Similarly, define

Ẑ = (X̂, Ŷ ), Σ̂Z =
1

n− 1
Ẑ ′Ẑ =

(
Σ̂X Σ̂XY

Σ̂Y X Σ̂Y

)
, and ΣZ =

(
ΣX ΣXY

ΣY X ΣY

)
.

Using the notation introduced above, the empirical estimator ρ̂(X̂, Ŷ ) can be written as a function f of the sample

correlation Σ̂Z . In fact, we have ρ̂(X̂, Ŷ ) = f(Σ̂Z) and ρ(X,Y ) = f(ΣZ), where f : M2d → R is defined by

f :M→ R as

f

(
A B

B′ C

)
=

tr(B)

tr
(
(AC)1/2

) .
At this point, from Theorems 3.1.3–5 in Kollo and von Rosen (2005) or Lemma 3.1 in Robert et al. (1985), one

obtains that ρ̂(X̂, Ŷ ) has a Gaussian, non biased asymptotic distribution.

Theorem 3.1. Let X,Y ∈ L4(Rd) with invertible covariance matrices ΣX ,ΣY . If |ρ(X,Y )| < 1, we have, for

n→∞, that √
n (ρ̂(X̂, Ŷ )− ρ(X,Y ))

D→ N (0, σ2),

for σ2 > 0.

Following the theory in Kollo and von Rosen (2005, Sect. 3.1.2), the asymptotic variance of ρ̂(X̂, Ŷ ) is given by

σ2 =

(
df(H)

dH

∣∣∣
H=ΣZ

)′
Π

(
df(H)

dH

∣∣∣
H=ΣZ

)
,

where Π is defined in (3.1.5) of Kollo and von Rosen (2005); see also Lemma 3.1 in Robert et al. (1985). Due

to the presence of the square root functional, the explicit computation of σ2 appears to be very involved if at all

possible. To approximate the asymptotic variance, one can compute its bootstrap estimator, which performs well

on the average and seems to be accurate enough for large sample sizes; see the results in Table 1.

We now provide a simulation example showing the asymptotic normality of ρ̂(X̂, Ŷ ) as well as estimates of its

asymptotic variance. We simulate from a pair (X,Y ) of bivariate (d = 2) Gaussian vectors having the marginal

distributions X ∼ N (µ1,ΣX) and Y ∼ N (µ2,ΣY ) as described in Example 2.1, and we sample the value ρ(X,Y )−
ρ̂(X̂, Ŷ ) from different scenarios:

• Scenario I. X and Y are independent. In this case, we have ρ(X,Y ) = 0.

• Scenario B. Y
a.s.
= BX with B as in (2.8) yielding ρ(X,Y ) ' 0.1391; see (2.9).
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• Scenario Aξ. Y
a.s.
= AξX with Aξ = A +

(
0 ξ

−ξ 0

)
being a ξ-perturbation of the matrix A given in (2.7).

Recalling that ΣX =

(
1 0

0 1

)
, we apply Lemma 1.1 to obtain, for ξ = 0.1, that

ρ(X,Y ) = ρ(X,AξX) =
tr(ΣX(AξX))

tr
(

(ΣXAξΣXA′ξ)
1/2
) =

tr(AξΣX)

tr
(

(ΣXAξΣXA′ξ)
1/2
) =

tr(Aξ)

tr
(

(AξA′ξ)
1/2
) ' 0.9948.

Our results for different values n of the sample size are collected in Table 1 and Figure 1 and fully confirm

the asymptotic distribution given in Theorem 3.1. In the tables to follow, we use ρ and ρ̂ to indicate ρ(X,Y ) and

ρ̂(X̂, Ŷ ).

Scenario I (ρ− ρ̂) CI
√
n sd(ρ− ρ̂) BS BS CI

n = 100 2.2988e− 04 [−0.1424, 0.1438] 0.7284 0.7010 [0.3855, 1.0754]

n = 1000 7.7261e− 05 [−0.0446, 0.0445] 0.7202 0.7205 [0.6175, 0.8327]

n = 10000 7.9865e− 06 [−0.0142, 0.0141] 0.7221 0.7218 [0.6883, 0.7557]

Scenario B (ρ− ρ̂) CI
√
n sd(ρ− ρ̂) BS BS CI

n = 100 −4.8786e− 04 [−0.1991, 0.1888] 0.9905 0.9379 [0.5123, 1.4534]

n = 1000 −3.4895e− 05 [−0.0606, 0.0603] 0.9765 0.9773 [0.8315, 1.1339]

n = 10000 −1.5957e− 05 [−0.0192, 0.0191] 0.9772 0.9801 [0.9335, 1.0271]

Scenario Aξ (ρ− ρ̂) CI
√
n sd(ρ− ρ̂) BS BS CI

n = 100 9.4993e− 05 [−2.1148e− 04, 6.3764e− 04] 0.0023 0.0023 [0.0009, 0.0044]

n = 1000 9.5102e− 06 [−1.1062e− 04, 1.5519e− 04] 0.0022 0.0022 [0.0015, 0.0028]

n = 10000 8.9191e− 07 [−3.9772e− 05, 4.4011e− 05] 0.0021 0.0021 [0.0019, 0.0024]

Table 1: Values of (ρ − ρ̂) estimated over 105 repetitions of a simulated sample of size n from a bivariate (d = 2)
Gaussian pair (X,Y ) as described in Section 3.1. Estimates are computed with their 95% empirical confidence
interval (CI) and their standard deviation sd(ρ−ρ̂) multiplied by

√
n. Estimates of standard deviation are compared

with the corresponding bootstrap estimates (BS) obtained by resampling n/10 times from a single simulated sample
of size n. We show average estimate over 104 repetitions with their 95% empirical confidence interval (BS CI).
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Figure 1: QQ plot versus Gaussian theoretical quantiles for 105 estimates of (ρ − ρ̂) coming from n = 102 (first
row), n = 103 (second row), n = 104 (third row) simulations in Scenario I (first column); B (second); Aξ (third) as
defined in Section 3.1. Notice the different scale of scenario Aξ.
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3.2 Rank correlation

Similarly to Pearson’s correlation, and when the random vectors X and Y are not of the same type, the maximal

attainable correlation ρmax might be less than 1, and the minimal attainable correlation ρmin might be bigger than

−1. This for instance occurs when one vector is measured on a different scale, as in the following example.

Example 3.1. Assume X ∼ N (µX ,ΣX) and let the components of Y = (Y1, Y2)′ be independent and have a

LogNormal distribution, that is lnYi ∼ N (0, σ2), i = 1, 2, with σ > 0. Note that the function f+ : R2 → R,

f+(x1, x2) = 1
σ (eσx1 + eσx2) is differentiable and convex, and has gradient ∇f+(x1, x2) = (eσx1 , eσx2)′. Since

∇f+(X) ∼ Y , the maximal average inner product between X and Y is attained when Y
a.s.
= ∇f+(X) and is given

by

sup{tr (ΣX̃Ỹ ) ; X̃ ∼ X, Ỹ ∼ Y } = E[X1(eσX1 − eσ
2/2) +X2(eσX2 − eσ

2/2)] = 2E[X1(eσX1)].

Since

ΣX =

(
1 0

0 1

)
and ΣY =

(
eσ

2

(eσ
2 − 1) 0

0 eσ
2

(eσ
2 − 1)

)
,

one directly computes

tr
(

(ΣXΣY )1/2
)

= tr
(

Σ
1/2
Y

)
= 2
√
eσ2(eσ2 − 1).

Thus

ρmax =
E[X1(eσX1)]√
eσ2(eσ2 − 1)

.

Taking f−(x1, x2) = − 1
σ (e−σx1 − e−σx2), one analogously computes ρmin = −ρmax. This latter equality holds in

general when X is symmetric.

In Figure 2, we illustrate the range [ρmin, ρmax] of attainable correlations versus the value of σ > 0. One

immediately sees that ρmax < 1 and ρmin > −1 because Y is not of the same type of X. Moreover, ρmax can

be made arbitrary small (positive) for enough large values of σ, yet the pair of vectors attaining ρmax is always

c-comonotonic. In the limit when σ → 0, ρmax converges to 1 (thus ρmin to −1) because in this limiting case Y

converge to a degenerate distribution (which can be made approximately of the same type of X).

In Figure 2, we also notice that the sample correlation estimator is not in [ρmin, ρmax]. This is not a design

error of the measure but just estimation uncertainty since ρmin and ρmax are unknown given only the data (the

estimator is nevertheless always bounded by [−1, 1]). It is known (see for instance Lai et al., 1999) that for the

LogNormal distribution the sample correlation is affected by a large bias for smaller sample sizes, a bias that can

be reduced only after a large number of observations – typically in the order of millions. This behavior is evident

in Figure 2, where we show estimates for the sample correlation coefficient ρ̂(X̂, Ŷ ) for simulations coming from the

pair (X,Y ) in Example 3.1. An upward bias is evident for n = 103 simulations, while the figure becomes consistent

with Theorem 3.1 only at n = 106.

Example 3.1 shows that, for general random vectors, the range of attainable correlations might be strictly in-

cluded in the interval [−1, 1] and a small value of correlation does not necessarily imply a weak dependence. This

warning can be ignored when one works within families of probability distributions closed under affine transforma-

tions, e.g. elliptical distributions. In such cases, the maximal (minimal) attainable correlation is always (−)1; see

Example 2.1.

In order to avoid such cases where the correlation coefficient is not able to detect c-comonotone vectors observed

on different scales, or fails to provide accurate estimates with a reasonable number of observations, it might be

senseful to measure rank correlation. Recall our notation that the n × d matrices X̂, Ŷ contain n independent

realizations of the random vectors X,Y ∈ L2(Rd). We define the rank correlation coefficient

ρ̂r(X̂, Ŷ ) = ρ̂(X̂r, Ŷ r), (3.2)

where X̂r, Ŷ r are the columnwise rank values of the two set of observations X̂, Ŷ .
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The rank correlation ρ̂r(X̂, Ŷ ) preserves all the asymptotic properties of the sample correlation coefficient

ρ̂(X̂, Ŷ ), but has the additional advantage of being invariant with respect to increasing transformations of the

marginal components of the vectors X, Y . Hence, it is able to detect c-comonotonicity between vectors up to

increasing variations of scale. In Example 3.1 the rank correlation coefficient (3.2) detects one correlation, i.e.

c-comonotonicity of the pair (X,Y ), at any level of σ and number of observations n; see Figure 2.
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Figure 2: The solid lines represent maximum and minimum attainable correlations (versus the choice of the param-
eter σ) between the vectors X and Y as described in Example 3.1. The black stars are the values of the sample
correlation ρ̂(X̂, Ŷ ), while the white dots are the values of the rank correlation ρ̂r(X̂, Ŷ ) under maximal dependence.
These estimates are averages computed with their 95% empirical confidence interval (dashed) over 104 repetitions
of a simulated sample of size n = 103 (left) and n = 106 (right).

We conclude this section by a second simulation study, where we show that, besides being invariant with respect

to increasing transformations of the marginals, the rank correlation ρ̂r(X̂, Ŷ ) preserves all the asymptotic properties

of the sample correlation coefficient ρ̂(X̂, Ŷ ). We simulate from a pair (X,Y ) following the probabilistic model

Y = σX +
√

1− σ2Z, (3.3)

for a given value of σ ∈ [−1, 1]. Z has a centered 5-dimensional Student’s t distribution Z ∼ t4.5(0, Id), and is

independent of X ∼ t4.5(0,ΣX), with

ΣX =


1 0.32 0.39 0.44 0.47

0.32 1 0.32 0.39 0.44

0.39 0.32 1 0.31 0.39

0.44 0.39 0.31 1 0.32

0.47 0.44 0.39 0.32 1

 .

One easily computes

ρ(X,Y ) =
σ tr (ΣX)

tr
(
(σ2Σ2

X + (1− σ2)ΣX)1/2
) .

Our results (collected in Table 2 and Figure 3) are coherent with the unbiasedness and asymptotic normality of

ρ̂(X̂, Ŷ ) and ρ̂r(X̂, Ŷ ).

3.3 Comparison with other association measures used in finance

We now apply our measure of correlation in a real financial example and we compare it to the multivariate

measures defined in Grothe et al. (2014) and in Hofert et al. (2019).
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σ = −0.5 CI σ = 0 CI σ = 0.9 CI

ρ̂ −0.5163 [−0.5557,−0.4782] -0.0001 [−0.0303, 0.0299] 0.9018 [0.8862, 0.9167]
ρ̂r −0.5033 [−0.5291,−0.4770] -0.0001 [−0.0297, 0.0296] 0.8734 [0.8618, 0.8844]

Table 2: Values of ρ̂(X̂, Ŷ ) and ρ̂r(X̂, Ŷ ) estimated over 104 repetitions of a simulated sample of size n = 103 from
the pair (X,Y) as defined in (3.3). Estimates are computed with their 95% empirical confidence interval (CI).
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Figure 3: QQ plot versus Gaussian theoretical quantiles for 105 estimates of ρ̂r(X̂, Ŷ ) coming from different sample
sizes (in row) and for different values of σ (in column) for the simulation study in Section 3.2. Notice the different
scale used for σ = 0.9.

In Grothe et al. (2014), the authors develop multivariate generalizations of Spearman’s rho and Kendall’s tau,

measuring association in terms of a normalized integral of the difference between the joint distribution of (X,Y )

and the joint distribution under independence. These measures are referred to as multivariate Spearman and

multivariate Kendall in the following.

In Hofert et al. (2019), dependence between X and Y is measured in terms of

ρ(S(X), S(Y )), (3.4)

that is the correlation between the so-called collapsed variables S(X) and S(Y ), where the function S can take

different forms. These measures will be referred to as collapsed measures of association. The above mentioned papers

operate within an axiomatic framework, where the desirable properties to be satisfied by a general multivariate

measure are listed a priori. We further discuss this point in Section 4.

To make our comparison effective, we use the same dataset as in Grothe et al. (2014, Sect. 5.2) which was
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kindly provided by Oliver Grothe. Thus, we consider association between bond and stock markets, which is widely

discussed in the financial literature. For example, Gulko (2002) argues that government bonds and stocks are

usually positively correlated, but decouple in times of crises when investors search for safe havens like bonds of

strong countries. In these times their association is expected to be negative; see also Ilmanen (2003).

We consider daily returns of the stock market indices (X1, . . . , X5)′ of five major countries as well as government

bonds indices (Y1, . . . , Y5)′ for the respective countries. Full details of the study are to be found in Grothe et al.

(2014). Figure 4, top, shows the evolution of multivariate Kendall and Spearman based on a 150-day forward-looking

window with start date from Jan 3, 1996 to Jan 31, 2012, as compared to our correlation (2.1) and rank correlation

(3.2) coefficients. Figure 4, middle, shows the same analysis for two different collapsed measures of association,

defined by the arithmetic mean of the vector components and the maximum collapsing functions. Finally, Figure 4,

bottom, shows Canonical Correlation (Hotelling, 1936), the RV coefficient (Robert and Escoufier, 1976), distance

correlation (Székely et al., 2007) and the (Euclidean) distance collapsing function.

It is interesting to see how our newly defined correlation indexes, though derived from a totally different approach,

behave very similarly to the multivariate Spearman, mean and maximum collapsing function. The comments

in Grothe et al. (2014) hence remain valid, indicating that these association measures are more suitable to describe

association with respect to classical ones. This is not surprising as these latter measures are standardized, clearly

quantify positive and negative association and satisfy a list of properties as indicated by the respective authors.

Also correlation and rank correlation are very similar, suggesting that the the use of simple correlation might be

deemed appropriate.

As already noted in Hofert et al. (2019), the distance collapsing function is similar to the sample version of

distance correlation and hence behaves similarly to Canonical Correlation and the RV coefficient.

Typically, association measures restricted to [0, 1] are not able to distinguish positive from negative dependence.

Consider for instance the two vectors X = (X1, X2)′ and Y = (−X1,−X2)′. It is immediate to compute ρ(X,Y ) =

−1 as the two vectors are c-countermonotonic. For Canonical Correlation

χ(X,Y ) = sup
u,v∈Rd

ρ(u′X, v′Y ),

one obtains χ(X,Y ) = 1 attained by u = (1, 1)′, v = (−1,−1)′.

We also notice that in the case the function S(X) =
∑d
i=1Xi is simply the sum operator, the collapsed measure

of association defined in (3.4) is computed as

ρ

 d∑
i=1

Xi,

d∑
j=1

Yj

 =

d∑
i=1

d∑
j=1

ρ(Xi, Yj),

that is as the sum of possible correlation between pairs of coordinates of X and Y . Though in principle it is appealing

to have a measure which is invariant with respect to permutations of the coordinates and that can be applied to

vectors of different dimensions, there are cases in which our optimization approach appears to be more adequate

than those existing in the literature. We provide a pedagogical example to see how and why the newly-proposed

measure materially differs from the other available measures of vector dependence.

Example 3.2. Let X have a Gaussian distribution X ∼ N ((0, 0)′,ΣX) and Y
a.s.
= AX, where

ΣX =

(
1 0

0 1

)
, A =

(
a 1

1 1

)
, with a > 1.

Since A is a strictly positive matrix, we have ρ(X,Y ) = ρmax = 1, for any value of a > 1. Having ρ = ρmax means

that the interdependence between X and Y yields the minimal possible (squared Euclidean) distance between their

distributions. This is coherent with the original meaning of correlation as a measure of similarity: given their

marginal laws, X and Y are the closest possible random vectors.
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Figure 4: Time evolution of the association between bond and stock markets, measured by different multivariate
measures of association as described in Section 3.3.
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Other measures of association fail to detect this minimal distance case, not because they are bad measures but

just because they are based on different approaches. Using the collapsed measure of association in Hofert et al.

(2019) with the mean collapsing function, elementary calculations yield

ρmean = ρ

(
X1 +X2

2
,
Y1 + Y2

2

)
= ρ

(
X1 +X2

2
,

(a+ 1)X1 + 2X2

2

)
=

a+ 3√
2
√
a(a+ 2) + 5

.

In Figure 5, left, we plot the function ρmean against the value of a. For a > 1, the function is always strictly

less than 1 (and goes to the limit
√

2/2 for a → ∞). In Figure 5, right, we estimated the multivariate Kendall as

introduced in Grothe et al. (2014) from a set of 1000 independent simulations from (X,Y ), for varying values of a.

Even at a = 1, the value of Kendall is
√

3/3 < 1, while our sample coefficient is always 1 for any value of a > 1.

We stress again that this is only a pedagogical example to highlight the differences between different measures

of association and their different domains of application – does not assess the goodness of one with respect to the

others. Despite the mathematical example, in the real financial case study illustrated above, all the mentioned

measures behave similarly.
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Multivariate Kendall

a

Figure 5: Values of the collapsed measure of association (with mean collapsing function) and multivariate Kendall
against the value of the parameter a in Example 3.2. The dashed line represent the value of (estimated) correlation,
which is always 1.

4 Final discussion and further extensions

Fully inspired by the structure of Pearson’s correlation, in this paper we introduce the coefficient

ρ(X,Y ) =
tr(ΣXY )

tr
(
(ΣXΣY )1/2

)
to measure linear correlation between two non degenerate, square integrable Rd-valued random vectors X and Y

having invertible covariance matrices ΣX and ΣY , and cross-covariance matrix ΣXY . The new measure preserves

all the relevant properties of Pearson’s in arbitrary dimension.

The rationale behind our approach is to measure the covariance between two random vectors X and Y in terms

of tr(ΣXY ) and then standardize it by its maximum attainable value given solely the knowledge of the covariance

matrices of X and Y . The novel coefficient is thus maximized when the average inner product between X and Y is

maximized (over all the pairs having the same marginal distributions) or, equivalently, when their average squared

Euclidean distance is minimized. This optimization approach relies on the notion of c-co(unter)monotonicity and
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finds its roots in the theory of mass transportation. The new measure is also consistent with the original idea of

correlation as a measure of similarity intended as minimal distance.

We propose an empirical estimator, establish its asymptotic distribution and illustrate the concept in simulations

as well as in a financial application. Since (same as Pearson’s correlation) the original estimator may be biased

depending on the actual distribution of the multivariate margins, we also propose the use of ranks and derive the

respective results for the rank correlation measure.

While we learn in introductory courses that the normalization of Pearson’s correlation coefficient is due to

the Cauchy-Schwarz inequality, in this paper we propose a sharper bound in the multivariate case, which is also

interesting per se (for positive definite covariance matrices).

There is not a universally acknowledged way of measuring association between random vectors but rather

many measures motivated by different approaches and scopes of application. Each measure has its merit and

disadvantages, and the one proposed here makes no exception. In the following concluding remarks, we discuss

further extensions of the mathematical framework given in this paper and its relationship with the current literature.

Non-invertible covariance matrices

We give some insight into the case in which one or both covariance matrices ΣX and ΣY are not invertible. As

long as ΣX is invertible, if follows from the results in Dowson and Landau (1982) and Olkin and Pukelsheim (1982)

that there still exist a c-comonotonic pair (X̃, Ỹ ) with the same marginal covariances and such that tr(ΣX̃,Ỹ ) =

tr
(
(ΣXΣY )1/2

)
. The existence of such pair does not rely on the invertibility of ΣY while its uniqueness holds under

an extra continuity assumption for X (this follows easily using for instance Corollary 14 in McCann (1995)). Thus,

when ΣX is invertible but rank(ΣY ) < rank(ΣX), it makes sense to postulate ρ(Y,X) = ρ(X,Y ).

As an example, consider elliptical distributions FX , FY of Gaussian type with null mean vectors and covariance

matrices

ΣX =

(
1 1

1 1

)
,ΣY =

(
1 0

0 1

)
.

Without loss of generality we can represent X
a.s.
= (X1, X1)′, where X1 ∼ Φ has a standard univariate normal

distribution, while Y
a.s.
= (Y1, Y2)′ with Y1, Y2 ∼ Φ and Y1 independent of Y2. ΣX is not invertible. By Theorem 2.1

in Puccetti and Wang (2015), the maximum

M(FX , FY ) = sup {tr(ΣXY );X ∼ FX , Y ∼ FY } = sup {E [X1(Y1 + Y2)] : X1 ∼ Φ, Y ∼ FY }

is attained when the random variables X1 and (Y1 + Y2) are comonotonic, that is when

Y1 + Y2
a.s.
=
√

2X1. (4.1)

Take Z ∼ Φ independent of X. Clearly, the vector Ŷ defined as

Ŷ
a.s.
=

( √
2

2 X1 +
√

2
2 Z√

2
2 X1 −

√
2

2 Z

)

has distribution FY and satisfies (4.1). It follows that

tr(ΣXŶ ) = tr
(

(ΣXΣY )1/2
)

= tr
(

Σ
1/2
X

)
= tr

( √
2

2

√
2

2√
2

2

√
2

2

)
=
√

2,

which gives ρ(X, Ŷ ) = 1 coherently with the fact that (X, Ŷ ) is c-comonotonic.

One finds the same result, and more easily, by swapping ΣX and ΣY , thus assuming

ΣX =

(
1 0

0 1

)
, ΣY =

(
1 1

1 1

)
.
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Similarly to Example 2.1, the vector (X, Ŷ ) with Ŷ
a.s.
= Σ−1

X #ΣYX = Σ
1/2
Y X is the only c-comonotonic pair yielding

Ŷ1
a.s.
= Ŷ2

a.s.
=

√
2

2
(X1 +X2),

and then, again,

tr(ΣXŶ ) = tr
(

(ΣXΣY )1/2
)

=
√

2.

If ΣX is not invertible and rank(ΣX) ≥ rank(ΣY ), unfortunately the rationale behind definition (2.1) does not

make sense since there might exist infinitely many c-comonotonic pairs. As an example, consider FX and FY of

Gaussian type with null mean vectors and

ΣX =

(
1 1

1 1

)
, ΣY =

(
1 −1

−1 1

)
,

the support of FX is the set Γx = {(x1, x2)′ ∈ R2;x1 = x2} while the support of FY is the set Γy = {(x1, x2)′ ∈
R2;x1 = −x2}. It is immediate to see that (1.3) always holds with equality for any set of points in Γx × Γy and

therefore any random pair with marginals FX and FY is c-comonotonic and c-countermonotonic at the same time.

Permutation of vector components and vectors with different dimensions

As already remarked, we introduced the coefficient (2.1) with the aim of preserving the properties of Pearson’s

correlation in a multivariate setting. It is immediate to show that our correlation satisfies axioms 1., 4., 5. in Grothe

et al. (2014), and it sufficient to compute the corresponding rank coefficient (3.2) to have also invariance with respect

to increasing transformations (axiom 3.).

Thus, the only exception with respect to the framework of Grothe et al. (2014) is that our proposed correlation

can be computed only for vectors of the same dimension and it is not invariant on permutations of the coordinates

within one vector. This is a natural implication of our approach based on the minimization of the squared Euclidean

distance, which implicitly requires that the i-th coordinates of X and Y have a comparable meaning/interpretation

as in the case study outlined in Section 3.3.

For instance, we believe that our new correlation coefficient finds a natural application as a measure of similarity

for the clustering of three-way data structures. So called three-way data structures occur in different application

domains from the simultaneous observation of the same attributes on a set of statistical units in different situations

or locations. These include data coming from multivariate longitudinal data or spatio-temporal data, multivariate

time series or data collecting multivariate repeated measurements. Different solutions for clustering three-way data

have been proposed in the statistical literature (see Viroli, 2011, for a review), often implying some dimension

reduction techniques (e.g. principal component analysis) to convert the three-way dataset to a two-way dataset,

and hence apply conventional clustering techniques. When one has a three-way structured dataset and want to

take into account the covariances at the level of attributes contained in the data, it could be useful to define a

dissimilarity measure between two statistical units based on (2.1) and hence apply a suitable clustering technique.

Generally, multivariate observations are arranged in a three-way dataset where for each of the r statistical units

a set of n simultaneous observations of the same p variables are available. A dissimilarity measure between two sets

of observations X̂ and Ŷ coming from two statistical units X and Y can then be defined in a classical way by

d(X,Y ) =
1− ρ̂(X̂, Ŷ )

2
, (4.2)

and at this point one can use for instance the preferred hierarchical clustering in the agglomerative approach, as

described in Everitt et al. (2011).

In principle, swapping the coordinates of one vector might highly affect correlation. For instance, consider the

vector X = (X1, X2)′, with X1 independent of X2, and swap its components to obtain Y = (X2, X1)′. One has
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ρ(X,X) = 1, while ρ(X,Y ) = 0. Swapping the components might even switch the sign of a 1-correlation, as the

following example shows.

Example 4.1. Consider the two vectors

X =

(
X1

−X1 +
√
ξZ

)
, Y =

(
X1

−X1 +
√
ξZ

)
,

where X1 and Z are two i.i.d. standard normal and 0 < ξ < 1. Since Y
a.s.
= X, we have ρ(X,Y ) = 1.

By swapping the components of X and considering instead

X ′ =

(
−X1 +

√
ξZ

X1

)
, Y =

(
X1

−X1 +
√
ξZ

)
,

one computes

ΣX′ =

(
1 + ξ −1

−1 1

)
, ΣY =

(
1 −1

−1 1 + ξ

)
, and ΣX′Y =

(
−1 1

1 −1

)
.

Using the formula for the square root of a 2× 2 matrix one obtains

ρ(X ′, Y ) =
tr(ΣX′Y )

tr
(
(ΣX′ΣY )1/2

) =
−2

tr

((
2 + ξ −2− 2ξ

−2 2 + ξ

)1/2
)

=
−2

tr

((
(1 + ξ)1/2 −(1 + ξ)1/2

−(1 + ξ)−1/2 (1 + ξ)1/2

)) =
−2

2(1 + ξ)1/2
= −(1 + ξ)−1/2,

which can be made arbitrarily close to −1. Similarly to Remark 2.2, we point out that there exists four matrices

B with the property that B2 = ΣX′ΣY =

(
2 + ξ −2− 2ξ

−2 2 + ξ

)
, but the one used above is the only having positive

real eigenvalues, hence it is the principal square root.

Extreme behaviors like the one just illustrated, however, might be unrealistic and restricted to theoretical

(counter)examples. In Figure 6 we plot the time evolution of correlation between bond and stock market, analogously

to what done in Figure 4, but permuting the coordinates of the stock market indices in three different ways. All

the resulting correlations are visually overlapping.

A possible alternative to make the measure invariant versus permutations could be to transform X and Y by a

PCA with descending principal components before applying the measure. In Figure 7 we plot the time evolution

of correlation between bond and stock market using this method with all components and with only the principal

component. The overall process (PCA + measure) is invariant with respect to permutations of variables within the

original data, but poses a sign issue: in the figure the sign of the obtained correlation has been adjusted to the sign

of the original one.

This technique could also be used to make correlation computable also for vectors of different dimensions, by

choosing for each of them only k principal components. However, this would affect the original interpretation and

properties of the measure as illustrated in this paper.
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Figure 6: Time evolution of the newly defined correlation between bond and stock markets, when: (top figure) the
coordinates Xi of the stock market vector are kept the same (black line) or permuted (red line: 1 → 2,2 → 3,3 →
4,4 → 5,5 → 1; green line: 1 → 3,2 → 4,3 → 5,4 → 1,5 → 2; blue line: 1 → 3,2 → 5,3 → 4,4 → 2,5 → 1;); (bottom
figure).

2000 2005 2010

-1
.0

-0
.5

0.
0

0.
5

1.
0

Correlation
Correlation + PCA (5)
Correlation + PCA (1)

Figure 7: Time evolution of the newly defined correlation between bond and stock markets, when a PCA is first
applied to the components of the two vectors, considering all components (red line) and only the principal component
(blue line).
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The range of attainable correlations

Example 3.1 shows that, for general random vectors, the range of attainable correlations might be strictly

included in the interval [−1, 1] and, consequently, a small value of correlation does not necessarily imply a weak

dependence. For the value of ρ(X,Y ) to be fully meaningful, one should know or at least should be able to estimate

the range [ρmin, ρmax], with

ρmin = inf{ρ(X,Y );X ∼ F, Y ∼ G}, ρmax = sup{ρ(X,Y );X ∼ F, Y ∼ G}.

For distributions with null mean, computing ρmax is equivalent to computing (2.3b), that is solving the mass

transportation problem

M(F,G) = sup {tr(ΣXY );X ∼ F, Y ∼ G} .

For distributions on the line, i.e. for d = 1, the value of M(F,G) and therefore ρmax can be easily computed since

the maximum correlation for two random variables is attained if and only if they are comonotonic.

On a multivariate space (d > 1), an analytical computation of M(F,G) and ρmax is restricted to a few cases,

including the case of Elliptical distributions described below. As illustrated in Puccetti (2017), the computation

of M(F,G) is equivalent to the computation of the so-called L2-Wasserstein distance between distributions. A

numerical estimate of ρmax can therefore be obtained by using the broad variety of methods described for instance

in Puccetti (2017), Peyré and Cuturi (2019) and references therein.

Using rank correlation as in Section 3.2 allows one to avoid the cases where a change of scale reduces the range

of attainable correlations. In fact, it is easy to show that the two vectors are π-comonotonic, one has ρmax = 1;.

A pair of random vectors (X,Y ) is said to be π-comonotonic if the marginal components Xi and Yi are both

increasing function of a common random factor Zi, for each 1 ≤ i ≤ d. When d = 1, this definition is exactly that

of comonotonicity between random variables. When d > 1, a c-comonotonic random vector is also π-comonotonic,

but not viceversa; see Puccetti and Scarsini (2010) for more details on π-comonotonicity.

However, even in the case of rank correlation, there still exist cases in which the maximal attainable (rank)

correlation is smaller than one, and a numerical estimate of ρmax is called for. Analogous considerations hold for

ρmin (by replacing comonotonicity by countermonotonicity notions).

These warning can be ignored when one works within families of probability distributions closed under affine

transformations, e.g. elliptical distributions. In such cases, the maximal (minimal) attainable correlation is always

(−)1. For example, consider X ∼ E(µX ,ΣX , ψ) having an elliptical distribution with generator ψ and Y ∼
E(µY ,ΣY , ψ). Then, it is sufficient to put Ŷ

a.s.
= A(X − µX) + µY , with A = Σ−1

X #ΣY to obtain Ŷ ∼ Y and

ρ(X, Ŷ ) = 1. The linear function A is the only one such that

[A(X − µX) + µY ] ∼ Y,

and

E|| [A(X − µX) + µY ]− Y ||2 ≤ E||T (X)− Y ||2, (4.3)

for all possible measurable transformations T (X) ∼ Y . Switching the sign of A, one similarly obtains ρ(X, Ŷ ) = −1.

As our bottom line, we would like to state the words of McNeil et al. (2015): Correlation plays a central role

in financial theory, but it is important to realize that the concept is only really a natural one in the context of

multivariate normal or, more generally, elliptical models.

Open problems

It would be of interest to compute (at least numerically) the asymptotic variance σ2 in Theorem 3.1, thus

avoiding bootstrap procedures to make inference. Unfortunately, the presence of the square root functional in (2.1)

seems to make the application of the delta method (as illustrated in Kollo and von Rosen (2005) and performed for

instance in Robert et al. (1985); Grothe et al. (2014); Hofert et al. (2019)) particularly challenging. Also, finding

the exact distribution of (3.1) for finite sample would be valuable. We hope that these open problems will stimulate

further research on the topic.
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Rüschendorf, L. and S. T. Rachev (1990). A characterization of random variables with minimum L2-distance. J.

Multivariate Anal. 32 (1), 48–54.

Schmid, F., R. Schmidt, T. Blumentritt, S. Gaiß er, and M. Ruppert (2010). Copula-based measures of multivariate

association. In Copula theory and its applications, pp. 209–236. Springer, Heidelberg.

Schnurr, A. (2014). An ordinal pattern approach to detect and to model leverage effects and dependence structures

between financial time series. Statist. Papers 55 (4), 919–931.
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