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We consider the open unit disk D equipped with the 
hyperbolic metric and the associated hyperbolic Laplacian 
L. For λ ∈ C and n ∈ N, a λ-polyharmonic function of order 
n is a function f : D → C such that (L − λ I)nf = 0. If 
n = 1, one gets λ-harmonic functions. Based on a Theorem of 
Helgason on the latter functions, we prove a boundary integral 
representation theorem for λ-polyharmonic functions. For 
this purpose, we first determine nth-order λ-Poisson kernels. 
Subsequently, we introduce the λ-polyspherical functions and 
determine their asymptotics at the boundary ∂D, i.e., the 
unit circle. In particular, this proves that, for eigenvalues 
not in the interior of the L2-spectrum, the zeroes of these 
functions do not accumulate at the boundary circle. Hence 
the polyspherical functions can be used to normalise the nth-
order Poisson kernels. By this tool, we extend to this setting 
several classical results of potential theory: namely, we study 
the boundary behaviour of λ-polyharmonic functions, starting 
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with Dirichlet and Riquier type problems and then proceeding 
to Fatou type admissible boundary limits.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

The aim of this article is to initiate a detailed study of the potential theory associated 
with the polyharmonic, and more generally, λ-polyharmonic functions for the hyperbolic 
Laplacian L, that is, the solutions f of (L − λ I)nf = 0, for n ∈ N and λ ∈ C.

A polyharmonic function of order n on a Euclidean domain D is a complex-valued 
function f on D that belongs to the kernel of the nth iterate of classical Euclidean 
Laplacian: Δnf ≡ 0. The study of polyharmonic functions goes back to work in the 
19th century, and continues to be a very active topic. See e.g. the books by Aronszajn, 
Creese and Lipkin [2] or by Gazzola, Grunau and Sweers [10]. A classical theorem 
of Almansi [1] says that if the domain D is star-like with respect to the origin, then 
every polyharmonic function of order n has a unique decomposition

f(z) =
n−1∑
k=0

|z|2k hk(z) ,

where each hk is harmonic on D, and |z| is the Euclidean length of z ∈ D. In particular, 
let the domain be the unit disk

D = {z = x + i y ∈ C : |z| =
√
x2 + y2 < 1}.

Assume for the moment that in Almansi’s decomposition, each hk is non-negative. Then 
it has an integral representation over the boundary ∂D of the disk, that is, the unit 
circle, with respect to the Poisson kernel

P (z, ξ) = 1 − |z|2
|ξ − z|2 (z ∈ D , ξ = eiφ ∈ ∂D) (1)

Thus, Almansi’s decomposition on the disk reads as

f(z) =
n−1∑
k=0

∫
∂D

|z|2k P (z, ξ) dνk(ξ) , (2)

where ν0, . . . , νn−1 are non-negative Borel measures on the unit circle. Without requir-
ing non-negativity of the hk, the result still remains true, taking analytic functionals
(i.e., certain distributions) νk instead of Borel measures: this follows from results by
Helgason [12], [13] which will be of crucial importance further below.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M.A. Picardello et al. / Journal of Functional Analysis 286 (2024) 110362 3
We now change our viewpoint and view D as the hyperbolic or Poincaré disk with the 
hyperbolic length element and resulting metric

ds = 2
√
dx2 + dy2

1 − |z|2 and ρ(z, w) = log |1 − zw̄| + |z − w|
|1 − zw̄| − |z − w| . (3)

We note that the Poisson kernel can be written as

P (z, ξ) = e−h(z,ξ) with h(z, ξ) = lim
w→ξ

(
ρ(w, z) − ρ(w, 0)

)
, (4)

the Busemann function. The hyperbolic Laplace (or Laplace-Beltrami) operator in the 
variable z = x + i y is

L = (1 − |z|2)2
4

(
∂2
x + ∂2

y

)
. (5)

The harmonic functions for the two Laplacians on the disk clearly coincide, but this is 
no more true for polyharmonic functions of higher order. While there is an abundant 
ongoing literature on polyharmonic functions in the Euclidean setting, we are not aware 
of an extensive body of work for the hyperbolic Laplacian, or more generally, for Laplace-
Beltrami operators on manifolds. A few references are, for example, Chung, Sario and 
Wang [6], Chung [5] as well as Schimming and Belger [31] plus some of the citations 
in the latter paper, and also Jaming [18].

The first main aim of this note is to provide an integral representation in the spirit 
of (2) for hyperbolically polyharmonic functions of order n. More generally, we consider 
λ-polyharmonic functions of order n, that is, solutions f : D → C of

(L− λ I)nf = 0 .

Here, I is the identity operator, and we are taking the nth iterate of L − λ I, where 
λ ∈ C. If n = 1, we speak of a λ-harmonic function. Considering λ as an “eigenvalue”, 
one should be careful with respect to the space on which the operator acts. Indeed, we 
are not referring to the action of L as a self-adjoint operator on L2(D, areah), where 
areah is the hyperbolic area measure of D and the corresponding spectrum (−∞ , −1

4 ] is 
continuous. The mapping

λ(s) = s2 − 1
4 , s ∈ C , �(s) � 0

maps the half-open half plane {s ∈ C : �(s) � 0} \ {i t : t < 0} bijectively onto C. We 

write s(λ) =
√
λ + 1

4 for the inverse mapping, where the square root of reiφ is 
√
r eiφ/2

for r � 0 and φ ∈ (−π , π].
Here is our first main result.
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Theorem 1.1. Every λ-polyharmonic function f : D → C of order n has a unique repre-
sentation of the form

f(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n−1∑
k=0

∫
∂D

h(z, ξ)k P (z, ξ)s(λ)+1/2 dνk(ξ) , if λ �= −1
4 ,

n−1∑
k=0

∫
∂D

h(z, ξ)2k P (z, ξ)1/2 dνk(ξ) , if λ = −1
4 ,

where ν0, . . . , νn−1 are analytic functionals on ∂D.

We postpone the precise definition of these functionals to §2, and we shall also rescale 
the kernels in the integrals in a suitable manner to get the (order n +1) λ-polyharmonic 
Poisson kernels Pn(z, ξ | λ), n � 0; see Proposition 2.6.

Our proof of Theorem 1.1 in §2 is inspired by related results obtained in a discrete 
setting, mostly in recent work of Picardello and Woess [28] on polyharmonic func-
tions on general trees, that was preceded by a long paper by Cohen et al. [7] who 
had used rather involved methods to obtain an integral representation for polyharmonic 
functions on a regular tree with respect to the standard graph Laplacian. (In [28], this 
is generalised and simplified.) Further motivation for the present work came from Sava-

Huss and Woess [30], who studied the boundary behaviour of polyharmonic functions 
on regular trees. There are many profound analogies between the hyperbolic disk and 
regular trees. In the potential theoretic setting considered here, see the first part of the 
note by Boiko and Woess [3] for an exposition of those analogies.1

The natural next goal is to study the asymptoptic behaviour of λ-polyharmonic func-
tions. For this purpose, but also by inherent interest and for further possible applications, 
in §3, we introduce the family of polyspherical functions Φn(z | λ), i.e., suitably nor-
malised λ-polyharmonic functions of order n +1 which only depend on r = |z|. Here, the 
functions Φ0(z | λ) for λ ∈ C are the classical spherical functions of the Poincaré disk. 
A major step, in itself of interest, is to determine the asymptotic behaviour of Φn(z | λ)
near ∂D, that is, as r → 1 or equivalently, R = ρ(z, 0) → ∞; see Theorem 3.4.

This is important because, for the study of the boundary behaviour of λ-polyharmonic 
functions one needs a suitable normalisation of the polyharmonic kernels Pn(z, ξ | λ), in 
order to compensate for their growth or decay; this normalisation is then accomplished 
in §4; it extends the classical case n = 0 via the laborious computations of §3. Indeed, 
when n = 0, it is well-known that it is appropriate to normalise λ-harmonic functions 
by the λ-spherical function, see e.g. Michelson [27] and Sjögren [33], and for regular 
trees Korányi and Picardello [21]. This cannot be done for λ ∈ (−∞ , −1

4 ), because 
for these values of λ the zeroes of the λ-spherical functions accumulate at the boundary 
circle, while for all other values of λ, there are no zeroes at all; see Remark 3.3.

1 In the formula for the hyperbolic Laplacian – which is (5) here – one of the two squares is missing in [3].
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So for arbitrary n, our normalisation consists in dividing by Φn(z | λ), which is feasible 
since it follows from Theorem 3.4 that this function has no zeroes close to the boundary 
circle. In §4, we show that the resulting normalised kernels are good approximate identi-
ties at the boundary points, so that the classical convergence results hold for transforms 
of functions and measures on ∂D; see Proposition 4.6.

§5 is dedicated to another important issue: continuous extensions from boundary 
data. We first limit attention to n = 0 and show that for the normalized kernel 
P (z, ξ | λ)/Φ0(z | λ), the solution of the Dirichlet problem with continuous boundary data 
is unique for any (even complex) λ ∈ C \ (−∞ , −1

4 ) (Theorem 5.1). Then we extend 
the result to n > 0 by formulating a suitable version of the Riquier problem, adapted 
to the fact that the quotient of lower and higher order polyspherical functions tends to 
zero at the boundary, and provide such a solution (Corollary 5.4), which is inherently 
non-unique.

§6 answers another fundamental question on the asymptotic behaviour of λ-
polyharmonic functions, the Fatou theorem. Theorem 6.5 yields admissible non-
tangential convergence of the normalised transforms of measures on ∂D for λ ∈
C \ (−∞ , −1

4 ]. For the critical value λ = −1
4 , we even have a wider approach region. 

Along the classical guidelines, the proofs are based on maximal inequalities.
The last §7 is devoted to related examples (in the standard case λ = 0), discussions 

and open questions. In particular, we provide all details of an example outlined to us by 
A. Borichev: a harmonic (indeed, analytic) function h(z) such that h(z)/R is bounded 
but has no radial limits at the boundary, as R → ∞ where R = ρ(z, 0) ∼ Φ1(z|0), the 
biharmonic spherical function. In all the paper, for the reader’s benefit, we give most of 
the details of the (sometimes lengthy) computations.

Acknowledgements. We acknowledge enlightening email conversations with Alexander 
Borichev (Marseille), Fausto Di Biase (Pescara), Jean-Pierre Otal (Toulouse) and Peter 
Sjögren (Göteborg).

2. Integral representation

For each δ > 0, consider the space H(Aδ) of all holomorphic functions on the open 
annulus

Aδ = {z ∈ C : 1 − δ < |z| < 1 + δ} .

The space is equipped with the topology of uniform convergence on compact sets. The 
space H(∂D) of analytic functions on the unit circle consists of all functions g : ∂D → C

which possess an extension in H(Aδ) for some δ = δ(g) > 0. The topology on H(∂D) is 
the inductive limit of the topologies of H(Aδ) as δ → 0.

Definition 2.1. An analytic functional ν on ∂D is an element of the dual space of H(∂D). 
We write
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∫
∂D

g dν := ν(g) , g ∈ H(∂D) .

A good way to understand the action of ν on H(∂D) is described in [8, p. 114], see
Köthe [23]: let νn = ν(e−inφ), n ∈ Z be the Fourier coefficients of ν. Then

lim sup
|n|→∞

|νn|1/|n| � 1

(and this characterises the analytic functionals). If g ∈ H(∂D) then the Fourier expansion 
g(eiφ) =

∑
n∈Z gn e

inφ is such that

lim sup
|n|→∞

|gn|1/|n| < 1.

Then ∫
∂D

g dν =
∑
n∈Z

gn νn . (6)

For more on analytic functionals, resp. hyperfunctions, see e.g. Hörmander [16, Chapter 
IX] or Schlichtkrull [32].

It will be useful to write

P (z, ξ |λ) = P (z, ξ)s(λ)+1/2.

The following results from an elementary and well-known computation.

Lemma 2.2. For λ ∈ C and ξ ∈ ∂D, the function z 
→ P (z, ξ | λ) satisfies

LP ( · , ξ |λ) = λP ( · , ξ |λ) .

We note here that we can write

P (z, ξ) = 1 − |z|2
(ξ − z)(1/ξ − z̄) . (7)

In this form, for fixed z ∈ D and any λ ∈ C, the function ξ 
→ P (z, ξ | λ) is in H(Aδ) for 
δ = 1 − |z|. Thus, as a function of ξ in the unit circle, it is in H(∂D). We now recall an 
important result.

Theorem 2.3 (Helgason [12], [13, Section V.6]). For any λ ∈ C, every λ-harmonic 
function h for the hyperbolic Laplacian on the Poincaré disk has a unique representation

h(z) =
∫

P (z, ξ |λ) dν(ξ) ,

∂D
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where ν = νh is an analytic functional on ∂D.

A very readable proof of this and several related results are contained in the beautiful 
expository paper by Eymard [8].

Remark 2.4. If the λ-harmonic function h is positive real, then λ � −1
4 . Indeed, it is 

well known that positive λ-harmonic functions exist precisely when λ � −1
4 ; see e.g.

Sullivan [35, Thm. 2.1].
For non-negative h, the functional νh is a non-negative Borel measure. This follows 

from general Martin boundary theory, see e.g. Karpelevič [19] or Taylor [36].

Before proving Theorem 1.1, we need to find suitable polyharmonic versions of the 
Poisson kernel. That is, for each n ∈ N0, we want to have a kernel of the form

Pn(z, ξ |λ) = gn,λ
(
−h(z, ξ)

)
P (z, ξ |λ) (8)

which satisfies

(L− λ I)nPn(z, ξ |λ) = P (z, ξ |λ) . (9)

For this purpose, we shall use the following.

Lemma 2.5. Let f ∈ C2(R) and set

Qf (z, ξ |λ) = f
(
−h(z, ξ)

)
P (z, ξ |λ) .

Then

(L− λ I)Qf (z, ξ |λ) = Qg(z, ξ |λ) ,

where g = f ′′ + 2s f ′ and s = s(λ).

Proof. Here (and frequently also later) we shall use the fact that the Busemann function, 
hence also the Poisson kernel (as well as the Laplacian), are rotation invariant:

h(eiαz, eiαξ) = h(z, ξ) for all z ∈ D , ξ ∈ ∂D. (10)

Thus, it is sufficient to consider ξ = 1. Furthermore, from the Poincaré disk model of the 
hyperbolic plane we can first pass to the upper half plane model via the inverse Cayley 
transform, where in the new coordinates (u, v) with u ∈ R and v > 0, the hyperbolic 
Laplacian transforms into v2(∂2u + ∂2v) and the boundary point 1 ∈ ∂D becomes i ∞. 
Then we make one more change of variables, setting w = log v to obtain the logarithmic 
model, where now (u, w) ∈ R2 and the hyperbolic Laplacian becomes
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L = e2w∂2
u + ∂2

w − ∂w . (11)

In these coordinates, the Busemann function and Poisson kernel at i ∞ are

h
(
(u,w), i∞

)
= −w and P

(
(u,w), i∞

)
= ew ,

and

Qf ((u,w), i∞|λ
)

= f(w) e(s+1/2)w .

The statement now follows by applying the Laplacian in the form of (11). �
Proposition 2.6. For λ �= −1

4 and s = s(λ), the kernel

Pn(z, ξ |λ) = 1
n!(2s)n

(
−h(z, ξ)

)n
P (z, ξ)s+1/2

satisfies (9).
For λ = −1

4 , where s(λ) = 0, identity (9) holds for

Pn(z, ξ| − 1
4) = 1

(2n)! h(z, ξ)
2n P (z, ξ)1/2.

Proof. In order to find a function gn,λ as in (8), we start of course with g0,λ ≡ 1. We 
proceed recursively, looking at each step for a function fn = fn,λ such that

(L− λ I)
[
fn,λ

(
−h(z, ξ)

)
P (z, ξ |λ)

]
= gn−1,λ

(
−h(z, ξ |λ)

)
P (z, ξ |λ) . (12)

The function fn will then be replaced by the simpler gn = gn,λ which satisfies (8) before 
proceeding to n + 1. By Lemma 2.5, fn must solve the differential equation

f ′′
n + 2s f ′

n = gn−1 , s = s(λ). (13)

The characteristic polynomial of (13) has roots 0 and −2s, when λ �= −1
4 . In the latter 

case, 0 is a double root.
We start with λ �= −1

4 and n = 1. Since g0 = 1, we are looking for a special solution of 
(13) of the form f1(w) = A1,1w, whence A1,1 = 1/(2s). We get g1(w) = f1(w) = w/(2s), 
and going back to the disc model, we obtain P1 via (8), as proposed. We now prove by 

induction on n that by setting gn(w) = wn

n!(2s)n we obtain a solution for Pn.

Suppose this is true for all orders up to n −1. The right hand side of (13) is a polynomial 
of order n − 1 in w. Hence there is a special solution of the form fn(w) =

∑n
k=1 An,kw

k. 
The coefficients An,k are obtained as solutions of a system of linear equations, yielding 
a solution of (12). However, by the induction hypothesis, the terms of order k < n are 
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annihilated when applying (L −λ I)n to fn,λ
(
−h(z, ξ)

)
P (z, ξ | λ), so that for (9) we only 

need gn(w) = An,nw
n. Inserting fn into (13), comparison of the highest order coefficients 

yields 2sn = wn−1

(n− 1)!(2s)n−1 , which completes the induction step.

When λ = −1
4 , the differential equation (13) simplifies to f ′′

n = gn−1. Here, we set 
gn = fn. Starting with g0 ≡ 1, we integrate twice at each step and take just the highest 
appearing power: g1(w) = w2/2, g2(w) = w4/4!, and so on, so that gn(w) = w2n/(2n)!, 
as proposed. �

Note that when λ = −1
4 , we even have (L − λ I)Pn(z, ξ| − 1

4 ) = Pn−1(z, ξ| − 1
4 ).

In the standard case λ = 0, we just write Pn(z, ξ) for Pn(z, ξ|0).

Proof of Theorem 1.1. Along with the Poisson kernel, also the function ξ 
→ Pn(z, ξ | λ)
is in H(Aδ) for δ = 1 − |z|, for every n ∈ N0, λ ∈ C and z ∈ D.

We claim that every λ-polyharmonic function f of order n has a unique representation 
of the form

f(z) =
n−1∑
k=0

fk(z) with fk(z) =
∫
∂D

Pk(z, ξ |λ) dνk(ξ) , (14)

where ν0, . . . , νn−1 are analytic functionals on ∂D. Furthermore, when λ � −1
4 is real, 

νk is a non-negative Borel measure if and only if

(L− λ I)kgk � 0 , where gk = f − (fn−1 + · · · + fk+1) .

To prove this, we proceed by induction on n. For n = 1, this is Theorem 2.3. Suppose the 
statement is true for n −1. Let f be λ-polyharmonic of order n. Then h = (L −λ I)n−1f

is λ-harmonic. By Theorem 2.3, there is a unique analytic functional νn−1 on ∂D such 
that

h(z) =
∫
∂D

P (z, ξ |λ) dνn−1(ξ) .

We set

fn−1(z) =
∫
∂D

Pn−1(z, ξ |λ) dνn−1(ξ) .

By Proposition 2.6,

(L− λ I)n−1fn−1 = h = (L− λ I)n−1f .

Thus, f − fn−1 is λ-polyharmonic of order n − 1, and we can apply the induction hy-
pothesis to that function in order to get the representation of f . Uniqueness follows from 
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Helgason’s Theorem 2.3. The statement on non-negativity for real λ � −1
4 is a conse-

quence of the well known Poisson-Martin representation theorem for positive λ-harmonic 
functions. Since (14) differs from the proposed result only by the normalisation of the 
kernels Pn, the result is proved. �

The previous paper [28] on trees adopts a different method of proof, that could also be 
used here: it consists in differentiating P (z, ξ | λ) with respect to λ instead of integrating 
a differential equation with respect to z, which is inherent in the proof of Proposition 2.6. 
The drawback is that this does not work at the critical value λ = −1

4 , while on the other 
hand, it can be applied to more general domains as long as λ belongs to the L2-resolvent 
set of the underlying Laplacian.

From now on, we use the representation formula (14) for λ-polyharmonic functions, 
instead of the one of the statement of Theorem 1.1.

3. Polyspherical functions

Definition 3.1. For λ ∈ C and n ∈ N0, the nth λ-polyspherical function is

Φn(z |λ) =
∫
∂D

Pn(z, ξ |λ) dξ , z ∈ D ,

where Pn is given by Proposition 2.6 and dξ = dm(ξ) for the normalized Lebesgue 
measure m on the unit circle.

The function Φn(z | λ) is λ-polyharmonic of order n + 1 and rotation invariant, i.e., 
it depends only on |z|. For n = 0, we recover the classical spherical functions Φ(z | λ), 
where we omit the index 0: for z = r eiφ ∈ D,

Φ(z |λ) =
∫
∂D

P (z, ξ |λ) dξ =
∫
∂D

P (z, ξ)s(λ)+1/2 dξ

= 1
2π

π∫
−π

( 1 − r2

1 + r2 − 2r cosφ

)s(λ)+1/2
dφ .

(15)

In particular, Φ( · | 0) ≡ 1. The following is immediate from Proposition 2.6.

Lemma 3.2. For any n ∈ N and λ ∈ C and ξ ∈ ∂D,

(L− λ I)n Φn(z |λ) = Φ(z |λ) .

In the specific case λ = −1
4 one even has

(L− λ I) Φn(z | − 1 ) = Φn−1(z | − 1 ) .
4 4
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Remark 3.3. For λ ∈ C\(−∞ , −1
4 ), the spherical function Φ(r | λ) has no zeroes in [0 , 1), 

while for real λ ∈ (−∞ , −1
4 ), Φ(r | λ) has countably many zeroes which accumulate at 

1.
For real λ ∈ [−1

4 , ∞), this is obvious because the integrand in (15) is positive. For 
the other values of λ, to the best of our knowledge, it seems that these facts are nowhere 
referred to in the relevant literature on the hyperbolic Laplacian and its spherical func-
tions. Therefore, we add some explanations.

Expressing L in polar coordinates leads to the differential equation

(1 − r2)2

4 Φ′′(r |λ) + (1 − r2)2

4r Φ′(r |λ) − λΦ(r |λ) = 0

in the variable r ∈ [0 , 1). We now substitute z = 1 + r2

1 − r2 and write Ψ(z | λ) = Φ(r | λ). 
Then the above differential equation transforms into

(z2 − 1) Ψ′′(z |λ) + 2z Ψ′(z |λ) − λΨ(z |λ) = 0 .

One sees that the latter is Legendre’s differential equation; see Hobson [17] and, in 
particular, Hille [14], [15, equations (1) and (2)]. Recall that the Legendre function Pa

with parameter a ∈ C solves (1 − z2)P ′′
a (z) − 2zP ′

a(z) + a(a + 1)Pa(z) = 0, and

Pa(z) = F

(
a + 1,−a; 1; 1 − z

2

)
,

where F is Gauss’ hypergeometric function, and in our case, a(a + 1) = λ. We get

Φ(r |λ) = Pa(z) with a = −1
2 + s(λ) and z = 1 + r2

1 − r2 ∈ [1 ,∞).

Compare with [8, identity (25)]. Note that the hyperbolic Laplacian in [8] is 4 times the 
one we are using here, and that Φ(z | λ) is the function ϕ0(z, μ) of [8], with μ = 1

2 +s(λ). 
Note also that there are several known identities between hypergeometric functions with 
different parameters. For example, Grellier and Otal [11] use a different version, 
which coincides with the one given above, see e.g. Lebedev [24, p. 200].

It follows from old work of Mehler [26] and is explained in [14, pages 27–28, identity 
(35)] that for a = −1

2 + b i with b �= 0, that is, for λ ∈ (−∞ , −1
4 ), the function Pa(z) has 

countably many zeroes in [1 , ∞) which are such that the zeroes of Φ(r | λ) accumulate 
at 1. On the other hand, it is comprised in [15, Theorem V and the page preceding it], 
that with �(a) �= −1/2 the function Pa(z) has no zeroes in [1 , ∞).2 �
2 We thank Jean-Pierre Otal (Toulouse) for pointing us to the books by Lebedev and Hobson, which led us 

to the PhD thesis of Hille [14] and its follow-up [15]. We also acknowledge an exchange with Peter Sjögren 
(Göteborg) on the question how well this issue of zeroes of the spherical functions is known in the community 
– apparently not at all.
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For any fixed λ ∈ C \ (−∞ , −1
4 ), we shall need the asymptotic behaviour of Φn(z | λ)

when |z| → 1, that is, when

ρ(z, 0) = log 1 + |z|
1 − |z| → ∞ .

In view of Remark 3.3, we do not consider real λ ∈ (−∞ , −1
4 ) because of the infinity of 

zeroes of Φ(r | λ).
In the sequel, we shall adopt the following convention: in the formulas where 0 < r < 1

(resp. z ∈ D with |z| = r) appear, we always use capital R = ρ(r, 0) = ρ(z, 0), and we 
do the same in case of subscripts like rk ↔ Rk.

Theorem 3.4. We have the following, as R = ρ(z, 0) → ∞.
(A) If λ ∈ C \ (−∞ , −1

4 ] then

Φn(z |λ) ∼ c(λ)
n!

(
2s(λ)

)n Rn exp
((

s(λ) − 1/2
)
R
)
,

where c(λ) �= 0.
(B) If λ = −1

4 then

Φn(z |λ) ∼ 2
(2n + 1)!π R2n+1 exp(−R/2) .

In particular, for every n � 1 and λ ∈ C \ (−∞ , −1
4 ) there is 0 < rn,λ < 1 such that

Φn(z |λ) �= 0 for all z ∈ D with |z| � rn,λ .

For n = 0, we set r0,λ = 0.

Proof. For the parameter 0 < r < 1, the even function

Pr(φ) = P (r, eiφ) = 1 − r2

1 + r2 − 2r cosφ , φ ∈ [−π , π] (16)

is strictly decreasing in φ ∈ [0 , π]. It attains its maximum in 0 with value Pr(0) =
(1 + r)/(1 − r) = eR. We write

Pr(φ) = 1
2 2 with τ = τr = 2

√
r ∼ Pr(0) = eR as r → 1 . (17)
Pr(0) 1 + τ sin (φ/2) 1 − r
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Proof of (A). In this case, �(s) > 0, where s = s(λ). Then

n! (2s)n Φn(r |λ)
e(s+1/2)R Rn

= 1
2π

π∫
−π

Pr(φ)s+1/2 (logPr(φ)
)n

Pr(0)s+1/2
(
logPr(0)

)n dφ

= 2
τπ

π/2∫
0

τ

(1 + τ2 sin2 φ)s+1/2

(
R− log

(
1 + τ2 sin2 φ

)
R

)n

dφ .

We choose 0 < a <
2�(s)

2�(s) + 1 and decompose the last integral into the two parts

τ−a∫
0

plus 
π/2∫

τ−a

.

As for the second integral, ∣∣∣∣R− log
(
1 + τ2 sin2 φ

)
R

∣∣∣∣ � 1 (18)

Furthermore,

(τ2 sin2 φ)�(s)+1/2 � (τ2 sin2 τ)�(s)+1/2

∼ τ (1−a)(2�(s)+1) for φ ∈ [τ−a , π/2] as τ → ∞ ,
(19)

and we see that the second integral tends to 0 by the choice of a.
As for the first integral in the decomposition, as τ , hence R, tend to infinity, we have

(1 + τ2 sin2 φ)s+1/2 ∼ (1 + τ2φ2)s+1/2 and
R− log

(
1 + τ2 sin2 φ

)
R

∼ 1 − 1 + τ2φ2

log τ .

(20)
Therefore, with the substitution x = τφ, by dominated convergence as τ → ∞, we obtain

2
π

τ−a∫
0

τ

(1 + τ2 sin2 φ)s+1/2

(
R− log

(
1 + τ2 sin2 φ

)
R

)n

∼ 2
π

τ−a∫
0

τ

(1 + τ2φ2)s+1/2

(
1 −

log
(
1 + τ2φ2)
log τ

)n

dφ

= 2
π

τ1−a∫ 1
(1 + x2)s+1/2

(
1 −

log
(
1 + x2)
log τ

)n

dx
0
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→ 2
π

∞∫
0

1
(1 + x2)s+1/2 dx = c(λ), (21)

recalling that s = s(λ). This proves (A).

Proof of (B). In this case, s = 0, and

(2n)! Φn(r| − 1
4 )

eR/2 R2n ∼ 2
π

π/2∫
0

1
(1 + τ2 sin2 φ)1/2

(
1 −

log
(
1 + τ2 sin2 φ

)
log τ

)2n

dφ .

This time, we decompose the last integral into the two parts

1/ log τ∫
0

plus 
π/2∫

1/ log τ

.

By using the analogue of (20), the first integral is asymptotically equivalent to

1/ log τ∫
0

1
(1 + τ2 φ2)1/2

(
1 −

log
(
1 + τ2 φ2)
log τ

)2n

dφ as τ → ∞ .

We now substitute x =
log

(
1 + τ2 φ2)
log τ , and observe that the upper integration limit 

1/ log τ transforms into

bτ =
log

(
1 + (τ/ log τ)2

)
log τ ∼ 2 , as τ → ∞ .

Thus, the latter integral becomes

log τ
2τ

bτ∫
0

(1 − x)2n dx(
1 − τ−x

)1/2 ∼ log τ
τ

· 1
2n + 1 .

By (18), the second integral is bounded by

π/2∫
1/ log τ

dφ

τ sinφ
= 1

τ

(
− log tan 1

2 log τ

)
∼ log τ

τ
· log(2 log τ)

log τ , as τ → ∞ .

This leads to the asymptotic behaviour of (B). �
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For λ ∈ C \ (−∞ , −1
4 ], we define the associated real eigenvalue λ∗ ∈ [−1

4 , +∞) by 
the equation

s(λ∗) = �
(
s(λ)

)
. (22)

We shall also need the function defined as

|Φ|n(z |λ) =
∫
∂D

∣∣Pn(z, ξ |λ)
∣∣ dξ , z ∈ D . (23)

The same computations as in the proof of Theorem 3.4 with this modified integrand lead 
to the following.

Proposition 3.5. We have the following.
(A) If λ ∈ C \ (−∞ , −1

4 ] and s = s(λ) then, as R = ρ(z, 0) → ∞

|Φ|n(z |λ) ∼ Cn(λ)Rn exp
((

�(s) − 1/2
)
R
)
,

as R = ρ(z, 0) → ∞, where Cn(λ) = c(λ∗)
n! (2|s|)n with c(λ∗) according to (21).

(B) If λ = −1
4 then |Φ|n(z | λ) = Φn(z | λ) with asymptotics given by Theorem 3.4.B.

Regarding the zeroes of the higher order polyspherical functions, we have Pn(0, ξ | λ) =
Φn(0 | λ) = 0 for all λ ∈ C and n � 1. For the following, recall that

Jn = 1
2π

π∫
−π

(cosφ)n dφ =

⎧⎪⎪⎨⎪⎪⎩
1
2n

(
n

n/2

)
, if n is even,

0 , if n is odd.

Lemma 3.6. Let n � 1. Then we have the following as r → 0.
(A) If λ ∈ C \ {−1

4} and s = s(λ),

Φn(r |λ) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1(

n
2 !
)2 (2s)n

rn, if n is even,

1
n+1

2 ! n−1
2 ! (2s)n−1 rn+1, if n is odd.

(B) If λ = −1
4 then

Φn(r |λ) ∼ 1
2 r2n.
(n!)
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Proof. In the sequel all o(rk) are uniform in φ ∈ (−π , π], as r → 0. Short computations 
show that

P (r, eiφ) = 1 + 2r cosφ + o(r) and

logP (r, eiφ) = 2r cosφ + 2r2(cos2 φ− 1) + o(r2) ,

so that

P (r, eiφ)s+1/2 (logP (r, eiφ)
)n

=
(
1 + (2s + 1) r cosφ + o(r)

)
×

(
2nrn cosn φ + n2n+1rn+1(cosn+1 φ− cosn−1 φ)

)
+ o(rn+1)

= 2nrn cosn φ + 2nrn+1
(
(2s + 1 + n) cosn+1 φ− n cosn−1 φ

)
+ o(rn+1)

(24)

Applying 1
2π

∫ π

−π
with respect to φ, using the above formula for Jn, and normalising as 

in Proposition 2.6, we obtain the proposed asymptotic behaviour near 0. �
While we do not know much about the zeroes of Φn(r | λ) in general, we have the 

following for real eigenvalues.

Proposition 3.7. For real λ � −1
4 and all n ∈ N, we have Φn(r | λ) > 0 for 0 < r < 1.

Proof. The statement is clear for even n, as well as for all n when λ = −1
4 . Fix r > 0

and consider

Fn(s) =
∫
∂D

(
logP (r, ξ)

)n
P (r, ξ)s+1/2 dξ ,

a function of s � 0. For s = s(λ), one has Φn(r | λ) = Fn(s) when λ > −1
4 . Then for 

s > 0

d

ds
F2n+1(s) = F2n+2(s) > 0 ,

so that F2n+1(s) is strictly increasing in s ∈ [0 , ∞). To complete the proof it is enough 
to show that F2n+1(0) = 0, or equivalently, that

f2n+1(z) =
∫
∂D

(
logP (z, ξ)

)2n+1 √
P (z, ξ) dξ = 0 for all z ∈ D .

We show this by induction on n. For n = 1, Lemma 2.5 yields that (L + 1
4I)f1 = 0

(recalling that s = 0). Since f1 is radial, i.e., it depends only on r = |z|, it must be 
a constant multiple of the spherical function Φ(z | − 1 ). Moreover, as f1(0) = 0, that 
4
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constant factor must be 0, that is, f1 ≡ 0 on D. Now suppose that n � 1 and that we 
have already that f2n−1 ≡ 0 on D. Once more, from Lemma 2.5, we get

(L + 1
4I)f2n+1 = 2n(2n + 1) f2n−1 ≡ 0

so that also f2n+1 must be a constant multiple of Φ(z | − 1
4 ). As above, we get f2n+1 ≡ 0

on D. �
For λ ∈ C \ R, from Theorem 3.4 we know at least that Φn(z | λ) �= 0 when |z| is 

sufficiently close to 1.

4. Polyharmonic kernels

Definition 4.1. Let n ∈ N0 and λ ∈ C. The nth generalised Poisson transform of an 
analytic functional (or measure) ν on ∂D is the function

Πn,λ ν(z) =
∫
∂D

Pn(z, ξ |λ) dν(ξ) , z ∈ D ,

where Pn is given by Proposition 2.6. If ν is an absolutely continuous measure with 
density function g(ξ) with respect to the normalised Lebesgue measure m on the circle, 
then we write Πn,λ g(z) for the resulting transform. When n = 0, we just write

Πλ = Π0,λ and Π = Π0,0 .

Our aim is to consider boundary value problems for polyharmonic functions. The 
most basic one is the Dirichlet problem: given a continuous function g on ∂D, look for 
a harmonic function h on D which provides a continuous extension of g to the closed 
disk D ∪ ∂D, the hyperbolic compactification. The solution is unique and well known, 
h(z) = Π g(z), the classical Poisson transform.

If we consider λ-harmonic functions with 0 �= λ ∈ C \ (−∞ , −1
4 ), then we cannot 

proceed in the same way, using P (z, ξ)s(λ)+1/2. Indeed, if we take g ≡ 1 on ∂D, then 
its λ-Poisson transform is h(z) = Φ(z | λ), which tends to 0 as |z| → 1 when s = 0 or 
0 < �(s) < 1/2, and to ∞ in absolute value when �(s) > 1/2. It is well-known that in 
this case one should normalise, and the natural candidate is Φ(z | λ), see e.g. [27] and 
[21]. (Note that this normalisation is not feasible when λ ∈ (−∞ , −1

4 ) because of the 
zeroes of the spherical function which accumulate at ∂D.)

Definition 4.2. For n ∈ N0 and λ ∈ C \ (−∞ , −1
4 ), the normalised polyharmonic kernel

is

Kn,λ(z, ξ) = Pn(z, ξ |λ)
, ξ ∈ ∂D , z ∈ D , |z| � rn,λ ,
Φn(z |λ)
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where rn,λ is as in Theorem 3.4.

Thus, ∫
∂D

Kn,λ(z, ξ) dν(ξ) = Πn,λ ν(z)
Φn(z |λ) .

Lemma 4.3. There is a constant C̃(λ) for which the kernels of Definition 4.2 satisfy∣∣Kn,λ(z, ξ)
∣∣ � C̃(λ)K0,λ∗(z, ξ)

where λ∗ � −1
4 is given by (22) and |z| � rn,λ.

Proof. Note that |h(reiα, ξ)| � h(r, 1) = R, where (recall) r = |z| and R = ρ(z, 0) =
ρ(r, 0) = log 1 + r

1 − r
. By Theorem 3.4, as r = |z| → 1,

∣∣Φ(z |λ)
∣∣ ∼ |c(λ)|

c(λ∗) Φ(z |λ∗).

Note also that by Theorem 3.4,

∣∣Φn(z |λ)
∣∣ ∼

⎧⎪⎪⎨⎪⎪⎩
∣∣Φ(z |λ)

∣∣Rn 1
n!
(
2|s(λ)|

)n , if λ ∈ C \ (−∞ , −1
4 ) ,

∣∣Φ(z |λ)
∣∣R2n 1

(2n + 1)! , if λ = −1
4 (= λ∗) ,

as r → 1. Therefore, there is C̃(λ) > 0 (depending on n) such that

C̃(λ)
∣∣Φn(z |λ)

∣∣ �
⎧⎪⎨⎪⎩

Φ(z |λ∗)Rn , if λ ∈ C \ (−∞ , −1
4 ) ,

Φ(z |λ∗)R2n , if λ = −1
4 ,

for all r � rn,λ. It follows that 
∣∣Kn,λ(z, ξ)

∣∣ is bounded above by

P (z, ξ)�(s(λ))+1/2Rn∣∣Φn(z |λ)
∣∣ � C̃(λ) P (z, ξ)s(λ∗)+1/2

Φ(z |λ∗) , if λ ∈ C \ (−∞ , −1
4 ] ,

and by

P (z, ξ)1/2R2n

Φn(z| − 1
4)

� C̃(−1
4 ) P (z, ξ)1/2

Φ(z| − 1
4 )

, if λ = −1
4 ,

which proves our claim. �
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Remark 4.4. (a) If λ > −1
4 then, by Lemma 3.6, Kn,λ(z, ξ) is well-defined for all z ∈

D \ {0}. When n is even then, in view of (24), it extends continuously to z = 0, and we 
can set rn,λ = 0 for even n.

However, when n is odd, again in view of (24), Kn,λ(z, ξ) has a pole at z = 0 unless 
ξ = ±i. Thus, for Lemma 4.3 we need to work with rn,λ = ε for odd n, where ε > 0 is 
arbitrary but fixed.
(b) If λ = −1

4 then Kn,λ(z, ξ) extends continuously to z = 0 for all n, and we can always 
use rn,− 1

4
= 0.

Note that K0,λ∗(z, ·) dm is a probability measure on ∂D for each z ∈ D.
Another look at the proof of Theorem 3.4 yields the following.

Lemma 4.5. Let λ ∈ C \ (−∞ , −1
4 ), s = s(λ) and n ∈ N0. Then

lim
r→1

Kn,λ(r, eiψ) = 0 uniformly for

|ψ| ∈

⎧⎨⎩[2τ−a , π] , if λ ∈ C \ (−∞ , −1
4 ) , where 0 < a <

2�(s)
2�(s) + 1 ,

[2(log τ)−a , π] , if λ = −1
4 , where 0 < a < 1 .

Proof. In view of Lemma 4.3, we only need to prove this for n = 0 and real λ � −1
4 . In 

this case, it is well known except maybe for the fact that usually the lower bound for |ψ|
is required to be a positive constant, while here it tends to 0 as r → 1.

First, look at case (A) of Theorem 3.4. With τ as in (17) and c(λ) as in (21), we have 
as r → 1

P (r, eiψ|λ)
Φ(r |λ) ∼ Pr(ψ)s+1/2

c(λ)Pr(0)s+1/2 e−R
∼ 1

c(λ)
τ(

1 + τ2 sin2(ψ/2)
)s+1/2 .

By (19) and (20), this tends to 0 uniformly in the stated range.
In case (B) of Theorem 3.4, as r → 1, that is, τ → ∞,

P (r, eiψ| − 1
4 )

Φ(r | − 1
4 )

∼ π

2
Pr(ψ)1/2

Re−R Pr(0)1/2
∼ π

2
τ/ log τ(

1 + τ2 sin2(ψ/2)
)1/2 .

Again, this tends to 0 uniformly in the stated range. �
The kernels are also rotation invariant: Kn,λ(eiαz, eiαξ) = Kn,λ(z, ξ). This fact and 

the last two lemmas yield the following by well-known methods.

Proposition 4.6. Let n ∈ N0 and λ ∈ C\(−∞ , −1
4 ). For a measurable function g : ∂D →

C, resp. a complex Borel measure ν on ∂D, let

f(z) = Πn,λ g(z) , resp. f(z) = Πn,λ ν(z) .
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Then the following properties hold.

(i) If g ∈ C(∂D) then lim
z→ξ

f(z)
Φn(z |λ) = g(ξ) for all ξ ∈ ∂D and uniformly as |z| → 1.

(ii) If g ∈ Lp(∂D) (1 � p < ∞) then lim
r→1

f(rξ)
Φn(r |λ) = g(ξ) for almost every ξ ∈ ∂D and 

in Lp(∂D).

(iii) If g ∈ L∞(∂D) then lim
r→1

f(rξ)
Φn(r |λ) = g(ξ) in the weak*-topology of L∞(∂D).

(iv) If ν is a finite Borel measure on ∂D then the measures f(rξ)
Φn(r |λ) dξ converge to ν

in the weak*-topology, as r → 1.

The classical reference is Zygmund [37, chapter 17, Theorems 1.20 & 1.23]. See also
Stein and Weiss [34, §I.1, Theorems 1.18 & 1.25 and §II.2] and Garnett [9, Theorem 
3.1]. In these references, the results are presented for the upper half space, resp. half plane 
and carry over to the disk model of the hyperbolic plane.

5. Dirichlet and Riquier problem at infinity

Reconsider statement (i) of Proposition 4.6. It says that for any g ∈ C(∂D), the 
function

f(z) = Πn,λ g(z)
Φn(z |λ) (25)

is λ-polyharmonic of order n + 1 which provides a continuous extension of g to {z ∈ D :
|z| � rn,λ}. When n � 1 in (25) then we cannot expect that the given f is the unique 
function with this property. Indeed, for example also

lim
z→ξ

f(z) + Φk(z |λ)
Φn(z |λ) = g(ξ) when 0 � k < n .

However, when n = 0 and we are considering λ-harmonic functions, this is the solution 
of the λ-Dirichlet problem, valid on all of D since Φ(· | λ) has no zeroes in D. It is well-
known to be unique when λ = 0. The extension to real λ � −1

4 with normalisation by 
Φ(z | λ) is well understood via the maximum principle applied to the kernels K0,λ(z, ξ)
of Definition 4.2, which are probability kernels with respect to m for real λ. When 
λ ∈ C \ (−∞ , −1

4 ) is complex, we can still prove uniqueness, via a different technique in 
place of the standard one.

Theorem 5.1. Let λ ∈ C \ (−∞ , −1
4 ) and g ∈ C(∂D). Then h(z) = Πλ g(z) is the unique 

λ-harmonic function for which

lim h(z) = g(ξ) for every ξ ∈ ∂D. (26)

D�z→ξ Φ(z |λ)
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Proof. We know that the given function h is a solution of the λ-Dirichlet problem, i.e. 
it satisfies (26). In order to show uniqueness, it is enough to prove that the constant 
function 0 is the only solution, when g ≡ 0 on ∂D. In other words, we assume that h is 
a λ-harmonic function on D with

lim
D�z→ξ

h(z)
Φ(z |λ) = 0 for every ξ ∈ ∂D ,

and we have to show that h ≡ 0.
Let �h be the spherical average of h around 0,

�
h(z) = 1

2π

π∫
−π

h(|z|eiφ) dφ .

In particular, �h(0) = h(0). Then 
�
h is also λ-harmonic, and it is rotation-invariant. Now, 

up to multiplication with constants, Φ(z | λ) is the unique λ-harmonic function which is 
rotation-invariant. See e.g. [8] for this well-known fact. Therefore

�
h(z) = h(0) Φ(z |λ) .

On the other hand, the function on the closed disk which is h/Φ(· |λ) in the interior 
and 0 on the boundary is continuous, whence uniformly continuous, so that

lim
|z|→1

h(z)
Φ(z |λ) = 0 uniformly in z.

Since Φ(z | λ) only depends on |z|, also

lim
|z|→1

�
h(z)

Φ(z |λ) = 0.

We conclude that h(0) = 0.
Now let z0 ∈ D be arbitrary. Then there is an isometry γ of the Poincaré disk (a 

Möbius transform) such that γ 0 = z0. The isometries commute with the hyperbolic 
Laplacian, whence also the function hγ(z) = h(γz) is λ-harmonic. If |z| → 1 then also 
|γz| → 1. Therefore also h(γz)/Φ(γz | λ) → 0 as |z| → 1. Now Theorem 3.4 implies

Φ(γz |λ)
Φ(z |λ) ∼ exp

(
(s− 1/2)

(
ρ(γ z, o) − ρ(z, o)

))
as |z| → 1 .

This is bounded, since∣∣ρ(γ z, o) − ρ(z, o)
∣∣ =

∣∣ρ(z, γ−1o) − ρ(z, o)
∣∣ � ρ(γ−1o, o).
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We infer that

hγ(z)
Φ(z |λ) = h(γz)

Φ(γz |λ)
Φ(γz |λ)
Φ(z |λ) → 0 as |z| → 1 .

We can now apply the above argument to hγ and its spherical average, and conclude 
that h(z0) = 0. This is true for every z0 ∈ D. �

The next Lemma is in preparation of the Riquier problem for λ-polyharmonic func-
tions.

Lemma 5.2. For λ ∈ C \ (−∞ , −1
4 ), let f be λ-polyharmonic of order n + 1 on D and 

such that the λ-harmonic function h = (L − λ I)nf satisfies

lim
D�z→ξ

h(z)
Φ(z |λ) = g(ξ) for every ξ ∈ ∂D

where g ∈ C(∂D). Then

f(z) = Πn,λ g(z) + f∗(z) ,

where f∗ is λ-polyharmonic of order n.

Proof. This is very similar to the inductive argument in the proof of Theorem 1.1. It 
follows from Theorem 5.1 that h = Πλ g =: hg. Write fg = Πn,λ g. By Lemma 5.2,

(L− λ I)nfg = hg = (L− λ I)nf .

Therefore (L − λ I)nf∗ = 0. �
In the setting of the Euclidean Laplacian Δ on a bounded domain, the Riquier problem 

asks for solutions of Δnf = 0 with prescribed boundary data gk = Δkf for k = 0, . . . , n −
1. This is not applicable to the hyperbolic setting of (L −λ I)n, even when λ = 0, because 
in any case, the quotient of lower and higher order polyspherical functions tends to zero 
at the boundary. For this reason, we propose a different formulation.

Definition 5.3. Let λ ∈ C \ (−∞ , −1
4 ) and g0 , . . . , gn−1 ∈ C(∂D). Then a solution of the 

associated Riquier problem at infinity is a polyharmonic function

f = f0 + · · · + fn−1

of order n, where each fk is λ-polyharmonic of order k + 1 and

lim (L− λ I)kfk(z) = gk(ξ) for every ξ ∈ ∂D .

z→ξ Φ(z |λ)
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Note that by Remark 3.3, the denominator in the last quotient is always non-zero.

Corollary 5.4. A solution of the Riquier problem as in Definition 5.3 is given by

fk(z) = Πk,λ gk(z) , k = 0, . . . , n− 1 .

One also has for every ξ ∈ ∂D and k ∈ {0 , . . . , n − 1}

lim
z→ξ

fk(z)
Φk(z |λ) = gk(ξ) and lim

z→ξ

fj(z)
Φk(z |λ) = 0 for j < k.

6. A Fatou theorem for polyharmonic functions

Definition 6.1. (i) For 0 < δ � π, consider the arc Bδ = {eiφ : |φ| < δ} ⊂ ∂D, and 
for ζ = eiα consider the rotated arc Bδ(ζ) = ζBδ = {eiφ : |φ − α| < δ} with measure 
(normalised arc length) m

(
Bδ(ζ)

)
= δ/π. The Hardy–Littlewood maximal operator is 

defined on functions g ∈ L1(∂D) as

Mg(ζ) = sup

⎧⎪⎨⎪⎩ 1
m
(
Bδ(ζ)

) ∫
Bδ(ζ)

|g(ξ)| dξ : 0 < δ � π

⎫⎪⎬⎪⎭ .

(ii) Let [0, ζ] be the line segment with endpoints 0 and ζ = eiα in the unit disc D, and 
for a � 0 consider the admissible region, or tubular domain

Γa(ζ) =
{
z ∈ D : ρ

(
z, [0, ζ]

)
� a

}
.

The non-tangential (tubular) maximal operator of width a � 0 is defined on functions 
g ∈ L1(∂D) as

M(n,λ)
a g(ζ) = sup

⎧⎨⎩
∣∣∣∣∫
∂D

Kn,λ(z, ξ) g(ξ) dξ
∣∣∣∣ : z ∈ Γa(ζ) , |z| � rn,λ

⎫⎬⎭ ,

where Kn,λ is the kernel introduced in Definition 4.2 and rn,λ is as in Theorem 3.4.
(iii) With the same ingredients as in (ii), the enlarged-admissible region is

Γ(a)(ζ) =
{
z ∈ D : ρ

(
z, [0, ζ]

)
� a + log ρ(z, 0)

}
.

The extended maximal operator of width a is defined on functions g ∈ L1(∂D) as

M
(n,λ)
(a) g(ζ) = sup

⎧⎨⎩
∣∣∣∣∫ Kn,λ(z, ξ) g(ξ) dξ

∣∣∣∣ : z ∈ Γ(a)(ζ) , |z| � rn,λ

⎫⎬⎭ .
∂D
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Both Γa(ζ) and Γ(a)(ζ) are (Euclidean) convex subsets of D which touch the boundary 
∂D only at ζ. In the Euclidean metric, the “tube” Γa(ζ) is conical at ζ with Stolz angle 
2 arctan(sinh a). On the other hand, the boundary curve of the larger domain Γ(a)(ζ) is 
tangent to ∂D at ζ.

The following fact is well-known (see, for instance, [22, Corollary of Lemma 1.1]).

Proposition 6.2. The Hardy–Littlewood maximal operator is of weak type (1, 1) and strong 
type (p, p) for 1 < p � ∞.

Our aim is to prove the following.

Proposition 6.3. For every a � 0 and n ∈ N0, there is a constant C(a, λ) > 0 such that 
for all g ∈ L1(∂D)

M(n,λ)
a g � C(a, λ)Mg , if λ ∈ C \ (−∞ , −1

4) ,

M
(n,λ)
(a) g � C(a, λ)Mg , if λ = −1

4 .

Note that the inequality in the critical case is stronger, since the underlying domain 
is enlarged. By Lemma 4.3, it is sufficient to prove Proposition 6.3 for n = 0 (i.e., for 
L − λ I) and real λ � −1

4 , showing that

M(0,λ)
a g � C(a, λ)Mg if λ > −1

4 , and

M
(0,λ)
(a) g � C(a, λ)Mg if λ = −1

4 .

(27)

That is, we only need to work with the standard spherical functions Φ(z | λ).
In this case, the proof is practically folklore when λ > −1

4 , see [37], [20] or [27], while 
the extended version for λ = −1

4 is contained in a note by Sjögren [33]. However, the 
extent to which the proof is folklore is such that it is hard to find a simple version for the 
hyperbolic Laplacian, and the note [33] is also not very easily accessible. Therefore, for 
the reader’s convenience, we include a simple proof (more direct via partial integration 
than typical versions which decompose the unit circle in countably many arcs).

Proof of Proposition 6.3. 1) As mentioned, it is sufficient to work with n = 0 and 
λ real. Then Kn,λ(z, ξ) dξ is a probability measure, and we have rotation invariance: 
Kn,λ(eiαz, eiαξ) = Kn,λ(z, ξ). Thus, it is enough to prove the inequality at ζ = 1.
2) For the rest of this proof, we set

t = s(λ) + 1/2 and R∗ =

⎧⎨⎩1 , if λ > −1
4 ,

R , if λ = −1 .
(28)
4
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Thus t > 1/2 when λ > −1
4 , and t = 1/2 when λ = −1

4 . We can subsume both admissible 
regions Γa(1) and Γ(a)(1) under{

z = r eiα ∈ D : ρ
(
z, [0, 1]

)
� a + logR∗} ,

where, as always, R = log 1 + r

1 − r
. Elementary computations with hyperbolic distance 

yield for z = r eiα with r < 1 and |α| � π that for any a � 0,

ρ
(
z, [0, 1]

)
� a+ logR∗ ⇐⇒ 1 − r2

2r sinh(a + logR∗)︸ ︷︷ ︸
=: Kr

�
{
| sinα| , if |α| < π/2
1 , if |α| � π/2 .

(29)

If |α| � π/2, this is the same as R � a + logR∗. Thus, there is ra ∈ (0 , 1) such that 
when r � ra then the second of the above cases is excluded, and that sinh(a + Ra) > 1, 
where Ra = ρ(ra, 0).
3) In view of (17), we need to show that for z = r eiα in the range of (29),

eR

2π R∗

π∫
−π

|g(eiφ)| 1(
1 + 4r

(1−r)2 sin2 φ−α
2

)t dφ � C(a, λ)Mg(1). (30)

If r ∈ [0 , ra) then the kernel of the above integral is bounded, so that the estimate is 
immediate with a suitable value of C(a, λ). So we now consider the case r � ra, where we 
know that |α| < π/2, and α → 0 as r → 1. For φ ∈ (−π , π], we have |φ − α|/2 � 3π/4, 
whence there is κ ∈ (0 , 1) such that | sin φ−α

2 | � κ |φ−α
2 |, as well as | sinα| � κ |α|. We 

may assume that ra is such that 2Kr � π for r � ra. Now the left hand side of (30) is 
bounded above by

eR

2π R∗

π∫
−π

|g(eiφ)| 1(
1 + r

κ2(1−r)2 (φ− α)2
)t dφ .

We decompose the last integral into 
∫
|φ|<2Kr/κ

+ 
∫
|φ|�2Kr/κ

: for the first part,

eR

2π R∗

2Kr/κ∫
−2Kr/κ

|g(eiφ)| 1(
1 + r

κ2(1−r)2 (φ− α)2
)t dφ

� eR

2π R∗

2Kr/κ∫
−2Kr/κ

|g(eiφ)| dφ � 4Kr e
R

2π κR∗ Mg(1) � 4ea

2π κ ra
Mg(1) .

For the second part, we set
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H(φ) =
φ∫

0

(
|g(eiψ)| + |g(e−iψ)|

)
dψ , φ ∈ [−π , π].

Then

H(φ) � 2φMg(1) .

Observe that, by (29) and the choices of r and κ, we have |α| � Kr/κ, so that |φ| � 2Kr/κ

implies |φ − α| � |φ|/2. We get, with cκ = (2κ)2t/(ra π), and using partial integration

eR

2π R∗

∫
2Kr/κ�|φ|�π

|g(eiφ)| 1(
1 + r

κ2(1−r)2 (φ− α)2
)t dφ

� cκ
(1 − r)2t−1

R∗

π∫
2Kr/κ

(
|g(eiφ)| + |g(e−iφ)|

) 1
φ2t dφ

= cκ
(1 − r)2t−1

R∗

⎛⎜⎝H(π)
π2t − H(2Kr/κ)

(2Kr/κ)2t + 2t
π∫

2Kr/κ

H(φ)
φ2t+1 dφ

⎞⎟⎠

� cκ
(1 − r)2t−1

R∗

⎛⎜⎝ 2π
π2t + 4t

π∫
2Kr/κ

1
φ2t dφ

⎞⎟⎠Mg(1)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cκ

(
2

π2t−1 + 4t
2t− 1

( κ

sinh a

)2t−1
)
Mg(1) , if t > 1/2,

cκ

(
2 + 2 log π

Ra
+ 2

)
Mg(1) , if t = 1/2 ,

because − log(2Kr/κ) � R by the choices of ra and κ. This concludes the proof. �
As a consequence, we have the following convergence theorem (in the discrete setting 

of trees, see [21, Theorem 1, Theorem 3] for λ-harmonic functions, and [30, Theorem 4.6]
for regular trees and λ-polyharmonic functions).

Definition 6.4. A function f : D → C converges admissibly, (≡ non-tangentially) resp. 
enlarged-admissibly at a boundary point ξ ∈ ∂D if, for every a � 0, the limit

lim
Γa(ξ)�z→ξ

f(z) , resp. lim
Γ(a)(ξ)�z→ξ

f(z)

exists and is finite.
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Theorem 6.5 (Fatou theorem for λ-polyharmonic functions). Let λ ∈ C \ (−∞ , −1
4 ) and 

ν a Borel measure on ∂D. Then the normalised λ-polyharmonic function

Πn,λ ν(z)
Φn(z |λ) ( |z| � rn,λ )

converges admissibly at m-almost every point in ∂D. The limit is the Radon–Nykodim 
derivative dνac/dm, where (recall) m is the normalised arc length measure, and νac is 
the absolutely continuous part of ν.

If λ = −1
4 , convergence is even enlarged-admissible.

Proof. It is well-known that we can assume ν to be absolutely continuous with respect 
to m. We prove this fact for the sake of completeness: if ν is singular with respect to m, 
then there is an m-null set E ⊂ ∂D such that ν(D \ E) = 0. For every ε > 0, let {Aj ⊂
∂D : j = 1, . . . , n} be a finite collection of open arcs covering E with m

(⋃n
j=1 Aj

)
< ε. 

Let U =
⋃n

j=1 Aj . Then

∣∣∣∣ f(z)
Φn(z |λ)

∣∣∣∣ � ∫
U

∣∣P (z, ξ |λ) h(z, ξ |λ)n
∣∣

|Φn(z |λ)| dν(ξ) ,

which tends to 0 when z → ζ ∈ ∂D \ U by Lemma 4.5.
So we can assume that ν is absolutely continuous with respect to the normalised 

Lebesgue measure m, with g = dν/dm ∈ L1(∂D, m). The rest of the proof is the contin-
uous analogue of [21, Theorems 1 and 3] and [30, Theorem 4.6]. In brief, we can find a 
sequence (gk) in C(∂D) such that ‖g − gk‖ < 1/2k, and by Propositions 6.2 and 6.3,∑

k

m
[
Mn,λ

a (g − gk) � ε
]
< ∞ .

By the Borel-Cantelli Lemma,

lim
k→∞

Mn,λ
a (g − gk)(ξ) = 0 for m-almost every ξ ∈ ∂D.

We can now apply Proposition 4.6(i) to each of the gk to get the proposed convergence 
at all those points ξ ∈ ∂D. �

Let us call a λ-polyharmonic function f regular if all the analytic functionals νk in 
the boundary representation of Theorem 1.1, or better (equivalently) formula (14), are 
complex Borel measures on ∂D. The fact that Φk(r | λ)/Φn(r | λ) → 0 for k < n, when 
r → 1, yields the following.

Corollary 6.6. For λ ∈ C\(−∞ , −1
4 ), let f be a regular λ-polyharmonic function of order 

n + 1 and νn the highest-order representing measure of f in (14). Then f(z)/Φn(z | λ)
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converges admissibly (resp. enlarged-admissibly, if λ = −1
4) at almost every ξ ∈ ∂D. The 

limit function is the Radon–Nykodim derivative dνac
n /dm.

Compare the following with [31].

Corollary 6.7. For λ ∈ C \ (−∞ , −1/4), the only radial λ-polyharmonic functions of 
order n +1 on D are the linear combinations of the λ-polyspherical functions Φ0, . . . , Φn.

7. Examples, complements, open problems

In this section, we study examples of (hyperbolically) harmonic and bi-harmonic func-
tions which are not regular. We focus on the case λ = 0, where of course s(0) + 1/2 = 1.

First, for 0 � r < 1 and ξ ∈ ∂D,

P (r, ξ) = 1 − r2

1 + r2 − rξ − r/ξ
=

∑
n∈Z

r|n| ξn.

Thus, for any fixed z = r eiα ∈ D, the Fourier expansion of the Poisson kernel in the 
boundary variable ξ = eiφ is

P (r eiα, eiφ) =
∑
n∈Z

r|n| e−inα einφ.

Next, we want to determine the Fourier expansion of −h(z, ξ) = logP (z, ξ). By (7),

logP (r, ξ) = log(1 − r2) − log(ξ − r) − log
(1
ξ
− r

)
= log(1 − r2) +

∑
0	=n∈Z

r|n|

|n| ξ
n ,

so that we have the Fourier expansion

logP (r eiα, eiφ) = log(1 − r2) +
∑

0	=n∈Z

r|n|

|n| e
−inα einφ.

Now we can write

P (r, ξ) logP (r, ξ) =
∑
n∈Z

r|n| d|n|(r) ξn ,

since the coefficients of ξn and ξ−n must coincide. For n � 0,

rn dn(r) = rn log(1 − r2) +
∑

r|n−k| r
|k|

|k|

0	=k∈Z
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= rn log(1 − r2) +
∞∑
k=1

rn+2k

k︸ ︷︷ ︸
= −rn log(1 − r2)

+
n∑

k=1

rn

k
+

∞∑
k=n+1

r2k−n

k
,

whence

dn(r) =
n∑

k=1

1
k

+
∞∑
k=1

r2k

k + n
. (31)

Note that dn(r) is in fact a function of r2. We have

dn(r) − dn−1(r) =
∞∑
k=0

(1 − r2)r2k

k + n
� 0 ,

so that

dn(r) = d0(r) + (1 − r2)
∞∑
k=0

r2k

k

n∑
m=1

k

k + n
,

whence

log 1
1 − r2 = d0(r) � dn(r) �

(
1 + n(1 − r2)

)
log 1

1 − r2 . (32)

We conclude that the Fourier expansion of the biharmonic Poisson kernel is

P1(r eiα, eiφ) = P (r eiα, eiφ) logP (r eiα, eiφ) =
∑
n∈Z

r|n| d|n|(r) e−inα einφ.

Definition 7.1. Let h(z) be a harmonic function on D and let νh be the analytic functional 
on ∂D in its Poisson representation. The associated biharmonic function is

fh(z) =
∫
∂D

P1(z, ξ) dνh(ξ) .

Now, let us start with an analytic, whence harmonic function

h(z) =
∞∑

n=0
hn z

n , lim sup
n→∞

|hn|1/n � 1 (33)

on D. We compute the Fourier coefficients νhn = νh(e−inφ) of the corresponding analytic 
functional νh, that is

h(z) =
∫

P (z, ξ) dνh(ξ) =
∑
n∈Z

r|n| e−inα νhn ,
∂D
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where z = r e−iα. Comparison with

h(z) =
∞∑

n=0
hn r

n einα

yields

νhn =
{
h−n , if n � 0 ,
0 , if n > 0 .

(34)

Then the associated biharmonic function is

fh(z) =
∞∑

n=0
hn dn(|z|) zn .

Below we shall use the fact that (32) implies

∣∣∣∣fh(z) − log 1
1 − r2h(z)

∣∣∣∣ � (1 − r2)
∞∑

n=1
n |hn| rn (35)

with log 1
1−r2 ∼ R as r = |z| → 1. Moreover, the real part

�h(z) =
∞∑

n=0
hn r

n hne
inα + hne

−inα

2

is harmonic, and the Fourier coefficients of the corresponding analytic functional ν�h

are

ν�h
n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�h0 , if n = 0,

hn/2 , if n > 0,

h−n/2 , if n < 0 .

(Indeed, every real harmonic function arises as the real part of an analytic function.) It 
follows that

f�h(z) = −
∫
∂D

P1(z, ξ) dν�h(ξ) = �fh(z) .

Discussion 7.2. Euclidean and hyperbolic harmonic functions coincide. We know that if 
a harmonic function h is bounded then its representing analytic functional is in fact a 
measure with bounded density with respect to the Lebesgue measure on ∂D. Euclidean 
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biharmonic functions are of the form h1(z) + r2h2(z) with h1 , h2 harmonic. The Eu-
clidean biharmonic kernel is r2P (z, ξ), and no normalisation is in place. In this context,
Mazalov [25] provides an example of a bounded biharmonic function which has no ra-
dial limits at the boundary. The function is of the form (1 − r2) �h(z) where h(z) is 
as in (33) with a lacunary sequence of coefficients hn � 0. It is bounded, while h(z) is 
not bounded. What would be an analogue in the hyperbolic case? Since the biharmonic 
kernel needs to be normalised by Φ1(z|0) ∼ R ∼ | log(1 − r)| as R → ∞ (recall that 
R = ρ(z, 0) and r = |z|), we would look for a hyperbolically biharmonic function f(z)
such that f(z)/| log(1 − r)| is bounded but has no radial limits.

Now suppose that h(z) is such that hn � 0 and such that f(z)/| log(1 −r)| is bounded. 
Then we have by (32) for |z| = r

|h(z)| � h(r) �
∞∑

n=0
hn

dn(r)
d0(r)

rn � fh(r)
| log(1 − r)| .

Hence also the harmonic function h(z) is bounded, the (common) representing analytic 
functional of h(z) and fh(z) is a measure with bounded density and fh(z)/| log(1 −r)| has 
admissible limits almost everywhere on ∂D by Theorem 6.5. It is also worth mentioning 
that fh(z)/| log(1 − r)| − h(z) has admissible limit 0 almost everywhere. �
Question 7.3. Let ν be an analytic functional on ∂D and

f(z) = Π1,0 ν(z) =
∫
D

P1(z, ξ) dν(ξ)

be such that f(z)/R is bounded. Is it true that ν must be a measure with bounded 
density?

On an example of Borichev.3
The following interesting example is closely related to the results and methods in the 
paper by Borichev et al. [4].

Proposition 7.4. There is a harmonic function h(z) on D such that h(z)/| log(1 − r)| is 
bounded, but has no radial limits at any point of ∂D.

Of course, this function is also L-biharmonic, so it is an example of a biharmonic 
function in the sense of Discussion 7.2.

We now provide the details of the proof of Proposition 7.4.

3 We acknowledge literature hints of Fausto Di Biase (Pescara) which led us to the work of Borichev. We 
are particularly grateful to Alexander Borichev (Marseille) who indicated this clever example to us.
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The set K =
{

t+1
6 e3πti : t ∈ [0 , 1]

}
is a spiral winding one and a half times around 

the origin with radius r varying from 1/6 to 1/3. Using Runge’s approximation theorem 
as for example stated by Rudin [29, Thm. 13.7], one finds a homogeneous polynomial

p(z) =
s∑

j=1
pj z

j with |p(z) − 5/3| < 2/3 for all z ∈ K . (36)

It is of course harmonic, and on D,

|p(z)| � B |z| , where B =
s∑

j=1
|pj | .

We construct the function

h(z) =
∞∑
k=1

k! p
(
z2k!)

, z ∈ D . (37)

Note that p(0) = 0.

Lemma 7.5. The series defining h(z) converges absolutely in D, and

sup
z∈D

|h(z)|∣∣log(1 − |z|)
∣∣ < ∞ .

Proof. Consider

f(z) =
∞∑

n=1

zn

n
= − log(1 − z).

For real r ∈ [0 , 1), the sequence (rn/n) is decreasing, whence

f(r) =
∞∑
l=0

2l+1−1∑
n=2l

rn

n
�

∞∑
l=0

2l r
2l+1−1

2l+1 − 1 � 1
2

∞∑
l=1

r2l

= 1
2

∞∑
k=1

(k+1)!−1∑
l=k!

r2l

� 1
2

∞∑
k=1

(
(k + 1)! − k!

)
r2(k+1)!−1 � 1

2

∞∑
k=1

(
1 − 1

k + 1
)
(k + 1)! r2(k+1)! � 1

4

∞∑
k=2

k! r2k!
.

Therefore

∞∑
k=1

k! |z|2k! � |z|2 + 4
∣∣log(1 − |z|)

∣∣ � c
∣∣log(1 − |z|)

∣∣ .
Now
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|h(z)| �
s∑

j=1
|pj |

∞∑
k=1

k! |z|j 2k! � c
s∑

j=1
|hj |

∣∣log(1 − |z|j)
∣∣ � cB

∣∣log(1 − |z|)
∣∣,

as stated. �
Lemma 7.6. For every α ∈ (−π , π],

lim sup
r→1

|h(r eiα)|∣∣log(1 − r)
∣∣ � 1 .

Proof. We fix α and N ∈ N and can find rN = rN (α) such that

wN = rN eiα 2N! ∈ K .

Thus,

1/6 ≤ rN � 1/3 ,
∣∣p(wN ) − 5/3| < 2/3 , and �

(
p(wN )

)
> 1.

Now we choose

zN = r
1/2N!

N eiα ,

so that |zN | → 1, and we consider

h(zN ) −N ! p
(
z2N!

N

)
=

N−1∑
k=1

k! p
(
z2k!

N

)
+

∞∑
k=N+1

k! p
(
z2k!

N

)
.

We can estimate the first sum by∣∣∣∣∣
N−1∑
k=1

k! p
(
z2k!

N

)∣∣∣∣∣ � B
N−1∑
k=1

k! � 2B (N − 1)! = 2B
N

N ! ,

and, by setting xN = (1/3)N ! and using that 2n � n, the second sum is majorized as 
follows:∣∣∣∣∣

∞∑
k=N+1

k! p
(
z2k!

N

)∣∣∣∣∣ � BN !
∞∑

k=N+1

k!
N ! x

2(k!/N!)−1

N � BN !
∞∑

k=N+1

k!
N ! x

(k!/N !)−1
N

� BN !
∞∑

m=N+1
mxm−1

N = BN ! (N + 1)xN
N −NxN+1

N

(1 − xN )2︸ ︷︷ ︸
→ 0 , as N → ∞

.

It follows that
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∣∣∣h(zN ) −N ! p
(
z2N!

N︸ ︷︷ ︸
p(wn)

)∣∣∣ � N ! εN , where εN → 0 as N → ∞ .

Now note that 1 < log(1/rN ) < 2. Using this and the fact that for x > 0 one has 
x − x2/2 � 1 − e−x � x, one obtains that

1 − |zN | = 1 − e−2−N! log(1/rN )

{
< 2 · 2−N !

> 1
2 · 2−N !.

We deduce that 
∣∣log(1 − |zN |)

∣∣ ∼ N !, whence

∣∣∣∣∣ h(zN )∣∣log(1 − |zN |)
∣∣ − p(wN )

∣∣∣∣∣ → 0 as N → ∞ .

Since |p(wN )| � �
(
p(wN )) > 1, the statement is proved. �

Lemma 7.7. lim
N→∞

sup
|z|=1−2−N!

√
N

h(z)∣∣log(1 − |z|)
∣∣ = 0.

Proof. It is sufficient to show that

lim
N→∞

h0
(
1 − 2−N !

√
N
)

N !
√
N

= 0 , where h0(z) =
∞∑
k=1

k! z2k!
.

Similarly as above, using the fact that (1 −2−N !
√
N )2N!

√
N � 1/e and setting yN = e−N !, 

we find

h0
(
1 − 2−N !

√
N
)
�

N∑
k=1

k! +
∞∑

k=N+1

k!
(1
e

)2k!−N!
√

N

� 2N ! + N !
∞∑

k=N+1

k!
N ! (yN )(k!/N !)−1y1−

√
N

N

� 2N ! + N !
∞∑

m=N+1
m (yN )m−1y1−

√
N

N

= 2N ! + N ! (N + 1)yN+1−
√
N

N −NyN+2−
√
N

N

(1 − yN )2︸ ︷︷ ︸
→ 0 , as N → ∞

.

Divided by N !
√
N , this tends to 0. �
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Lemmas 7.5, 7.6 and 7.7 prove Proposition 7.4. With very small adaptations, one 
verifies that the same statement holds for the harmonic function �h(z). We conclude 
with the following observation, which should not look too surprising. (Recall that for 
λ = 0, Φ2(z|0) ∼ R2/2, as r = |z| → 1.)

Lemma 7.8. The biharmonic function fh associated with the function h of (37) is such 
that fh(z)/R2 is bounded and has no radial limits at any point of ∂D.

Proof. Similarly to Lemma 7.5, for 0 � r < 1,

1
1 − r

log 1
1 − r

=
∞∑

n=1

⎛⎝ n∑
j=1

1
j

⎞⎠ rn �
∞∑
k=1

⎛⎝2(k+1)!−1∑
n=2k!

n∑
j=1

1
j

⎞⎠ r2(k+1)!

(*)
� c̃

∞∑
k=1

(k + 1)! 2(k+1)! r2(k+1)!
.

For (∗), see below. We get via (35)

∣∣∣∣fh(z) − log 1
1 − r2 h(z)

∣∣∣∣ � (1 − r2)
N∑
j=1

j |pj |
∞∑
k=1

k! 2k! rj2
k! � C̃ log 1

1 − r

for a suitable constant C̃ > 0. The statement follows by dividing by 
(
log 1

1−r

)2 and 
applying Proposition 7.4.

Let us prove (∗):

Q := 1
(k + 1)! 2(k+1)!

2(k+1)!−1∑
n=2k!

n∑
j=1

1
j

= 1
(k + 1)! 2(k+1)! 2k!

2k!∑
j=1

1
j

+ 1
(k + 1)! 2(k+1)!

2(k+1)!−1∑
j=2k!+1

2(k+1)! − j

j
.

As k → ∞, the first term behaves like

2k! k! log 2
(k + 1)! 2(k+1)! → 0 ,

while the second term is

1
(k + 1)!

2(k+1)!−1∑
j=2k!+1

(1
j
− 1

2(k+1)!

)
→ log 2 .

Thus, the quotient Q is bounded below by some c̃ > 0 for all k. �
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Data availability
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