Seed-Specific Expression of Apolipoprotein A-I_{Milano} Dimer in Rice Engineered Lines

SUPPLEMENTAL DATA

Fig. S1. Expression vector and molecular analysis of putative transformed plants.

A, Schematic diagram of expression vector pCambia-PROL-ApoA-I_M used for rice transformation.

B, Restriction analysis of expression vector to confirm the correct insertion of gene and promoter. M, Molecular weight marker. Lane 1, *SpH*I restriction analysis (linearized plasmid, 724 bp and 1 990 bp fragments); Lane 2, *Eco*RV restriction analysis (linearized plasmid, 2 624 bp, 2 177 bp and 1 135 bp fragments); Lane 3, *XbaI/Eco*RI restriction analysis (linearized plasmid, 1 015 bp and 730 bp fragments); Lane 4, *Eco*RI restriction analysis (linearized plasmid and 1 745 bp fragment); Lane 5, *SacI/Hind*III restriction analysis (linearized plasmid, 740 bp and 360 bp fragments). The restriction analysis confirms the correct insertion of ApoA-I_M gene and 13 kDa prolamin promoter.

C, Agarose gel 0.8% of PCR assay of ApoA- I_M gene in different T_0 rice plants. M, Molecular weight marker (100 bp ladder); Lanes 1–9, Hygromycin resistant plants; C+, Positive control (pCAMBIA-PROL-ApoA- I_M); C-, Untransformed rice. The positive plants show a band the same weight as the positive control (732 bp).

Fig. S2. Southern blot analysis of engineered rice plants.

DNA was digested with <u>*Xba*</u>I, separated on a 0.8% agarose gel, transferred to a nylon membrane, and probed with a DIG-labelled ApoA-I_M gene. In **A** and **B**, 1, 2, 3, 4, 7, 9, 11, 12, 14, 15, 20, 23, 24, 25, 27, and 32 represent the engineered rice plants. The engineered rice plants that present ApoA-I_M in a single copy was marked with *. In **C**, 1, 2, 3, 4, 5 are representative samples of plants from line 9; and 6, 7, 8, 9, 10 are representative samples of plants from line 3. 'C+' indicates positive control (3 732 bp *Xba*I fragment from pGEMT-ApoA-I_M) and 'C-' indicates untransformed control plant.

Fig. S3. Two-dimensional gel electrophoresis (A) and western blotting of bidimensional gel (B) of 50 µg of rice polypeptides extracted from ApoA-I transformed seeds.

Polypeptides were silver stained. C+, ApoA-I; * indicates the signal of the hybridized spot.

Fig. S4. Negative control of seed tissues did not show antibody staining. Storage vacuoles (A), amyloplast (B), chloroplast (C) and cell wall (D) were not decorated by antibodies.

Primer name	Nucleotide sequence	Ref-seq	Amplicon size (bp)	PCR cycle
Apo-fw Apo-rv	GGATCC GATATCTCACTGGGTGTTGAGCTTCTTAG	X00566	732	95 °C × 3 min; 95 °C × 45 s, 58 °C × 1 min, 72 °C ×
Prol-fw Prol-rv	CTGCAG TCTAGA CGCAGAGGCATTGCATGCAACAATAGC	D63901	729	1 min, recycle 30×; 72 °C × 5 min

Table S1. Oligonucleotides used in this study for amplification ApoA-I gene and 13 kDa prolamin promoter.

Specific restriction site used for the cloning in the expression vector was underlined.

Table S2. T_0 rice plants obtained from transformation, relative controls (PCR, Western blotting, and Sothern analysis), and ApoA-I_M quantification by indirect competitive ELISA.

ID	PCR analysis	WB reducing	WB no-reducing	Southern (Insertion number)	Expression level (mg/kg)
1	+	+	-	4	8.7
2	+	+	-	2	9.6
3	+	+	-	1	9.0
4	+	+	+	2	82.0
5	-				
6	+	-			
7	+	+	+	3	78.0
8	-				
9	+	+	+	5	38.0
10	-				
11	+	+	+	5	20.0
12	+	+	+	3	75.0
13	+	-			
14	+	+	+	2	31.8
15	+	+	+	1	45.0
16	-				
17	-				
18	+	-			
19	+	-			
20	+	+	+	4	40.0
21	+	-			
22	+	-			
23	+	+	+	1	58.0
24	+	+	+	4	67.5
25	+	+	-	1	15.2
26	+	-			
27	+	+	+	2	82.0
28	-				
29	-				
30	-				
31	-				
32	+	+	+	3	54.0