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ABSTRACT 

Recent advances in omics sciences have represented a revolution in many fields of 

biological research. Among these, lipidomics and metabolomics are gaining increasing 

interest due to their close connection with the organism’s phenotype. As the main 

analytical goal of omics approaches is to identify and quantify as many compounds as 

possible within a studied system, powerful analytical techniques and bioinformatics tools 

are required. Mass spectrometry (MS) coupled with liquid chromatography (LC) is one 

of the most powerful analytical platforms for the analysis of the lipidome in complex 

biological matrices and offers promising new insights in this field. Lipids are a large class 

of biomolecules involved in many biological processes with signalling, biophysical, and 

metabolic functions. The lipidome is complex, consisting of many species that share the 

same elemental composition but have different structural and physicochemical 

properties. Its comprehensive analysis is, therefore, technically challenging, and 

advanced LC-MS-based lipidomics workflows aim to better address this complexity. 

Lipidomics approaches can potentially be applied in all therapeutic areas, including 

cardiovascular, metabolic and inflammatory diseases. This is because an increasing 

number of human diseases are associated with significant lipidome remodelling, and 

changes in lipid profile have been identified as a major risk factor for many of them. With 

this thesis, we aimed to unravel the complexity of the lipidome and to assemble this 

knowledge in the description of biological systems to highlight lipid changes in pathology 

or response to drug treatment. To this end, we have optimized MS-based untargeted 

analytical workflows for the comprehensive profiling of lipids in different biological 

matrices and under various experimental conditions (in vitro and in vivo models) using 

advanced high-resolution LC-MS approaches. 

In Chapter 2, we integrated omics approaches into phenotypic screening drug discovery 

to support the identification of novel bioactive compounds. These studies aimed to apply 

untargeted multi-omics approaches to infer the mechanism of action of phytocomplex 

with potential lipid-lowering properties. Once better understood, lipid metabolism can be 

targeted pharmacologically. Phytochemicals from natural extracts represent an 

important source of bioactive compounds potentially useful in treating metabolic 

diseases characterized by major lipidome remodelling. However, the heterogeneity of 

natural matrices emphasizes the need for advanced analytical workflows to explore their 
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beneficial effects, elucidating their mechanism of action and potential molecular targets. 

Using untargeted MS-based measurement of lipids and proteins allows a 

comprehensive investigation of the molecular mechanism of Scutellaria baicalensis 

(Study I) across different cellular states to help define the molecular changes 

responsible for its beneficial effect against liver disorders. In Study II, we established an 

analytical workflow to identify bioactive compounds in a polyphenolic fraction of 

bergamot leaves (Citrus bergamia). The experimental approach, which included a 

prefractionation step followed by LC-MS/MS analysis and phenotypic screening, 

revealed the great potential of leaves, usually considered as only waste products, as a 

source of polyphenols with positive effects on liver lipid metabolism.  

In Chapters 3 and 4, we applied UHPLC-MS analysis to study lipidome signatures in in 

vivo models focusing on specific key objects. Our primary goal was to determine the 

applicability of untargeted LC-MS/MS methods for the comprehensive analysis of lipid 

profiles in complex biological samples and to ensure that the analytical method was 

effective in capturing lipidome diversity and possible alterations with respect to 

environmental damage or pathological features. This helped us to derive some 

knowledge about how such stimuli could affect lipid metabolism. In particular, for both 

studies, we also investigated whether drug treatment could influence the lipidomic profile 

of the different biological samples analyzed (skin, liver and plasma). 

In Chapter 5, we aimed to accurately annotate oxidized lipid molecular species in 

complex biological matrices. Technically, the discovery and structural elucidation of 

oxidized lipids are still lacking, as their identification in biological samples is hampered 

by their low natural abundance and structural diversity. To deal with this complexity, 

advanced analytical and computational tools are required. We optimized a workflow 

combining a rapid untargeted lipidomic analysis with our newly assembled pipeline to 

support high-throughput detection and annotation of oxidized lipid molecular species in 

liver and plasma samples. The proposed workflow demonstrates its potential to address 

changes in oxidized lipidome in an untargeted manner and to guide future research on 

the role of oxidized lipids in biological systems. I.E. modified lipid species, which are 

known to be massively involved in the regulation of physiological and pathological 

conditions.   
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In Chapter 6, we used the lipidomic dataset generated in Chapter 5 to infer deeper 

structural information about oxidized lipids putatively annotated. Currently, no single 

analytical method can fully characterize a lipid, and even in the field of MS-based 

lipidomics, more than one MS experiment is usually required to obtain deeper structural 

information. To identify the exact localization of unsaturation and oxidation positions 

within the acyl chains of oxidized lipids, we applied a different type of fragmentation 

mechanism, such as electron-activated dissociation (EAD). With EAD, we could 

generate accurate annotations of all selected oxidized lipids, providing information on 

chain length, location of oxygen, double bonds, and regioisomerism. 

Overall, this thesis highlights the utility of omics studies, particularly lipidomics, to the 

comprehensive description of biological systems. The project underlines the necessity 

of including omics analysis in drug discovery screening to explore molecular patterns 

responsible for observed phenotypic effects and generate hypotheses about the 

molecular targets. Moreover, our omics datasets helped us uncover molecular patterns 

defining pathological states and identify lipid species involved in the response of the 

organism to external stimuli. This also extends to deciphering the regulatory capacity of 

oxidized lipids. We believe that our efforts in the field of omics sciences have the 

potential to significantly advance our understanding of biological processes, improve 

drug discovery and development, and ultimately contribute to better therapeutic 

strategies.
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OMICS SCIENCES 

The advent of omics sciences has represented a revolution in many areas of biological 

research. The term ‘omics’ refers to the comprehensive study of the identity, roles, and 

actions of different molecular species in biological samples to offer a fine-grained 

representation of the cellular state which can ultimately reveal networks and 

interactions.1 

As omics data help to derive knowledge about biological systems, their application in 

biomedical research, including biomarker and drug discovery, is indispensable for future 

progress in these fields. In particular, omics sciences are increasingly being used to 

diagnose disease, understand disease mechanisms, identify novel drug targets, 

discover new drugs, and monitor therapeutic outcomes2. The increasing accessibility of 

omics sciences could therefore offer good opportunities for drug discovery campaigns, 

genome-wide association studies, and personalized medicine, to customize individual’s 

medical treatment according to specific omics profiles.3 

To confirm these achievements, proteomics applications have been successfully used 

to identify biomarkers and signatures for various diseases, including cardiovascular, 

cancer, and inflammatory diseases4. Proteomics follows the exploration of protein 

complexity and dynamicity and offers a detailed biochemical snapshot of the molecular 

systems4. Although proteomics stands out as the most established and powerful omics 

approach, other omics applications, such as metabolomics and lipidomics, have recently 

emerged and gained interest due to their close connection with the organism’s 

phenotype5. Indeed, metabolomics and lipidomic profiling can yield important 

information about the actual cellular status, thus reporting ‘what is currently happening’ 

in cells and organisms. This information cannot be fully accessible either with genomic 

or proteomic data and has already helped to clarify unexpected roles of small molecules 

in the development of complex diseases, including cardiovascular6, liver and metabolic 

disorders7,8 and cancer9. According to data in the Human Metabolome Database 

(HMDB), more than 400 disease conditions are associated with prognostic or diagnostic 

metabolite biomarkers10. The discovery of novel metabolic connections to diseases is 

also leading to the identification of new drug targets, opening up new opportunities for 

drug discovery and development.10  
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Omics sciences have become an integral part of modern targeted and phenotypic drug 

discovery. In particular, phenotypic screening drug discovery is becoming more popular 

following advances in the development of cellular assays as surrogate disease models.  

As this approach is untargeted, it can be successfully applied to derive a solid 

mechanistic understanding of the molecular mechanism of action of small molecule 

bioactive compounds and drug-target relationships without prior hypothesis11. 

Interestingly, a recent study has shown that the contribution of phenotypic screening to 

drug discovery is more successful than target-based approaches in the discovery of new 

first-in-class small-molecule drugs12. While powerful as such, phenotypic screening 

usually allows for the measurement of a relatively small number of phenotypic features 

(e.g. apoptosis, redox state, migration, differentiation, senescence13) and does not 

provide direct information on the possible targets of the bioactive compounds screened. 

Thus, the application of omics approaches, and lipidomics in particular, offers a good 

opportunity to overcome these limitations. Omics profiles of different analytes have 

helped to derive a deeper understanding of cell states and changes in response to drug 

treatment. It can be used as a starting point to generate data and hypotheses that can 

be used as the basis for a more tailored and targeted analysis. There are many examples 

of how lipidomics can support drug discovery. For instance, lipidomic analysis recently 

facilitated the discovery of two new therapeutic strategies for the treatment of liver 

metabolic diseases.14,15  

As the main analytical goal of omics approaches is to identify and/or quantify as many 

compounds as possible within an investigated system, powerful analytical techniques 

and bioinformatics tools are required16. Mass spectrometry (MS) represents one of the 

most powerful analytical platforms for the analysis of diverse molecular species in 

complex biological matrices. However, despite the growing importance of lipidomics17, 

MS-based lipidomics is still an emerging field and suffers from a lack of standardization 

of methodological protocols and community consensus, making compound annotation 

and interpretation of the data difficult18. Indeed, while instrumentation has achieved great 

performance, streamlined data processing remains a challenge, especially for large-

scale untargeted omics analyses.  

ANALYTICAL APPROACHES IN LIPIDOMICS 

Lipidomics is the analysis of lipid species’ abundance, biological activities, subcellular 

localization, and tissue distribution19. Lipids are involved in many complex biological 
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processes with signalling, biophysical, and metabolic functions20,21. Lipid composition is 

highly characteristic and tightly regulated, and the accurate characterization of diverse 

lipid molecules is critical to understanding their roles in biochemical pathways (Figure 

1).  

 

Figure 1: The Cellular Compartments of Common Biological Lipids. Adapted from Wenk et al. 21 

According to the LIPID MAPS consortium, lipids are defined as “hydrophobic or 

amphipathic small molecules that originate entirely or in part by carbanion-based 

condensations of thioesters and/or by carbocation-based condensations of isoprene 

units”22. Lipids can be divided into eight main categories: fatty acyls (FA), glycerolipids 

(GL), glycerophospholipids (GP), sphingolipids (SP), sterols (ST), prenol lipids (PR), 

saccharolipids (SL), and polyketides (PK). Each category is subdivided into lipid classes 

and subclasses, which add further chemical variation. Although lipids fall into defined 

classes that share similar chemical properties, their diversity is enormous. To date, 

based on this classification scheme, the LIPID MAPS Structure Database contains 

46843 lipid structures, either experimentally proven and curated or generated in 

silico23,24. However, the number of possible molecular species is even higher if we 

provide more detail and consider all the possible combinations of double bond positions 

on the carbon chain, backbone substitutions, and stereochemistry25. 

The lipidome is complex and consists of many species that share the same elemental 

composition but have different structural and physicochemical properties. Lipids have 

different solubilities, from amphipathic to hydrophobic, and consist of many isomeric 
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(same elemental composition) and isobaric (same nominal mass) chemical entities, 

which require high-resolution approaches for their analysis. Comprehensive analysis of 

lipidomes is therefore technically challenging and advanced analytical lipidomic 

workflows aim to better address this19.  

Sample selection and preparation 

When lipidomic analysis is performed on biological matrices like plasma, serum, or cells, 

proper sampling, sample storage, and adequate sample preparation are necessary, 

followed by the most suitable analyses and data processing. Sample preparation can be 

adjusted according to the type of biological matrix to be analyzed. In principle, lipid 

extraction from biological matrices is performed by liquid-liquid extraction (two-phase 

extraction methods such as the classical Bligh and Dyer26 or Folch extraction27), or on 

protein precipitation (one-phase extraction) using a mixture of organic solvents with 

different polarities, such as Methyl Tert-Butyl Ether (MTBE), chloroform, methanol, 

isopropanol, and water.  Besides the proper sample preparation method, the selection 

of appropriate samples to address biological questions is the most critical step and varies 

across biological and clinical research. In biological research, cellular models offer easily 

controlled experimental variables and good reproducibility and are, therefore, widely 

used to infer lipid metabolism and interactions. Mammalian cells represent a good target 

for lipidomic studies as they provide relevant physiological contexts that closely mimic 

in vivo systems28. In vitro models can be easily used to study the effects on lipid profiles 

of different stimuli, including drugs. However, only animal models can describe lipidome 

profiles in a more complex and dynamic environment. In clinical lipidomic research, 

tissue or biofluid samples are used due to their ease of collection and biological 

relevance29. Biofluids such as blood and urine are particularly advantageous as they can 

be obtained through minimally invasive procedures and can serve as potential 

biomarkers for diagnosis, prognosis, and therapeutic monitoring. Tissue samples, on the 

other hand, offer detailed insights into localized lipid changes within specific organs or 

pathological sites, contributing to a deeper understanding of disease mechanisms at the 

molecular level. 

Mass-spectrometry methods to study the lipidome 

As the main analytical goal in lipidomics is to identify and/or quantify as many 

compounds as possible in a biological system under investigation, powerful analytical 
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techniques are required. MS plays a key role in lipidomics thanks to its sensitivity and 

enhanced resolution. MS is capable of profiling hundreds of lipids in a high throughput 

manner, covering a wide dynamic range of concentrations and chemical classes of lipids 

30,31. An advantage of MS is that it can be combined with different separation techniques 

(e.g. liquid, gas and supercritical gas chromatography), which improves lipid detection 

and sensitivity and reduces ion suppression and matrix effects32,33. The choice of the 

LC-MS analytical approach determines the depth of lipid profiling. Lipidomics 

measurements are generally divided into targeted and untargeted approaches. Targeted 

lipidomics focuses on analyzing a selected panel of analytes and determining their 

quantities by comparing them with the response of analytical standards. Such an 

approach is often applied to routine analysis and to test hypotheses 34,35. Targeted 

methods are generally performed on triple quadrupole MS with selective scanning 

modes (e.g. multiple reaction monitoring MRM), which greatly increases the detection 

sensitivity and is suitable for absolute quantification of the targeted lipids, with 

advantages in terms of good linearity, repeatability, and ability to detect low abundant 

species36. However, despite the development of pseudo-targeted methods aimed at 

covering a broader range of lipid species37, this approach is limited to known 

compounds. Therefore, for screening purposes, untargeted approaches are still the best 

method of choice. 

Untargeted lipidomics aims to determine the global lipid profile in a biological sample38 . 

This approach is typically performed using fast MS detectors with high mass accuracy 

and resolving power, enabling them to detect all ionizable compounds. In the 

identification step, this helps to reduce ambiguity in lipid annotation, thus improving the 

biological interpretation of the data36. Now, thousands of lipids can be detected in a 

single run thanks to the high scanning speed of MS detectors such as Quadrupole Time-

of-Flight (Q-ToF) and Orbitrap, resulting in sufficient data points for each lipid peak, 

allowing linearity, repeatability, and comparisons39. Furthermore, the possibility to 

perform MS/MS events (either in data-dependent (DDA) or data independent (DIA) 

acquisition mode) leads to the collection of fragmentation patterns that support 

identification and increase its accuracy39.  Nevertheless, even if untargeted approaches 

aim to detect “all” ion features in biological samples, some of them may be missed due 

to ionization efficiency in specific polarity mode or ionization method, low abundance, 

and coelution, making the identification of lipid features challenging40.  



General introduction 

15 

Therefore, the use of a single analytical method to cover the entire lipid biochemical 

space is not possible, and a comprehensive lipidomic analysis requires a combination 

of analytical tools. Specifically, for untargeted lipidomics, the application of multiple 

chromatographic methods like Normal Phase (NP), HILIC, Reverse Phase (RP) and 

Supercritical Fluid Chromatography (SFC) to the same analysis can greatly improve 

sample profiling36,41. Additionally, the choice of suitable modifier (e.g. ammonium 

acetate), type of ion source (Electrospray ionization or ESI; Atmospheric Pressure 

Chemical Ionization or APCI), and fragmentation mode (CID Collision-Induced 

Dissociation; EAD Electron-Activated Dissociation) further improves the breadth of 

lipidomic analysis42,43. 

Bioinformatics for Lipidome Data Processing  

The large amount of data generated by untargeted profiling requires an advanced 

computational workflow to be processed. Key steps include peak picking, alignment 

based on retention time, deconvolution, annotation, normalization, and (relative) 

quantification. These steps are now implemented in software such as MS-DIAL44, 

XCMS45, LipoStar46 , MZmine 47and SLAW48. In particular, MS-DIAL represents a largely 

validated software for MS-based untargeted lipidomics that supports data analysis in all 

the steps, from data processing to statistical analysis, with a very intuitive interface. 

LipoStar is a license-based software for high-throughput lipid identification, 

quantification, and visualization, and in its latest version, it can be interfaced with other 

software for high-throughput identification of oxidized lipids49. Moreover, SLAW 

(Statistical Lipidomics Analysis Workflow) is a complete and scalable tool for processing 

untargeted LC-MS lipidomics data that efficiently analyzes datasets that differ in size, 

MS technology, and gradient length48. All the software mentioned was applied 

throughout this PhD project.  

Data analysis 

Independent of the software chosen for data processing, automated peak picking may 

still include low reproducible signals that need to be removed before statistical analysis. 

The data-cleaning step is crucial to obtaining good and reliable results and, therefore, 

needs to be carefully evaluated.  

A key aspect of this process is filtering out features in QC samples that exhibit high 

variability, typically by retaining only those with a coefficient of variance (CV%) below a 
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predefined threshold, often between 15% and 30%. Additionally, subtracting blanks 

helps to remove background noise and contaminants, preserving only lipid features 

relevant to the analysis. Moreover, the wide dynamic range inherent in untargeted 

analysis can result in low-intensity, potentially biologically significant species being 

masked by highly intense signals, thereby influencing the outcomes of multivariate 

analysis. This issue can be partially addressed through data preprocessing techniques 

such as centering (subtracting the mean), scaling (normalizing by the standard deviation 

or using Pareto scaling), or transforming the dataset, often by applying a log10 

transformation. Using a log transformation, such as log10, to normalize lipidomics data is 

a widely recognized practice for managing data with large variations in intensity and 

right-skewed distributions. This approach is particularly useful because it compresses 

the scale of high-intensity values, reducing their disproportionate influence and making 

patterns in the data easier to detect. It also helps stabilize variance across the dataset, 

which is essential for reliable statistical comparisons, particularly when combining 

datasets with differing magnitudes of intensities50. For these reasons, this type of 

transformation was frequently employed during the analysis of lipidomics datasets 

throughout this thesis. 

Studies in metabolomics and lipidomics often employ log transformations to prepare 

data for downstream analyses, including principal component analysis (PCA) and t-tests, 

which assume approximately normal distributions. This transformation improves the 

interpretability of fold changes by converting them into a logarithmic scale, enabling more 

accurate comparisons between experimental groups. 

Another critical step is to choose the right method to normalize the data. In principle, 

several normalization methods can be applied to the dataset to correct for systematic 

variation. The samples can be normalized by total protein content, number of cells, and 

weight of tissues. Normalization can also be done by total ion chromatogram (TIC), 

median fold changes or reference compounds, such as internal or external standards, 

which can be added at the beginning of sample preparation and allow correction for 

possible variations in sample processing. However, if the analytical system is performing 

well, normalization is not indispensable for tissue and plasma samples if proper sample 

preparation is carried out and if steps are taken during sampling to minimize variability.  

One of the ultimate goals of lipidomics data analysis is to identify any significant features 

whose changes in concentration or profile are associated with the experimental condition 
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of interest. This is the first step in understanding the biological processes involved in the 

condition under study. A variety of approaches have been developed for these tasks. 

Univariate methods (t-tests and ANOVA) are widely used in lipidomics studies to select 

important features from lipidomic datasets. However, univariate approaches are often 

considered not optimal, as they ignore correlations that are known to be present among 

variables. Multivariate methods, which simultaneously consider all variables, are 

generally considered more suitable for the analysis of high-dimensional “omics” data. 

PCA is the most widely used exploratory and unbiased multivariate method. It reduces 

the number of dimensions by projecting samples onto new dimensions. This approach 

visualizes and discriminates samples in a new space defined by few principal 

components in an unsupervised manner. Partial least squares discriminant analysis 

(PLS-DA) and random forest are supervised multivariate methods used to search for 

lipids with discriminatory power to separate the experimental groups. Given the high 

dimensionality and complex nature of lipidomics data, PLS-DA ability to reduce noise, 

focus on discriminant variables, and build predictive models made it appropriate for 

identifying lipid biomarkers and understanding biological differences between 

experimental groups. 

LIPIDOMICS CHALLENGES 

Lipid annotations 

Lipid annotation is an important task in untargeted analysis but also represents one of 

the major bottlenecks. Identification of lipids requires the integration of multiple 

parameters, such as accurate m/z, fragmentation pattern, and retention time matching 

with reference standards for the highest confidence51. However, several issues can limit 

the accuracy of annotations (e.g. isobaric and isomeric species, species abundance, 

and adducts formation), and further inspection is indispensable to reduce the number of 

false positives. This is true, especially for automated annotation of lipid species where 

spectra are matched to lipids by software tools. The collaborative efforts of the lipidomic 

community, and in particular of the International Lipidomics Society (ILS) and the LIPID 

MAPS consortium, have led to the development of guidelines for the correct annotation 

of lipidomic data52,53, which contributes to strongly improving the biological relevance of 

the lipidomic results.  
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In principle, different levels of structural information have been defined for accurate lipid 

annotation: only structural information derived from experimental data should be 

considered and included in the final dataset with appropriate nomenclature (Figure 2). 

For instance, for lipids where specific information on the individual fatty acyl chains is 

unknown, the nomenclature consists of the lipid class abbreviation followed by the total 

number of carbon and double bond of all chains (e.g. PC 34:1). In contrast, if the different 

fatty acid compositions are known, an underscore separator is used between the carbon 

and double bond composition of each chain (PC 16:0_18:1). All double bond positions 

are enumerated according to the Δ-nomenclature and indicated within parentheses, e.g. 

PC 16:0_18:1(9).   

 

Figure 2: Hierarchical lipid annotation is based on distinct and specialized levels of structural information. Image 
adapted from the book “Mass Spectrometry for Lipidomics”54.  

Most lipid identifications stop at the molecular species level, leaving chemical 

information such as sn position, double bond location, and configuration unresolved. The 

depth of structural identification depends on the analytical technique used, and 

advanced MS/MS methods are required to reach higher levels of the pyramid. In 

particular, one of those MS approaches was used during my thesis.  

Lipid Structural Characterization  

The structural diversity of lipids yielding from the different combinations of backbone, 

polar head group, and acyl chain length, saturation, and double bond position add a 

substantial layer of variability that can ultimately have implications for health and disease 
55–57. For instance, a potential biomarker for breast cancer could be a single shift in 

double bond from delta 7 to delta 9 in phospholipid, and a change in the sn1 and sn2 
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positions of an acyl chain in phosphatidylinositols has the potential to be a marker for 

prostate cancer58. Currently, no single analytical method can fully characterize a lipid, 

and even in MS-based lipidomics, more than one MS experiment is usually required to 

obtain complete structural information.  

Using conventional tandem MS methods, such as collisional-induced dissociation (CID), 

lipid species produce informative fragments that allow unequivocal lipid class 

assignment57. However, such fragmentation methods can often leave gaps in the 

structural elucidation of lipids as they are often limited to the characterization of the head 

group, the lengths of chains, and the numbers of double bonds on the acyl chains. To 

elucidate the in-depth structure, newly developed dissociation techniques can be 

applied, such as ozone-induced dissociation (OzID)59, UV-induced Paternò-Büchi 

reaction60, and UV photodissociation (UVPD)61, as well as complex chromatographic 

strategies (Figure 3). As an alternative for the in-depth characterization of lipids, 

electron-based fragmentation mechanisms such as electron-activated dissociation 

(EAD) have been recently used62. This fragmentation method results in a high 

abundance of product ions, generating more diagnostic fragments that can be used to 

pinpoint double bond positions. In short, EAD can fragment virtually any C-C bond in the 

acyl chain and, depending on the mass shift of the individual fragments, determine 

whether the two carbons are bound by single or double bonds. Interestingly, the 

integration of EAD fragmentation into the commercially available mass spectrometer has 

enabled the acquisition of EAD-based spectra on a fast LC-MS timescale. As a main 

advantage, EAD combined with DDA enables a significant increase in compound 

characterization through extended fragmentation and in the number of compounds with 

confident identification. 
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Figure 3: Image adapted from63 . Advanced MS approaches can be used for fine-grained structural elucidation of lipid 
molecular species. The identified structural levels are named according to Liebisch et al. 64 

 Study of modified lipids: epilipidomics 

The lipidome is also subjected to various modifications through the introduction of small 

chemical groups via enzymatic and non-enzymatic reactions, which ultimately affect their 

structure, function, and reactivity65. These modifications, which include nitration, 

sulfation, halogenation, and oxidation, are collectively referred to as the epilipidome and 

play crucial roles in regulating several biological functions, including the dynamic 

properties of cellular membranes.66 

  

Figure 4: Lipids can undergo various chemical modifications by adding small functional groups, which can occur via 
enzymatic reactions or non-enzymatic processes. These modifications alter their structure and, consequently, their 
biological roles, influencing properties such as reactivity, functionality, and interactions within cellular systems. Figure 
adapted from67 

Among these, the oxidation of lipids occurs in many pathological conditions often 

associated with oxidative stress, such as cardiovascular and metabolic disorders67. 

Oxidized lipids are well recognized as markers of biological oxidative stress and 

bioactive molecules with pro-inflammatory effects. Polyunsaturated fatty acids (PUFAs) 

are among the primary targets for oxidative modification in their free form or esterified 

complex lipids such as triglycerides and phospholipids. For example, studies on oxidized 

phospholipids have recognized their central role in ferroptotic cell death and in the 

regulation of the innate immune response. Moreover, peroxidized and hydroxylated 

lipids found at the skin molecular level induced the production of inflammatory 

mediators68 and modulated skin responses to environmental stimuli69. Despite these 

relevant roles, the discovery and structural elucidation of oxidized lipids are still lacking, 
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as their identification in biological samples is hampered by their low natural abundance 

and structural diversity. To overcome these analytical limitations, oxidized species are 

often analyzed by targeted LC-MS/MS, but this does not capture the complexity of the 

epilipidome and prevents the discovery of new species. For more comprehensive 

profiling, the epilipidomic analysis can be performed by untargeted approaches, which 

require advanced bioinformatic tools to be processed and can potentially expand the 

knowledge of the functions of oxidative modifications.  

Lipid Ontology, Pathways and Multi-Omics Analysis 

As the detail and dimension of lipidomic datasets continue to grow, the interpretation of 

complex changes in lipidome (and epilipidome) profiles is becoming increasingly 

challenging. 

Collectively, lipids can be organized and visualized in different ways to derive biological 

information from lipidomic datasets. However, unlike genes, proteins, or even 

metabolites, the classification of lipids according to their function is still challenging 

because relevant perturbations usually do not happen at the level of a single molecular 

species but involve entire lipid subclasses70. Moreover, the available bioinformatic tools 

for lipid pathway analysis are still limited and generally rely on public databases (HMDB, 

KEGG) that struggle to interpret lipidomic ontology.  

Recently, new tools have been developed to help researchers try to extract biological 

knowledge from lipidome data. One such tool is LipidOntology (LION), which associates 

lipid species with chemical, biophysical, and biological terms71,72. The enrichment of 

LION terms can be obtained either by comparing subsets of lipids to background 

lipidomes (e.g., to evaluate the enrichment of LION terms in significantly altered lipids) 

or by analyzing the distribution of LION terms across a ranked list of lipids (such as when 

comparing condition A to condition B). Another tool is BioPAN, a web-based tool on the 

LIPID MAPS platform designed to analyze lipidomic data by integrating them into 

metabolic pathways, facilitating the understanding of lipid dynamics in biological systems 
73. Since this tool has been widely used in this thesis, a short description of the principles 

behind it is worth to be introduced. BioPAN relies on Z-scores derived from t-tests to 

identify significant changes in lipid metabolic pathways by comparing two different 

conditions. A positive z-score suggests activation, while negative scores indicate 

suppression, highlighting metabolic shifts under different biological states. Reactions are 
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visually represented with arrows, showing substrate-to-product transformations and 

directionality. By quantitatively analyzing lipid levels, BioPAN calculates activity scores 

to identify which pathways are activated or suppressed. These insights enhance 

understanding of metabolic processes, driving into disease mechanisms, therapeutic 

targets, and biomarker discovery while supporting hypothesis generation in lipidomics. 

In addition to the lipidomic ontology and pathway analysis, a more comprehensive 

understanding of lipidome functions can be achieved by integrating multiple molecular 

layers of information70. Developing these techniques now offers the opportunity to 

characterise the whole phenotype and to elucidate the functional roles of lipids in 

complex biomolecular network interactions. Several studies have integrated lipidomics 

with other omics layers better to interpret altered lipid metabolism under disease state 

conditions74–76. In principle, there are two main strategies to analyze multi-omics 

datasets: knowledge-based approaches, which align multi-omics patterns with 

established networks to develop mechanistic hypotheses, and data-driven approaches, 

which rely on minimal prior knowledge and employ statistical techniques or neural 

networks for prediction and hypothesis formulation77. Knowledge-based methods have 

more statistical power but can be challenging when combining data from different 

datasets. Yet, the selection of the analysis method depends on the biological question 

and factors such as the type of analytical platform and quality of the data. 

To date, selecting the most appropriate approach for specific lipidomic applications has 

largely depended on ad hoc testing, which is not trivial. In response, the LIPID MAPS 

consortium is making great efforts and recently introduced a “Lipidomic Tools Guide” to 

support scientists in constructing a comprehensive data analysis workflow and choosing 

the most suitable tools for processing lipidome datasets78. The tools address key areas 

of data processing, including “lipid-focused databases, mass spectrometry repositories, 

analysis of targeted lipidomics datasets, lipid identification and quantification in 

untargeted datasets, statistical analysis, data visualization, and integration solutions”78 

(Figure 5).  
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Figure 5:  Workflow chart of Lipidomics Tools Guide. Image adapted from78. 

 REFERENCES 
 

(1) Joyce, A. R.; Palsson, B. Ø. The Model Organism as a System: Integrating “omics” Data 
Sets. Nat Rev Mol Cell Biol 2006, 7 (3), 198–210. https://doi.org/10.1038/nrm1857. 

(2) Wishart, D. S. Emerging Applications of Metabolomics in Drug Discovery and Precision 
Medicine. Nat Rev Drug Discov 2016, 15 (7), 473–484. 
https://doi.org/10.1038/nrd.2016.32. 

(3) Olivier, M.; Asmis, R.; Hawkins, G. A.; Howard, T. D.; Cox, L. A. The Need for Multi-Omics 
Biomarker Signatures in Precision Medicine. Int J Mol Sci 2019, 20 (19), 4781. 
https://doi.org/10.3390/ijms20194781. 

(4) Aslam, B.; Basit, M.; Nisar, M. A.; Khurshid, M.; Rasool, M. H. Proteomics: Technologies 
and Their Applications. J Chromatogr Sci 2017, 55 (2), 182–196. 
https://doi.org/10.1093/chromsci/bmw167. 

(5) Patti, G. J.; Yanes, O.; Siuzdak, G. Metabolomics: The Apogee of the Omics Trilogy. Nat 
Rev Mol Cell Biol 2012, 13 (4), 263–269. https://doi.org/10.1038/nrm3314. 

(6) Talayero, B. G.; Sacks, F. M. The Role of Triglycerides in Atherosclerosis. Curr Cardiol 
Rep 2011, 13 (6), 544–552. https://doi.org/10.1007/s11886-011-0220-3. 

(7) Lydic, T. A.; Goo, Y. Lipidomics Unveils the Complexity of the Lipidome in Metabolic 
Diseases. Clin Transl Med 2018, 7 (1). https://doi.org/10.1186/s40169-018-0182-9. 



General introduction 

24 

(8) Chiappini, F.; Coilly, A.; Kadar, H.; Gual, P.; Tran, A.; Desterke, C.; Samuel, D.; Duclos-
Vallée, J.-C.; Touboul, D.; Bertrand-Michel, J.; Brunelle, A.; Guettier, C.; Le Naour, F. 
Metabolism Dysregulation Induces a Specific Lipid Signature of Nonalcoholic 
Steatohepatitis in Patients. Sci Rep 2017, 7 (1), 46658. 
https://doi.org/10.1038/srep46658. 

(9) Kelley, N. S.; Hubbard, N. E.; Erickson, K. L. Conjugated Linoleic Acid Isomers and 
Cancer ,. J Nutr 2007, 137 (12), 2599–2607. https://doi.org/10.1093/jn/137.12.2599. 

(10) Wishart, D. S. Applications of Metabolomics in Drug Discovery and Development. Drugs 
in R & D 2008, 9 (5), 307–322. https://doi.org/10.2165/00126839-200809050-00002. 

(11) Holbrook‐Smith, D.; Durot, S.; Sauer, U. High‐throughput Metabolomics Predicts Drug–
Target Relationships for Eukaryotic Proteins. Mol Syst Biol 2022, 18 (2). 
https://doi.org/10.15252/msb.202110767. 

(12) Swinney, D. C. Phenotypic vs. Target-Based Drug Discovery for First-in-Class Medicines. 
Clin Pharmacol Ther 2013, 93 (4), 299–301. https://doi.org/10.1038/clpt.2012.236. 

(13) Michelini, E.; Cevenini, L.; Mezzanotte, L.; Coppa, A.; Roda, A. Cell-Based Assays: 
Fuelling Drug Discovery. Anal Bioanal Chem 2010, 398 (1), 227–238. 
https://doi.org/10.1007/s00216-010-3933-z. 

(14) Zhang, X.-J.; She, Z.-G.; Wang, J.; Sun, D.; Shen, L.-J.; Xiang, H.; Cheng, X.; Ji, Y.-X.; 
Huang, Y.-P.; Li, P.-L. Multiple Omics Study Identifies an Interspecies Conserved Driver 
for Nonalcoholic Steatohepatitis. Sci Transl Med 2021, 13 (624), eabg8117. 

(15) Calle, R. A.; Amin, N. B.; Carvajal-Gonzalez, S.; Ross, T. T.; Bergman, A.; Aggarwal, S.; 
Crowley, C.; Rinaldi, A.; Mancuso, J.; Aggarwal, N.; Somayaji, V.; Inglot, M.; Tuthill, T. A.; 
Kou, K.; Boucher, M.; Tesz, G.; Dullea, R.; Bence, K. K.; Kim, A. M.; Pfefferkorn, J. A.; 
Esler, W. P. ACC Inhibitor Alone or Co-Administered with a DGAT2 Inhibitor in Patients 
with Non-Alcoholic Fatty Liver Disease: Two Parallel, Placebo-Controlled, Randomized 
Phase 2a Trials. Nat Med 2021, 27 (10), 1836–1848. https://doi.org/10.1038/s41591-021-
01489-1. 

(16) Yang, L.; Li, M.; Shan, Y.; Shen, S.; Bai, Y.; Liu, H. Recent Advances in Lipidomics for 
Disease Research. J Sep Sci 2016, 39 (1), 38–50. 
https://doi.org/10.1002/jssc.201500899. 

(17) Sethi, S.; Brietzke, E. Recent Advances in Lipidomics: Analytical and Clinical 
Perspectives. Prostaglandins Other Lipid Mediat 2017, 128–129, 8–16. 
https://doi.org/10.1016/j.prostaglandins.2016.12.002. 

(18) Liebisch, G.; Ahrends, R.; Arita, M.; Arita, M.; Bowden, J. A.; Ejsing, C. S.; Griffiths, W. J.; 
Holčapek, M.; Köfeler, H.; Mitchell, T. W.; Wenk, M. R.; Ekroos, K. Lipidomics Needs More 
Standardization. Nat Metab 2019, 1 (8), 745–747. https://doi.org/10.1038/s42255-019-
0094-z. 

(19) Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical Methods in Lipidomics and Their Applications. 
Anal Chem 2014, 86 (1), 161–175. https://doi.org/10.1021/ac403554h. 

(20) Shevchenko, A.; Simons, K. Lipidomics: Coming to Grips with Lipid Diversity. Nat Rev 
Mol Cell Biol 2010, 11 (8), 593–598. https://doi.org/10.1038/nrm2934. 

(21) Wenk, M. R. Lipidomics: New Tools and Applications. Cell 2010, 143 (6), 888–895. 
https://doi.org/10.1016/j.cell.2010.11.033. 



General introduction 

25 

(22) Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H.; Murphy, R. C.; 
Raetz, C. R. H.; Russell, D. W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, 
G.; VanNieuwenhze, M. S.; White, S. H.; Witztum, J. L.; Dennis, E. A. A Comprehensive 
Classification System for Lipids. J Lipid Res 2005, 46 (5), 839–861. 
https://doi.org/10.1194/jlr.E400004-JLR200. 

(23) https://www.lipidmaps.org/data/structure. 

(24) O’Donnell, V. B.; Dennis, E. A.; Wakelam, M. J. O.; Subramaniam, S. LIPID MAPS: 
Serving the next Generation of Lipid Researchers with Tools, Resources, Data, and 
Training. Sci Signal 2019, 12 (563). https://doi.org/10.1126/scisignal.aaw2964. 

(25) Yetukuri, L.; Ekroos, K.; Vidal-Puig, A.; Orešič, M. Informatics and Computational 
Strategies for the Study of Lipids. Mol. BioSyst. 2008, 4 (2), 121–127. 
https://doi.org/10.1039/B715468B. 

(26) Bligh, E. G.; Dyer, W. J. A RAPID METHOD OF TOTAL LIPID EXTRACTION AND 
PURIFICATION. Can J Biochem Physiol 1959, 37 (8), 911–917. 
https://doi.org/10.1139/o59-099. 

(27) Folch, J.; Lees, M.; Stanley, G. H. S. A SIMPLE METHOD FOR THE ISOLATION AND 
PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES. Journal of Biological 
Chemistry 1957, 226 (1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5. 

(28) Han, X.; Gross, R. W. Shotgun Lipidomics: Multidimensional MS Analysis of Cellular 
Lipidomes. Expert Rev Proteomics 2005, 2 (2), 253–264. 
https://doi.org/10.1586/14789450.2.2.253. 

(29) Dunn, W. B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; 
Brown, M.; Knowles, J. D.; Halsall, A.; Haselden, J. N.; Nicholls, A. W.; Wilson, I. D.; Kell, 
D. B.; Goodacre, R. Procedures for Large-Scale Metabolic Profiling of Serum and Plasma 
Using Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry. 
Nat Protoc 2011, 6 (7), 1060–1083. https://doi.org/10.1038/nprot.2011.335. 

(30) Wenk, M. R. The Emerging Field of Lipidomics. Nat Rev Drug Discov 2005, 4 (7), 594–
610. https://doi.org/10.1038/nrd1776. 

(31) Han, X.; Gross, R. W. Global Analyses of Cellular Lipidomes Directly from Crude Extracts 
of Biological Samples by ESI Mass Spectrometry: A Bridge to Lipidomics. J Lipid Res 
2003, 44 (6), 1071–1079. https://doi.org/10.1194/jlr.R300004-JLR200. 

(32) Hu, C.; van der Heijden, R.; Wang, M.; van der Greef, J.; Hankemeier, T.; Xu, G. Analytical 
Strategies in Lipidomics and Applications in Disease Biomarker Discovery. Journal of 
Chromatography B 2009, 877 (26), 2836–2846. 
https://doi.org/10.1016/j.jchromb.2009.01.038. 

(33) Cajka, T.; Fiehn, O. Comprehensive Analysis of Lipids in Biological Systems by Liquid 
Chromatography-Mass Spectrometry. TrAC Trends in Analytical Chemistry 2014, 61, 
192–206. https://doi.org/10.1016/j.trac.2014.04.017. 

(34) Zhao, Y.-Y.; Cheng, X.-L.; Lin, R.-C.; Wei, F. Lipidomics Applications for Disease 
Biomarker Discovery in Mammal Models. Biomark Med 2015, 9 (2), 153–168. 
https://doi.org/10.2217/bmm.14.81. 

(35) Quehenberger, O.; Armando, A. M.; Brown, A. H.; Milne, S. B.; Myers, D. S.; Merrill, A. 
H.; Bandyopadhyay, S.; Jones, K. N.; Kelly, S.; Shaner, R. L.; Sullards, C. M.; Wang, E.; 
Murphy, R. C.; Barkley, R. M.; Leiker, T. J.; Raetz, C. R. H.; Guan, Z.; Laird, G. M.; Six, 
D. A.; Russell, D. W.; McDonald, J. G.; Subramaniam, S.; Fahy, E.; Dennis, E. A. 



General introduction 

26 

Lipidomics Reveals a Remarkable Diversity of Lipids in Human Plasma. J Lipid Res 2010, 
51 (11), 3299–3305. https://doi.org/10.1194/jlr.M009449. 

(36) Avela, H. F.; Sirén, H. Advances in Lipidomics. Clinica Chimica Acta 2020, 510, 123–141. 
https://doi.org/10.1016/j.cca.2020.06.049. 

(37) Xuan, Q.; Hu, C.; Yu, D.; Wang, L.; Zhou, Y.; Zhao, X.; Li, Q.; Hou, X.; Xu, G. Development 
of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High 
Performance Liquid Chromatography–Mass Spectrometry. Anal Chem 2018, 90 (12), 
7608–7616. https://doi.org/10.1021/acs.analchem.8b01331. 

(38) Patti, G. J.; Yanes, O.; Siuzdak, G. Metabolomics: The Apogee of the Omics Trilogy. Nat 
Rev Mol Cell Biol 2012, 13 (4), 263–269. https://doi.org/10.1038/nrm3314. 

(39) Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass 
Spectrometry-Based Metabolomics and Lipidomics. Anal Chem 2016, 88 (1), 524–545. 
https://doi.org/10.1021/acs.analchem.5b04491. 

(40) Köfeler, H. C.; Eichmann, T. O.; Ahrends, R.; Bowden, J. A.; Danne-Rasche, N.; Dennis, 
E. A.; Fedorova, M.; Griffiths, W. J.; Han, X.; Hartler, J.; Holčapek, M.; Jirásko, R.; 
Koelmel, J. P.; Ejsing, C. S.; Liebisch, G.; Ni, Z.; O’Donnell, V. B.; Quehenberger, O.; 
Schwudke, D.; Shevchenko, A.; Wakelam, M. J. O.; Wenk, M. R.; Wolrab, D.; Ekroos, K. 
Quality Control Requirements for the Correct Annotation of Lipidomics Data. Nat Commun 
2021, 12 (1), 4771. https://doi.org/10.1038/s41467-021-24984-y. 

(41) Chollet, C.; Boutet‐Mercey, S.; Laboureur, L.; Rincon, C.; Méjean, M.; Jouhet, J.; Fenaille, 
F.; Colsch, B.; Touboul, D. Supercritical Fluid Chromatography Coupled to Mass 
Spectrometry for Lipidomics. Journal of Mass Spectrometry 2019, 54 (10), 791–801. 
https://doi.org/10.1002/jms.4445. 

(42) Rustam, Y. H.; Reid, G. E. Analytical Challenges and Recent Advances in Mass 
Spectrometry Based Lipidomics. Anal Chem 2018, 90 (1), 374–397. 
https://doi.org/10.1021/acs.analchem.7b04836. 

(43) Baba, T.; Campbell, J. L.; Le Blanc, J. C. Y.; Baker, PaulR. S.; Ikeda, K. Quantitative 
Structural Multiclass Lipidomics Using Differential Mobility: Electron Impact Excitation of 
Ions from Organics (EIEIO) Mass Spectrometry. J Lipid Res 2018, 59 (5), 910–919. 
https://doi.org/10.1194/jlr.D083261. 

(44) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; 
VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS 
Deconvolution for Comprehensive Metabolome Analysis. Nat Methods 2015, 12 (6), 523–
526. https://doi.org/10.1038/nmeth.3393. 

(45) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS:  Processing Mass 
Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, 
and Identification. Anal Chem 2006, 78 (3), 779–787. https://doi.org/10.1021/ac051437y. 

(46) Goracci, L.; Tortorella, S.; Tiberi, P.; Pellegrino, R. M.; Di Veroli, A.; Valeri, A.; Cruciani, 
G. Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. 
Anal Chem 2017, 89 (11), 6257–6264. https://doi.org/10.1021/acs.analchem.7b01259. 

(47) Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for 
Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. 
BMC Bioinformatics 2010, 11 (1), 395. https://doi.org/10.1186/1471-2105-11-395. 



General introduction 

27 

(48) Delabriere, A.; Warmer, P.; Brennsteiner, V.; Zamboni, N. SLAW: A Scalable and Self-
Optimizing Processing Workflow for Untargeted LC-MS. Anal Chem 2021, 93 (45), 
15024–15032. https://doi.org/10.1021/acs.analchem.1c02687. 

(49) Ni, Z.; Angelidou, G.; Hoffmann, R.; Fedorova, M. LPPtiger Software for Lipidome-Specific 
Prediction and Identification of Oxidized Phospholipids from LC-MS Datasets. Sci Rep 
2017, 7 (1), 15138. https://doi.org/10.1038/s41598-017-15363-z. 

(50) Wanichthanarak, K.; In-on, A.; Fan, S.; Fiehn, O.; Wangwiwatsin, A.; Khoomrung, S. Data 
Processing Solutions to Render Metabolomics More Quantitative: Case Studies in Food 
and Clinical Metabolomics Using Metabox 2.0. Gigascience 2024, 13. 
https://doi.org/10.1093/gigascience/giae005. 

(51) Köfeler, H. C.; Eichmann, T. O.; Ahrends, R.; Bowden, J. A.; Danne-Rasche, N.; Dennis, 
E. A.; Fedorova, M.; Griffiths, W. J.; Han, X.; Hartler, J.; Holčapek, M.; Jirásko, R.; 
Koelmel, J. P.; Ejsing, C. S.; Liebisch, G.; Ni, Z.; O’Donnell, V. B.; Quehenberger, O.; 
Schwudke, D.; Shevchenko, A.; Wakelam, M. J. O.; Wenk, M. R.; Wolrab, D.; Ekroos, K. 
Quality Control Requirements for the Correct Annotation of Lipidomics Data. Nat Commun 
2021, 12 (1), 4771. https://doi.org/10.1038/s41467-021-24984-y. 

(52) Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.; Schmitz, G.; 
Spener, F.; Wakelam, M. J. O. Shorthand Notation for Lipid Structures Derived from Mass 
Spectrometry. J Lipid Res 2013, 54 (6), 1523–1530. https://doi.org/10.1194/jlr.M033506. 

(53) Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E. A.; Durand, T.; Ejsing, C. S.; Fedorova, M.; 
Feussner, I.; Griffiths, W. J.; Köfeler, H.; Merrill, A. H.; Murphy, R. C.; O’Donnell, V. B.; 
Oskolkova, O.; Subramaniam, S.; Wakelam, M. J. O.; Spener, F. Update on LIPID MAPS 
Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J 
Lipid Res 2020, 61 (12), 1539–1555. https://doi.org/10.1194/jlr.S120001025. 

(54) Mass Spectrometry for Lipidomics; Holčapek, M., Ekroos, K., Eds.; Wiley, 2023. 
https://doi.org/10.1002/9783527836512. 

(55) Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; 
Pieragostino, D. Advances in Lipidomics for Cancer Biomarkers Discovery. Int J Mol Sci 
2016, 17 (12), 1992. https://doi.org/10.3390/ijms17121992. 

(56) Ma, X.; Chong, L.; Tian, R.; Shi, R.; Hu, T. Y.; Ouyang, Z.; Xia, Y. Identification and 
Quantitation of Lipid C=C Location Isomers: A Shotgun Lipidomics Approach Enabled by 
Photochemical Reaction. Proceedings of the National Academy of Sciences 2016, 113 
(10), 2573–2578. https://doi.org/10.1073/pnas.1523356113. 

(57) Han, X. Lipidomics: Comprehensive Mass Spectrometry of Lipids; 2016. 

(58) Ma, X.; Chong, L.; Tian, R.; Shi, R.; Hu, T. Y.; Ouyang, Z.; Xia, Y. Identification and 
Quantitation of Lipid C=C Location Isomers: A Shotgun Lipidomics Approach Enabled by 
Photochemical Reaction. Proceedings of the National Academy of Sciences 2016, 113 
(10), 2573–2578. https://doi.org/10.1073/pnas.1523356113. 

(59) Pham, H. T.; Maccarone, A. T.; Thomas, M. C.; Campbell, J. L.; Mitchell, T. W.; Blanksby, 
S. J. Structural Characterization of Glycerophospholipids by Combinations of Ozone- and 
Collision-Induced Dissociation Mass Spectrometry: The next Step towards “Top-down” 
Lipidomics. Analyst 2014, 139 (1), 204–214. https://doi.org/10.1039/C3AN01712E. 

(60) Ma, X.; Xia, Y. Pinpointing Double Bonds in Lipids by Paternò‐Büchi Reactions and Mass 
Spectrometry. Angewandte Chemie International Edition 2014, 53 (10), 2592–2596. 
https://doi.org/10.1002/anie.201310699. 



General introduction 

28 

(61) Williams, P. E.; Klein, D. R.; Greer, S. M.; Brodbelt, J. S. Pinpointing Double Bond and Sn 
-Positions in Glycerophospholipids via Hybrid 193 Nm Ultraviolet Photodissociation 
(UVPD) Mass Spectrometry. J Am Chem Soc 2017, 139 (44), 15681–15690. 
https://doi.org/10.1021/jacs.7b06416. 

(62) Campbell, J. L.; Baba, T. Near-Complete Structural Characterization of 
Phosphatidylcholines Using Electron Impact Excitation of Ions from Organics. Anal Chem 
2015, 87 (11), 5837–5845. https://doi.org/10.1021/acs.analchem.5b01460. 

(63) Zhang, W.; Jian, R.; Zhao, J.; Liu, Y.; Xia, Y. Deep-Lipidotyping by Mass Spectrometry: 
Recent Technical Advances and Applications. J Lipid Res 2022, 63 (7), 100219. 
https://doi.org/10.1016/j.jlr.2022.100219. 

(64) Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E. A.; Durand, T.; Ejsing, C. S.; Fedorova, M.; 
Feussner, I.; Griffiths, W. J.; Köfeler, H.; Merrill, A. H.; Murphy, R. C.; O’Donnell, V. B.; 
Oskolkova, O.; Subramaniam, S.; Wakelam, M. J. O.; Spener, F. Update on LIPID MAPS 
Classification, Nomenclature, and Shorthand Notation for MS-Derived Lipid Structures. J 
Lipid Res 2020, 61 (12), 1539–1555. https://doi.org/10.1194/jlr.S120001025. 

(65) Criscuolo, A.; Nepachalovich, P.; Garcia-del Rio, D. F.; Lange, M.; Ni, Z.; Baroni, M.; 
Cruciani, G.; Goracci, L.; Blüher, M.; Fedorova, M. Analytical and Computational Workflow 
for In-Depth Analysis of Oxidized Complex Lipids in Blood Plasma. Nat Commun 2022, 
13 (1), 6547. https://doi.org/10.1038/s41467-022-33225-9. 

(66) Ni, Z.; Goracci, L.; Cruciani, G.; Fedorova, M. Computational Solutions in Redox 
Lipidomics – Current Strategies and Future Perspectives. Free Radic Biol Med 2019, 144, 
110–123. https://doi.org/10.1016/j.freeradbiomed.2019.04.027. 

(67) Penkov, S.; Fedorova, M. Membrane Epilipidome—Lipid Modifications, Their Dynamics, 
and Functional Significance. Cold Spring Harb Perspect Biol 2024, 16 (7), a041417. 
https://doi.org/10.1101/cshperspect.a041417. 

(68) Niki, E. Lipid Oxidation in the Skin. Free Radic Res 2015, 49 (7), 827–834. 
https://doi.org/10.3109/10715762.2014.976213. 

(69) Ottaviani, M.; Alestas, T.; Flori, E.; Mastrofrancesco, A.; Zouboulis, C. C.; Picardo, M. 
Peroxidated Squalene Induces the Production of Inflammatory Mediators in HaCaT 
Keratinocytes: A Possible Role in Acne Vulgaris. Journal of Investigative Dermatology 
2006, 126 (11), 2430–2437. https://doi.org/10.1038/sj.jid.5700434. 

(70) Checa, A.; Bedia, C.; Jaumot, J. Lipidomic Data Analysis: Tutorial, Practical Guidelines 
and Applications. Anal Chim Acta 2015, 885, 1–16. 
https://doi.org/10.1016/j.aca.2015.02.068. 

(71) Molenaar, M. R.; Haaker, M. W.; Vaandrager, A. B.; Houweling, M.; Helms, J. B. Lipidomic 
Profiling of Rat Hepatic Stellate Cells during Activation Reveals a Two-Stage Process 
Accompanied by Increased Levels of Lysosomal Lipids. Journal of Biological Chemistry 
2023, 299 (4), 103042. https://doi.org/10.1016/j.jbc.2023.103042. 

(72) Molenaar, M. R.; Jeucken, A.; Wassenaar, T. A.; van de Lest, C. H. A.; Brouwers, J. F.; 
Helms, J. B. LION/Web: A Web-Based Ontology Enrichment Tool for Lipidomic Data 
Analysis. Gigascience 2019, 8 (6). https://doi.org/10.1093/gigascience/giz061. 

(73) Gaud, C.; C. Sousa, B.; Nguyen, A.; Fedorova, M.; Ni, Z.; O’Donnell, V. B.; Wakelam, M. 
J. O.; Andrews, S.; Lopez-Clavijo, A. F. BioPAN: A Web-Based Tool to Explore 
Mammalian Lipidome Metabolic Pathways on LIPID MAPS. F1000Res 2021, 10, 4. 
https://doi.org/10.12688/f1000research.28022.1. 



General introduction 

29 

(74) Muqaku, B.; Eisinger, M.; Meier, S. M.; Tahir, A.; Pukrop, T.; Haferkamp, S.; Slany, A.; 
Reichle, A.; Gerner, C. Multi-Omics Analysis of Serum Samples Demonstrates 
Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet 
Activation in Metastatic Melanoma. Molecular & Cellular Proteomics 2017, 16 (1), 86–99. 
https://doi.org/10.1074/mcp.M116.063313. 

(75) Braun, F.; Rinschen, M. M.; Bartels, V.; Frommolt, P.; Habermann, B.; Hoeijmakers, J. H. 
J.; Schumacher, B.; Dollé, M. E. T.; Müller, R.-U.; Benzing, T.; Schermer, B.; Kurschat, C. 
E. Altered Lipid Metabolism in the Aging Kidney Identified by Three Layered Omic 
Analysis. Aging 2016, 8 (3), 441–454. https://doi.org/10.18632/aging.100900. 

(76) Kamoun, A.; Idbaih, A.; Villa, C. Integrated Multi-Omics Analysis of Oligodendroglial 
Tumours Identifies Three Subgroups of 1p/19q Co-Deleted Gliomas. Nat Commun 2016, 
7 (1), 11263. https://doi.org/10.1038/ncomms11263. 

(77) Graw, S.; Chappell, K.; Washam, C. L.; Gies, A.; Bird, J.; Robeson, M. S.; Byrum, S. D. 
Multi-Omics Data Integration Considerations and Study Design for Biological Systems 
and Disease. Mol Omics 2021, 17 (2), 170–185. https://doi.org/10.1039/D0MO00041H. 

(78) Ni, Z.; Wölk, M.; Jukes, G.; Mendivelso Espinosa, K.; Ahrends, R.; Aimo, L.; Alvarez-
Jarreta, J.; Andrews, S.; Andrews, R.; Bridge, A.; Clair, G. C.; Conroy, M. J.; Fahy, E.; 
Gaud, C.; Goracci, L.; Hartler, J.; Hoffmann, N.; Kopczyinki, D.; Korf, A.; Lopez-Clavijo, 
A. F.; Malik, A.; Ackerman, J. M.; Molenaar, M. R.; O’Donovan, C.; Pluskal, T.; 
Shevchenko, A.; Slenter, D.; Siuzdak, G.; Kutmon, M.; Tsugawa, H.; Willighagen, E. L.; 
Xia, J.; O’Donnell, V. B.; Fedorova, M. Guiding the Choice of Informatics Software and 
Tools for Lipidomics Research Applications. Nat Methods 2023, 20 (2), 193–204. 
https://doi.org/10.1038/s41592-022-01710-0. 

  

 



Aim of the thesis 

30 

AIMS OF THE THESIS 

Recent advances in omics sciences have highlighted the importance of lipidomics in 

biomedical research. Despite the advances in analytical techniques, the study of the 

lipidome remains hindered by the lack of fully validated pipelines and standardized 

methodologies to guide researchers through the analysis of complex datasets. This gap, 

compared to other omics fields like proteomics, is due to the relatively recent emergence 

of lipidomics and the inherent analytical challenges associated with characterizing a 

wide variety of lipids on a large scale. Perturbations in lipid metabolism can contribute 

to the development of diseases such as inflammation, cancer, and metabolic disorders, 

and in many cases, alterations in lipid profiles serve as key risk factors. By analyzing 

lipidome profiles, we can potentially understand how lipid signalling pathways respond 

to diseases or specific biological triggers. This approach can be used for diagnostic 

purposes, disease profiling, and studying drug metabolism. 

As the main analytical goal of lipidomics is to identify and/or quantify as many 

compounds as possible, powerful analytical techniques and bioinformatics tools are 

required. Mass spectrometry is one of the most widely used analytical platforms to 

analyze the lipidome in complex biological matrices and offers promising new insights in 

this field. 

With this thesis, we aim to study lipidome complexity by establishing an analytical 

workflow based on advanced mass spectrometry techniques that can be applied to 

different biological matrices under various experimental conditions (in vitro and in vivo 

models). We expect that a comprehensive analytical description of lipidomes could help 

to add new layers of information about biological systems and, in combination with other 

omics sciences, support the identification of new biomarkers or the discovery of new 

drugs. 

In Chapter 2, our goal was to describe the molecular patterns that define the lipid-

lowering activity of phytochemical compounds through an untargeted lipidomic 

approach. To that end, I first developed an in vitro model for the phenotypic screening of 

bioactive compounds. I grew HepG2 cells in a medium supplemented with oleic acid to 

promote lipid droplet formation, a common feature of the NAFLD phenotype, and 

challenged them with the compounds of interest. Next, with the same experimental 
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setup, I performed untargeted measurements of lipids. In both studies presented in this 

chapter, the analysis of lipidomic patterns revealed significant changes in cellular states 

and proved valuable in understanding the molecular mechanisms driving the lipid-

lowering effects. 

In Chapters 3 and 4, I defined lipid patterns in animal models working with different 

biological matrices.  The goal was to establish an analytical pipeline for fast and reliable 

analysis of lipid profiles for screening to identify biologically relevant features that define 

pathological states or responses to different stimuli, including those induced by drugs. 

In addition to the ongoing development of new workflows, our broader goal is to explore 

how available MS-based analytical techniques can be used to study the effects of 

different stimuli on multiple biological matrices. This approach represents a significant 

step forward as it enhances our ability to study complex biological systems (i.e. animal 

models) and better understand lipid dynamics under different conditions. 

In Chapter 5, I took advantage of a lipidomic dataset from Chapter 4 to establish a 

workflow based on advanced LC-MS/MS approaches for the comprehensive profiling of 

oxidized lipids. The method combined a 2.4-minute untargeted lipidomic analysis with 

our newly assembled pipeline for unmodified and modified lipid (epilipid) annotation, 

enabling high-throughput detection of oxidized molecular species.  

Finally, in Chapter 6, I applied Electron-Activated Dissociation (EAD) fragmentation to 

structurally characterize oxidized lipids identified in Chapter 5. This advanced MS 

approach allows for a fine-grained elucidation of these species beyond their molecular 

level. 
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CHAPTER 2:  
PHENOTYPIC SCREENING DRUG DISCOVERY FOR 

THE IDENTIFICATION OF NOVEL BIOACTIVE 
COMPOUNDS IN IN VITRO CELL MODELS 
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STUDY I: MULTI-OMICS ANALYSIS TO ELUCIDATE MOLECULAR 
MECHANISMS RESPONSIBLE FOR IN VITRO LIPID-LOWERING 
PROPERTIES OF SCUTELLARIA BAICALENSIS 

Summary 

Phytochemicals from natural extracts represent an important source of bioactive 

compounds potentially useful in treating metabolic diseases characterized by major 

lipidome reconfiguration. Among them, non-alcoholic fatty liver disease (NAFLD) is a 

metabolic disorder caused by the accumulation of lipids in the liver as a result of an 

imbalance between lipid synthesis, uptake, and export. Treatment options are scarce 

partly due to a lack of reliable human in vitro disease models. Scutellaira baicalensis, a 

plant used in Chinese officinal medicine for its hypolipidemic properties, has shown 

several beneficial activities associated with lipid, cholesterol-lowering and anti-

inflammatory effects, mainly due to its principal constituent, baicalin. However, the 

mechanism of action responsible for these effects is not completely understood. In this 

study, the in vitro lipid-lowering effect of S. baicalensis was evaluated in HepG2 cells by 

multi-omics studies. Oleic acid (OA) was used to promote intracellular lipid accumulation 

and steatosis. Using untargeted lipidomics and proteomics approaches, we investigated 

the changes in lipid and protein profiles associated with the lipid-lowering process. Our 

findings highlight the potential of S.baicalensis in modulating key pathways involved in 

lipid metabolism, transport, and accumulation, offering new insights into its therapeutic 

potential and highlights the importance of integrating omics studies into phenotypic 

screening to elucidate the molecular effects of phytocompounds.  

Background 

Non-alcoholic fatty liver disease (NAFLD) encompasses a range of liver disorders, 

including hepatic steatosis and non-alcoholic steatohepatitis (NASH), which can 

progress to more severe conditions such as fibrosis, cirrhosis, and hepatocellular 

carcinoma1. The excessive accumulation of lipids in the liver is a primary factor driving 

these diseases' onset and progression, leading to structural and functional disruptions 

in liver architecture2. The imbalance between lipid synthesis, uptake, and export in the 

liver causes the formation of intracellular lipid droplets, which in turn contribute to 

inflammation and liver damage, ultimately leading to NASH3. Although the precise 
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molecular mechanisms driving NAFLD progression remain under investigation, lipid 

droplets are increasingly recognized as promising therapeutic targets in the early and 

advanced stages of the disease. Reducing steatosis is often essential for resolving 

steatohepatitis, highlighting the critical role that lipids play in the development and 

progression of NAFLD.4 

Despite its prevalence, NAFLD still lacks approved therapies5, with current treatments 

focusing on diet and lifestyle interventions. This underscores the ongoing search for 

pharmacological solutions that address the disease’s core mechanisms. Progress in this 

area has been limited, however, by the lack of reliable and translational preclinical 

models. In recent years, various in vitro models of fatty liver disease have been 

developed to better capture the different mechanistic aspects of the disease. These 

models, which include both scaffold-containing and scaffold-free systems, aim to 

replicate the complex pathophysiology of fatty liver disease.6 

In this study, we developed a model of human steatosis using Human hepatocellular 

carcinoma cells (HepG2) under both physiological and pathophysiological conditions. 

Our findings show that HepG2 cells accumulate lipid droplets when exposed to excess 

free fatty acids, particularly oleic acid, a monounsaturated fatty acid, omega-9 (C18:1)7. 

In this culture system, hepatocytes maintain their viability, phenotype, and metabolic 

activity. Moreover, this system replicates in vivo phenomena such as the formation of 

lipid droplets (LD), the reversibility of steatosis, and successful treatment with various 

drugs. Collectively, this in vitro system offers mechanistic insights into the pathogenesis 

of steatosis, providing new perspectives on potential pharmaceutical targets. 

Phytochemicals, which are plant secondary metabolites found in fruits and vegetables, 

have shown protective effects against metabolic diseases, particularly NAFLD, and are 

now becoming a valuable source of bioactive compounds8–10. Special attention has been 

dedicated to the study of medicinal plants used in traditional Chinese medicine, as they 

comprise a multitude of bioactive compounds to be used as therapeutic alternatives to 

prevent and treat steatosis with minimal adverse effects. Among them, Scutellaria 

baicalensis has emerged as a promising candidate due to its lipid-lowering effects 

already observed either in vitro or in vivo.11–14 
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The LC-MS/MS analytical profile of S. baicalensis extract has recently been obtained in 

our laboratory15. In total, 12 different flavonoids were identified, including baicalin. 

Baicalin is the most abundant component of the extract and accounts for 30% of the total 

polyphenolic content of S.baicalensis. It presents anti-cancer and anti-inflammatory 

properties, with a well-documented beneficial effect on metabolic and liver disease.16 

Besides the beneficial effect on liver disease, the mechanism of action as well as the 

molecular targets responsible for this effect are not clear17. A chemoproteomic study 

suggested baicalin activates carnitine palmitoyltransferase I (CPT1), the enzyme 

responsible for the transport of long-chain fatty acids into mitochondria, thereby 

improving fatty acid metabolism18. More recently, Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH) was identified as one of the potential target proteins of 

baicalin19. However, no systematic studies on whole natural extracts have been 

conducted so far.  

This study aims to investigate the lipid-lowering properties of S. baicalensis and to 

elucidate the molecular mechanisms responsible for such effects using multi-omics 

analysis. This approach aims to clarify the lipid and protein profile changes driving the 

lipid-lowering properties and to identify potential therapeutic targets for NAFLD.  

Materials and Methods 

Cell Culture 

Human hepatocellular carcinoma cells HepG2 were cultured in T-75 cell culture flasks in 

minimal essential medium (MEM, EuroCloneTM) supplemented with 10% (v/v) fetal 

bovine serum (FBS), 5% penicillin/streptomycin, 5% Sodium Pyruvate and 2 mM L-

glutamine. Cells were kept at 37°C with 21% O2 and 5% CO2. Cell culture media was 

replaced on alternate days, and cells were passaged once a week when confluency 

reached approximately 80%. 

Preparation of oleic acid and steatosis induction 

The preparation protocol was adapted from20,21. In brief, the oleic acid (OA) stock 

solution (0.6 M in ethanol, O1008, Sigma-Aldrich) was diluted 1:1000 (0.6 mM) in MEM 
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medium containing fatty acid-free BSA (molar ratio 5:1) to facilitate free fatty acid uptake 

to hepatocytes for 30 minutes at 37°C. HepG2 cells were exposed to this medium 

supplemented with OA for up to 24 hours. The control conditions were maintained in a 

complete medium without the OA: BSA complex. 

Quantification of steatosis: AdipoRed TM Assay 

AdipoRed™ (Lonza, Switzerland) assay enables the relative quantification of 

intracellular lipid droplets. The reagent is a solution of Hydrophilic Stain Nile Red, which 

becomes fluorescent when partitioned into a hydrophobic environment, such as 

intracellular lipid droplets. Here, lipid accumulation was measured according to the 

manufacturer’s instructions and optimized for solvent, concentration, and use in a 96-

well-based assay. 

For phenotypic screening, 1.8 x 104 HepG2 cells (four biological replicates for each 

condition tested) were plated in the 96-well plates for 24 hours in MEM complete 

medium. The medium was then supplemented with OA for 24 hours. Six hours after OA 

supplementation, compounds to be tested were added to the same medium for 18 hours. 

For prevention experiments, a fresh medium containing drugs was added to the cells for 

18 hours and then replaced with MEM supplemented with oleic acid. At the end of the 

experiment, the medium was removed, and cells were carefully washed with 200 μL of 

phosphate-buffered saline (PBS 1X).  Each well was then filled with 200 μL of 

prewarmed PBS, and 5 μL of AdipoRed™ Reagent was added. After 10 minutes, the 

fluorescence was measured with excitation at 485 nm and emission at 535 nm, with 

readings taken every second. Statistical analysis was done on GraphPad Prism version 

8 (GraphPad Software Inc. La Jolla, CA, USA). Significance was calculated using One-

way ANOVA (Adj P-value < 0.05). Data are expressed as % relative lipid content, where 

100% represents results obtained with OA-treated HepG2 cells. 

For validation with fenofibrate, I tested concentrations of the inhibitor previously used for 

HepG2 and other cell lines. The drug dissolved in Dimethyl Sulfoxide (DMSO) was added 

to the medium at the indicated concentration. A control condition medium containing the 

same concentration of DMSO was prepared. 
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MTT Assay 

For cell viability assays, S. baicalensis was tested at the same concentrations used in 

the AdipoRedTM assay. 20.000 cells were seeded in 96-well plates and treated with 

different extract concentrations for 24 h in a complete medium (MEM 10% FBS, 1% 

penicillin/streptomycin). The medium was then removed, and cells were washed with 

100 μL PBS. Then, 100 µL of MEM, not supplemented with FBS and 

penicillin/streptomycin, was added to each well, and the four-hour incubation was started 

after the addition of 11 µL MTT reagent 5 mg/mL (3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium Bromide). After medium removal, cells were lysed with 100 µL of a 

solution consisting of DMSO, 8 mM HCl and 5% TWEEN20. The 96-well plate was 

shaken in the dark on a plate shaker for 15 min, and the absorbance was measured at 

575 nm and 630 nm using a plate reader (BioTek's PowerWave HT, Winooski, VT, USA). 

Cells incubated with DMSO (0.1%) were used as a control for 100% cell proliferation. 

Lipidomics 

For the lipidomic experiment, cells were seeded in T-25 cell culture flasks at a final 

concentration of 800.000 cells/mL. After 24 hours, Scutellaria baicalensis was added to 

the medium at 150 µg/mL. The medium was then removed and replaced with MEM 

supplemented with OA 0.6mM (Sigma-AldrichTM) and bovine serum albumin 0.12mM 

(BSA, Sigma-AldrichTM cat no. A8806) for 18 hours. Cells were washed with prewarmed 

PBS twice, detached with trypsin and centrifuged for 10 minutes at 15.000 rpm. Lipids 

were extracted with ice-cold extraction buffer, with MTBE/methanol/water (10:3:2.5, 

v/v/v) for 1 hour at 4°C. All solvents contained butylated hydroxytoluene (BHT) (0.1%) 

w/v. After centrifugation, the supernatants (lipids extract) were dried and stored at -80°C 

until measurement. Untargeted lipidomics of lipid extracts was performed on a TripleTOF 

6600 (SCIEX) coupled to an HPLC Dionex Ultimate 3000 (Thermo Scientific) equipped 

with an Accucore C18 column (150 × 2.1 mm; 2.6 μm. 150 Å; Thermo Scientific, Bremen, 

Germany). During separation, the column temperature was maintained at 45°C, and the 

flow rate was set to 0.3 mL/min. Lipid classes were separated by 30-minute gradient 

elution using the following mobile phases: A) acetonitrile: water (6:4 v/v) with 10mM 

ammonium acetate and 0.1% formic acid, B) isopropanol: acetonitrile (9:1 v/v) with 

10mM ammonium acetate and 0.1% formic acid. The following gradient was applied: 
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Time 
(min) 

A(%) B(%) 

0 55 45 
25 3 97 
30 3 97 
35 55 45 

Table 1: LC conditions 

Measurement was performed in either positive or negative ionization mode, and spectra 

were detected from an m/z of 50 to 1500 and MS/MS acquired in data-dependent 

acquisition (DDA), top 5 mode. MS parameters used are the following: 

Source Parameters Value 

Ion Source Gas 1 (psi) 55 

Ions source Gas 2 (psi) 65 

Curtain Gas 35 

Temperature (°C) 550 

Stray Voltage 4500 

  
 

MS Parameters  Value 

Scan Type TOF MS 

Accumulation time (ms) 250 

Declustering Potential (V) 80 

Collision Energy (V) 10 

Collision Energy Spread (V) 0 

Range 50-1500 m/z 

  
 

MS/MS Parameters Value 

Scan Type TOF MS/MS 

Maximum Candidate Ions  5 

Intensity Threshold (counts/s) 100 

Mass Tolerance (mDa) 50 

Accumulation Time (ms) 100 

Declustering Potential 50 

CES 15 

CE 35 

Table 2: TOF MS and TOF MS/MS parameters 

Features were annotated based on results from MS-Dial (ver.4.9.221218)22 with a 

tolerance of 0.01 Da for MS1 and 0.025 Da for MS2. Data analysis was performed using 
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Metaboanalyst v5.0 online software. Data were subjected to normalization by internal 

standards mix (Splash Lipidomix - Avanti® Polar Lipids) added at the beginning of 

sample preparation and by protein concentration. Signals found in blank samples were 

discarded from the dataset. For multivariate analysis, data were log10 transformed and 

autoscaled. Lipidomic pathway analysis was performed using BioPAN. In pathway 

mapping, altered reactions are identified as either activated or suppressed based on a 

Z-score, which indicates whether a specific reaction has significantly changed between 

control and treated conditions. Reactions are then ranked by their Z-scores to reflect the 

extent of alteration. For enrichment analysis, LION-web was used. The enrichment of 

LION terms is determined by assessing their distribution across a ranked list of lipids 

and comparing the two experimental conditions. 

Proteomics  

For the proteomic experiment, 300.000 cells were seeded in 2 mL MEM medium in a 6-

well plate and treated with Scutellaria baicalensis at 150 µg/mL for 24 hours. The 

medium was changed and replaced with MEM supplemented with oleic acid 0.6mM 

(Sigma-AldrichTM) and bovine serum albumin 0.12mM (BSA, Sigma-AldrichTM) for 18 

hours. After removal of medium and washing of cells with PBS, cells were detached with 

trypsin, pelleted, and lysed with lysis buffer (SDS 5% (sodium dodecyl sulfate), TEAB 50 

mM (triethylammonium bicarbonate buffer), MgCl2 2 mM (magnesium chloride), one 

cOmplete EDTA-free protease inhibitor cocktail tablet and 100 Unit of benzonase) 

(Sigma-Aldrich, Milan, Italy). The lysates were completely solubilized and centrifuged at 

10,000× g for 15 min at 4 °C. Protein concentration was determined by BCA assay 

(Thermo Scientific, USA), and 30 μg of protein extract was processed through tryptic 

digestion using the S-Trap spin-columns (Protifi, Huntington, New York, USA). Protein 

lysates were reduced with tris(2-carboxyethyl)phosphine (TCEP) 5mM in 50 mM AMBIC 

(ammonium bicarbonate) for 10 min at 95 °C and alkylated with 20 mM IAA 

(iodoacetamide) in 50 mM AMBIC for 45 min at room temperature in the dark. Proteins 

were further denatured by acidification with 12% phosphoric acid solution in water (1:10 

relative to sample volume), and 25 µL loaded onto S-trap columns with 165 µL of the 

binding buffer (90% methanol, 10% TEAB 1 M), then centrifuged at a speed of 4000× g 

for 1 min at 15 °C; this step was repeated until the protein sample was fully loaded onto 

the columns. After that, three washing steps by adding 150 µL of binding buffer, followed 
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by centrifugation (1 min, 4000× g, 15 °C), were performed to remove all the excess of 

unbound samples. Trypsin (sequencing-grade trypsin, Roche) was added to the samples 

to achieve a 20:1 sample trypsin (w/w) ratio, and the mix was incubated for 1.5 h at 47 °C 

under slow stirring (400 rpm). The peptide mixture was recovered by loading two different 

solutions; 40 µL of elution buffer 1 (10% H2O, 90% ACN, 0.2% FA) and 35 µL of elution 

buffer 2 (60% H2O, 40% ACN, 0.2% FA) onto the columns (elution and 1′ centrifugation, 

4000× g, 15 °C). The collected peptide mixtures were dried in the SpeedVac at 37 °C 

and stored at −80 °C until analysis. Before MS measurements, samples were purified 

and concentrated using ZipTip C18 resin (Millipore Sigma, cat. no. ZTC18S). 

Peptides were analyzed using a Dionex Ultimate 3000 nano-LC chromatography system 

(Thermo Scientific, Sunnyvale) with a heated column compartment set at 35 °C. Peptide 

mixtures were pre-concentrated onto an Acclaim PepMap 100 - 100ௗμmௗ×ௗ2ௗcm C18 and 

separated on EASY-Spray column, 15ௗcmௗ×ௗ75ௗμm ID packed with Thermo Scientific 

Acclaim PepMap RSLC C18, 3ௗμm, 100ௗÅ keeping a constant flow rate of 0.3 µl/min. 

Mobile phases were the following: 0.1% FA in water (solvent A) and 0.1% FA in 

water/acetonitrile with 2/8 ratio (solvent B). The elution gradient was from 96% A to 40% 

B for 140 min. Peptides from each sample were analysed on an Orbitrap Fusion Tribrid 

Mass Spectrometer (Thermo Scientific, Bremen, Germany) in DDA mode. DDA mode 

was set to acquire full MS spectra in “profile” mode over a scan range of 375-1500 m/z, 

using a resolution setting of 120,000, an automatic gain control (AGC) target of 1 x 106 

and a cycle time of 3 seconds. Higher-energy collision dissociation (HCD) was 

performed with collision energy set at 35 eV in positive polarity. Each sample was 

analyzed in three technical replicates. 

All the RAW files were then analyzed using MaxQuant v.1.6.0 (Max Plank Institute of 

Biochemistry, Germany) and setting the Homo sapiens proteome database (Taxonomy 

ID: 9606). Only unique and razor peptides were considered for quantification, employing 

the MaxLFQ algorithm (version 1.6.2.3, Max Planck Institute of Biochemistry, 

Martinsried, Germany). Data was searched with trypsin as the protease allowing for 2 

missed cleavages. A tolerance limit of 5 ppm was set for the identification of precursor 

ions, consistent with the performance of high-resolution instruments. Finally, chemical 

modifications of some amino acid residues were included in the input: 



Chapter 2 
 
 

41 
 

carbamidomethylation of cysteines, oxidation of methionine, and acetylation at the N-

terminus of the protein.  

Statistical analysis 

Perseus software was used (version 1.6.1.43; Max Planck Institute of Biochemistry, 

Martinsried, Germany). Label-free quantification (LFQ) intensity values were first 

converted to a base-two logarithmic scale and then filtered for significance (Benjamini - 

Hochberg corrected two-sample t-test with a threshold value of 0.05 False Discovery 

Rate - FDR). Three comparison matrices were then constructed to calculate log2 Fold-

Change values (or difference or ratio). The information on significantly up- and down-

regulated proteins was then used to study the modulated pathways in the different 

experimental groups; a functional investigation was then conducted using Ingenuity 

Pathway Analysis (IPA). 

IPA is a bioinformatics tool designed for the functional interpretation of quantitative omics 

data. It uses the Gene Ontology (GO) knowledge base to predict how up- and down-

regulated proteins interact and affect specific cellular pathways. Predictions are 

quantified using Z-score values, where a Z-score ≥ 2.00 indicates pathway activation 

and ≤ -2.00 indicates inhibition. Results are visually represented with colour codes: up-

regulated genes (red) suggest pathway activation (red-orange), while down-regulated 

genes (green) suggest inhibition (blue). Users input a matrix with log2 Fold-Change 

values of significantly regulated proteins and their p-values. IPA provides a more realistic 

view of phenotypic patterns by considering the magnitude and direction of protein 

expression changes. 

 

 

Experimental workflow for omics studies 
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Results 

Treatment with free fatty acids promotes lipid accumulation in hepatocytes 
in a dose-dependent and time-dependent manner 

We aimed to develop a workflow for screening bioactive compounds to evaluate their 

lipid-lowering effects. For this purpose, we selected a hepatocellular carcinoma cell line 

(HepG2) to infer the cellular state under both physiological conditions and conditions 

characterized by altered lipid metabolism. The initial aim was to establish conditions to 

induce a steatotic-like phenotype in HepG2 cells. Steatosis can be induced in vitro by 

growing cells in a medium enriched with high concentrations of free fatty acids (FFAs), 

in line with in vivo human NAFLD data21. For this purpose, I tested the supplementation 

with oleic acid (OA), a monounsaturated fatty acid, in the growing medium. The culture 

medium used was minimal essential medium (MEM) supplemented with 10% fetal 

bovine serum (FBS), which is found to be suitable for HepG2 cell growth, with 80% 

confluence achieved within 7 days (Figure1A). To determine the effect of OA 

supplementation, I initially investigated the optimal conditions and timeframe for the 

induction of steatosis in the in vitro cellular system. Cells were seeded at 20.000 cells/mL 

and exposed to different concentrations of OA complexed with bovine serum albumin 

(BSA) for up to 24 hours (Figure 1B). The concentrations tested ranged from 0.1 mM to 

1.2 mM. The presence of OA in the medium promoted intracellular lipid accumulation in 

a dose- and time-dependent manner. The increase is observable already after 6 hours 

compared to the control but is accentuated after 18 and 24 hours (Figure 1D). The cells 

remained viable during the treatment, as determined by the MTT assay (Figure 1C). A 

clear dose-dependency of induction of steatosis was also observed. (Figure 1E)  
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Figure 1: HepG2 as an in vitro model for steatosis: A) HepG2 cells at 80% confluency B) HepG2 cells treated with 
oleic acid (0.6mM) for 18h C) Cell viability MTT assay D) Time-dependence lipid accumulation in HepG2 E) Dose-
dependent lipid accumulation in HepG2. 

Steatotic phenotype is reversible in HepG2, and the system responds to drug 
treatment 

I next investigated whether the steatotic phenotype in HepG2 cells could be reversed by 

treatment with drugs with known lipid-lowering properties, such as fenofibrate. 

Fenofibrate is a proliferator-activated receptor alpha (PPARα) agonist already used in 

vivo for the treatment of NAFLD due to its hypolipidaemic effects23.  The drug was 

evaluated for its preventive effect on lipid accumulation or for the treatment of steatosis. 

The maximum dose of fenofibrate tested was 200 µM, as concentrations above this dose 

reduced cell viability. I found that fenofibrate reduced the development of fatty liver 

disease in a dose-dependent manner after incubation with a medium containing OA 

(Figure 2B). Specifically, fenofibrate significantly reduced intracellular lipid content by at 

least 20% compared to the untreated control, even at lower concentrations (50 µM) after 

18 hours. In contrast, the prevention of steatosis is significantly relevant only at higher 

concentrations (Figure 2A). 



Chapter 2 
 
 

44 
 

 

Figure 2: Fenofibrate reduced in a dose-dependent manner the development of fatty liver disease following incubation 
with a medium containing OA. A) Pre-treatment with fenofibrate B) Treatment with fenofibrate.  

Scutellaria baicalensis reduces lipid content in OA-treated HepG2 cells 

Given the positive effect of S. baicalensis on liver diseases, I performed the same 

phenotypic assay on this natural extract. Interestingly, S. baicalensis dose-dependently 

reduced intracellular lipid accumulation in a concentration range of 50 to 200 µg/mL after 

24 hours of incubation without affecting cell viability. The results are summarized in 

Figure 3 and are expressed as a relative percentage of lipid content, where 100% 

represents results obtained with OA-treated HepG2 cells. The high sensitivity of HepG2 

to drug treatment can be reached when cells are pretreated with the natural extract and 

then exposed to OA. 
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Figure 3: A) Scutellaria baicalensis reduced lipid content in OA-treated HepG2Dose-dependent lipid-lowering effect 
of S.baicalensis B) Cell viability MTT assay. Data are expressed as % relative lipid content, where 100% represents 
results obtained with OA-treated HepG2 cells. 

To infer the molecular patterns that define the observed phenotypic effect, I applied MS-

based omics studies. The experimental groups were as follows: untreated hepatocyte 

group (control cells), HepG2 treated with Scutellaria baicalensis (control + Sb), oleic 

acid-stimulated HepG2 group (OA group), and OA-stimulated HepG2 with Scutellaria 

baicalensis treatment (OA+ Sb group).  

Distinct lipidomic signatures underlie steatosis induction in HepG2 cells  

On top of the general lipid accumulation, comprehensive lipidomic profiling can help to 

understand better the response of S. baicalensis to steatosis in cellular systems. Firstly, 

I analyzed lipidome to deepen our understanding of which lipid features support the 

transition into the steatotic phenotype of HepG2. Therefore, I performed MS-based 

untargeted lipidomics of lipid species that were extracted after 18 hours of treatment with 

OA. Normalization of extraction efficiency was done by adding a mix of deuterated 

internal standards before lipid extraction. In total, I measured and annotated 463 lipids 

detected in both positive and negative ion modes covering 21 lipid classes. Principal 

Component Analysis (PCA) showed a clear separation between the control and OA 

experimental groups (Figure 4A). Among the lipid species explaining this separation are 

triacylglycerides (TG). TG-species were significantly up-regulated after the treatment 

with OA, following the formation of lipid droplets (LD) within hepatocytes (Figure 4B). 
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Figure 4: Distinct lipidomic signatures underlie steatosis induction in HepG2 cells A) Multivariate statistical analysis 
representing the lipidomic data. PCA score plot clearly shows differences between the control and cells treated with 
oleic acid. B) Representative image of induction of hepatic steatosis. Oil Red O staining is used to observe intracellular 
lipid droplet accumulation. 

The steatotic phenotype was also characterized by decreased phosphatidylcholines 

(PC) and phosphatidylethanolamines (PE) lipid species. This decrease was 

accompanied by reduced levels of diacylglycerols (DG) with saturated and 

monounsaturated fatty acids (DG (16:0_16:1), DG (16:1_16:1) and DG (16:1_18:1)). In 

contrast, DG (16:0_20:4), and DG (18:1_22:6) were found to be increased (Figure 5). 
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Figure 5: The steatotic phenotype was characterized by changes in the lipidome profile, mainly in TG, DG and PL 
lipid classes. 

To visualize the most characteristic signatures and give more biological meaning to the 

lipidomic dataset, I performed an enrichment analysis using Lipid Ontology (LION), 

which associates lipid species with their chemical, biophysical, and biological 

information. In line with the statistical analysis, LION-terms of interest enriched in the 

analysis are associated with lipid droplet formation, lipid storage, and glycerolipids. As 

expected, this increase is mainly driven by lipids associated with “18 carbons” and 

monounsaturated fatty acids. Inspection of the lipid terms significantly enriched revealed 

a remarkable decrease in the LION signatures glycerophosphate (Figure 6). 
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Figure 6: LION enrichment analysis of the OA group versus the control group was conducted using the “ranking 
mode.” Significant enrichments (q < 0.05) are marked by grey vertical lines on the graph. The bars are color-coded to 
reflect the enrichment scores, scaled as −log(q-values), where darker colors represent higher enrichment levels. 
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Figure 7: BioPAN lipid network: Green nodes correspond to active lipids, and green shaded arrows to active 
pathways. Reactions with a positive Z score have green arrows, while negative Z scores are purple. The table contains 
the active and suppressed reaction chains found by BioPAN according to the Z-score values. Pathway options: OA 
condition of interest, ctrl control condition, lipid type, active and suppressed status, subclass level, reaction subset of 
lipid data, p-value 0.05, no paired data. Pathway Analysis also indicates the regulation of specific enzymes Involved 
in lipid metabolism. 

I then investigated systematic changes in lipid pathways using the BioPAN tool24. I 

compared the lipid profile of the OA and the control group. Pathways were scored and 

visualized in the network as colour-coded nodes and edges. Pathways scores revealed 

a prominent lipidome shift towards activation of TG synthesis and suppression of TG 

catabolism. Besides neutral lipids, biosynthesis of PC and PE lipid species from DG and 

Sphingomyelins (SM) from Ceramides was suppressed (Figure 7).  

Treatment with Scutellaria baicalensis identifies specific lipidomic patterns 
underlying its mechanism of action 

Next, we aimed to define the effect of S.baicalensis on the lipidome profile. Therefore, I 

pretreated OA-stimulated HepG2 cells with S.baicalensis extract for 24h and then 

performed untargeted lipidomics analysis. PCA indicated significant differences in lipid 

profiles between OA+Sb and OA groups, suggesting that the extract could modulate the 

lipid profile of OA-treated HepG2 cells (Figure 8). In total, S.baicalensis significantly 

decreased 89 lipids (fold change > 2, adj p-val< 0.05) when the OA+Sb group was 

compared with the OA-treated group, and these lipid species mainly belong to the TG 

class. Meanwhile, the treatment increased the levels of 71 species, principally belonging 

to the saturated and monounsaturated PC and PE classes.  
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Figure 8: Treatment with Scutellaria baicalensis identifies specific lipidomic patterns. A) Principal component analysis 
B) The triacylglyceride levels are decreased C) S.baicalensis increased the levels of phosphatidylcholine and 
phosphatidylethanolamine classes. 

Again, I used Lipid Ontology to enrich for significant lipidome changes across the 

experimental groups. A downregulation of terms such as lipid droplet and storage was 

observed and found to follow the decreased levels of neutral TG lipids measured by 

untargeted lipidomics. By pathway analysis, I identified systematic changes in lipid 

pathways at the lipid subclass level. The analysis showed an increase in PC and PE 

biosynthesis. The most significant conversions are Cer> SM, DG>PC, and TG> DG 

(Figure 10). 



Chapter 2 
 
 

51 
 

 

 

Figure 9: LION enrichment of Sb+OA group vs OA in the “ranking mode”. Bar colours are scaled with the enrichment 
(−log q-values).  

Figure 10: BioPAN lipid network: Green nodes correspond to active lipids, and green shaded arrows to active 
pathways. Reactions with a positive Z score have green arrows, while negative Z scores are purple. The table contains 
the active and suppressed reaction chains found by BioPAN according to the Z-score values. Pathway options: Sb+OA 
condition of interest, OA control condition, lipid type, active and suppressed status, subclass level, reaction subset of 
lipid data, p-value 0.05, no paired data. 
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Label-free quantitative proteomics workflow to study protein expression 
patterns in steatotic cells 

Label-free quantitative proteomics allowed us to study the proteomic patterns that define 

cell state in all the experimental groups. To do this, I seeded the cells at a concentration 

of 300.000 cells/mL in 6 wells, treated with S.baicalensis 150 µg/mL and OA for 18 hours, 

lysed them in lysis buffer (SDS 5%, TEAB 50 mM, MgCl2 2 mM), reduced, alkylated the 

proteins and trypsinized to obtain peptide samples. I normalized for protein 

concentrations before trypsinization to improve reproducibility between biological 

replicates.  

The peptides were measured by LC-MS/MS where the peptides were separated by a 

140-minute gradient on a C18 column and subsequently analyzed using a data-

dependent (DDA) approach. The resulting raw files were further processed with 

MaxQuant, which enabled the identification and label-free quantification of proteins in 

our samples. The final dataset contained 3500 protein groups identified across all 

experimental conditions.  

First, I compared the quantitative protein profiles of OA-treated and control groups. 

Significantly modulated proteins (log2FC >0.57 and log2FC < - 0.57) were taken for 

further functional enrichment analysis and pathway analysis (Table 1).  

  

N° of identified 
proteins 

N° of proteins 
with log2 ratio > 
0,57 (sign 
upreg) 

N° of proteins 
with log2 ratio 
< -0,57 (sign 
downreg) 

OA vs control 3501 250 94 

OA+Sb vs OA 3497 20 76 

control+Sb vs control 3497 98 160 

Table 1: number of proteins significantly regulated 

Pathway analysis confirmed that the biological processes predicted to be activated after 

the incubation with OA were those involved in lipid metabolism, in particular, ‘lipid 

concentration’ with a Z-score=2.466 (Figure 11). Among the proteins involved in the 

activation of this biological process, perilipin2 (PLIN2) and lipid droplet-associated 

hydrolase (LDAH) were consistently upregulated. PLIN2 belongs to the class I proteins 
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associated with lipid droplets and is one of the principal structural proteins of lipid 

droplets. LDAH enables lipase activity and is involved in lipid storage. 

 

Figure 11: Graphical representation of the 'Concentrations of lipids' pathway for which IPA predicts significant 
activation with a Z-SCORE value of 2.466. The set of up (red) and down (green) regulated genes supporting the 
generated hypothesis are shown at the ends of the wheel graph. The prediction legend is essential for understanding 
networks. 

Moreover, other specific marker proteins involved in LD homeostasis showed an 

increased expression pattern. Acetyl-CoA acetyltransferase (ACAT1) enables the re-

esterification of cholesterol and further storage in lipid droplets. Fatty acid CoA ligase 

(ACSL3) promotes free fatty acids activation, while Sterol-4-alpha-carboxylate 3-

dehydrogenase (NSDHL) and NADH-cytochrome b5 reductase 3 (CYB5R3) are 

involved in cholesterol biosynthesis, and desaturation and elongation of fatty acids 

respectively. Moreover, apolipoprotein B (APOB) and apolipoprotein O (APOOL) are 

associated with the trafficking of Very Low-Density Lipoproteins (VLDL).  

I found that biosynthesis of hydrogen peroxide, oxidative phosphorylation (synthesis of 

ATP), and autophagy are three other pathways predicted to be activated. Those 

pathways have a known role in lipid metabolism. Elevated levels of fatty acids within 
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hepatocytes promote the activation of oxidative phosphorylation and subsequent 

formation of reactive oxygen species (ROS), which require a robust antioxidant response 

to regulate redox signalling. Saccharopine dehydrogenase (SCCPDH), located in the 

lipid droplets and upregulated in the OA-group, is predicted to enable oxidoreductase 

activity and to be involved in the glycolipid biosynthetic process. 

The treatment with S. baicalensis defined distinct proteomic signatures in 
HepG2 cells 

Next, I compared the protein profile of Sb+OA and OA groups. I identified the 

downregulation of protein markers that regulate lipid concentration, metabolism, and 

transport in HepG2 pretreated with S. baicalensis, which further supports previous 

results obtained by the phenotypic screening and lipidomics analysis (Figure 12). Of note 

is the significant reduction of PLIN2, which improved the phenotype of the hepatocytes 

in physiological conditions. Moreover, proteins such as APOB and Scavenger receptor 

class B member 1 (SCARB1), up-regulated in the OA-group, are down-regulated in the 

Sb+OA group. In contrast, the Fatty acid-binding protein (FABP1), which plays a key role 

in intracellular lipid transport, is found to be up-regulated by S.baicalensis. In addition to 

these proteins, there is a down-regulation of both the enzyme ACSL3 and the 

microsomal triglyceride transfer protein (MTTP). ACSL3, as anticipated, activates long-

chain fatty acids for cellular lipid synthesis, whereas MTTP is required for the assembly 

and secretion of plasma lipoproteins. The reduction in their expression levels is 

consistent with decreased intracellular lipid concentration. Reduction in expression 

levels of proteins in mitochondrial oxidative phosphorylation, such as complex I, II, III 

and IV proteins (NDUF, SDHA, UQCR, COX, and ATP5F1) are linked to improved 

mitochondrial activity compared to the OA group and might lead to a higher tolerance of 

HepG2 cells to oxidative stress. Compared to the OA group, cells treated with 

S.baicalensis have a reduced expression of Ras proteins such as RAB10 and RAB14. 

This small GTPase controls vesicle traffic from the endoplasmic reticulum to the Golgi 

apparatus and is, therefore, involved in LD formation.  
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Figure 12: Graphical representation of the 'Concentrations of lipids' and 'Biosynthesis of lipids’ and ‘transport of lipids’ 
pathway for which IPA predicts significant inhibition with a Z-SCORE value of -1.512, -1.331 and -1.729, respectively. 
The set of up (red) and down (green) regulated genes supporting the generated hypothesis are shown at the ends of 
the wheel graph. The prediction legend is essential for understanding networks. 

Interestingly, the beneficial effect of S.baicalensis on HepG2 can also be observed in 

physiological conditions. The functional analysis predicts the inhibition of several 

biological processes after treatment with S. baicalensis (Sb group) compared to the 

control group. Among them, the cellular lipid concentration was significantly modulated 

(Figure 13). SCARB1 protein was down-regulated after treatment with the extract. There 

was also an up-regulation of apolipoprotein E (APOE), which mediates the binding, 

internalization and catabolism of lipoprotein particles, and a down-regulation of Aldehyde 

dehydrogenase (ALDH3A2), which catalyses the oxidation of aliphatic aldehydes to fatty 

acids. 
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Figure 13: Graphical representation of the ‘efflux of lipids’ and ‘transport of lipids’ pathway for which IPA predicts 
significant inhibition with a Z-SCORE value of -1.874, -1.331 and -1.729, respectively. The set of up (red) and down 
(green) regulated genes supporting the generated hypothesis are shown at the ends of the wheel graph. 

Discussion 

The aim of this work was to provide a comprehensive description of the molecular 

patterns that underlie the lipid-lowering activity of Scutellaria baicalensis in an in vitro 

cellular model of steatosis. We found the treatment of HepG2 in a medium with a high 

concentration of free fatty acid promotes lipid accumulation in a dose-dependent and 

time-dependent manner without affecting cell viability.  

Next, we assessed the diversity of lipid species profiles among different experimental 

conditions. Untargeted lipidomics highlighted a specific lipidome composition of HepG2 

cells after incubating with OA for 18h. Elevated levels of TG with two or more palmitic 

acid (16:0), palmitoleic (16:1), linoleic acid (18:2), and stearic acid (18:0) substituents 

were detected in the lipid profiles of OA-treated HepG2. These fatty acids are preferred 

substrates for storage in TG25. However, I observed the concomitant increase of TGs 
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with PUFA, which may result in less dense packing of the neutral core and more dynamic 

lipid remodelling processes within hepatocytes.  

Modulation of DG and PC levels is a crucial aspect of the study. Most of the identified 

lipid molecular species belonging to these subclasses were found to be lowered in OA-

treated cells. PC are the major constituents of membrane lipids and are required for lipid 

droplet formation, VLDL production, and intercellular signalling26. The observed 

decrease in these lipid species may be linked to an elevated metabolic interconversion 

and hepatocyte VLDL secretion, underlined by the upregulation of APOB and APOOL 

protein. Hepatic synthesis of PC and PE is mainly via the Kennedy pathway from DG 

lipids, which are found to decrease after the treatment with OA in favour of TG production 

and storage. Another possible explanation for their reduced levels in the OA group is 

attributable to the sustained hydrolysis of PC by membrane phospholipases to 

lysophosphatidylcholines (LPC). Indeed, those species were found to increase by OA 

stimulation. The decrease in DG levels may also highlight the role of lipid droplets in 

sequestering lipotoxic species, thereby preventing cellular toxicity. 

The pretreatment with the extract of Scutellaria baicalensis could, in part, regulate the 

altered lipid profile found in OA-treated HepG2, suggesting a positive effect on lipid 

metabolism. I observed a decrease in TG levels, particularly those with 

monounsaturated fatty acids (MUFA) substituents, the principal components of the 

neutral core of LD. Moreover, the level of Ceramides was also regulated, which 

suggested its role as a mediator of lipotoxicity27. Besides, the extracts increased the 

levels of phospholipids, particularly PC and PE subclasses suggesting that S. 

baicalensis can modulate the enzyme(s) involved in their biosynthetic pathway. 

Interestingly, changes in the phospholipid profile also revealed the potential antioxidant 

properties of the extract. Indeed, phospholipids esterified with arachidonic acid (20:4) 

are significantly downregulated in Sb+OA group compared to OA, whereas the levels of 

LPC and LPE are increased, particularly those containing an unsaturated fatty acyl group 

that has already showed anti‐inflammatory activity both in in vivo and in vitro models28.  

Next, using the same experimental setup, I assessed the protein profile to derive more 

knowledge about the mechanism of action of the natural extract at the protein level. 

Untargeted proteomics confirmed the steatosis phenotype of OA-treated HepG2. 
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Indeed, I observed the presence of several proteins known to be associated with LD 

formation and metabolism, such as PLIN proteins. Furthermore, ASCL3 is found to be 

upregulated after the treatment with OA. ASCL3 plays a key role in lipid biosynthesis 

and fatty acid metabolism by converting free long-chain fatty acids into fatty acyl-CoA 

esters. Moreover, the upregulation of SCCPDH is intimately involved in the redox state 

of hepatocytes.   

I found that oxidative phosphorylation and autophagy are top enriched pathways using 

the list of proteins significantly modulated in the experimental conditions. Both pathways 

have a known role in lipid metabolism. Hepatic autophagy was enhanced in the early 

stages of NAFLD development, both in vivo and in vitro 29,30. However, the exact role of 

autophagy in the development of steatosis remains unclear. Specifically, it is necessary 

to regulate basic metabolism in hepatocytes, such as glycogenolysis and 

gluconeogenesis, in response to insulin and glucagon signalling. Additionally, the 

knockout of proteins related to autophagy suggested a critical connection between 

autophagy and hepatic lipid metabolism, although some results are still ambiguous31. 

While autophagy may seem necessary to support lipid beta-oxidation in some contexts, 

other evidence suggests that it may also contribute to lipid accumulation. 

The activation of oxidative phosphorylation in the presence of a high concentration of 

fatty acid may have multiple explanations. Recent studies showed that mitochondria that 

associate with lipid droplets have more respiratory capacity and promote lipid droplet 

expansion as well as TG synthesis32. Furthermore, activation of this process indicates 

that the cell is actively responding to a stress condition by activating a series of metabolic 

pathways that require a considerable amount of energy in the form of ATP. However, 

sustained oxidative phosphorylation produces ROS: the electron transport chain is 

responsible for most of the radical oxygen species produced in a cell. When ROS levels 

exceed the ability of basal antioxidant systems to neutralise them, the excess reactive 

species damage respiratory complexes, which can lead to mitochondrial damage and 

hepatocyte dysfunction. However, no evidence of organelle dysfunction or reduced cell 

viability is observed in this study.   

The proteomic pattern also underlies changes upon treatment with S.baicalensis. We 

found an almost complete inversion of the molecular pattern described in the 
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pathological condition (OA). Of particular relevance is the modulation of gene products 

mainly involved in lipid metabolism, a tangible fact that would explain the decrease in 

cytoplasmic lipid concentrations and their transport, in contrast to what was observed in 

the OA condition. Among the genes showing an opposite trend, we mention PLIN2. PLIN 

family proteins with a monolayer of phospholipids are coated to their surface, which also 

helps regulate their metabolism through basal and hormonal lipolysis. Under 

physiological conditions, PLIN protects the LD from the cytosolic lipases promoting the 

TG storage. PLIN2 deletion significantly reduced hepatic triglycerides and cholesterol 

levels as well as obesity and insulin sensitivity in Western diet-fed mice compared to 

unmodified ones33. Significant downregulation suggests a faster lipid metabolism, as 

confirmed by the conversion of lipid classes.  

The predicted inactivation of pathways like ‘concentration of lipids’ and ‘’transport of 

lipids’, indicates extensive molecular adaptation that follows or drives improvement of 

the HepG2 phenotype. Overall, the dataset of significantly modulated proteins 

represents a vast resource for further investigations on the role of S.baicalensis in LD 

formation and maintenance and can help to infer possible molecular targets of the 

extract.  

From the results obtained, it is likely that S.baicalensis can prevent the formation of LD, 

and therefore its target(s) should be sought before the formation of lipid droplets. 

Furthermore, considering its antioxidant and anti-inflammatory effects, the extract may 

be able to protect the cell from metabolic changes caused by excessive fatty acid intake, 

thus limiting stress, mitochondrial dysfunction, and other cellular damage that worsens 

the pathological phenotype in vivo. The choice of pre-treating HepG2 is supported by 

the fact that NAFLD in vivo may be reverted at this early stage. The effects of treatment 

with Scutellaria baicalensis under physiological conditions partially overlap with those 

observed on the pathological phenotype. Taken together, these results suggest that 

Scutellaria baicalensis treatment can improve cellular functions, and the beneficial effect 

relies on lipid metabolism. 

Conclusion 

In summary, I developed an experimental workflow in which untargeted multi-omics 

measurements allow us to study the molecular pattern that can help to inspect the 
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molecular effects of bioactive compounds from natural matrices with potential lipid-

lowering activity and infer their biological targets. The advantage of applying such an 

innovative platform to drug discovery is that it allows us to extract distinct molecular 

features at the lipid or protein level and thus assess more knowledge about the biological 

systems to be studied.  

Supplementary Tables 

Supplementary Tables with all the identifications, mz, RT, intensity and MS2 can be 

requested from Beatrice Zoanni at beatrice.zoanni@unimi.it.  
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STUDY II: ANALYTICAL AND OMICS STUDIES FOR THE 
IDENTIFICATION OF LIPID-LOWERING BIOACTIVE COMPOUNDS 
FROM CITRUS BERGAMIA 

 

Summary 

The comprehensive identification of phytochemicals represents a fundamental step in 

the evaluation of the biological properties of natural matrices. Due to the complexity of 

plant secondary metabolism, the detailed characterization of phytochemicals is an 

analytical challenge and requires sensitive and accurate techniques. A pre-fractionation 

step can be included in the analytical workflow and combined with LC-MS/MS analysis 

to facilitate the process of identification of bioactive phytochemicals in complex samples, 

following a relatively simple sample preparation step. The combination of these 

techniques efficiently covered different classes of secondary metabolites, including 

those of low abundance but of biological relevance. Of particular interest are the 

polyphenols derived from bergamot, which exhibited a variety of beneficial functions, 

including lipid-lowering properties. However, little is known about the bioactive 

compounds and the molecular mechanism underlying this effect. Omics approaches 

could better illustrate the biological effects of the extract and identify the most relevant 

phytochemical compounds. In this study, we propose a workflow integrating analytical 

and omics approaches for the comprehensive study of bergamot bioactivity in HepG2 

cells.  

Background 

The growing interest in phytochemicals as sources of bioactive compounds has 

encouraged the development of an analytical pipeline for comprehensive phytochemical 

characterization to support the discovery of novel bioactive compounds with potential 

therapeutic properties1,2. The search for pharmacologically active molecules from 

natural sources requires efficient analytical methodologies capable of analyzing the 

diverse metabolic profiles of plants, which include a wide range of chemical constituents 

with very diverse physicochemical properties3. 

Bioactive phytochemicals, such as polyphenols, are particularly noteworthy for their 

beneficial properties, mainly attributed to their antioxidant effects4. Among these, 
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bergamot-enriched polyphenolic fractions (BPF) obtained from the peeled fruit of 

bergamot have been claimed for their lipid-lowering and anti-inflammatory effects, 

significantly reducing cardiovascular damage and metabolic disorders5. Bergamot 

(Citrus bergamia) is an ancient fruit-bearing tree grown in southern Italy that has 

numerous beneficial effects on human health. Oral administration of BPF to patients with 

hyperlipidemia has been shown to reduce triglycerides, total cholesterol, LDL, and blood 

glucose while increasing HDL levels6. Moreover, BPF has also been shown to reduce 

histological damage by reducing the NF-kB signalling pathway, inflammatory cytokine 

production, and oxidative stress7. In a similar study, the anti-inflammatory activity of 

bergamot was highlighted in mice with colitis: a reduction in IL-1β and TNF-α levels and 

a decrease in NF-kB nuclear translocation were observed following consumption of 

20mg/kg/day of bergamot juice extract. Plasma levels of oxidized LDL, a biomarker 

associated with lipid peroxidation, were also lower in BPF-treated mice. Based on 

growing scientific evidence of the positive effects of the polyphenol-rich fraction of 

bergamot on human health, demand for BPF is expected to increase in the coming 

years. 

To date, the beneficial effects of bergamot have mainly been studied in the fruit, which 

is of limited availability due to its seasonal harvest. Interestingly, the phytochemical 

composition of the leaf shows an overlapping qualitative profile with the fruit, with 100 

out of 108 compounds found in both matrices8. Moreover, semiquantitative analysis has 

shown that the leaf contains more polyphenols than the fruit, suggesting that leaves are 

an attractive, more environmentally sustainable source of polyphenols with potential 

nutraceutical applications.  

These encouraging results have stimulated further investigation into the potential 

beneficial effects of bergamot leaf polyphenolic extract in the treatment and prevention 

of metabolic disorders, where altered lipid profiles often accompany disease 

progression9. However, the bioactive compounds responsible for the beneficial effects 

are unknown. The cholesterol-lowering activity has been attributed to flavonoids bearing 

the hydroxymethylglutaryl (HMG) moiety, which could inhibit cholesterol synthesis due 

to structural similarity with endogenous ligands and statins. Recently, it was 

demonstrated that BPF and its main constituents do not directly inhibit 3-Hydroxy-3-

Methylglutaryl-CoA Reductase activity (HMGCR) but instead downregulate the 

expression of HMGCR in HepG2 cells10. This observation is consistent with clinical 
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findings on the cholesterol-lowering effects of bergamot, suggesting that the cholesterol-

lowering activity of bergamot is distinct from that of statins. While this partly explains the 

cholesterol-lowering mechanisms, the hypolipidemic effect likely results from 

interactions between bergamot compounds and other biological targets. 

In this context, advanced omics studies are invaluable tools for better understanding 

potential targets and the overall lipid-lowering mechanism of bergamot. Here, we 

develop a pipeline for the comprehensive description of the phytochemical profile of 

enriched polyphenolic fractions of bergamot leaves by combining analytical and 

advanced omics approaches. A pre-fractionation step is included in the analytical 

workflow, and its combination with LC-MS/MS allowed for a detailed characterization of 

the polyphenolic profile. A semi-quantitative analysis was carried out to evaluate the 

relative abundance of identified compounds. Finally, the lipid-lowering activity of each 

isolated fraction was inferred by cell-based assays, and untargeted lipidomic analysis 

was conducted to describe changes in the lipid profiles of HepG2 cells upon treatment 

with bioactive fractions. This work could help promote the use of bergamot leaves as a 

valuable source of polyphenols for incorporation into health products aimed at preventing 

or treating liver metabolic disorders. 

 

 

Figure 1: Workflow to study lipid-lowering bioactive compounds from Bergamot BLPF. 
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Materials and Methods 

BLPF Preparation 

The leaf polyphenol fraction (BLPF) extract was prepared as described elsewhere11. 

Briefly, the bergamot leaves are harvested and subsequently minced, and a 

water/ethanol (30/70, %v/v) solution is added to the polyphenols extract. The ethanol is 

then distilled, and the clarified water solution is passed through a polystyrene absorbing 

resin bed with pores of 100–150 Å. The entrapped polyphenols are then eluted with pure 

ethanol. The obtained ethanolic solution is distilled at temperatures of up to 40 °C to 

obtain a concentrated solution containing residual water with polyphenols, which is then 

dried in a spray drying system to obtain a powder with less than 4.0% humidity. 

Preparative HPLC 

BLPF was prepared for fractionation at a concentration of 60 mg/mL in H2O/ACN, 80/20 

% v/v. An aliquot of 500 µL was then injected manually into the LC system. The 

chromatographic separation was performed on a SynergiTM Fusion-RP 80 Å-C18 column 

(250 × 10 mm, i.d. 4 µm, Phenomenex, Milan, Italy) through a preparative 

chromatography system (LC-20AP) equipped with an SPD-40V UV detector, an FRC-

10A fraction collector and a CBM-40 system controller (Shimadzu, Milan, Italy) with a 

multi-step gradient program (105 min) (Table 1) of mobile phase A (H2O/HCOOH 0.1, % 

v/v) and B (ACN/HCOOH 0.1, % v/v) (Table 1 left). The fraction collector was set for 

either the isolation of melitidine and brutieridine or the fractionation step, as shown in 

Table 1 (right). 

Time 
(min) 

% A % B   
Time 
[min] 

Action Value 

0 90 10   0.33 Valve Open 
66 80 20  0.34 Lock Unlock 
85 40 60   0.35 Level 10000 
95 40 60  104.5 Level 10000 

95.1 90 10   104.7 Lock Lock 

105 90 10  104.9 Valve Close 
 

Table 1: Preparative HPLC gradient (left) and fraction collector actions (right). 

LC-MS Analysis of Isolated Fractions 

The isolated fractions were analyzed by LC-MS/MS and subjected to database 

searching by matching MS1 and MS2 fragments with an in-house database. Samples 
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were prepared as stock solutions (10 mg/mL) by dissolving the powder in methanol and 

then diluted 1:4 in H2O/HCOOH 0.1, % v/v (mobile phase A). Each sample (20 µL) was 

analyzed in triplicate by LC-HRMS as described by Baron et al8. The chromatographic 

separation was performed using an RP Agilent Zorbax SB-C18 column (150 × 2.1 mm 

i.d., 3.5 µm, CPS analitica, Milan, Italy) by an UltiMate 3000 system (Dionex) with a 

multistep gradient program (80 min) of mobile phase A (H2O/HCOOH 0.1, % v/v) and B 

(ACN/HCOOH 0.1, % v/v). A high-resolution mass spectrometer with a hybrid Fourier 

transform ion trap and orbital analyzer (LTQ-Orbitrap XL, Thermo Fisher Scientific, USA) 

was set to acquire in negative ion mode and using the following source (ESI) parameters: 

capillary temperature of 300 °C, capillary voltage of -23 V, sheath gas of 45 a.u. (arbitrary 

unit), auxiliary gas of 10 a.u., spray voltage -4 kV, tube lens offset of -140 V.   

Spectra were recorded in data-dependent scan mode. Full MS spectra were acquired 

with a scan range of m/z 100-1500, resolution 30,000 (FWHM at m/z 400), AGC scan 

target of 5 x 105. MS/MS spectra were acquired using the linear ion trap (LTQ), which 

automatically fragments the three most intense ions (intensity > 1x104) of the full MS 

scans. The trap settings are centroid mode, AGC scan target of 5 x 105, collision energy 

(CE) of 40 eV and an isolation window of 1 m/z.  Activation of the dynamic exclusion 

function allowed MS/MS spectra to be acquired for a defined period (30 seconds) for 

those ions for which at least two spectra had already been acquired in 20 seconds. 

Xcalibur 4.0 and Chromeleon Xpress 6.80 were used for instrument control and spectra 

analysis. A targeted analysis was performed by searching for all the components listed 

in the database created by Baron et al.8 on the basis of their exact mass ([M-H]−), with 

a mass tolerance of 5 ppm. The fragmentation pattern was used to confirm the 

identification. 

For each compound identified with an intensity ≥ 105, the area under the curve (AUC) 

was retrieved by using the Genesis algorithm of Xcalibur. The relative abundance (%) 

was then calculated for each fraction. 

Cell Culture 

Human hepatocellular carcinoma cells HepG2 were cultured in MEM (Minimum 

Essential Medium) supplemented with 10% (v/v) fetal bovine serum (FBS), 5% 

penicillin/streptomycin, 5% sodium pyruvate and 2 mM L-glutamine (Sigma Aldrich, 

Milan). Cells were kept regularly in a 75 cm2 flask (SARSTEDT AG&Co, Numbrecht, 
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Germany) and stored in a humidified incubator (Binder, CB-150) at 37 ºC with 5% CO2. 

The cell culture medium was replaced on alternate days, and cells were passaged once 

a week when confluency reached approximately 80%. 

Fraction preparation for cell-based assay 

Steatosis was induced by adding oleic acid to the MEM medium, as described in study 

I of this chapter. After steatosis induction for 6 hours, HepG2 were treated with the 

fractions to be tested (fractions C to L). Steatosis was reversed with or without the 

indicated fractions dissolved in DMSO.  Samples of the fraction tested were prepared 

up to a maximum theoretical concentration of 150 mM relative to the most abundant 

compound in each fraction to avoid any possible toxicity due to a single compound and 

diluted 1:1000 in a complete medium. The final concentrations used for the assay ranged 

from 35 µg/mL to 180 µg/mL. The maximum final concentration of DMSO never 

exceeded 0.4%. 

AdipoRedTM assay 

See Chapter 2, study I. For phenotypic screening of isolated fractions, 1.8 x 104 HepG2 

cells (four biological replicates for each condition tested) were plated in the 96-well plates 

for 24 hours in MEM complete medium. The medium was then supplemented with OA 

for 24 hours. Six hours after OA supplementation, fractions to be tested were added to 

the same medium for 18 hours. The medium was then removed, and the assay followed 

the protocol described in the previous study. Results were expressed as the relative 

percentage of lipid content setting as 100% HepG2 cells treated with OA. Statistical 

analysis was performed using GraphPad Prism version 8 (GraphPad Software Inc. La 

Jolla, CA, USA). Significance was calculated using One-way ANOVA, Adj P-value < 

0.05.  

Untargeted Lipidomics Analysis-LC-MS/MS 

For the lipidomic experiment, 300.000 cells were seeded in a 6-well plate. The 

experimental setup was the same as used for the AdipoRedTM assay (three biological 

replicates per condition). At the end of the experiment, cells were washed twice with 

prewarmed PBS, and lipids were extracted by adding 400 μL of ice-cold MeOH: MTBE 

50:50 v/v% containing 1 μg/mL of Splash Lipidomix (Avanti® Polar Lipids) for 1h at 4°C. 

Cells were then scraped and centrifuged for 10 minutes at 15.000 rpm. All solvents 
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contained BHT (0.1% w/v). After centrifugation, the supernatants (lipids extract) were 

dried and stored at -80°C until measurement. 

Lipids were detected by data-dependent analysis (DDA) using LC-40D XS (Nexera 

Series, Shimadzu) coupled to a TripleTOF 6600 system (SCIEX). Lipids were 

resuspended in 50µl of Isopropanol and separated on a C18 column (Acquity premier 

BEH C18, 1.7x2.1x50mm) at 65°C and a flow rate of 0.55 mL/min. Using the following 

mobile phases: A) acetonitrile: water (6:4 v/v) with 10mM ammonium acetate and 0.1% 

formic acid, B) isopropanol: acetonitrile (9:1 v/v) with 10mM ammonium acetate and 

0.1% formic acid. The following gradient was applied: 

Time 
(min) 

A(%) B(%) 

0 60 40 
1.4 20 80 
3.8 1 99 
3.9 1 99 
4.5 60 90 

 
Table 2: LC conditions 

MS spectra were collected over an m/z range of 140-1500 Da, operating in IDA® mode 

(Information Dependent Acquisition), Top15.  

Source Parameters Value 

Ion Source Gas 1 (psi) 55 
Ions source Gas 2 (psi) 65 
Curtain Gas 35 
Temperature (°C) 450 
Stray Voltage 5500 

  
 

MS Parameters Value 
Scan Type TOF MS 
Accumulation time (ms) 100 
Declustering Potential (V) 80 
Collision Energy (V) 10 
Collision Energy Spread (V) 0 
Range 140-1500 

  
 

MS/MS Parameters Value 

Scan Type 
TOF 

MS/MS 
Maximum Candidate Ions 15 
Intensity Threshold (counts/s) 200 
Mass Tolerance (mDa) 50 
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Accumulation Time (ms) 50 
Declustering Potential 60 
CES 15 
CE 35 

 
Table 3: TOF MS and TOF MS/MS parameters 

Data acquisition was performed using Analyst® TF (version 1.7.1). Raw LC-MS/MS data 

were processed using MS-Dial (version 5.1.230912) with a mass tolerance of 0.01 Da 

for MS1 and 0.025 Da for MS2. Peak detection was based on a minimum peak height 

amplitude of 300 and a mass slice width of 0.1 Da. Peak identification used a mass 

tolerance of 0.01 Da for MS1 and 0.025 Da for MS2, with an identification score cut-off 

of 80%. The following adducts were allowed: [M + H]+, [M + NH4]+ and [M + H - H2O]+. 

For alignment, the retention time tolerance was 0.1 min, and the MS1 tolerance was 

0.025. The internal standard (Splash Lipidomix) was used to normalize the analytical 

signal. For lipid annotation, extracted peaks were matched with the MSDIAL-LipidDB-

VS66-Public.lbm reference library. Only lipids with a reference match were included in 

the final dataset. Multivariate analysis was performed using MetaboAnalyst 5.0. Data 

were log-transformed and autoscaled before partial least squares discriminant analysis 

(PLS-DA). Only features found in at least 50% of samples and with CV% < 20% were 

included in multivariate analysis.  

Results 

LC-HRMS analytical profile of BLPF 

The analytical profile of the total BLPF was determined by LC-HRMS operated in 

negative ionization mode. Compounds were identified by matching accurate mass, 

isotopic, and fragmentation patterns with compounds annotated in the database created 

by Baron et al 8. Peaks found by the targeted approach were numbered progressively 

according to their elution order (data not shown). In total, 61 distinct compounds have 

been identified. Based on HRMS and MS/MS data, the major peaks could be easily 

assigned respectively to eriodictiol-7-O-neohexperioside (neoeriocitrin), naringenin-O-

HMG (melitidine), and neohexperidin-O-HMG (brutieridine), respectively. BLPF also 

contains relatively large amounts of O-glycosides, C-glycosides, and HMG derivatives 

have been annotated for many of them. Interestingly, apigenin-7-O-rutinoside and 

neohesperidin-O-glucoside-O-HMG are specific for leaf polyphenolic extract12.  
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Pre-fractionation and Isolation of Major Compounds 

The pre-fractionation step removes the major peaks previously identified in the BLPF 

extract. These peaks were isolated and collected in the first purification step of our 

analytical workflow (Figure 2A). The removal of these major peaks was confirmed by 

LC-HRMS (Figure 2B). 

Figure 2: A) Isolation of Major Compounds. B) TIC profile of the total BLPF extract after removing eriodictiol-7-O-
neohexperioside 21, naringenin-O-HMG 52 and neohexperidin-O-HMG 57.  

BLPF bio fractionation and LC-HRMS analysis of isolated fractions 

Next, a second fractionation step allowed for the separation and enrichment of the less 

abundant polyphenols according to their polarity. A total of 10 out of all the fractions 

collected by semi-preparative chromatography were selected for further analysis: 32 

(Fraction A), 36 (Fraction B), 37 and 38 (Fraction C), 39 (Fraction D), 44 (Fraction E), 

48 and 49 (Fraction F), 50 (Fraction G), 51 (Fraction H), 53 to 56 (Fraction I), and 61 to 

63 (Fraction L) (Figure 3). As for BLPF, crude fractions obtained from the 

chromatographic columns were also analyzed by LC-HRMS. 
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Figure 3: Fractionation chromatogram 

The fractionation step reduced the chemical complexity and facilitated successive 

analysis to assess the biological properties of the compounds identified in our workflow. 

As expected, each fraction presents a distinct chemical profile, with less polar fractions 

enriched in glycosidic derivatives, while HMG derivatives are found in a higher 

percentage of the organic phase. For each compound identified in the fractions, I 

reported the relative abundance and the estimated concentration within the individual 

fraction (Table 4). Fractions A and C were discarded due to the limited amount of 

material recovered. 

Table 4: Compounds identified in the isolated fractions of BLPF. Estimated scores and weights are reported. * To 
maintain the most abundant compost at a final concentration of 100 µM. Fractions A and B were discarded due to the 
limited amount of samples. 

Fraction 
Fraction 
weight 
(mg) 

Compound %Rel 
Estimated 

weight 
(mg) 

Molarity 
estimated 

mM 

µg per 
single 

compound* 

Conc 
mg/mL 

C 1,18 

2-Hydroxy-4-
methoxyhydrocinnamoyl-2-O-

glucoside 
0,91 0,0108 4,65 1,67 

182,4 

Apigenin-6,8-di-C-glucoside 7,79 0,0920 23,91 14,21 

Chrysoeriol-6,8-di-C-glucoside 16,82 0,1985 49,11 30,67 

Diosmetin-6,8-di-C-glucoside 34,24 0,4041 100,00 62,45 

Eryocytorin-O-glucoside 1 7,33 0,0865 17,63 13,37 

Eryocytorin-O-glucoside 2 27,89 0,3291 67,04 50,86 

Naringenin 7-O-neoesperidoside-
glucoside (Naringin-glucoside) 

2,04 0,0241 5,02 3,73 

P-cumaric acid 2,97 0,0350 32,98 5,41 

D 0,53 

Chrysoeriol-6,8-di-C-glucoside 3,12 0,0165 5,59 4,72 

151,4 
Diosmetin-6,8-di-C-glucoside 55,78 0,2956 100,00 84,47 

Eryocytorin-O-glucoside 2 36,42 0,1930 53,75 55,15 

Naringenin 7-O-neoesperidoside-
glucoside (Naringin-glucoside) 

0,85 0,0045 1,27 1,28 
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P-cumaric acid 3,83 0,0203 26,14 5,80 

E 0,28 

Apigenin-6,8-di-C-glucoside 4,01 0,0112 4,53 2,69 

67,1 

Apigenin-6-C-glucoside 3,43 0,0096 5,32 2,30 

Eriodictiol 7-O-neoesperoside 
(Neoeriocitrin) 

88,89 0,2489 100,00 59,65 

Eriodictiol 7-O-rutinoside 
(Eriocitrin) 

1,56 0,0044 1,76 1,05 

Eriodictiol-7-O-glucoside 0,49 0,0014 0,72 0,33 

Luteolin-7-O-glucoside 0,84 0,0024 1,26 0,56 

Luteolin-C-glucoside-O-
ramnoside 

0,77 0,0022 0,87 0,52 

F 1,27 

Bergamjuicin (melitidine-
glucoside) 

16,26 0,2065 20,24 20,65 

127,0 

Chrysoeriol-8-C-glucoside 1,79 0,0228 4,28 2,28 

Luteolin-7-O-neohexperidoside 53,87 0,6841 100,00 68,41 

Naringenin 7-O-rutinoside 
(Narirutin) 

2,02 0,0257 3,85 2,57 

Neoeriocytorin-O-glucoside-O-
HMG 

26,05 0,3309 31,85 33,09 

G 0,66 

Bergamjuicin (melitidine-
glucoside) 

3,12 0,0206 3,75 4,11 

132,0 

Luteolin-7-O-neohexperidoside 24,38 0,1609 43,81 32,19 

Naringenin 7-O-
neohexperidoside (Naringin) 

54,35 0,3587 100,00 71,74 

Neoeriocytorin-O-glucoside-O-
HMG 

4,34 0,0287 5,14 5,73 

Neohesperidine-glucoside-O-
HMG 

13,80 0,0911 16,08 18,22 

H 0,45 

Bergamjuicin (melitidine-
glucoside) 

3,44 0,0155 4,33 4,42 

128,6 

Esperetin 7-rutinoside 
(Hesperidin) 

54,66 0,2460 100,00 70,27 

Naringenin 7-O-
neohexperidoside (Naringin) 

37,35 0,1681 71,87 48,02 

Neohesperidine-glucoside-O-
HMG 

4,55 0,0205 5,54 5,85 

I 2,35 

Apigenin-7-O-neohexperidoside 14,12 0,3319 54,80 22,13 

156,7 

Bergamjuicin (melitidine-
glucoside) 

0,47 0,0110 1,19 0,73 

Chrysoeriol-7-O-glucoside 3,37 0,0791 16,33 5,27 

Chrysoeriol-7-O-
neohexperidoside 

16,22 0,3812 59,83 25,41 

Diosmetin-7-O-glucoside 3,37 0,0791 16,33 5,27 

Diosmetin-7-O-neohexperidoside 0,42 0,0099 1,56 0,66 

Eriocytorin-O-HMG 1,08 0,0253 3,26 1,69 

Esperetin 7-O-neoesperidoside 
(Neohesperidine) 

27,20 0,6393 100,00 42,62 

Esperetin 7-rutinoside 
(Hesperidin) 

0,88 0,0207 3,24 1,38 

Naringenin 7-O-
neohexperidoside (Naringin) 

2,96 0,0695 11,43 4,63 

Neoeriocytorin-O-HMG 29,92 0,7031 90,66 46,87 

L 1,89 

255-neoesperoside-O-HMG 0,97 0,0184 1,96 1,39 

143,1 
Brutieridine (Neohesperidine-O-

HMG) 
52,75 0,9969 100,00 75,47 

Chrysoeriol-O-glucoside-O-HMG 3,40 0,0642 6,32 4,86 
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Diosmetin-7-O-
neohexperidoside-O-HMG 

1,55 0,0293 2,95 2,22 

Diosmetin-O-glucoside-O-HMG 6,06 0,1146 14,30 8,68 

Esperetin-O-glucoside-O-HMG 
isomer 2 

19,49 0,3684 45,83 27,89 

Quercetin dimethylether C-
glucoside O-HMG 

7,72 0,1460 17,36 11,05 

Unknown 8,05 0,1522 27,54 11,52 

 

Bioactive fractions were screened by AdipoRedTM assay 

Next, I used the AdipoRed assay to screen for lipid-lowering activity of the isolated 

fractions in a relatively simple but effective manner. AdipoRed is a fluorescence-based 

assay that allows the relative quantification of intracellular lipid droplets without laborious 

steps, such as cell lysis, lipid extraction, or lipid staining. In this approach, HepG2 cells 

were seeded in 96 wells with medium supplemented with oleic acid to promote lipid 

accumulation and steatosis phenotype and challenged with the different isolated 

fractions for 24h. The concentration tested ranged from 60 µg/mL to 180 µg/mL, 

calculated as described in the Materials and Methods. Cell viability of all the tested 

fractions on the same cell line was assessed for the same concentrations used in this 

assay. The results of this screening are expressed as relative percentages of lipids. 

 As shown in Figure 3, a significant reduction in intracellular lipid content is observed 

after the treatment with fractions C and F when compared with cells treated with oleic 

acid. Despite the similar phenotypic effects, the chemical profiles of the two fractions are 

different. In contrast, fractions with similar chemical profiles, such as those eluting at 

similar retention times, do not show the same lipid-lowering effects. This suggests that 

the presence and specific concentration of bioactive compounds play a crucial role in 

the lipid-lowering capacity. 
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Figure 3: AdipoRed Phenotypic screening. Four biological replicates were considered for each experimental 
condition. * p<=0.05 and ** p<=0.01 by One-way ANOVA. Data are expressed as % relative lipid content, where 100% 
represents results obtained with OA-treated HepG2 cells. 

The lipidomic analysis highlights lipid species responsible for the lipid-
lowering effect  

A QC base peak intensity (BPI) chromatogram of the lipid cellular extract in positive ESI 

mode is shown in Figure 4. After the initial peak picking, 465 features passed all filtering 

steps and were included in the final dataset for multivariate analysis. As shown in the 

PLS-DA score plot in Figure 5, there is a good separation of the experimental groups. 

Also, Fraction C and Fraction F are separated from each other and from the OA condition 

(steatosis condition). This likely indicates that both fractions influence the lipidomic 

profile and that these effects do not overlap. As expected, the main lipids driving this 

separation are triglycerides (TG), as indicated by the VIP score plot (Figure 5B). 
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Figure 4: A) BPC in positive ionization mode of the pooled QC samples. B) Extracted ion chromatogram (XIC) 
obtained for the Avanti® Equisplash mix (0.1 µg/mL) from three QC samples (all overlaid). All peaks are set to 100%. 
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Figure 5: Multivariate statistical analysis of the filtered lipidomic data. A) PLS-DA score plot of log10-transformed LC-
MS data; positive ESI mode. B) VIP score plot.  

However, given the different phytochemical profiles of the two fractions, comparison 

allows the identification of lipid patterns that differentiate their effects. Although the 

interpretation of these data is still ongoing, it appears that fraction F is more effective 

than fraction C in reducing intracellular neutral lipid levels, an observation consistent with 

the phenotypic screening results. Fraction C significantly modulates sphingomyelins and 

ceramides profile (Figure 6). This suggests that, in addition to a targeted effect on 

triglycerides, some compounds in fraction C may have anti-inflammatory effects, as 

these lipids are known to modulate the cellular anti-inflammatory response.13 

  

Figure 6: Boxplot of log10-transformed intensity values of extracted features in HepG2 lipid extracts, positive ESI 
mode.  

Discussion 

In this study, I aimed to identify and infer the lipid-lowering activity of bioactive 

compounds from bergamot leaf polyphenols by combining analytical and omics 

strategies. Due to its high polyphenol content, bergamot is a rich source of bioactive 

phytocompounds with several beneficial effects on human health and a lower spectrum 
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of side effects. These activities are attributed not only to polyphenols found in the 

bergamot fruit or juice, which are the most extensively studied, but also reasonably to 

the leaves, which possess a qualitative profile very similar to that of the fruit and even 

higher polyphenol content11. However, it is not known which bioactive compounds in 

bergamot are responsible for its hypolipidemic effect and the mechanisms underlying 

these effects remain fully understood. Studies suggest that most of the biological 

functions can be attributed to the intrinsic antioxidant properties of the polyphenolic 

fraction of bergamot, which can positively affect lipid metabolism 5. Animal model studies 

have shown that BPF administration is associated with improved lipid-related 

parameters, such as increased HDL cholesterol, reduced total cholesterol, LDL 

cholesterol, triglycerides, decreased blood glucose, and body weight.14 

Given the complexity of this natural matrix, a fractionation step could help with the 

identification of the bioactive constituents of the extract. The results demonstrate that 

incorporating a pre-fractionation step enables the selective removal of major peaks. 

Eriodictiol-7-O-neohexperioside, naringenin-O-HMG, and neohexperidin-O-HMG were 

obtained in pure form, and therefore, they could be potentially used as standards for 

other screening assays. The prefractionation step enriched the extract with less 

abundant compounds.  

From the biofractionation of the bergamot leaf matrix, I obtained ten fractions with distinct 

phytochemical profiles. The AdipoRed assay screening successfully identified two 

fractions having significant lipid-lowering properties in HepG2. To determine which 

compounds were responsible for this activity, compounds found in bioactive fractions 

were compared with those in fractions with similar phytochemical profiles that did not 

show activity in the screening assay. Interestingly, Apigenin-6,8-di-C-glucoside, 

Chrysoeriol-6,8-di-C-glucoside, and Naringenin 7-O-neohexperidoside-glucoside were 

also present in other fractions different from the active one (fraction C) but at lower 

concentrations, thus suggesting their possible lipid-lowering roles. Moreover, the active 

fraction contained Eryocytorin-O-glucoside 1, absent in other fractions. 

Similarly, the bioactive fraction F was compared with fractions containing the same 

identified compounds. In this case, the active fraction had some compounds in common 

with fractions G and H. Notably, Bergamjuicin (melitidine-glucoside) was present at an 

estimated concentration five times higher than in the inactive fractions. Moreover, 
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luteolin and neoeriocitrin-O-glucoside-O-HMG were the most abundant compounds in 

fraction F. Chrysoseriol-8-C-glucoside, and naringenin-7-O-rutinoside (narirutin) were 

unique to fraction F. The fact that two different fractions with diverse chemical profiles 

can induce the same phenotypic effect suggests that the lipid-lowering action is not due 

to a single compound but to the synergistic activity of phytocompounds.  

Among the compounds identified in the analytical workflow, apigenin and neoeriocitrin 

were validated against standards (Figure 7). Apigenin showed a dose-dependent lipid-

lowering activity, making it one of the possible bioactive compounds in the extract. 

Notably, I tested aglycones rather than the identified glucosides, which was consistent 

with the bioavailability data for apigenin and related flavonoids. Indeed, in vivo, 

glucosides are deconjugated by the gut microbiota to yield aglycones and ring cleavage 

products that are subsequently converted to phase II metabolites15. Interestingly, this 

regulatory mechanism is altered during inflammatory processes, where conjugated 

metabolites can be reverted to their aglycone form through the activation of 

deconjugation enzymes16.  

  

 

Figure 7: The lipid-lowering activity of standards by AdipoRed Assay. * p<=0.05 and ** p<=0.01 by One-way ANOVA. 
Data are expressed as % relative lipid content, where 100% represents results obtained with OA-treated HepG2 cells. 

Besides these results, two critical aspects remain to be clarified: the mechanism of action 

and the molecular targets responsible for the observed phenotypic effect. These points 

have been partially elucidated through untargeted lipidomic analysis, which revealed that 

the lipid-lowering effect is associated with a remodelling of the hepatic cell lipidome, 
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particularly affecting triglycerides but also lipids directly involved in the regulation of anti-

inflammatory response.  

Overall, the proposed workflow allows screening for bioactive compounds in bergamot 

leaves and inferring their molecular mechanisms to make hypotheses about therapeutic 

targets. Additionally, our workflow offers several advantages, primarily due to the novelty 

of the matrix being analyzed. Combining these advanced analytical strategies with a 

circular economy concept to valorize industrial waste products such as bergamot leaves 

could reduce the impact of cultivation on waste production, minimizing disposal 

problems while obtaining a potential source of bioactive compounds.  

Conclusion 

The LC-MS/MS analysis of isolated fractions resulted in a detailed qualitative profile of 

the polyphenolic fraction of bergamot leaves. In total, 61 distinct compounds have been 

identified throughout the different fractions obtained by the pre-analytical step. The lipid-

lowering activity of all the fractions was then evaluated using an AdipoRed assay. Two 

out of all the fractions tested in the cell-based assay showed significant lipid-lowering 

activity. To infer changes in the lipidome profile, I carried out an untargeted lipidomic 

analysis. The analysis was in accordance with findings from phenotypic screening and 

added a new layer of information about lipid profile changes upon the treatment with the 

extract. The results indicate that the analytical pipeline developed is useful for identifying 

bioactive compounds. The workflow involves relatively simple sample preparation and 

could be potentially adapted for the comprehensive study of different natural matrices. 
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CHAPTER 3:  
LIPIDOME INVESTIGATION OF CARNOSINE EFFECT 

ON NUDE MICE SKIN TO PREVENT UVA DAMAGE 
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Summary 

The skin lipidome plays a central role in maintaining barrier function, hydration and the 

protective response to external stimuli such as UV radiation. Skin exposure to UV 

radiation induces autophagy, chronic inflammation, and the sustained generation of 

reactive oxygen species (ROS), which together contribute to skin photoaging. Among 

the protective agents against UV-induced skin damage, carnosine, an endogenous β-

alanyl-L-histidine dipeptide, has been shown to possess antioxidant properties. These 

properties help to mitigate photoaging and prevent changes in skin protein profile, 

making carnosine a promising ingredient in dermatological treatments. The aim of this 

work was to investigate the changes in the lipidomic profile of the skin in response to 

UVA exposure and the effects of topical carnosine treatment using an untargeted 

lipidomic approach. 

Background 

The skin is composed of multiple layers with distinct lipid content, each with unique and 

essential biological functions in maintaining skin properties and homeostasis1. The 

barrier function of the skin is largely due to the stratum corneum (SC), the outer layer of 

the epidermis, which is particularly enriched in barrier lipids such as long acyl chain 

ceramides, free fatty acids, cholesterol esters, and cholesterol sulfate. These lipids fill 

the extracellular spaces and form an effective barrier to the environment, thus protecting 

the body from external factors such as bacteria, radicals, or UV radiation. At the same 

time, membrane lipids found in the inner skin layers, such as glycerophospholipids, 

sphingomyelins, and cholesterol, have been shown to influence the skin’s immune 

properties in both healthy and disease states and play a crucial role in metabolism, 

ageing, and the response to UV radiation.  

The UV radiation reaching the earth’s surface consists of approximately 5% UVB (290–

320 nm) and 95% UVA (320–400 nm), both of which are strongly associated with human 

health2. At the molecular level, chronic UVA exposure progressively leads to 

extracellular matrix (ECM) disorganization, dysregulated autophagy, chronic 

inflammation and the production of reactive oxygen species (ROS) 3,4 causing local and 

systemic changes in molecular and cellular components that damage DNA, proteins, 

and lipids.  
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For instance, changes in skin lipid composition or lipid chemical properties can have 

severe consequences for the biological functions of the skin and are often associated 

with skin diseases5. Cholesterol, phospholipids, free fatty acids, and squalene are 

targets for non-enzymatic lipid oxidation that occurs through free radical mechanisms 

induced by UV exposure. This process produces bioactive products that contribute to 

skin damage. UV radiation also activates enzymes such as phospholipases, 

lipoxygenases, and cyclooxygenases, leading to the production of various fatty acid-

derived mediators, particularly eicosanoids6. 

In response to UV-induced damage, natural antioxidants have been identified as 

protective agents7. Carnosine, an endogenous β-alanyl-L-histidine dipeptide, has 

demonstrated significant antioxidant and carbonyl-scavenging properties, making 

carnosine a compelling ingredient to consider for use in dermatology to prevent 

photoaging8. At the molecular level, carnosine inhibits elastin modification and prevents 

fibroblast senescence induced by 4-hydroxynonenal (HNE)9. Carnosine readily reacts 

with aldehydes such as acrolein or HNE to form non-reactive adducts that prevent 

protein modification and subsequent alteration of cells and tissues10,11. More recently, 

carnosine has shown promising results in preventing oxidative stress in UVA-irradiated 

scaffold-free human dermal spheroids12. In addition, proteomic analysis of UVA-

irradiated nude mouse skin showed that carnosine effectively prevented proteomic 

changes induced by UVA exposure3 . In this work, we aimed to understand the changes 

in the lipidomic profile of the skin in relation to UVA exposure and the treatment with 

carnosine. To study these effects, we used nude mice exposed daily to UVA radiation 

for six weeks and treated topically with carnosine. This study was carried out in 

collaboration with the group of Prof. Salvayre at the University of Toulouse (France). 

Materials and Methods 

Experimental treatment 

Skin samples were kindly provided by Prof. Salvayre. The experimental protocol No. 

12/1048/10/13 was carried out in accordance with French legislation and approved by 

the medical ethical committee for all studies described. Albino hairless mice Skh:hr-1 (6 

weeks old) were obtained from Charles River Laboratories in Saint Germain sur 

l’Arbresle, France. Three animals were assigned to each condition: a control non-

irradiated group, a group exposed daily (on the whole back) to UVA radiation for six 
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weeks (2 hours exposure per day, five days per week, resulting in a total of 600 J/cm2 

at the end of the experiment), a group exposed daily to UVA and treated topically with 

carnosine (1% in Polyethylene Glycol - PG) after and one group exposed to UVA and 

treated with PG alone. After sacrifice, skin samples were taken from the backs of the 

mice and stored at -80°C until their use. 

Sample preparation 

80 mg of each skin sample was homogenized by glass bead beating (3 cycles, 60′′, 350 

rpm) in 300 μL of i-PrOH/H2O (50/50 v/v), and 20 μL were taken for BCA protein assay. 

An aliquot corresponding to 100 μg of protein was quickly spiked with 10 μL of Splash 

Lipidomix (Avanti® Polar Lipids) and left in ice for 15 min. Another aliquot of each sample 

was transferred to a separate vial to prepare a pooled QC sample. Lipids extraction was 

performed using the standard MTBE protocol with MTBE/methanol/water (10:3:2.5, 

v/v/v) as the extraction solvent ratio. All solvents contained BHT 0.1 % w/v to prevent 

unwanted oxidation. Briefly, 700 μL of MTBE/MeOH (10:3) was added to each sample, 

vortexed for 5 s, and incubated for 1 h at 4° C in a thermomixer. The phase separation 

was induced by adding 140 μL of H2O, vortexing for 5 s, and 15 mins of incubation (4° 

C, 210 rpm). Once centrifugated (4 °C, 15 min, 13400 x g), the upper phase was 

collected in a new tube. The upper phase was then dried under vacuum (Eppendorf 

concentrator 5301, 1 mbar). Before the LC-MS analyses, lipid extracts were dissolved 

in 200 μL i-PrOH/ACN (90/10, v/v, with ammonium acetate 10mM and 0,1% formic acid) 

and vortexed. Extraction efficiency was normalized by the addition of a mixture of 

deuterated internal standards before lipid extraction. 

LC-MS Analysis 

All samples have been analyzed using ExionLC™ AD system (SCIEX) connected to a 

ZenoTOF™ 7600 System (SCIEX) equipped with a Twin Spray Turbo V™ Ion Source 

with ESI Probe. Chromatographic separation was performed on a Kinetex® EVO C18 

(Phenomenex) 100 x 2.1 mm x 1.7 µm using mobile phase A (H2O/ACN (60/40, v/v, with 

ammonium acetate 10mM and 0,1% formic acid) and mobile phase B (i-PrOH/ACN 

(90/10, v/v, with ammonium acetate 10mM and 0,1% formic acid) at a flow rate of 400 

µL/min. The column and autosampler temperatures were set at 45°C and 15°C, 

respectively. The sample injection volume was 5 µL. The following gradient profile was 

used:  
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Time (min) A(%) B(%) 

0 55 45 

2 55 45 

12 3 97 

17 3 97 

17.1 55 45 

20 55 45 

Table 1: LC conditions 

MS spectra were collected over the m/z range of 140-1500 Da, operating in IDA® mode 

(Information Dependent Acquisition), Top20.  

Source Parameters Value 

Ion Source Gas 1 (psi) 55 
Ions source Gas 2 (psi) 65 
Curtain Gas 35 
Temperature (°C) 500 

Stray Voltage 
4500(+)/-4500 

(-) 
   

MS Parameters Value 
Scan Type TOF MS 
Accumulation time (ms) 250 
Declustering Potential (V) 80 
Collision Energy (V) 10 
Collision Energy Spread (V) 0 
Range 140-1500 

   

MS/MS Parameters Value 
Scan Type TOF MS/MS 
Maximum Candidate Ions 20 
Intensity Threshold (counts/s) 100 
Mass Tolerance (mDa) 50 
Accumulation Time (ms) 50 
Declustering Potential 80 
CES 15 
CE 35 

Table 2: TOF MS and TOF MS/MS parameters 

ESI positive/negative polarity with sequential injections. Three technical replicates (LC-

MS/MS runs) were performed. QC samples were run at the beginning, during, and after 

the sequence.  
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Data Analysis 

MS-Dial software (RIKEN, version 4.90)13 was used to process the MS data. This 

included peak detection, MS2 data deconvolution, lipid identification and peak alignment 

across all samples. A cut-off value of 80% was used for identification. Relative 

quantification was based on the determination of peak intensities for each correctly 

identified lipid and then normalized by the intensity of the internal standard used for the 

corresponding lipid class. Normalized peak intensities were then exported to Excel for 

multivariate and univariate statistical analysis using Metaboanalyst version 5.014. For 

volcano plot analysis, peak intensity values were first converted to a base-two 

logarithmic scale and then filtered for significance (Benjamini-Hochberg corrected two-

sample t-test with a threshold value of 0.05 False Discovery Rate - FDR). Finally, the 

lipid molecules showing significant changes were identified with unique IDs 

corresponding to the Human Metabolome Database (HMDB) and subjected to network 

analysis using Ingenuity Pathways Analysis software (IPA, Qiagen). In total, only 271 

out of 368 significantly altered lipids were associated with the corresponding ID and 

included in the pathway and network analysis.  

Results and Discussion 

A daily dose of UVA (20 mJ/cm2) to the skin for six weeks induced distinct proteomic 

signatures3 and triggers typical features of photoaging, associated with a significant 

increase in 4-HNE adduct, and elastotic material deposition9. Therefore, we 

hypothesized that a similar dose of UVA could also alter the overall lipid profile of the 

skin. To test this, I used skin samples from nude mice (control), nude mice exposed to 

UVA (UVA), and mice exposed to UVA and treated with carnosine (UVA+CAR) to 

investigate changes in the lipidome profile by untargeted LC-MS lipidomic analysis. 

A QC BPI chromatogram of the lipid skin extract in positive ESI mode is shown in Figure 

1. The untargeted lipidomic analysis supported the detection of 2405 features in the 

initial peak picking of the raw data, of which 937 had annotated reference spectra 

matched against the Lipidblast database in either positive or negative ionization mode. 

Subsequent filtering based on the technical repeatability of the QC samples and manual 

inspection allowed the identification of 683 lipid molecular species. Among them, 

triacylglycerols (TGs) showed the higher abundance, covering 21.8% of the identified 

lipidome, followed by ceramides (Cer, 15.2%), sphingomyelin (SMs, 5.3%), 
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phosphatidylcholines (PCs, 5.3%) and fatty acids (FAs, 5.0%). Diacylglycerols (DGs, 

6.4%), cholesteryl esters (CEs, 2.2%), phosphatidylethanolamines (PEs,1.8%), lyso-

phosphatidylethanolamines (LPEs), also- phosphatidylcholines (LPC) and 

phosphatidylinositols (PIs) complete the qualitative description of the most abundant 

lipid classes identified in the analysis.  

 

Figure 1: BPC in positive ionization modes of the pooled QC samples and the respective ion map. The table on the 
right shows the number of lipid species putatively identified in positive and negative ion mode (CID Top20). Putative 
lipid annotations are reported only for reference-matched annotations. 

The PCA model based on the features included in the final dataset showed a clear 

separation between the experimental groups. The QC cluster in the middle of the score 

plot indicated good analytical performance, and the biological variation was more 

influential than the analytical variation (Figure 2). 
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Figure 2: PCA score plot of log10-transformed LC-MS analysis via positive ESI mode Scores are coloured by 
experimental group.  

 

UVA radiation modifies the lipid profile of the skin 

I then compared the skin lipid profiles of UV-exposed (UVA) and control mice (control). 

As highlighted by the PCA analysis, UV radiation has a strong effect on the skin lipidome, 

as evidenced by the clear clustering and separation of groups (Figure 3). Notably, these 

differences are mainly driven by lipids such as Cer, TG and DG as also highlighted in 

the enrichment analysis (Figure 3). UV exposure induced a significant increase in 

sphingolipids, particularly dihydroceramides such as Cer(d42:1), Cer(d40:0), Cer(d34:1) 

and ultra-long chain ceramides. They are the primary catabolic product of sphingomyelin 

hydrolysis and are essential for maintaining cellular homeostasis. Alterations in the 

ceramide profile are likely to disrupt the highly organized structure of the skin's 

multilamellar barrier, leading to progressive fibrosis, thickening of the stratum corneum 

(SC)15,16 and persistent production of inflammatory cytokines and chemokines, such as 

IL-1α and TNF-α17. Moreover, Cer directly affects the generation of ROS from 

mitochondria18. In addition to sphingolipids, UV exposure also significantly increased the 

levels of other lipids, including TG (52:4), TG (54:4), DG (34:3), and DG (36:3). The 

modelling of neutral lipids, particularly TGs, has important biological implications in the 

skin. Indeed, the accumulation of TGs has been linked to JNK (c-Jun N-terminal kinase) 

phosphorylation, which could induce cell inflammation and apoptosis19. Additionally, 

DGs act as signalling molecules and are involved in inflammatory responses20. Our 

lipidomic analysis also identified cholesterol sulfate and cholesterol esters, being 
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significantly increased in the skin after UVA exposure. In particular, cholesterol sulfate 

is known to be actively involved in the keratinocyte differentiation and desquamation 

process21. In contrast, free cholesterol has not been detected in our untargeted lipidomic 

analysis. 

 

Figure 3: A) PCA scores plot of log10-transformed LC-MS analysis via positive ESI mode. B) Volcano Plot of UVA 
vs. CTRL. In red, the features significantly increased (FC) > 1.5, adjusted p-value < 0.05. C) LION Enrichment analysis 
of UVA group vs control in the “ranking mode”.  

UVA significantly increases the levels of some polyunsaturated fatty acids (PUFAs). 

Increases in arachidonic acid (AA, FA 20:4) and other PUFAs as precursors of 

eicosanoids have been implicated in UV-induced immunosuppression and inflammatory 

responses18. AA is released from lipids containing the arachidonyl fatty acid chain (20:4) 

in response to cellular stimuli, often associated with the activation of phospholipase A2, 

the enzyme responsible for the release of the 20:4 fatty acid from the lipid. The direct 

involvement of AA was recently investigated in human keratinocytes (HaCaT) exposed 

to low (5 J/cm2) and high (20 J/cm2) doses of UVA19. A dose of 20 J/cm2 UVA stimulated 

a significant amount of arachidonic acid and docosahexaenoic acid (DHA) after 24-h 

exposure, indicating that UVA radiations seem to accumulate PUFA and disrupt normal 

PUFA metabolism even after 24 h. Accumulation of PUFA can alter the skin cell 

membrane function by increasing fluidity and lipid peroxidation22–24. In fact, due to their 

multiple double bonds, PUFAs may be more susceptible to lipid peroxidation, increasing 

A B 

C 
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the risk of oxidative stress. The resulting lipid peroxidation products could easily attack 

proteins, DNA and lipids, leaving the skin vulnerable to photooxidative damage. 

A good indication of UVA-induced oxidative damage was provided by the work of 

Salvayre et al.25. Using the same experimental animal model, they showed that UVA 

exposure in hairless mice caused sustained lipid peroxidation and the subsequent 

accumulation of highly reactive carbonyl species such as 4-HNE, which forms adducts 

with elastin in the dermis contributing to skin elastosis and photoaging26. Interestingly, 

they also found that carnosine significantly inhibited the formation of such adducts and, 

thus, elastin modification. These results encouraged us to investigate whether the same 

beneficial effect could also be observed at the lipidome level and that this could help to 

better interpret the mechanism of action of carnosine. 

The protecting role of carnosine on skin lipidome 

To investigate the potential role of carnosine against UVA exposure on the skin lipidome, 

I compared UVA+CAR and UVA experimental groups. Carnosine treatment induced 

changes in the skin lipidome, as suggested by the clear clustering and separation of 

groups in the PCA score plot. Carnosine significantly reduced the DG levels, which in 

turn reduced the accumulation of TGs, resulting in an amelioration of ROS-induced 

oxidative stress27. 

Further supporting this protective effect against oxidative damage, carnosine treatment 

significantly reduced levels of arachidonic acid and other upregulated PUFAs. As 

previously discussed, PUFAs are highly susceptible to ROS attack, which can lead to 

lipid peroxidation. By reducing PUFA levels, carnosine could help to prevent lipid 

peroxidation and further oxidative damage in the skin. Carnosine also significantly 

decreased several ceramides, including ultra-long chain ceramides (Supplementary 

Figure 1). This results in improved skin plasticity, hydration, barrier function, and 

improved inflammatory response. In line with these results, enrichment analysis showed 

that terms such as ‘bilayer thickness’ and ‘plasma membrane’ were significantly enriched 

when I compared the UVA+CAR and UVA experimental groups.  
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Figure 4: A) PCA scores plot of log10-transformed LC-MS analysis via positive ESI mode. B) Volcano Plot of 
UVA+CAR vs. UVA. In green the features significantly decreased (FC) > 1.5, adjusted p-value < 0.05. C)  LION 
Enrichment analysis of UVA+CAR group vs UVA in the “ranking mode”. 

Treatment with carnosine identifies specific signaling pathways underlying 
its mechanism of action 

Based on our results, I next performed a pathway analysis on the lipids significantly 

modulated in the experimental groups to generate more detailed insights into the 

pathways affected by UVA radiation and carnosine treatment. The Ingenuity Pathway 

Analysis (IPA) software identified 21 connected canonical pathways that were 

significantly altered between the experimental groups. These included pathways 

associated with inflammation, apoptosis and molecular transport. In the bar graph 

visualizations, orange indicates a positive z-score, indicating a predicted increase in 

such a biological process, while blue represents a negative z-score, indicating a 

decrease (Figure 5).  

A B 

C 
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Figure 5: canonical pathways obtained comparing a) UVA vs Control and b) UVA-Car vs UVA (IPA). In orange, 
increased pathways (positive z-score); in blue, decreased pathways (negative z-score); in white, no change (zero as 
z-score); in grey, uncertain changes (NA z-score). The prediction legend is essential for understanding networks. 

In particular, UVA exposure was predicted to activate Ca²⁺ signalling (p-value 1.49E-05), 

which plays a crucial role in skin physiology. Indeed, Ca²⁺ ions and their gradient in the 

epidermis control essential functions such as keratinocyte differentiation and overall skin 

homeostasis28. UVA exposure has been shown to activate a G-protein-coupled 

signalling pathway leading to intracellular Ca²⁺ mobilization, a process associated with 

cancer cell migration, invasion, and metastasis29. Ca²⁺ influx following UVA exposure 

contributes to cellular damage, skin ageing, and epidermal hyperplasia.  

Conversely, carnosine treatment significantly inhibited the Ca²⁺ signalling pathway (p-

value 1.49E-05), likely due to its antioxidant and anti-inflammatory properties. 

Interestingly, our results agreed with proteomic results obtained in the same 

experimental animal model3. Indeed, the Ca²⁺ signalling pathway was one of the 

functional pathways significantly activated by UVA, also at the protein level, resulting in 

increased oxidative stress, fibrosis, and contractile process. Key proteins involved in 

calcium homeostasis, such as ryanodine receptor 1 (RyR-1), were upregulated after 

UVA exposure. Carnosine treatment effectively restored calcium homeostasis by 

significantly downregulating RyR-1 and other proteins linked to this signalling pathway, 

such as sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), and 

calcium/calmodulin-dependent protein kinase II. 
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Calcium signalling appears to be part of a broader molecular network related to lipid 

metabolism and inflammatory processes, as shown in Figure 6. One of the key lipid 

classes highlighted in the network is that of ceramides. UVA exposure significantly 

increases the levels of some ceramides, likely in response to pro-inflammatory 

signalling. Ceramides are the primary catabolic product of sphingomyelin hydrolysis and 

are essential for maintaining skin homeostasis. Alterations in the ceramide profile 

promoted the sustained production of inflammatory cytokines and chemokines, such as 

IL-1α and TNF-α 17and are directly involved in the generation of ROS that drive skin 

inflammation and damage. Some forms of dihydroceramide, such as C22:0 and C24:0, 

induce cytotoxicity through caspase-independent mechanisms, leading to mixed cell 

death and increased autophagy30.The role of dihydroceramide as an inducer of 

autophagy has been further supported by several studies in various cellular models31,32. 

Strongly associated with inflammation was also the c16 dihydrosphingomyelin (dhSM), 

which was found to be significantly increased after UVA exposure, possibly contributing 

to skin barrier disruption and increased expression of pro-inflammatory genes. 

Carnosine, on the other hand, showed antioxidant and anti-inflammatory properties that 

may help to counteract the negative effects of ceramides and SM in the skin (Figure 6B). 

Studies have shown that the topical application of carnosine can help to reduce skin 

inflammation, improve skin hydration, and prevent skin damage33. 
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Figure 6: TNF and Ca2+ dysregulation after A. UV-A exposure and B. after carnosine treatment. The prediction legend 
(IPA) on the left is essential for understanding networks. Each network comprehends molecules from the knowledge 
base that were added to maximize the number of connections between the focus molecules. 
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Conclusions 

Our untargeted lipidomic study provides a detailed and precise characterization of the 

changes in the skin lipidomic profile following prolonged UVA exposure and treatment 

with carnosine. Our findings indicate that UVA radiation induces profound changes in 

skin barrier composition, primarily affecting the levels of neutral triglycerides, ceramides, 

and fatty acids, which together play a central role in maintaining skin barrier function. 

These changes lead to several detrimental effects on the skin, including dermal 

photoaging, chronic inflammation, and increased production of ROS and TNF. To 

prevent UVA damage, skin treatment with carnosine effectively regulates ROS and TNF 

generation induced by UVA, confirming its antioxidant and anti-inflammatory properties 

and enhancing the skin's physiological processes essential for its barrier integrity and 

stability. Beyond these observations, the high sensitivity of our lipidomic approach lays 

the foundation for future research aimed at gaining a more comprehensive 

understanding of skin lipidome changes during disease and treatment, as well as 

evaluating the protective potential of agents that improve skin health and prevent skin 

disorders. Further investigation will be dedicated to a more detailed study of oxidized 

lipids. 
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Supplementary Figures 

 

Supplementary Figure 1: MS/MS spectra of four long-chain ceramides significantly reduced by carnosine treatment. 
All Supplementary Tables with all the identifications, mz, RT, intensity and MS2 are available on request. 
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Summary 

Lipidomics has been successfully applied to the study of disease, disease-related 

mechanisms and drug modes of action using a variety of experimental setups and model 

organisms. In this thesis, one area of focus has been obesity, a complex condition 

frequently associated with other diseases, including cardiovascular and liver disorders. 

The liver is commonly implicated in obesity, as prolonged caloric excess in this organ 

manifests as lipid deposition and dyslipidemia, which are highly correlated with the 

production of lipotoxic intermediates and are thought to be involved in the development 

of mitochondrial dysfunction, inflammation and oxidative damage in hepatocytes. 

Carnosine, due to its antioxidant and carbonyl scavenging properties, could help to 

ameliorate this pathological phenotype. However, the exact mechanism explaining the 

beneficial effects of carnosine on obesity remains unclear. In this study, we aimed to 

define the changes in lipid metabolites in rats fed with a high-fat diet to induce 

hyperlipidemia and to explore the efficacy and mechanism of action of carnosine in the 

treatment of diet-induced hyperlipidemia. This project was carried out in collaboration 

with ETH University during my stay abroad. The present work is divided into three main 

parts, each exploring different aspects of the lipidomic dataset. 

1. In the first part of this study, I aimed to evaluate the applicability of high-throughput 

methods for a deeper analysis of the lipidome across different biological matrices and to 

identify specific lipidomic signatures associated with obesity in the animal model. 

2. The second part of the work aimed to investigate modifications in the lipidome, 

particularly in the context of epilipidomics, to assess the effects of carnosine treatment 

on obese pathological phenotypes. This includes exploring potential oxidative 

modifications in the lipidome and identifying epilipidomic signatures that define the effect 

of carnosine. 

3. The third part focused on the structural elucidation of lipid species identified in the 

untargeted dataset beyond their molecular level through advanced mass spectrometry 

approaches. 

Each part of the work will be covered and discussed in the following chapters of the 

thesis.  
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Background 

Many metabolic diseases, such as obesity, are associated with dysregulation of both 

energy and lipid homeostasis, and alterations in lipid profile have been identified as one 

of the main risk factors1. Obesity increases the risk of other comorbidities such as 

cardiovascular disease, type 2 diabetes and liver disorders2. In particular, the liver is a 

dynamic and metabolically active organ that plays an essential role in the detoxification 

and excretion of both endogenous and exogenous compounds. The liver is often 

involved in the pathology of obesity, which at this level can cause hepatic metabolic 

changes leading to the development of steatosis, resulting in non-alcoholic fatty liver 

disease (NAFLD) and non-alcoholic steatotic hepatitis (NASH). Lipid accumulation in 

liver tissue is also strongly correlated with insulin resistance and the production of 

lipotoxic intermediates, such as ceramides and diacylglycerols, resulting from excess 

triacylglycerols.3  

Given the central role of lipids in the development and progression of this disease, the 

possibility of profiling up to hundreds of lipids in a single analysis in an untargeted 

manner represents a highly valid tool for studying the underlying mechanisms and a 

more accurate description of the hepatic consequences of obesity.4  

Although this has always implied the use of long chromatographic methods to capture a 

wider dynamic range, the need for short methods to highlight changes and provide rapid 

results is becoming increasingly important in biomedical research, especially when 

working with large sample cohorts of clinical relevance. This is increasingly driving high-

throughput methods using UHPLC-MS systems with high separation performance, 

increased sensitivity, and high resolution. Recently, several high-throughput methods 

have been proposed, allowing the accurate annotation and quantification of a large 

number of lipid species in different biological matrices5.  

In the present study, we applied a high-throughput 2.4-minute UHPLC-MS method to 

lipid profiling of plasma and liver samples of lean and diet-induced obese rats. With this 

method, we aimed to identify specific lipid signatures of the liver and plasma caused by 

obesity.  
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Materials and Methods 

Animals and Experimental Protocol 

Plasma and liver samples used in this work were kindly provided by Camila Renata 

Corrêa’s laboratory (São Paulo State University – Unesp- Medical School, Botucatu, 

Brazil) and stored at -80°C. The experimental protocol was performed according to the 

National Institute for Health's Guide to Care and Use of Laboratory Animals, and the 

study project was approved by the Ethics Committee of the Use of Animals, Botucatu 

School of Medicine, Sao Paulo State University (Protocol number: CEUA‐344/2019)6. 

Briefly, 24 male Wistar rats (±187 g) were kept in an environmentally controlled room 

(22 °C ± 3 °C; 12 h light-dark cycle and relative humidity of 60 ± 5 %) and randomly 

divided into four experimental groups. Over 17 weeks, the animals received: control diet 

(control, n= 6), control diet + carnosine (control + CAR, n = 6), high sugar-fat diet (HSF, 

n= 6), and high sugar-fat diet + carnosine (HSF + CAR, n= 6) (Table 1). The HSF groups 

also received water + sucrose (25%). Carnosine CAR (L-carnosine) was administered 

intraperitoneally (250 mg/kg) for five weeks after induction. The dose was determined 

based on studies in which CAR showed effective results without inducing toxicity or 

adverse effects in the animals7,8. Food and water were provided ad libitum. Both diets 

were prepared according to previous works 9 and are described in Table 1. 

Components Control HSF 

Soybean meal (g/kg) 335 340 
Sorghum (g/kg) 278 80 
Soy hulls (g/kg) 188 116 
Dextrin (g/kg) 146 20 
Sucrose (g/kg) - 80 
Fructose (g/kg) - 180 
Soybean oil (g/kg) 14 - 
Lard (g/kg) - 154 
Minerals (g/kg) 25 25 
Salt (g/kg) 4 8 

 
Table 1: Diet composition and nutritional values. 

 

Animals and biochemical characteristics 

The induction of obesity in the HSF groups was verified by C.R. Correa’s lab based on 

initial weight, weight gain and adiposity index data10. Additional biochemical and 
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hormonal markers (triglycerides, insulin, blood glucose, total cholesterol etc.) were 

evaluated.  

Tissue extraction protocol 

Lipid extraction from plasma and liver followed the same extraction protocol. Liver 

sectioning was performed on ice, using sterile surgical scalpels for sectioning. For tissue 

homogenization, 20 mg of liver tissue was added to 200 µl of MilliQ water + CH3COONH4 

0.1% in a 2 mL microtube with approximately 20 mg of beads and homogenized using 

the Precellys bead beater (5800-6000 rpm, 15s, and 2 cycles). Samples were then 

centrifuged at 4°C for 10 min, and an aliquot of the supernatant was taken for lipid 

extraction. Lipids were extracted with 1mL of MMC extraction buffer methanol: MTBE: 

chloroform (MMC) 1.33:1:1 (v/v/v) mixture + BHT (0.1%), after 30min shaking, 

centrifugation at 14000 rpm and supernatant collection. Samples were dried overnight 

in a fume hood, reconstituted with 80 µl of IPA/MeOH 1:1, centrifuged for 10 min at 

14.000 rpm at 4°C, and transferred into a glass vial. QC samples were prepared by 

pooling a small aliquot of all the samples. 20µl of plasma was extracted using the same 

protocol. 

LC-MS analysis 

To avoid potential bias from run order, samples were randomized. No technical 

replicates were used in this study. Separation was performed on an Agilent 1290 Infinity 

II LC system, including a binary pump manager equipped with an ACQUITY UPLC BEH 

C18 reversed-phase column (30mm x 2.1mm x 1.7 µm). During separation, the column 

temperature was maintained at 60°C and the flow rate was set at 1.2 mL/min. Lipid 

classes were separated by a 2.4 min gradient elution using the following mobile phases: 

A) acetonitrile: water (6:4 v/v) with 10mM ammonium acetate and 0.1% formic acid, B) 

isopropanol: acetonitrile (9:1 v/v) with 10mM ammonium acetate and 0.1% formic acid. 

The chromatographic gradient used for lipid analyses is shown in Table 2. 

Time (min) A(%) B(%) 

0.29 70 30 
0.37 52 48 
1.64 18 82 
1.72 1 99 
1.79 1 99 
1.81 85 15 
2.24 85 15 
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Table 2: LC conditions 

 After separation by UPLC, lipids were ionized by electrospray ionization, and the data 

were acquired in both positive and negative modes using the SCIEX ZenoTOF 7600 

system with CID and operating in DDA mode. MS parameters were as follows: 

 

Source Parameters Value MS Parameters  Value 

Ion Source Gas 1 (psi) 70 Scan Type TOF MS 
Ions source Gas 2 (psi) 70 Accumulation time (ms) 75 
Curtain Gas 45 Declustering Potential (V) 60 
Temperature (°C) 700 Collision Energy (V) 10 

Stray Voltage 
5500 (+)/ 

4500(-) 
Collision Energy Spread (V) 0 

    Range 70-1750 

  MS/MS Parameters Value 

  
Scan Type 

TOF 
MS/MS 

  Maximum Candidate Ions  8 

  

Intensity Threshold 
(counts/s) 

100 

  Mass Tolerance (mDa) 50 

  Accumulation Time (ms) 15 

  Declustering Potential 60 

  CES 15 

  CE 30 

 

Table 3: TOF MS and TOF MS/MS parameters 

Data processing and statistical analysis 

All original wiff files (raw data from SCIEX) were converted to centroided mzML files 

(standardized format for storing MS data) using the qtof peak picker component of 

msconvert (ProteoWizard v 3.0.9987)11. The converted files were then fed into SLAW 

for run alignment, peak picking, and normalization to generate mgf files (Mascot Generic 

Format file) containing all representative MS/MS spectra acquired by DDA. Downstream 

analysis and annotation were performed using these mgf files. Annotation was done 

using our in-house annotation tool (LipidOracle; MS1 tolerance 0.01Da, MS2 0.02Da). 

Peaks with a %CV greater than 30% in the QC samples were detected in less than 50% 

of the samples belonging to the same group, and signals found in the blank samples 

were not included in further statistical analysis. Multivariate analysis was performed 

using Python. Data were log10-transformed and autoscaled. Features most influential in 
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PLS-DA models were taken forward for univariate analysis. Univariate statistics and 

plotting were all performed in GraphPad Prism12.  

Results 

The experimental groups were set up for either liver or plasma samples as follows: lean 

rats (control group), rats fed with a high-fat and sugar diet (HSF group) and animals fed 

with a high-fat and sugar diet and treated with carnosine (HSF+CAR).  

Untargeted LC-MS analysis of liver and plasma lipid extracts 

To obtain a comprehensive profile of lipid molecular species, I performed untargeted 

lipidomics of liver and plasma samples on a Zeno7600 QTOF coupled to a UHPLC 

system using a 2.4 min gradient. The representative base peak intensity (BPI) 

chromatograms of lipid extracts from liver and plasma matrices are reported in Figures 

1A (positive mode) and 1B (negative mode). The results are obtained by injecting 2 µl 

of sample in both polarities, and as expected, a higher ionization capacity is observable 

for the positive mode. 

 

Figure 1: BPC in ESI positive (A) and ESI negative (B) ionization modes of the pooled QC samples for liver and 
plasma. 

The 2.4-minute chromatographic run effectively separates the main lipid classes 

according to their polarity. The run showed high robustness and excellent repeatability. 

This can be appreciated by monitoring the performance of deuterated standards spiked 

into the samples before the analysis (Figure 2).  
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    rt 
  Equisplash Mix Liver Plasma 

1 15:0-18:1(d7) PC 0.864 0.865 
2 18:1(d7) Lyso PC 0.266 0.267 
3 15:0-18:1(d7) PE 0.86 0.886 
4 18:1(d7) Lyso PE 0.272 0.272 
5 15:0-18:1(d7) PG  0.84 0.839 
6 15:0-18:1(d7)-15:0 TAG 1.575 1.574 
7 d18:1-18:1(d9) SM 0.818 0.813 
8 C15 Ceramide-d7 0.864 0.861 

Figure 2: Extracted ion chromatogram obtained for the Avanti® Equisplash mix lipids in liver and plasma samples 
(0.1 µg/mL). All peaks are set to 100%. 

Lipid extracts were randomly analyzed, and pooled QC samples were regularly included 

in the batch analysis. Of the initial features detected by peak picking of the raw 

chromatogram, 828 for liver and 574 for plasma samples passed all filtering steps and 

were included in the dataset for multivariate statistical analysis. In particular, only 

features with a coefficient of variance (CV) of less than 30% in pooled QC samples, 

found in at least 50% of the samples belonging to the same experimental group and 

annotated at MS2 level (tolerance 0.02 Da), were taken for further analysis (Figure 3).  
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Figure 3: Ion map showing features annotated in liver and plasma samples either in positive or negative ion mode. 
Only MS2 annotated features were included in the final dataset and considered for further statistical analysis.  

Triacylglycerols (TGs) were the most abundant in both matrices, accounting for 34 and 

38% of the identified lipidome in the liver and plasma, respectively, followed by 

phosphatidylcholines (PCs, 24.3 and 27%), sphingomyelins (SMs, 7.3%), ceramides 

(Cer, 5%) and cholesteryl esters (CEs, 2%). Other annotated lipid classes are 

diacylglycerols (DGs), phosphatidylethanolamines (PEs), 

lysophosphatidylethanolamines (LPEs), lysophosphatidylcholine (LPCs) and 

phosphatidylinositols (PIs). Of the molecular species identified, 350 were common 

between the two matrices (Figure 4). It should be noted that cholesterol was not 

identified in either biological matrix, despite its expected abundance in high-fat diet 

models. This may be due to the poor ionization efficiency of cholesterol under the 

conditions applied in this study. As a non-polar molecule with low ionization efficiency, 

cholesterol often requires specific derivatization or optimized ionization methods (e.g. 
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chemical derivatisation, APCI) to enhance its detection. This limitation can lead to under-

representation or non-detection of cholesterol in lipidomics workflows, especially when 

using electrospray ionisation (ESI). 

 

Figure 4: The number of lipid molecular species identified in liver and plasma samples.350 lipids were common 
between the two matrices. 

Obesity impacts hepatic tissue lipidome, partly reflecting the lipid alterations 
observed in plasma  

Next, I examined the lipid species profiles in liver tissue and plasma to identify specific 

signatures of obesity. PCA showed a clear distinction between lean and diet-induced 

obese animals by the first two components, either in plasma or liver samples. The QC 

cluster in the middle of the score plot indicated high technical reproducibility and that 

biological variation was more influential than the analytical variation. I also observed that 

biological replicates of the same group clustered closely together, reflecting the 

homogeneity of the samples (Figure 5).  
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Figure 5: Multivariate statistical analysis representing the lipidomic data of liver and plasma samples. PCA score plot 
clearly shows differentiation between the lean and obese (HSF) animals. The pooled QCs clustered tightly, indicating 
high technical reproducibility.  

As expected, prominent increases in neutral lipids such as TG (48:1), TG (48:2), TG 

(50:2), TG (52:2) and DG (32:1) were observed in the liver of the HSF group compared 

to the control. The increase in TG species is not consistent for all the species identified, 

but it mainly affects species with saturated and monounsaturated residues. Species 

increased in lean animals include PC (34:3), PC (38:6), PE (38:4), PI (36:4), LPC (18:1), 

LPC (18:1), LPC (20:4), LPC (20:5), LPE (18:1), PS (38:4), and PE (38:4). Higher liver 

fat content is therefore associated with TG accumulation and reduced levels of PUFA-

containing phospholipids and lysophospholipids. Changes in some individual lipid 

species are shown in Figure 6. 
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In the plasma of HSF animals, I observed that TGs containing at least one PUFA residue 

were more abundant than controls. Notably, in contrast to what was observed in the liver, 

plasma levels of PC (34:1), LPE (18:1), and PE (38:4) were significantly enriched in the 

HSF experimental group.  

 

Figure 6: Box plots of log10-transformed intensity values for specific lipid species in liver and plasma lipid extracts, 
positive ESI mode. t-test (p<0.05). 

Enrichment of PE (38:4) and other phospholipid species is a common feature in the 

plasma of obese individuals13,14. PE (38:4), in particular, is highly susceptible to oxidative 

modification due to its multiple unsaturations, making it vulnerable to attack by reactive 

oxygen species. Elevated levels of PE (38:4) in tissues or fluids indicate increased 

oxidative stress and inflammation, as this lipid plays a role in membrane integrity and 

cellular signalling pathways related to stress responses. In support of this, I also 

observed higher levels of LPC (20:4), a known marker of inflammation, LPE (16:0), LPE 

(18:1), and ceramides in the HSF experimental group. The accumulation of ceramides 

is associated with disruptions in glycosphingolipid metabolism, contributing to oxidative 

stress and causing cell death15. This overall pattern suggests systemic lipid overflow and 

inflammation, which are the hallmarks of obesity.  

Furthermore, in both biological matrices, a clear separation was observed for ether 

phosphatidylethanolamine (ether-PE) and ether phosphatidylcholine (ether-PC) 

species, particularly plasmalogens, which were significantly reduced in the HSF group. 
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These findings align with previous plasma lipidomics studies in obese individuals 

reporting significant changes in alkylphosphatidylcholines and plasmalogens16. Given 

that ether lipids, such as plasmalogens, act as scavengers for reactive oxygen species 

(ROS), it is likely that the HSF phenotype induces oxidative stress at the liver level. This 

hypothesis is further supported by the observed increase in markers of oxidative 

damage, indicating that obesity may promote oxidative stress, thereby disrupting lipid 

metabolism and contributing to metabolic dysfunction10. 

Next, BioPAN pathway analysis allowed us to detect differences and trends regarding 

obesity between the two lipidomic datasets. The lipid networks at the lipid subclass level 

are shown in Figure 7A for the liver and Figure 7B for plasma.  

 

Figure 7: BioPAN lipid networks. Lipid network graphs exported from BioPAN for the liver and plasma of obese 
animals (HSF) compared to lean control animals. In these graphs, green nodes represent active lipids, and green 
shaded arrows indicate active pathways. Reactions with a positive Z-score are shown with green arrows, while those 
with a negative Z-score are represented by purple arrows. The pathway options include the HSF condition of interest, 
lean control condition, lipid type, active status, p-value of 0.05, and no paired data. 

Reactions using PC lipid species as a substrate are more active in the liver and plasma 

of the HSF group than in the control, which aligns with the reported increase in the DG 

subclass as a product of this pathway (green rectangle). For triglycerides, while the 

overall trend is consistent across the entire TG class and between the two biological 

matrices reporting an increase in TG levels in the HSF group, the results of the lipid 

pathway analysis revealed that TG synthesis is significantly activated only in the liver 

(TG, Z-score = 3.445, orange rectangle). Conversely, the same pathway seems to be 
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shifted towards TG catabolism in the plasma samples (Z-score = -2.161, blue rectangle). 

These differences can likely be explained by examining the lipid molecular species 

responsible for these predictions. Specifically, at the plasma level, only reactions using 

PUFA TGs as substrates to give the respective PUFA DG products were found to be 

included in the node.  

In addition, the pathway analysis revealed other tissue-specific variations in lipid 

metabolism. In particular, the reactions involving arachidonic acid-containing species 

(36:4 [PI, PE, PC], 38:4 [PI, PC, PE], and 38:5 [PI, PE, PC] species) were found to be 

activated in the plasma of the HSF groups compared to the control, but they were not 

modulated in the liver (Figure 8).  

 

Figure 8: BioPAN lipid networks. Network graphs exported from BioPAN show lipid molecular species 36:4 and 
38:4 in the liver and plasma of obese animals (HSF) compared to lean controls. In the graphs, green nodes represent 
active lipids, and green shaded arrows indicate active pathways. Reactions with a positive Z-score are shown with 
green arrows, while those with negative Z-scores are displayed with purple arrows. The pathway options include the 
HSF condition of interest, lean control condition, lipid type, active status, p-value of 0.05, and no paired data. The 
legend is reported in Figure 7. 

It is well known that different tissues have specific and very specialized lipid profiles, and 

in our study, this was also confirmed by PCA analysis. Liver and plasma samples formed 

distinct clusters on the score plot, indicating clear differences in lipid patterns. The 
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difference in lipid composition reflects the different histological and physiological 

functions of the two matrices (Figure 9).  

 

Figure 9: PCA scores plot of log10-transformed LC-MS analysis via positive ESI mode. Scores are coloured by 
sample type. PCs 1 and 2 explain for 74% and 19% of the variance, respectively. QC samples were normalized by 
group.  

Indeed, the liver is a highly metabolically active organ and is rich in apolar lipids in 

addition to polar membrane lipids. In contrast, plasma represents a lipid-rich fluid 

containing large amounts of membrane lipids and lipoprotein-derived storage lipids. 

These differences are mainly reflected in the enrichment of neutral lipids such as TGs, 

DGs and SM in the liver samples and PC, LPC, Cer and also LPE in plasma. Moreover, 

at the level of lipid molecular species, these differences can also be highlighted by the 

distinct profile of fatty acids esterified to complex lipids. In general, I found that the most 

abundant fatty acids in liver samples are 16:0 (palmitic acid), 18:1 (oleic acid), and 18:2 

(linoleic acid). In contrast, plasma contains the highest levels of PUFA arachidonic acid 

(20:4). These findings suggest that individual lipid species have tissue-specific 

distribution patterns, which could result in different changes in lipid profiles during 

disease progression.  

Carnosine treatment identifies specific signatures on liver lipidome of obese 
rats 

The PCA score plot showed that only a limited separation of treated and untreated 

animals was achieved in both experimental conditions (control or HSF) when the scores 

were coloured and labelled by the experimental group (Figure 10), thus indicating that 

QC 

QC 
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differences in lipid composition driven by carnosine are less than those observed by the 

phenotype.   

 

Figure 10: A) PCA score plot of log10-transformed LC-MS analysis via positive ESI mode. Scores are colored by the 
experimental group. Only a limited separation of treated and untreated animals was achieved in both experimental 
conditions (control or HSF). B) PLS-DA analysis of HSF and HSF+CAR samples showing the discrimination between 
the two experimental groups among component 1. ESI positive mode C) Enrichment analysis of lipid terms (LION-
web), showing the top enriched terms for both HSF+CAR experimental groups. 

Thus, I used the PLS-DA model to identify specific features modulated by carnosine. 

The PLS-DA score plots showed a clear separation between the HSF and HSF+CAR 

(Figure 10). On top of lipid species that can separate the HSF+CAR and HSF in the liver, 

I found that the best separation results could be achieved by ether-PE and PC and, in 

A B 

C 
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particular, by PE (O-38:5) and PE (O-40:5), whose levels are relatively higher in the 

HSF+CAR experimental group compared to HSF. These results are in accordance with 

the role of alkyl-phosphatidylcholines and phosphatidylethanolamine plasmalogens in 

cellular homeostasis. To further prove that, I next conducted a LION enrichment analysis 

to examine the lipid terms that underlie the carnosine effect at the liver level. In 

accordance with the multivariate analysis, I found enrichments of terms related to 

membrane functions and bilayer thickness, which are affected by phospholipid 

composition (FDR q-value <0.05). In particular, I found that the lipids that distinguish 

lipidome sets are polyunsaturated phospholipids that also contain ether bonds. Since 

ether lipids are known to act as scavengers of radicals, I assume that oxidative stress 

induced by the HSF diet could be modulated by carnosine.  

Discussion 

Lipidomics has become an indispensable tool in biomedical research to study lipid 

metabolism at the lipid molecular level. In the present study, we applied comprehensive 

lipidome profiling to liver tissue and plasma samples to further clarify the metabolic 

differences between lean and diet-induced obese animals. Here, we show that the 

application of a 2.4-min LC-MS method for untargeted lipidome analysis provides 

comprehensive lipid coverage in a robust, reproducible, and rapid manner. The method 

benefits from high resolution and accurate MS2 level of annotation and can be applied 

to the screening of lipids in diverse biological matrices with excellent repeatability.  

High-throughput methods in MS-based omics research are key to delivering rapid and 

informative results about lipidomic profiles that can be used as a tool for preclinical or 

clinical applications and to support drug discovery.  

In support of previous studies performed at the biochemical level and carried out in the 

laboratory of Prof. Correa10, our lipidomic dataset provides a detailed insight into the 

description of the metabolic changes observed between lean and obese rats. 

Multivariate statistical analysis revealed significant differences between experimental 

groups, particularly in triacylglycerols, phospholipids, and ether-linked derivatives. I 

found that the liver of lean and obese rats had distinct lipidomic patterns and that those 

changes were characteristic of hepatic dyslipidemia and lipotoxic fat depots17. 

Triacylglycerol accumulation in hepatocytes is a common sign of obesity and a hallmark 

of steatosis development. Although steatosis is considered relatively harmless and 
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reversible, when the liver exceeds its capacity to 'store' lipids, steatosis can induce 

lipotoxicity and glucotoxicity, promoting ROS generation and organelle dysfunction, 

making the liver more vulnerable to toxic insults. This mechanism is referred to in the 

literature as the 'two-hit' hypothesis18. Elevated hepatic DG is linked to hepatic 

lipotoxicity and particularly has been observed to activate inflammatory responses in 

vivo19. Moreover, levels of oxidative stress markers such as Malondialdehyde (MDA) 

and Advanced Oxidation Protein Products (AOPP) are upregulated in the liver of HSF 

animals, which may contribute to the metabolic dysfunction of hepatocytes10.  

Increased levels of TGs and DGs could also be explained by elevated lipogenesis, as 

evidenced by the high levels of species esterified to FA (16:0, 18:0, and 18:1), and in 

part by an increased conversion of phospholipids to DGs, as suggested by pathway 

analysis. Given the higher levels of DG (34:2) and lower levels of PC (34:2) and PC 

(36:2) in obese animals, it is possible that specific PCs are redirected to DG production 

due to the increased requests for DG. 

Moreover, the levels of sphingolipids and glycerophospholipids differed significantly 

between the HSF and lean groups, and variations in their relative levels are associated 

with obesity20. In particular, I observed that several species belonging to the 

phospholipid class had reduced levels in the liver of obese animals. Phospholipids are 

an integral part of the plasma membrane and act as signalling molecules. Loss of PC 

may be due to sustained hydrolysis by membrane phospholipases.  

Changes observed in liver lipid extracts reflect, to some extent, the changes obtained by 

analyzing plasma samples. Overall, plasma lipid profiling of HSF animals confirmed 

circulating lipid biomarkers of obesity previously observed in the mammalian plasma 

lipidome21. Total TG levels in both liver tissue and plasma were generally elevated in 

rodent and human models of obesity, which is also consistent with what has been 

reported in numerous studies highlighting the systemic lipid overload caused by obesity, 

which may contribute to the development of metabolic complications associated with 

obesity22. However, our study showed that liver and plasma samples have a unique lipid 

fingerprint at the level of the individual lipid molecules. Therefore, it is likely that the lipid 

patterns that are altered in the disease process are also different. This shows that 

although plasma is a clinically relevant sample for biomarker discovery, analysis of other 

tissues may also be helpful. This is particularly true for the liver, which is a dynamic and 

metabolically active organ and, therefore, well suited to providing information on the 



Chapter 4 

121 
 

metabolic state. Furthermore, the importance of analyzing the liver is that it is the key 

organ for the biosynthesis of lipids, so if we observe a change in the lipid composition of 

the blood, it is likely to be the liver that is responsible, as only the liver can change the 

blood lipid profile. 

Another question we wanted to answer was whether we would see any differences after 

treatment with carnosine. Carnosine has potential preventive and therapeutic benefits 

for obesity23.  For instance, carnosine can decrease the oxidation and glycation of LDL 

and can limit the progression of atherosclerosis in animal studies 24. Our results also 

showed that carnosine supplementation has a beneficial effect on the lipidome of obese 

animals by reducing plasmalogens, which are important lipid species associated with 

redox stress. 

While our analysis identified differences in lipid pathways between obese states, it 

remained unclear what these patterns meant for metabolite or protein levels. Indeed, 

intracellular lipid patterns can also be explained by examining altered levels of 

metabolites and proteins involved in the same pathway, which helped us to infer the 

actual metabolic state and whether it is an early or advanced stage of liver disease. 

Based on the biochemical data we have, we know that specific markers of oxidative 

stress and inflammation are significantly increased in the HSF groups. Obesity is highly 

correlated with the production of ROS and subsequent damage to the liver due to excess 

lipids. This damage is evident at the lipid level with increased lipid oxidation. However, 

the study of lipid oxidation is challenging and requires specific analytical and 

bioinformatic approaches. 

In the next chapter, I will discuss how we have addressed this analytical and biological 

challenge. This will be the starting point for the next part of the study, which will examine 

the consequences of oxidative damage on lipids and the potential beneficial effects of 

the treatment with antioxidant compounds such as carnosine.  

Conclusions  

In the present study, we used a fast LC-MS/MS method for high-coverage lipid profiling 

of the liver and plasma from lean and obese rats. First, we determined the 

comprehensiveness and suitability of the proposed LC-MS, which revealed that it is 

suitable for the detailed analytical description of the lipid profile of multiple biological 
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matrices and allows us to investigate the extent of possible metabolic alterations in 

obese animals.  

Supplementary Tables 

Supplementary Tables are available on request. 
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Summary 

As a next step of the previous work, the analyses of oxidized lipids could provide a more 

complete understanding of the impact of oxidative damage on obesity. To this aim, we 

looked at the functional oxidative modification of lipids. Oxidized lipid species have been 

actively studied in the context of oxidative stress-related disorders, including obesity and 

metabolic diseases. Currently, detailed structural elucidation of lipid oxidized species, 

necessary to understand their biological role, is still missing as their identification in 

complex biological samples is challenged by the low natural abundance and the 

structural diversity. Thus, different analytical and computational tools are required to deal 

with this complexity. We introduced a lipidomics workflow based on advanced LC-

MS/MS approaches for the comprehensive profiling of oxidized lipids in plasma and liver 

samples. The method combined a rapid 2.4-min untargeted lipidomic analysis with our 

newly assembled pipeline for lipid and modified lipid annotation, enabling high-

throughput detection of oxidized molecular species. I applied this workflow to the 

lipidomic dataset of Chapter 4, comparing the control, the obese group (HSF) and the 

obese group after the treatment with carnosine (HSF+CAR). The proposed method 

provides a powerful tool for studying lipid oxidation and its implications in health and 

disease, and could provide a more complete understanding of the antioxidant activity 

and the efficacy of carnosine in ameliorating the obese phenotype. 

Background 

Lipids comprise a very large number of diverse molecular species with different 

physicochemical and structural properties. Modifications of lipids can happen both 

enzymatically and non-enzymatically and result in the introduction of small chemical 

moieties into their structure. Among these, lipid oxidative modifications occurring at the 

fatty acyl chains are the most actively studied1.  

Lipid oxidation occurs in many pathological conditions that are often related to oxidative 

stress, such as inflammatory diseases and cancer2,3. Moreover, obesity and its metabolic 

complications are closely associated with redox imbalance and the development of 

oxidative stress, which damages lipids, proteins, and DNA, promoting inflammation and 

metabolic dysfunction. 
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Polyunsaturated fatty acids (PUFAs) are the primary targets for oxidative modification, 

either in free form or esterified into complex lipids such as TGs, CEs, and PLs. Their 

oxidation results from enzymatic (lipoxygenases, cyclooxygenases, or cytochrome P450 

systems) or non-enzymatic (free-radical peroxidation) reactions, resulting in a large 

number of different modifications along the acyl chain and as many oxidation products. 

These include hydroxy, hydroperoxy, and keto molecular species (primary oxidation), as 

well as truncated forms, with the subsequent formation of highly reactive electrophilic 

carbonylated species (secondary oxidation).4,5 

Such chemical complexity, also rich in isomeric species, results in an extensive range of 

diverse lipid species involved in different complex reactions, making the detection of 

oxidized lipids in biological matrices a major challenge. Moreover, the lack of spectral 

libraries and chemically defined standards limits the large-scale and unambiguous 

annotation of oxidized lipids. Besides the chemical diversity, these species are 

characterized by low abundance, which further complicates their measurements.  

To overcome these analytical limitations, oxidized species are often analysed by 

targeted LC-MS/MS, which, however, cannot capture the complexity of the epilipidome 

and prevents the discovery of new species. For more comprehensive profiling, their 

analysis can be performed using untargeted approaches6. However, due to the amount 

of data generated, untargeted methods require powerful annotation tools to be 

integrated into the lipidomic workflow. In the context of oxidized lipids, efforts have been 

made in this direction7. This is, for example, the case for LPP tiger8, which provides 

useful functions for in silico prediction of sample-specific oxidized lipidomes and 

identification of lipid oxidative molecules.  

In this study, I aimed to explore the diversity of lipid oxidation in complex biological 

matrices in a more untargeted way, thereby addressing the entire lipidome. To help with 

that, we introduced a pipeline for oxidized lipids annotation in LC-MS/MS workflows and 

applied it to the analysis of the untargeted lipidomic dataset described in Chapter 4. 

Indeed, a detailed structural elucidation of lipid oxidation products would support the 

understanding of obesity and the development of new preventive or therapeutic 

approaches. 



Chapter 5 

129 
 

Antioxidant compounds may be beneficial in managing obesity-related oxidative stress. 

One of these is carnosine (CAR), which, as discussed in the previous chapter, has been 

implicated in the regulation of oxidative and inflammatory responses, as already shown 

in in vitro and in vivo studies.9 

The mechanism by which CAR acts as an antioxidant has not yet been elucidated, 

although some mechanistic hypotheses have been formulated. In particular, CAR is 

thought to act as an endogenous scavenger of reactive carbonyl species (RCS). The 

potential of l-carnosine as a pharmacological agent has been demonstrated in rodent 

models of metabolic syndrome and cardiovascular disease. 10,11. For instance, CAR has 

been shown to ameliorate dyslipidaemia and liver function in vivo12. More recently, we 

also showed its protective effect against skin oxidative damage13–15 and to prevent the 

deterioration of glucose metabolism in healthy, overweight and obese adults.16,17 

Considering the beneficial role on lipid metabolism assigned to CAR, I aimed to study it 

more comprehensively and in detail to gain a better biological understanding of its 

mechanism of action, particularly in relation to lipid oxidation.   

Materials and Methods 

Sample preparation, data analysis and processing 

Sample preparation and LC-MS experimental parameters are described in detail in 

Chapter 4 of this thesis. Lipid extraction was performed using solvents containing 

0.1%BHT to avoid sample autoxidation. All original wiff files were converted to centroided 

mzML files using the qtof peak picker component of msconvert (ProteoWizard v 

3.0.9987)18.The converted files were then fed into SLAW19  for data alignment and peak 

picking to generate mgf containing all representative MS/MS spectra acquired by DDA. 

Lipids annotation was performed using these mgf files.  

Lipid Library Generation 

To generate an internal library for the annotation of oxidized lipids, the following steps 

were taken: we generated a list of possible fatty acid oxidation products for either short 

(FA 4:0) or long (up to FA 32:0) acyl chain as the addition of one or more oxygen as keto, 

epoxy, hydroxylated (O), perhydroxylated (O2) derivatives and combined them with other 
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fatty acids, backbones, and head groups to form different oxidized lipid species. We then 

predicted fragmentation based on class-specific fragmentation roles in both polarities. 

Using this approach, possible oxidized lipid species were generated for potentially any 

lipid species of the following key lipid classes in one or both polarities and for multiple 

adducts: oxidized triglycerides (OxTG), phosphatidylcholine (OxPC), 

phosphatidylethanolamine (OxPE), phosphatidylglycerol (OxPG), phosphatidylinositol 

(OxPI), phosphatidylserine (OxPS), lysophosphatidylcholine (Ox LPC) species and 

lysophosphatidylethanolamine (Ox LPE).  

CID annotation of Oxidized Lipids 

For the annotation of modified (and unmodified) lipids, we used an in-house Python 

script. This tool performs rule-based annotation in both polarities by matching MS2 

features against the Lipidex database or our internal CID MS/MS library, which by default 

included additional oxidation of side chains. In particular, for MS2 matching, the 

maximum number of oxygens allowed in the side chains is 3 (MS2 maxO:3), while for 

MS1, it is 10. For ox lipids annotation, we considered the following adducts: 

[M+H]+,[M+NH4]+,[M+Na]+,[M-H]-,[M+Ac-H]-,[M+HCOO]-. We then retrieved all feasible 

candidates using a mass tolerance of 0.01Da at the MS level and 0.02Da at the MS/MS 

level. The final list of putatively annotated lipids included only features annotated at the 

MS2 level with at least two fragments (ms2_matched > 2), one of which had an oxidation 

that matched our internal MS/MS CID library (MS2 evidence = hg; chain; oxy-chain). 

Statistical Analysis 

Multivariate analysis was performed in Phyton. Data were log10-transformed and 

autoscaled. Features most influential in the PLS-DA models were taken forward for 

univariate analysis. Univariate statistics and plotting (including correlation analysis) were 

all performed in GraphPad Prism20.  

Results 

In the previous chapter, we generated an untargeted lipidomic dataset that allowed us 

to study the molecular patterns that define obesity. In this study, I aimed to confirm and 

extend our previous findings by examining changes in the profile of oxidized lipids, 

thereby shedding new light on the role of lipid oxidation in metabolic diseases such as 
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obesity and the beneficial effects of carnosine, a compound known for its antioxidant 

and carbonyl scavenger properties.  

Generation of an automated workflow for accurate annotation of oxidized 
lipids 

 

Figure 1: Hierarchical annotation workflow for CID spectra. 

Figure 1 shows the full annotation workflow used in this work. The process of annotation 

of oxidized lipids from high-throughput DDA experiments followed the general logic of 

unmodified lipid identification, thus with sequential and specialized steps. MS1 and 

MS/MS features extracted from raw data processing are matched against either our 

internal or open source CID libraries to initially determine class, number of carbon atoms 

(sum composition), and double bonds (fatty acid identification). By default, the matching 

includes additional oxidation at both annotation levels. For MS1 matching (accurate 

mass), the search for m/z features is extended up to 10 oxygens with a tolerance of 0.01 

Da. When candidate oxidized species are found based on MS1 matching, MS2 peaks 

are searched against our internal CID library for compatible increments of MS/MS 

fragment ions m/z that indicate acyl chain lengths and the presence of oxygens. Here, 

the maximum number of oxygens allowed in the side chains for MS2 libraries is 3, which 

can result from the combination of O, OH and OOH addition products. To do that, we 

established a set of MS/MS fragmentation rules to ensure accurate assignment of lipid 

class, molecular species, modification type, and the specific position of modifications in 
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oxidized lipids. Fragmentation rules are specific to each lipid class and have been 

obtained using MS/MS data from the literature and those available in other open-source 

libraries (Lipidblast) or those obtained experimentally (AdipoAtals).21 

In addition, to reduce false positives, we introduced the possibility of neglecting any 

oxidized features not detected in the non-oxidized form. The nomenclature used to 

annotate oxidized lipids is consistent with the Lipidmaps ontology. The oxidized lipid 

structures generated can cover all the most common lipid subclasses, allowing us to 

increase chemical space and thus the coverage of oxidized lipids predicted in our 

untargeted dataset, providing a large library of potential species compared to other 

libraries.  

Profiling of oxidized lipids in complex matrices  

The annotation workflow was applied to detect epilipid signatures in complex biological 

matrices. To do that, I took advantage of our untargeted lipidomic dataset, already 

described in detail in Chapter 4.  

Of features detected in the initial peak picking, I annotated 229 unique features in the 

liver and 88 in plasma with putative oxidation in either positive or negative ionization 

mode (Figure 2 and Supplementary Tables S1-3). The list of annotated lipids included 

only features annotated at the MS2 level with at least two fragments (ms2_matched > 

2), one of which had oxidation that matched our internal MS/MS CID library (MS2 

evidence = hg; chain; oxy-chain). 
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Figure 2: Annotation for LC-MS/MS analysis of unmodified (left) and putatively oxidized (right) lipids in liver and 
plasma lipid extracts. Positive ESI mode. annotated lipids included only features annotated at the MS2 level with at 
least two fragments (ms2_matched > 2), one of which had an oxidation that matched our internal MS/MS CID library 
(MS2 evidence = hg; chain; oxy-chain). 

Of these lipids, 120 features were annotated as OxTG in liver samples, 68 as oxidized 

phosphatidylcholines (OxPC), 7 as oxidized phosphatidylinositols (ox PI), 22 as oxidized 

phosphatidylethanolamines (OxPE) and 9 etherPE (ox O-PE). In plasma samples, we 

annotated 62 oxTG and 18 oxPC (Figure 3). The distribution of oxidative modifications 

among the different oxidized lipid classes in plasma and the liver is shown in Figure 3. 

These derivatives were identified as epoxy-, hydroxy-, oxo- (O), hydroperoxy- (OO) 

products or a combination of these (OOO), and were mainly observed as [M + NH4]+, 

[M+H]+, [M+HCOO]-, and [M-H]- adducts.  
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Figure 3: The distribution of oxidative modifications among the different oxidized lipid classes in plasma and liver 
samples. Due to the intrinsic limitations of CID fragmentation mode, it was not possible to distinguish isomers that 
have the same number of oxygen atoms. Specifically, this poses a challenge in differentiating between epoxy and oxo 
derivatives, which have been classified as (O) in the annotation process. 

The initial annotation of candidate oxidized lipids was followed by manual verification of 

the correct assignment of diagnostic peaks according to the fragmentation rules we 

included in the internal MS/MS CID library. In particular, we checked the accuracy of the 

annotation of lipid classes, molecular species, modification type, and modification 

position of oxidized lipids in our dataset.   

For example, Figure 4 shows the spectrum of one of the oxTGs detected in our samples. 

OxTG ionized in positive mode, mainly as ammoniated adducts. In this spectrum, the 

ammoniated parent ion can be clearly observed at m/z 890.7723. Such adduct provides 

informative MS/MS spectra with fragment ions indicative of the structures of the oxidized 

lipids. Thus, the CID spectrum of TG (16:0_18:1_18:2(+O) resulted in the formation of 

informative fragment ion signals, such as those corresponding to DG ions, due to the 

loss of each acyl group as a neutral carboxylic acid and neutral ammonia (NH3). 
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Moreover, other product ions can be obtained following the fragmentation of the DG 

fragments. For instance, acylium ions at m/z 279.22 (FA 18:2+O) and acylium ion +74 at 

m/z 353.2644 (18:2+O) can be observed. Using this information, the structure of oxTG 

can be deduced.  

 

Figure 4: Evaluation of MS/MS fragmentation pattern for oxTG (16:0_18:1_18:2(+O)). Fragment ions related to DG 
ions allowing carrying modified FA (green) and unmodified FA (blue).   

In the case of oxPC, they are preferentially ionized in negative mode as formate adducts. 

As shown in Figure 5, this adduct usually generates a neutral loss of 60 units (methyl 

formate) that can be observed from the parent ion. This adduct generates intense 

fragment ions that are specific to both the head groups and fatty acyl chains, including 
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the one with the modification. For example, CID fragmentation of the oxPC-formate 

adduct ion at m/z 870.585 produced diagnostic peaks related to the lipid class (head 

group-specific ions at m/z 184, detectable only in positive ion mode), molecular species 

(anions of the oxidized fatty acyl chains at m/z 319.2332 and the unmodified acyl chain 

at m/z 283.2281), and the type of modification (water loss indicative of a hydroxyl group 

at m/z 301.2175). 

 

Figure 5: CID MS/MS spectra of oxPC (18:0_20:4 (+O)) with the corresponding fragment patterns. Orange and purple 
circles indicate fragment ions with and without oxygen modification, respectively. 

Similarly to oxPC, the CID fragmentation pattern of oxPE (Figure 6) generates several 

diagnostic fragments that can be used for their accurate annotation. In the positive mode, 

one such peak is the fragment ions, including neutral losses of the headgroup 

(ethanolamine loss of 141 Da) in PE. However, as with oxPC, the negative ionization 

mode allows for a better characterization of the lipid subclass. Diagnostic peaks that can 

be matched may also contain information on the sn position. In particular, for PE 

molecular species, the most abundant fragments observed are derived from the sn-2 

fatty acyl group.  
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Figure 6: CID MS/MS spectra of oxPE ((18:0_20:4 (+O)) with the corresponding fragment patterns. Green and purple 
circles indicate fragment ions with and without oxygen modification, respectively. 

The negative molecular ion from PE and PC plasmalogen and the O-alkyl PC and PE 

species behave identically to that of the diacyl-phospholipids except that the single 

abundant carboxylate anion is formed. These ether lipids can also show the loss of the 

sn-2 fatty acyl groups as ketene. 

Of the manually confirmed lipids, I also checked that the elution time was consistent with 

the presence of oxidation, i.e. that the peak elutes before the corresponding unmodified 

lipid. Thus, I excluded oxidized lipids when the respective unoxidized species were not 

identified. Interestingly, for both the biological matrices, the correlation analysis between 

oxidized and non-oxidized lipids revealed no significant relationship between the two 

groups. The low correlation in Figure 7 suggests that oxidation does not occur 

exclusively from the most abundant or intense non-oxidized lipids, as expected. Instead, 

oxidation products can be formed from various lipid species independent of their 

abundance. 
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Figure 7: Correlation analysis of oxidized versus non-oxidized lipid species in biological matrices. The scatter plot 
showed the relationship between the intensity (log10 transformed) of oxidized lipids and their corresponding non-
oxidized reference species. The low R² coefficient (Pearson correlation) indicates a lack of strong correlation between 
these two groups, suggesting that the formation of oxidized lipids is not necessarily linked to the abundance of non-
oxidized species. The analysis showed that oxidation can occur independently of the intensity or concentration of non-
oxidized substrates.  

Identification of epilipidomic signatures of carnosine treatment in lean and 
obese animals 

Next, I aimed to determine the lipid and oxilipid patterns that underlie the carnosine 

effect. The PLS-DA score plots showed a clear separation between the HSF and 

HSF+CAR groups in both positive and negative modes in each matrix. The weights of 

all lipids discriminating the experimental groups (HSF and HSF + CAR) were subjected 

to a permutation approach to generate a list of HSF and HSF+CAR-associated lipid 

molecular species. Using a 10% cut-off, these two lists contained 307 and 36 lipid 

species in plasma for the HSF and HSF+CAR groups, respectively, including oxidized 

lipid species. In the liver, 267 and 171 lipid species for the HSF group and HSF+CAR, 

respectively (Figure 8).  

2 
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Figure 8: PLS-DA analysis of HSF and HSF+CAR samples showing the discrimination between the two experimental 
groups among component 1, either liver or plasma samples. Weights of the first component of the PLS-DA. The 10% 
and 90% percentiles associated with HSF and HSF+CAR, respectively, were determined using a permutation 
approach. 

Most of the species significantly reduced by carnosine treatment consisted of oxidation 

products enriched in oxygenated 18:1, 18:2 and 18:3, 18:4 acyl chains. Among these, O 

mainly identified oxTG. For instance, TG (16:0_18:1_18:3(O)), TG (TG 18:2_18:2_18:2 

(O)), and TG (TG 16:0_18:2_18:2 (O)) were found to be significantly reduced in either 

plasma or liver samples of CAR-treated obese rats. In particular, these species are 

reported to be elevated in TG-rich lipoproteins such as VLDL. 22,23 
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Figure 9: Box plots showing the behaviour of log10-transformed intensity values for oxidized TGs in liver lipid extracts, 
positive ESI mode. ANOVA (p<0.05). The plot differentiates between truncated and intact oxidized species, highlighted 
by varying tones of blue. 

Looking at the oxidized triglycerides that were significantly changed in the two 

experimental groups, several short-chain products (aldehydes and carboxylic acid) were 

also observed. These were as follows: TG (18:1_18:1_9:0 (CHO)) and OxTG 

(16:0_18:2_9:0 (CHO)). These short-chain oxidation products are degradation products 

generated by prolonged PUFA peroxidation and subsequent Hock rearrangement24. 

Although we do not know which precursor lipids give rise to these truncated species, it 

is important to note that they are all identified with retention times lower than the potential 

corresponding TG. We can, therefore, infer that they are not simple products generated 

by in-source fragmentation but rather the result of sustained lipid peroxidation caused 

by ROS. Importantly, I have shown that the observed effect is specific to OxTG and does 

not scale with the level of the corresponding unmodified lipids (Figure 10).   
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Figure 10: Log2-fold change in oxidized triglycerides (OxTGs) and corresponding unmodified TGs between the 
HSF+CAR and HSF groups. The data highlight the specificity of the effect of carnosine, as OxTGs show a more 
marked decrease compared to their non-oxidized forms, underlining the selective effect of carnosine on lipid oxidation 
products. 

In addition to oxidized lipids and plasmalogens (described in Chapter 4), carnosine 

significantly reduces other lipid markers of oxidative stress. PE (38:4), LPC (20:4), and 

other PUFA phospholipids were previously found to be upregulated in the plasma of 

obese rats and subsequently reduced by the treatment with CAR. 

Discussion 

Automated and high-throughput annotation of oxidized lipids is challenging due to the 

complexity of the epilipidome, the huge number of candidate structures that far exceed 
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unoxidized lipids, and the lack of standard validation. Thus, advanced bioinformatic tools 

are required, which, however, are still few.  

The aim of this work was to optimize an analytical pipeline for the discovery and 

characterization of oxidized lipids in complex biological matrices. To do that, I took 

advantage of the untargeted lipidomic dataset generated in Chapter 4 and used it here 

to study the epilipidomic signatures of plasma and liver from lean and obese animals 

while also investigating the beneficial effects of carnosine treatment. 

Untargeted LC-MS/MS lipidomics can detect thousands of molecules in biological 

samples, but the annotation of oxidized lipids is often limited to structures present in 

libraries, limiting the analysis and interpretation of experimental data. Instead, our 

method offers a rapid approach to extracting oxidized species from complex untargeted 

datasets. This approach allowed us to identify putatively oxidized lipids on a minute 

scale, making it compatible with routine untargeted lipidomics analyses.  

Overall, the workflow offers several advantages. First, it expands the analysis into a 

broader chemical space by introducing multiple fatty acids as substrates for oxidation 

and new oxidation combinations, thereby increasing the diversity of oxidized lipids that 

can be detected. Second, different from other analytical workflows reported in the 

literature, our annotation tool allows the simultaneous analysis of either unmodified or 

modified species, and we have demonstrated its compatibility with 2.4-min LC-MS/MS 

methods, thereby improving the throughput of the analysis. To our knowledge, this is one 

of the first studies to integrate oxidized lipid detection into a high-throughput untargeted 

lipidomics workflow. As discussed previously in this thesis, the future direction of omics 

research will increasingly rely on the use of fast LC gradients for various biomedical 

applications. Given the growing interest in oxidized lipids, it is important to evaluate how 

the analysis of those species can be incorporated into untargeted modern workflows. 

The method employed in this study was tailored specifically for a 2-minute LC method, 

which differs from more traditional approaches for assessing oxidized lipids. However, 

this remains a preliminary approach, and further validation is required to fully establish 

its utility in biomedical research. Moving forward, we plan to validate this method and 

further refine its application. 



Chapter 5 

143 
 

With this method, I successfully detected more than 200 lipids with putative oxidative 

modifications in liver and plasma samples. These annotations were manually checked 

to remove any false positives that had not been removed in the initial filtering of the 

untargeted dataset. Our results showed that lipid oxidation primarily occurs on the fatty 

acyl chains of complex lipids, such as triglycerides and phospholipids. These lipids are 

also among the most abundant species in the lipidome, but for both plasma and liver, I 

observed that oxidation does not scale with the intensity of unmodified species. 

I then explored the epilipidomic signatures that define obesity and the beneficial effects 

of carnosine treatment. Our results showed that obese rats have distinct epilipidomic 

signatures, enriched in oxygenated acyl chains (18:1, 18:2, 18:3, 18:4) of TGs, and that 

carnosine treatment partially restored the pattern of these lipids. This effect may be 

attributed to the direct antioxidant action of CAR and its role as a scavenger of carbonyl 

species, restoring the redox balance and improving the pathological phenotype in the 

liver. This hypothesis is supported by the significant reduction in levels of truncated TGs, 

which are end products of lipid peroxidation driven by ROS, typically targeting 

polyunsaturated fatty acids (PUFAs), either free or esterified to complex lipids such as 

TGs and strongly associated with cardiometabolic disease25. However, it is plausible that 

the effect of carnosine is not limited to direct mechanisms but may also involve promoting 

the expression of key antioxidant enzymes through indirect mechanisms that remain to 

be fully elucidated. 

Taken together, our method allowed the comprehensive and high-throughput profiling of 

oxidized complex lipids, opening up the possibility of discovering new potential 

biomarkers of the disease. Moreover, the annotation pipeline could be extended to other 

lipid modifications beyond oxidation, including modifications occurring in other parts of 

the lipid structure.  

In addition, alternative analytical approaches can be applied for fine-grained structural 

elucidation of oxidized lipids. Indeed, although we have focused on CID (collision-

induced dissociation) fragmentation, we aim to extend the annotation of ox lipids to other 

fragmentation methods to provide more detailed structural information. Given the 

increasing importance of redox lipidomics, this could be a crucial next step. The results 

of this part of the work will be discussed in the next chapter. 
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Conclusion 

We have optimized a workflow for the annotation of oxidized lipids in untargeted 

lipidomic analysis. This methodology was applied to liver and plasma lipidome analysis, 

demonstrating its potential to address epilipidome changes in an untargeted manner and 

to guide future research on the role of oxidized lipids in biological systems. 
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Supplementary Tables 

Supplementary Table 1: Complete list of oxidized lipids putatively annotated in liver samples in positive ESI mode.  
  
 

mz Rt (sec) formula ion species (lib_id) mz Rt (sec) formula ion species (lib_id) 
650.4387 24.21 C33H64O9NP [M+H]+ PC 25:1;O 864.7569 83.97 C53H98O7 [M+NH4]+ TG 50:2;O 
666.4327 19.82 C33H64O10NP [M+H]+ PC 25:1;O2 901.7202 87.87 C53H98O9 [M+Na]+ TG 50:2;O3 
678.4698 29.04 C35H68O9NP [M+H]+ PC 27:1;O 879.7377 114.49 C53H98O9 [M+H]+ TG 50:2;O3 
780.5477 47.73 C40H78O11NP [M+H]+ PC 32:1;O3 862.7445 80.04 C53H96O7 [M+NH4]+ TG 50:3;O 
808.5765 43.98 C42H82O11NP [M+H]+ PC 34:1;O3 867.7026 80.71 C53H96O7 [M+Na]+ TG 50:3;O 
772.5458 42.51 C42H78O9NP [M+H]+ PC 34:3;O 862.745 89.42 C53H96O7 [M+NH4]+ TG 50:3;O 
804.5477 48.5 C42H78O11NP [M+H]+ PC 34:3;O3 894.7483 84.18 C53H96O9 [M+NH4]+ TG 50:3;O3 
784.5488 42.47 C43H78O9NP [M+H]+ PC 35:4;O 899.7028 84.31 C53H96O9 [M+Na]+ TG 50:3;O3 

838.61 53.11 C44H88O11NP [M+H]+ PC 36:0;O3 860.729 77.23 C53H94O7 [M+NH4]+ TG 50:4;O 
834.5783 44.35 C44H84O11NP [M+H]+ PC 36:2;O3 860.7325 84.44 C53H94O7 [M+NH4]+ TG 50:4;O 
834.5945 57.46 C44H84O11NP [M+H]+ PC 36:2;O3 860.7282 84.8 C53H94O7 [M+NH4]+ TG 50:4;O 
798.5623 40 C44H80O9NP [M+H]+ PC 36:4;O 859.7102 100.43 C53H94O8 [M+H]+ TG 50:4;O2 
814.5579 36.45 C44H80O10NP [M+H]+ PC 36:4;O2 875.7034 87.05 C53H94O9 [M+H]+ TG 50:4;O3 
830.5546 42.37 C44H80O11NP [M+H]+ PC 36:4;O3 858.7127 81.37 C53H92O7 [M+NH4]+ TG 50:5;O 
796.5476 37.03 C44H78O9NP [M+H]+ PC 36:5;O 919.7543 82.8 C54H104O9 [M+Na]+ TG 51:0;O3 

826.593 46.85 C46H84O9NP [M+H]+ PC 38:4;O 914.8097 97.21 C54H104O9 [M+NH4]+ TG 51:0;O3 
842.5886 39.87 C46H84O10NP [M+H]+ PC 38:4;O2 893.7341 82.68 C54H100O9 [M+H]+ TG 51:2;O3 
858.5898 46.22 C46H84O11NP [M+H]+ PC 38:4;O3 893.7504 96.9 C54H100O9 [M+H]+ TG 51:2;O3 
858.5943 47.81 C46H84O11NP [M+H]+ PC 38:4;O3 876.7633 80.73 C54H98O7 [M+NH4]+ TG 51:3;O 
856.5708 35.32 C46H82O11NP [M+H]+ PC 38:5;O3 891.7228 79.71 C54H98O9 [M+H]+ TG 51:3;O3 

856.567 42.21 C46H82O11NP [M+H]+ PC 38:5;O3 891.7374 93.9 C54H98O9 [M+H]+ TG 51:3;O3 
854.5539 40.75 C46H80O11NP [M+H]+ PC 38:6;O3 928.8225 95 C55H106O9 [M+NH4]+ TG 52:0;O3 
770.5665 50.22 C43H80O8NP [M+H]+ PC O-35:4;O 909.7825 97.24 C55H104O9 [M+H]+ TG 52:1;O3 
784.5801 60.03 C44H82O8NP [M+H]+ PC O-36:4;O 892.7901 87.7 C55H102O7 [M+NH4]+ TG 52:2;O 
810.5982 59.45 C46H84O8NP [M+H]+ PC O-38:5;O 890.7773 85.33 C55H100O7 [M+NH4]+ TG 52:3;O 
808.5803 56.82 C46H82O8NP [M+H]+ PC O-38:6;O 906.7719 76.37 C55H100O8 [M+NH4]+ TG 52:3;O2 
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780.5396 40.61 C40H78O11NP [M+H]+ PE 35:1;O3 927.7343 89.91 C55H100O9 [M+Na]+ TG 52:3;O3 
796.5796 53.83 C41H82O11NP [M+H]+ PE 36:0;O3 888.7611 81.08 C55H98O7 [M+NH4]+ TG 52:4;O 
784.5488 42.47 C43H78O9NP [M+H]+ PE 38:4;O 888.7608 88.54 C55H98O7 [M+NH4]+ TG 52:4;O 

658.408 30.93 C34H60O9NP [M+H]+ PE O-29:5;O2 904.7524 72.58 C55H98O8 [M+NH4]+ TG 52:4;O2 
714.4315 31.37 C37H64O10NP [M+H]+ PE O-32:6;O3 904.7589 75.48 C55H98O8 [M+NH4]+ TG 52:4;O2 
712.4906 45.17 C39H70O8NP [M+H]+ PE O-34:5;O 903.7383 89.45 C55H98O9 [M+H]+ TG 52:4;O3 
756.5481 54.96 C42H78O8NP [M+H]+ PE O-37:4;O 886.7406 75.15 C55H96O7 [M+NH4]+ TG 52:5;O 
784.5488 42.47 C43H78O9NP [M+H]+ PE O-38:5;O2 886.7473 76.42 C55H96O7 [M+NH4]+ TG 52:5;O 
766.5334 50.2 C43H76O8NP [M+H]+ PE O-38:6;O 891.7046 78.15 C55H96O7 [M+Na]+ TG 52:5;O 
780.5537 53.25 C44H78O8NP [M+H]+ PE O-39:6;O 869.719 83.33 C55H96O7 [M+H]+ TG 52:5;O 
926.5737 46.93 C49H84O13NP [M+H]+ PS 43:6;O3 886.7449 86.28 C55H96O7 [M+NH4]+ TG 52:5;O 
586.4223 24.65 C32H56O8 [M+NH4]+ TG 29:2;O2 902.7381 72.31 C55H96O8 [M+NH4]+ TG 52:5;O2 
656.5076 38.29 C37H66O8 [M+NH4]+ TG 34:2;O2 885.7234 100.44 C55H96O8 [M+H]+ TG 52:5;O2 
672.5033 36.29 C37H66O9 [M+NH4]+ TG 34:2;O3 901.7202 87.87 C55H96O9 [M+H]+ TG 52:5;O3 
671.5014 78.04 C38H70O9 [M+H]+ TG 35:1;O3 867.7026 80.71 C55H94O7 [M+H]+ TG 52:6;O 
686.5174 39.92 C38H68O9 [M+NH4]+ TG 35:2;O3 884.7282 81.42 C55H94O7 [M+NH4]+ TG 52:6;O 
682.5272 38.51 C39H68O8 [M+NH4]+ TG 36:3;O2 899.7028 84.31 C55H94O9 [M+H]+ TG 52:6;O3 
693.4895 37.01 C40H68O9 [M+H]+ TG 37:4;O3 910.8423 102.5 C56H108O7 [M+NH4]+ TG 53:0;O 
691.4746 39.86 C40H66O9 [M+H]+ TG 37:5;O3 923.796 103.92 C56H106O9 [M+H]+ TG 53:1;O3 
697.5892 109.65 C42H80O7 [M+H]+ TG 39:0;O 919.7543 82.8 C56H102O9 [M+H]+ TG 53:3;O3 
727.5637 68.66 C42H78O9 [M+H]+ TG 39:1;O3 936.7948 92.12 C56H102O9 [M+NH4]+ TG 53:3;O3 
740.6344 69.3 C44H82O7 [M+NH4]+ TG 41:1;O 934.7798 89.44 C56H100O9 [M+NH4]+ TG 53:4;O3 
770.6438 71.34 C45H84O8 [M+NH4]+ TG 42:1;O2 899.7401 101.2 C56H98O8 [M+H]+ TG 53:5;O2 
766.6497 69.53 C46H84O7 [M+NH4]+ TG 43:2;O 937.8149 104.56 C57H108O9 [M+H]+ TG 54:1;O3 
764.6374 64.93 C46H82O7 [M+NH4]+ TG 43:3;O 952.8217 95.46 C57H106O9 [M+NH4]+ TG 54:2;O3 
797.6577 86.14 C47H88O9 [M+H]+ TG 44:1;O3 952.8271 96.33 C57H106O9 [M+NH4]+ TG 54:2;O3 
780.6674 71.2 C47H86O7 [M+NH4]+ TG 44:2;O 935.8004 96.83 C57H106O9 [M+H]+ TG 54:2;O3 
796.6637 70.79 C47H86O8 [M+NH4]+ TG 44:2;O2 918.8044 81.24 C57H104O7 [M+NH4]+ TG 54:3;O 
795.6253 77.22 C47H86O9 [M+H]+ TG 44:2;O3 918.8059 82.04 C57H104O7 [M+NH4]+ TG 54:3;O 

794.651 67.09 C47H84O8 [M+NH4]+ TG 44:3;O2 950.8108 93.23 C57H104O9 [M+NH4]+ TG 54:3;O3 
812.6938 73.69 C48H90O8 [M+NH4]+ TG 45:1;O2 933.7804 95.12 C57H104O9 [M+H]+ TG 54:3;O3 
794.6858 72.36 C48H88O7 [M+NH4]+ TG 45:2;O 933.7847 100.34 C57H104O9 [M+H]+ TG 54:3;O3 
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792.6703 69.17 C48H86O7 [M+NH4]+ TG 45:3;O 916.789 79.88 C57H102O7 [M+NH4]+ TG 54:4;O 
825.6913 90.32 C49H92O9 [M+H]+ TG 46:1;O3 916.7882 82.53 C57H102O7 [M+NH4]+ TG 54:4;O 
823.6755 86.54 C49H90O9 [M+H]+ TG 46:2;O3 948.7936 86.58 C57H102O9 [M+NH4]+ TG 54:4;O3 
822.6732 72.15 C49H88O8 [M+NH4]+ TG 46:3;O2 931.7689 96.64 C57H102O9 [M+H]+ TG 54:4;O3 
834.6763 73.68 C50H88O8 [M+NH4]+ TG 47:4;O2 914.7737 78.47 C57H100O7 [M+NH4]+ TG 54:5;O 
839.7418 95.27 C51H98O8 [M+H]+ TG 48:0;O2 913.7582 103.79 C57H100O8 [M+H]+ TG 54:5;O2 
875.7034 87.05 C51H96O9 [M+Na]+ TG 48:1;O3 946.7795 86.52 C57H100O9 [M+NH4]+ TG 54:5;O3 
836.7315 77.93 C51H94O7 [M+NH4]+ TG 48:2;O 912.7596 75.5 C57H98O7 [M+NH4]+ TG 54:6;O 
869.7524 100 C52H100O9 [M+H]+ TG 49:0;O3 895.7364 83.88 C57H98O7 [M+H]+ TG 54:6;O 
867.7381 96.73 C52H98O9 [M+H]+ TG 49:1;O3 912.7585 85.37 C57H98O7 [M+NH4]+ TG 54:6;O 
865.7196 93.43 C52H96O9 [M+H]+ TG 49:2;O3 911.7433 100.15 C57H98O8 [M+H]+ TG 54:6;O2 
880.7274 85.94 C52H94O9 [M+NH4]+ TG 49:3;O3 944.7626 83.71 C57H98O9 [M+NH4]+ TG 54:6;O3 
863.7023 89.78 C52H94O9 [M+H]+ TG 49:3;O3 927.7343 89.91 C57H98O9 [M+H]+ TG 54:6;O3 
881.7534 93.12 C53H100O9 [M+H]+ TG 50:1;O3 938.8724 105.09 C58H112O7 [M+NH4]+ TG 55:0;O 
881.7522 114.78 C53H100O9 [M+H]+ TG 50:1;O3 917.8241 99.25 C58H108O7 [M+H]+ TG 55:2;O 
864.7569 83.97 C53H98O7 [M+NH4]+ TG 50:2;O 913.7891 91.96 C58H104O7 [M+H]+ TG 55:4;O 
901.7202 87.87 C53H98O9 [M+Na]+ TG 50:2;O3 940.7916 80.78 C59H102O7 [M+NH4]+ TG 56:6;O 
879.7377 114.49 C53H98O9 [M+H]+ TG 50:2;O3 972.792 85.19 C59H102O9 [M+NH4]+ TG 56:6;O3 
862.7445 80.04 C53H96O7 [M+NH4]+ TG 50:3;O 955.769 93.78 C59H102O9 [M+H]+ TG 56:6;O3 
867.7026 80.71 C53H96O7 [M+Na]+ TG 50:3;O 970.8525 109.75 C61H108O7 [M+NH4]+ TG 58:5;O 

862.745 89.42 C53H96O7 [M+NH4]+ TG 50:3;O 1000.822 92.31 C61H106O9 [M+NH4]+ TG 58:6;O3 
894.7483 84.18 C53H96O9 [M+NH4]+ TG 50:3;O3 1066.949 111.8 C65H124O9 [M+NH4]+ TG 62:1;O3 
899.7028 84.31 C53H96O9 [M+Na]+ TG 50:3;O3 1064.933 111.04 C65H122O9 [M+NH4]+ TG 62:2;O3 

860.729 77.23 C53H94O7 [M+NH4]+ TG 50:4;O 1094.98 111.7 C67H128O9 [M+NH4]+ TG 64:1;O3 
860.7325 84.44 C53H94O7 [M+NH4]+ TG 50:4;O 1080.962 112.66 C69H122O7 [M+NH4]+ TG 66:6;O 
860.7282 84.8 C53H94O7 [M+NH4]+ TG 50:4;O 1077.952 113.13 C70H124O7 [M+H]+ TG 67:6;O 
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Supplementary Table 2: Complete list of oxidized lipids putatively annotated in liver samples in negative ESI mode. 
 

mz Rt (sec) formula ion species (lib_id) mz Rt (sec) formula ion species (lib_id) 
778.5001 37.09 C43H74O9NP [M-H]- PE 38:6;O 898.5805 54.62 C47H84O10NP [M+HCOO]- PC 39:5;O2 
780.5169 42.55 C43H76O9NP [M-H]- PC 35:5;O 898.5805 54.62 C47H84O10NP [M+HCOO]- PC O-39:6;O3 
780.5152 47.24 C43H76O9NP [M-H]- PE 38:5;O 900.5603 48.89 C46H82O11NP [M+HCOO]- PE 41:5;O3 
782.5332 39.82 C43H78O9NP [M-H]- PC 35:4;O 900.594 60.06 C47H86O10NP [M+HCOO]- PE 42:4;O2 
784.4976 41.85 C37H74O11NP [M+HCOO]- PE 32:0;O3 900.594 60.06 C47H86O10NP [M+HCOO]- PE O-42:5;O3 
804.5095 45.83 C41H76O12NP [M-H]- PS 35:2;O2 901.545 39.12 C47H83O14P [M-H]- PI 38:4;O 
808.5481 52.77 C45H80O9NP [M-H]- PC 37:5;O 926.5745 49.23 C48H84O11NP [M+HCOO]- PC 40:6;O3 
810.5156 43.66 C39H76O11NP [M+HCOO]- PE 34:1;O3 928.5927 54.29 C48H86O11NP [M+HCOO]- PE 43:5;O3 
810.5258 57.48 C44H78O10NP [M-H]- PE 39:5;O2 932.674 60.42 C54H96O9NP [M-H]- PC 46:6;O 
812.5272 41.49 C39H78O11NP [M+HCOO]- PC 31:0;O3 578.3465 26.32 C28H54O9NP [M-H]- PE O-23:2;O2 
814.5226 33.89 C42H76O9NP [M+HCOO]- PC 34:4;O 599.3207 17.7 C27H53O12P [M-H]- PG 21:0;O2 

816.538 37.29 C42H78O9NP [M+HCOO]- PC 34:3;O 604.3247 6.78 C28H50O8NP [M+HCOO]- LPC 20:4;O 
816.5403 42.58 C42H78O9NP [M+HCOO]- PC 34:3;O 608.3166 14.71 C27H50O9NP [M+HCOO]- PC 19:2;O 
818.5487 40.06 C42H80O9NP [M+HCOO]- PC 34:2;O 636.3509 22.86 C29H54O9NP [M+HCOO]- PC 21:2;O 
832.5338 34.43 C42H78O10NP [M+HCOO]- PC 34:3;O2 638.3626 21.53 C29H56O9NP [M+HCOO]- PC 21:1;O 
834.5507 33.57 C42H80O10NP [M+HCOO]- PC 34:2;O2 638.3626 21.53 C29H56O9NP [M+HCOO]- PC O-21:2;O2 
834.6266 66.67 C45H90O10NP [M-H]- PC 37:0;O2 656.3792 15.4 C29H58O10NP [M+HCOO]- PE 24:0;O2 
839.4859 36.29 C41H77O15P [M-H]- PI 32:1;O2 664.4203 19.45 C33H64O10NP [M-H]- PC 25:1;O2 
840.5376 37.54 C44H78O9NP [M+HCOO]- PC 36:5;O 664.4202 37.95 C33H64O10NP [M-H]- PC 25:1;O2 
841.5011 38.52 C41H79O15P [M-H]- PI 32:0;O2 676.4181 26.74 C34H64O10NP [M-H]- PC 26:2;O2 

842.554 37 C44H80O9NP [M+HCOO]- PC 36:4;O 680.4138 21.62 C32H62O9NP [M+HCOO]- PC 24:1;O 
842.5495 39.84 C44H80O9NP [M+HCOO]- PC 36:4;O 692.4476 27.82 C35H68O10NP [M-H]- PC 27:1;O2 
842.5562 41.2 C44H80O9NP [M+HCOO]- PC 36:4;O 694.4296 23.61 C33H64O9NP [M+HCOO]- PC 25:1;O 
850.5978 23.29 C48H86O9NP [M-H]- PC 40:5;O 694.4291 42.98 C33H64O9NP [M+HCOO]- PC 25:1;O 
858.5471 34.61 C44H80O10NP [M+HCOO]- PC 36:4;O2 694.4291 42.98 C33H64O9NP [M+HCOO]- PE 28:1;O 
865.5032 37.64 C43H79O15P [M-H]- PI 34:2;O2 708.4436 29.95 C34H66O9NP [M+HCOO]- PC 26:1;O 
866.5493 37.59 C46H80O9NP [M+HCOO]- PC 38:6;O 713.3485 17.87 C32H59O15P [M-H]- PI 23:1;O2 
866.5543 39.71 C46H80O9NP [M+HCOO]- PC 38:6;O 722.4624 29.18 C35H68O9NP [M+HCOO]- PC 27:1;O 
866.5546 37.31 C46H80O9NP [M+HCOO]- PC 38:6;O 724.4417 27.43 C34H66O10NP [M+HCOO]- PC 26:1;O2 
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866.585 49.74 C43H84O11NP [M+HCOO]- PC 35:1;O3 726.455 20.5 C34H68O10NP [M+HCOO]- PC O-26:1;O3 
867.5167 39.48 C43H81O15P [M-H]- PI 34:1;O2 752.4726 33.09 C36H70O10NP [M+HCOO]- PC 28:1;O2 
867.5192 40.85 C43H81O15P [M-H]- PI 34:1;O2 766.5148 47.29 C39H78O11NP [M-H]- PC 31:0;O3 
868.5652 39.44 C46H82O9NP [M+HCOO]- PC 38:5;O 766.5194 47.32 C39H78O11NP [M-H]- PC 31:0;O3 
868.5698 41.83 C46H82O9NP [M+HCOO]- PC 38:5;O 

  
 

  

868.606 54.58 C48H88O10NP [M-H]- PC 40:4;O2 
  

 
  

872.5393 49.62 C44H78O11NP [M+HCOO]- PC 36:5;O3 
  

 
  

882.5494 34.14 C46H80O10NP [M+HCOO]- PC 38:6;O2 
  

 
  

884.5644 37.99 C46H82O10NP [M+HCOO]- PC 38:5;O2 
  

 
  

886.5795 39.25 C46H84O10NP [M+HCOO]- PC 38:4;O2 
  

 
  

 
 
 

Supplementary Table 3: Complete list of oxidized lipids putatively annotated in plasma samples in positive and negative ESI mode. 

mz Rt (sec) formula ion species (lib_id) mz Rt (sec) formula ion species (lib_id) 
568.3273 8.13 C26H50O10NP [M+H]+ PC 18:1;O2 929.743 88.75 C55H102O9 [M+Na]+ TG 52:2;O3 
694.4647 27.79 C35H68O10NP [M+H]+ PC 27:1;O2 890.7753 82.21 C55H100O7 [M+NH4]+ TG 52:3;O 
708.4818 32.8 C36H70O10NP [M+H]+ PC 28:1;O2 922.7675 85.18 C55H100O9 [M+NH4]+ TG 52:3;O3 
704.4476 20.74 C36H66O10NP [M+H]+ PC 28:3;O2 922.7712 86.75 C55H100O9 [M+NH4]+ TG 52:3;O3 
794.5641 49.55 C41H80O11NP [M+H]+ PC 33:1;O3 888.7626 88.61 C55H98O7 [M+NH4]+ TG 52:4;O 
824.6109 57 C43H86O11NP [M+H]+ PC 35:0;O3 888.7631 80.81 C55H98O7 [M+NH4]+ TG 52:4;O 
834.5865 46.13 C44H84O11NP [M+H]+ PC 36:2;O3 920.7487 82.23 C55H98O9 [M+NH4]+ TG 52:4;O3 
828.5479 43.36 C44H78O11NP [M+H]+ PC 36:5;O3 886.7442 77.34 C55H96O7 [M+NH4]+ TG 52:5;O 
848.6089 56.53 C45H86O11NP [M+H]+ PC 37:2;O3 885.7212 99.65 C55H96O8 [M+H]+ TG 52:5;O2 
858.5887 46.97 C46H84O11NP [M+H]+ PC 38:4;O3 902.7399 71.76 C55H96O8 [M+NH4]+ TG 52:5;O2 
782.5648 54.02 C44H80O8NP [M+H]+ PC O-36:5;O 945.7655 86.78 C56H106O9 [M+Na]+ TG 53:1;O3 
780.5495 50.03 C44H78O8NP [M+H]+ PC O-36:6;O 943.7523 83.42 C56H104O9 [M+Na]+ TG 53:2;O3 
808.5816 55.44 C46H82O8NP [M+H]+ PC O-38:6;O 954.8429 99.52 C57H108O9 [M+NH4]+ TG 54:1;O3 
968.7642 83.33 C56H106O9NP [M+H]+ PC O-48:4;O2 950.81 93.17 C57H104O9 [M+NH4]+ TG 54:3;O3 
752.5527 54.38 C39H78O10NP [M+H]+ PE 34:0;O2 916.7938 84.05 C57H102O7 [M+NH4]+ TG 54:4;O 

656.506 39.08 C37H66O8 [M+NH4]+ TG 34:2;O2 948.7901 87.12 C57H102O9 [M+NH4]+ TG 54:4;O3 
672.5037 36.12 C37H66O9 [M+NH4]+ TG 34:2;O3 948.7948 90.67 C57H102O9 [M+NH4]+ TG 54:4;O3 
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688.5329 36.4 C38H70O9 [M+NH4]+ TG 35:1;O3 914.7775 78.79 C57H100O7 [M+NH4]+ TG 54:5;O 
686.5198 39.12 C38H68O9 [M+NH4]+ TG 35:2;O3 929.743 88.75 C57H100O9 [M+H]+ TG 54:5;O3 
682.5228 38.86 C39H68O8 [M+NH4]+ TG 36:3;O2 946.7644 83.18 C57H100O9 [M+NH4]+ TG 54:5;O3 
682.5242 38.74 C39H68O8 [M+NH4]+ TG 36:3;O2 946.774 83.39 C57H100O9 [M+NH4]+ TG 54:5;O3 
712.5336 39.83 C40H70O9 [M+NH4]+ TG 37:3;O3 912.7569 77.14 C57H98O7 [M+NH4]+ TG 54:6;O 
735.5315 82.37 C43H74O9 [M+H]+ TG 40:4;O3 927.7227 84.86 C57H98O9 [M+H]+ TG 54:6;O3 
740.6379 68.36 C44H82O7 [M+NH4]+ TG 41:1;O 944.7613 84.23 C57H98O9 [M+NH4]+ TG 54:6;O3 
738.6214 64.02 C44H80O7 [M+NH4]+ TG 41:2;O 944.7626 83.37 C57H98O9 [M+NH4]+ TG 54:6;O3 
770.6493 71.19 C45H84O8 [M+NH4]+ TG 42:1;O2 943.7523 83.42 C58H102O9 [M+H]+ TG 55:5;O3 
768.6385 66.1 C45H82O8 [M+NH4]+ TG 42:2;O2 974.8072 92.22 C59H104O9 [M+NH4]+ TG 56:5;O3 
768.6681 74.29 C46H86O7 [M+NH4]+ TG 43:1;O 972.7898 85.2 C59H102O9 [M+NH4]+ TG 56:6;O3 
766.6548 68.69 C46H84O7 [M+NH4]+ TG 43:2;O 972.7941 88.77 C59H102O9 [M+NH4]+ TG 56:6;O3 
764.6389 64.5 C46H82O7 [M+NH4]+ TG 43:3;O 604.324 6.32 C28H50O8NP [M+HCOO]- LPC 20:4;O 
796.6608 72.07 C47H86O8 [M+NH4]+ TG 44:2;O2 608.3176 14.6 C27H50O9NP [M+HCOO]- PC 19:2;O 
794.6498 66.28 C47H84O8 [M+NH4]+ TG 44:3;O2 694.431 23.85 C33H64O9NP [M+HCOO]- PC 25:1;O 
799.6047 66.16 C47H84O8 [M+Na]+ TG 44:3;O2 722.4603 31.17 C35H68O9NP [M+HCOO]- PC 27:1;O 
794.6819 73 C48H88O7 [M+NH4]+ TG 45:2;O 722.4603 31.17 C35H68O9NP [M+HCOO]- PC O-27:2;O2 
794.6825 68.39 C48H88O7 [M+NH4]+ TG 45:2;O 750.5318 48.28 C39H78O10NP [M-H]- PC 31:0;O2 
792.6681 69.02 C48H86O7 [M+NH4]+ TG 45:3;O 782.5326 41.75 C43H78O9NP [M-H]- PC 35:4;O 
771.6093 70.24 C48H82O7 [M+H]+ TG 45:5;O 810.566 41.59 C45H82O9NP [M-H]- PC 37:4;O 

769.593 64.49 C48H80O7 [M+H]+ TG 45:6;O 810.566 41.59 C45H82O9NP [M-H]- PC O-37:5;O2 
824.6946 75.01 C49H90O8 [M+NH4]+ TG 46:2;O2 840.574 49.06 C46H84O10NP [M-H]- PC 38:4;O2 
822.6778 71.64 C49H88O8 [M+NH4]+ TG 46:3;O2 870.5842 41.11 C46H84O9NP [M+HCOO]- PC 38:4;O 

850.719 95.6 C51H92O8 [M+NH4]+ TG 48:3;O2  
 

 
  

865.7224 93.45 C52H96O9 [M+H]+ TG 49:2;O3 
  

 
  

908.7637 89.05 C54H98O9 [M+NH4]+ TG 51:3;O3 
  

 
  

926.7923 89.35 C55H104O9 [M+NH4]+ TG 52:1;O3 
  

 
  

926.8117 96.26 C55H104O9 [M+NH4]+ TG 52:1;O3 
  

 
  

907.7687 97.35 C55H102O9 [M+H]+ TG 52:2;O3 
  

 
  

924.7873 89.34 C55H102O9 [M+NH4]+ TG 52:2;O3 
  

 
  

924.7959 92.95 C55H102O9 [M+NH4]+ TG 52:2;O3  
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Summary 

Conventional fragmentation methods, such as collisional-induced dissociation (CID), 

struggle to accurately pinpoint the positions of oxygen and double bonds in lipid 

molecules. To better characterize modified lipids, alternative fragmentation techniques 

can be used. Among these, electron-activated dissociation (EAD) stands out, as it allows 

the comprehensive structural elucidation of different lipid classes by generating unique 

fragment ions essential for detailed lipid analysis. 

In this study, oxidized lipids identified in the previous chapter were selected to generate 

an inclusion list to be monitored through a scheduled MRMHR experiment using the EAD 

fragmentation mode on the ZenoTOF 7600 system to derive deeper structural 

information. 

Background 

The structural elucidation of lipid molecules has traditionally been a complex and multi-

step process involving diverse characterization methods. In the MS field, Collision-

induced dissociation (CID) is the most widely used fragmentation method for lipids 

identification and typically allows annotation of the headgroup, the lengths of acyl chains, 

and the number of double bonds along the acyl chains.  

However, the data produced using CID preclude the information needed to resolve the 

structure of lipid species, leaving gaps in fully resolving lipids at an in-depth structural 

level, including the assignment of the double bond positions along the acyl chain and 

their cis/trans isoforms, the regioisomerism or the precise site of oxidation.  

A more detailed understanding of lipid structures is crucial because lipids play a key role 

in various biological functions, and small structural differences in isomeric lipid 

molecules can seriously affect their functions. For example, a shift in the double bond 

position from ∆7 to ∆9 in a phospholipid has been proposed as a potential biomarker for 

breast cancer 1, and changes in the sn-1 and sn-2 positions of the acyl chain may serve 

as a urinary biomarker for prostate cancer2. Similarly, changes in the double bond 

positions of certain TGs have been correlated with cardiometabolic outcomes. At the 

same time, knowing the precise location of oxidative modifications in oxidized lipids 
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could help to clarify the biological function of these modified lipids, particularly in the 

context of metabolic diseases, including obesity. 

Fully characterizing the lipidome with a single lipidomic approach is challenging, and in 

mass spectrometry, multiple methods are often required to achieve comprehensive lipid 

identification. To address these limitations, electron-activated dissociation (EAD) has 

emerged as a powerful alternative dissociation method for singly charged ions3. EAD 

provides unique fragmentation patterns that are not possible with CID, thus extending 

the level of structural information obtained within a single MS experiment.  

In EAD, positively charged lipids interact with electron beams of kinetic energy, typically 

around 10-20 eV, which excite them by energy absorption. This excitation leads to rich 

fragmentations in lipid bonds, allowing for the formation of specific diagnostic fragments, 

including those crucial for pinpointing the location of double bonds within the acyl chain, 

cis/trans isomerism and the site of lipid modification in complex lipids4,5. Recent 

advances, such as the integration of EAD into the ZenoTOF 7600 system6  on an LC 

timescale, have made comprehensive characterization of complex lipidomes to be more 

compatible with routine lipid analysis. This technique has been successfully applied to 

single-class and total lipid analysis7–10.  

In this study, we applied a semi-targeted data-dependent acquisition (DDA) method 

based on EAD fragmentation to further investigate the structural characteristics of 

complex oxidized lipids annotated in the plasma and liver samples. To do that, the 

oxidized lipids identified in Chapter 5 were used to generate an inclusion list to be 

monitored through a scheduled MRMHR experiment on the ZenoTOF 7600 system. 

Materials and Methods 

LC-MS Analysis 

Sample preparation is described in Chapter 4. Pooled QC samples of plasma and liver 

lipid extracts were resuspended in 80µl of IPA: MeOH 50:50 v/v% and 2µl were injected 

into the LC-MS system. Separation was performed on an Agilent 1290 Infinity II LC 

system, including a binary pump manager, equipped with an ACQUITY UPLC BEH C18 

reversed-phase column (30 mm x 2.1 mm x 1.7 µm). During separation, the column 

temperature was maintained at 60°C and the flow rate was set at 1.2 mL/min. Lipid 
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classes were separated by a 2.4 min gradient elution using the chromatographic gradient 

already described in Chapter 4.  

The MS analysis was done on the ZenoToF 7600 system (SCIEX) operating in high-

resolution multiple reaction monitoring (MRMHR) EAD mode. Samples were ionized with 

the TurboIonSpray and analyzed using information-dependent acquisition (IDA) top2 in 

positive ion mode. Data acquisition consisted of a full TOF-MS scan to collect accurate 

mass precursor ions and a TOF-MS/MS experiment for selective EAD fragmentation. 

MS parameters used for the EAD method are the following:  

Source Parameters Value 

Ion Source Gas 1 (psi) 70 
Ions source Gas 2 (psi) 70 
Curtain Gas 45 
Temperature (°C) 700 
Stray Voltage 5500 

  
 

MS Parameters  Value 
Scan Type TOF MS 
Accumulation time (ms) 75 
Declustering Potential (V) 60 
Collision Energy (V) 10 
Collision Energy Spread (V) 0 
Range 50-1000 

  
 

EAD MS Parameters Value 
Maximum candidate ion 2 

Inclusion list* 
Inensity threshold 

1000 cps 
Retention time tolerance (s) 3 
Accumulation time (s) 0.5 
Electron Beam Current (nA) 7500 
Electron Kinetic Energy (eV) 12 
Time Bins to Sum 6 
Reaction Time (ms) 30 
Zeno trap ON 

Table 1: TOF MS and TOF MS/MS parameters 

Raw Data Processing  

All original wiff files were converted as centroided mzML files using the qtof peak picker 

component of msconvert (ProteoWizard v 3.0.9987)11.The converted files were then fed 

to SLAW12 to generate mgf files containing all representative MS/MS spectra acquired 
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by DDA. Downstream analysis, such as CID and EAD annotation, was performed using 

these .mgf files.  

Results  

For in-depth structural elucidation of oxidized lipids, I applied a semi-targeted EAD 

method on the Zeno 7600 QTOF system. For this purpose, the 124 oxidized lipids 

identified and manually confirmed in Chapter 5 (Supplementary Tables 1 and 2) were 

used to generate an RT-scheduled inclusion list for semi-targeted analysis. All the 

compounds were analyzed with a scheduled MRMHR for optimal sensitivity. Two 

separate inclusion lists were created to avoid coeluting compounds that would be difficult 

to detect due to the limited MS scan time per ion feature.  

The number of selected precursors over each RT period was controlled in terms of 

accumulation time, reaction time, and kinetic energy to ensure the collection of high-

quality EAD spectra. These MS parameters are critical for the collection of informative 

EAD data in the LC-MS workflow. Indeed, from our previous works, it was found that the 

best conditions for generating high-quality diagnostic EAD peaks appear to be the lowest 

reaction time, set at 30 ms and with a high accumulation time of 500 ms13. Another 

critical factor for EAD acquisition is the appropriate kinetic energy, which can be tuned 

between 10 and 25 eV. For this study, it was kept constant at 12 eV for all analytes on 

the inclusion list. Each pooled QC sample from liver and plasma matrices was therefore 

run using this optimized workflow to obtain EAD spectra of isolated precursor ions of the 

oxidized lipid in protonated, ammoniated and sodiated forms. 

As with CID in Chapter 5, the process of annotation of oxidized lipids in the EAD mode 

followed sequential and specialized steps based on different levels of structural 

information14. I initially determined the head group, the lengths of the acyl chains and 

the number of double bonds between the acyl chains to ensure that the fragments 

generated by EAD could provide at least the same level of structural information as that 

obtained by CID annotation 15. Next, I used the EAD-specific peaks to confidently identify 

lipid species.  



     Chapter 6
 

 159  

 

Figure 1: Hierarchical annotation workflow for EAD spectra.  

Identifying lipid head groups and distinguishing regioisomers  

The first step in our work was therefore to search for fragments to identify lipid classes 

and acyl chains. As EAD is typically performed in positive ion mode, this step focused 

on identifying neutral losses and acyl fragments corresponding to fatty acids.  

In the case of oxidized triglycerides (oxTG), two primary types of product ions are 

generated. As for CID, the first type corresponds to neutral losses (NL) of acyl chains, 

while the second corresponds to the acylium ion and acylium ions plus 74 Da, which 

generates from a loss of a neutral ketene containing one of the two remaining fatty acyl 

chains. As shown in Figure 2, in the EAD MS/MS spectra, for ox TG (16:0_18:0_18:3 (+ 

O)), I observed the fragment ions m/z 615.4985, m/z 589.4830 and 576.5119, which are 

due to the NL of FA 16:0, FA 18:1 and FA 18:3+O, respectively. Moreover, the acylium 

ions for unmodified acyl chains of oxTG appear at m/z 239.2369 (16:0) and 265.2526 

(18:1), while the acylium ion +74 was observed at m/z 313.2728 (16:0) and 339.2888 

(18:1). These ion types are readily distinguishable in the EAD spectra, with the most 

abundant products found in the mass range of 300-350 Da. Interestingly, I also observed 
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the presence of oxidation at this level by detecting the acylium ion at m/z 277 (18:3+O) 

and its corresponding +74 ion. 

 

Figure 2: EAD spectra of ammoniated oxTG 16:0_18:1_18:3(+O). Two types of fragments generated can help to 
identify lipid class and acyl chain. The first type corresponds to neutral losses (NL) of the acyl chain from the parent 
ion. The second corresponds to the acylium ion and acylium ions plus 74 Da.  

Similarly, in oxidized phospholipids (oxPL), signals corresponding to the acylium ion +74 

at m/z 313.2732.2732 (16:0) and 341.2336.2336 (18:0) are identifiable (Figure 3 A and 

B, green fragments). Together with these, additional unique diagnostic fragment ions 

produced by EAD help to validate the headgroups and further characterize lipid species 

within these classes. For instance, in oxidized phosphatidylcholine (oxPC), I identified 

neutral losses of 59 Da and 183 Da from the precursor ion and the ion at m/z 184, all 

signals corresponding to the polar head of phosphatidylcholine. Moreover, for oxidized 

phosphatidylethanolamine (oxPE), the most abundant product ion formed by EAD is a 

neutral loss of 141 Da from the precursor ion.  
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Figure 3: EAD MS/MS of oxPC and oxPE. Diagnostic fragment ions at m/z 184 (red) and neutral losses of 59 Da and 
183 Da from the precursor ion identify the PC head group. Signals corresponding to the acylium ion +74 at m/z 313 
(16:0) and 341 (18:0) are also identifiable. For oxPE, the most abundant product ion formed by EAD is a neutral loss 
of 141 Da from parent ion.  

Inspection of the lower mass range signals can also reveal fragment ions that indicate 

sn-positions. Specifically, for oxPC the EAD spectra show two peaks of approximately 

equal intensity at m/z 224.1056 and 226.0838 (Figure 4). These ions correspond to the 

attachment points of the choline head group to the lipid backbone and are commonly 

recognized as C and O-type peaks. Importantly, when these fragments are detected, it 

is possible to determine all the sn-positions for oxidized phospholipids16. For example, 
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as shown in Figure 4, for oxPC 16:0/20:5(+O), I observed sn-1 diagnostic peaks for the 

acyl chain 16:0 at m/z 557.3115, 541.3159, 527.3019, confirming that the oxidized 

polyunsaturated fatty acids (PUFAs) 20:5(+O) occupy the sn-2 position. This position is 

the most reactive within the phospholipid structure and is most susceptible to ROS 

attack.17 

 

Figure 4: EAD MS/MS of oxPC. Diagnostic fragment ions of the glycerol backbone at m/z 224 and 226 (green) identify 
the phospholipid class. The sn-1 attachment point can be identified by examining the chain loss fragment ions in the 
range of 500-600 m/z (light blue). 

For oxTG, the most characteristic ions corresponding to fragments indicating 

regioisomerism are generated within the range of 300-350 Da, as recently discussed by 

Baba et al. 18.  In particular, they highlighted that sodiated triglycerides produce the most 

informative fragments during fragmentation to derive information about regioisomerism. 

However, in our study most oxTGs were present as ammoniated species, which limited 

our ability to accurately verify this property for all annotated triglycerides. 

Determining the Location of Double Bonds and Oxygen Positions 

Next, I focused on identifying the locations of double bonds and oxygen within the acyl 

chains. EAD generates a rich set of fragments from the precursor ion that sequentially 

loses CH2 from the fatty acid backbone. These fragments typically cover the entire 

length of the fatty acid chains and help to confirm the position of unsaturation7 . However, 
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these signals are generally less intense than other EAD fragments, and to display them 

clearly, the mass range corresponding to higher m/z values must be expanded. 

For a saturated fatty acyl chain, such as that corresponding to 16:0 in oxPC in Figure 5, 

the EAD spectrum is characterized by sequential carbon losses from the precursor ion, 

clearly observed as fragment ions differing by CH2 (14 Da) along the acyl chain.  

 

Figure 5: Determining double bond position. The EAD MS/MS spectrum for a saturated lipid is characterized by a 
series of sequential -CH2 carbon losses from the precursor ion. The colour coding in the spectrum indicates the origin 
of each fragment ion, helping to trace the breakdown of the precursor ion. 

In the case of unsaturated fatty acyl chains, the expected cleavage peak is shifted by 2 

Da due to a reduction of 2H (allylic cleavage) distributed between the two carbon atoms 

at the C=C bond. This results in two successive shorter shifts of the radical fragments in 

the spectrum of 12 Da instead of the usual 14 Da. As the abundance of fragments 

cleaved at the double bond is lower, it can sometimes be easier to determine the position 

of the double bond by noting the absence of a peak represented by a larger gap of 26 

Da, which can appear in the spectrum as a typical V-shape18. However, this pattern is 

not always present, especially when the noise level is high or when the interference 

caused by fragmentation of other fatty acyl chains of the lipid is increased.  

The situation becomes more complex when mapping multiple double bonds on the same 

acyl chain or multiple unsaturated chains within the same lipids. In these cases, manual 
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interpretation of the fragments becomes challenging, and reliance on automated 

solutions is required. However, there is a noticeable gap in the literature regarding 

dedicated software tools for this purpose. In response to this need, we recently showed 

how it is possible to do that by assigning scores to all the possible matched candidates13. 

We tested this scoring with either monounsaturated or polyunsaturated ox lipids 

fragmented at 12 eV, and for most of them, we obtained good preliminary results. For 

example, Figure 6 shows this in the case of TG (52:4(+O)). With this scoring, we 

successfully predicted the localization of double bonds, identifying the correct isomer for 

oxTG as TG (16:0/18:1(12)/18:3(5,8,13) (+O)).   
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Figure 6: Determining double bond position. Putative annotation of TG (16:0/18:1(12)/18:3(5,8,13)(+O)). 

We are extending the framework to simultaneously identify double bonds and oxidation 

sites within acyl chains. When oxygen is present on the acyl chain, the carbon atom 

bonded to the oxygen should show a shift of +16 Da compared to the theoretical 

fragmentation pattern. These fragments should also be more intense due to the 

stabilizing effect of oxygen on the radical. 
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From the manual inspection, I observed that these fragments can be easily identified for 

many of the monoxygenated lipids I annotated. For example, I found that for oxTG 

(16:0_18:8_18:1(+O)), the cleavage of the C-O bond produces two specific fragment 

ions (m/z 451.3784 and m/z 467.3726), both derived from the fragmentation of the ion 

at m/z 577.5182. These fragments confirm the presence of oxygen and allow us to 

localize its position within the acyl chain. In this case, the oxygen is located between C9 

and C10. Following the same logic, I confirmed that it was also possible to identify 

fragments indicative of oxidation in oxPC. 

 

Figure 7: Determining oxygen position. For oxTG (16:0_18:8_18:1(+O)), EAD MS/MS fragmentation of the C-O bond 
results in two distinct fragment ions at m/z 451.3784 and m/z 467.3726, originating from the precursor ion at m/z 
577.5182. The colour coding of these fragments highlights their respective origins from the precursor ion. 
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Figure 8: Determining oxygen position. For oxPC (16:0_20:4(+1O)), EAD MS/MS breakage of the C-O bond produces 
specific fragment ions at m/z 686.4382 from precursor ion.  

Instead, for truncated lipids such as TG (9:1(+O)_16:0_18:1) and PC (16:0_9:1(+O)), I 

observed highly intense peaks corresponding to the loss of CHO (carbonyl – 29 Da) and 

COOH (carboxyl -41 Da) groups from the precursor ions, respectively, confirming the 

presence of oxygen as a carbonyl species (Figure 9). 
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Figure 9: Determining oxygen position. EAD MS/MS fragmentation of truncated species generates losses of -29 and 
-41 from precursor ion. 

Discussion 

In this study, I used EAD fragmentation to validate previously annotated oxidized lipids 

and further improve their structural characterization beyond the molecular species level. 

To do that, each oxidized feature was monitored by a scheduled MRM experiment on 

the ZenoTOF 7600 system, which was applied to pooled QC samples of plasma and 

liver extracts.  
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Within a single MS experiment, EAD fragmentation produced distinct fragments that 

confirmed the lipid class, head group, fatty acid types, fatty acid attachment points 

(regioisomers), and double bond locations. In addition, EAD facilitated a more detailed 

understanding of oxidation modification types and sites, allowing us to precisely locate 

double bonds and oxidation products along the acyl chains. The optimal EAD 

parameters were a reaction time of 30 ms and an accumulation time of 500 ms, which 

produced the most diagnostic peaks. Importantly, these settings allowed us to take the 

advantage of EAD mode within a rapid 2.4-min LC-MS method, making it suitable for 

high-throughput lipidomic analysis. To our knowledge, this is the first time that EAD has 

been applied to the structural elucidation of oxidized lipids in complex biological 

matrices.  

EAD is complementary to traditional fragmentation techniques when more detailed 

structural information is required. While the CID spectrum provided limited information 

for lipid species identification, EAD generated richer fragmentation patterns and 

improved the detection of low-abundant fragments, resulting in improved structural 

elucidation of the oxidized lipids.  

While this approach is inherently suitable for the study of oxidized lipids with multiple 

unsaturated chains and, thus, presumably multiple oxidation products, the increasing 

complexity requires automated spectral interpretation to improve confidence in lipid 

identification. The ability to extract such information from real biological samples greatly 

enhances our understanding of the relationship between lipid structure and biological 

function. We believe deep structural characterization of each lipid molecule will be the 

next frontier in lipidomics. However, this remains a significant challenge that we are 

actively addressing to increase the impact of lipidomics in biomedical research. Firstly, 

the availability of software capable of handling this level of complexity is still limited. Even 

existing tools cannot fully exploit the breadth of diagnostic fragments generated by EAD. 

These fragments are far more abundant than those generated by other advanced 

fragmentation methods, such as ozonolysis or Paternò-Büchi reactions, and potentially 

contain a much greater depth of information. However, the extraction and interpretation 

of this information remain relatively underdeveloped, leaving considerable space for 

improvement in exploiting the potential of EAD for lipidomics. 
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Conclusion 

The study demonstrates the potential of a fast 2.4-minute LC-MS method using a novel 

fragmentation technique, EAD, in ZenoTOF for the structural characterization of 

endogenous oxidized lipids. EAD can generate diagnostic peaks for oxidized lipid class, 

fatty acid composition, double bond and oxygen position on a fast LC-MS timescale.  

Supplementary Tables 

Supplementary Table 1: Inclusion list of oxidized lipids in the Liver matrix 

mz rt min formula ion species name 

656.5076 0.638166667 C37H66O8 [M+NH4]+ TG 34:2;O2 TG 9:1;O_9:1;O_16:0 

672.5033 0.604833333 C37H66O9 [M+NH4]+ TG 34:2;O3 TG 9:1;O_9:1;O2_16:0 

686.5174 0.665333333 C38H68O9 [M+NH4]+ TG 35:2;O3 TG 9:1;O_10:1;O2_16:0 

740.6344 1.155 C44H82O7 [M+NH4]+ TG 41:1;O TG 9:1;O_16:0_16:0 

764.6374 1.082166667 C46H82O7 [M+NH4]+ TG 43:3;O TG 9:1;O_16:0_18:2 

766.6497 1.158833333 C46H84O7 [M+NH4]+ TG 43:2;O TG 9:1;O_16:0_18:1 

770.6438 1.189 C45H84O8 [M+NH4]+ TG 42:1;O2 TG 10:1;O2_16:0_16:0 

792.6703 1.152833333 C48H86O7 [M+NH4]+ TG 45:3;O TG 9:1;O_18:1_18:1 

794.651 1.118166667 C47H84O8 [M+NH4]+ TG 44:3;O2 TG 10:1;O2_16:0_18:2 

822.6732 1.2025 C49H88O8 [M+NH4]+ TG 46:3;O2 TG 10:1;O2_18:1_18:1 

836.7315 1.298833333 C51H94O7 [M+NH4]+ TG 48:2;O TG 14:0_16:0_18:2;O 

858.7127 1.356166667 C53H92O7 [M+NH4]+ TG 50:5;O TG 16:0_16:1_18:4;O 

860.7325 1.407333333 C53H94O7 [M+NH4]+ TG 50:4;O TG 16:0_16:1_18:3;O 

862.7445 1.334 C53H96O7 [M+NH4]+ TG 50:3;O TG 16:0_16:1_18:2;O 

864.7569 1.3995 C53H98O7 [M+NH4]+ TG 50:2;O TG 16:0_16:1;O_18:1 

867.7026 1.345166667 C55H94O7 [M+H]+ TG 52:6;O TG 16:0_18:3_18:3;O 

876.7633 1.3455 C54H98O7 [M+NH4]+ TG 51:3;O TG 16:0_17:1_18:2;O 

884.7282 1.357 C55H94O7 [M+NH4]+ TG 52:6;O TG 16:0_18:2_18:4;O 

886.7406 1.2525 C55H96O7 [M+NH4]+ TG 52:5;O TG 16:1_18:2_18:2;O 

886.7473 1.273666667 C55H96O7 [M+NH4]+ TG 52:5;O TG 16:1;O_18:1_18:3 

888.7608 1.475666667 C55H98O7 [M+NH4]+ TG 52:4;O TG 16:0_18:1_18:3;O 

890.7773 1.422166667 C55H100O7 [M+NH4]+ TG 52:3;O TG 16:0_18:1_18:2;O 

892.7901 1.461666667 C55H102O7 [M+NH4]+ TG 52:2;O TG 16:0_18:1_18:1;O 

904.7524 1.209666667 C55H98O8 [M+NH4]+ TG 52:4;O2 TG 16:0_18:2_18:2;O2 

906.7719 1.272833333 C55H100O8 [M+NH4]+ TG 52:3;O2 TG 16:0_18:1_18:2;O2 

912.7585 1.422833333 C57H98O7 [M+NH4]+ TG 54:6;O TG 18:1_18:2_18:3;O 

912.7596 1.258333333 C57H98O7 [M+NH4]+ TG 54:6;O TG 18:2_18:2_18:2;O 

914.7737 1.307833333 C57H100O7 [M+NH4]+ TG 54:5;O TG 18:1_18:2_18:2;O 

916.7882 1.3755 C57H102O7 [M+NH4]+ TG 54:4;O TG 18:1_18:1_18:2;O 

918.8044 1.354 C57H104O7 [M+NH4]+ TG 54:3;O TG 18:1_18:1_18:1;O 

928.8225 1.583333333 C55H106O9 [M+NH4]+ TG 52:0;O3 TG 15:0;O_18:0_19:0;O2 

934.7798 1.490666667 C56H100O9 [M+NH4]+ TG 53:4;O3 TG 11:0;O2_18:2_24:2;O 
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936.7948 1.535333333 C56H102O9 [M+NH4]+ TG 53:3;O3 TG 16:1;O_18:2_19:0;O2 

938.8724 1.7515 C58H112O7 [M+NH4]+ TG 55:0;O TG 16:0_19:0_20:0;O 

946.7795 1.442 C57H100O9 [M+NH4]+ TG 54:5;O3 TG 18:1;O_18:2_18:2;O2 

650.4387 0.4035 C33H64O9NP [M+H]+ PC 25:1;O PC 16:0/9:1;O 

666.4327 0.330333333 C33H64O10NP [M+H]+ PC 25:1;O2 PC 16:0/9:1;O2 

678.4698 0.484 C35H68O9NP [M+H]+ PC 27:1;O PC 18:0/9:1;O 

714.4315 0.522833333 C37H64O10NP [M+H]+ PE O-32:6;O3 PE O-10:0;O2_22:6;O 

766.5334 0.836666667 C43H76O8NP [M+H]+ PE O-38:6;O PE O-26:5_12:1;O 

772.5458 0.7085 C42H78O9NP [M+H]+ PC 34:3;O PC 16:0/18:3;O 

784.5488 0.707833333 C43H78O9NP [M+H]+ PE 38:4;O PE 10:1;O_28:3 

796.5476 0.617166667 C44H78O9NP [M+H]+ PC 36:5;O PC 16:0/20:5;O 

798.5623 0.666666667 C44H80O9NP [M+H]+ PC 36:4;O PC 16:0/20:4;O 

826.593 0.780833333 C46H84O9NP [M+H]+ PC 38:4;O PC 18:0/20:4;O 

830.5546 0.706166667 C44H80O11NP [M+H]+ PC 36:4;O3 PC 26:4;O/10:0;O2 

854.5539 0.679166667 C46H80O11NP [M+H]+ PC 38:6;O3 PC 28:5;O/10:1;O2 

 

 Supplementary Table 2: Inclusion list of oxidized lipids in the Plasma matrix 

mz rt min formula ion species name 

568.3273 0.1355 C26H50O10NP [M+H]+ PC 18:1;O2 PC 9:1;O/9:0;O 

656.506 0.651333 C37H66O8 [M+NH4]+ TG 34:2;O2 TG 9:1;O_9:1;O_16:0 

672.5037 0.602 C37H66O9 [M+NH4]+ TG 34:2;O3 TG 9:1;O_9:1;O2_16:0 

682.5228 0.647667 C39H68O8 [M+NH4]+ TG 36:3;O2 TG 9:1;O_9:1;O_18:1 

686.5198 0.652 C38H68O9 [M+NH4]+ TG 35:2;O3 TG 9:1;O_10:1;O2_16:0 

704.4476 0.345667 C36H66O10NP [M+H]+ PC 28:3;O2 PC 20:3/8:0;O2 

738.6214 1.067 C44H80O7 [M+NH4]+ TG 41:2;O TG 9:1;O_16:0_16:1 

740.6379 1.139333 C44H82O7 [M+NH4]+ TG 41:1;O TG 9:1;O_16:0_16:0 

764.6389 1.075 C46H82O7 [M+NH4]+ TG 43:3;O TG 9:1;O_16:0_18:2 

766.6548 1.144833 C46H84O7 [M+NH4]+ TG 43:2;O TG 9:1;O_16:0_18:1 

768.6385 1.101667 C45H82O8 [M+NH4]+ TG 42:2;O2 TG 10:1;O2_16:0_16:1 

768.6681 1.238167 C46H86O7 [M+NH4]+ TG 43:1;O TG 9:1;O_16:0_18:0 

770.6493 1.1865 C45H84O8 [M+NH4]+ TG 42:1;O2 TG 10:1;O2_16:0_16:0 

792.6681 1.150333 C48H86O7 [M+NH4]+ TG 45:3;O TG 9:1;O_18:1_18:1 

794.6498 1.104667 C47H84O8 [M+NH4]+ TG 44:3;O2 TG 10:1;O2_16:0_18:2 

794.6819 1.216667 C48H88O7 [M+NH4]+ TG 45:2;O TG 11:1;O_16:0_18:1 

794.6825 1.139833 C48H88O7 [M+NH4]+ TG 45:2;O TG 9:1;O_18:0_18:1 

796.6608 1.201167 C47H86O8 [M+NH4]+ TG 44:2;O2 TG 10:1;O2_16:0_18:1 

822.6778 1.194 C49H88O8 [M+NH4]+ TG 46:3;O2 TG 10:1;O2_18:1_18:1 

824.6946 1.250167 C49H90O8 [M+NH4]+ TG 46:2;O2 TG 12:1;O2_16:0_18:1 

828.5479 0.722667 C44H78O11NP [M+H]+ PC 36:5;O3 PC 14:0;O2/22:5;O 

886.7442 1.289 C55H96O7 [M+NH4]+ TG 52:5;O TG 16:0_18:2_18:3;O 

888.7626 1.476833 C55H98O7 [M+NH4]+ TG 52:4;O TG 16:0_18:1_18:3;O 

888.7631 1.346833 C55H98O7 [M+NH4]+ TG 52:4;O TG 16:0_18:2_18:2;O 

890.7753 1.370167 C55H100O7 [M+NH4]+ TG 52:3;O TG 16:0_18:1_18:2;O 



     Chapter 6
 

 172  

902.7399 1.196 C55H96O8 [M+NH4]+ TG 52:5;O2 TG 16:0_18:2_18:3;O2 

912.7569 1.285667 C57H98O7 [M+NH4]+ TG 54:6;O TG 18:2_18:2_18:2;O 

914.7775 1.313167 C57H100O7 [M+NH4]+ TG 54:5;O TG 18:1_18:2_18:2;O 

916.7938 1.400833 C57H102O7 [M+NH4]+ TG 54:4;O TG 16:0_18:1_20:3;O 

924.7873 1.489 C55H102O9 [M+NH4]+ TG 52:2;O3 TG 16:1_18:0;O_18:1;O2 

944.7613 1.403833 C57H98O9 [M+NH4]+ TG 54:6;O3 TG 14:1;O2_18:2_22:3;O 

946.7644 1.386333 C57H100O9 [M+NH4]+ TG 54:5;O3 TG 18:1;O_18:2_18:2;O2 
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CONCLUDING REMARKS 
 

The results presented in this thesis demonstrated the potential of MS-untargeted 

lipidomic approaches to address lipidome (and epilipidome) changes and to guide future 

research on the role of lipids in biological systems, both in physiological and pathological 

conditions or upon drug treatment.  

For this project, I used lipidomics to address different biological and analytical questions. 

Our initial focus was on the application of lipidomics to phenotypic screening drug 

discovery in in vitro cellular systems. In this setup, I tested several compounds, primarily 

derived from natural sources, for their potential effects on fatty liver disease. The results 

obtained in the studies presented led us to highlight the utility of omics approaches to 

make hypotheses on the mechanisms of action which could help to explain the observed 

phenotypic effects. This was the first time in our lab that multi-omics strategies were 

applied to the study of natural extracts.  

In the second part of the project, I have shown that fast UHPLC-MS lipidomics methods 

are suitable for screening lipid profiles in biological matrices of different natures in in vivo 

systems, offering wide coverage and reliable and accurate annotation of lipid molecular 

species. Moreover, I demonstrated that lipidomics could also support the study of 

oxidative modifications and that this information could be coupled with advanced MS 

methods for the full structural characterization of lipid molecular species. 

Overall, our findings justify the extensive effort invested and highlight the importance of 

lipidomics in biomedical research. The comprehensive analytical description of 

lipidomes could help to add new layers of information about biological systems. In 

combination with other omics sciences, lipidomics can support the identification of new 

biomarkers and the discovery of new drugs. This represents the starting point for the 

future perspective of the project, where multiple omics (i.e. proteomics and 

metabolomics) can be integrated to gain more comprehensive insights into biological 

systems. 
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