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A long-standing problem of fine-structure anomalies in muonic atoms is revisited by considering the
splittings Δ2p ¼ E2p3=2

− E2p1=2
in muonic 90Zr, 120Sn, and 208Pb and Δ3p ¼ E3p3=2

− E3p1=2
in muonic

208Pb. State-of-the-art techniques from both nuclear and atomic physics are brought together in order to
perform the most comprehensive to date calculations of nuclear-polarization energy shifts. Barring the
more subtle case of μ-208Pb, the results suggest that the dominant calculation uncertainty is much smaller
than the persisting discrepancies between theory and experiment. We conclude that the resolution to the
anomalies is likely to be rooted in refined quantum-electrodynamics corrections or even some other
previously unaccounted-for contributions.
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Introduction.—For more than 40 years there has been a
perplexing discrepancy between theory and experiment in
the realm of muonic atoms [1–4]. The phenomena of
interest are the fine-structure splittings between the muonic
np1=2 and np3=2 energy levels (n ¼ 2, 3), which stem from
a multitude of effects including finite nuclear size, quan-
tum-electrodynamics (QED) corrections, electron screen-
ing, relativistic recoil, static nuclear moments, and
dynamical muon-nucleus interactions [5]. Due to the fact
that mμ ≈ 207me, the Bohr radius of muonic orbitals is 207
times smaller than that in electronic atoms, which renders
muonic levels highly sensitive to nuclear structure [6–9]. In
this respect, the most challenging effect to describe is the
intricate interplay between muonic and internal nuclear
degrees of freedom, which is known as nuclear polarization
(NP). This phenomenon leads to shifts ΔENP of muonic
levels, which can be observed in high-precision x-ray
measurements of muonic transitions.
Under the assumption that all other effects have been taken

into account, the remaining difference between theory and
experiment is typically ascribed to the NP correction.
However, in some cases, the NP energy shifts extracted in
this way turned out to be in striking disagreement with
theoretical predictions. For instance, the experiments suggest
that jΔENP

2p3=2
j > jΔENP

2p1=2
j for muonic 208Pb [1,2], 90Zr [3],

and 112−124Sn [4]. At first glance, these results seem to be
counterintuitive by a simple argument that the2p1=2 orbital is
closer to a nucleus and, thus, should be affected more
strongly by nuclear dynamics. In addition, a strong anomaly
of the same kind has also been observed for theΔ3p splitting
in μ-208Pb [2].
The most notable theoretical efforts to explain these

anomalies were performed in Refs. [10–13], where, unlike
previous attempts, the transverse part of the electromag-
netic muon-nucleus interaction was taken into account.
While the longitudinal, or Coulomb, part always leads to
jΔENP

2p3=2
j < jΔENP

2p1=2
j as expected, the transverse part was

shown to give rise to an additional NP contribution with
the opposite muon-spin dependence [10]. According to
Ref. [11], the transverse interaction accounted for about
half of the Δ2p anomaly and one fourth of the Δ3p one in
μ-208Pb. Nevertheless, significant portions of the discrep-
ancies persisted, with jΔENP

2p1=2
j still being slightly larger

than jΔENP
2p3=2

j. A glimpse of a possible resolution to the

Δ2p anomaly in μ-208Pb was later provided in Ref. [12] by
treating the nucleus in the relativistic mean-field approxi-
mation. However, the authors themselves stressed the large
uncertainties associated with the nuclear spectrum obtained
in this way, and explaining the Δ3p splitting still remained
a challenge. In another attempt an enhancement factor for
NP contributions from giant resonances was proposed for
both muonic 208Pb and 90Zr [13]. Nonetheless, the exper-
imental data could not be reproduced reasonably well, and
the anomalies continued to be unresolved.
In this Letter, we present a qualitative step forward in the

theoretical description of the NP effect by taking into
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account both muonic and nuclear spectra in the most
complete to date manner. The full electromagnetic
muon-nucleus interaction is included within a field-theo-
retical framework. Most importantly, nuclear model
dependence is analyzed extensively leading to strong
indications of NP not being responsible for the fine-
structure anomalies in muonic atoms.
Computational method.—In the field-theoretical

approach the NP effect can be described by the effective
self-energy Goldstone diagram shown in Fig. 1(a). The
photon propagator Dμν is modified by the so-called NP
insertion, which is indicated as a shaded blob and can be
expressed as [14]

D̃μνðx; x0Þ ¼ Dμνðx − x0Þ þ
Z

d4x1d4x2

×Dμξðx − x1ÞΠξζðx1; x2ÞDζνðx2 − x0Þ; ð1Þ

with the nuclear-polarization tensor

iΠξζðx1; x2Þ ¼ hIjT½JξNðx1ÞJζNðx2Þ�jIi; ð2Þ

where JμN denotes the nuclear transition four-current
density operator, and jIi stands for the nuclear ground
state. Here and later, four-vectors are represented by regular
typeface, whereas three-vectors are denoted by bold letters.
The units ℏ ¼ c ¼ 1 and α ¼ e2=4π are used throughout
the Letter.
The leading-order NP effect can then be equivalently

described by the ladder and cross Feynman diagrams
representing a two-photon exchange between a bound
muon and a nucleus [15] [Figs. 1(b) and 1(c)]. However,
if noncommuting nuclear charge and current operators are
employed, an additional contribution has to be included in
order to ensure gauge invariance of the NP correction
[16,17]. This additional term can be represented by the
so-called seagull diagram [Fig. 1(d)], and for the non-
relativistic nuclear charge-current operators it formally
corresponds to the substitution [16]

Πξζðx1; x2Þ →
hIjρNðx1ÞjIi

mp
δξζδð4Þðx1 − x2Þ; ð3Þ

where ρN is the nuclear charge density operator, mp is the
proton mass, and δξζ is the Kronecker delta extended to four
dimensions with δ00 ¼ 0.
The corresponding contributions to the NP energy

shift of a muonic reference state jii due to each of these
diagrams (L, X, and SG stand for ladder, cross, and
seagull, respectively) can be expressed in the momentum
representation as [16]

ΔEL
NP ¼ −ið4παÞ2

X
i0I0

ZZ
dqdq0

ð2πÞ6
Z

dω
2π

Dμξðω; qÞDζνðω; q0ÞhiIjjμmð−qÞJξNðqÞji0I0ihi0I0jJζNð−q0Þjνmðq0ÞjiIi
ðωþ ωm − iEi0ϵÞðω − ωN þ iϵÞ ; ð4Þ

ΔEX
NP ¼ þið4παÞ2

X
i0I0

ZZ
dqdq0

ð2πÞ6
Z

dω
2π

Dμξðω; qÞDζνðω; q0ÞhiI0jjμmð−qÞJξNðqÞji0Iihi0IjJζNð−q0Þjνmðq0ÞjiI0i
ðωþ ωm − iEi0ϵÞðωþ ωN − iϵÞ ; ð5Þ

ΔESG
NP ¼ −ið4παÞ2

X
i0

ZZ
dqdq0

ð2πÞ6
Z

dω
2π

Dμξðω; qÞδξζDζνðω; q0Þhijjμmð−qÞji0ihi0jjνmðq0Þjii
ðωþ ωm − iEi0ϵÞ

hIjρNðq − q0ÞjIi
mp

; ð6Þ

where the limit ϵ → 0þ is implied, the indices i0 and I0 in
the sums run over an entire muonic Dirac spectrum and
nuclear excitations, respectively, jμm is the Dirac four-
current operator of the muon, ωm ¼ Ei0 − Ei, and
ωN ¼ EI0 − EI . Specific formulas in Feynman and Cou-
lomb gauges are presented in Ref. [16] (see the Supple-
mental Material for comments [18,19]), and expressions for

the reduced matrix elements of both muonic and nuclear
charge-current operators can be found in Ref. [10].
Taking into account a complete muonic Dirac spectrum

poses a challenge since it includes an infinite set of bound
states as well as positive- and negative-energy continua.
Thus, direct calculations are difficult to implement with
high accuracy, as they inevitably involve estimations of

(a) (b) (c) (d)

FIG. 1. Leading-order NP effect: (a) effective self-energy
Goldstone diagram with a dressed photon propagator; (b) ladder,
(c) cross, and (d) seagull Feynman diagrams. A bound muon is
denoted by a double line, while a nucleus is denoted by a single
solid line. The shaded blob represents the NP insertion.
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remainders of the sum over the bound states and the
integrals over the continua. In this Letter, we deal with
this challenge by confining the system to a spherical cavity
and employing finite basis-set expansions of the muonic
wave function in terms of B splines [20] within the
dual-kinetic-balance approach [21]. In this way, the con-
tinuous part of the spectrum becomes discrete, and the
computation is reduced to finite sums with no remainders to
evaluate. The convergence of the results is readily con-
trolled by varying the size of the cavity and the number of B
splines used. The Dirac equation is solved in a potential
of a nucleus with a finite charge distribution. Similar to
Ref. [22], we found that it is sufficient to use the simple
Fermi charge distribution ρFðrÞ¼Nf1þexp½ðr−cÞ=a�g−1
with the standard value of the diffuseness parameter a ¼
2.3=½4 lnð3Þ� fm and adjust the half-density radius c such
that a tabulated value of the root-mean-square nuclear
radius [23] is reproduced.
Computing a nuclear spectrum is yet more challenging

since for heavy nuclei an ab initio description is not even
feasible. However, sophisticated particle-hole theories have
proven to be very successful at describing the rich variety of
nuclear excitations [24–26]. In our calculations we first
carry out Hartree-Fock computations of single-nucleon
wave functions where the interactions between the nucle-
ons are described by the Skyrme force [27]. Then we
employ the random-phase approximation (RPA) with a full
self-consistency [28] between the Hartree-Fock mean field
and the RPA excitations [29]. Nonrelativistic charge-
current operators [10] are used for calculating the nuclear

matrix elements in Eqs. (4)–(6) for the 0þ, 1−, 2þ, 3−, 4þ,
5−, and 1þ excitation modes. The cutoff energy of
unoccupied single-particle states in the RPA model space
is chosen to be 60 MeV, which corresponds, for example, to
around 1500 RPA excitations for the 3− mode in 208Pb. A
strong quantitative test for completeness of the obtained
spectra is the exhaustion of the double-commutator energy-
weighted sum rule (EWSR) [29]. In our calculations the
EWSR is fulfilled at the level of at least 99%, being above
99.8% in most cases.
Results and discussion.—In Table I we present our

results for the NP corrections to the states 1s1=2, 2p1=2,
and 2p3=2 in muonic 90Zr, 120Sn, and 208Pb. In the case of
μ-208Pb the states 3p1=2 and 3p3=2 are also considered.
The quantities of main interest are the corresponding NP
contributions to the fine-structure splittings Δ2pNP ¼
jΔENP

2p1=2
j − jΔENP

2p3=2
j and Δ3pNP ¼ jΔENP

3p1=2
j − jΔENP

3p3=2
j.

Our calculations in Feynman and Coulomb gauges agree
within 0.1–0.3% demonstrating an excellent fulfillment of
gauge invariance. Table I contains total NP corrections in
Feynman gauge, while the results in Coulomb gauge and
separate contributions from each type of nuclear excitations
are listed in the Supplemental Material [18].
The main limitation of any NP calculation is that nuclear

transition charge and current densities are not known from
first principles. As a consequence, an effective nuclear
model has to be applied, and the NP correction inevitably
becomes model dependent. In this Letter, we analyze this
model dependence by performing the computations for

TABLE I. NP corrections (absolute values jΔENPj ¼ −ΔENP, in eV) to the states 1s1=2, 2p1=2, and 2p3=2 in muonic 90Zr, 120Sn, and
208Pb. In the case of μ-208Pb the states 3p1=2 and 3p3=2 are also considered. The quantities Δ2pNP ¼ jΔENP

2p1=2
j − jΔENP

2p3=2
j and Δ3pNP ¼

jΔENP
3p1=2

j − jΔENP
3p3=2

j are the corresponding NP contributions to the fine-structure splittings. The Skyrme parametrizations are ordered in

increasing values of the ground-state correction in μ-90Zr.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM� SGII

μ-90Zr 1s1=2 1406 1445 1447 1451 1483 1488 1522 1526 1560
2p1=2 65.9 70.3 69.5 70.0 72.5 71.7 73.9 74.4 75.7
2p3=2 60.6 64.7 64.0 64.5 66.8 65.9 67.9 68.6 69.7
Δ2pNP 5.3 5.6 5.5 5.5 5.7 5.8 6.0 5.8 6.0

μ-120Sn 1s1=2 2564 2510 2481 2425 2530 2531 2570 2567 2744
2p1=2 247 248 236 231 246 245 247 247 269
2p3=2 228 229 218 214 228 226 227 228 248
Δ2pNP 19.9 19.6 18.0 17.0 18.7 18.7 19.2 18.9 21.1

μ-208Pb 1s1=2 5463 5432 5557 5588 5727 5889 5815 5905 6035
2p1=2 1781 1850 1834 1900 1937 1997 1955 2005 2044
2p3=2 1725 1798 1776 1852 1877 1936 1886 1942 1981
3p1=2 529 576 556 566 616 540 628 614 627
3p3=2 559 612 589 602 648 576 672 645 664
Δ2pNP 56.0 51.8 57.5 48.1 59.1 60.5 69.3 63.3 62.7
Δ3pNP −29.5 −35.9 −33.4 −36.1 −31.9 −35.8 −44.1 −30.3 −37.3
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nine different Skyrme parametrizations, namely, KDE0,
SKX, SLy5, BSk14, SAMi, NRAPR, SkP, SkM�, and SGII,
covering a wide range in the parameter space [30–38].
We start our analysis with μ-90Zr. To put the effect of the

nuclear model dependence into the context of the Δ2p
anomaly, we show our results in Fig. 2 in relation to the
experimentally allowed region for jΔENP

1s1=2
j and Δ2pNP,

which was obtained in Ref. [3] by fitting calculated muonic
transition energies to measured ones. Notably, the results
for different nuclear models are simply spread along a line
almost parallel to the allowed region such that the distance
of around 15 eV between theory and experiment for Δ2pNP

remains practically constant. Taking the spread of our
results as the theoretical uncertainty σth½Δ2pNP� ¼
0.7 eV (see the Supplemental Material for more details
on the error analysis [18]) and combining it with the

experimental σexp½Δ2pNP� ¼ 3 eV [3], we obtain a dis-
crepancy of almost 5 standard deviations.
As for tin isotopes, the authors of Ref. [4] do not provide

experimentally allowed ranges for Δ2pNP. Nevertheless,
according to their analysis, the theoretical values of the
Δ2p fine-structure splittings are consistently too high by
about 150 eV, and it is necessary to have Δ2pNP < 0 in
order to obtain better agreement with experiment. However,
the authors estimate Δ2pNP as 29 and 28 eV for muonic
112Sn and 124Sn, respectively. Our results for μ-120Sn in
Table I demonstrate again that the nuclear model uncer-
tainty does not offer an explanation for the anomalies, with
Δ2pNP being persistently positive and around 20 eV for all
the Skyrme parametrizations used.
In the case of μ-208Pb the situation is more subtle since, in

principle, some 1− nuclear excitations in the regions 5.5–
6.5 MeV and 8–9 MeV [39] may come close in energy to
the 2p → 1s and 3p → 1s muonic transitions, respectively.
Effects coming from quasidegeneracy in the combined
muon-nucleus basis are referred to as muon-nuclear reso-
nances. As discussed in Ref. [40], due to the long range of
the dipole NP potential, 1− nuclear levels can resonate
significantly with the np → 1s muonic transitions even
when the associated energy denominators in a second-order
perturbation calculation are hundreds of keV. The corre-
sponding contributions to ΔENP

np1=2
and ΔENP

np3=2
can be

negligible for the np → 1s transition energies, but critical
for the more precisely measuredΔnp splittings, with one of
the np1=2 and np3=2 levels being affected by a resonance
much more strongly than the other. The net effect is highly
sensitive not only to the exact relative positions of the
muonic and nuclear levels involved but also to the shapes of
the corresponding nuclear transition charge and current
densities [13].
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function of jΔENP
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In our calculated spectra for 208Pb we encounter a
number of 1− excitations in both aforementioned regions.
Although RPA is an excellent tool for describing integral
properties of a nuclear spectrum as a whole, the accuracy
for individual energy levels is by no means high enough to
reliably predict such resonant phenomena. Therefore,
similar to Ref. [40], we simply eliminate any accidental
muon-nuclear resonances by discarding 1− RPA excitations
that come closer than 0.3 MeV to the 2p → 1s or 3p → 1s
muonic transitions. However, this does not significantly
affect the overall completeness of the spectra, since the total
contributions of the discarded RPA states to the EWSR are
always less than 1%. Figure 3 shows the resulting NP
correlations between jΔENP

1s1=2
j and both Δ2pNP (a) and

Δ3pNP (b) in relation to the experimentally allowed regions
[2]. It can be seen that, in the absence of muon-nuclear
resonances, the model uncertainties σth½Δ2pNP� ¼ 21.2 eV
and σth½Δ3pNP� ¼ 14.6 eV, considered together with
σexp½Δ2pNP� ¼ 54 eV and σexp½Δ3pNP� ¼ 103 eV [2],
are once again much smaller than the gaps between theory
and experiment amounting to 4 and 3 standard deviations,
respectively. We emphasize that due to the extremely high
intrinsic uncertainties associated with muon-nuclear reso-
nances, they should be regarded as a measure of last resort
in explaining the fine-structure anomalies in μ-208Pb, and
their treatment goes beyond the scope of this Letter.
Conclusions and outlook.—In the quest to explain the

persisting fine-structure anomalies in muonic atoms, we
have performed the most complete to date calculations of
the NP effect in muonic 90Zr, 120Sn, and 208Pb. Utilizing
state-of-the-art techniques and leveraging modern compu-
tational power allows us to take into account the entire
muonic and nuclear spectra in a controlled manner and with
an improved precision.
We have found that the tension between theory and

experiment remains high even in light of the dominant
nuclear model uncertainty. One should bear in mind
possible complications in the special case of μ-208Pb due
to potential muon-nuclear resonances; therefore, we sug-
gest that the less intricate cases of muonic 90Zr and
112−124Sn should be tackled first. The nonrelativistic nuclear
treatment in our calculations is justified by the agreement
between the nonrelativistic seagull term and antinucleon
NP contributions in light muonic atoms [17]. In addition,
there is a general consistency between relativistic and
nonrelativistic approaches for a variety of nuclear phenom-
ena [25–27]. However, in the special case of NP, a possible
non-negligible role of relativistic nuclear effects in heavy
systems may still deserve further investigation, as proposed
in Refs. [12,17].
For the most part, we deem the NP effect unlikely to be

responsible for the anomalies, implying that the solution is
presumably rooted in refined QED calculations. In par-
ticular, the self-energy correction in muonic atoms, despite

being comparable to the NP shifts [13], has only been
estimated using rather simple prescriptions [5]. Therefore, a
rigorous treatment of this effect developed in the field of
highly charged ions (see, e.g., Refs. [41–43]) could shed
some light on the anomalies. Lastly, some other exotic
effects, such as the anomalous spin-dependent interaction
mentioned in Ref. [44], might also play a role in explaining
the discrepancies, although it is far less likely. We conclude
that more attention to other effects beyond NP is required in
order to finally resolve this tantalizing and long-standing
puzzle.
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